rename dev_hw_addr_random and remove redundant second
[linux/fpc-iii.git] / drivers / net / ethernet / intel / e1000e / 80003es2lan.c
blobcfb361e5f498b378fad3226de63674e2f429c95d
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
34 #include "e1000.h"
36 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00
37 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02
38 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10
39 #define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F
41 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008
42 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800
43 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010
45 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
46 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000
47 #define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000
49 #define E1000_KMRNCTRLSTA_OPMODE_MASK 0x000C
50 #define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO 0x0004
52 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
53 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
55 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
56 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
58 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */
59 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */
60 #define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
61 #define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
62 #define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
63 #define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
65 /* PHY Specific Control Register 2 (Page 0, Register 26) */
66 #define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000
67 /* 1=Reverse Auto-Negotiation */
69 /* MAC Specific Control Register (Page 2, Register 21) */
70 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
71 #define GG82563_MSCR_TX_CLK_MASK 0x0007
72 #define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004
73 #define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005
74 #define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007
76 #define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
78 /* DSP Distance Register (Page 5, Register 26) */
79 #define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M
80 1 = 50-80M
81 2 = 80-110M
82 3 = 110-140M
83 4 = >140M */
85 /* Kumeran Mode Control Register (Page 193, Register 16) */
86 #define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
88 /* Max number of times Kumeran read/write should be validated */
89 #define GG82563_MAX_KMRN_RETRY 0x5
91 /* Power Management Control Register (Page 193, Register 20) */
92 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001
93 /* 1=Enable SERDES Electrical Idle */
95 /* In-Band Control Register (Page 194, Register 18) */
96 #define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
99 * A table for the GG82563 cable length where the range is defined
100 * with a lower bound at "index" and the upper bound at
101 * "index + 5".
103 static const u16 e1000_gg82563_cable_length_table[] = {
104 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
105 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
106 ARRAY_SIZE(e1000_gg82563_cable_length_table)
108 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
109 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
110 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
111 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
112 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
113 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
114 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
115 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
116 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
117 u16 *data);
118 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
119 u16 data);
120 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
123 * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
124 * @hw: pointer to the HW structure
126 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
128 struct e1000_phy_info *phy = &hw->phy;
129 s32 ret_val;
131 if (hw->phy.media_type != e1000_media_type_copper) {
132 phy->type = e1000_phy_none;
133 return 0;
134 } else {
135 phy->ops.power_up = e1000_power_up_phy_copper;
136 phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
139 phy->addr = 1;
140 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
141 phy->reset_delay_us = 100;
142 phy->type = e1000_phy_gg82563;
144 /* This can only be done after all function pointers are setup. */
145 ret_val = e1000e_get_phy_id(hw);
147 /* Verify phy id */
148 if (phy->id != GG82563_E_PHY_ID)
149 return -E1000_ERR_PHY;
151 return ret_val;
155 * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
156 * @hw: pointer to the HW structure
158 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
160 struct e1000_nvm_info *nvm = &hw->nvm;
161 u32 eecd = er32(EECD);
162 u16 size;
164 nvm->opcode_bits = 8;
165 nvm->delay_usec = 1;
166 switch (nvm->override) {
167 case e1000_nvm_override_spi_large:
168 nvm->page_size = 32;
169 nvm->address_bits = 16;
170 break;
171 case e1000_nvm_override_spi_small:
172 nvm->page_size = 8;
173 nvm->address_bits = 8;
174 break;
175 default:
176 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
177 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
178 break;
181 nvm->type = e1000_nvm_eeprom_spi;
183 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
184 E1000_EECD_SIZE_EX_SHIFT);
187 * Added to a constant, "size" becomes the left-shift value
188 * for setting word_size.
190 size += NVM_WORD_SIZE_BASE_SHIFT;
192 /* EEPROM access above 16k is unsupported */
193 if (size > 14)
194 size = 14;
195 nvm->word_size = 1 << size;
197 return 0;
201 * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
202 * @hw: pointer to the HW structure
204 static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
206 struct e1000_mac_info *mac = &hw->mac;
208 /* Set media type and media-dependent function pointers */
209 switch (hw->adapter->pdev->device) {
210 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
211 hw->phy.media_type = e1000_media_type_internal_serdes;
212 mac->ops.check_for_link = e1000e_check_for_serdes_link;
213 mac->ops.setup_physical_interface =
214 e1000e_setup_fiber_serdes_link;
215 break;
216 default:
217 hw->phy.media_type = e1000_media_type_copper;
218 mac->ops.check_for_link = e1000e_check_for_copper_link;
219 mac->ops.setup_physical_interface =
220 e1000_setup_copper_link_80003es2lan;
221 break;
224 /* Set mta register count */
225 mac->mta_reg_count = 128;
226 /* Set rar entry count */
227 mac->rar_entry_count = E1000_RAR_ENTRIES;
228 /* FWSM register */
229 mac->has_fwsm = true;
230 /* ARC supported; valid only if manageability features are enabled. */
231 mac->arc_subsystem_valid =
232 (er32(FWSM) & E1000_FWSM_MODE_MASK)
233 ? true : false;
234 /* Adaptive IFS not supported */
235 mac->adaptive_ifs = false;
237 /* set lan id for port to determine which phy lock to use */
238 hw->mac.ops.set_lan_id(hw);
240 return 0;
243 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
245 struct e1000_hw *hw = &adapter->hw;
246 s32 rc;
248 rc = e1000_init_mac_params_80003es2lan(hw);
249 if (rc)
250 return rc;
252 rc = e1000_init_nvm_params_80003es2lan(hw);
253 if (rc)
254 return rc;
256 rc = e1000_init_phy_params_80003es2lan(hw);
257 if (rc)
258 return rc;
260 return 0;
264 * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
265 * @hw: pointer to the HW structure
267 * A wrapper to acquire access rights to the correct PHY.
269 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
271 u16 mask;
273 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
274 return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
278 * e1000_release_phy_80003es2lan - Release rights to access PHY
279 * @hw: pointer to the HW structure
281 * A wrapper to release access rights to the correct PHY.
283 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
285 u16 mask;
287 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
288 e1000_release_swfw_sync_80003es2lan(hw, mask);
292 * e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
293 * @hw: pointer to the HW structure
295 * Acquire the semaphore to access the Kumeran interface.
298 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
300 u16 mask;
302 mask = E1000_SWFW_CSR_SM;
304 return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
308 * e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
309 * @hw: pointer to the HW structure
311 * Release the semaphore used to access the Kumeran interface
313 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
315 u16 mask;
317 mask = E1000_SWFW_CSR_SM;
319 e1000_release_swfw_sync_80003es2lan(hw, mask);
323 * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
324 * @hw: pointer to the HW structure
326 * Acquire the semaphore to access the EEPROM.
328 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
330 s32 ret_val;
332 ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
333 if (ret_val)
334 return ret_val;
336 ret_val = e1000e_acquire_nvm(hw);
338 if (ret_val)
339 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
341 return ret_val;
345 * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
346 * @hw: pointer to the HW structure
348 * Release the semaphore used to access the EEPROM.
350 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
352 e1000e_release_nvm(hw);
353 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
357 * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
358 * @hw: pointer to the HW structure
359 * @mask: specifies which semaphore to acquire
361 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
362 * will also specify which port we're acquiring the lock for.
364 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
366 u32 swfw_sync;
367 u32 swmask = mask;
368 u32 fwmask = mask << 16;
369 s32 i = 0;
370 s32 timeout = 50;
372 while (i < timeout) {
373 if (e1000e_get_hw_semaphore(hw))
374 return -E1000_ERR_SWFW_SYNC;
376 swfw_sync = er32(SW_FW_SYNC);
377 if (!(swfw_sync & (fwmask | swmask)))
378 break;
381 * Firmware currently using resource (fwmask)
382 * or other software thread using resource (swmask)
384 e1000e_put_hw_semaphore(hw);
385 mdelay(5);
386 i++;
389 if (i == timeout) {
390 e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
391 return -E1000_ERR_SWFW_SYNC;
394 swfw_sync |= swmask;
395 ew32(SW_FW_SYNC, swfw_sync);
397 e1000e_put_hw_semaphore(hw);
399 return 0;
403 * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
404 * @hw: pointer to the HW structure
405 * @mask: specifies which semaphore to acquire
407 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
408 * will also specify which port we're releasing the lock for.
410 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
412 u32 swfw_sync;
414 while (e1000e_get_hw_semaphore(hw) != 0)
415 ; /* Empty */
417 swfw_sync = er32(SW_FW_SYNC);
418 swfw_sync &= ~mask;
419 ew32(SW_FW_SYNC, swfw_sync);
421 e1000e_put_hw_semaphore(hw);
425 * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
426 * @hw: pointer to the HW structure
427 * @offset: offset of the register to read
428 * @data: pointer to the data returned from the operation
430 * Read the GG82563 PHY register.
432 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
433 u32 offset, u16 *data)
435 s32 ret_val;
436 u32 page_select;
437 u16 temp;
439 ret_val = e1000_acquire_phy_80003es2lan(hw);
440 if (ret_val)
441 return ret_val;
443 /* Select Configuration Page */
444 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
445 page_select = GG82563_PHY_PAGE_SELECT;
446 } else {
448 * Use Alternative Page Select register to access
449 * registers 30 and 31
451 page_select = GG82563_PHY_PAGE_SELECT_ALT;
454 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
455 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
456 if (ret_val) {
457 e1000_release_phy_80003es2lan(hw);
458 return ret_val;
461 if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
463 * The "ready" bit in the MDIC register may be incorrectly set
464 * before the device has completed the "Page Select" MDI
465 * transaction. So we wait 200us after each MDI command...
467 udelay(200);
469 /* ...and verify the command was successful. */
470 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
472 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
473 ret_val = -E1000_ERR_PHY;
474 e1000_release_phy_80003es2lan(hw);
475 return ret_val;
478 udelay(200);
480 ret_val = e1000e_read_phy_reg_mdic(hw,
481 MAX_PHY_REG_ADDRESS & offset,
482 data);
484 udelay(200);
485 } else {
486 ret_val = e1000e_read_phy_reg_mdic(hw,
487 MAX_PHY_REG_ADDRESS & offset,
488 data);
491 e1000_release_phy_80003es2lan(hw);
493 return ret_val;
497 * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
498 * @hw: pointer to the HW structure
499 * @offset: offset of the register to read
500 * @data: value to write to the register
502 * Write to the GG82563 PHY register.
504 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
505 u32 offset, u16 data)
507 s32 ret_val;
508 u32 page_select;
509 u16 temp;
511 ret_val = e1000_acquire_phy_80003es2lan(hw);
512 if (ret_val)
513 return ret_val;
515 /* Select Configuration Page */
516 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
517 page_select = GG82563_PHY_PAGE_SELECT;
518 } else {
520 * Use Alternative Page Select register to access
521 * registers 30 and 31
523 page_select = GG82563_PHY_PAGE_SELECT_ALT;
526 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
527 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
528 if (ret_val) {
529 e1000_release_phy_80003es2lan(hw);
530 return ret_val;
533 if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
535 * The "ready" bit in the MDIC register may be incorrectly set
536 * before the device has completed the "Page Select" MDI
537 * transaction. So we wait 200us after each MDI command...
539 udelay(200);
541 /* ...and verify the command was successful. */
542 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
544 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
545 e1000_release_phy_80003es2lan(hw);
546 return -E1000_ERR_PHY;
549 udelay(200);
551 ret_val = e1000e_write_phy_reg_mdic(hw,
552 MAX_PHY_REG_ADDRESS & offset,
553 data);
555 udelay(200);
556 } else {
557 ret_val = e1000e_write_phy_reg_mdic(hw,
558 MAX_PHY_REG_ADDRESS & offset,
559 data);
562 e1000_release_phy_80003es2lan(hw);
564 return ret_val;
568 * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
569 * @hw: pointer to the HW structure
570 * @offset: offset of the register to read
571 * @words: number of words to write
572 * @data: buffer of data to write to the NVM
574 * Write "words" of data to the ESB2 NVM.
576 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
577 u16 words, u16 *data)
579 return e1000e_write_nvm_spi(hw, offset, words, data);
583 * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
584 * @hw: pointer to the HW structure
586 * Wait a specific amount of time for manageability processes to complete.
587 * This is a function pointer entry point called by the phy module.
589 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
591 s32 timeout = PHY_CFG_TIMEOUT;
592 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
594 if (hw->bus.func == 1)
595 mask = E1000_NVM_CFG_DONE_PORT_1;
597 while (timeout) {
598 if (er32(EEMNGCTL) & mask)
599 break;
600 usleep_range(1000, 2000);
601 timeout--;
603 if (!timeout) {
604 e_dbg("MNG configuration cycle has not completed.\n");
605 return -E1000_ERR_RESET;
608 return 0;
612 * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
613 * @hw: pointer to the HW structure
615 * Force the speed and duplex settings onto the PHY. This is a
616 * function pointer entry point called by the phy module.
618 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
620 s32 ret_val;
621 u16 phy_data;
622 bool link;
625 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
626 * forced whenever speed and duplex are forced.
628 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
629 if (ret_val)
630 return ret_val;
632 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
633 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
634 if (ret_val)
635 return ret_val;
637 e_dbg("GG82563 PSCR: %X\n", phy_data);
639 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
640 if (ret_val)
641 return ret_val;
643 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
645 /* Reset the phy to commit changes. */
646 phy_data |= MII_CR_RESET;
648 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
649 if (ret_val)
650 return ret_val;
652 udelay(1);
654 if (hw->phy.autoneg_wait_to_complete) {
655 e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
657 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
658 100000, &link);
659 if (ret_val)
660 return ret_val;
662 if (!link) {
664 * We didn't get link.
665 * Reset the DSP and cross our fingers.
667 ret_val = e1000e_phy_reset_dsp(hw);
668 if (ret_val)
669 return ret_val;
672 /* Try once more */
673 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
674 100000, &link);
675 if (ret_val)
676 return ret_val;
679 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
680 if (ret_val)
681 return ret_val;
684 * Resetting the phy means we need to verify the TX_CLK corresponds
685 * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
687 phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
688 if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
689 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
690 else
691 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
694 * In addition, we must re-enable CRS on Tx for both half and full
695 * duplex.
697 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
698 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
700 return ret_val;
704 * e1000_get_cable_length_80003es2lan - Set approximate cable length
705 * @hw: pointer to the HW structure
707 * Find the approximate cable length as measured by the GG82563 PHY.
708 * This is a function pointer entry point called by the phy module.
710 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
712 struct e1000_phy_info *phy = &hw->phy;
713 s32 ret_val = 0;
714 u16 phy_data, index;
716 ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
717 if (ret_val)
718 goto out;
720 index = phy_data & GG82563_DSPD_CABLE_LENGTH;
722 if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) {
723 ret_val = -E1000_ERR_PHY;
724 goto out;
727 phy->min_cable_length = e1000_gg82563_cable_length_table[index];
728 phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
730 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
732 out:
733 return ret_val;
737 * e1000_get_link_up_info_80003es2lan - Report speed and duplex
738 * @hw: pointer to the HW structure
739 * @speed: pointer to speed buffer
740 * @duplex: pointer to duplex buffer
742 * Retrieve the current speed and duplex configuration.
744 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
745 u16 *duplex)
747 s32 ret_val;
749 if (hw->phy.media_type == e1000_media_type_copper) {
750 ret_val = e1000e_get_speed_and_duplex_copper(hw,
751 speed,
752 duplex);
753 hw->phy.ops.cfg_on_link_up(hw);
754 } else {
755 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
756 speed,
757 duplex);
760 return ret_val;
764 * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
765 * @hw: pointer to the HW structure
767 * Perform a global reset to the ESB2 controller.
769 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
771 u32 ctrl;
772 s32 ret_val;
775 * Prevent the PCI-E bus from sticking if there is no TLP connection
776 * on the last TLP read/write transaction when MAC is reset.
778 ret_val = e1000e_disable_pcie_master(hw);
779 if (ret_val)
780 e_dbg("PCI-E Master disable polling has failed.\n");
782 e_dbg("Masking off all interrupts\n");
783 ew32(IMC, 0xffffffff);
785 ew32(RCTL, 0);
786 ew32(TCTL, E1000_TCTL_PSP);
787 e1e_flush();
789 usleep_range(10000, 20000);
791 ctrl = er32(CTRL);
793 ret_val = e1000_acquire_phy_80003es2lan(hw);
794 e_dbg("Issuing a global reset to MAC\n");
795 ew32(CTRL, ctrl | E1000_CTRL_RST);
796 e1000_release_phy_80003es2lan(hw);
798 ret_val = e1000e_get_auto_rd_done(hw);
799 if (ret_val)
800 /* We don't want to continue accessing MAC registers. */
801 return ret_val;
803 /* Clear any pending interrupt events. */
804 ew32(IMC, 0xffffffff);
805 er32(ICR);
807 ret_val = e1000_check_alt_mac_addr_generic(hw);
809 return ret_val;
813 * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
814 * @hw: pointer to the HW structure
816 * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
818 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
820 struct e1000_mac_info *mac = &hw->mac;
821 u32 reg_data;
822 s32 ret_val;
823 u16 kum_reg_data;
824 u16 i;
826 e1000_initialize_hw_bits_80003es2lan(hw);
828 /* Initialize identification LED */
829 ret_val = e1000e_id_led_init(hw);
830 if (ret_val)
831 e_dbg("Error initializing identification LED\n");
832 /* This is not fatal and we should not stop init due to this */
834 /* Disabling VLAN filtering */
835 e_dbg("Initializing the IEEE VLAN\n");
836 mac->ops.clear_vfta(hw);
838 /* Setup the receive address. */
839 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
841 /* Zero out the Multicast HASH table */
842 e_dbg("Zeroing the MTA\n");
843 for (i = 0; i < mac->mta_reg_count; i++)
844 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
846 /* Setup link and flow control */
847 ret_val = e1000e_setup_link(hw);
849 /* Disable IBIST slave mode (far-end loopback) */
850 e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
851 &kum_reg_data);
852 kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
853 e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
854 kum_reg_data);
856 /* Set the transmit descriptor write-back policy */
857 reg_data = er32(TXDCTL(0));
858 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
859 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
860 ew32(TXDCTL(0), reg_data);
862 /* ...for both queues. */
863 reg_data = er32(TXDCTL(1));
864 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
865 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
866 ew32(TXDCTL(1), reg_data);
868 /* Enable retransmit on late collisions */
869 reg_data = er32(TCTL);
870 reg_data |= E1000_TCTL_RTLC;
871 ew32(TCTL, reg_data);
873 /* Configure Gigabit Carry Extend Padding */
874 reg_data = er32(TCTL_EXT);
875 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
876 reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
877 ew32(TCTL_EXT, reg_data);
879 /* Configure Transmit Inter-Packet Gap */
880 reg_data = er32(TIPG);
881 reg_data &= ~E1000_TIPG_IPGT_MASK;
882 reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
883 ew32(TIPG, reg_data);
885 reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
886 reg_data &= ~0x00100000;
887 E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
889 /* default to true to enable the MDIC W/A */
890 hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
892 ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
893 E1000_KMRNCTRLSTA_OFFSET >>
894 E1000_KMRNCTRLSTA_OFFSET_SHIFT,
895 &i);
896 if (!ret_val) {
897 if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
898 E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
899 hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
903 * Clear all of the statistics registers (clear on read). It is
904 * important that we do this after we have tried to establish link
905 * because the symbol error count will increment wildly if there
906 * is no link.
908 e1000_clear_hw_cntrs_80003es2lan(hw);
910 return ret_val;
914 * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
915 * @hw: pointer to the HW structure
917 * Initializes required hardware-dependent bits needed for normal operation.
919 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
921 u32 reg;
923 /* Transmit Descriptor Control 0 */
924 reg = er32(TXDCTL(0));
925 reg |= (1 << 22);
926 ew32(TXDCTL(0), reg);
928 /* Transmit Descriptor Control 1 */
929 reg = er32(TXDCTL(1));
930 reg |= (1 << 22);
931 ew32(TXDCTL(1), reg);
933 /* Transmit Arbitration Control 0 */
934 reg = er32(TARC(0));
935 reg &= ~(0xF << 27); /* 30:27 */
936 if (hw->phy.media_type != e1000_media_type_copper)
937 reg &= ~(1 << 20);
938 ew32(TARC(0), reg);
940 /* Transmit Arbitration Control 1 */
941 reg = er32(TARC(1));
942 if (er32(TCTL) & E1000_TCTL_MULR)
943 reg &= ~(1 << 28);
944 else
945 reg |= (1 << 28);
946 ew32(TARC(1), reg);
950 * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
951 * @hw: pointer to the HW structure
953 * Setup some GG82563 PHY registers for obtaining link
955 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
957 struct e1000_phy_info *phy = &hw->phy;
958 s32 ret_val;
959 u32 ctrl_ext;
960 u16 data;
962 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
963 if (ret_val)
964 return ret_val;
966 data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
967 /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
968 data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
970 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
971 if (ret_val)
972 return ret_val;
975 * Options:
976 * MDI/MDI-X = 0 (default)
977 * 0 - Auto for all speeds
978 * 1 - MDI mode
979 * 2 - MDI-X mode
980 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
982 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
983 if (ret_val)
984 return ret_val;
986 data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
988 switch (phy->mdix) {
989 case 1:
990 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
991 break;
992 case 2:
993 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
994 break;
995 case 0:
996 default:
997 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
998 break;
1002 * Options:
1003 * disable_polarity_correction = 0 (default)
1004 * Automatic Correction for Reversed Cable Polarity
1005 * 0 - Disabled
1006 * 1 - Enabled
1008 data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1009 if (phy->disable_polarity_correction)
1010 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1012 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
1013 if (ret_val)
1014 return ret_val;
1016 /* SW Reset the PHY so all changes take effect */
1017 ret_val = e1000e_commit_phy(hw);
1018 if (ret_val) {
1019 e_dbg("Error Resetting the PHY\n");
1020 return ret_val;
1023 /* Bypass Rx and Tx FIFO's */
1024 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1025 E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
1026 E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
1027 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
1028 if (ret_val)
1029 return ret_val;
1031 ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1032 E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1033 &data);
1034 if (ret_val)
1035 return ret_val;
1036 data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
1037 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1038 E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1039 data);
1040 if (ret_val)
1041 return ret_val;
1043 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
1044 if (ret_val)
1045 return ret_val;
1047 data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1048 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
1049 if (ret_val)
1050 return ret_val;
1052 ctrl_ext = er32(CTRL_EXT);
1053 ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1054 ew32(CTRL_EXT, ctrl_ext);
1056 ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
1057 if (ret_val)
1058 return ret_val;
1061 * Do not init these registers when the HW is in IAMT mode, since the
1062 * firmware will have already initialized them. We only initialize
1063 * them if the HW is not in IAMT mode.
1065 if (!e1000e_check_mng_mode(hw)) {
1066 /* Enable Electrical Idle on the PHY */
1067 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1068 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
1069 if (ret_val)
1070 return ret_val;
1072 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
1073 if (ret_val)
1074 return ret_val;
1076 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1077 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1078 if (ret_val)
1079 return ret_val;
1083 * Workaround: Disable padding in Kumeran interface in the MAC
1084 * and in the PHY to avoid CRC errors.
1086 ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1087 if (ret_val)
1088 return ret_val;
1090 data |= GG82563_ICR_DIS_PADDING;
1091 ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1092 if (ret_val)
1093 return ret_val;
1095 return 0;
1099 * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1100 * @hw: pointer to the HW structure
1102 * Essentially a wrapper for setting up all things "copper" related.
1103 * This is a function pointer entry point called by the mac module.
1105 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1107 u32 ctrl;
1108 s32 ret_val;
1109 u16 reg_data;
1111 ctrl = er32(CTRL);
1112 ctrl |= E1000_CTRL_SLU;
1113 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1114 ew32(CTRL, ctrl);
1117 * Set the mac to wait the maximum time between each
1118 * iteration and increase the max iterations when
1119 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1121 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1122 0xFFFF);
1123 if (ret_val)
1124 return ret_val;
1125 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1126 &reg_data);
1127 if (ret_val)
1128 return ret_val;
1129 reg_data |= 0x3F;
1130 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1131 reg_data);
1132 if (ret_val)
1133 return ret_val;
1134 ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1135 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1136 &reg_data);
1137 if (ret_val)
1138 return ret_val;
1139 reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1140 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1141 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1142 reg_data);
1143 if (ret_val)
1144 return ret_val;
1146 ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1147 if (ret_val)
1148 return ret_val;
1150 ret_val = e1000e_setup_copper_link(hw);
1152 return 0;
1156 * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1157 * @hw: pointer to the HW structure
1158 * @duplex: current duplex setting
1160 * Configure the KMRN interface by applying last minute quirks for
1161 * 10/100 operation.
1163 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1165 s32 ret_val = 0;
1166 u16 speed;
1167 u16 duplex;
1169 if (hw->phy.media_type == e1000_media_type_copper) {
1170 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1171 &duplex);
1172 if (ret_val)
1173 return ret_val;
1175 if (speed == SPEED_1000)
1176 ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1177 else
1178 ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1181 return ret_val;
1185 * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1186 * @hw: pointer to the HW structure
1187 * @duplex: current duplex setting
1189 * Configure the KMRN interface by applying last minute quirks for
1190 * 10/100 operation.
1192 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1194 s32 ret_val;
1195 u32 tipg;
1196 u32 i = 0;
1197 u16 reg_data, reg_data2;
1199 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1200 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1201 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1202 reg_data);
1203 if (ret_val)
1204 return ret_val;
1206 /* Configure Transmit Inter-Packet Gap */
1207 tipg = er32(TIPG);
1208 tipg &= ~E1000_TIPG_IPGT_MASK;
1209 tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1210 ew32(TIPG, tipg);
1212 do {
1213 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1214 if (ret_val)
1215 return ret_val;
1217 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1218 if (ret_val)
1219 return ret_val;
1220 i++;
1221 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1223 if (duplex == HALF_DUPLEX)
1224 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1225 else
1226 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1228 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1230 return 0;
1234 * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1235 * @hw: pointer to the HW structure
1237 * Configure the KMRN interface by applying last minute quirks for
1238 * gigabit operation.
1240 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1242 s32 ret_val;
1243 u16 reg_data, reg_data2;
1244 u32 tipg;
1245 u32 i = 0;
1247 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1248 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1249 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1250 reg_data);
1251 if (ret_val)
1252 return ret_val;
1254 /* Configure Transmit Inter-Packet Gap */
1255 tipg = er32(TIPG);
1256 tipg &= ~E1000_TIPG_IPGT_MASK;
1257 tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1258 ew32(TIPG, tipg);
1260 do {
1261 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1262 if (ret_val)
1263 return ret_val;
1265 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1266 if (ret_val)
1267 return ret_val;
1268 i++;
1269 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1271 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1272 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1274 return ret_val;
1278 * e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1279 * @hw: pointer to the HW structure
1280 * @offset: register offset to be read
1281 * @data: pointer to the read data
1283 * Acquire semaphore, then read the PHY register at offset
1284 * using the kumeran interface. The information retrieved is stored in data.
1285 * Release the semaphore before exiting.
1287 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1288 u16 *data)
1290 u32 kmrnctrlsta;
1291 s32 ret_val = 0;
1293 ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1294 if (ret_val)
1295 return ret_val;
1297 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1298 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1299 ew32(KMRNCTRLSTA, kmrnctrlsta);
1300 e1e_flush();
1302 udelay(2);
1304 kmrnctrlsta = er32(KMRNCTRLSTA);
1305 *data = (u16)kmrnctrlsta;
1307 e1000_release_mac_csr_80003es2lan(hw);
1309 return ret_val;
1313 * e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1314 * @hw: pointer to the HW structure
1315 * @offset: register offset to write to
1316 * @data: data to write at register offset
1318 * Acquire semaphore, then write the data to PHY register
1319 * at the offset using the kumeran interface. Release semaphore
1320 * before exiting.
1322 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1323 u16 data)
1325 u32 kmrnctrlsta;
1326 s32 ret_val = 0;
1328 ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1329 if (ret_val)
1330 return ret_val;
1332 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1333 E1000_KMRNCTRLSTA_OFFSET) | data;
1334 ew32(KMRNCTRLSTA, kmrnctrlsta);
1335 e1e_flush();
1337 udelay(2);
1339 e1000_release_mac_csr_80003es2lan(hw);
1341 return ret_val;
1345 * e1000_read_mac_addr_80003es2lan - Read device MAC address
1346 * @hw: pointer to the HW structure
1348 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1350 s32 ret_val = 0;
1353 * If there's an alternate MAC address place it in RAR0
1354 * so that it will override the Si installed default perm
1355 * address.
1357 ret_val = e1000_check_alt_mac_addr_generic(hw);
1358 if (ret_val)
1359 goto out;
1361 ret_val = e1000_read_mac_addr_generic(hw);
1363 out:
1364 return ret_val;
1368 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1369 * @hw: pointer to the HW structure
1371 * In the case of a PHY power down to save power, or to turn off link during a
1372 * driver unload, or wake on lan is not enabled, remove the link.
1374 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1376 /* If the management interface is not enabled, then power down */
1377 if (!(hw->mac.ops.check_mng_mode(hw) ||
1378 hw->phy.ops.check_reset_block(hw)))
1379 e1000_power_down_phy_copper(hw);
1383 * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1384 * @hw: pointer to the HW structure
1386 * Clears the hardware counters by reading the counter registers.
1388 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1390 e1000e_clear_hw_cntrs_base(hw);
1392 er32(PRC64);
1393 er32(PRC127);
1394 er32(PRC255);
1395 er32(PRC511);
1396 er32(PRC1023);
1397 er32(PRC1522);
1398 er32(PTC64);
1399 er32(PTC127);
1400 er32(PTC255);
1401 er32(PTC511);
1402 er32(PTC1023);
1403 er32(PTC1522);
1405 er32(ALGNERRC);
1406 er32(RXERRC);
1407 er32(TNCRS);
1408 er32(CEXTERR);
1409 er32(TSCTC);
1410 er32(TSCTFC);
1412 er32(MGTPRC);
1413 er32(MGTPDC);
1414 er32(MGTPTC);
1416 er32(IAC);
1417 er32(ICRXOC);
1419 er32(ICRXPTC);
1420 er32(ICRXATC);
1421 er32(ICTXPTC);
1422 er32(ICTXATC);
1423 er32(ICTXQEC);
1424 er32(ICTXQMTC);
1425 er32(ICRXDMTC);
1428 static const struct e1000_mac_operations es2_mac_ops = {
1429 .read_mac_addr = e1000_read_mac_addr_80003es2lan,
1430 .id_led_init = e1000e_id_led_init,
1431 .blink_led = e1000e_blink_led_generic,
1432 .check_mng_mode = e1000e_check_mng_mode_generic,
1433 /* check_for_link dependent on media type */
1434 .cleanup_led = e1000e_cleanup_led_generic,
1435 .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan,
1436 .get_bus_info = e1000e_get_bus_info_pcie,
1437 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
1438 .get_link_up_info = e1000_get_link_up_info_80003es2lan,
1439 .led_on = e1000e_led_on_generic,
1440 .led_off = e1000e_led_off_generic,
1441 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
1442 .write_vfta = e1000_write_vfta_generic,
1443 .clear_vfta = e1000_clear_vfta_generic,
1444 .reset_hw = e1000_reset_hw_80003es2lan,
1445 .init_hw = e1000_init_hw_80003es2lan,
1446 .setup_link = e1000e_setup_link,
1447 /* setup_physical_interface dependent on media type */
1448 .setup_led = e1000e_setup_led_generic,
1451 static const struct e1000_phy_operations es2_phy_ops = {
1452 .acquire = e1000_acquire_phy_80003es2lan,
1453 .check_polarity = e1000_check_polarity_m88,
1454 .check_reset_block = e1000e_check_reset_block_generic,
1455 .commit = e1000e_phy_sw_reset,
1456 .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan,
1457 .get_cfg_done = e1000_get_cfg_done_80003es2lan,
1458 .get_cable_length = e1000_get_cable_length_80003es2lan,
1459 .get_info = e1000e_get_phy_info_m88,
1460 .read_reg = e1000_read_phy_reg_gg82563_80003es2lan,
1461 .release = e1000_release_phy_80003es2lan,
1462 .reset = e1000e_phy_hw_reset_generic,
1463 .set_d0_lplu_state = NULL,
1464 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1465 .write_reg = e1000_write_phy_reg_gg82563_80003es2lan,
1466 .cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan,
1469 static const struct e1000_nvm_operations es2_nvm_ops = {
1470 .acquire = e1000_acquire_nvm_80003es2lan,
1471 .read = e1000e_read_nvm_eerd,
1472 .release = e1000_release_nvm_80003es2lan,
1473 .update = e1000e_update_nvm_checksum_generic,
1474 .valid_led_default = e1000e_valid_led_default,
1475 .validate = e1000e_validate_nvm_checksum_generic,
1476 .write = e1000_write_nvm_80003es2lan,
1479 const struct e1000_info e1000_es2_info = {
1480 .mac = e1000_80003es2lan,
1481 .flags = FLAG_HAS_HW_VLAN_FILTER
1482 | FLAG_HAS_JUMBO_FRAMES
1483 | FLAG_HAS_WOL
1484 | FLAG_APME_IN_CTRL3
1485 | FLAG_HAS_CTRLEXT_ON_LOAD
1486 | FLAG_RX_NEEDS_RESTART /* errata */
1487 | FLAG_TARC_SET_BIT_ZERO /* errata */
1488 | FLAG_APME_CHECK_PORT_B
1489 | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1490 .flags2 = FLAG2_DMA_BURST,
1491 .pba = 38,
1492 .max_hw_frame_size = DEFAULT_JUMBO,
1493 .get_variants = e1000_get_variants_80003es2lan,
1494 .mac_ops = &es2_mac_ops,
1495 .phy_ops = &es2_phy_ops,
1496 .nvm_ops = &es2_nvm_ops,