rename dev_hw_addr_random and remove redundant second
[linux/fpc-iii.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
blob112d55f76b791ec723b4ae93b1f739ab4de2d121
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
55 * 82579LM Gigabit Network Connection
56 * 82579V Gigabit Network Connection
59 #include "e1000.h"
61 #define ICH_FLASH_GFPREG 0x0000
62 #define ICH_FLASH_HSFSTS 0x0004
63 #define ICH_FLASH_HSFCTL 0x0006
64 #define ICH_FLASH_FADDR 0x0008
65 #define ICH_FLASH_FDATA0 0x0010
66 #define ICH_FLASH_PR0 0x0074
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
74 #define ICH_CYCLE_READ 0
75 #define ICH_CYCLE_WRITE 2
76 #define ICH_CYCLE_ERASE 3
78 #define FLASH_GFPREG_BASE_MASK 0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT 12
81 #define ICH_FLASH_SEG_SIZE_256 256
82 #define ICH_FLASH_SEG_SIZE_4K 4096
83 #define ICH_FLASH_SEG_SIZE_8K 8192
84 #define ICH_FLASH_SEG_SIZE_64K 65536
87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID 0x00008000
91 #define E1000_ICH_MNG_IAMT_MODE 0x2
93 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
94 (ID_LED_DEF1_OFF2 << 8) | \
95 (ID_LED_DEF1_ON2 << 4) | \
96 (ID_LED_DEF1_DEF2))
98 #define E1000_ICH_NVM_SIG_WORD 0x13
99 #define E1000_ICH_NVM_SIG_MASK 0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
101 #define E1000_ICH_NVM_SIG_VALUE 0x80
103 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
105 #define E1000_FEXTNVM_SW_CONFIG 1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
112 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
114 #define E1000_ICH_RAR_ENTRIES 7
116 #define PHY_PAGE_SHIFT 5
117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118 ((reg) & MAX_PHY_REG_ADDRESS))
119 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
120 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
126 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
128 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
130 /* SMBus Address Phy Register */
131 #define HV_SMB_ADDR PHY_REG(768, 26)
132 #define HV_SMB_ADDR_MASK 0x007F
133 #define HV_SMB_ADDR_PEC_EN 0x0200
134 #define HV_SMB_ADDR_VALID 0x0080
136 /* PHY Power Management Control */
137 #define HV_PM_CTRL PHY_REG(770, 17)
139 /* PHY Low Power Idle Control */
140 #define I82579_LPI_CTRL PHY_REG(772, 20)
141 #define I82579_LPI_CTRL_ENABLE_MASK 0x6000
142 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT 0x80
144 /* EMI Registers */
145 #define I82579_EMI_ADDR 0x10
146 #define I82579_EMI_DATA 0x11
147 #define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */
148 #define I82579_MSE_THRESHOLD 0x084F /* Mean Square Error Threshold */
149 #define I82579_MSE_LINK_DOWN 0x2411 /* MSE count before dropping link */
151 /* Strapping Option Register - RO */
152 #define E1000_STRAP 0x0000C
153 #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
154 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
156 /* OEM Bits Phy Register */
157 #define HV_OEM_BITS PHY_REG(768, 25)
158 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
159 #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
160 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
162 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
163 #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
165 /* KMRN Mode Control */
166 #define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
167 #define HV_KMRN_MDIO_SLOW 0x0400
169 /* KMRN FIFO Control and Status */
170 #define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16)
171 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000
172 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12
174 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
175 /* Offset 04h HSFSTS */
176 union ich8_hws_flash_status {
177 struct ich8_hsfsts {
178 u16 flcdone :1; /* bit 0 Flash Cycle Done */
179 u16 flcerr :1; /* bit 1 Flash Cycle Error */
180 u16 dael :1; /* bit 2 Direct Access error Log */
181 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
182 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
183 u16 reserved1 :2; /* bit 13:6 Reserved */
184 u16 reserved2 :6; /* bit 13:6 Reserved */
185 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
186 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
187 } hsf_status;
188 u16 regval;
191 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
192 /* Offset 06h FLCTL */
193 union ich8_hws_flash_ctrl {
194 struct ich8_hsflctl {
195 u16 flcgo :1; /* 0 Flash Cycle Go */
196 u16 flcycle :2; /* 2:1 Flash Cycle */
197 u16 reserved :5; /* 7:3 Reserved */
198 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
199 u16 flockdn :6; /* 15:10 Reserved */
200 } hsf_ctrl;
201 u16 regval;
204 /* ICH Flash Region Access Permissions */
205 union ich8_hws_flash_regacc {
206 struct ich8_flracc {
207 u32 grra :8; /* 0:7 GbE region Read Access */
208 u32 grwa :8; /* 8:15 GbE region Write Access */
209 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
210 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
211 } hsf_flregacc;
212 u16 regval;
215 /* ICH Flash Protected Region */
216 union ich8_flash_protected_range {
217 struct ich8_pr {
218 u32 base:13; /* 0:12 Protected Range Base */
219 u32 reserved1:2; /* 13:14 Reserved */
220 u32 rpe:1; /* 15 Read Protection Enable */
221 u32 limit:13; /* 16:28 Protected Range Limit */
222 u32 reserved2:2; /* 29:30 Reserved */
223 u32 wpe:1; /* 31 Write Protection Enable */
224 } range;
225 u32 regval;
228 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
229 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
230 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
231 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
232 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
233 u32 offset, u8 byte);
234 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
235 u8 *data);
236 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
237 u16 *data);
238 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
239 u8 size, u16 *data);
240 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
241 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
242 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
243 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
244 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
245 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
246 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
247 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
248 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
249 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
250 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
251 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
252 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
253 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
254 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
255 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
256 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
257 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
258 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
259 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
261 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
263 return readw(hw->flash_address + reg);
266 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
268 return readl(hw->flash_address + reg);
271 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
273 writew(val, hw->flash_address + reg);
276 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
278 writel(val, hw->flash_address + reg);
281 #define er16flash(reg) __er16flash(hw, (reg))
282 #define er32flash(reg) __er32flash(hw, (reg))
283 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
284 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
286 static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
288 u32 ctrl;
290 ctrl = er32(CTRL);
291 ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
292 ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
293 ew32(CTRL, ctrl);
294 e1e_flush();
295 udelay(10);
296 ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
297 ew32(CTRL, ctrl);
301 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
302 * @hw: pointer to the HW structure
304 * Initialize family-specific PHY parameters and function pointers.
306 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
308 struct e1000_phy_info *phy = &hw->phy;
309 s32 ret_val = 0;
311 phy->addr = 1;
312 phy->reset_delay_us = 100;
314 phy->ops.set_page = e1000_set_page_igp;
315 phy->ops.read_reg = e1000_read_phy_reg_hv;
316 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
317 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
318 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
319 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
320 phy->ops.write_reg = e1000_write_phy_reg_hv;
321 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
322 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
323 phy->ops.power_up = e1000_power_up_phy_copper;
324 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
325 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
327 if (!e1000_check_reset_block(hw)) {
328 u32 fwsm = er32(FWSM);
331 * The MAC-PHY interconnect may still be in SMBus mode after
332 * Sx->S0. If resetting the PHY is not blocked, toggle the
333 * LANPHYPC Value bit to force the interconnect to PCIe mode.
335 e1000_toggle_lanphypc_value_ich8lan(hw);
336 msleep(50);
339 * Gate automatic PHY configuration by hardware on
340 * non-managed 82579
342 if ((hw->mac.type == e1000_pch2lan) &&
343 !(fwsm & E1000_ICH_FWSM_FW_VALID))
344 e1000_gate_hw_phy_config_ich8lan(hw, true);
347 * Reset the PHY before any access to it. Doing so, ensures
348 * that the PHY is in a known good state before we read/write
349 * PHY registers. The generic reset is sufficient here,
350 * because we haven't determined the PHY type yet.
352 ret_val = e1000e_phy_hw_reset_generic(hw);
353 if (ret_val)
354 goto out;
356 /* Ungate automatic PHY configuration on non-managed 82579 */
357 if ((hw->mac.type == e1000_pch2lan) &&
358 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
359 usleep_range(10000, 20000);
360 e1000_gate_hw_phy_config_ich8lan(hw, false);
364 phy->id = e1000_phy_unknown;
365 switch (hw->mac.type) {
366 default:
367 ret_val = e1000e_get_phy_id(hw);
368 if (ret_val)
369 goto out;
370 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
371 break;
372 /* fall-through */
373 case e1000_pch2lan:
375 * In case the PHY needs to be in mdio slow mode,
376 * set slow mode and try to get the PHY id again.
378 ret_val = e1000_set_mdio_slow_mode_hv(hw);
379 if (ret_val)
380 goto out;
381 ret_val = e1000e_get_phy_id(hw);
382 if (ret_val)
383 goto out;
384 break;
386 phy->type = e1000e_get_phy_type_from_id(phy->id);
388 switch (phy->type) {
389 case e1000_phy_82577:
390 case e1000_phy_82579:
391 phy->ops.check_polarity = e1000_check_polarity_82577;
392 phy->ops.force_speed_duplex =
393 e1000_phy_force_speed_duplex_82577;
394 phy->ops.get_cable_length = e1000_get_cable_length_82577;
395 phy->ops.get_info = e1000_get_phy_info_82577;
396 phy->ops.commit = e1000e_phy_sw_reset;
397 break;
398 case e1000_phy_82578:
399 phy->ops.check_polarity = e1000_check_polarity_m88;
400 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
401 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
402 phy->ops.get_info = e1000e_get_phy_info_m88;
403 break;
404 default:
405 ret_val = -E1000_ERR_PHY;
406 break;
409 out:
410 return ret_val;
414 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
415 * @hw: pointer to the HW structure
417 * Initialize family-specific PHY parameters and function pointers.
419 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
421 struct e1000_phy_info *phy = &hw->phy;
422 s32 ret_val;
423 u16 i = 0;
425 phy->addr = 1;
426 phy->reset_delay_us = 100;
428 phy->ops.power_up = e1000_power_up_phy_copper;
429 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
432 * We may need to do this twice - once for IGP and if that fails,
433 * we'll set BM func pointers and try again
435 ret_val = e1000e_determine_phy_address(hw);
436 if (ret_val) {
437 phy->ops.write_reg = e1000e_write_phy_reg_bm;
438 phy->ops.read_reg = e1000e_read_phy_reg_bm;
439 ret_val = e1000e_determine_phy_address(hw);
440 if (ret_val) {
441 e_dbg("Cannot determine PHY addr. Erroring out\n");
442 return ret_val;
446 phy->id = 0;
447 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
448 (i++ < 100)) {
449 usleep_range(1000, 2000);
450 ret_val = e1000e_get_phy_id(hw);
451 if (ret_val)
452 return ret_val;
455 /* Verify phy id */
456 switch (phy->id) {
457 case IGP03E1000_E_PHY_ID:
458 phy->type = e1000_phy_igp_3;
459 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
460 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
461 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
462 phy->ops.get_info = e1000e_get_phy_info_igp;
463 phy->ops.check_polarity = e1000_check_polarity_igp;
464 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
465 break;
466 case IFE_E_PHY_ID:
467 case IFE_PLUS_E_PHY_ID:
468 case IFE_C_E_PHY_ID:
469 phy->type = e1000_phy_ife;
470 phy->autoneg_mask = E1000_ALL_NOT_GIG;
471 phy->ops.get_info = e1000_get_phy_info_ife;
472 phy->ops.check_polarity = e1000_check_polarity_ife;
473 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
474 break;
475 case BME1000_E_PHY_ID:
476 phy->type = e1000_phy_bm;
477 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
478 phy->ops.read_reg = e1000e_read_phy_reg_bm;
479 phy->ops.write_reg = e1000e_write_phy_reg_bm;
480 phy->ops.commit = e1000e_phy_sw_reset;
481 phy->ops.get_info = e1000e_get_phy_info_m88;
482 phy->ops.check_polarity = e1000_check_polarity_m88;
483 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
484 break;
485 default:
486 return -E1000_ERR_PHY;
487 break;
490 return 0;
494 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
495 * @hw: pointer to the HW structure
497 * Initialize family-specific NVM parameters and function
498 * pointers.
500 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
502 struct e1000_nvm_info *nvm = &hw->nvm;
503 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
504 u32 gfpreg, sector_base_addr, sector_end_addr;
505 u16 i;
507 /* Can't read flash registers if the register set isn't mapped. */
508 if (!hw->flash_address) {
509 e_dbg("ERROR: Flash registers not mapped\n");
510 return -E1000_ERR_CONFIG;
513 nvm->type = e1000_nvm_flash_sw;
515 gfpreg = er32flash(ICH_FLASH_GFPREG);
518 * sector_X_addr is a "sector"-aligned address (4096 bytes)
519 * Add 1 to sector_end_addr since this sector is included in
520 * the overall size.
522 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
523 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
525 /* flash_base_addr is byte-aligned */
526 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
529 * find total size of the NVM, then cut in half since the total
530 * size represents two separate NVM banks.
532 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
533 << FLASH_SECTOR_ADDR_SHIFT;
534 nvm->flash_bank_size /= 2;
535 /* Adjust to word count */
536 nvm->flash_bank_size /= sizeof(u16);
538 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
540 /* Clear shadow ram */
541 for (i = 0; i < nvm->word_size; i++) {
542 dev_spec->shadow_ram[i].modified = false;
543 dev_spec->shadow_ram[i].value = 0xFFFF;
546 return 0;
550 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
551 * @hw: pointer to the HW structure
553 * Initialize family-specific MAC parameters and function
554 * pointers.
556 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
558 struct e1000_mac_info *mac = &hw->mac;
560 /* Set media type function pointer */
561 hw->phy.media_type = e1000_media_type_copper;
563 /* Set mta register count */
564 mac->mta_reg_count = 32;
565 /* Set rar entry count */
566 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
567 if (mac->type == e1000_ich8lan)
568 mac->rar_entry_count--;
569 /* FWSM register */
570 mac->has_fwsm = true;
571 /* ARC subsystem not supported */
572 mac->arc_subsystem_valid = false;
573 /* Adaptive IFS supported */
574 mac->adaptive_ifs = true;
576 /* LED operations */
577 switch (mac->type) {
578 case e1000_ich8lan:
579 case e1000_ich9lan:
580 case e1000_ich10lan:
581 /* check management mode */
582 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
583 /* ID LED init */
584 mac->ops.id_led_init = e1000e_id_led_init;
585 /* blink LED */
586 mac->ops.blink_led = e1000e_blink_led_generic;
587 /* setup LED */
588 mac->ops.setup_led = e1000e_setup_led_generic;
589 /* cleanup LED */
590 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
591 /* turn on/off LED */
592 mac->ops.led_on = e1000_led_on_ich8lan;
593 mac->ops.led_off = e1000_led_off_ich8lan;
594 break;
595 case e1000_pchlan:
596 case e1000_pch2lan:
597 /* check management mode */
598 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
599 /* ID LED init */
600 mac->ops.id_led_init = e1000_id_led_init_pchlan;
601 /* setup LED */
602 mac->ops.setup_led = e1000_setup_led_pchlan;
603 /* cleanup LED */
604 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
605 /* turn on/off LED */
606 mac->ops.led_on = e1000_led_on_pchlan;
607 mac->ops.led_off = e1000_led_off_pchlan;
608 break;
609 default:
610 break;
613 /* Enable PCS Lock-loss workaround for ICH8 */
614 if (mac->type == e1000_ich8lan)
615 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
617 /* Gate automatic PHY configuration by hardware on managed 82579 */
618 if ((mac->type == e1000_pch2lan) &&
619 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
620 e1000_gate_hw_phy_config_ich8lan(hw, true);
622 return 0;
626 * e1000_set_eee_pchlan - Enable/disable EEE support
627 * @hw: pointer to the HW structure
629 * Enable/disable EEE based on setting in dev_spec structure. The bits in
630 * the LPI Control register will remain set only if/when link is up.
632 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
634 s32 ret_val = 0;
635 u16 phy_reg;
637 if (hw->phy.type != e1000_phy_82579)
638 goto out;
640 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
641 if (ret_val)
642 goto out;
644 if (hw->dev_spec.ich8lan.eee_disable)
645 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
646 else
647 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
649 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
650 out:
651 return ret_val;
655 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
656 * @hw: pointer to the HW structure
658 * Checks to see of the link status of the hardware has changed. If a
659 * change in link status has been detected, then we read the PHY registers
660 * to get the current speed/duplex if link exists.
662 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
664 struct e1000_mac_info *mac = &hw->mac;
665 s32 ret_val;
666 bool link;
667 u16 phy_reg;
670 * We only want to go out to the PHY registers to see if Auto-Neg
671 * has completed and/or if our link status has changed. The
672 * get_link_status flag is set upon receiving a Link Status
673 * Change or Rx Sequence Error interrupt.
675 if (!mac->get_link_status) {
676 ret_val = 0;
677 goto out;
681 * First we want to see if the MII Status Register reports
682 * link. If so, then we want to get the current speed/duplex
683 * of the PHY.
685 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
686 if (ret_val)
687 goto out;
689 if (hw->mac.type == e1000_pchlan) {
690 ret_val = e1000_k1_gig_workaround_hv(hw, link);
691 if (ret_val)
692 goto out;
695 if (!link)
696 goto out; /* No link detected */
698 mac->get_link_status = false;
700 switch (hw->mac.type) {
701 case e1000_pch2lan:
702 ret_val = e1000_k1_workaround_lv(hw);
703 if (ret_val)
704 goto out;
705 /* fall-thru */
706 case e1000_pchlan:
707 if (hw->phy.type == e1000_phy_82578) {
708 ret_val = e1000_link_stall_workaround_hv(hw);
709 if (ret_val)
710 goto out;
714 * Workaround for PCHx parts in half-duplex:
715 * Set the number of preambles removed from the packet
716 * when it is passed from the PHY to the MAC to prevent
717 * the MAC from misinterpreting the packet type.
719 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
720 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
722 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
723 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
725 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
726 break;
727 default:
728 break;
732 * Check if there was DownShift, must be checked
733 * immediately after link-up
735 e1000e_check_downshift(hw);
737 /* Enable/Disable EEE after link up */
738 ret_val = e1000_set_eee_pchlan(hw);
739 if (ret_val)
740 goto out;
743 * If we are forcing speed/duplex, then we simply return since
744 * we have already determined whether we have link or not.
746 if (!mac->autoneg) {
747 ret_val = -E1000_ERR_CONFIG;
748 goto out;
752 * Auto-Neg is enabled. Auto Speed Detection takes care
753 * of MAC speed/duplex configuration. So we only need to
754 * configure Collision Distance in the MAC.
756 e1000e_config_collision_dist(hw);
759 * Configure Flow Control now that Auto-Neg has completed.
760 * First, we need to restore the desired flow control
761 * settings because we may have had to re-autoneg with a
762 * different link partner.
764 ret_val = e1000e_config_fc_after_link_up(hw);
765 if (ret_val)
766 e_dbg("Error configuring flow control\n");
768 out:
769 return ret_val;
772 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
774 struct e1000_hw *hw = &adapter->hw;
775 s32 rc;
777 rc = e1000_init_mac_params_ich8lan(hw);
778 if (rc)
779 return rc;
781 rc = e1000_init_nvm_params_ich8lan(hw);
782 if (rc)
783 return rc;
785 switch (hw->mac.type) {
786 case e1000_ich8lan:
787 case e1000_ich9lan:
788 case e1000_ich10lan:
789 rc = e1000_init_phy_params_ich8lan(hw);
790 break;
791 case e1000_pchlan:
792 case e1000_pch2lan:
793 rc = e1000_init_phy_params_pchlan(hw);
794 break;
795 default:
796 break;
798 if (rc)
799 return rc;
802 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
803 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
805 if ((adapter->hw.phy.type == e1000_phy_ife) ||
806 ((adapter->hw.mac.type >= e1000_pch2lan) &&
807 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
808 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
809 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
811 hw->mac.ops.blink_led = NULL;
814 if ((adapter->hw.mac.type == e1000_ich8lan) &&
815 (adapter->hw.phy.type != e1000_phy_ife))
816 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
818 /* Enable workaround for 82579 w/ ME enabled */
819 if ((adapter->hw.mac.type == e1000_pch2lan) &&
820 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
821 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
823 /* Disable EEE by default until IEEE802.3az spec is finalized */
824 if (adapter->flags2 & FLAG2_HAS_EEE)
825 adapter->hw.dev_spec.ich8lan.eee_disable = true;
827 return 0;
830 static DEFINE_MUTEX(nvm_mutex);
833 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
834 * @hw: pointer to the HW structure
836 * Acquires the mutex for performing NVM operations.
838 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
840 mutex_lock(&nvm_mutex);
842 return 0;
846 * e1000_release_nvm_ich8lan - Release NVM mutex
847 * @hw: pointer to the HW structure
849 * Releases the mutex used while performing NVM operations.
851 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
853 mutex_unlock(&nvm_mutex);
857 * e1000_acquire_swflag_ich8lan - Acquire software control flag
858 * @hw: pointer to the HW structure
860 * Acquires the software control flag for performing PHY and select
861 * MAC CSR accesses.
863 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
865 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
866 s32 ret_val = 0;
868 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
869 &hw->adapter->state)) {
870 e_dbg("contention for Phy access\n");
871 return -E1000_ERR_PHY;
874 while (timeout) {
875 extcnf_ctrl = er32(EXTCNF_CTRL);
876 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
877 break;
879 mdelay(1);
880 timeout--;
883 if (!timeout) {
884 e_dbg("SW has already locked the resource.\n");
885 ret_val = -E1000_ERR_CONFIG;
886 goto out;
889 timeout = SW_FLAG_TIMEOUT;
891 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
892 ew32(EXTCNF_CTRL, extcnf_ctrl);
894 while (timeout) {
895 extcnf_ctrl = er32(EXTCNF_CTRL);
896 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
897 break;
899 mdelay(1);
900 timeout--;
903 if (!timeout) {
904 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
905 er32(FWSM), extcnf_ctrl);
906 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
907 ew32(EXTCNF_CTRL, extcnf_ctrl);
908 ret_val = -E1000_ERR_CONFIG;
909 goto out;
912 out:
913 if (ret_val)
914 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
916 return ret_val;
920 * e1000_release_swflag_ich8lan - Release software control flag
921 * @hw: pointer to the HW structure
923 * Releases the software control flag for performing PHY and select
924 * MAC CSR accesses.
926 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
928 u32 extcnf_ctrl;
930 extcnf_ctrl = er32(EXTCNF_CTRL);
932 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
933 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
934 ew32(EXTCNF_CTRL, extcnf_ctrl);
935 } else {
936 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
939 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
943 * e1000_check_mng_mode_ich8lan - Checks management mode
944 * @hw: pointer to the HW structure
946 * This checks if the adapter has any manageability enabled.
947 * This is a function pointer entry point only called by read/write
948 * routines for the PHY and NVM parts.
950 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
952 u32 fwsm;
954 fwsm = er32(FWSM);
955 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
956 ((fwsm & E1000_FWSM_MODE_MASK) ==
957 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
961 * e1000_check_mng_mode_pchlan - Checks management mode
962 * @hw: pointer to the HW structure
964 * This checks if the adapter has iAMT enabled.
965 * This is a function pointer entry point only called by read/write
966 * routines for the PHY and NVM parts.
968 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
970 u32 fwsm;
972 fwsm = er32(FWSM);
973 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
974 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
978 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
979 * @hw: pointer to the HW structure
981 * Checks if firmware is blocking the reset of the PHY.
982 * This is a function pointer entry point only called by
983 * reset routines.
985 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
987 u32 fwsm;
989 fwsm = er32(FWSM);
991 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
995 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
996 * @hw: pointer to the HW structure
998 * Assumes semaphore already acquired.
1001 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1003 u16 phy_data;
1004 u32 strap = er32(STRAP);
1005 s32 ret_val = 0;
1007 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1009 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1010 if (ret_val)
1011 goto out;
1013 phy_data &= ~HV_SMB_ADDR_MASK;
1014 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1015 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1016 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1018 out:
1019 return ret_val;
1023 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1024 * @hw: pointer to the HW structure
1026 * SW should configure the LCD from the NVM extended configuration region
1027 * as a workaround for certain parts.
1029 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1031 struct e1000_phy_info *phy = &hw->phy;
1032 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1033 s32 ret_val = 0;
1034 u16 word_addr, reg_data, reg_addr, phy_page = 0;
1037 * Initialize the PHY from the NVM on ICH platforms. This
1038 * is needed due to an issue where the NVM configuration is
1039 * not properly autoloaded after power transitions.
1040 * Therefore, after each PHY reset, we will load the
1041 * configuration data out of the NVM manually.
1043 switch (hw->mac.type) {
1044 case e1000_ich8lan:
1045 if (phy->type != e1000_phy_igp_3)
1046 return ret_val;
1048 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1049 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1050 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1051 break;
1053 /* Fall-thru */
1054 case e1000_pchlan:
1055 case e1000_pch2lan:
1056 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1057 break;
1058 default:
1059 return ret_val;
1062 ret_val = hw->phy.ops.acquire(hw);
1063 if (ret_val)
1064 return ret_val;
1066 data = er32(FEXTNVM);
1067 if (!(data & sw_cfg_mask))
1068 goto out;
1071 * Make sure HW does not configure LCD from PHY
1072 * extended configuration before SW configuration
1074 data = er32(EXTCNF_CTRL);
1075 if (!(hw->mac.type == e1000_pch2lan)) {
1076 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1077 goto out;
1080 cnf_size = er32(EXTCNF_SIZE);
1081 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1082 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1083 if (!cnf_size)
1084 goto out;
1086 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1087 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1089 if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1090 (hw->mac.type == e1000_pchlan)) ||
1091 (hw->mac.type == e1000_pch2lan)) {
1093 * HW configures the SMBus address and LEDs when the
1094 * OEM and LCD Write Enable bits are set in the NVM.
1095 * When both NVM bits are cleared, SW will configure
1096 * them instead.
1098 ret_val = e1000_write_smbus_addr(hw);
1099 if (ret_val)
1100 goto out;
1102 data = er32(LEDCTL);
1103 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1104 (u16)data);
1105 if (ret_val)
1106 goto out;
1109 /* Configure LCD from extended configuration region. */
1111 /* cnf_base_addr is in DWORD */
1112 word_addr = (u16)(cnf_base_addr << 1);
1114 for (i = 0; i < cnf_size; i++) {
1115 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1116 &reg_data);
1117 if (ret_val)
1118 goto out;
1120 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1121 1, &reg_addr);
1122 if (ret_val)
1123 goto out;
1125 /* Save off the PHY page for future writes. */
1126 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1127 phy_page = reg_data;
1128 continue;
1131 reg_addr &= PHY_REG_MASK;
1132 reg_addr |= phy_page;
1134 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1135 reg_data);
1136 if (ret_val)
1137 goto out;
1140 out:
1141 hw->phy.ops.release(hw);
1142 return ret_val;
1146 * e1000_k1_gig_workaround_hv - K1 Si workaround
1147 * @hw: pointer to the HW structure
1148 * @link: link up bool flag
1150 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1151 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
1152 * If link is down, the function will restore the default K1 setting located
1153 * in the NVM.
1155 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1157 s32 ret_val = 0;
1158 u16 status_reg = 0;
1159 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1161 if (hw->mac.type != e1000_pchlan)
1162 goto out;
1164 /* Wrap the whole flow with the sw flag */
1165 ret_val = hw->phy.ops.acquire(hw);
1166 if (ret_val)
1167 goto out;
1169 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1170 if (link) {
1171 if (hw->phy.type == e1000_phy_82578) {
1172 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1173 &status_reg);
1174 if (ret_val)
1175 goto release;
1177 status_reg &= BM_CS_STATUS_LINK_UP |
1178 BM_CS_STATUS_RESOLVED |
1179 BM_CS_STATUS_SPEED_MASK;
1181 if (status_reg == (BM_CS_STATUS_LINK_UP |
1182 BM_CS_STATUS_RESOLVED |
1183 BM_CS_STATUS_SPEED_1000))
1184 k1_enable = false;
1187 if (hw->phy.type == e1000_phy_82577) {
1188 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1189 &status_reg);
1190 if (ret_val)
1191 goto release;
1193 status_reg &= HV_M_STATUS_LINK_UP |
1194 HV_M_STATUS_AUTONEG_COMPLETE |
1195 HV_M_STATUS_SPEED_MASK;
1197 if (status_reg == (HV_M_STATUS_LINK_UP |
1198 HV_M_STATUS_AUTONEG_COMPLETE |
1199 HV_M_STATUS_SPEED_1000))
1200 k1_enable = false;
1203 /* Link stall fix for link up */
1204 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1205 0x0100);
1206 if (ret_val)
1207 goto release;
1209 } else {
1210 /* Link stall fix for link down */
1211 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1212 0x4100);
1213 if (ret_val)
1214 goto release;
1217 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1219 release:
1220 hw->phy.ops.release(hw);
1221 out:
1222 return ret_val;
1226 * e1000_configure_k1_ich8lan - Configure K1 power state
1227 * @hw: pointer to the HW structure
1228 * @enable: K1 state to configure
1230 * Configure the K1 power state based on the provided parameter.
1231 * Assumes semaphore already acquired.
1233 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1235 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1237 s32 ret_val = 0;
1238 u32 ctrl_reg = 0;
1239 u32 ctrl_ext = 0;
1240 u32 reg = 0;
1241 u16 kmrn_reg = 0;
1243 ret_val = e1000e_read_kmrn_reg_locked(hw,
1244 E1000_KMRNCTRLSTA_K1_CONFIG,
1245 &kmrn_reg);
1246 if (ret_val)
1247 goto out;
1249 if (k1_enable)
1250 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1251 else
1252 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1254 ret_val = e1000e_write_kmrn_reg_locked(hw,
1255 E1000_KMRNCTRLSTA_K1_CONFIG,
1256 kmrn_reg);
1257 if (ret_val)
1258 goto out;
1260 udelay(20);
1261 ctrl_ext = er32(CTRL_EXT);
1262 ctrl_reg = er32(CTRL);
1264 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1265 reg |= E1000_CTRL_FRCSPD;
1266 ew32(CTRL, reg);
1268 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1269 e1e_flush();
1270 udelay(20);
1271 ew32(CTRL, ctrl_reg);
1272 ew32(CTRL_EXT, ctrl_ext);
1273 e1e_flush();
1274 udelay(20);
1276 out:
1277 return ret_val;
1281 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1282 * @hw: pointer to the HW structure
1283 * @d0_state: boolean if entering d0 or d3 device state
1285 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1286 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1287 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1289 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1291 s32 ret_val = 0;
1292 u32 mac_reg;
1293 u16 oem_reg;
1295 if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1296 return ret_val;
1298 ret_val = hw->phy.ops.acquire(hw);
1299 if (ret_val)
1300 return ret_val;
1302 if (!(hw->mac.type == e1000_pch2lan)) {
1303 mac_reg = er32(EXTCNF_CTRL);
1304 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1305 goto out;
1308 mac_reg = er32(FEXTNVM);
1309 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1310 goto out;
1312 mac_reg = er32(PHY_CTRL);
1314 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1315 if (ret_val)
1316 goto out;
1318 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1320 if (d0_state) {
1321 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1322 oem_reg |= HV_OEM_BITS_GBE_DIS;
1324 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1325 oem_reg |= HV_OEM_BITS_LPLU;
1327 /* Set Restart auto-neg to activate the bits */
1328 if (!e1000_check_reset_block(hw))
1329 oem_reg |= HV_OEM_BITS_RESTART_AN;
1330 } else {
1331 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1332 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1333 oem_reg |= HV_OEM_BITS_GBE_DIS;
1335 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1336 E1000_PHY_CTRL_NOND0A_LPLU))
1337 oem_reg |= HV_OEM_BITS_LPLU;
1340 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1342 out:
1343 hw->phy.ops.release(hw);
1345 return ret_val;
1350 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1351 * @hw: pointer to the HW structure
1353 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1355 s32 ret_val;
1356 u16 data;
1358 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1359 if (ret_val)
1360 return ret_val;
1362 data |= HV_KMRN_MDIO_SLOW;
1364 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1366 return ret_val;
1370 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1371 * done after every PHY reset.
1373 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1375 s32 ret_val = 0;
1376 u16 phy_data;
1378 if (hw->mac.type != e1000_pchlan)
1379 return ret_val;
1381 /* Set MDIO slow mode before any other MDIO access */
1382 if (hw->phy.type == e1000_phy_82577) {
1383 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1384 if (ret_val)
1385 goto out;
1388 if (((hw->phy.type == e1000_phy_82577) &&
1389 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1390 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1391 /* Disable generation of early preamble */
1392 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1393 if (ret_val)
1394 return ret_val;
1396 /* Preamble tuning for SSC */
1397 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1398 if (ret_val)
1399 return ret_val;
1402 if (hw->phy.type == e1000_phy_82578) {
1404 * Return registers to default by doing a soft reset then
1405 * writing 0x3140 to the control register.
1407 if (hw->phy.revision < 2) {
1408 e1000e_phy_sw_reset(hw);
1409 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1413 /* Select page 0 */
1414 ret_val = hw->phy.ops.acquire(hw);
1415 if (ret_val)
1416 return ret_val;
1418 hw->phy.addr = 1;
1419 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1420 hw->phy.ops.release(hw);
1421 if (ret_val)
1422 goto out;
1425 * Configure the K1 Si workaround during phy reset assuming there is
1426 * link so that it disables K1 if link is in 1Gbps.
1428 ret_val = e1000_k1_gig_workaround_hv(hw, true);
1429 if (ret_val)
1430 goto out;
1432 /* Workaround for link disconnects on a busy hub in half duplex */
1433 ret_val = hw->phy.ops.acquire(hw);
1434 if (ret_val)
1435 goto out;
1436 ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1437 if (ret_val)
1438 goto release;
1439 ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
1440 phy_data & 0x00FF);
1441 release:
1442 hw->phy.ops.release(hw);
1443 out:
1444 return ret_val;
1448 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1449 * @hw: pointer to the HW structure
1451 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1453 u32 mac_reg;
1454 u16 i, phy_reg = 0;
1455 s32 ret_val;
1457 ret_val = hw->phy.ops.acquire(hw);
1458 if (ret_val)
1459 return;
1460 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1461 if (ret_val)
1462 goto release;
1464 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1465 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1466 mac_reg = er32(RAL(i));
1467 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1468 (u16)(mac_reg & 0xFFFF));
1469 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1470 (u16)((mac_reg >> 16) & 0xFFFF));
1472 mac_reg = er32(RAH(i));
1473 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1474 (u16)(mac_reg & 0xFFFF));
1475 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1476 (u16)((mac_reg & E1000_RAH_AV)
1477 >> 16));
1480 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1482 release:
1483 hw->phy.ops.release(hw);
1487 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1488 * with 82579 PHY
1489 * @hw: pointer to the HW structure
1490 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
1492 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1494 s32 ret_val = 0;
1495 u16 phy_reg, data;
1496 u32 mac_reg;
1497 u16 i;
1499 if (hw->mac.type != e1000_pch2lan)
1500 goto out;
1502 /* disable Rx path while enabling/disabling workaround */
1503 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1504 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1505 if (ret_val)
1506 goto out;
1508 if (enable) {
1510 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1511 * SHRAL/H) and initial CRC values to the MAC
1513 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1514 u8 mac_addr[ETH_ALEN] = {0};
1515 u32 addr_high, addr_low;
1517 addr_high = er32(RAH(i));
1518 if (!(addr_high & E1000_RAH_AV))
1519 continue;
1520 addr_low = er32(RAL(i));
1521 mac_addr[0] = (addr_low & 0xFF);
1522 mac_addr[1] = ((addr_low >> 8) & 0xFF);
1523 mac_addr[2] = ((addr_low >> 16) & 0xFF);
1524 mac_addr[3] = ((addr_low >> 24) & 0xFF);
1525 mac_addr[4] = (addr_high & 0xFF);
1526 mac_addr[5] = ((addr_high >> 8) & 0xFF);
1528 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1531 /* Write Rx addresses to the PHY */
1532 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1534 /* Enable jumbo frame workaround in the MAC */
1535 mac_reg = er32(FFLT_DBG);
1536 mac_reg &= ~(1 << 14);
1537 mac_reg |= (7 << 15);
1538 ew32(FFLT_DBG, mac_reg);
1540 mac_reg = er32(RCTL);
1541 mac_reg |= E1000_RCTL_SECRC;
1542 ew32(RCTL, mac_reg);
1544 ret_val = e1000e_read_kmrn_reg(hw,
1545 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1546 &data);
1547 if (ret_val)
1548 goto out;
1549 ret_val = e1000e_write_kmrn_reg(hw,
1550 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1551 data | (1 << 0));
1552 if (ret_val)
1553 goto out;
1554 ret_val = e1000e_read_kmrn_reg(hw,
1555 E1000_KMRNCTRLSTA_HD_CTRL,
1556 &data);
1557 if (ret_val)
1558 goto out;
1559 data &= ~(0xF << 8);
1560 data |= (0xB << 8);
1561 ret_val = e1000e_write_kmrn_reg(hw,
1562 E1000_KMRNCTRLSTA_HD_CTRL,
1563 data);
1564 if (ret_val)
1565 goto out;
1567 /* Enable jumbo frame workaround in the PHY */
1568 e1e_rphy(hw, PHY_REG(769, 23), &data);
1569 data &= ~(0x7F << 5);
1570 data |= (0x37 << 5);
1571 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1572 if (ret_val)
1573 goto out;
1574 e1e_rphy(hw, PHY_REG(769, 16), &data);
1575 data &= ~(1 << 13);
1576 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1577 if (ret_val)
1578 goto out;
1579 e1e_rphy(hw, PHY_REG(776, 20), &data);
1580 data &= ~(0x3FF << 2);
1581 data |= (0x1A << 2);
1582 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1583 if (ret_val)
1584 goto out;
1585 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1586 if (ret_val)
1587 goto out;
1588 e1e_rphy(hw, HV_PM_CTRL, &data);
1589 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1590 if (ret_val)
1591 goto out;
1592 } else {
1593 /* Write MAC register values back to h/w defaults */
1594 mac_reg = er32(FFLT_DBG);
1595 mac_reg &= ~(0xF << 14);
1596 ew32(FFLT_DBG, mac_reg);
1598 mac_reg = er32(RCTL);
1599 mac_reg &= ~E1000_RCTL_SECRC;
1600 ew32(RCTL, mac_reg);
1602 ret_val = e1000e_read_kmrn_reg(hw,
1603 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1604 &data);
1605 if (ret_val)
1606 goto out;
1607 ret_val = e1000e_write_kmrn_reg(hw,
1608 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1609 data & ~(1 << 0));
1610 if (ret_val)
1611 goto out;
1612 ret_val = e1000e_read_kmrn_reg(hw,
1613 E1000_KMRNCTRLSTA_HD_CTRL,
1614 &data);
1615 if (ret_val)
1616 goto out;
1617 data &= ~(0xF << 8);
1618 data |= (0xB << 8);
1619 ret_val = e1000e_write_kmrn_reg(hw,
1620 E1000_KMRNCTRLSTA_HD_CTRL,
1621 data);
1622 if (ret_val)
1623 goto out;
1625 /* Write PHY register values back to h/w defaults */
1626 e1e_rphy(hw, PHY_REG(769, 23), &data);
1627 data &= ~(0x7F << 5);
1628 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1629 if (ret_val)
1630 goto out;
1631 e1e_rphy(hw, PHY_REG(769, 16), &data);
1632 data |= (1 << 13);
1633 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1634 if (ret_val)
1635 goto out;
1636 e1e_rphy(hw, PHY_REG(776, 20), &data);
1637 data &= ~(0x3FF << 2);
1638 data |= (0x8 << 2);
1639 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1640 if (ret_val)
1641 goto out;
1642 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1643 if (ret_val)
1644 goto out;
1645 e1e_rphy(hw, HV_PM_CTRL, &data);
1646 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1647 if (ret_val)
1648 goto out;
1651 /* re-enable Rx path after enabling/disabling workaround */
1652 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1654 out:
1655 return ret_val;
1659 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1660 * done after every PHY reset.
1662 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1664 s32 ret_val = 0;
1666 if (hw->mac.type != e1000_pch2lan)
1667 goto out;
1669 /* Set MDIO slow mode before any other MDIO access */
1670 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1672 ret_val = hw->phy.ops.acquire(hw);
1673 if (ret_val)
1674 goto out;
1675 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1676 I82579_MSE_THRESHOLD);
1677 if (ret_val)
1678 goto release;
1679 /* set MSE higher to enable link to stay up when noise is high */
1680 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0034);
1681 if (ret_val)
1682 goto release;
1683 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1684 I82579_MSE_LINK_DOWN);
1685 if (ret_val)
1686 goto release;
1687 /* drop link after 5 times MSE threshold was reached */
1688 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0005);
1689 release:
1690 hw->phy.ops.release(hw);
1692 out:
1693 return ret_val;
1697 * e1000_k1_gig_workaround_lv - K1 Si workaround
1698 * @hw: pointer to the HW structure
1700 * Workaround to set the K1 beacon duration for 82579 parts
1702 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1704 s32 ret_val = 0;
1705 u16 status_reg = 0;
1706 u32 mac_reg;
1707 u16 phy_reg;
1709 if (hw->mac.type != e1000_pch2lan)
1710 goto out;
1712 /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1713 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1714 if (ret_val)
1715 goto out;
1717 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1718 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1719 mac_reg = er32(FEXTNVM4);
1720 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1722 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
1723 if (ret_val)
1724 goto out;
1726 if (status_reg & HV_M_STATUS_SPEED_1000) {
1727 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1728 phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1729 } else {
1730 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1731 phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1733 ew32(FEXTNVM4, mac_reg);
1734 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
1737 out:
1738 return ret_val;
1742 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1743 * @hw: pointer to the HW structure
1744 * @gate: boolean set to true to gate, false to ungate
1746 * Gate/ungate the automatic PHY configuration via hardware; perform
1747 * the configuration via software instead.
1749 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1751 u32 extcnf_ctrl;
1753 if (hw->mac.type != e1000_pch2lan)
1754 return;
1756 extcnf_ctrl = er32(EXTCNF_CTRL);
1758 if (gate)
1759 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1760 else
1761 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1763 ew32(EXTCNF_CTRL, extcnf_ctrl);
1767 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1768 * @hw: pointer to the HW structure
1770 * Check the appropriate indication the MAC has finished configuring the
1771 * PHY after a software reset.
1773 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1775 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1777 /* Wait for basic configuration completes before proceeding */
1778 do {
1779 data = er32(STATUS);
1780 data &= E1000_STATUS_LAN_INIT_DONE;
1781 udelay(100);
1782 } while ((!data) && --loop);
1785 * If basic configuration is incomplete before the above loop
1786 * count reaches 0, loading the configuration from NVM will
1787 * leave the PHY in a bad state possibly resulting in no link.
1789 if (loop == 0)
1790 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1792 /* Clear the Init Done bit for the next init event */
1793 data = er32(STATUS);
1794 data &= ~E1000_STATUS_LAN_INIT_DONE;
1795 ew32(STATUS, data);
1799 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1800 * @hw: pointer to the HW structure
1802 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1804 s32 ret_val = 0;
1805 u16 reg;
1807 if (e1000_check_reset_block(hw))
1808 goto out;
1810 /* Allow time for h/w to get to quiescent state after reset */
1811 usleep_range(10000, 20000);
1813 /* Perform any necessary post-reset workarounds */
1814 switch (hw->mac.type) {
1815 case e1000_pchlan:
1816 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1817 if (ret_val)
1818 goto out;
1819 break;
1820 case e1000_pch2lan:
1821 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1822 if (ret_val)
1823 goto out;
1824 break;
1825 default:
1826 break;
1829 /* Clear the host wakeup bit after lcd reset */
1830 if (hw->mac.type >= e1000_pchlan) {
1831 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
1832 reg &= ~BM_WUC_HOST_WU_BIT;
1833 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
1836 /* Configure the LCD with the extended configuration region in NVM */
1837 ret_val = e1000_sw_lcd_config_ich8lan(hw);
1838 if (ret_val)
1839 goto out;
1841 /* Configure the LCD with the OEM bits in NVM */
1842 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1844 if (hw->mac.type == e1000_pch2lan) {
1845 /* Ungate automatic PHY configuration on non-managed 82579 */
1846 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1847 usleep_range(10000, 20000);
1848 e1000_gate_hw_phy_config_ich8lan(hw, false);
1851 /* Set EEE LPI Update Timer to 200usec */
1852 ret_val = hw->phy.ops.acquire(hw);
1853 if (ret_val)
1854 goto out;
1855 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1856 I82579_LPI_UPDATE_TIMER);
1857 if (ret_val)
1858 goto release;
1859 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
1860 0x1387);
1861 release:
1862 hw->phy.ops.release(hw);
1865 out:
1866 return ret_val;
1870 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1871 * @hw: pointer to the HW structure
1873 * Resets the PHY
1874 * This is a function pointer entry point called by drivers
1875 * or other shared routines.
1877 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1879 s32 ret_val = 0;
1881 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
1882 if ((hw->mac.type == e1000_pch2lan) &&
1883 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1884 e1000_gate_hw_phy_config_ich8lan(hw, true);
1886 ret_val = e1000e_phy_hw_reset_generic(hw);
1887 if (ret_val)
1888 goto out;
1890 ret_val = e1000_post_phy_reset_ich8lan(hw);
1892 out:
1893 return ret_val;
1897 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1898 * @hw: pointer to the HW structure
1899 * @active: true to enable LPLU, false to disable
1901 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1902 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1903 * the phy speed. This function will manually set the LPLU bit and restart
1904 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1905 * since it configures the same bit.
1907 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1909 s32 ret_val = 0;
1910 u16 oem_reg;
1912 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1913 if (ret_val)
1914 goto out;
1916 if (active)
1917 oem_reg |= HV_OEM_BITS_LPLU;
1918 else
1919 oem_reg &= ~HV_OEM_BITS_LPLU;
1921 if (!e1000_check_reset_block(hw))
1922 oem_reg |= HV_OEM_BITS_RESTART_AN;
1924 ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1926 out:
1927 return ret_val;
1931 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1932 * @hw: pointer to the HW structure
1933 * @active: true to enable LPLU, false to disable
1935 * Sets the LPLU D0 state according to the active flag. When
1936 * activating LPLU this function also disables smart speed
1937 * and vice versa. LPLU will not be activated unless the
1938 * device autonegotiation advertisement meets standards of
1939 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1940 * This is a function pointer entry point only called by
1941 * PHY setup routines.
1943 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1945 struct e1000_phy_info *phy = &hw->phy;
1946 u32 phy_ctrl;
1947 s32 ret_val = 0;
1948 u16 data;
1950 if (phy->type == e1000_phy_ife)
1951 return ret_val;
1953 phy_ctrl = er32(PHY_CTRL);
1955 if (active) {
1956 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1957 ew32(PHY_CTRL, phy_ctrl);
1959 if (phy->type != e1000_phy_igp_3)
1960 return 0;
1963 * Call gig speed drop workaround on LPLU before accessing
1964 * any PHY registers
1966 if (hw->mac.type == e1000_ich8lan)
1967 e1000e_gig_downshift_workaround_ich8lan(hw);
1969 /* When LPLU is enabled, we should disable SmartSpeed */
1970 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1971 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1972 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1973 if (ret_val)
1974 return ret_val;
1975 } else {
1976 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1977 ew32(PHY_CTRL, phy_ctrl);
1979 if (phy->type != e1000_phy_igp_3)
1980 return 0;
1983 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1984 * during Dx states where the power conservation is most
1985 * important. During driver activity we should enable
1986 * SmartSpeed, so performance is maintained.
1988 if (phy->smart_speed == e1000_smart_speed_on) {
1989 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1990 &data);
1991 if (ret_val)
1992 return ret_val;
1994 data |= IGP01E1000_PSCFR_SMART_SPEED;
1995 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1996 data);
1997 if (ret_val)
1998 return ret_val;
1999 } else if (phy->smart_speed == e1000_smart_speed_off) {
2000 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2001 &data);
2002 if (ret_val)
2003 return ret_val;
2005 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2006 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2007 data);
2008 if (ret_val)
2009 return ret_val;
2013 return 0;
2017 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2018 * @hw: pointer to the HW structure
2019 * @active: true to enable LPLU, false to disable
2021 * Sets the LPLU D3 state according to the active flag. When
2022 * activating LPLU this function also disables smart speed
2023 * and vice versa. LPLU will not be activated unless the
2024 * device autonegotiation advertisement meets standards of
2025 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2026 * This is a function pointer entry point only called by
2027 * PHY setup routines.
2029 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2031 struct e1000_phy_info *phy = &hw->phy;
2032 u32 phy_ctrl;
2033 s32 ret_val;
2034 u16 data;
2036 phy_ctrl = er32(PHY_CTRL);
2038 if (!active) {
2039 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2040 ew32(PHY_CTRL, phy_ctrl);
2042 if (phy->type != e1000_phy_igp_3)
2043 return 0;
2046 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
2047 * during Dx states where the power conservation is most
2048 * important. During driver activity we should enable
2049 * SmartSpeed, so performance is maintained.
2051 if (phy->smart_speed == e1000_smart_speed_on) {
2052 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2053 &data);
2054 if (ret_val)
2055 return ret_val;
2057 data |= IGP01E1000_PSCFR_SMART_SPEED;
2058 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2059 data);
2060 if (ret_val)
2061 return ret_val;
2062 } else if (phy->smart_speed == e1000_smart_speed_off) {
2063 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2064 &data);
2065 if (ret_val)
2066 return ret_val;
2068 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2069 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2070 data);
2071 if (ret_val)
2072 return ret_val;
2074 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2075 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2076 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2077 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2078 ew32(PHY_CTRL, phy_ctrl);
2080 if (phy->type != e1000_phy_igp_3)
2081 return 0;
2084 * Call gig speed drop workaround on LPLU before accessing
2085 * any PHY registers
2087 if (hw->mac.type == e1000_ich8lan)
2088 e1000e_gig_downshift_workaround_ich8lan(hw);
2090 /* When LPLU is enabled, we should disable SmartSpeed */
2091 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2092 if (ret_val)
2093 return ret_val;
2095 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2096 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2099 return 0;
2103 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2104 * @hw: pointer to the HW structure
2105 * @bank: pointer to the variable that returns the active bank
2107 * Reads signature byte from the NVM using the flash access registers.
2108 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2110 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2112 u32 eecd;
2113 struct e1000_nvm_info *nvm = &hw->nvm;
2114 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2115 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2116 u8 sig_byte = 0;
2117 s32 ret_val = 0;
2119 switch (hw->mac.type) {
2120 case e1000_ich8lan:
2121 case e1000_ich9lan:
2122 eecd = er32(EECD);
2123 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2124 E1000_EECD_SEC1VAL_VALID_MASK) {
2125 if (eecd & E1000_EECD_SEC1VAL)
2126 *bank = 1;
2127 else
2128 *bank = 0;
2130 return 0;
2132 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2133 /* fall-thru */
2134 default:
2135 /* set bank to 0 in case flash read fails */
2136 *bank = 0;
2138 /* Check bank 0 */
2139 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2140 &sig_byte);
2141 if (ret_val)
2142 return ret_val;
2143 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2144 E1000_ICH_NVM_SIG_VALUE) {
2145 *bank = 0;
2146 return 0;
2149 /* Check bank 1 */
2150 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2151 bank1_offset,
2152 &sig_byte);
2153 if (ret_val)
2154 return ret_val;
2155 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2156 E1000_ICH_NVM_SIG_VALUE) {
2157 *bank = 1;
2158 return 0;
2161 e_dbg("ERROR: No valid NVM bank present\n");
2162 return -E1000_ERR_NVM;
2165 return 0;
2169 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
2170 * @hw: pointer to the HW structure
2171 * @offset: The offset (in bytes) of the word(s) to read.
2172 * @words: Size of data to read in words
2173 * @data: Pointer to the word(s) to read at offset.
2175 * Reads a word(s) from the NVM using the flash access registers.
2177 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2178 u16 *data)
2180 struct e1000_nvm_info *nvm = &hw->nvm;
2181 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2182 u32 act_offset;
2183 s32 ret_val = 0;
2184 u32 bank = 0;
2185 u16 i, word;
2187 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2188 (words == 0)) {
2189 e_dbg("nvm parameter(s) out of bounds\n");
2190 ret_val = -E1000_ERR_NVM;
2191 goto out;
2194 nvm->ops.acquire(hw);
2196 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2197 if (ret_val) {
2198 e_dbg("Could not detect valid bank, assuming bank 0\n");
2199 bank = 0;
2202 act_offset = (bank) ? nvm->flash_bank_size : 0;
2203 act_offset += offset;
2205 ret_val = 0;
2206 for (i = 0; i < words; i++) {
2207 if (dev_spec->shadow_ram[offset+i].modified) {
2208 data[i] = dev_spec->shadow_ram[offset+i].value;
2209 } else {
2210 ret_val = e1000_read_flash_word_ich8lan(hw,
2211 act_offset + i,
2212 &word);
2213 if (ret_val)
2214 break;
2215 data[i] = word;
2219 nvm->ops.release(hw);
2221 out:
2222 if (ret_val)
2223 e_dbg("NVM read error: %d\n", ret_val);
2225 return ret_val;
2229 * e1000_flash_cycle_init_ich8lan - Initialize flash
2230 * @hw: pointer to the HW structure
2232 * This function does initial flash setup so that a new read/write/erase cycle
2233 * can be started.
2235 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2237 union ich8_hws_flash_status hsfsts;
2238 s32 ret_val = -E1000_ERR_NVM;
2240 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2242 /* Check if the flash descriptor is valid */
2243 if (hsfsts.hsf_status.fldesvalid == 0) {
2244 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
2245 return -E1000_ERR_NVM;
2248 /* Clear FCERR and DAEL in hw status by writing 1 */
2249 hsfsts.hsf_status.flcerr = 1;
2250 hsfsts.hsf_status.dael = 1;
2252 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2255 * Either we should have a hardware SPI cycle in progress
2256 * bit to check against, in order to start a new cycle or
2257 * FDONE bit should be changed in the hardware so that it
2258 * is 1 after hardware reset, which can then be used as an
2259 * indication whether a cycle is in progress or has been
2260 * completed.
2263 if (hsfsts.hsf_status.flcinprog == 0) {
2265 * There is no cycle running at present,
2266 * so we can start a cycle.
2267 * Begin by setting Flash Cycle Done.
2269 hsfsts.hsf_status.flcdone = 1;
2270 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2271 ret_val = 0;
2272 } else {
2273 s32 i = 0;
2276 * Otherwise poll for sometime so the current
2277 * cycle has a chance to end before giving up.
2279 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2280 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2281 if (hsfsts.hsf_status.flcinprog == 0) {
2282 ret_val = 0;
2283 break;
2285 udelay(1);
2287 if (!ret_val) {
2289 * Successful in waiting for previous cycle to timeout,
2290 * now set the Flash Cycle Done.
2292 hsfsts.hsf_status.flcdone = 1;
2293 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2294 } else {
2295 e_dbg("Flash controller busy, cannot get access\n");
2299 return ret_val;
2303 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2304 * @hw: pointer to the HW structure
2305 * @timeout: maximum time to wait for completion
2307 * This function starts a flash cycle and waits for its completion.
2309 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2311 union ich8_hws_flash_ctrl hsflctl;
2312 union ich8_hws_flash_status hsfsts;
2313 s32 ret_val = -E1000_ERR_NVM;
2314 u32 i = 0;
2316 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2317 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2318 hsflctl.hsf_ctrl.flcgo = 1;
2319 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2321 /* wait till FDONE bit is set to 1 */
2322 do {
2323 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2324 if (hsfsts.hsf_status.flcdone == 1)
2325 break;
2326 udelay(1);
2327 } while (i++ < timeout);
2329 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
2330 return 0;
2332 return ret_val;
2336 * e1000_read_flash_word_ich8lan - Read word from flash
2337 * @hw: pointer to the HW structure
2338 * @offset: offset to data location
2339 * @data: pointer to the location for storing the data
2341 * Reads the flash word at offset into data. Offset is converted
2342 * to bytes before read.
2344 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2345 u16 *data)
2347 /* Must convert offset into bytes. */
2348 offset <<= 1;
2350 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2354 * e1000_read_flash_byte_ich8lan - Read byte from flash
2355 * @hw: pointer to the HW structure
2356 * @offset: The offset of the byte to read.
2357 * @data: Pointer to a byte to store the value read.
2359 * Reads a single byte from the NVM using the flash access registers.
2361 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2362 u8 *data)
2364 s32 ret_val;
2365 u16 word = 0;
2367 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2368 if (ret_val)
2369 return ret_val;
2371 *data = (u8)word;
2373 return 0;
2377 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
2378 * @hw: pointer to the HW structure
2379 * @offset: The offset (in bytes) of the byte or word to read.
2380 * @size: Size of data to read, 1=byte 2=word
2381 * @data: Pointer to the word to store the value read.
2383 * Reads a byte or word from the NVM using the flash access registers.
2385 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2386 u8 size, u16 *data)
2388 union ich8_hws_flash_status hsfsts;
2389 union ich8_hws_flash_ctrl hsflctl;
2390 u32 flash_linear_addr;
2391 u32 flash_data = 0;
2392 s32 ret_val = -E1000_ERR_NVM;
2393 u8 count = 0;
2395 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2396 return -E1000_ERR_NVM;
2398 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2399 hw->nvm.flash_base_addr;
2401 do {
2402 udelay(1);
2403 /* Steps */
2404 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2405 if (ret_val)
2406 break;
2408 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2409 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2410 hsflctl.hsf_ctrl.fldbcount = size - 1;
2411 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2412 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2414 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2416 ret_val = e1000_flash_cycle_ich8lan(hw,
2417 ICH_FLASH_READ_COMMAND_TIMEOUT);
2420 * Check if FCERR is set to 1, if set to 1, clear it
2421 * and try the whole sequence a few more times, else
2422 * read in (shift in) the Flash Data0, the order is
2423 * least significant byte first msb to lsb
2425 if (!ret_val) {
2426 flash_data = er32flash(ICH_FLASH_FDATA0);
2427 if (size == 1)
2428 *data = (u8)(flash_data & 0x000000FF);
2429 else if (size == 2)
2430 *data = (u16)(flash_data & 0x0000FFFF);
2431 break;
2432 } else {
2434 * If we've gotten here, then things are probably
2435 * completely hosed, but if the error condition is
2436 * detected, it won't hurt to give it another try...
2437 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2439 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2440 if (hsfsts.hsf_status.flcerr == 1) {
2441 /* Repeat for some time before giving up. */
2442 continue;
2443 } else if (hsfsts.hsf_status.flcdone == 0) {
2444 e_dbg("Timeout error - flash cycle did not complete.\n");
2445 break;
2448 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2450 return ret_val;
2454 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
2455 * @hw: pointer to the HW structure
2456 * @offset: The offset (in bytes) of the word(s) to write.
2457 * @words: Size of data to write in words
2458 * @data: Pointer to the word(s) to write at offset.
2460 * Writes a byte or word to the NVM using the flash access registers.
2462 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2463 u16 *data)
2465 struct e1000_nvm_info *nvm = &hw->nvm;
2466 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2467 u16 i;
2469 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2470 (words == 0)) {
2471 e_dbg("nvm parameter(s) out of bounds\n");
2472 return -E1000_ERR_NVM;
2475 nvm->ops.acquire(hw);
2477 for (i = 0; i < words; i++) {
2478 dev_spec->shadow_ram[offset+i].modified = true;
2479 dev_spec->shadow_ram[offset+i].value = data[i];
2482 nvm->ops.release(hw);
2484 return 0;
2488 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2489 * @hw: pointer to the HW structure
2491 * The NVM checksum is updated by calling the generic update_nvm_checksum,
2492 * which writes the checksum to the shadow ram. The changes in the shadow
2493 * ram are then committed to the EEPROM by processing each bank at a time
2494 * checking for the modified bit and writing only the pending changes.
2495 * After a successful commit, the shadow ram is cleared and is ready for
2496 * future writes.
2498 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2500 struct e1000_nvm_info *nvm = &hw->nvm;
2501 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2502 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2503 s32 ret_val;
2504 u16 data;
2506 ret_val = e1000e_update_nvm_checksum_generic(hw);
2507 if (ret_val)
2508 goto out;
2510 if (nvm->type != e1000_nvm_flash_sw)
2511 goto out;
2513 nvm->ops.acquire(hw);
2516 * We're writing to the opposite bank so if we're on bank 1,
2517 * write to bank 0 etc. We also need to erase the segment that
2518 * is going to be written
2520 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2521 if (ret_val) {
2522 e_dbg("Could not detect valid bank, assuming bank 0\n");
2523 bank = 0;
2526 if (bank == 0) {
2527 new_bank_offset = nvm->flash_bank_size;
2528 old_bank_offset = 0;
2529 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2530 if (ret_val)
2531 goto release;
2532 } else {
2533 old_bank_offset = nvm->flash_bank_size;
2534 new_bank_offset = 0;
2535 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2536 if (ret_val)
2537 goto release;
2540 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2542 * Determine whether to write the value stored
2543 * in the other NVM bank or a modified value stored
2544 * in the shadow RAM
2546 if (dev_spec->shadow_ram[i].modified) {
2547 data = dev_spec->shadow_ram[i].value;
2548 } else {
2549 ret_val = e1000_read_flash_word_ich8lan(hw, i +
2550 old_bank_offset,
2551 &data);
2552 if (ret_val)
2553 break;
2557 * If the word is 0x13, then make sure the signature bits
2558 * (15:14) are 11b until the commit has completed.
2559 * This will allow us to write 10b which indicates the
2560 * signature is valid. We want to do this after the write
2561 * has completed so that we don't mark the segment valid
2562 * while the write is still in progress
2564 if (i == E1000_ICH_NVM_SIG_WORD)
2565 data |= E1000_ICH_NVM_SIG_MASK;
2567 /* Convert offset to bytes. */
2568 act_offset = (i + new_bank_offset) << 1;
2570 udelay(100);
2571 /* Write the bytes to the new bank. */
2572 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2573 act_offset,
2574 (u8)data);
2575 if (ret_val)
2576 break;
2578 udelay(100);
2579 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2580 act_offset + 1,
2581 (u8)(data >> 8));
2582 if (ret_val)
2583 break;
2587 * Don't bother writing the segment valid bits if sector
2588 * programming failed.
2590 if (ret_val) {
2591 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2592 e_dbg("Flash commit failed.\n");
2593 goto release;
2597 * Finally validate the new segment by setting bit 15:14
2598 * to 10b in word 0x13 , this can be done without an
2599 * erase as well since these bits are 11 to start with
2600 * and we need to change bit 14 to 0b
2602 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2603 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2604 if (ret_val)
2605 goto release;
2607 data &= 0xBFFF;
2608 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2609 act_offset * 2 + 1,
2610 (u8)(data >> 8));
2611 if (ret_val)
2612 goto release;
2615 * And invalidate the previously valid segment by setting
2616 * its signature word (0x13) high_byte to 0b. This can be
2617 * done without an erase because flash erase sets all bits
2618 * to 1's. We can write 1's to 0's without an erase
2620 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2621 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2622 if (ret_val)
2623 goto release;
2625 /* Great! Everything worked, we can now clear the cached entries. */
2626 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2627 dev_spec->shadow_ram[i].modified = false;
2628 dev_spec->shadow_ram[i].value = 0xFFFF;
2631 release:
2632 nvm->ops.release(hw);
2635 * Reload the EEPROM, or else modifications will not appear
2636 * until after the next adapter reset.
2638 if (!ret_val) {
2639 e1000e_reload_nvm(hw);
2640 usleep_range(10000, 20000);
2643 out:
2644 if (ret_val)
2645 e_dbg("NVM update error: %d\n", ret_val);
2647 return ret_val;
2651 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2652 * @hw: pointer to the HW structure
2654 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2655 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2656 * calculated, in which case we need to calculate the checksum and set bit 6.
2658 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2660 s32 ret_val;
2661 u16 data;
2664 * Read 0x19 and check bit 6. If this bit is 0, the checksum
2665 * needs to be fixed. This bit is an indication that the NVM
2666 * was prepared by OEM software and did not calculate the
2667 * checksum...a likely scenario.
2669 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2670 if (ret_val)
2671 return ret_val;
2673 if ((data & 0x40) == 0) {
2674 data |= 0x40;
2675 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2676 if (ret_val)
2677 return ret_val;
2678 ret_val = e1000e_update_nvm_checksum(hw);
2679 if (ret_val)
2680 return ret_val;
2683 return e1000e_validate_nvm_checksum_generic(hw);
2687 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2688 * @hw: pointer to the HW structure
2690 * To prevent malicious write/erase of the NVM, set it to be read-only
2691 * so that the hardware ignores all write/erase cycles of the NVM via
2692 * the flash control registers. The shadow-ram copy of the NVM will
2693 * still be updated, however any updates to this copy will not stick
2694 * across driver reloads.
2696 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2698 struct e1000_nvm_info *nvm = &hw->nvm;
2699 union ich8_flash_protected_range pr0;
2700 union ich8_hws_flash_status hsfsts;
2701 u32 gfpreg;
2703 nvm->ops.acquire(hw);
2705 gfpreg = er32flash(ICH_FLASH_GFPREG);
2707 /* Write-protect GbE Sector of NVM */
2708 pr0.regval = er32flash(ICH_FLASH_PR0);
2709 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2710 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2711 pr0.range.wpe = true;
2712 ew32flash(ICH_FLASH_PR0, pr0.regval);
2715 * Lock down a subset of GbE Flash Control Registers, e.g.
2716 * PR0 to prevent the write-protection from being lifted.
2717 * Once FLOCKDN is set, the registers protected by it cannot
2718 * be written until FLOCKDN is cleared by a hardware reset.
2720 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2721 hsfsts.hsf_status.flockdn = true;
2722 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2724 nvm->ops.release(hw);
2728 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2729 * @hw: pointer to the HW structure
2730 * @offset: The offset (in bytes) of the byte/word to read.
2731 * @size: Size of data to read, 1=byte 2=word
2732 * @data: The byte(s) to write to the NVM.
2734 * Writes one/two bytes to the NVM using the flash access registers.
2736 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2737 u8 size, u16 data)
2739 union ich8_hws_flash_status hsfsts;
2740 union ich8_hws_flash_ctrl hsflctl;
2741 u32 flash_linear_addr;
2742 u32 flash_data = 0;
2743 s32 ret_val;
2744 u8 count = 0;
2746 if (size < 1 || size > 2 || data > size * 0xff ||
2747 offset > ICH_FLASH_LINEAR_ADDR_MASK)
2748 return -E1000_ERR_NVM;
2750 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2751 hw->nvm.flash_base_addr;
2753 do {
2754 udelay(1);
2755 /* Steps */
2756 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2757 if (ret_val)
2758 break;
2760 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2761 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2762 hsflctl.hsf_ctrl.fldbcount = size -1;
2763 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2764 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2766 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2768 if (size == 1)
2769 flash_data = (u32)data & 0x00FF;
2770 else
2771 flash_data = (u32)data;
2773 ew32flash(ICH_FLASH_FDATA0, flash_data);
2776 * check if FCERR is set to 1 , if set to 1, clear it
2777 * and try the whole sequence a few more times else done
2779 ret_val = e1000_flash_cycle_ich8lan(hw,
2780 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2781 if (!ret_val)
2782 break;
2785 * If we're here, then things are most likely
2786 * completely hosed, but if the error condition
2787 * is detected, it won't hurt to give it another
2788 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2790 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2791 if (hsfsts.hsf_status.flcerr == 1)
2792 /* Repeat for some time before giving up. */
2793 continue;
2794 if (hsfsts.hsf_status.flcdone == 0) {
2795 e_dbg("Timeout error - flash cycle did not complete.\n");
2796 break;
2798 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2800 return ret_val;
2804 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2805 * @hw: pointer to the HW structure
2806 * @offset: The index of the byte to read.
2807 * @data: The byte to write to the NVM.
2809 * Writes a single byte to the NVM using the flash access registers.
2811 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2812 u8 data)
2814 u16 word = (u16)data;
2816 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2820 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2821 * @hw: pointer to the HW structure
2822 * @offset: The offset of the byte to write.
2823 * @byte: The byte to write to the NVM.
2825 * Writes a single byte to the NVM using the flash access registers.
2826 * Goes through a retry algorithm before giving up.
2828 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2829 u32 offset, u8 byte)
2831 s32 ret_val;
2832 u16 program_retries;
2834 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2835 if (!ret_val)
2836 return ret_val;
2838 for (program_retries = 0; program_retries < 100; program_retries++) {
2839 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2840 udelay(100);
2841 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2842 if (!ret_val)
2843 break;
2845 if (program_retries == 100)
2846 return -E1000_ERR_NVM;
2848 return 0;
2852 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2853 * @hw: pointer to the HW structure
2854 * @bank: 0 for first bank, 1 for second bank, etc.
2856 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2857 * bank N is 4096 * N + flash_reg_addr.
2859 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2861 struct e1000_nvm_info *nvm = &hw->nvm;
2862 union ich8_hws_flash_status hsfsts;
2863 union ich8_hws_flash_ctrl hsflctl;
2864 u32 flash_linear_addr;
2865 /* bank size is in 16bit words - adjust to bytes */
2866 u32 flash_bank_size = nvm->flash_bank_size * 2;
2867 s32 ret_val;
2868 s32 count = 0;
2869 s32 j, iteration, sector_size;
2871 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2874 * Determine HW Sector size: Read BERASE bits of hw flash status
2875 * register
2876 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2877 * consecutive sectors. The start index for the nth Hw sector
2878 * can be calculated as = bank * 4096 + n * 256
2879 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2880 * The start index for the nth Hw sector can be calculated
2881 * as = bank * 4096
2882 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2883 * (ich9 only, otherwise error condition)
2884 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2886 switch (hsfsts.hsf_status.berasesz) {
2887 case 0:
2888 /* Hw sector size 256 */
2889 sector_size = ICH_FLASH_SEG_SIZE_256;
2890 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2891 break;
2892 case 1:
2893 sector_size = ICH_FLASH_SEG_SIZE_4K;
2894 iteration = 1;
2895 break;
2896 case 2:
2897 sector_size = ICH_FLASH_SEG_SIZE_8K;
2898 iteration = 1;
2899 break;
2900 case 3:
2901 sector_size = ICH_FLASH_SEG_SIZE_64K;
2902 iteration = 1;
2903 break;
2904 default:
2905 return -E1000_ERR_NVM;
2908 /* Start with the base address, then add the sector offset. */
2909 flash_linear_addr = hw->nvm.flash_base_addr;
2910 flash_linear_addr += (bank) ? flash_bank_size : 0;
2912 for (j = 0; j < iteration ; j++) {
2913 do {
2914 /* Steps */
2915 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2916 if (ret_val)
2917 return ret_val;
2920 * Write a value 11 (block Erase) in Flash
2921 * Cycle field in hw flash control
2923 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2924 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2925 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2928 * Write the last 24 bits of an index within the
2929 * block into Flash Linear address field in Flash
2930 * Address.
2932 flash_linear_addr += (j * sector_size);
2933 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2935 ret_val = e1000_flash_cycle_ich8lan(hw,
2936 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2937 if (!ret_val)
2938 break;
2941 * Check if FCERR is set to 1. If 1,
2942 * clear it and try the whole sequence
2943 * a few more times else Done
2945 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2946 if (hsfsts.hsf_status.flcerr == 1)
2947 /* repeat for some time before giving up */
2948 continue;
2949 else if (hsfsts.hsf_status.flcdone == 0)
2950 return ret_val;
2951 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2954 return 0;
2958 * e1000_valid_led_default_ich8lan - Set the default LED settings
2959 * @hw: pointer to the HW structure
2960 * @data: Pointer to the LED settings
2962 * Reads the LED default settings from the NVM to data. If the NVM LED
2963 * settings is all 0's or F's, set the LED default to a valid LED default
2964 * setting.
2966 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2968 s32 ret_val;
2970 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2971 if (ret_val) {
2972 e_dbg("NVM Read Error\n");
2973 return ret_val;
2976 if (*data == ID_LED_RESERVED_0000 ||
2977 *data == ID_LED_RESERVED_FFFF)
2978 *data = ID_LED_DEFAULT_ICH8LAN;
2980 return 0;
2984 * e1000_id_led_init_pchlan - store LED configurations
2985 * @hw: pointer to the HW structure
2987 * PCH does not control LEDs via the LEDCTL register, rather it uses
2988 * the PHY LED configuration register.
2990 * PCH also does not have an "always on" or "always off" mode which
2991 * complicates the ID feature. Instead of using the "on" mode to indicate
2992 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2993 * use "link_up" mode. The LEDs will still ID on request if there is no
2994 * link based on logic in e1000_led_[on|off]_pchlan().
2996 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2998 struct e1000_mac_info *mac = &hw->mac;
2999 s32 ret_val;
3000 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3001 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3002 u16 data, i, temp, shift;
3004 /* Get default ID LED modes */
3005 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3006 if (ret_val)
3007 goto out;
3009 mac->ledctl_default = er32(LEDCTL);
3010 mac->ledctl_mode1 = mac->ledctl_default;
3011 mac->ledctl_mode2 = mac->ledctl_default;
3013 for (i = 0; i < 4; i++) {
3014 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3015 shift = (i * 5);
3016 switch (temp) {
3017 case ID_LED_ON1_DEF2:
3018 case ID_LED_ON1_ON2:
3019 case ID_LED_ON1_OFF2:
3020 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3021 mac->ledctl_mode1 |= (ledctl_on << shift);
3022 break;
3023 case ID_LED_OFF1_DEF2:
3024 case ID_LED_OFF1_ON2:
3025 case ID_LED_OFF1_OFF2:
3026 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3027 mac->ledctl_mode1 |= (ledctl_off << shift);
3028 break;
3029 default:
3030 /* Do nothing */
3031 break;
3033 switch (temp) {
3034 case ID_LED_DEF1_ON2:
3035 case ID_LED_ON1_ON2:
3036 case ID_LED_OFF1_ON2:
3037 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3038 mac->ledctl_mode2 |= (ledctl_on << shift);
3039 break;
3040 case ID_LED_DEF1_OFF2:
3041 case ID_LED_ON1_OFF2:
3042 case ID_LED_OFF1_OFF2:
3043 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3044 mac->ledctl_mode2 |= (ledctl_off << shift);
3045 break;
3046 default:
3047 /* Do nothing */
3048 break;
3052 out:
3053 return ret_val;
3057 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3058 * @hw: pointer to the HW structure
3060 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3061 * register, so the the bus width is hard coded.
3063 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3065 struct e1000_bus_info *bus = &hw->bus;
3066 s32 ret_val;
3068 ret_val = e1000e_get_bus_info_pcie(hw);
3071 * ICH devices are "PCI Express"-ish. They have
3072 * a configuration space, but do not contain
3073 * PCI Express Capability registers, so bus width
3074 * must be hardcoded.
3076 if (bus->width == e1000_bus_width_unknown)
3077 bus->width = e1000_bus_width_pcie_x1;
3079 return ret_val;
3083 * e1000_reset_hw_ich8lan - Reset the hardware
3084 * @hw: pointer to the HW structure
3086 * Does a full reset of the hardware which includes a reset of the PHY and
3087 * MAC.
3089 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3091 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3092 u16 reg;
3093 u32 ctrl, kab;
3094 s32 ret_val;
3097 * Prevent the PCI-E bus from sticking if there is no TLP connection
3098 * on the last TLP read/write transaction when MAC is reset.
3100 ret_val = e1000e_disable_pcie_master(hw);
3101 if (ret_val)
3102 e_dbg("PCI-E Master disable polling has failed.\n");
3104 e_dbg("Masking off all interrupts\n");
3105 ew32(IMC, 0xffffffff);
3108 * Disable the Transmit and Receive units. Then delay to allow
3109 * any pending transactions to complete before we hit the MAC
3110 * with the global reset.
3112 ew32(RCTL, 0);
3113 ew32(TCTL, E1000_TCTL_PSP);
3114 e1e_flush();
3116 usleep_range(10000, 20000);
3118 /* Workaround for ICH8 bit corruption issue in FIFO memory */
3119 if (hw->mac.type == e1000_ich8lan) {
3120 /* Set Tx and Rx buffer allocation to 8k apiece. */
3121 ew32(PBA, E1000_PBA_8K);
3122 /* Set Packet Buffer Size to 16k. */
3123 ew32(PBS, E1000_PBS_16K);
3126 if (hw->mac.type == e1000_pchlan) {
3127 /* Save the NVM K1 bit setting*/
3128 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
3129 if (ret_val)
3130 return ret_val;
3132 if (reg & E1000_NVM_K1_ENABLE)
3133 dev_spec->nvm_k1_enabled = true;
3134 else
3135 dev_spec->nvm_k1_enabled = false;
3138 ctrl = er32(CTRL);
3140 if (!e1000_check_reset_block(hw)) {
3142 * Full-chip reset requires MAC and PHY reset at the same
3143 * time to make sure the interface between MAC and the
3144 * external PHY is reset.
3146 ctrl |= E1000_CTRL_PHY_RST;
3149 * Gate automatic PHY configuration by hardware on
3150 * non-managed 82579
3152 if ((hw->mac.type == e1000_pch2lan) &&
3153 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3154 e1000_gate_hw_phy_config_ich8lan(hw, true);
3156 ret_val = e1000_acquire_swflag_ich8lan(hw);
3157 e_dbg("Issuing a global reset to ich8lan\n");
3158 ew32(CTRL, (ctrl | E1000_CTRL_RST));
3159 /* cannot issue a flush here because it hangs the hardware */
3160 msleep(20);
3162 if (!ret_val)
3163 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3165 if (ctrl & E1000_CTRL_PHY_RST) {
3166 ret_val = hw->phy.ops.get_cfg_done(hw);
3167 if (ret_val)
3168 goto out;
3170 ret_val = e1000_post_phy_reset_ich8lan(hw);
3171 if (ret_val)
3172 goto out;
3176 * For PCH, this write will make sure that any noise
3177 * will be detected as a CRC error and be dropped rather than show up
3178 * as a bad packet to the DMA engine.
3180 if (hw->mac.type == e1000_pchlan)
3181 ew32(CRC_OFFSET, 0x65656565);
3183 ew32(IMC, 0xffffffff);
3184 er32(ICR);
3186 kab = er32(KABGTXD);
3187 kab |= E1000_KABGTXD_BGSQLBIAS;
3188 ew32(KABGTXD, kab);
3190 out:
3191 return ret_val;
3195 * e1000_init_hw_ich8lan - Initialize the hardware
3196 * @hw: pointer to the HW structure
3198 * Prepares the hardware for transmit and receive by doing the following:
3199 * - initialize hardware bits
3200 * - initialize LED identification
3201 * - setup receive address registers
3202 * - setup flow control
3203 * - setup transmit descriptors
3204 * - clear statistics
3206 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3208 struct e1000_mac_info *mac = &hw->mac;
3209 u32 ctrl_ext, txdctl, snoop;
3210 s32 ret_val;
3211 u16 i;
3213 e1000_initialize_hw_bits_ich8lan(hw);
3215 /* Initialize identification LED */
3216 ret_val = mac->ops.id_led_init(hw);
3217 if (ret_val)
3218 e_dbg("Error initializing identification LED\n");
3219 /* This is not fatal and we should not stop init due to this */
3221 /* Setup the receive address. */
3222 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3224 /* Zero out the Multicast HASH table */
3225 e_dbg("Zeroing the MTA\n");
3226 for (i = 0; i < mac->mta_reg_count; i++)
3227 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3230 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3231 * the ME. Disable wakeup by clearing the host wakeup bit.
3232 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3234 if (hw->phy.type == e1000_phy_82578) {
3235 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3236 i &= ~BM_WUC_HOST_WU_BIT;
3237 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3238 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3239 if (ret_val)
3240 return ret_val;
3243 /* Setup link and flow control */
3244 ret_val = e1000_setup_link_ich8lan(hw);
3246 /* Set the transmit descriptor write-back policy for both queues */
3247 txdctl = er32(TXDCTL(0));
3248 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3249 E1000_TXDCTL_FULL_TX_DESC_WB;
3250 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3251 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3252 ew32(TXDCTL(0), txdctl);
3253 txdctl = er32(TXDCTL(1));
3254 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3255 E1000_TXDCTL_FULL_TX_DESC_WB;
3256 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3257 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3258 ew32(TXDCTL(1), txdctl);
3261 * ICH8 has opposite polarity of no_snoop bits.
3262 * By default, we should use snoop behavior.
3264 if (mac->type == e1000_ich8lan)
3265 snoop = PCIE_ICH8_SNOOP_ALL;
3266 else
3267 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3268 e1000e_set_pcie_no_snoop(hw, snoop);
3270 ctrl_ext = er32(CTRL_EXT);
3271 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3272 ew32(CTRL_EXT, ctrl_ext);
3275 * Clear all of the statistics registers (clear on read). It is
3276 * important that we do this after we have tried to establish link
3277 * because the symbol error count will increment wildly if there
3278 * is no link.
3280 e1000_clear_hw_cntrs_ich8lan(hw);
3282 return 0;
3285 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3286 * @hw: pointer to the HW structure
3288 * Sets/Clears required hardware bits necessary for correctly setting up the
3289 * hardware for transmit and receive.
3291 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3293 u32 reg;
3295 /* Extended Device Control */
3296 reg = er32(CTRL_EXT);
3297 reg |= (1 << 22);
3298 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3299 if (hw->mac.type >= e1000_pchlan)
3300 reg |= E1000_CTRL_EXT_PHYPDEN;
3301 ew32(CTRL_EXT, reg);
3303 /* Transmit Descriptor Control 0 */
3304 reg = er32(TXDCTL(0));
3305 reg |= (1 << 22);
3306 ew32(TXDCTL(0), reg);
3308 /* Transmit Descriptor Control 1 */
3309 reg = er32(TXDCTL(1));
3310 reg |= (1 << 22);
3311 ew32(TXDCTL(1), reg);
3313 /* Transmit Arbitration Control 0 */
3314 reg = er32(TARC(0));
3315 if (hw->mac.type == e1000_ich8lan)
3316 reg |= (1 << 28) | (1 << 29);
3317 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3318 ew32(TARC(0), reg);
3320 /* Transmit Arbitration Control 1 */
3321 reg = er32(TARC(1));
3322 if (er32(TCTL) & E1000_TCTL_MULR)
3323 reg &= ~(1 << 28);
3324 else
3325 reg |= (1 << 28);
3326 reg |= (1 << 24) | (1 << 26) | (1 << 30);
3327 ew32(TARC(1), reg);
3329 /* Device Status */
3330 if (hw->mac.type == e1000_ich8lan) {
3331 reg = er32(STATUS);
3332 reg &= ~(1 << 31);
3333 ew32(STATUS, reg);
3337 * work-around descriptor data corruption issue during nfs v2 udp
3338 * traffic, just disable the nfs filtering capability
3340 reg = er32(RFCTL);
3341 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3342 ew32(RFCTL, reg);
3346 * e1000_setup_link_ich8lan - Setup flow control and link settings
3347 * @hw: pointer to the HW structure
3349 * Determines which flow control settings to use, then configures flow
3350 * control. Calls the appropriate media-specific link configuration
3351 * function. Assuming the adapter has a valid link partner, a valid link
3352 * should be established. Assumes the hardware has previously been reset
3353 * and the transmitter and receiver are not enabled.
3355 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3357 s32 ret_val;
3359 if (e1000_check_reset_block(hw))
3360 return 0;
3363 * ICH parts do not have a word in the NVM to determine
3364 * the default flow control setting, so we explicitly
3365 * set it to full.
3367 if (hw->fc.requested_mode == e1000_fc_default) {
3368 /* Workaround h/w hang when Tx flow control enabled */
3369 if (hw->mac.type == e1000_pchlan)
3370 hw->fc.requested_mode = e1000_fc_rx_pause;
3371 else
3372 hw->fc.requested_mode = e1000_fc_full;
3376 * Save off the requested flow control mode for use later. Depending
3377 * on the link partner's capabilities, we may or may not use this mode.
3379 hw->fc.current_mode = hw->fc.requested_mode;
3381 e_dbg("After fix-ups FlowControl is now = %x\n",
3382 hw->fc.current_mode);
3384 /* Continue to configure the copper link. */
3385 ret_val = e1000_setup_copper_link_ich8lan(hw);
3386 if (ret_val)
3387 return ret_val;
3389 ew32(FCTTV, hw->fc.pause_time);
3390 if ((hw->phy.type == e1000_phy_82578) ||
3391 (hw->phy.type == e1000_phy_82579) ||
3392 (hw->phy.type == e1000_phy_82577)) {
3393 ew32(FCRTV_PCH, hw->fc.refresh_time);
3395 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3396 hw->fc.pause_time);
3397 if (ret_val)
3398 return ret_val;
3401 return e1000e_set_fc_watermarks(hw);
3405 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3406 * @hw: pointer to the HW structure
3408 * Configures the kumeran interface to the PHY to wait the appropriate time
3409 * when polling the PHY, then call the generic setup_copper_link to finish
3410 * configuring the copper link.
3412 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3414 u32 ctrl;
3415 s32 ret_val;
3416 u16 reg_data;
3418 ctrl = er32(CTRL);
3419 ctrl |= E1000_CTRL_SLU;
3420 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3421 ew32(CTRL, ctrl);
3424 * Set the mac to wait the maximum time between each iteration
3425 * and increase the max iterations when polling the phy;
3426 * this fixes erroneous timeouts at 10Mbps.
3428 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3429 if (ret_val)
3430 return ret_val;
3431 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3432 &reg_data);
3433 if (ret_val)
3434 return ret_val;
3435 reg_data |= 0x3F;
3436 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3437 reg_data);
3438 if (ret_val)
3439 return ret_val;
3441 switch (hw->phy.type) {
3442 case e1000_phy_igp_3:
3443 ret_val = e1000e_copper_link_setup_igp(hw);
3444 if (ret_val)
3445 return ret_val;
3446 break;
3447 case e1000_phy_bm:
3448 case e1000_phy_82578:
3449 ret_val = e1000e_copper_link_setup_m88(hw);
3450 if (ret_val)
3451 return ret_val;
3452 break;
3453 case e1000_phy_82577:
3454 case e1000_phy_82579:
3455 ret_val = e1000_copper_link_setup_82577(hw);
3456 if (ret_val)
3457 return ret_val;
3458 break;
3459 case e1000_phy_ife:
3460 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3461 if (ret_val)
3462 return ret_val;
3464 reg_data &= ~IFE_PMC_AUTO_MDIX;
3466 switch (hw->phy.mdix) {
3467 case 1:
3468 reg_data &= ~IFE_PMC_FORCE_MDIX;
3469 break;
3470 case 2:
3471 reg_data |= IFE_PMC_FORCE_MDIX;
3472 break;
3473 case 0:
3474 default:
3475 reg_data |= IFE_PMC_AUTO_MDIX;
3476 break;
3478 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3479 if (ret_val)
3480 return ret_val;
3481 break;
3482 default:
3483 break;
3485 return e1000e_setup_copper_link(hw);
3489 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3490 * @hw: pointer to the HW structure
3491 * @speed: pointer to store current link speed
3492 * @duplex: pointer to store the current link duplex
3494 * Calls the generic get_speed_and_duplex to retrieve the current link
3495 * information and then calls the Kumeran lock loss workaround for links at
3496 * gigabit speeds.
3498 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3499 u16 *duplex)
3501 s32 ret_val;
3503 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3504 if (ret_val)
3505 return ret_val;
3507 if ((hw->mac.type == e1000_ich8lan) &&
3508 (hw->phy.type == e1000_phy_igp_3) &&
3509 (*speed == SPEED_1000)) {
3510 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3513 return ret_val;
3517 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3518 * @hw: pointer to the HW structure
3520 * Work-around for 82566 Kumeran PCS lock loss:
3521 * On link status change (i.e. PCI reset, speed change) and link is up and
3522 * speed is gigabit-
3523 * 0) if workaround is optionally disabled do nothing
3524 * 1) wait 1ms for Kumeran link to come up
3525 * 2) check Kumeran Diagnostic register PCS lock loss bit
3526 * 3) if not set the link is locked (all is good), otherwise...
3527 * 4) reset the PHY
3528 * 5) repeat up to 10 times
3529 * Note: this is only called for IGP3 copper when speed is 1gb.
3531 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3533 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3534 u32 phy_ctrl;
3535 s32 ret_val;
3536 u16 i, data;
3537 bool link;
3539 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3540 return 0;
3543 * Make sure link is up before proceeding. If not just return.
3544 * Attempting this while link is negotiating fouled up link
3545 * stability
3547 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3548 if (!link)
3549 return 0;
3551 for (i = 0; i < 10; i++) {
3552 /* read once to clear */
3553 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3554 if (ret_val)
3555 return ret_val;
3556 /* and again to get new status */
3557 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3558 if (ret_val)
3559 return ret_val;
3561 /* check for PCS lock */
3562 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3563 return 0;
3565 /* Issue PHY reset */
3566 e1000_phy_hw_reset(hw);
3567 mdelay(5);
3569 /* Disable GigE link negotiation */
3570 phy_ctrl = er32(PHY_CTRL);
3571 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3572 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3573 ew32(PHY_CTRL, phy_ctrl);
3576 * Call gig speed drop workaround on Gig disable before accessing
3577 * any PHY registers
3579 e1000e_gig_downshift_workaround_ich8lan(hw);
3581 /* unable to acquire PCS lock */
3582 return -E1000_ERR_PHY;
3586 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3587 * @hw: pointer to the HW structure
3588 * @state: boolean value used to set the current Kumeran workaround state
3590 * If ICH8, set the current Kumeran workaround state (enabled - true
3591 * /disabled - false).
3593 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3594 bool state)
3596 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3598 if (hw->mac.type != e1000_ich8lan) {
3599 e_dbg("Workaround applies to ICH8 only.\n");
3600 return;
3603 dev_spec->kmrn_lock_loss_workaround_enabled = state;
3607 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3608 * @hw: pointer to the HW structure
3610 * Workaround for 82566 power-down on D3 entry:
3611 * 1) disable gigabit link
3612 * 2) write VR power-down enable
3613 * 3) read it back
3614 * Continue if successful, else issue LCD reset and repeat
3616 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3618 u32 reg;
3619 u16 data;
3620 u8 retry = 0;
3622 if (hw->phy.type != e1000_phy_igp_3)
3623 return;
3625 /* Try the workaround twice (if needed) */
3626 do {
3627 /* Disable link */
3628 reg = er32(PHY_CTRL);
3629 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3630 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3631 ew32(PHY_CTRL, reg);
3634 * Call gig speed drop workaround on Gig disable before
3635 * accessing any PHY registers
3637 if (hw->mac.type == e1000_ich8lan)
3638 e1000e_gig_downshift_workaround_ich8lan(hw);
3640 /* Write VR power-down enable */
3641 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3642 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3643 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3645 /* Read it back and test */
3646 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3647 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3648 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3649 break;
3651 /* Issue PHY reset and repeat at most one more time */
3652 reg = er32(CTRL);
3653 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3654 retry++;
3655 } while (retry);
3659 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3660 * @hw: pointer to the HW structure
3662 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3663 * LPLU, Gig disable, MDIC PHY reset):
3664 * 1) Set Kumeran Near-end loopback
3665 * 2) Clear Kumeran Near-end loopback
3666 * Should only be called for ICH8[m] devices with any 1G Phy.
3668 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3670 s32 ret_val;
3671 u16 reg_data;
3673 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
3674 return;
3676 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3677 &reg_data);
3678 if (ret_val)
3679 return;
3680 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3681 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3682 reg_data);
3683 if (ret_val)
3684 return;
3685 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3686 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3687 reg_data);
3691 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3692 * @hw: pointer to the HW structure
3694 * During S0 to Sx transition, it is possible the link remains at gig
3695 * instead of negotiating to a lower speed. Before going to Sx, set
3696 * 'Gig Disable' to force link speed negotiation to a lower speed based on
3697 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
3698 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
3699 * needs to be written.
3701 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3703 u32 phy_ctrl;
3704 s32 ret_val;
3706 phy_ctrl = er32(PHY_CTRL);
3707 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
3708 ew32(PHY_CTRL, phy_ctrl);
3710 if (hw->mac.type == e1000_ich8lan)
3711 e1000e_gig_downshift_workaround_ich8lan(hw);
3713 if (hw->mac.type >= e1000_pchlan) {
3714 e1000_oem_bits_config_ich8lan(hw, false);
3715 e1000_phy_hw_reset_ich8lan(hw);
3716 ret_val = hw->phy.ops.acquire(hw);
3717 if (ret_val)
3718 return;
3719 e1000_write_smbus_addr(hw);
3720 hw->phy.ops.release(hw);
3725 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
3726 * @hw: pointer to the HW structure
3728 * During Sx to S0 transitions on non-managed devices or managed devices
3729 * on which PHY resets are not blocked, if the PHY registers cannot be
3730 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
3731 * the PHY.
3733 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
3735 u16 phy_id1, phy_id2;
3736 s32 ret_val;
3738 if ((hw->mac.type != e1000_pch2lan) || e1000_check_reset_block(hw))
3739 return;
3741 ret_val = hw->phy.ops.acquire(hw);
3742 if (ret_val) {
3743 e_dbg("Failed to acquire PHY semaphore in resume\n");
3744 return;
3747 /* Test access to the PHY registers by reading the ID regs */
3748 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
3749 if (ret_val)
3750 goto release;
3751 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
3752 if (ret_val)
3753 goto release;
3755 if (hw->phy.id == ((u32)(phy_id1 << 16) |
3756 (u32)(phy_id2 & PHY_REVISION_MASK)))
3757 goto release;
3759 e1000_toggle_lanphypc_value_ich8lan(hw);
3761 hw->phy.ops.release(hw);
3762 msleep(50);
3763 e1000_phy_hw_reset(hw);
3764 msleep(50);
3765 return;
3767 release:
3768 hw->phy.ops.release(hw);
3772 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3773 * @hw: pointer to the HW structure
3775 * Return the LED back to the default configuration.
3777 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3779 if (hw->phy.type == e1000_phy_ife)
3780 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3782 ew32(LEDCTL, hw->mac.ledctl_default);
3783 return 0;
3787 * e1000_led_on_ich8lan - Turn LEDs on
3788 * @hw: pointer to the HW structure
3790 * Turn on the LEDs.
3792 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3794 if (hw->phy.type == e1000_phy_ife)
3795 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3796 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3798 ew32(LEDCTL, hw->mac.ledctl_mode2);
3799 return 0;
3803 * e1000_led_off_ich8lan - Turn LEDs off
3804 * @hw: pointer to the HW structure
3806 * Turn off the LEDs.
3808 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3810 if (hw->phy.type == e1000_phy_ife)
3811 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3812 (IFE_PSCL_PROBE_MODE |
3813 IFE_PSCL_PROBE_LEDS_OFF));
3815 ew32(LEDCTL, hw->mac.ledctl_mode1);
3816 return 0;
3820 * e1000_setup_led_pchlan - Configures SW controllable LED
3821 * @hw: pointer to the HW structure
3823 * This prepares the SW controllable LED for use.
3825 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3827 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
3831 * e1000_cleanup_led_pchlan - Restore the default LED operation
3832 * @hw: pointer to the HW structure
3834 * Return the LED back to the default configuration.
3836 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3838 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
3842 * e1000_led_on_pchlan - Turn LEDs on
3843 * @hw: pointer to the HW structure
3845 * Turn on the LEDs.
3847 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3849 u16 data = (u16)hw->mac.ledctl_mode2;
3850 u32 i, led;
3853 * If no link, then turn LED on by setting the invert bit
3854 * for each LED that's mode is "link_up" in ledctl_mode2.
3856 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3857 for (i = 0; i < 3; i++) {
3858 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3859 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3860 E1000_LEDCTL_MODE_LINK_UP)
3861 continue;
3862 if (led & E1000_PHY_LED0_IVRT)
3863 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3864 else
3865 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3869 return e1e_wphy(hw, HV_LED_CONFIG, data);
3873 * e1000_led_off_pchlan - Turn LEDs off
3874 * @hw: pointer to the HW structure
3876 * Turn off the LEDs.
3878 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3880 u16 data = (u16)hw->mac.ledctl_mode1;
3881 u32 i, led;
3884 * If no link, then turn LED off by clearing the invert bit
3885 * for each LED that's mode is "link_up" in ledctl_mode1.
3887 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3888 for (i = 0; i < 3; i++) {
3889 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3890 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3891 E1000_LEDCTL_MODE_LINK_UP)
3892 continue;
3893 if (led & E1000_PHY_LED0_IVRT)
3894 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3895 else
3896 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3900 return e1e_wphy(hw, HV_LED_CONFIG, data);
3904 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3905 * @hw: pointer to the HW structure
3907 * Read appropriate register for the config done bit for completion status
3908 * and configure the PHY through s/w for EEPROM-less parts.
3910 * NOTE: some silicon which is EEPROM-less will fail trying to read the
3911 * config done bit, so only an error is logged and continues. If we were
3912 * to return with error, EEPROM-less silicon would not be able to be reset
3913 * or change link.
3915 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3917 s32 ret_val = 0;
3918 u32 bank = 0;
3919 u32 status;
3921 e1000e_get_cfg_done(hw);
3923 /* Wait for indication from h/w that it has completed basic config */
3924 if (hw->mac.type >= e1000_ich10lan) {
3925 e1000_lan_init_done_ich8lan(hw);
3926 } else {
3927 ret_val = e1000e_get_auto_rd_done(hw);
3928 if (ret_val) {
3930 * When auto config read does not complete, do not
3931 * return with an error. This can happen in situations
3932 * where there is no eeprom and prevents getting link.
3934 e_dbg("Auto Read Done did not complete\n");
3935 ret_val = 0;
3939 /* Clear PHY Reset Asserted bit */
3940 status = er32(STATUS);
3941 if (status & E1000_STATUS_PHYRA)
3942 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3943 else
3944 e_dbg("PHY Reset Asserted not set - needs delay\n");
3946 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3947 if (hw->mac.type <= e1000_ich9lan) {
3948 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3949 (hw->phy.type == e1000_phy_igp_3)) {
3950 e1000e_phy_init_script_igp3(hw);
3952 } else {
3953 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3954 /* Maybe we should do a basic PHY config */
3955 e_dbg("EEPROM not present\n");
3956 ret_val = -E1000_ERR_CONFIG;
3960 return ret_val;
3964 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3965 * @hw: pointer to the HW structure
3967 * In the case of a PHY power down to save power, or to turn off link during a
3968 * driver unload, or wake on lan is not enabled, remove the link.
3970 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3972 /* If the management interface is not enabled, then power down */
3973 if (!(hw->mac.ops.check_mng_mode(hw) ||
3974 hw->phy.ops.check_reset_block(hw)))
3975 e1000_power_down_phy_copper(hw);
3979 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3980 * @hw: pointer to the HW structure
3982 * Clears hardware counters specific to the silicon family and calls
3983 * clear_hw_cntrs_generic to clear all general purpose counters.
3985 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3987 u16 phy_data;
3988 s32 ret_val;
3990 e1000e_clear_hw_cntrs_base(hw);
3992 er32(ALGNERRC);
3993 er32(RXERRC);
3994 er32(TNCRS);
3995 er32(CEXTERR);
3996 er32(TSCTC);
3997 er32(TSCTFC);
3999 er32(MGTPRC);
4000 er32(MGTPDC);
4001 er32(MGTPTC);
4003 er32(IAC);
4004 er32(ICRXOC);
4006 /* Clear PHY statistics registers */
4007 if ((hw->phy.type == e1000_phy_82578) ||
4008 (hw->phy.type == e1000_phy_82579) ||
4009 (hw->phy.type == e1000_phy_82577)) {
4010 ret_val = hw->phy.ops.acquire(hw);
4011 if (ret_val)
4012 return;
4013 ret_val = hw->phy.ops.set_page(hw,
4014 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4015 if (ret_val)
4016 goto release;
4017 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4018 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4019 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4020 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4021 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4022 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4023 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4024 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4025 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4026 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4027 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4028 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4029 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4030 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4031 release:
4032 hw->phy.ops.release(hw);
4036 static const struct e1000_mac_operations ich8_mac_ops = {
4037 .id_led_init = e1000e_id_led_init,
4038 /* check_mng_mode dependent on mac type */
4039 .check_for_link = e1000_check_for_copper_link_ich8lan,
4040 /* cleanup_led dependent on mac type */
4041 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
4042 .get_bus_info = e1000_get_bus_info_ich8lan,
4043 .set_lan_id = e1000_set_lan_id_single_port,
4044 .get_link_up_info = e1000_get_link_up_info_ich8lan,
4045 /* led_on dependent on mac type */
4046 /* led_off dependent on mac type */
4047 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
4048 .reset_hw = e1000_reset_hw_ich8lan,
4049 .init_hw = e1000_init_hw_ich8lan,
4050 .setup_link = e1000_setup_link_ich8lan,
4051 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
4052 /* id_led_init dependent on mac type */
4055 static const struct e1000_phy_operations ich8_phy_ops = {
4056 .acquire = e1000_acquire_swflag_ich8lan,
4057 .check_reset_block = e1000_check_reset_block_ich8lan,
4058 .commit = NULL,
4059 .get_cfg_done = e1000_get_cfg_done_ich8lan,
4060 .get_cable_length = e1000e_get_cable_length_igp_2,
4061 .read_reg = e1000e_read_phy_reg_igp,
4062 .release = e1000_release_swflag_ich8lan,
4063 .reset = e1000_phy_hw_reset_ich8lan,
4064 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
4065 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
4066 .write_reg = e1000e_write_phy_reg_igp,
4069 static const struct e1000_nvm_operations ich8_nvm_ops = {
4070 .acquire = e1000_acquire_nvm_ich8lan,
4071 .read = e1000_read_nvm_ich8lan,
4072 .release = e1000_release_nvm_ich8lan,
4073 .update = e1000_update_nvm_checksum_ich8lan,
4074 .valid_led_default = e1000_valid_led_default_ich8lan,
4075 .validate = e1000_validate_nvm_checksum_ich8lan,
4076 .write = e1000_write_nvm_ich8lan,
4079 const struct e1000_info e1000_ich8_info = {
4080 .mac = e1000_ich8lan,
4081 .flags = FLAG_HAS_WOL
4082 | FLAG_IS_ICH
4083 | FLAG_HAS_CTRLEXT_ON_LOAD
4084 | FLAG_HAS_AMT
4085 | FLAG_HAS_FLASH
4086 | FLAG_APME_IN_WUC,
4087 .pba = 8,
4088 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
4089 .get_variants = e1000_get_variants_ich8lan,
4090 .mac_ops = &ich8_mac_ops,
4091 .phy_ops = &ich8_phy_ops,
4092 .nvm_ops = &ich8_nvm_ops,
4095 const struct e1000_info e1000_ich9_info = {
4096 .mac = e1000_ich9lan,
4097 .flags = FLAG_HAS_JUMBO_FRAMES
4098 | FLAG_IS_ICH
4099 | FLAG_HAS_WOL
4100 | FLAG_HAS_CTRLEXT_ON_LOAD
4101 | FLAG_HAS_AMT
4102 | FLAG_HAS_FLASH
4103 | FLAG_APME_IN_WUC,
4104 .pba = 18,
4105 .max_hw_frame_size = DEFAULT_JUMBO,
4106 .get_variants = e1000_get_variants_ich8lan,
4107 .mac_ops = &ich8_mac_ops,
4108 .phy_ops = &ich8_phy_ops,
4109 .nvm_ops = &ich8_nvm_ops,
4112 const struct e1000_info e1000_ich10_info = {
4113 .mac = e1000_ich10lan,
4114 .flags = FLAG_HAS_JUMBO_FRAMES
4115 | FLAG_IS_ICH
4116 | FLAG_HAS_WOL
4117 | FLAG_HAS_CTRLEXT_ON_LOAD
4118 | FLAG_HAS_AMT
4119 | FLAG_HAS_FLASH
4120 | FLAG_APME_IN_WUC,
4121 .pba = 18,
4122 .max_hw_frame_size = DEFAULT_JUMBO,
4123 .get_variants = e1000_get_variants_ich8lan,
4124 .mac_ops = &ich8_mac_ops,
4125 .phy_ops = &ich8_phy_ops,
4126 .nvm_ops = &ich8_nvm_ops,
4129 const struct e1000_info e1000_pch_info = {
4130 .mac = e1000_pchlan,
4131 .flags = FLAG_IS_ICH
4132 | FLAG_HAS_WOL
4133 | FLAG_HAS_CTRLEXT_ON_LOAD
4134 | FLAG_HAS_AMT
4135 | FLAG_HAS_FLASH
4136 | FLAG_HAS_JUMBO_FRAMES
4137 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4138 | FLAG_APME_IN_WUC,
4139 .flags2 = FLAG2_HAS_PHY_STATS,
4140 .pba = 26,
4141 .max_hw_frame_size = 4096,
4142 .get_variants = e1000_get_variants_ich8lan,
4143 .mac_ops = &ich8_mac_ops,
4144 .phy_ops = &ich8_phy_ops,
4145 .nvm_ops = &ich8_nvm_ops,
4148 const struct e1000_info e1000_pch2_info = {
4149 .mac = e1000_pch2lan,
4150 .flags = FLAG_IS_ICH
4151 | FLAG_HAS_WOL
4152 | FLAG_HAS_CTRLEXT_ON_LOAD
4153 | FLAG_HAS_AMT
4154 | FLAG_HAS_FLASH
4155 | FLAG_HAS_JUMBO_FRAMES
4156 | FLAG_APME_IN_WUC,
4157 .flags2 = FLAG2_HAS_PHY_STATS
4158 | FLAG2_HAS_EEE,
4159 .pba = 26,
4160 .max_hw_frame_size = DEFAULT_JUMBO,
4161 .get_variants = e1000_get_variants_ich8lan,
4162 .mac_ops = &ich8_mac_ops,
4163 .phy_ops = &ich8_phy_ops,
4164 .nvm_ops = &ich8_nvm_ops,