1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/mii.h>
46 #include <linux/ethtool.h>
47 #include <linux/if_vlan.h>
48 #include <linux/cpu.h>
49 #include <linux/smp.h>
50 #include <linux/pm_qos.h>
51 #include <linux/pm_runtime.h>
52 #include <linux/aer.h>
53 #include <linux/prefetch.h>
57 #define DRV_EXTRAVERSION "-k"
59 #define DRV_VERSION "1.9.5" DRV_EXTRAVERSION
60 char e1000e_driver_name
[] = "e1000e";
61 const char e1000e_driver_version
[] = DRV_VERSION
;
63 static void e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
);
65 static const struct e1000_info
*e1000_info_tbl
[] = {
66 [board_82571
] = &e1000_82571_info
,
67 [board_82572
] = &e1000_82572_info
,
68 [board_82573
] = &e1000_82573_info
,
69 [board_82574
] = &e1000_82574_info
,
70 [board_82583
] = &e1000_82583_info
,
71 [board_80003es2lan
] = &e1000_es2_info
,
72 [board_ich8lan
] = &e1000_ich8_info
,
73 [board_ich9lan
] = &e1000_ich9_info
,
74 [board_ich10lan
] = &e1000_ich10_info
,
75 [board_pchlan
] = &e1000_pch_info
,
76 [board_pch2lan
] = &e1000_pch2_info
,
79 struct e1000_reg_info
{
84 #define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
85 #define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
86 #define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
87 #define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
88 #define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
90 #define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
91 #define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
92 #define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
93 #define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
94 #define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
96 static const struct e1000_reg_info e1000_reg_info_tbl
[] = {
98 /* General Registers */
100 {E1000_STATUS
, "STATUS"},
101 {E1000_CTRL_EXT
, "CTRL_EXT"},
103 /* Interrupt Registers */
107 {E1000_RCTL
, "RCTL"},
108 {E1000_RDLEN
, "RDLEN"},
111 {E1000_RDTR
, "RDTR"},
112 {E1000_RXDCTL(0), "RXDCTL"},
114 {E1000_RDBAL
, "RDBAL"},
115 {E1000_RDBAH
, "RDBAH"},
116 {E1000_RDFH
, "RDFH"},
117 {E1000_RDFT
, "RDFT"},
118 {E1000_RDFHS
, "RDFHS"},
119 {E1000_RDFTS
, "RDFTS"},
120 {E1000_RDFPC
, "RDFPC"},
123 {E1000_TCTL
, "TCTL"},
124 {E1000_TDBAL
, "TDBAL"},
125 {E1000_TDBAH
, "TDBAH"},
126 {E1000_TDLEN
, "TDLEN"},
129 {E1000_TIDV
, "TIDV"},
130 {E1000_TXDCTL(0), "TXDCTL"},
131 {E1000_TADV
, "TADV"},
132 {E1000_TARC(0), "TARC"},
133 {E1000_TDFH
, "TDFH"},
134 {E1000_TDFT
, "TDFT"},
135 {E1000_TDFHS
, "TDFHS"},
136 {E1000_TDFTS
, "TDFTS"},
137 {E1000_TDFPC
, "TDFPC"},
139 /* List Terminator */
144 * e1000_regdump - register printout routine
146 static void e1000_regdump(struct e1000_hw
*hw
, struct e1000_reg_info
*reginfo
)
152 switch (reginfo
->ofs
) {
153 case E1000_RXDCTL(0):
154 for (n
= 0; n
< 2; n
++)
155 regs
[n
] = __er32(hw
, E1000_RXDCTL(n
));
157 case E1000_TXDCTL(0):
158 for (n
= 0; n
< 2; n
++)
159 regs
[n
] = __er32(hw
, E1000_TXDCTL(n
));
162 for (n
= 0; n
< 2; n
++)
163 regs
[n
] = __er32(hw
, E1000_TARC(n
));
166 pr_info("%-15s %08x\n",
167 reginfo
->name
, __er32(hw
, reginfo
->ofs
));
171 snprintf(rname
, 16, "%s%s", reginfo
->name
, "[0-1]");
172 pr_info("%-15s %08x %08x\n", rname
, regs
[0], regs
[1]);
176 * e1000e_dump - Print registers, Tx-ring and Rx-ring
178 static void e1000e_dump(struct e1000_adapter
*adapter
)
180 struct net_device
*netdev
= adapter
->netdev
;
181 struct e1000_hw
*hw
= &adapter
->hw
;
182 struct e1000_reg_info
*reginfo
;
183 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
184 struct e1000_tx_desc
*tx_desc
;
189 struct e1000_buffer
*buffer_info
;
190 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
191 union e1000_rx_desc_packet_split
*rx_desc_ps
;
192 union e1000_rx_desc_extended
*rx_desc
;
202 if (!netif_msg_hw(adapter
))
205 /* Print netdevice Info */
207 dev_info(&adapter
->pdev
->dev
, "Net device Info\n");
208 pr_info("Device Name state trans_start last_rx\n");
209 pr_info("%-15s %016lX %016lX %016lX\n",
210 netdev
->name
, netdev
->state
, netdev
->trans_start
,
214 /* Print Registers */
215 dev_info(&adapter
->pdev
->dev
, "Register Dump\n");
216 pr_info(" Register Name Value\n");
217 for (reginfo
= (struct e1000_reg_info
*)e1000_reg_info_tbl
;
218 reginfo
->name
; reginfo
++) {
219 e1000_regdump(hw
, reginfo
);
222 /* Print Tx Ring Summary */
223 if (!netdev
|| !netif_running(netdev
))
226 dev_info(&adapter
->pdev
->dev
, "Tx Ring Summary\n");
227 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
228 buffer_info
= &tx_ring
->buffer_info
[tx_ring
->next_to_clean
];
229 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
230 0, tx_ring
->next_to_use
, tx_ring
->next_to_clean
,
231 (unsigned long long)buffer_info
->dma
,
233 buffer_info
->next_to_watch
,
234 (unsigned long long)buffer_info
->time_stamp
);
237 if (!netif_msg_tx_done(adapter
))
238 goto rx_ring_summary
;
240 dev_info(&adapter
->pdev
->dev
, "Tx Ring Dump\n");
242 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
244 * Legacy Transmit Descriptor
245 * +--------------------------------------------------------------+
246 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
247 * +--------------------------------------------------------------+
248 * 8 | Special | CSS | Status | CMD | CSO | Length |
249 * +--------------------------------------------------------------+
250 * 63 48 47 36 35 32 31 24 23 16 15 0
252 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
253 * 63 48 47 40 39 32 31 16 15 8 7 0
254 * +----------------------------------------------------------------+
255 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
256 * +----------------------------------------------------------------+
257 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
258 * +----------------------------------------------------------------+
259 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
261 * Extended Data Descriptor (DTYP=0x1)
262 * +----------------------------------------------------------------+
263 * 0 | Buffer Address [63:0] |
264 * +----------------------------------------------------------------+
265 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
266 * +----------------------------------------------------------------+
267 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
269 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
270 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
271 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
272 for (i
= 0; tx_ring
->desc
&& (i
< tx_ring
->count
); i
++) {
273 const char *next_desc
;
274 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
275 buffer_info
= &tx_ring
->buffer_info
[i
];
276 u0
= (struct my_u0
*)tx_desc
;
277 if (i
== tx_ring
->next_to_use
&& i
== tx_ring
->next_to_clean
)
278 next_desc
= " NTC/U";
279 else if (i
== tx_ring
->next_to_use
)
281 else if (i
== tx_ring
->next_to_clean
)
285 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
286 (!(le64_to_cpu(u0
->b
) & (1 << 29)) ? 'l' :
287 ((le64_to_cpu(u0
->b
) & (1 << 20)) ? 'd' : 'c')),
289 (unsigned long long)le64_to_cpu(u0
->a
),
290 (unsigned long long)le64_to_cpu(u0
->b
),
291 (unsigned long long)buffer_info
->dma
,
292 buffer_info
->length
, buffer_info
->next_to_watch
,
293 (unsigned long long)buffer_info
->time_stamp
,
294 buffer_info
->skb
, next_desc
);
296 if (netif_msg_pktdata(adapter
) && buffer_info
->dma
!= 0)
297 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
298 16, 1, phys_to_virt(buffer_info
->dma
),
299 buffer_info
->length
, true);
302 /* Print Rx Ring Summary */
304 dev_info(&adapter
->pdev
->dev
, "Rx Ring Summary\n");
305 pr_info("Queue [NTU] [NTC]\n");
306 pr_info(" %5d %5X %5X\n",
307 0, rx_ring
->next_to_use
, rx_ring
->next_to_clean
);
310 if (!netif_msg_rx_status(adapter
))
313 dev_info(&adapter
->pdev
->dev
, "Rx Ring Dump\n");
314 switch (adapter
->rx_ps_pages
) {
318 /* [Extended] Packet Split Receive Descriptor Format
320 * +-----------------------------------------------------+
321 * 0 | Buffer Address 0 [63:0] |
322 * +-----------------------------------------------------+
323 * 8 | Buffer Address 1 [63:0] |
324 * +-----------------------------------------------------+
325 * 16 | Buffer Address 2 [63:0] |
326 * +-----------------------------------------------------+
327 * 24 | Buffer Address 3 [63:0] |
328 * +-----------------------------------------------------+
330 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
331 /* [Extended] Receive Descriptor (Write-Back) Format
333 * 63 48 47 32 31 13 12 8 7 4 3 0
334 * +------------------------------------------------------+
335 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
336 * | Checksum | Ident | | Queue | | Type |
337 * +------------------------------------------------------+
338 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
339 * +------------------------------------------------------+
340 * 63 48 47 32 31 20 19 0
342 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
343 for (i
= 0; i
< rx_ring
->count
; i
++) {
344 const char *next_desc
;
345 buffer_info
= &rx_ring
->buffer_info
[i
];
346 rx_desc_ps
= E1000_RX_DESC_PS(*rx_ring
, i
);
347 u1
= (struct my_u1
*)rx_desc_ps
;
349 le32_to_cpu(rx_desc_ps
->wb
.middle
.status_error
);
351 if (i
== rx_ring
->next_to_use
)
353 else if (i
== rx_ring
->next_to_clean
)
358 if (staterr
& E1000_RXD_STAT_DD
) {
359 /* Descriptor Done */
360 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
362 (unsigned long long)le64_to_cpu(u1
->a
),
363 (unsigned long long)le64_to_cpu(u1
->b
),
364 (unsigned long long)le64_to_cpu(u1
->c
),
365 (unsigned long long)le64_to_cpu(u1
->d
),
366 buffer_info
->skb
, next_desc
);
368 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
370 (unsigned long long)le64_to_cpu(u1
->a
),
371 (unsigned long long)le64_to_cpu(u1
->b
),
372 (unsigned long long)le64_to_cpu(u1
->c
),
373 (unsigned long long)le64_to_cpu(u1
->d
),
374 (unsigned long long)buffer_info
->dma
,
375 buffer_info
->skb
, next_desc
);
377 if (netif_msg_pktdata(adapter
))
378 print_hex_dump(KERN_INFO
, "",
379 DUMP_PREFIX_ADDRESS
, 16, 1,
380 phys_to_virt(buffer_info
->dma
),
381 adapter
->rx_ps_bsize0
, true);
387 /* Extended Receive Descriptor (Read) Format
389 * +-----------------------------------------------------+
390 * 0 | Buffer Address [63:0] |
391 * +-----------------------------------------------------+
393 * +-----------------------------------------------------+
395 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
396 /* Extended Receive Descriptor (Write-Back) Format
398 * 63 48 47 32 31 24 23 4 3 0
399 * +------------------------------------------------------+
401 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
402 * | Packet | IP | | | Type |
403 * | Checksum | Ident | | | |
404 * +------------------------------------------------------+
405 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
406 * +------------------------------------------------------+
407 * 63 48 47 32 31 20 19 0
409 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
411 for (i
= 0; i
< rx_ring
->count
; i
++) {
412 const char *next_desc
;
414 buffer_info
= &rx_ring
->buffer_info
[i
];
415 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
416 u1
= (struct my_u1
*)rx_desc
;
417 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
419 if (i
== rx_ring
->next_to_use
)
421 else if (i
== rx_ring
->next_to_clean
)
426 if (staterr
& E1000_RXD_STAT_DD
) {
427 /* Descriptor Done */
428 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
430 (unsigned long long)le64_to_cpu(u1
->a
),
431 (unsigned long long)le64_to_cpu(u1
->b
),
432 buffer_info
->skb
, next_desc
);
434 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
436 (unsigned long long)le64_to_cpu(u1
->a
),
437 (unsigned long long)le64_to_cpu(u1
->b
),
438 (unsigned long long)buffer_info
->dma
,
439 buffer_info
->skb
, next_desc
);
441 if (netif_msg_pktdata(adapter
))
442 print_hex_dump(KERN_INFO
, "",
443 DUMP_PREFIX_ADDRESS
, 16,
447 adapter
->rx_buffer_len
,
455 * e1000_desc_unused - calculate if we have unused descriptors
457 static int e1000_desc_unused(struct e1000_ring
*ring
)
459 if (ring
->next_to_clean
> ring
->next_to_use
)
460 return ring
->next_to_clean
- ring
->next_to_use
- 1;
462 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
466 * e1000_receive_skb - helper function to handle Rx indications
467 * @adapter: board private structure
468 * @status: descriptor status field as written by hardware
469 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
470 * @skb: pointer to sk_buff to be indicated to stack
472 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
473 struct net_device
*netdev
, struct sk_buff
*skb
,
474 u8 status
, __le16 vlan
)
476 u16 tag
= le16_to_cpu(vlan
);
477 skb
->protocol
= eth_type_trans(skb
, netdev
);
479 if (status
& E1000_RXD_STAT_VP
)
480 __vlan_hwaccel_put_tag(skb
, tag
);
482 napi_gro_receive(&adapter
->napi
, skb
);
486 * e1000_rx_checksum - Receive Checksum Offload
487 * @adapter: board private structure
488 * @status_err: receive descriptor status and error fields
489 * @csum: receive descriptor csum field
490 * @sk_buff: socket buffer with received data
492 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
493 __le16 csum
, struct sk_buff
*skb
)
495 u16 status
= (u16
)status_err
;
496 u8 errors
= (u8
)(status_err
>> 24);
498 skb_checksum_none_assert(skb
);
500 /* Rx checksum disabled */
501 if (!(adapter
->netdev
->features
& NETIF_F_RXCSUM
))
504 /* Ignore Checksum bit is set */
505 if (status
& E1000_RXD_STAT_IXSM
)
508 /* TCP/UDP checksum error bit is set */
509 if (errors
& E1000_RXD_ERR_TCPE
) {
510 /* let the stack verify checksum errors */
511 adapter
->hw_csum_err
++;
515 /* TCP/UDP Checksum has not been calculated */
516 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
519 /* It must be a TCP or UDP packet with a valid checksum */
520 if (status
& E1000_RXD_STAT_TCPCS
) {
521 /* TCP checksum is good */
522 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
525 * IP fragment with UDP payload
526 * Hardware complements the payload checksum, so we undo it
527 * and then put the value in host order for further stack use.
529 __sum16 sum
= (__force __sum16
)swab16((__force u16
)csum
);
530 skb
->csum
= csum_unfold(~sum
);
531 skb
->ip_summed
= CHECKSUM_COMPLETE
;
533 adapter
->hw_csum_good
++;
537 * e1000e_update_tail_wa - helper function for e1000e_update_[rt]dt_wa()
538 * @hw: pointer to the HW structure
539 * @tail: address of tail descriptor register
540 * @i: value to write to tail descriptor register
542 * When updating the tail register, the ME could be accessing Host CSR
543 * registers at the same time. Normally, this is handled in h/w by an
544 * arbiter but on some parts there is a bug that acknowledges Host accesses
545 * later than it should which could result in the descriptor register to
546 * have an incorrect value. Workaround this by checking the FWSM register
547 * which has bit 24 set while ME is accessing Host CSR registers, wait
548 * if it is set and try again a number of times.
550 static inline s32
e1000e_update_tail_wa(struct e1000_hw
*hw
, void __iomem
*tail
,
555 while ((j
++ < E1000_ICH_FWSM_PCIM2PCI_COUNT
) &&
556 (er32(FWSM
) & E1000_ICH_FWSM_PCIM2PCI
))
561 if ((j
== E1000_ICH_FWSM_PCIM2PCI_COUNT
) && (i
!= readl(tail
)))
562 return E1000_ERR_SWFW_SYNC
;
567 static void e1000e_update_rdt_wa(struct e1000_ring
*rx_ring
, unsigned int i
)
569 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
570 struct e1000_hw
*hw
= &adapter
->hw
;
572 if (e1000e_update_tail_wa(hw
, rx_ring
->tail
, i
)) {
573 u32 rctl
= er32(RCTL
);
574 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
575 e_err("ME firmware caused invalid RDT - resetting\n");
576 schedule_work(&adapter
->reset_task
);
580 static void e1000e_update_tdt_wa(struct e1000_ring
*tx_ring
, unsigned int i
)
582 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
583 struct e1000_hw
*hw
= &adapter
->hw
;
585 if (e1000e_update_tail_wa(hw
, tx_ring
->tail
, i
)) {
586 u32 tctl
= er32(TCTL
);
587 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
588 e_err("ME firmware caused invalid TDT - resetting\n");
589 schedule_work(&adapter
->reset_task
);
594 * e1000_alloc_rx_buffers - Replace used receive buffers
595 * @rx_ring: Rx descriptor ring
597 static void e1000_alloc_rx_buffers(struct e1000_ring
*rx_ring
,
598 int cleaned_count
, gfp_t gfp
)
600 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
601 struct net_device
*netdev
= adapter
->netdev
;
602 struct pci_dev
*pdev
= adapter
->pdev
;
603 union e1000_rx_desc_extended
*rx_desc
;
604 struct e1000_buffer
*buffer_info
;
607 unsigned int bufsz
= adapter
->rx_buffer_len
;
609 i
= rx_ring
->next_to_use
;
610 buffer_info
= &rx_ring
->buffer_info
[i
];
612 while (cleaned_count
--) {
613 skb
= buffer_info
->skb
;
619 skb
= __netdev_alloc_skb_ip_align(netdev
, bufsz
, gfp
);
621 /* Better luck next round */
622 adapter
->alloc_rx_buff_failed
++;
626 buffer_info
->skb
= skb
;
628 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
629 adapter
->rx_buffer_len
,
631 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
632 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
633 adapter
->rx_dma_failed
++;
637 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
638 rx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
640 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
642 * Force memory writes to complete before letting h/w
643 * know there are new descriptors to fetch. (Only
644 * applicable for weak-ordered memory model archs,
648 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
649 e1000e_update_rdt_wa(rx_ring
, i
);
651 writel(i
, rx_ring
->tail
);
654 if (i
== rx_ring
->count
)
656 buffer_info
= &rx_ring
->buffer_info
[i
];
659 rx_ring
->next_to_use
= i
;
663 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
664 * @rx_ring: Rx descriptor ring
666 static void e1000_alloc_rx_buffers_ps(struct e1000_ring
*rx_ring
,
667 int cleaned_count
, gfp_t gfp
)
669 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
670 struct net_device
*netdev
= adapter
->netdev
;
671 struct pci_dev
*pdev
= adapter
->pdev
;
672 union e1000_rx_desc_packet_split
*rx_desc
;
673 struct e1000_buffer
*buffer_info
;
674 struct e1000_ps_page
*ps_page
;
678 i
= rx_ring
->next_to_use
;
679 buffer_info
= &rx_ring
->buffer_info
[i
];
681 while (cleaned_count
--) {
682 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
684 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
685 ps_page
= &buffer_info
->ps_pages
[j
];
686 if (j
>= adapter
->rx_ps_pages
) {
687 /* all unused desc entries get hw null ptr */
688 rx_desc
->read
.buffer_addr
[j
+ 1] =
692 if (!ps_page
->page
) {
693 ps_page
->page
= alloc_page(gfp
);
694 if (!ps_page
->page
) {
695 adapter
->alloc_rx_buff_failed
++;
698 ps_page
->dma
= dma_map_page(&pdev
->dev
,
702 if (dma_mapping_error(&pdev
->dev
,
704 dev_err(&adapter
->pdev
->dev
,
705 "Rx DMA page map failed\n");
706 adapter
->rx_dma_failed
++;
711 * Refresh the desc even if buffer_addrs
712 * didn't change because each write-back
715 rx_desc
->read
.buffer_addr
[j
+ 1] =
716 cpu_to_le64(ps_page
->dma
);
719 skb
= __netdev_alloc_skb_ip_align(netdev
,
720 adapter
->rx_ps_bsize0
,
724 adapter
->alloc_rx_buff_failed
++;
728 buffer_info
->skb
= skb
;
729 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
730 adapter
->rx_ps_bsize0
,
732 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
733 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
734 adapter
->rx_dma_failed
++;
736 dev_kfree_skb_any(skb
);
737 buffer_info
->skb
= NULL
;
741 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
743 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
745 * Force memory writes to complete before letting h/w
746 * know there are new descriptors to fetch. (Only
747 * applicable for weak-ordered memory model archs,
751 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
752 e1000e_update_rdt_wa(rx_ring
, i
<< 1);
754 writel(i
<< 1, rx_ring
->tail
);
758 if (i
== rx_ring
->count
)
760 buffer_info
= &rx_ring
->buffer_info
[i
];
764 rx_ring
->next_to_use
= i
;
768 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
769 * @rx_ring: Rx descriptor ring
770 * @cleaned_count: number of buffers to allocate this pass
773 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring
*rx_ring
,
774 int cleaned_count
, gfp_t gfp
)
776 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
777 struct net_device
*netdev
= adapter
->netdev
;
778 struct pci_dev
*pdev
= adapter
->pdev
;
779 union e1000_rx_desc_extended
*rx_desc
;
780 struct e1000_buffer
*buffer_info
;
783 unsigned int bufsz
= 256 - 16 /* for skb_reserve */;
785 i
= rx_ring
->next_to_use
;
786 buffer_info
= &rx_ring
->buffer_info
[i
];
788 while (cleaned_count
--) {
789 skb
= buffer_info
->skb
;
795 skb
= __netdev_alloc_skb_ip_align(netdev
, bufsz
, gfp
);
796 if (unlikely(!skb
)) {
797 /* Better luck next round */
798 adapter
->alloc_rx_buff_failed
++;
802 buffer_info
->skb
= skb
;
804 /* allocate a new page if necessary */
805 if (!buffer_info
->page
) {
806 buffer_info
->page
= alloc_page(gfp
);
807 if (unlikely(!buffer_info
->page
)) {
808 adapter
->alloc_rx_buff_failed
++;
813 if (!buffer_info
->dma
)
814 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
815 buffer_info
->page
, 0,
819 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
820 rx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
822 if (unlikely(++i
== rx_ring
->count
))
824 buffer_info
= &rx_ring
->buffer_info
[i
];
827 if (likely(rx_ring
->next_to_use
!= i
)) {
828 rx_ring
->next_to_use
= i
;
829 if (unlikely(i
-- == 0))
830 i
= (rx_ring
->count
- 1);
832 /* Force memory writes to complete before letting h/w
833 * know there are new descriptors to fetch. (Only
834 * applicable for weak-ordered memory model archs,
837 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
838 e1000e_update_rdt_wa(rx_ring
, i
);
840 writel(i
, rx_ring
->tail
);
844 static inline void e1000_rx_hash(struct net_device
*netdev
, __le32 rss
,
847 if (netdev
->features
& NETIF_F_RXHASH
)
848 skb
->rxhash
= le32_to_cpu(rss
);
852 * e1000_clean_rx_irq - Send received data up the network stack
853 * @rx_ring: Rx descriptor ring
855 * the return value indicates whether actual cleaning was done, there
856 * is no guarantee that everything was cleaned
858 static bool e1000_clean_rx_irq(struct e1000_ring
*rx_ring
, int *work_done
,
861 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
862 struct net_device
*netdev
= adapter
->netdev
;
863 struct pci_dev
*pdev
= adapter
->pdev
;
864 struct e1000_hw
*hw
= &adapter
->hw
;
865 union e1000_rx_desc_extended
*rx_desc
, *next_rxd
;
866 struct e1000_buffer
*buffer_info
, *next_buffer
;
869 int cleaned_count
= 0;
870 bool cleaned
= false;
871 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
873 i
= rx_ring
->next_to_clean
;
874 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
875 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
876 buffer_info
= &rx_ring
->buffer_info
[i
];
878 while (staterr
& E1000_RXD_STAT_DD
) {
881 if (*work_done
>= work_to_do
)
884 rmb(); /* read descriptor and rx_buffer_info after status DD */
886 skb
= buffer_info
->skb
;
887 buffer_info
->skb
= NULL
;
889 prefetch(skb
->data
- NET_IP_ALIGN
);
892 if (i
== rx_ring
->count
)
894 next_rxd
= E1000_RX_DESC_EXT(*rx_ring
, i
);
897 next_buffer
= &rx_ring
->buffer_info
[i
];
901 dma_unmap_single(&pdev
->dev
,
903 adapter
->rx_buffer_len
,
905 buffer_info
->dma
= 0;
907 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
910 * !EOP means multiple descriptors were used to store a single
911 * packet, if that's the case we need to toss it. In fact, we
912 * need to toss every packet with the EOP bit clear and the
913 * next frame that _does_ have the EOP bit set, as it is by
914 * definition only a frame fragment
916 if (unlikely(!(staterr
& E1000_RXD_STAT_EOP
)))
917 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
919 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
920 /* All receives must fit into a single buffer */
921 e_dbg("Receive packet consumed multiple buffers\n");
923 buffer_info
->skb
= skb
;
924 if (staterr
& E1000_RXD_STAT_EOP
)
925 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
929 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
931 buffer_info
->skb
= skb
;
935 /* adjust length to remove Ethernet CRC */
936 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
939 total_rx_bytes
+= length
;
943 * code added for copybreak, this should improve
944 * performance for small packets with large amounts
945 * of reassembly being done in the stack
947 if (length
< copybreak
) {
948 struct sk_buff
*new_skb
=
949 netdev_alloc_skb_ip_align(netdev
, length
);
951 skb_copy_to_linear_data_offset(new_skb
,
957 /* save the skb in buffer_info as good */
958 buffer_info
->skb
= skb
;
961 /* else just continue with the old one */
963 /* end copybreak code */
964 skb_put(skb
, length
);
966 /* Receive Checksum Offload */
967 e1000_rx_checksum(adapter
, staterr
,
968 rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
, skb
);
970 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
972 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
973 rx_desc
->wb
.upper
.vlan
);
976 rx_desc
->wb
.upper
.status_error
&= cpu_to_le32(~0xFF);
978 /* return some buffers to hardware, one at a time is too slow */
979 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
980 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
985 /* use prefetched values */
987 buffer_info
= next_buffer
;
989 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
991 rx_ring
->next_to_clean
= i
;
993 cleaned_count
= e1000_desc_unused(rx_ring
);
995 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
997 adapter
->total_rx_bytes
+= total_rx_bytes
;
998 adapter
->total_rx_packets
+= total_rx_packets
;
1002 static void e1000_put_txbuf(struct e1000_ring
*tx_ring
,
1003 struct e1000_buffer
*buffer_info
)
1005 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
1007 if (buffer_info
->dma
) {
1008 if (buffer_info
->mapped_as_page
)
1009 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
1010 buffer_info
->length
, DMA_TO_DEVICE
);
1012 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
1013 buffer_info
->length
, DMA_TO_DEVICE
);
1014 buffer_info
->dma
= 0;
1016 if (buffer_info
->skb
) {
1017 dev_kfree_skb_any(buffer_info
->skb
);
1018 buffer_info
->skb
= NULL
;
1020 buffer_info
->time_stamp
= 0;
1023 static void e1000_print_hw_hang(struct work_struct
*work
)
1025 struct e1000_adapter
*adapter
= container_of(work
,
1026 struct e1000_adapter
,
1028 struct net_device
*netdev
= adapter
->netdev
;
1029 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1030 unsigned int i
= tx_ring
->next_to_clean
;
1031 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1032 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1033 struct e1000_hw
*hw
= &adapter
->hw
;
1034 u16 phy_status
, phy_1000t_status
, phy_ext_status
;
1037 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1040 if (!adapter
->tx_hang_recheck
&&
1041 (adapter
->flags2
& FLAG2_DMA_BURST
)) {
1042 /* May be block on write-back, flush and detect again
1043 * flush pending descriptor writebacks to memory
1045 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
1046 /* execute the writes immediately */
1048 adapter
->tx_hang_recheck
= true;
1051 /* Real hang detected */
1052 adapter
->tx_hang_recheck
= false;
1053 netif_stop_queue(netdev
);
1055 e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1056 e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_1000t_status
);
1057 e1e_rphy(hw
, PHY_EXT_STATUS
, &phy_ext_status
);
1059 pci_read_config_word(adapter
->pdev
, PCI_STATUS
, &pci_status
);
1061 /* detected Hardware unit hang */
1062 e_err("Detected Hardware Unit Hang:\n"
1065 " next_to_use <%x>\n"
1066 " next_to_clean <%x>\n"
1067 "buffer_info[next_to_clean]:\n"
1068 " time_stamp <%lx>\n"
1069 " next_to_watch <%x>\n"
1071 " next_to_watch.status <%x>\n"
1074 "PHY 1000BASE-T Status <%x>\n"
1075 "PHY Extended Status <%x>\n"
1076 "PCI Status <%x>\n",
1077 readl(tx_ring
->head
),
1078 readl(tx_ring
->tail
),
1079 tx_ring
->next_to_use
,
1080 tx_ring
->next_to_clean
,
1081 tx_ring
->buffer_info
[eop
].time_stamp
,
1084 eop_desc
->upper
.fields
.status
,
1093 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1094 * @tx_ring: Tx descriptor ring
1096 * the return value indicates whether actual cleaning was done, there
1097 * is no guarantee that everything was cleaned
1099 static bool e1000_clean_tx_irq(struct e1000_ring
*tx_ring
)
1101 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
1102 struct net_device
*netdev
= adapter
->netdev
;
1103 struct e1000_hw
*hw
= &adapter
->hw
;
1104 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
1105 struct e1000_buffer
*buffer_info
;
1106 unsigned int i
, eop
;
1107 unsigned int count
= 0;
1108 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
1109 unsigned int bytes_compl
= 0, pkts_compl
= 0;
1111 i
= tx_ring
->next_to_clean
;
1112 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1113 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1115 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
1116 (count
< tx_ring
->count
)) {
1117 bool cleaned
= false;
1118 rmb(); /* read buffer_info after eop_desc */
1119 for (; !cleaned
; count
++) {
1120 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1121 buffer_info
= &tx_ring
->buffer_info
[i
];
1122 cleaned
= (i
== eop
);
1125 total_tx_packets
+= buffer_info
->segs
;
1126 total_tx_bytes
+= buffer_info
->bytecount
;
1127 if (buffer_info
->skb
) {
1128 bytes_compl
+= buffer_info
->skb
->len
;
1133 e1000_put_txbuf(tx_ring
, buffer_info
);
1134 tx_desc
->upper
.data
= 0;
1137 if (i
== tx_ring
->count
)
1141 if (i
== tx_ring
->next_to_use
)
1143 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1144 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1147 tx_ring
->next_to_clean
= i
;
1149 netdev_completed_queue(netdev
, pkts_compl
, bytes_compl
);
1151 #define TX_WAKE_THRESHOLD 32
1152 if (count
&& netif_carrier_ok(netdev
) &&
1153 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
1154 /* Make sure that anybody stopping the queue after this
1155 * sees the new next_to_clean.
1159 if (netif_queue_stopped(netdev
) &&
1160 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
1161 netif_wake_queue(netdev
);
1162 ++adapter
->restart_queue
;
1166 if (adapter
->detect_tx_hung
) {
1168 * Detect a transmit hang in hardware, this serializes the
1169 * check with the clearing of time_stamp and movement of i
1171 adapter
->detect_tx_hung
= false;
1172 if (tx_ring
->buffer_info
[i
].time_stamp
&&
1173 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
1174 + (adapter
->tx_timeout_factor
* HZ
)) &&
1175 !(er32(STATUS
) & E1000_STATUS_TXOFF
))
1176 schedule_work(&adapter
->print_hang_task
);
1178 adapter
->tx_hang_recheck
= false;
1180 adapter
->total_tx_bytes
+= total_tx_bytes
;
1181 adapter
->total_tx_packets
+= total_tx_packets
;
1182 return count
< tx_ring
->count
;
1186 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1187 * @rx_ring: Rx descriptor ring
1189 * the return value indicates whether actual cleaning was done, there
1190 * is no guarantee that everything was cleaned
1192 static bool e1000_clean_rx_irq_ps(struct e1000_ring
*rx_ring
, int *work_done
,
1195 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1196 struct e1000_hw
*hw
= &adapter
->hw
;
1197 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
1198 struct net_device
*netdev
= adapter
->netdev
;
1199 struct pci_dev
*pdev
= adapter
->pdev
;
1200 struct e1000_buffer
*buffer_info
, *next_buffer
;
1201 struct e1000_ps_page
*ps_page
;
1202 struct sk_buff
*skb
;
1204 u32 length
, staterr
;
1205 int cleaned_count
= 0;
1206 bool cleaned
= false;
1207 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1209 i
= rx_ring
->next_to_clean
;
1210 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
1211 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1212 buffer_info
= &rx_ring
->buffer_info
[i
];
1214 while (staterr
& E1000_RXD_STAT_DD
) {
1215 if (*work_done
>= work_to_do
)
1218 skb
= buffer_info
->skb
;
1219 rmb(); /* read descriptor and rx_buffer_info after status DD */
1221 /* in the packet split case this is header only */
1222 prefetch(skb
->data
- NET_IP_ALIGN
);
1225 if (i
== rx_ring
->count
)
1227 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
1230 next_buffer
= &rx_ring
->buffer_info
[i
];
1234 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1235 adapter
->rx_ps_bsize0
, DMA_FROM_DEVICE
);
1236 buffer_info
->dma
= 0;
1238 /* see !EOP comment in other Rx routine */
1239 if (!(staterr
& E1000_RXD_STAT_EOP
))
1240 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
1242 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
1243 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1244 dev_kfree_skb_irq(skb
);
1245 if (staterr
& E1000_RXD_STAT_EOP
)
1246 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1250 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
1251 dev_kfree_skb_irq(skb
);
1255 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
1258 e_dbg("Last part of the packet spanning multiple descriptors\n");
1259 dev_kfree_skb_irq(skb
);
1264 skb_put(skb
, length
);
1268 * this looks ugly, but it seems compiler issues make
1269 * it more efficient than reusing j
1271 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
1274 * page alloc/put takes too long and effects small
1275 * packet throughput, so unsplit small packets and
1276 * save the alloc/put only valid in softirq (napi)
1277 * context to call kmap_*
1279 if (l1
&& (l1
<= copybreak
) &&
1280 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
1283 ps_page
= &buffer_info
->ps_pages
[0];
1286 * there is no documentation about how to call
1287 * kmap_atomic, so we can't hold the mapping
1290 dma_sync_single_for_cpu(&pdev
->dev
,
1294 vaddr
= kmap_atomic(ps_page
->page
,
1295 KM_SKB_DATA_SOFTIRQ
);
1296 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
1297 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
1298 dma_sync_single_for_device(&pdev
->dev
,
1303 /* remove the CRC */
1304 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
1312 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1313 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
1317 ps_page
= &buffer_info
->ps_pages
[j
];
1318 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1321 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
1322 ps_page
->page
= NULL
;
1324 skb
->data_len
+= length
;
1325 skb
->truesize
+= PAGE_SIZE
;
1328 /* strip the ethernet crc, problem is we're using pages now so
1329 * this whole operation can get a little cpu intensive
1331 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
1332 pskb_trim(skb
, skb
->len
- 4);
1335 total_rx_bytes
+= skb
->len
;
1338 e1000_rx_checksum(adapter
, staterr
,
1339 rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
, skb
);
1341 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1343 if (rx_desc
->wb
.upper
.header_status
&
1344 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
1345 adapter
->rx_hdr_split
++;
1347 e1000_receive_skb(adapter
, netdev
, skb
,
1348 staterr
, rx_desc
->wb
.middle
.vlan
);
1351 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
1352 buffer_info
->skb
= NULL
;
1354 /* return some buffers to hardware, one at a time is too slow */
1355 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1356 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1361 /* use prefetched values */
1363 buffer_info
= next_buffer
;
1365 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1367 rx_ring
->next_to_clean
= i
;
1369 cleaned_count
= e1000_desc_unused(rx_ring
);
1371 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1373 adapter
->total_rx_bytes
+= total_rx_bytes
;
1374 adapter
->total_rx_packets
+= total_rx_packets
;
1379 * e1000_consume_page - helper function
1381 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
1386 skb
->data_len
+= length
;
1387 skb
->truesize
+= PAGE_SIZE
;
1391 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1392 * @adapter: board private structure
1394 * the return value indicates whether actual cleaning was done, there
1395 * is no guarantee that everything was cleaned
1397 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring
*rx_ring
, int *work_done
,
1400 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1401 struct net_device
*netdev
= adapter
->netdev
;
1402 struct pci_dev
*pdev
= adapter
->pdev
;
1403 union e1000_rx_desc_extended
*rx_desc
, *next_rxd
;
1404 struct e1000_buffer
*buffer_info
, *next_buffer
;
1405 u32 length
, staterr
;
1407 int cleaned_count
= 0;
1408 bool cleaned
= false;
1409 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
1411 i
= rx_ring
->next_to_clean
;
1412 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1413 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1414 buffer_info
= &rx_ring
->buffer_info
[i
];
1416 while (staterr
& E1000_RXD_STAT_DD
) {
1417 struct sk_buff
*skb
;
1419 if (*work_done
>= work_to_do
)
1422 rmb(); /* read descriptor and rx_buffer_info after status DD */
1424 skb
= buffer_info
->skb
;
1425 buffer_info
->skb
= NULL
;
1428 if (i
== rx_ring
->count
)
1430 next_rxd
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1433 next_buffer
= &rx_ring
->buffer_info
[i
];
1437 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
, PAGE_SIZE
,
1439 buffer_info
->dma
= 0;
1441 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
1443 /* errors is only valid for DD + EOP descriptors */
1444 if (unlikely((staterr
& E1000_RXD_STAT_EOP
) &&
1445 (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
))) {
1446 /* recycle both page and skb */
1447 buffer_info
->skb
= skb
;
1448 /* an error means any chain goes out the window too */
1449 if (rx_ring
->rx_skb_top
)
1450 dev_kfree_skb_irq(rx_ring
->rx_skb_top
);
1451 rx_ring
->rx_skb_top
= NULL
;
1455 #define rxtop (rx_ring->rx_skb_top)
1456 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
1457 /* this descriptor is only the beginning (or middle) */
1459 /* this is the beginning of a chain */
1461 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
1464 /* this is the middle of a chain */
1465 skb_fill_page_desc(rxtop
,
1466 skb_shinfo(rxtop
)->nr_frags
,
1467 buffer_info
->page
, 0, length
);
1468 /* re-use the skb, only consumed the page */
1469 buffer_info
->skb
= skb
;
1471 e1000_consume_page(buffer_info
, rxtop
, length
);
1475 /* end of the chain */
1476 skb_fill_page_desc(rxtop
,
1477 skb_shinfo(rxtop
)->nr_frags
,
1478 buffer_info
->page
, 0, length
);
1479 /* re-use the current skb, we only consumed the
1481 buffer_info
->skb
= skb
;
1484 e1000_consume_page(buffer_info
, skb
, length
);
1486 /* no chain, got EOP, this buf is the packet
1487 * copybreak to save the put_page/alloc_page */
1488 if (length
<= copybreak
&&
1489 skb_tailroom(skb
) >= length
) {
1491 vaddr
= kmap_atomic(buffer_info
->page
,
1492 KM_SKB_DATA_SOFTIRQ
);
1493 memcpy(skb_tail_pointer(skb
), vaddr
,
1495 kunmap_atomic(vaddr
,
1496 KM_SKB_DATA_SOFTIRQ
);
1497 /* re-use the page, so don't erase
1498 * buffer_info->page */
1499 skb_put(skb
, length
);
1501 skb_fill_page_desc(skb
, 0,
1502 buffer_info
->page
, 0,
1504 e1000_consume_page(buffer_info
, skb
,
1510 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1511 e1000_rx_checksum(adapter
, staterr
,
1512 rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
, skb
);
1514 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1516 /* probably a little skewed due to removing CRC */
1517 total_rx_bytes
+= skb
->len
;
1520 /* eth type trans needs skb->data to point to something */
1521 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
1522 e_err("pskb_may_pull failed.\n");
1523 dev_kfree_skb_irq(skb
);
1527 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1528 rx_desc
->wb
.upper
.vlan
);
1531 rx_desc
->wb
.upper
.status_error
&= cpu_to_le32(~0xFF);
1533 /* return some buffers to hardware, one at a time is too slow */
1534 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
1535 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1540 /* use prefetched values */
1542 buffer_info
= next_buffer
;
1544 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1546 rx_ring
->next_to_clean
= i
;
1548 cleaned_count
= e1000_desc_unused(rx_ring
);
1550 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1552 adapter
->total_rx_bytes
+= total_rx_bytes
;
1553 adapter
->total_rx_packets
+= total_rx_packets
;
1558 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1559 * @rx_ring: Rx descriptor ring
1561 static void e1000_clean_rx_ring(struct e1000_ring
*rx_ring
)
1563 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1564 struct e1000_buffer
*buffer_info
;
1565 struct e1000_ps_page
*ps_page
;
1566 struct pci_dev
*pdev
= adapter
->pdev
;
1569 /* Free all the Rx ring sk_buffs */
1570 for (i
= 0; i
< rx_ring
->count
; i
++) {
1571 buffer_info
= &rx_ring
->buffer_info
[i
];
1572 if (buffer_info
->dma
) {
1573 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
1574 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1575 adapter
->rx_buffer_len
,
1577 else if (adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
)
1578 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
1581 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
1582 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1583 adapter
->rx_ps_bsize0
,
1585 buffer_info
->dma
= 0;
1588 if (buffer_info
->page
) {
1589 put_page(buffer_info
->page
);
1590 buffer_info
->page
= NULL
;
1593 if (buffer_info
->skb
) {
1594 dev_kfree_skb(buffer_info
->skb
);
1595 buffer_info
->skb
= NULL
;
1598 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1599 ps_page
= &buffer_info
->ps_pages
[j
];
1602 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1605 put_page(ps_page
->page
);
1606 ps_page
->page
= NULL
;
1610 /* there also may be some cached data from a chained receive */
1611 if (rx_ring
->rx_skb_top
) {
1612 dev_kfree_skb(rx_ring
->rx_skb_top
);
1613 rx_ring
->rx_skb_top
= NULL
;
1616 /* Zero out the descriptor ring */
1617 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1619 rx_ring
->next_to_clean
= 0;
1620 rx_ring
->next_to_use
= 0;
1621 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1623 writel(0, rx_ring
->head
);
1624 writel(0, rx_ring
->tail
);
1627 static void e1000e_downshift_workaround(struct work_struct
*work
)
1629 struct e1000_adapter
*adapter
= container_of(work
,
1630 struct e1000_adapter
, downshift_task
);
1632 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1635 e1000e_gig_downshift_workaround_ich8lan(&adapter
->hw
);
1639 * e1000_intr_msi - Interrupt Handler
1640 * @irq: interrupt number
1641 * @data: pointer to a network interface device structure
1643 static irqreturn_t
e1000_intr_msi(int irq
, void *data
)
1645 struct net_device
*netdev
= data
;
1646 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1647 struct e1000_hw
*hw
= &adapter
->hw
;
1648 u32 icr
= er32(ICR
);
1651 * read ICR disables interrupts using IAM
1654 if (icr
& E1000_ICR_LSC
) {
1655 hw
->mac
.get_link_status
= true;
1657 * ICH8 workaround-- Call gig speed drop workaround on cable
1658 * disconnect (LSC) before accessing any PHY registers
1660 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1661 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1662 schedule_work(&adapter
->downshift_task
);
1665 * 80003ES2LAN workaround-- For packet buffer work-around on
1666 * link down event; disable receives here in the ISR and reset
1667 * adapter in watchdog
1669 if (netif_carrier_ok(netdev
) &&
1670 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
1671 /* disable receives */
1672 u32 rctl
= er32(RCTL
);
1673 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1674 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1676 /* guard against interrupt when we're going down */
1677 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1678 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1681 if (napi_schedule_prep(&adapter
->napi
)) {
1682 adapter
->total_tx_bytes
= 0;
1683 adapter
->total_tx_packets
= 0;
1684 adapter
->total_rx_bytes
= 0;
1685 adapter
->total_rx_packets
= 0;
1686 __napi_schedule(&adapter
->napi
);
1693 * e1000_intr - Interrupt Handler
1694 * @irq: interrupt number
1695 * @data: pointer to a network interface device structure
1697 static irqreturn_t
e1000_intr(int irq
, void *data
)
1699 struct net_device
*netdev
= data
;
1700 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1701 struct e1000_hw
*hw
= &adapter
->hw
;
1702 u32 rctl
, icr
= er32(ICR
);
1704 if (!icr
|| test_bit(__E1000_DOWN
, &adapter
->state
))
1705 return IRQ_NONE
; /* Not our interrupt */
1708 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1709 * not set, then the adapter didn't send an interrupt
1711 if (!(icr
& E1000_ICR_INT_ASSERTED
))
1715 * Interrupt Auto-Mask...upon reading ICR,
1716 * interrupts are masked. No need for the
1720 if (icr
& E1000_ICR_LSC
) {
1721 hw
->mac
.get_link_status
= true;
1723 * ICH8 workaround-- Call gig speed drop workaround on cable
1724 * disconnect (LSC) before accessing any PHY registers
1726 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1727 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1728 schedule_work(&adapter
->downshift_task
);
1731 * 80003ES2LAN workaround--
1732 * For packet buffer work-around on link down event;
1733 * disable receives here in the ISR and
1734 * reset adapter in watchdog
1736 if (netif_carrier_ok(netdev
) &&
1737 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
1738 /* disable receives */
1740 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1741 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1743 /* guard against interrupt when we're going down */
1744 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1745 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1748 if (napi_schedule_prep(&adapter
->napi
)) {
1749 adapter
->total_tx_bytes
= 0;
1750 adapter
->total_tx_packets
= 0;
1751 adapter
->total_rx_bytes
= 0;
1752 adapter
->total_rx_packets
= 0;
1753 __napi_schedule(&adapter
->napi
);
1759 static irqreturn_t
e1000_msix_other(int irq
, void *data
)
1761 struct net_device
*netdev
= data
;
1762 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1763 struct e1000_hw
*hw
= &adapter
->hw
;
1764 u32 icr
= er32(ICR
);
1766 if (!(icr
& E1000_ICR_INT_ASSERTED
)) {
1767 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1768 ew32(IMS
, E1000_IMS_OTHER
);
1772 if (icr
& adapter
->eiac_mask
)
1773 ew32(ICS
, (icr
& adapter
->eiac_mask
));
1775 if (icr
& E1000_ICR_OTHER
) {
1776 if (!(icr
& E1000_ICR_LSC
))
1777 goto no_link_interrupt
;
1778 hw
->mac
.get_link_status
= true;
1779 /* guard against interrupt when we're going down */
1780 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1781 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1785 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1786 ew32(IMS
, E1000_IMS_LSC
| E1000_IMS_OTHER
);
1792 static irqreturn_t
e1000_intr_msix_tx(int irq
, void *data
)
1794 struct net_device
*netdev
= data
;
1795 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1796 struct e1000_hw
*hw
= &adapter
->hw
;
1797 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1800 adapter
->total_tx_bytes
= 0;
1801 adapter
->total_tx_packets
= 0;
1803 if (!e1000_clean_tx_irq(tx_ring
))
1804 /* Ring was not completely cleaned, so fire another interrupt */
1805 ew32(ICS
, tx_ring
->ims_val
);
1810 static irqreturn_t
e1000_intr_msix_rx(int irq
, void *data
)
1812 struct net_device
*netdev
= data
;
1813 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1814 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1816 /* Write the ITR value calculated at the end of the
1817 * previous interrupt.
1819 if (rx_ring
->set_itr
) {
1820 writel(1000000000 / (rx_ring
->itr_val
* 256),
1821 rx_ring
->itr_register
);
1822 rx_ring
->set_itr
= 0;
1825 if (napi_schedule_prep(&adapter
->napi
)) {
1826 adapter
->total_rx_bytes
= 0;
1827 adapter
->total_rx_packets
= 0;
1828 __napi_schedule(&adapter
->napi
);
1834 * e1000_configure_msix - Configure MSI-X hardware
1836 * e1000_configure_msix sets up the hardware to properly
1837 * generate MSI-X interrupts.
1839 static void e1000_configure_msix(struct e1000_adapter
*adapter
)
1841 struct e1000_hw
*hw
= &adapter
->hw
;
1842 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1843 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1845 u32 ctrl_ext
, ivar
= 0;
1847 adapter
->eiac_mask
= 0;
1849 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1850 if (hw
->mac
.type
== e1000_82574
) {
1851 u32 rfctl
= er32(RFCTL
);
1852 rfctl
|= E1000_RFCTL_ACK_DIS
;
1856 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1857 /* Configure Rx vector */
1858 rx_ring
->ims_val
= E1000_IMS_RXQ0
;
1859 adapter
->eiac_mask
|= rx_ring
->ims_val
;
1860 if (rx_ring
->itr_val
)
1861 writel(1000000000 / (rx_ring
->itr_val
* 256),
1862 rx_ring
->itr_register
);
1864 writel(1, rx_ring
->itr_register
);
1865 ivar
= E1000_IVAR_INT_ALLOC_VALID
| vector
;
1867 /* Configure Tx vector */
1868 tx_ring
->ims_val
= E1000_IMS_TXQ0
;
1870 if (tx_ring
->itr_val
)
1871 writel(1000000000 / (tx_ring
->itr_val
* 256),
1872 tx_ring
->itr_register
);
1874 writel(1, tx_ring
->itr_register
);
1875 adapter
->eiac_mask
|= tx_ring
->ims_val
;
1876 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 8);
1878 /* set vector for Other Causes, e.g. link changes */
1880 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 16);
1881 if (rx_ring
->itr_val
)
1882 writel(1000000000 / (rx_ring
->itr_val
* 256),
1883 hw
->hw_addr
+ E1000_EITR_82574(vector
));
1885 writel(1, hw
->hw_addr
+ E1000_EITR_82574(vector
));
1887 /* Cause Tx interrupts on every write back */
1892 /* enable MSI-X PBA support */
1893 ctrl_ext
= er32(CTRL_EXT
);
1894 ctrl_ext
|= E1000_CTRL_EXT_PBA_CLR
;
1896 /* Auto-Mask Other interrupts upon ICR read */
1897 #define E1000_EIAC_MASK_82574 0x01F00000
1898 ew32(IAM
, ~E1000_EIAC_MASK_82574
| E1000_IMS_OTHER
);
1899 ctrl_ext
|= E1000_CTRL_EXT_EIAME
;
1900 ew32(CTRL_EXT
, ctrl_ext
);
1904 void e1000e_reset_interrupt_capability(struct e1000_adapter
*adapter
)
1906 if (adapter
->msix_entries
) {
1907 pci_disable_msix(adapter
->pdev
);
1908 kfree(adapter
->msix_entries
);
1909 adapter
->msix_entries
= NULL
;
1910 } else if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1911 pci_disable_msi(adapter
->pdev
);
1912 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
1917 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1919 * Attempt to configure interrupts using the best available
1920 * capabilities of the hardware and kernel.
1922 void e1000e_set_interrupt_capability(struct e1000_adapter
*adapter
)
1927 switch (adapter
->int_mode
) {
1928 case E1000E_INT_MODE_MSIX
:
1929 if (adapter
->flags
& FLAG_HAS_MSIX
) {
1930 adapter
->num_vectors
= 3; /* RxQ0, TxQ0 and other */
1931 adapter
->msix_entries
= kcalloc(adapter
->num_vectors
,
1932 sizeof(struct msix_entry
),
1934 if (adapter
->msix_entries
) {
1935 for (i
= 0; i
< adapter
->num_vectors
; i
++)
1936 adapter
->msix_entries
[i
].entry
= i
;
1938 err
= pci_enable_msix(adapter
->pdev
,
1939 adapter
->msix_entries
,
1940 adapter
->num_vectors
);
1944 /* MSI-X failed, so fall through and try MSI */
1945 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
1946 e1000e_reset_interrupt_capability(adapter
);
1948 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
1950 case E1000E_INT_MODE_MSI
:
1951 if (!pci_enable_msi(adapter
->pdev
)) {
1952 adapter
->flags
|= FLAG_MSI_ENABLED
;
1954 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
1955 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
1958 case E1000E_INT_MODE_LEGACY
:
1959 /* Don't do anything; this is the system default */
1963 /* store the number of vectors being used */
1964 adapter
->num_vectors
= 1;
1968 * e1000_request_msix - Initialize MSI-X interrupts
1970 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1973 static int e1000_request_msix(struct e1000_adapter
*adapter
)
1975 struct net_device
*netdev
= adapter
->netdev
;
1976 int err
= 0, vector
= 0;
1978 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
1979 snprintf(adapter
->rx_ring
->name
,
1980 sizeof(adapter
->rx_ring
->name
) - 1,
1981 "%s-rx-0", netdev
->name
);
1983 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1984 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1985 e1000_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
1989 adapter
->rx_ring
->itr_register
= adapter
->hw
.hw_addr
+
1990 E1000_EITR_82574(vector
);
1991 adapter
->rx_ring
->itr_val
= adapter
->itr
;
1994 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
1995 snprintf(adapter
->tx_ring
->name
,
1996 sizeof(adapter
->tx_ring
->name
) - 1,
1997 "%s-tx-0", netdev
->name
);
1999 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
2000 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2001 e1000_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
2005 adapter
->tx_ring
->itr_register
= adapter
->hw
.hw_addr
+
2006 E1000_EITR_82574(vector
);
2007 adapter
->tx_ring
->itr_val
= adapter
->itr
;
2010 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2011 e1000_msix_other
, 0, netdev
->name
, netdev
);
2015 e1000_configure_msix(adapter
);
2022 * e1000_request_irq - initialize interrupts
2024 * Attempts to configure interrupts using the best available
2025 * capabilities of the hardware and kernel.
2027 static int e1000_request_irq(struct e1000_adapter
*adapter
)
2029 struct net_device
*netdev
= adapter
->netdev
;
2032 if (adapter
->msix_entries
) {
2033 err
= e1000_request_msix(adapter
);
2036 /* fall back to MSI */
2037 e1000e_reset_interrupt_capability(adapter
);
2038 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
2039 e1000e_set_interrupt_capability(adapter
);
2041 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
2042 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi
, 0,
2043 netdev
->name
, netdev
);
2047 /* fall back to legacy interrupt */
2048 e1000e_reset_interrupt_capability(adapter
);
2049 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
2052 err
= request_irq(adapter
->pdev
->irq
, e1000_intr
, IRQF_SHARED
,
2053 netdev
->name
, netdev
);
2055 e_err("Unable to allocate interrupt, Error: %d\n", err
);
2060 static void e1000_free_irq(struct e1000_adapter
*adapter
)
2062 struct net_device
*netdev
= adapter
->netdev
;
2064 if (adapter
->msix_entries
) {
2067 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2070 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2073 /* Other Causes interrupt vector */
2074 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2078 free_irq(adapter
->pdev
->irq
, netdev
);
2082 * e1000_irq_disable - Mask off interrupt generation on the NIC
2084 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
2086 struct e1000_hw
*hw
= &adapter
->hw
;
2089 if (adapter
->msix_entries
)
2090 ew32(EIAC_82574
, 0);
2093 if (adapter
->msix_entries
) {
2095 for (i
= 0; i
< adapter
->num_vectors
; i
++)
2096 synchronize_irq(adapter
->msix_entries
[i
].vector
);
2098 synchronize_irq(adapter
->pdev
->irq
);
2103 * e1000_irq_enable - Enable default interrupt generation settings
2105 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
2107 struct e1000_hw
*hw
= &adapter
->hw
;
2109 if (adapter
->msix_entries
) {
2110 ew32(EIAC_82574
, adapter
->eiac_mask
& E1000_EIAC_MASK_82574
);
2111 ew32(IMS
, adapter
->eiac_mask
| E1000_IMS_OTHER
| E1000_IMS_LSC
);
2113 ew32(IMS
, IMS_ENABLE_MASK
);
2119 * e1000e_get_hw_control - get control of the h/w from f/w
2120 * @adapter: address of board private structure
2122 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2123 * For ASF and Pass Through versions of f/w this means that
2124 * the driver is loaded. For AMT version (only with 82573)
2125 * of the f/w this means that the network i/f is open.
2127 void e1000e_get_hw_control(struct e1000_adapter
*adapter
)
2129 struct e1000_hw
*hw
= &adapter
->hw
;
2133 /* Let firmware know the driver has taken over */
2134 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2136 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
2137 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2138 ctrl_ext
= er32(CTRL_EXT
);
2139 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
2144 * e1000e_release_hw_control - release control of the h/w to f/w
2145 * @adapter: address of board private structure
2147 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2148 * For ASF and Pass Through versions of f/w this means that the
2149 * driver is no longer loaded. For AMT version (only with 82573) i
2150 * of the f/w this means that the network i/f is closed.
2153 void e1000e_release_hw_control(struct e1000_adapter
*adapter
)
2155 struct e1000_hw
*hw
= &adapter
->hw
;
2159 /* Let firmware taken over control of h/w */
2160 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2162 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
2163 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2164 ctrl_ext
= er32(CTRL_EXT
);
2165 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
2170 * @e1000_alloc_ring - allocate memory for a ring structure
2172 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
2173 struct e1000_ring
*ring
)
2175 struct pci_dev
*pdev
= adapter
->pdev
;
2177 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
2186 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2187 * @tx_ring: Tx descriptor ring
2189 * Return 0 on success, negative on failure
2191 int e1000e_setup_tx_resources(struct e1000_ring
*tx_ring
)
2193 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2194 int err
= -ENOMEM
, size
;
2196 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2197 tx_ring
->buffer_info
= vzalloc(size
);
2198 if (!tx_ring
->buffer_info
)
2201 /* round up to nearest 4K */
2202 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2203 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
2205 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
2209 tx_ring
->next_to_use
= 0;
2210 tx_ring
->next_to_clean
= 0;
2214 vfree(tx_ring
->buffer_info
);
2215 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2220 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2221 * @rx_ring: Rx descriptor ring
2223 * Returns 0 on success, negative on failure
2225 int e1000e_setup_rx_resources(struct e1000_ring
*rx_ring
)
2227 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
2228 struct e1000_buffer
*buffer_info
;
2229 int i
, size
, desc_len
, err
= -ENOMEM
;
2231 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2232 rx_ring
->buffer_info
= vzalloc(size
);
2233 if (!rx_ring
->buffer_info
)
2236 for (i
= 0; i
< rx_ring
->count
; i
++) {
2237 buffer_info
= &rx_ring
->buffer_info
[i
];
2238 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
2239 sizeof(struct e1000_ps_page
),
2241 if (!buffer_info
->ps_pages
)
2245 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
2247 /* Round up to nearest 4K */
2248 rx_ring
->size
= rx_ring
->count
* desc_len
;
2249 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
2251 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
2255 rx_ring
->next_to_clean
= 0;
2256 rx_ring
->next_to_use
= 0;
2257 rx_ring
->rx_skb_top
= NULL
;
2262 for (i
= 0; i
< rx_ring
->count
; i
++) {
2263 buffer_info
= &rx_ring
->buffer_info
[i
];
2264 kfree(buffer_info
->ps_pages
);
2267 vfree(rx_ring
->buffer_info
);
2268 e_err("Unable to allocate memory for the receive descriptor ring\n");
2273 * e1000_clean_tx_ring - Free Tx Buffers
2274 * @tx_ring: Tx descriptor ring
2276 static void e1000_clean_tx_ring(struct e1000_ring
*tx_ring
)
2278 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2279 struct e1000_buffer
*buffer_info
;
2283 for (i
= 0; i
< tx_ring
->count
; i
++) {
2284 buffer_info
= &tx_ring
->buffer_info
[i
];
2285 e1000_put_txbuf(tx_ring
, buffer_info
);
2288 netdev_reset_queue(adapter
->netdev
);
2289 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2290 memset(tx_ring
->buffer_info
, 0, size
);
2292 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2294 tx_ring
->next_to_use
= 0;
2295 tx_ring
->next_to_clean
= 0;
2297 writel(0, tx_ring
->head
);
2298 writel(0, tx_ring
->tail
);
2302 * e1000e_free_tx_resources - Free Tx Resources per Queue
2303 * @tx_ring: Tx descriptor ring
2305 * Free all transmit software resources
2307 void e1000e_free_tx_resources(struct e1000_ring
*tx_ring
)
2309 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2310 struct pci_dev
*pdev
= adapter
->pdev
;
2312 e1000_clean_tx_ring(tx_ring
);
2314 vfree(tx_ring
->buffer_info
);
2315 tx_ring
->buffer_info
= NULL
;
2317 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
2319 tx_ring
->desc
= NULL
;
2323 * e1000e_free_rx_resources - Free Rx Resources
2324 * @rx_ring: Rx descriptor ring
2326 * Free all receive software resources
2328 void e1000e_free_rx_resources(struct e1000_ring
*rx_ring
)
2330 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
2331 struct pci_dev
*pdev
= adapter
->pdev
;
2334 e1000_clean_rx_ring(rx_ring
);
2336 for (i
= 0; i
< rx_ring
->count
; i
++)
2337 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
2339 vfree(rx_ring
->buffer_info
);
2340 rx_ring
->buffer_info
= NULL
;
2342 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
2344 rx_ring
->desc
= NULL
;
2348 * e1000_update_itr - update the dynamic ITR value based on statistics
2349 * @adapter: pointer to adapter
2350 * @itr_setting: current adapter->itr
2351 * @packets: the number of packets during this measurement interval
2352 * @bytes: the number of bytes during this measurement interval
2354 * Stores a new ITR value based on packets and byte
2355 * counts during the last interrupt. The advantage of per interrupt
2356 * computation is faster updates and more accurate ITR for the current
2357 * traffic pattern. Constants in this function were computed
2358 * based on theoretical maximum wire speed and thresholds were set based
2359 * on testing data as well as attempting to minimize response time
2360 * while increasing bulk throughput. This functionality is controlled
2361 * by the InterruptThrottleRate module parameter.
2363 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2364 u16 itr_setting
, int packets
,
2367 unsigned int retval
= itr_setting
;
2370 goto update_itr_done
;
2372 switch (itr_setting
) {
2373 case lowest_latency
:
2374 /* handle TSO and jumbo frames */
2375 if (bytes
/packets
> 8000)
2376 retval
= bulk_latency
;
2377 else if ((packets
< 5) && (bytes
> 512))
2378 retval
= low_latency
;
2380 case low_latency
: /* 50 usec aka 20000 ints/s */
2381 if (bytes
> 10000) {
2382 /* this if handles the TSO accounting */
2383 if (bytes
/packets
> 8000)
2384 retval
= bulk_latency
;
2385 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2386 retval
= bulk_latency
;
2387 else if ((packets
> 35))
2388 retval
= lowest_latency
;
2389 } else if (bytes
/packets
> 2000) {
2390 retval
= bulk_latency
;
2391 } else if (packets
<= 2 && bytes
< 512) {
2392 retval
= lowest_latency
;
2395 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2396 if (bytes
> 25000) {
2398 retval
= low_latency
;
2399 } else if (bytes
< 6000) {
2400 retval
= low_latency
;
2409 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2411 struct e1000_hw
*hw
= &adapter
->hw
;
2413 u32 new_itr
= adapter
->itr
;
2415 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2416 if (adapter
->link_speed
!= SPEED_1000
) {
2422 if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
2427 adapter
->tx_itr
= e1000_update_itr(adapter
,
2429 adapter
->total_tx_packets
,
2430 adapter
->total_tx_bytes
);
2431 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2432 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2433 adapter
->tx_itr
= low_latency
;
2435 adapter
->rx_itr
= e1000_update_itr(adapter
,
2437 adapter
->total_rx_packets
,
2438 adapter
->total_rx_bytes
);
2439 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2440 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2441 adapter
->rx_itr
= low_latency
;
2443 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2445 switch (current_itr
) {
2446 /* counts and packets in update_itr are dependent on these numbers */
2447 case lowest_latency
:
2451 new_itr
= 20000; /* aka hwitr = ~200 */
2461 if (new_itr
!= adapter
->itr
) {
2463 * this attempts to bias the interrupt rate towards Bulk
2464 * by adding intermediate steps when interrupt rate is
2467 new_itr
= new_itr
> adapter
->itr
?
2468 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2470 adapter
->itr
= new_itr
;
2471 adapter
->rx_ring
->itr_val
= new_itr
;
2472 if (adapter
->msix_entries
)
2473 adapter
->rx_ring
->set_itr
= 1;
2476 ew32(ITR
, 1000000000 / (new_itr
* 256));
2483 * e1000_alloc_queues - Allocate memory for all rings
2484 * @adapter: board private structure to initialize
2486 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
2488 int size
= sizeof(struct e1000_ring
);
2490 adapter
->tx_ring
= kzalloc(size
, GFP_KERNEL
);
2491 if (!adapter
->tx_ring
)
2493 adapter
->tx_ring
->count
= adapter
->tx_ring_count
;
2494 adapter
->tx_ring
->adapter
= adapter
;
2496 adapter
->rx_ring
= kzalloc(size
, GFP_KERNEL
);
2497 if (!adapter
->rx_ring
)
2499 adapter
->rx_ring
->count
= adapter
->rx_ring_count
;
2500 adapter
->rx_ring
->adapter
= adapter
;
2504 e_err("Unable to allocate memory for queues\n");
2505 kfree(adapter
->rx_ring
);
2506 kfree(adapter
->tx_ring
);
2511 * e1000_clean - NAPI Rx polling callback
2512 * @napi: struct associated with this polling callback
2513 * @budget: amount of packets driver is allowed to process this poll
2515 static int e1000_clean(struct napi_struct
*napi
, int budget
)
2517 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
2518 struct e1000_hw
*hw
= &adapter
->hw
;
2519 struct net_device
*poll_dev
= adapter
->netdev
;
2520 int tx_cleaned
= 1, work_done
= 0;
2522 adapter
= netdev_priv(poll_dev
);
2524 if (adapter
->msix_entries
&&
2525 !(adapter
->rx_ring
->ims_val
& adapter
->tx_ring
->ims_val
))
2528 tx_cleaned
= e1000_clean_tx_irq(adapter
->tx_ring
);
2531 adapter
->clean_rx(adapter
->rx_ring
, &work_done
, budget
);
2536 /* If budget not fully consumed, exit the polling mode */
2537 if (work_done
< budget
) {
2538 if (adapter
->itr_setting
& 3)
2539 e1000_set_itr(adapter
);
2540 napi_complete(napi
);
2541 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
2542 if (adapter
->msix_entries
)
2543 ew32(IMS
, adapter
->rx_ring
->ims_val
);
2545 e1000_irq_enable(adapter
);
2552 static int e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
2554 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2555 struct e1000_hw
*hw
= &adapter
->hw
;
2558 /* don't update vlan cookie if already programmed */
2559 if ((adapter
->hw
.mng_cookie
.status
&
2560 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2561 (vid
== adapter
->mng_vlan_id
))
2564 /* add VID to filter table */
2565 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2566 index
= (vid
>> 5) & 0x7F;
2567 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2568 vfta
|= (1 << (vid
& 0x1F));
2569 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2572 set_bit(vid
, adapter
->active_vlans
);
2577 static int e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
2579 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2580 struct e1000_hw
*hw
= &adapter
->hw
;
2583 if ((adapter
->hw
.mng_cookie
.status
&
2584 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2585 (vid
== adapter
->mng_vlan_id
)) {
2586 /* release control to f/w */
2587 e1000e_release_hw_control(adapter
);
2591 /* remove VID from filter table */
2592 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2593 index
= (vid
>> 5) & 0x7F;
2594 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2595 vfta
&= ~(1 << (vid
& 0x1F));
2596 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2599 clear_bit(vid
, adapter
->active_vlans
);
2605 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2606 * @adapter: board private structure to initialize
2608 static void e1000e_vlan_filter_disable(struct e1000_adapter
*adapter
)
2610 struct net_device
*netdev
= adapter
->netdev
;
2611 struct e1000_hw
*hw
= &adapter
->hw
;
2614 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2615 /* disable VLAN receive filtering */
2617 rctl
&= ~(E1000_RCTL_VFE
| E1000_RCTL_CFIEN
);
2620 if (adapter
->mng_vlan_id
!= (u16
)E1000_MNG_VLAN_NONE
) {
2621 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
2622 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2628 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2629 * @adapter: board private structure to initialize
2631 static void e1000e_vlan_filter_enable(struct e1000_adapter
*adapter
)
2633 struct e1000_hw
*hw
= &adapter
->hw
;
2636 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2637 /* enable VLAN receive filtering */
2639 rctl
|= E1000_RCTL_VFE
;
2640 rctl
&= ~E1000_RCTL_CFIEN
;
2646 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2647 * @adapter: board private structure to initialize
2649 static void e1000e_vlan_strip_disable(struct e1000_adapter
*adapter
)
2651 struct e1000_hw
*hw
= &adapter
->hw
;
2654 /* disable VLAN tag insert/strip */
2656 ctrl
&= ~E1000_CTRL_VME
;
2661 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2662 * @adapter: board private structure to initialize
2664 static void e1000e_vlan_strip_enable(struct e1000_adapter
*adapter
)
2666 struct e1000_hw
*hw
= &adapter
->hw
;
2669 /* enable VLAN tag insert/strip */
2671 ctrl
|= E1000_CTRL_VME
;
2675 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
2677 struct net_device
*netdev
= adapter
->netdev
;
2678 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
2679 u16 old_vid
= adapter
->mng_vlan_id
;
2681 if (adapter
->hw
.mng_cookie
.status
&
2682 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
2683 e1000_vlan_rx_add_vid(netdev
, vid
);
2684 adapter
->mng_vlan_id
= vid
;
2687 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) && (vid
!= old_vid
))
2688 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
2691 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
2695 e1000_vlan_rx_add_vid(adapter
->netdev
, 0);
2697 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
2698 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
2701 static void e1000_init_manageability_pt(struct e1000_adapter
*adapter
)
2703 struct e1000_hw
*hw
= &adapter
->hw
;
2704 u32 manc
, manc2h
, mdef
, i
, j
;
2706 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
2712 * enable receiving management packets to the host. this will probably
2713 * generate destination unreachable messages from the host OS, but
2714 * the packets will be handled on SMBUS
2716 manc
|= E1000_MANC_EN_MNG2HOST
;
2717 manc2h
= er32(MANC2H
);
2719 switch (hw
->mac
.type
) {
2721 manc2h
|= (E1000_MANC2H_PORT_623
| E1000_MANC2H_PORT_664
);
2726 * Check if IPMI pass-through decision filter already exists;
2729 for (i
= 0, j
= 0; i
< 8; i
++) {
2730 mdef
= er32(MDEF(i
));
2732 /* Ignore filters with anything other than IPMI ports */
2733 if (mdef
& ~(E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2736 /* Enable this decision filter in MANC2H */
2743 if (j
== (E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2746 /* Create new decision filter in an empty filter */
2747 for (i
= 0, j
= 0; i
< 8; i
++)
2748 if (er32(MDEF(i
)) == 0) {
2749 ew32(MDEF(i
), (E1000_MDEF_PORT_623
|
2750 E1000_MDEF_PORT_664
));
2757 e_warn("Unable to create IPMI pass-through filter\n");
2761 ew32(MANC2H
, manc2h
);
2766 * e1000_configure_tx - Configure Transmit Unit after Reset
2767 * @adapter: board private structure
2769 * Configure the Tx unit of the MAC after a reset.
2771 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
2773 struct e1000_hw
*hw
= &adapter
->hw
;
2774 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2778 /* Setup the HW Tx Head and Tail descriptor pointers */
2779 tdba
= tx_ring
->dma
;
2780 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2781 ew32(TDBAL
, (tdba
& DMA_BIT_MASK(32)));
2782 ew32(TDBAH
, (tdba
>> 32));
2786 tx_ring
->head
= adapter
->hw
.hw_addr
+ E1000_TDH
;
2787 tx_ring
->tail
= adapter
->hw
.hw_addr
+ E1000_TDT
;
2789 /* Set the Tx Interrupt Delay register */
2790 ew32(TIDV
, adapter
->tx_int_delay
);
2791 /* Tx irq moderation */
2792 ew32(TADV
, adapter
->tx_abs_int_delay
);
2794 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
2795 u32 txdctl
= er32(TXDCTL(0));
2796 txdctl
&= ~(E1000_TXDCTL_PTHRESH
| E1000_TXDCTL_HTHRESH
|
2797 E1000_TXDCTL_WTHRESH
);
2799 * set up some performance related parameters to encourage the
2800 * hardware to use the bus more efficiently in bursts, depends
2801 * on the tx_int_delay to be enabled,
2802 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2803 * hthresh = 1 ==> prefetch when one or more available
2804 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2805 * BEWARE: this seems to work but should be considered first if
2806 * there are Tx hangs or other Tx related bugs
2808 txdctl
|= E1000_TXDCTL_DMA_BURST_ENABLE
;
2809 ew32(TXDCTL(0), txdctl
);
2811 /* erratum work around: set txdctl the same for both queues */
2812 ew32(TXDCTL(1), er32(TXDCTL(0)));
2814 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
2815 tarc
= er32(TARC(0));
2817 * set the speed mode bit, we'll clear it if we're not at
2818 * gigabit link later
2820 #define SPEED_MODE_BIT (1 << 21)
2821 tarc
|= SPEED_MODE_BIT
;
2822 ew32(TARC(0), tarc
);
2825 /* errata: program both queues to unweighted RR */
2826 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
2827 tarc
= er32(TARC(0));
2829 ew32(TARC(0), tarc
);
2830 tarc
= er32(TARC(1));
2832 ew32(TARC(1), tarc
);
2835 /* Setup Transmit Descriptor Settings for eop descriptor */
2836 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
2838 /* only set IDE if we are delaying interrupts using the timers */
2839 if (adapter
->tx_int_delay
)
2840 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
2842 /* enable Report Status bit */
2843 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
2845 e1000e_config_collision_dist(hw
);
2849 * e1000_setup_rctl - configure the receive control registers
2850 * @adapter: Board private structure
2852 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2853 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2854 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
2856 struct e1000_hw
*hw
= &adapter
->hw
;
2860 /* Workaround Si errata on 82579 - configure jumbo frame flow */
2861 if (hw
->mac
.type
== e1000_pch2lan
) {
2864 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
)
2865 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, true);
2867 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, false);
2870 e_dbg("failed to enable jumbo frame workaround mode\n");
2873 /* Program MC offset vector base */
2875 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
2876 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
2877 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
2878 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
2880 /* Do not Store bad packets */
2881 rctl
&= ~E1000_RCTL_SBP
;
2883 /* Enable Long Packet receive */
2884 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
2885 rctl
&= ~E1000_RCTL_LPE
;
2887 rctl
|= E1000_RCTL_LPE
;
2889 /* Some systems expect that the CRC is included in SMBUS traffic. The
2890 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2891 * host memory when this is enabled
2893 if (adapter
->flags2
& FLAG2_CRC_STRIPPING
)
2894 rctl
|= E1000_RCTL_SECRC
;
2896 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2897 if ((hw
->phy
.type
== e1000_phy_82577
) && (rctl
& E1000_RCTL_LPE
)) {
2900 e1e_rphy(hw
, PHY_REG(770, 26), &phy_data
);
2902 phy_data
|= (1 << 2);
2903 e1e_wphy(hw
, PHY_REG(770, 26), phy_data
);
2905 e1e_rphy(hw
, 22, &phy_data
);
2907 phy_data
|= (1 << 14);
2908 e1e_wphy(hw
, 0x10, 0x2823);
2909 e1e_wphy(hw
, 0x11, 0x0003);
2910 e1e_wphy(hw
, 22, phy_data
);
2913 /* Setup buffer sizes */
2914 rctl
&= ~E1000_RCTL_SZ_4096
;
2915 rctl
|= E1000_RCTL_BSEX
;
2916 switch (adapter
->rx_buffer_len
) {
2919 rctl
|= E1000_RCTL_SZ_2048
;
2920 rctl
&= ~E1000_RCTL_BSEX
;
2923 rctl
|= E1000_RCTL_SZ_4096
;
2926 rctl
|= E1000_RCTL_SZ_8192
;
2929 rctl
|= E1000_RCTL_SZ_16384
;
2933 /* Enable Extended Status in all Receive Descriptors */
2934 rfctl
= er32(RFCTL
);
2935 rfctl
|= E1000_RFCTL_EXTEN
;
2938 * 82571 and greater support packet-split where the protocol
2939 * header is placed in skb->data and the packet data is
2940 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2941 * In the case of a non-split, skb->data is linearly filled,
2942 * followed by the page buffers. Therefore, skb->data is
2943 * sized to hold the largest protocol header.
2945 * allocations using alloc_page take too long for regular MTU
2946 * so only enable packet split for jumbo frames
2948 * Using pages when the page size is greater than 16k wastes
2949 * a lot of memory, since we allocate 3 pages at all times
2952 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
2953 if ((pages
<= 3) && (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
2954 adapter
->rx_ps_pages
= pages
;
2956 adapter
->rx_ps_pages
= 0;
2958 if (adapter
->rx_ps_pages
) {
2962 * disable packet split support for IPv6 extension headers,
2963 * because some malformed IPv6 headers can hang the Rx
2965 rfctl
|= (E1000_RFCTL_IPV6_EX_DIS
|
2966 E1000_RFCTL_NEW_IPV6_EXT_DIS
);
2968 /* Enable Packet split descriptors */
2969 rctl
|= E1000_RCTL_DTYP_PS
;
2971 psrctl
|= adapter
->rx_ps_bsize0
>>
2972 E1000_PSRCTL_BSIZE0_SHIFT
;
2974 switch (adapter
->rx_ps_pages
) {
2976 psrctl
|= PAGE_SIZE
<<
2977 E1000_PSRCTL_BSIZE3_SHIFT
;
2979 psrctl
|= PAGE_SIZE
<<
2980 E1000_PSRCTL_BSIZE2_SHIFT
;
2982 psrctl
|= PAGE_SIZE
>>
2983 E1000_PSRCTL_BSIZE1_SHIFT
;
2987 ew32(PSRCTL
, psrctl
);
2992 /* just started the receive unit, no need to restart */
2993 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
2997 * e1000_configure_rx - Configure Receive Unit after Reset
2998 * @adapter: board private structure
3000 * Configure the Rx unit of the MAC after a reset.
3002 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
3004 struct e1000_hw
*hw
= &adapter
->hw
;
3005 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
3007 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
3009 if (adapter
->rx_ps_pages
) {
3010 /* this is a 32 byte descriptor */
3011 rdlen
= rx_ring
->count
*
3012 sizeof(union e1000_rx_desc_packet_split
);
3013 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
3014 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
3015 } else if (adapter
->netdev
->mtu
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3016 rdlen
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
3017 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
3018 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
3020 rdlen
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
3021 adapter
->clean_rx
= e1000_clean_rx_irq
;
3022 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
3025 /* disable receives while setting up the descriptors */
3027 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
3028 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3030 usleep_range(10000, 20000);
3032 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
3034 * set the writeback threshold (only takes effect if the RDTR
3035 * is set). set GRAN=1 and write back up to 0x4 worth, and
3036 * enable prefetching of 0x20 Rx descriptors
3042 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE
);
3043 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE
);
3046 * override the delay timers for enabling bursting, only if
3047 * the value was not set by the user via module options
3049 if (adapter
->rx_int_delay
== DEFAULT_RDTR
)
3050 adapter
->rx_int_delay
= BURST_RDTR
;
3051 if (adapter
->rx_abs_int_delay
== DEFAULT_RADV
)
3052 adapter
->rx_abs_int_delay
= BURST_RADV
;
3055 /* set the Receive Delay Timer Register */
3056 ew32(RDTR
, adapter
->rx_int_delay
);
3058 /* irq moderation */
3059 ew32(RADV
, adapter
->rx_abs_int_delay
);
3060 if ((adapter
->itr_setting
!= 0) && (adapter
->itr
!= 0))
3061 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
3063 ctrl_ext
= er32(CTRL_EXT
);
3064 /* Auto-Mask interrupts upon ICR access */
3065 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
3066 ew32(IAM
, 0xffffffff);
3067 ew32(CTRL_EXT
, ctrl_ext
);
3071 * Setup the HW Rx Head and Tail Descriptor Pointers and
3072 * the Base and Length of the Rx Descriptor Ring
3074 rdba
= rx_ring
->dma
;
3075 ew32(RDBAL
, (rdba
& DMA_BIT_MASK(32)));
3076 ew32(RDBAH
, (rdba
>> 32));
3080 rx_ring
->head
= adapter
->hw
.hw_addr
+ E1000_RDH
;
3081 rx_ring
->tail
= adapter
->hw
.hw_addr
+ E1000_RDT
;
3083 /* Enable Receive Checksum Offload for TCP and UDP */
3084 rxcsum
= er32(RXCSUM
);
3085 if (adapter
->netdev
->features
& NETIF_F_RXCSUM
) {
3086 rxcsum
|= E1000_RXCSUM_TUOFL
;
3089 * IPv4 payload checksum for UDP fragments must be
3090 * used in conjunction with packet-split.
3092 if (adapter
->rx_ps_pages
)
3093 rxcsum
|= E1000_RXCSUM_IPPCSE
;
3095 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
3096 /* no need to clear IPPCSE as it defaults to 0 */
3098 ew32(RXCSUM
, rxcsum
);
3100 if (adapter
->hw
.mac
.type
== e1000_pch2lan
) {
3102 * With jumbo frames, excessive C-state transition
3103 * latencies result in dropped transactions.
3105 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3106 u32 rxdctl
= er32(RXDCTL(0));
3107 ew32(RXDCTL(0), rxdctl
| 0x3);
3108 pm_qos_update_request(&adapter
->netdev
->pm_qos_req
, 55);
3110 pm_qos_update_request(&adapter
->netdev
->pm_qos_req
,
3111 PM_QOS_DEFAULT_VALUE
);
3115 /* Enable Receives */
3120 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3121 * @netdev: network interface device structure
3123 * Writes multicast address list to the MTA hash table.
3124 * Returns: -ENOMEM on failure
3125 * 0 on no addresses written
3126 * X on writing X addresses to MTA
3128 static int e1000e_write_mc_addr_list(struct net_device
*netdev
)
3130 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3131 struct e1000_hw
*hw
= &adapter
->hw
;
3132 struct netdev_hw_addr
*ha
;
3136 if (netdev_mc_empty(netdev
)) {
3137 /* nothing to program, so clear mc list */
3138 hw
->mac
.ops
.update_mc_addr_list(hw
, NULL
, 0);
3142 mta_list
= kzalloc(netdev_mc_count(netdev
) * ETH_ALEN
, GFP_ATOMIC
);
3146 /* update_mc_addr_list expects a packed array of only addresses. */
3148 netdev_for_each_mc_addr(ha
, netdev
)
3149 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
3151 hw
->mac
.ops
.update_mc_addr_list(hw
, mta_list
, i
);
3154 return netdev_mc_count(netdev
);
3158 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3159 * @netdev: network interface device structure
3161 * Writes unicast address list to the RAR table.
3162 * Returns: -ENOMEM on failure/insufficient address space
3163 * 0 on no addresses written
3164 * X on writing X addresses to the RAR table
3166 static int e1000e_write_uc_addr_list(struct net_device
*netdev
)
3168 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3169 struct e1000_hw
*hw
= &adapter
->hw
;
3170 unsigned int rar_entries
= hw
->mac
.rar_entry_count
;
3173 /* save a rar entry for our hardware address */
3176 /* save a rar entry for the LAA workaround */
3177 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
)
3180 /* return ENOMEM indicating insufficient memory for addresses */
3181 if (netdev_uc_count(netdev
) > rar_entries
)
3184 if (!netdev_uc_empty(netdev
) && rar_entries
) {
3185 struct netdev_hw_addr
*ha
;
3188 * write the addresses in reverse order to avoid write
3191 netdev_for_each_uc_addr(ha
, netdev
) {
3194 e1000e_rar_set(hw
, ha
->addr
, rar_entries
--);
3199 /* zero out the remaining RAR entries not used above */
3200 for (; rar_entries
> 0; rar_entries
--) {
3201 ew32(RAH(rar_entries
), 0);
3202 ew32(RAL(rar_entries
), 0);
3210 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3211 * @netdev: network interface device structure
3213 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3214 * address list or the network interface flags are updated. This routine is
3215 * responsible for configuring the hardware for proper unicast, multicast,
3216 * promiscuous mode, and all-multi behavior.
3218 static void e1000e_set_rx_mode(struct net_device
*netdev
)
3220 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3221 struct e1000_hw
*hw
= &adapter
->hw
;
3224 /* Check for Promiscuous and All Multicast modes */
3227 /* clear the affected bits */
3228 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3230 if (netdev
->flags
& IFF_PROMISC
) {
3231 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3232 /* Do not hardware filter VLANs in promisc mode */
3233 e1000e_vlan_filter_disable(adapter
);
3236 if (netdev
->flags
& IFF_ALLMULTI
) {
3237 rctl
|= E1000_RCTL_MPE
;
3240 * Write addresses to the MTA, if the attempt fails
3241 * then we should just turn on promiscuous mode so
3242 * that we can at least receive multicast traffic
3244 count
= e1000e_write_mc_addr_list(netdev
);
3246 rctl
|= E1000_RCTL_MPE
;
3248 e1000e_vlan_filter_enable(adapter
);
3250 * Write addresses to available RAR registers, if there is not
3251 * sufficient space to store all the addresses then enable
3252 * unicast promiscuous mode
3254 count
= e1000e_write_uc_addr_list(netdev
);
3256 rctl
|= E1000_RCTL_UPE
;
3261 if (netdev
->features
& NETIF_F_HW_VLAN_RX
)
3262 e1000e_vlan_strip_enable(adapter
);
3264 e1000e_vlan_strip_disable(adapter
);
3267 static void e1000e_setup_rss_hash(struct e1000_adapter
*adapter
)
3269 struct e1000_hw
*hw
= &adapter
->hw
;
3272 static const u32 rsskey
[10] = {
3273 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3274 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3277 /* Fill out hash function seed */
3278 for (i
= 0; i
< 10; i
++)
3279 ew32(RSSRK(i
), rsskey
[i
]);
3281 /* Direct all traffic to queue 0 */
3282 for (i
= 0; i
< 32; i
++)
3286 * Disable raw packet checksumming so that RSS hash is placed in
3287 * descriptor on writeback.
3289 rxcsum
= er32(RXCSUM
);
3290 rxcsum
|= E1000_RXCSUM_PCSD
;
3292 ew32(RXCSUM
, rxcsum
);
3294 mrqc
= (E1000_MRQC_RSS_FIELD_IPV4
|
3295 E1000_MRQC_RSS_FIELD_IPV4_TCP
|
3296 E1000_MRQC_RSS_FIELD_IPV6
|
3297 E1000_MRQC_RSS_FIELD_IPV6_TCP
|
3298 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
);
3304 * e1000_configure - configure the hardware for Rx and Tx
3305 * @adapter: private board structure
3307 static void e1000_configure(struct e1000_adapter
*adapter
)
3309 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
3311 e1000e_set_rx_mode(adapter
->netdev
);
3313 e1000_restore_vlan(adapter
);
3314 e1000_init_manageability_pt(adapter
);
3316 e1000_configure_tx(adapter
);
3318 if (adapter
->netdev
->features
& NETIF_F_RXHASH
)
3319 e1000e_setup_rss_hash(adapter
);
3320 e1000_setup_rctl(adapter
);
3321 e1000_configure_rx(adapter
);
3322 adapter
->alloc_rx_buf(rx_ring
, e1000_desc_unused(rx_ring
), GFP_KERNEL
);
3326 * e1000e_power_up_phy - restore link in case the phy was powered down
3327 * @adapter: address of board private structure
3329 * The phy may be powered down to save power and turn off link when the
3330 * driver is unloaded and wake on lan is not enabled (among others)
3331 * *** this routine MUST be followed by a call to e1000e_reset ***
3333 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
3335 if (adapter
->hw
.phy
.ops
.power_up
)
3336 adapter
->hw
.phy
.ops
.power_up(&adapter
->hw
);
3338 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
3342 * e1000_power_down_phy - Power down the PHY
3344 * Power down the PHY so no link is implied when interface is down.
3345 * The PHY cannot be powered down if management or WoL is active.
3347 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
3349 /* WoL is enabled */
3353 if (adapter
->hw
.phy
.ops
.power_down
)
3354 adapter
->hw
.phy
.ops
.power_down(&adapter
->hw
);
3358 * e1000e_reset - bring the hardware into a known good state
3360 * This function boots the hardware and enables some settings that
3361 * require a configuration cycle of the hardware - those cannot be
3362 * set/changed during runtime. After reset the device needs to be
3363 * properly configured for Rx, Tx etc.
3365 void e1000e_reset(struct e1000_adapter
*adapter
)
3367 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3368 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
3369 struct e1000_hw
*hw
= &adapter
->hw
;
3370 u32 tx_space
, min_tx_space
, min_rx_space
;
3371 u32 pba
= adapter
->pba
;
3374 /* reset Packet Buffer Allocation to default */
3377 if (adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3379 * To maintain wire speed transmits, the Tx FIFO should be
3380 * large enough to accommodate two full transmit packets,
3381 * rounded up to the next 1KB and expressed in KB. Likewise,
3382 * the Rx FIFO should be large enough to accommodate at least
3383 * one full receive packet and is similarly rounded up and
3387 /* upper 16 bits has Tx packet buffer allocation size in KB */
3388 tx_space
= pba
>> 16;
3389 /* lower 16 bits has Rx packet buffer allocation size in KB */
3392 * the Tx fifo also stores 16 bytes of information about the Tx
3393 * but don't include ethernet FCS because hardware appends it
3395 min_tx_space
= (adapter
->max_frame_size
+
3396 sizeof(struct e1000_tx_desc
) -
3398 min_tx_space
= ALIGN(min_tx_space
, 1024);
3399 min_tx_space
>>= 10;
3400 /* software strips receive CRC, so leave room for it */
3401 min_rx_space
= adapter
->max_frame_size
;
3402 min_rx_space
= ALIGN(min_rx_space
, 1024);
3403 min_rx_space
>>= 10;
3406 * If current Tx allocation is less than the min Tx FIFO size,
3407 * and the min Tx FIFO size is less than the current Rx FIFO
3408 * allocation, take space away from current Rx allocation
3410 if ((tx_space
< min_tx_space
) &&
3411 ((min_tx_space
- tx_space
) < pba
)) {
3412 pba
-= min_tx_space
- tx_space
;
3415 * if short on Rx space, Rx wins and must trump Tx
3416 * adjustment or use Early Receive if available
3418 if (pba
< min_rx_space
)
3426 * flow control settings
3428 * The high water mark must be low enough to fit one full frame
3429 * (or the size used for early receive) above it in the Rx FIFO.
3430 * Set it to the lower of:
3431 * - 90% of the Rx FIFO size, and
3432 * - the full Rx FIFO size minus one full frame
3434 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
3435 fc
->pause_time
= 0xFFFF;
3437 fc
->pause_time
= E1000_FC_PAUSE_TIME
;
3439 fc
->current_mode
= fc
->requested_mode
;
3441 switch (hw
->mac
.type
) {
3443 case e1000_ich10lan
:
3444 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3447 fc
->high_water
= 0x2800;
3448 fc
->low_water
= fc
->high_water
- 8;
3453 hwm
= min(((pba
<< 10) * 9 / 10),
3454 ((pba
<< 10) - adapter
->max_frame_size
));
3456 fc
->high_water
= hwm
& E1000_FCRTH_RTH
; /* 8-byte granularity */
3457 fc
->low_water
= fc
->high_water
- 8;
3461 * Workaround PCH LOM adapter hangs with certain network
3462 * loads. If hangs persist, try disabling Tx flow control.
3464 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3465 fc
->high_water
= 0x3500;
3466 fc
->low_water
= 0x1500;
3468 fc
->high_water
= 0x5000;
3469 fc
->low_water
= 0x3000;
3471 fc
->refresh_time
= 0x1000;
3474 fc
->high_water
= 0x05C20;
3475 fc
->low_water
= 0x05048;
3476 fc
->pause_time
= 0x0650;
3477 fc
->refresh_time
= 0x0400;
3478 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3486 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3487 * fit in receive buffer.
3489 if (adapter
->itr_setting
& 0x3) {
3490 if ((adapter
->max_frame_size
* 2) > (pba
<< 10)) {
3491 if (!(adapter
->flags2
& FLAG2_DISABLE_AIM
)) {
3492 dev_info(&adapter
->pdev
->dev
,
3493 "Interrupt Throttle Rate turned off\n");
3494 adapter
->flags2
|= FLAG2_DISABLE_AIM
;
3497 } else if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
3498 dev_info(&adapter
->pdev
->dev
,
3499 "Interrupt Throttle Rate turned on\n");
3500 adapter
->flags2
&= ~FLAG2_DISABLE_AIM
;
3501 adapter
->itr
= 20000;
3502 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
3506 /* Allow time for pending master requests to run */
3507 mac
->ops
.reset_hw(hw
);
3510 * For parts with AMT enabled, let the firmware know
3511 * that the network interface is in control
3513 if (adapter
->flags
& FLAG_HAS_AMT
)
3514 e1000e_get_hw_control(adapter
);
3518 if (mac
->ops
.init_hw(hw
))
3519 e_err("Hardware Error\n");
3521 e1000_update_mng_vlan(adapter
);
3523 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3524 ew32(VET
, ETH_P_8021Q
);
3526 e1000e_reset_adaptive(hw
);
3528 if (!netif_running(adapter
->netdev
) &&
3529 !test_bit(__E1000_TESTING
, &adapter
->state
)) {
3530 e1000_power_down_phy(adapter
);
3534 e1000_get_phy_info(hw
);
3536 if ((adapter
->flags
& FLAG_HAS_SMART_POWER_DOWN
) &&
3537 !(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
3540 * speed up time to link by disabling smart power down, ignore
3541 * the return value of this function because there is nothing
3542 * different we would do if it failed
3544 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
3545 phy_data
&= ~IGP02E1000_PM_SPD
;
3546 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
3550 int e1000e_up(struct e1000_adapter
*adapter
)
3552 struct e1000_hw
*hw
= &adapter
->hw
;
3554 /* hardware has been reset, we need to reload some things */
3555 e1000_configure(adapter
);
3557 clear_bit(__E1000_DOWN
, &adapter
->state
);
3559 if (adapter
->msix_entries
)
3560 e1000_configure_msix(adapter
);
3561 e1000_irq_enable(adapter
);
3563 netif_start_queue(adapter
->netdev
);
3565 /* fire a link change interrupt to start the watchdog */
3566 if (adapter
->msix_entries
)
3567 ew32(ICS
, E1000_ICS_LSC
| E1000_ICR_OTHER
);
3569 ew32(ICS
, E1000_ICS_LSC
);
3574 static void e1000e_flush_descriptors(struct e1000_adapter
*adapter
)
3576 struct e1000_hw
*hw
= &adapter
->hw
;
3578 if (!(adapter
->flags2
& FLAG2_DMA_BURST
))
3581 /* flush pending descriptor writebacks to memory */
3582 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
3583 ew32(RDTR
, adapter
->rx_int_delay
| E1000_RDTR_FPD
);
3585 /* execute the writes immediately */
3589 static void e1000e_update_stats(struct e1000_adapter
*adapter
);
3591 void e1000e_down(struct e1000_adapter
*adapter
)
3593 struct net_device
*netdev
= adapter
->netdev
;
3594 struct e1000_hw
*hw
= &adapter
->hw
;
3598 * signal that we're down so the interrupt handler does not
3599 * reschedule our watchdog timer
3601 set_bit(__E1000_DOWN
, &adapter
->state
);
3603 /* disable receives in the hardware */
3605 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
3606 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3607 /* flush and sleep below */
3609 netif_stop_queue(netdev
);
3611 /* disable transmits in the hardware */
3613 tctl
&= ~E1000_TCTL_EN
;
3616 /* flush both disables and wait for them to finish */
3618 usleep_range(10000, 20000);
3620 e1000_irq_disable(adapter
);
3622 del_timer_sync(&adapter
->watchdog_timer
);
3623 del_timer_sync(&adapter
->phy_info_timer
);
3625 netif_carrier_off(netdev
);
3627 spin_lock(&adapter
->stats64_lock
);
3628 e1000e_update_stats(adapter
);
3629 spin_unlock(&adapter
->stats64_lock
);
3631 e1000e_flush_descriptors(adapter
);
3632 e1000_clean_tx_ring(adapter
->tx_ring
);
3633 e1000_clean_rx_ring(adapter
->rx_ring
);
3635 adapter
->link_speed
= 0;
3636 adapter
->link_duplex
= 0;
3638 if (!pci_channel_offline(adapter
->pdev
))
3639 e1000e_reset(adapter
);
3642 * TODO: for power management, we could drop the link and
3643 * pci_disable_device here.
3647 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
3650 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
3651 usleep_range(1000, 2000);
3652 e1000e_down(adapter
);
3654 clear_bit(__E1000_RESETTING
, &adapter
->state
);
3658 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3659 * @adapter: board private structure to initialize
3661 * e1000_sw_init initializes the Adapter private data structure.
3662 * Fields are initialized based on PCI device information and
3663 * OS network device settings (MTU size).
3665 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
3667 struct net_device
*netdev
= adapter
->netdev
;
3669 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
3670 adapter
->rx_ps_bsize0
= 128;
3671 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
3672 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
3673 adapter
->tx_ring_count
= E1000_DEFAULT_TXD
;
3674 adapter
->rx_ring_count
= E1000_DEFAULT_RXD
;
3676 spin_lock_init(&adapter
->stats64_lock
);
3678 e1000e_set_interrupt_capability(adapter
);
3680 if (e1000_alloc_queues(adapter
))
3683 /* Explicitly disable IRQ since the NIC can be in any state. */
3684 e1000_irq_disable(adapter
);
3686 set_bit(__E1000_DOWN
, &adapter
->state
);
3691 * e1000_intr_msi_test - Interrupt Handler
3692 * @irq: interrupt number
3693 * @data: pointer to a network interface device structure
3695 static irqreturn_t
e1000_intr_msi_test(int irq
, void *data
)
3697 struct net_device
*netdev
= data
;
3698 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3699 struct e1000_hw
*hw
= &adapter
->hw
;
3700 u32 icr
= er32(ICR
);
3702 e_dbg("icr is %08X\n", icr
);
3703 if (icr
& E1000_ICR_RXSEQ
) {
3704 adapter
->flags
&= ~FLAG_MSI_TEST_FAILED
;
3712 * e1000_test_msi_interrupt - Returns 0 for successful test
3713 * @adapter: board private struct
3715 * code flow taken from tg3.c
3717 static int e1000_test_msi_interrupt(struct e1000_adapter
*adapter
)
3719 struct net_device
*netdev
= adapter
->netdev
;
3720 struct e1000_hw
*hw
= &adapter
->hw
;
3723 /* poll_enable hasn't been called yet, so don't need disable */
3724 /* clear any pending events */
3727 /* free the real vector and request a test handler */
3728 e1000_free_irq(adapter
);
3729 e1000e_reset_interrupt_capability(adapter
);
3731 /* Assume that the test fails, if it succeeds then the test
3732 * MSI irq handler will unset this flag */
3733 adapter
->flags
|= FLAG_MSI_TEST_FAILED
;
3735 err
= pci_enable_msi(adapter
->pdev
);
3737 goto msi_test_failed
;
3739 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi_test
, 0,
3740 netdev
->name
, netdev
);
3742 pci_disable_msi(adapter
->pdev
);
3743 goto msi_test_failed
;
3748 e1000_irq_enable(adapter
);
3750 /* fire an unusual interrupt on the test handler */
3751 ew32(ICS
, E1000_ICS_RXSEQ
);
3755 e1000_irq_disable(adapter
);
3759 if (adapter
->flags
& FLAG_MSI_TEST_FAILED
) {
3760 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
3761 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3763 e_dbg("MSI interrupt test succeeded!\n");
3766 free_irq(adapter
->pdev
->irq
, netdev
);
3767 pci_disable_msi(adapter
->pdev
);
3770 e1000e_set_interrupt_capability(adapter
);
3771 return e1000_request_irq(adapter
);
3775 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3776 * @adapter: board private struct
3778 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3780 static int e1000_test_msi(struct e1000_adapter
*adapter
)
3785 if (!(adapter
->flags
& FLAG_MSI_ENABLED
))
3788 /* disable SERR in case the MSI write causes a master abort */
3789 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
3790 if (pci_cmd
& PCI_COMMAND_SERR
)
3791 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
,
3792 pci_cmd
& ~PCI_COMMAND_SERR
);
3794 err
= e1000_test_msi_interrupt(adapter
);
3796 /* re-enable SERR */
3797 if (pci_cmd
& PCI_COMMAND_SERR
) {
3798 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
3799 pci_cmd
|= PCI_COMMAND_SERR
;
3800 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
, pci_cmd
);
3807 * e1000_open - Called when a network interface is made active
3808 * @netdev: network interface device structure
3810 * Returns 0 on success, negative value on failure
3812 * The open entry point is called when a network interface is made
3813 * active by the system (IFF_UP). At this point all resources needed
3814 * for transmit and receive operations are allocated, the interrupt
3815 * handler is registered with the OS, the watchdog timer is started,
3816 * and the stack is notified that the interface is ready.
3818 static int e1000_open(struct net_device
*netdev
)
3820 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3821 struct e1000_hw
*hw
= &adapter
->hw
;
3822 struct pci_dev
*pdev
= adapter
->pdev
;
3825 /* disallow open during test */
3826 if (test_bit(__E1000_TESTING
, &adapter
->state
))
3829 pm_runtime_get_sync(&pdev
->dev
);
3831 netif_carrier_off(netdev
);
3833 /* allocate transmit descriptors */
3834 err
= e1000e_setup_tx_resources(adapter
->tx_ring
);
3838 /* allocate receive descriptors */
3839 err
= e1000e_setup_rx_resources(adapter
->rx_ring
);
3844 * If AMT is enabled, let the firmware know that the network
3845 * interface is now open and reset the part to a known state.
3847 if (adapter
->flags
& FLAG_HAS_AMT
) {
3848 e1000e_get_hw_control(adapter
);
3849 e1000e_reset(adapter
);
3852 e1000e_power_up_phy(adapter
);
3854 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
3855 if ((adapter
->hw
.mng_cookie
.status
&
3856 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
3857 e1000_update_mng_vlan(adapter
);
3859 /* DMA latency requirement to workaround jumbo issue */
3860 if (adapter
->hw
.mac
.type
== e1000_pch2lan
)
3861 pm_qos_add_request(&adapter
->netdev
->pm_qos_req
,
3862 PM_QOS_CPU_DMA_LATENCY
,
3863 PM_QOS_DEFAULT_VALUE
);
3866 * before we allocate an interrupt, we must be ready to handle it.
3867 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3868 * as soon as we call pci_request_irq, so we have to setup our
3869 * clean_rx handler before we do so.
3871 e1000_configure(adapter
);
3873 err
= e1000_request_irq(adapter
);
3878 * Work around PCIe errata with MSI interrupts causing some chipsets to
3879 * ignore e1000e MSI messages, which means we need to test our MSI
3882 if (adapter
->int_mode
!= E1000E_INT_MODE_LEGACY
) {
3883 err
= e1000_test_msi(adapter
);
3885 e_err("Interrupt allocation failed\n");
3890 /* From here on the code is the same as e1000e_up() */
3891 clear_bit(__E1000_DOWN
, &adapter
->state
);
3893 napi_enable(&adapter
->napi
);
3895 e1000_irq_enable(adapter
);
3897 adapter
->tx_hang_recheck
= false;
3898 netif_start_queue(netdev
);
3900 adapter
->idle_check
= true;
3901 pm_runtime_put(&pdev
->dev
);
3903 /* fire a link status change interrupt to start the watchdog */
3904 if (adapter
->msix_entries
)
3905 ew32(ICS
, E1000_ICS_LSC
| E1000_ICR_OTHER
);
3907 ew32(ICS
, E1000_ICS_LSC
);
3912 e1000e_release_hw_control(adapter
);
3913 e1000_power_down_phy(adapter
);
3914 e1000e_free_rx_resources(adapter
->rx_ring
);
3916 e1000e_free_tx_resources(adapter
->tx_ring
);
3918 e1000e_reset(adapter
);
3919 pm_runtime_put_sync(&pdev
->dev
);
3925 * e1000_close - Disables a network interface
3926 * @netdev: network interface device structure
3928 * Returns 0, this is not allowed to fail
3930 * The close entry point is called when an interface is de-activated
3931 * by the OS. The hardware is still under the drivers control, but
3932 * needs to be disabled. A global MAC reset is issued to stop the
3933 * hardware, and all transmit and receive resources are freed.
3935 static int e1000_close(struct net_device
*netdev
)
3937 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3938 struct pci_dev
*pdev
= adapter
->pdev
;
3940 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
3942 pm_runtime_get_sync(&pdev
->dev
);
3944 napi_disable(&adapter
->napi
);
3946 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
3947 e1000e_down(adapter
);
3948 e1000_free_irq(adapter
);
3950 e1000_power_down_phy(adapter
);
3952 e1000e_free_tx_resources(adapter
->tx_ring
);
3953 e1000e_free_rx_resources(adapter
->rx_ring
);
3956 * kill manageability vlan ID if supported, but not if a vlan with
3957 * the same ID is registered on the host OS (let 8021q kill it)
3959 if (adapter
->hw
.mng_cookie
.status
&
3960 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)
3961 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
3964 * If AMT is enabled, let the firmware know that the network
3965 * interface is now closed
3967 if ((adapter
->flags
& FLAG_HAS_AMT
) &&
3968 !test_bit(__E1000_TESTING
, &adapter
->state
))
3969 e1000e_release_hw_control(adapter
);
3971 if (adapter
->hw
.mac
.type
== e1000_pch2lan
)
3972 pm_qos_remove_request(&adapter
->netdev
->pm_qos_req
);
3974 pm_runtime_put_sync(&pdev
->dev
);
3979 * e1000_set_mac - Change the Ethernet Address of the NIC
3980 * @netdev: network interface device structure
3981 * @p: pointer to an address structure
3983 * Returns 0 on success, negative on failure
3985 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
3987 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3988 struct sockaddr
*addr
= p
;
3990 if (!is_valid_ether_addr(addr
->sa_data
))
3991 return -EADDRNOTAVAIL
;
3993 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
3994 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
3996 e1000e_rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
3998 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
3999 /* activate the work around */
4000 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
4003 * Hold a copy of the LAA in RAR[14] This is done so that
4004 * between the time RAR[0] gets clobbered and the time it
4005 * gets fixed (in e1000_watchdog), the actual LAA is in one
4006 * of the RARs and no incoming packets directed to this port
4007 * are dropped. Eventually the LAA will be in RAR[0] and
4010 e1000e_rar_set(&adapter
->hw
,
4011 adapter
->hw
.mac
.addr
,
4012 adapter
->hw
.mac
.rar_entry_count
- 1);
4019 * e1000e_update_phy_task - work thread to update phy
4020 * @work: pointer to our work struct
4022 * this worker thread exists because we must acquire a
4023 * semaphore to read the phy, which we could msleep while
4024 * waiting for it, and we can't msleep in a timer.
4026 static void e1000e_update_phy_task(struct work_struct
*work
)
4028 struct e1000_adapter
*adapter
= container_of(work
,
4029 struct e1000_adapter
, update_phy_task
);
4031 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4034 e1000_get_phy_info(&adapter
->hw
);
4038 * Need to wait a few seconds after link up to get diagnostic information from
4041 static void e1000_update_phy_info(unsigned long data
)
4043 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
4045 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4048 schedule_work(&adapter
->update_phy_task
);
4052 * e1000e_update_phy_stats - Update the PHY statistics counters
4053 * @adapter: board private structure
4055 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4057 static void e1000e_update_phy_stats(struct e1000_adapter
*adapter
)
4059 struct e1000_hw
*hw
= &adapter
->hw
;
4063 ret_val
= hw
->phy
.ops
.acquire(hw
);
4068 * A page set is expensive so check if already on desired page.
4069 * If not, set to the page with the PHY status registers.
4072 ret_val
= e1000e_read_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
4076 if (phy_data
!= (HV_STATS_PAGE
<< IGP_PAGE_SHIFT
)) {
4077 ret_val
= hw
->phy
.ops
.set_page(hw
,
4078 HV_STATS_PAGE
<< IGP_PAGE_SHIFT
);
4083 /* Single Collision Count */
4084 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_UPPER
, &phy_data
);
4085 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_LOWER
, &phy_data
);
4087 adapter
->stats
.scc
+= phy_data
;
4089 /* Excessive Collision Count */
4090 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_UPPER
, &phy_data
);
4091 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_LOWER
, &phy_data
);
4093 adapter
->stats
.ecol
+= phy_data
;
4095 /* Multiple Collision Count */
4096 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_UPPER
, &phy_data
);
4097 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_LOWER
, &phy_data
);
4099 adapter
->stats
.mcc
+= phy_data
;
4101 /* Late Collision Count */
4102 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_UPPER
, &phy_data
);
4103 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_LOWER
, &phy_data
);
4105 adapter
->stats
.latecol
+= phy_data
;
4107 /* Collision Count - also used for adaptive IFS */
4108 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_UPPER
, &phy_data
);
4109 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_LOWER
, &phy_data
);
4111 hw
->mac
.collision_delta
= phy_data
;
4114 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_UPPER
, &phy_data
);
4115 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_DC_LOWER
, &phy_data
);
4117 adapter
->stats
.dc
+= phy_data
;
4119 /* Transmit with no CRS */
4120 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_UPPER
, &phy_data
);
4121 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_LOWER
, &phy_data
);
4123 adapter
->stats
.tncrs
+= phy_data
;
4126 hw
->phy
.ops
.release(hw
);
4130 * e1000e_update_stats - Update the board statistics counters
4131 * @adapter: board private structure
4133 static void e1000e_update_stats(struct e1000_adapter
*adapter
)
4135 struct net_device
*netdev
= adapter
->netdev
;
4136 struct e1000_hw
*hw
= &adapter
->hw
;
4137 struct pci_dev
*pdev
= adapter
->pdev
;
4140 * Prevent stats update while adapter is being reset, or if the pci
4141 * connection is down.
4143 if (adapter
->link_speed
== 0)
4145 if (pci_channel_offline(pdev
))
4148 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
4149 adapter
->stats
.gprc
+= er32(GPRC
);
4150 adapter
->stats
.gorc
+= er32(GORCL
);
4151 er32(GORCH
); /* Clear gorc */
4152 adapter
->stats
.bprc
+= er32(BPRC
);
4153 adapter
->stats
.mprc
+= er32(MPRC
);
4154 adapter
->stats
.roc
+= er32(ROC
);
4156 adapter
->stats
.mpc
+= er32(MPC
);
4158 /* Half-duplex statistics */
4159 if (adapter
->link_duplex
== HALF_DUPLEX
) {
4160 if (adapter
->flags2
& FLAG2_HAS_PHY_STATS
) {
4161 e1000e_update_phy_stats(adapter
);
4163 adapter
->stats
.scc
+= er32(SCC
);
4164 adapter
->stats
.ecol
+= er32(ECOL
);
4165 adapter
->stats
.mcc
+= er32(MCC
);
4166 adapter
->stats
.latecol
+= er32(LATECOL
);
4167 adapter
->stats
.dc
+= er32(DC
);
4169 hw
->mac
.collision_delta
= er32(COLC
);
4171 if ((hw
->mac
.type
!= e1000_82574
) &&
4172 (hw
->mac
.type
!= e1000_82583
))
4173 adapter
->stats
.tncrs
+= er32(TNCRS
);
4175 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
4178 adapter
->stats
.xonrxc
+= er32(XONRXC
);
4179 adapter
->stats
.xontxc
+= er32(XONTXC
);
4180 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
4181 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
4182 adapter
->stats
.gptc
+= er32(GPTC
);
4183 adapter
->stats
.gotc
+= er32(GOTCL
);
4184 er32(GOTCH
); /* Clear gotc */
4185 adapter
->stats
.rnbc
+= er32(RNBC
);
4186 adapter
->stats
.ruc
+= er32(RUC
);
4188 adapter
->stats
.mptc
+= er32(MPTC
);
4189 adapter
->stats
.bptc
+= er32(BPTC
);
4191 /* used for adaptive IFS */
4193 hw
->mac
.tx_packet_delta
= er32(TPT
);
4194 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
4196 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
4197 adapter
->stats
.rxerrc
+= er32(RXERRC
);
4198 adapter
->stats
.cexterr
+= er32(CEXTERR
);
4199 adapter
->stats
.tsctc
+= er32(TSCTC
);
4200 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
4202 /* Fill out the OS statistics structure */
4203 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
4204 netdev
->stats
.collisions
= adapter
->stats
.colc
;
4209 * RLEC on some newer hardware can be incorrect so build
4210 * our own version based on RUC and ROC
4212 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
4213 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
4214 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
4215 adapter
->stats
.cexterr
;
4216 netdev
->stats
.rx_length_errors
= adapter
->stats
.ruc
+
4218 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
4219 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
4220 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
4223 netdev
->stats
.tx_errors
= adapter
->stats
.ecol
+
4224 adapter
->stats
.latecol
;
4225 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
4226 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
4227 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
4229 /* Tx Dropped needs to be maintained elsewhere */
4231 /* Management Stats */
4232 adapter
->stats
.mgptc
+= er32(MGTPTC
);
4233 adapter
->stats
.mgprc
+= er32(MGTPRC
);
4234 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
4238 * e1000_phy_read_status - Update the PHY register status snapshot
4239 * @adapter: board private structure
4241 static void e1000_phy_read_status(struct e1000_adapter
*adapter
)
4243 struct e1000_hw
*hw
= &adapter
->hw
;
4244 struct e1000_phy_regs
*phy
= &adapter
->phy_regs
;
4246 if ((er32(STATUS
) & E1000_STATUS_LU
) &&
4247 (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)) {
4250 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy
->bmcr
);
4251 ret_val
|= e1e_rphy(hw
, PHY_STATUS
, &phy
->bmsr
);
4252 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &phy
->advertise
);
4253 ret_val
|= e1e_rphy(hw
, PHY_LP_ABILITY
, &phy
->lpa
);
4254 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_EXP
, &phy
->expansion
);
4255 ret_val
|= e1e_rphy(hw
, PHY_1000T_CTRL
, &phy
->ctrl1000
);
4256 ret_val
|= e1e_rphy(hw
, PHY_1000T_STATUS
, &phy
->stat1000
);
4257 ret_val
|= e1e_rphy(hw
, PHY_EXT_STATUS
, &phy
->estatus
);
4259 e_warn("Error reading PHY register\n");
4262 * Do not read PHY registers if link is not up
4263 * Set values to typical power-on defaults
4265 phy
->bmcr
= (BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_FULLDPLX
);
4266 phy
->bmsr
= (BMSR_100FULL
| BMSR_100HALF
| BMSR_10FULL
|
4267 BMSR_10HALF
| BMSR_ESTATEN
| BMSR_ANEGCAPABLE
|
4269 phy
->advertise
= (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
|
4270 ADVERTISE_ALL
| ADVERTISE_CSMA
);
4272 phy
->expansion
= EXPANSION_ENABLENPAGE
;
4273 phy
->ctrl1000
= ADVERTISE_1000FULL
;
4275 phy
->estatus
= (ESTATUS_1000_TFULL
| ESTATUS_1000_THALF
);
4279 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
4281 struct e1000_hw
*hw
= &adapter
->hw
;
4282 u32 ctrl
= er32(CTRL
);
4284 /* Link status message must follow this format for user tools */
4285 printk(KERN_INFO
"e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4286 adapter
->netdev
->name
,
4287 adapter
->link_speed
,
4288 adapter
->link_duplex
== FULL_DUPLEX
? "Full" : "Half",
4289 (ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
) ? "Rx/Tx" :
4290 (ctrl
& E1000_CTRL_RFCE
) ? "Rx" :
4291 (ctrl
& E1000_CTRL_TFCE
) ? "Tx" : "None");
4294 static bool e1000e_has_link(struct e1000_adapter
*adapter
)
4296 struct e1000_hw
*hw
= &adapter
->hw
;
4297 bool link_active
= false;
4301 * get_link_status is set on LSC (link status) interrupt or
4302 * Rx sequence error interrupt. get_link_status will stay
4303 * false until the check_for_link establishes link
4304 * for copper adapters ONLY
4306 switch (hw
->phy
.media_type
) {
4307 case e1000_media_type_copper
:
4308 if (hw
->mac
.get_link_status
) {
4309 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4310 link_active
= !hw
->mac
.get_link_status
;
4315 case e1000_media_type_fiber
:
4316 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4317 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
4319 case e1000_media_type_internal_serdes
:
4320 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4321 link_active
= adapter
->hw
.mac
.serdes_has_link
;
4324 case e1000_media_type_unknown
:
4328 if ((ret_val
== E1000_ERR_PHY
) && (hw
->phy
.type
== e1000_phy_igp_3
) &&
4329 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
4330 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4331 e_info("Gigabit has been disabled, downgrading speed\n");
4337 static void e1000e_enable_receives(struct e1000_adapter
*adapter
)
4339 /* make sure the receive unit is started */
4340 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
4341 (adapter
->flags
& FLAG_RX_RESTART_NOW
)) {
4342 struct e1000_hw
*hw
= &adapter
->hw
;
4343 u32 rctl
= er32(RCTL
);
4344 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
4345 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
4349 static void e1000e_check_82574_phy_workaround(struct e1000_adapter
*adapter
)
4351 struct e1000_hw
*hw
= &adapter
->hw
;
4354 * With 82574 controllers, PHY needs to be checked periodically
4355 * for hung state and reset, if two calls return true
4357 if (e1000_check_phy_82574(hw
))
4358 adapter
->phy_hang_count
++;
4360 adapter
->phy_hang_count
= 0;
4362 if (adapter
->phy_hang_count
> 1) {
4363 adapter
->phy_hang_count
= 0;
4364 schedule_work(&adapter
->reset_task
);
4369 * e1000_watchdog - Timer Call-back
4370 * @data: pointer to adapter cast into an unsigned long
4372 static void e1000_watchdog(unsigned long data
)
4374 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
4376 /* Do the rest outside of interrupt context */
4377 schedule_work(&adapter
->watchdog_task
);
4379 /* TODO: make this use queue_delayed_work() */
4382 static void e1000_watchdog_task(struct work_struct
*work
)
4384 struct e1000_adapter
*adapter
= container_of(work
,
4385 struct e1000_adapter
, watchdog_task
);
4386 struct net_device
*netdev
= adapter
->netdev
;
4387 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
4388 struct e1000_phy_info
*phy
= &adapter
->hw
.phy
;
4389 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4390 struct e1000_hw
*hw
= &adapter
->hw
;
4393 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4396 link
= e1000e_has_link(adapter
);
4397 if ((netif_carrier_ok(netdev
)) && link
) {
4398 /* Cancel scheduled suspend requests. */
4399 pm_runtime_resume(netdev
->dev
.parent
);
4401 e1000e_enable_receives(adapter
);
4405 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
4406 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
4407 e1000_update_mng_vlan(adapter
);
4410 if (!netif_carrier_ok(netdev
)) {
4413 /* Cancel scheduled suspend requests. */
4414 pm_runtime_resume(netdev
->dev
.parent
);
4416 /* update snapshot of PHY registers on LSC */
4417 e1000_phy_read_status(adapter
);
4418 mac
->ops
.get_link_up_info(&adapter
->hw
,
4419 &adapter
->link_speed
,
4420 &adapter
->link_duplex
);
4421 e1000_print_link_info(adapter
);
4423 * On supported PHYs, check for duplex mismatch only
4424 * if link has autonegotiated at 10/100 half
4426 if ((hw
->phy
.type
== e1000_phy_igp_3
||
4427 hw
->phy
.type
== e1000_phy_bm
) &&
4428 (hw
->mac
.autoneg
== true) &&
4429 (adapter
->link_speed
== SPEED_10
||
4430 adapter
->link_speed
== SPEED_100
) &&
4431 (adapter
->link_duplex
== HALF_DUPLEX
)) {
4434 e1e_rphy(hw
, PHY_AUTONEG_EXP
, &autoneg_exp
);
4436 if (!(autoneg_exp
& NWAY_ER_LP_NWAY_CAPS
))
4437 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
4440 /* adjust timeout factor according to speed/duplex */
4441 adapter
->tx_timeout_factor
= 1;
4442 switch (adapter
->link_speed
) {
4445 adapter
->tx_timeout_factor
= 16;
4449 adapter
->tx_timeout_factor
= 10;
4454 * workaround: re-program speed mode bit after
4457 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
4460 tarc0
= er32(TARC(0));
4461 tarc0
&= ~SPEED_MODE_BIT
;
4462 ew32(TARC(0), tarc0
);
4466 * disable TSO for pcie and 10/100 speeds, to avoid
4467 * some hardware issues
4469 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
4470 switch (adapter
->link_speed
) {
4473 e_info("10/100 speed: disabling TSO\n");
4474 netdev
->features
&= ~NETIF_F_TSO
;
4475 netdev
->features
&= ~NETIF_F_TSO6
;
4478 netdev
->features
|= NETIF_F_TSO
;
4479 netdev
->features
|= NETIF_F_TSO6
;
4488 * enable transmits in the hardware, need to do this
4489 * after setting TARC(0)
4492 tctl
|= E1000_TCTL_EN
;
4496 * Perform any post-link-up configuration before
4497 * reporting link up.
4499 if (phy
->ops
.cfg_on_link_up
)
4500 phy
->ops
.cfg_on_link_up(hw
);
4502 netif_carrier_on(netdev
);
4504 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4505 mod_timer(&adapter
->phy_info_timer
,
4506 round_jiffies(jiffies
+ 2 * HZ
));
4509 if (netif_carrier_ok(netdev
)) {
4510 adapter
->link_speed
= 0;
4511 adapter
->link_duplex
= 0;
4512 /* Link status message must follow this format */
4513 printk(KERN_INFO
"e1000e: %s NIC Link is Down\n",
4514 adapter
->netdev
->name
);
4515 netif_carrier_off(netdev
);
4516 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4517 mod_timer(&adapter
->phy_info_timer
,
4518 round_jiffies(jiffies
+ 2 * HZ
));
4520 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)
4521 schedule_work(&adapter
->reset_task
);
4523 pm_schedule_suspend(netdev
->dev
.parent
,
4529 spin_lock(&adapter
->stats64_lock
);
4530 e1000e_update_stats(adapter
);
4532 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
4533 adapter
->tpt_old
= adapter
->stats
.tpt
;
4534 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
4535 adapter
->colc_old
= adapter
->stats
.colc
;
4537 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
4538 adapter
->gorc_old
= adapter
->stats
.gorc
;
4539 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
4540 adapter
->gotc_old
= adapter
->stats
.gotc
;
4541 spin_unlock(&adapter
->stats64_lock
);
4543 e1000e_update_adaptive(&adapter
->hw
);
4545 if (!netif_carrier_ok(netdev
) &&
4546 (e1000_desc_unused(tx_ring
) + 1 < tx_ring
->count
)) {
4548 * We've lost link, so the controller stops DMA,
4549 * but we've got queued Tx work that's never going
4550 * to get done, so reset controller to flush Tx.
4551 * (Do the reset outside of interrupt context).
4553 schedule_work(&adapter
->reset_task
);
4554 /* return immediately since reset is imminent */
4558 /* Simple mode for Interrupt Throttle Rate (ITR) */
4559 if (adapter
->itr_setting
== 4) {
4561 * Symmetric Tx/Rx gets a reduced ITR=2000;
4562 * Total asymmetrical Tx or Rx gets ITR=8000;
4563 * everyone else is between 2000-8000.
4565 u32 goc
= (adapter
->gotc
+ adapter
->gorc
) / 10000;
4566 u32 dif
= (adapter
->gotc
> adapter
->gorc
?
4567 adapter
->gotc
- adapter
->gorc
:
4568 adapter
->gorc
- adapter
->gotc
) / 10000;
4569 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
4571 ew32(ITR
, 1000000000 / (itr
* 256));
4574 /* Cause software interrupt to ensure Rx ring is cleaned */
4575 if (adapter
->msix_entries
)
4576 ew32(ICS
, adapter
->rx_ring
->ims_val
);
4578 ew32(ICS
, E1000_ICS_RXDMT0
);
4580 /* flush pending descriptors to memory before detecting Tx hang */
4581 e1000e_flush_descriptors(adapter
);
4583 /* Force detection of hung controller every watchdog period */
4584 adapter
->detect_tx_hung
= true;
4587 * With 82571 controllers, LAA may be overwritten due to controller
4588 * reset from the other port. Set the appropriate LAA in RAR[0]
4590 if (e1000e_get_laa_state_82571(hw
))
4591 e1000e_rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
4593 if (adapter
->flags2
& FLAG2_CHECK_PHY_HANG
)
4594 e1000e_check_82574_phy_workaround(adapter
);
4596 /* Reset the timer */
4597 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4598 mod_timer(&adapter
->watchdog_timer
,
4599 round_jiffies(jiffies
+ 2 * HZ
));
4602 #define E1000_TX_FLAGS_CSUM 0x00000001
4603 #define E1000_TX_FLAGS_VLAN 0x00000002
4604 #define E1000_TX_FLAGS_TSO 0x00000004
4605 #define E1000_TX_FLAGS_IPV4 0x00000008
4606 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
4607 #define E1000_TX_FLAGS_VLAN_SHIFT 16
4609 static int e1000_tso(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
)
4611 struct e1000_context_desc
*context_desc
;
4612 struct e1000_buffer
*buffer_info
;
4615 u16 ipcse
= 0, tucse
, mss
;
4616 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
4618 if (!skb_is_gso(skb
))
4621 if (skb_header_cloned(skb
)) {
4622 int err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
4628 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
4629 mss
= skb_shinfo(skb
)->gso_size
;
4630 if (skb
->protocol
== htons(ETH_P_IP
)) {
4631 struct iphdr
*iph
= ip_hdr(skb
);
4634 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
, iph
->daddr
,
4636 cmd_length
= E1000_TXD_CMD_IP
;
4637 ipcse
= skb_transport_offset(skb
) - 1;
4638 } else if (skb_is_gso_v6(skb
)) {
4639 ipv6_hdr(skb
)->payload_len
= 0;
4640 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
4641 &ipv6_hdr(skb
)->daddr
,
4645 ipcss
= skb_network_offset(skb
);
4646 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
4647 tucss
= skb_transport_offset(skb
);
4648 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
4651 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
4652 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
4654 i
= tx_ring
->next_to_use
;
4655 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
4656 buffer_info
= &tx_ring
->buffer_info
[i
];
4658 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
4659 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
4660 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
4661 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
4662 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
4663 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
4664 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
4665 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
4666 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
4668 buffer_info
->time_stamp
= jiffies
;
4669 buffer_info
->next_to_watch
= i
;
4672 if (i
== tx_ring
->count
)
4674 tx_ring
->next_to_use
= i
;
4679 static bool e1000_tx_csum(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
)
4681 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
4682 struct e1000_context_desc
*context_desc
;
4683 struct e1000_buffer
*buffer_info
;
4686 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
4689 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
4692 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
))
4693 protocol
= vlan_eth_hdr(skb
)->h_vlan_encapsulated_proto
;
4695 protocol
= skb
->protocol
;
4698 case cpu_to_be16(ETH_P_IP
):
4699 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
4700 cmd_len
|= E1000_TXD_CMD_TCP
;
4702 case cpu_to_be16(ETH_P_IPV6
):
4703 /* XXX not handling all IPV6 headers */
4704 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
4705 cmd_len
|= E1000_TXD_CMD_TCP
;
4708 if (unlikely(net_ratelimit()))
4709 e_warn("checksum_partial proto=%x!\n",
4710 be16_to_cpu(protocol
));
4714 css
= skb_checksum_start_offset(skb
);
4716 i
= tx_ring
->next_to_use
;
4717 buffer_info
= &tx_ring
->buffer_info
[i
];
4718 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
4720 context_desc
->lower_setup
.ip_config
= 0;
4721 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
4722 context_desc
->upper_setup
.tcp_fields
.tucso
=
4723 css
+ skb
->csum_offset
;
4724 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
4725 context_desc
->tcp_seg_setup
.data
= 0;
4726 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
4728 buffer_info
->time_stamp
= jiffies
;
4729 buffer_info
->next_to_watch
= i
;
4732 if (i
== tx_ring
->count
)
4734 tx_ring
->next_to_use
= i
;
4739 #define E1000_MAX_PER_TXD 8192
4740 #define E1000_MAX_TXD_PWR 12
4742 static int e1000_tx_map(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
,
4743 unsigned int first
, unsigned int max_per_txd
,
4744 unsigned int nr_frags
, unsigned int mss
)
4746 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
4747 struct pci_dev
*pdev
= adapter
->pdev
;
4748 struct e1000_buffer
*buffer_info
;
4749 unsigned int len
= skb_headlen(skb
);
4750 unsigned int offset
= 0, size
, count
= 0, i
;
4751 unsigned int f
, bytecount
, segs
;
4753 i
= tx_ring
->next_to_use
;
4756 buffer_info
= &tx_ring
->buffer_info
[i
];
4757 size
= min(len
, max_per_txd
);
4759 buffer_info
->length
= size
;
4760 buffer_info
->time_stamp
= jiffies
;
4761 buffer_info
->next_to_watch
= i
;
4762 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
4764 size
, DMA_TO_DEVICE
);
4765 buffer_info
->mapped_as_page
= false;
4766 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
4775 if (i
== tx_ring
->count
)
4780 for (f
= 0; f
< nr_frags
; f
++) {
4781 const struct skb_frag_struct
*frag
;
4783 frag
= &skb_shinfo(skb
)->frags
[f
];
4784 len
= skb_frag_size(frag
);
4789 if (i
== tx_ring
->count
)
4792 buffer_info
= &tx_ring
->buffer_info
[i
];
4793 size
= min(len
, max_per_txd
);
4795 buffer_info
->length
= size
;
4796 buffer_info
->time_stamp
= jiffies
;
4797 buffer_info
->next_to_watch
= i
;
4798 buffer_info
->dma
= skb_frag_dma_map(&pdev
->dev
, frag
,
4799 offset
, size
, DMA_TO_DEVICE
);
4800 buffer_info
->mapped_as_page
= true;
4801 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
4810 segs
= skb_shinfo(skb
)->gso_segs
? : 1;
4811 /* multiply data chunks by size of headers */
4812 bytecount
= ((segs
- 1) * skb_headlen(skb
)) + skb
->len
;
4814 tx_ring
->buffer_info
[i
].skb
= skb
;
4815 tx_ring
->buffer_info
[i
].segs
= segs
;
4816 tx_ring
->buffer_info
[i
].bytecount
= bytecount
;
4817 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
4822 dev_err(&pdev
->dev
, "Tx DMA map failed\n");
4823 buffer_info
->dma
= 0;
4829 i
+= tx_ring
->count
;
4831 buffer_info
= &tx_ring
->buffer_info
[i
];
4832 e1000_put_txbuf(tx_ring
, buffer_info
);
4838 static void e1000_tx_queue(struct e1000_ring
*tx_ring
, int tx_flags
, int count
)
4840 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
4841 struct e1000_tx_desc
*tx_desc
= NULL
;
4842 struct e1000_buffer
*buffer_info
;
4843 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
4846 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
4847 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
4849 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
4851 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
4852 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
4855 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
4856 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
4857 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
4860 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
4861 txd_lower
|= E1000_TXD_CMD_VLE
;
4862 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
4865 i
= tx_ring
->next_to_use
;
4868 buffer_info
= &tx_ring
->buffer_info
[i
];
4869 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
4870 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4871 tx_desc
->lower
.data
=
4872 cpu_to_le32(txd_lower
| buffer_info
->length
);
4873 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
4876 if (i
== tx_ring
->count
)
4878 } while (--count
> 0);
4880 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
4883 * Force memory writes to complete before letting h/w
4884 * know there are new descriptors to fetch. (Only
4885 * applicable for weak-ordered memory model archs,
4890 tx_ring
->next_to_use
= i
;
4892 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
4893 e1000e_update_tdt_wa(tx_ring
, i
);
4895 writel(i
, tx_ring
->tail
);
4898 * we need this if more than one processor can write to our tail
4899 * at a time, it synchronizes IO on IA64/Altix systems
4904 #define MINIMUM_DHCP_PACKET_SIZE 282
4905 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
4906 struct sk_buff
*skb
)
4908 struct e1000_hw
*hw
= &adapter
->hw
;
4911 if (vlan_tx_tag_present(skb
)) {
4912 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
4913 (adapter
->hw
.mng_cookie
.status
&
4914 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
4918 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
4921 if (((struct ethhdr
*) skb
->data
)->h_proto
!= htons(ETH_P_IP
))
4925 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+14);
4928 if (ip
->protocol
!= IPPROTO_UDP
)
4931 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
4932 if (ntohs(udp
->dest
) != 67)
4935 offset
= (u8
*)udp
+ 8 - skb
->data
;
4936 length
= skb
->len
- offset
;
4937 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
4943 static int __e1000_maybe_stop_tx(struct e1000_ring
*tx_ring
, int size
)
4945 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
4947 netif_stop_queue(adapter
->netdev
);
4949 * Herbert's original patch had:
4950 * smp_mb__after_netif_stop_queue();
4951 * but since that doesn't exist yet, just open code it.
4956 * We need to check again in a case another CPU has just
4957 * made room available.
4959 if (e1000_desc_unused(tx_ring
) < size
)
4963 netif_start_queue(adapter
->netdev
);
4964 ++adapter
->restart_queue
;
4968 static int e1000_maybe_stop_tx(struct e1000_ring
*tx_ring
, int size
)
4970 if (e1000_desc_unused(tx_ring
) >= size
)
4972 return __e1000_maybe_stop_tx(tx_ring
, size
);
4975 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1)
4976 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
4977 struct net_device
*netdev
)
4979 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4980 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4982 unsigned int max_per_txd
= E1000_MAX_PER_TXD
;
4983 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
4984 unsigned int tx_flags
= 0;
4985 unsigned int len
= skb_headlen(skb
);
4986 unsigned int nr_frags
;
4992 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
4993 dev_kfree_skb_any(skb
);
4994 return NETDEV_TX_OK
;
4997 if (skb
->len
<= 0) {
4998 dev_kfree_skb_any(skb
);
4999 return NETDEV_TX_OK
;
5002 mss
= skb_shinfo(skb
)->gso_size
;
5004 * The controller does a simple calculation to
5005 * make sure there is enough room in the FIFO before
5006 * initiating the DMA for each buffer. The calc is:
5007 * 4 = ceil(buffer len/mss). To make sure we don't
5008 * overrun the FIFO, adjust the max buffer len if mss
5013 max_per_txd
= min(mss
<< 2, max_per_txd
);
5014 max_txd_pwr
= fls(max_per_txd
) - 1;
5017 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
5018 * points to just header, pull a few bytes of payload from
5019 * frags into skb->data
5021 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
5023 * we do this workaround for ES2LAN, but it is un-necessary,
5024 * avoiding it could save a lot of cycles
5026 if (skb
->data_len
&& (hdr_len
== len
)) {
5027 unsigned int pull_size
;
5029 pull_size
= min_t(unsigned int, 4, skb
->data_len
);
5030 if (!__pskb_pull_tail(skb
, pull_size
)) {
5031 e_err("__pskb_pull_tail failed.\n");
5032 dev_kfree_skb_any(skb
);
5033 return NETDEV_TX_OK
;
5035 len
= skb_headlen(skb
);
5039 /* reserve a descriptor for the offload context */
5040 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
5044 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
5046 nr_frags
= skb_shinfo(skb
)->nr_frags
;
5047 for (f
= 0; f
< nr_frags
; f
++)
5048 count
+= TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb
)->frags
[f
]),
5051 if (adapter
->hw
.mac
.tx_pkt_filtering
)
5052 e1000_transfer_dhcp_info(adapter
, skb
);
5055 * need: count + 2 desc gap to keep tail from touching
5056 * head, otherwise try next time
5058 if (e1000_maybe_stop_tx(tx_ring
, count
+ 2))
5059 return NETDEV_TX_BUSY
;
5061 if (vlan_tx_tag_present(skb
)) {
5062 tx_flags
|= E1000_TX_FLAGS_VLAN
;
5063 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
5066 first
= tx_ring
->next_to_use
;
5068 tso
= e1000_tso(tx_ring
, skb
);
5070 dev_kfree_skb_any(skb
);
5071 return NETDEV_TX_OK
;
5075 tx_flags
|= E1000_TX_FLAGS_TSO
;
5076 else if (e1000_tx_csum(tx_ring
, skb
))
5077 tx_flags
|= E1000_TX_FLAGS_CSUM
;
5080 * Old method was to assume IPv4 packet by default if TSO was enabled.
5081 * 82571 hardware supports TSO capabilities for IPv6 as well...
5082 * no longer assume, we must.
5084 if (skb
->protocol
== htons(ETH_P_IP
))
5085 tx_flags
|= E1000_TX_FLAGS_IPV4
;
5087 /* if count is 0 then mapping error has occurred */
5088 count
= e1000_tx_map(tx_ring
, skb
, first
, max_per_txd
, nr_frags
, mss
);
5090 netdev_sent_queue(netdev
, skb
->len
);
5091 e1000_tx_queue(tx_ring
, tx_flags
, count
);
5092 /* Make sure there is space in the ring for the next send. */
5093 e1000_maybe_stop_tx(tx_ring
, MAX_SKB_FRAGS
+ 2);
5096 dev_kfree_skb_any(skb
);
5097 tx_ring
->buffer_info
[first
].time_stamp
= 0;
5098 tx_ring
->next_to_use
= first
;
5101 return NETDEV_TX_OK
;
5105 * e1000_tx_timeout - Respond to a Tx Hang
5106 * @netdev: network interface device structure
5108 static void e1000_tx_timeout(struct net_device
*netdev
)
5110 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5112 /* Do the reset outside of interrupt context */
5113 adapter
->tx_timeout_count
++;
5114 schedule_work(&adapter
->reset_task
);
5117 static void e1000_reset_task(struct work_struct
*work
)
5119 struct e1000_adapter
*adapter
;
5120 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
5122 /* don't run the task if already down */
5123 if (test_bit(__E1000_DOWN
, &adapter
->state
))
5126 if (!((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
5127 (adapter
->flags
& FLAG_RX_RESTART_NOW
))) {
5128 e1000e_dump(adapter
);
5129 e_err("Reset adapter\n");
5131 e1000e_reinit_locked(adapter
);
5135 * e1000_get_stats64 - Get System Network Statistics
5136 * @netdev: network interface device structure
5137 * @stats: rtnl_link_stats64 pointer
5139 * Returns the address of the device statistics structure.
5141 struct rtnl_link_stats64
*e1000e_get_stats64(struct net_device
*netdev
,
5142 struct rtnl_link_stats64
*stats
)
5144 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5146 memset(stats
, 0, sizeof(struct rtnl_link_stats64
));
5147 spin_lock(&adapter
->stats64_lock
);
5148 e1000e_update_stats(adapter
);
5149 /* Fill out the OS statistics structure */
5150 stats
->rx_bytes
= adapter
->stats
.gorc
;
5151 stats
->rx_packets
= adapter
->stats
.gprc
;
5152 stats
->tx_bytes
= adapter
->stats
.gotc
;
5153 stats
->tx_packets
= adapter
->stats
.gptc
;
5154 stats
->multicast
= adapter
->stats
.mprc
;
5155 stats
->collisions
= adapter
->stats
.colc
;
5160 * RLEC on some newer hardware can be incorrect so build
5161 * our own version based on RUC and ROC
5163 stats
->rx_errors
= adapter
->stats
.rxerrc
+
5164 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
5165 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
5166 adapter
->stats
.cexterr
;
5167 stats
->rx_length_errors
= adapter
->stats
.ruc
+
5169 stats
->rx_crc_errors
= adapter
->stats
.crcerrs
;
5170 stats
->rx_frame_errors
= adapter
->stats
.algnerrc
;
5171 stats
->rx_missed_errors
= adapter
->stats
.mpc
;
5174 stats
->tx_errors
= adapter
->stats
.ecol
+
5175 adapter
->stats
.latecol
;
5176 stats
->tx_aborted_errors
= adapter
->stats
.ecol
;
5177 stats
->tx_window_errors
= adapter
->stats
.latecol
;
5178 stats
->tx_carrier_errors
= adapter
->stats
.tncrs
;
5180 /* Tx Dropped needs to be maintained elsewhere */
5182 spin_unlock(&adapter
->stats64_lock
);
5187 * e1000_change_mtu - Change the Maximum Transfer Unit
5188 * @netdev: network interface device structure
5189 * @new_mtu: new value for maximum frame size
5191 * Returns 0 on success, negative on failure
5193 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
5195 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5196 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
5198 /* Jumbo frame support */
5199 if (max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
5200 if (!(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
5201 e_err("Jumbo Frames not supported.\n");
5206 * IP payload checksum (enabled with jumbos/packet-split when
5207 * Rx checksum is enabled) and generation of RSS hash is
5208 * mutually exclusive in the hardware.
5210 if ((netdev
->features
& NETIF_F_RXCSUM
) &&
5211 (netdev
->features
& NETIF_F_RXHASH
)) {
5212 e_err("Jumbo frames cannot be enabled when both receive checksum offload and receive hashing are enabled. Disable one of the receive offload features before enabling jumbos.\n");
5217 /* Supported frame sizes */
5218 if ((new_mtu
< ETH_ZLEN
+ ETH_FCS_LEN
+ VLAN_HLEN
) ||
5219 (max_frame
> adapter
->max_hw_frame_size
)) {
5220 e_err("Unsupported MTU setting\n");
5224 /* Jumbo frame workaround on 82579 requires CRC be stripped */
5225 if ((adapter
->hw
.mac
.type
== e1000_pch2lan
) &&
5226 !(adapter
->flags2
& FLAG2_CRC_STRIPPING
) &&
5227 (new_mtu
> ETH_DATA_LEN
)) {
5228 e_err("Jumbo Frames not supported on 82579 when CRC stripping is disabled.\n");
5232 /* 82573 Errata 17 */
5233 if (((adapter
->hw
.mac
.type
== e1000_82573
) ||
5234 (adapter
->hw
.mac
.type
== e1000_82574
)) &&
5235 (max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
5236 adapter
->flags2
|= FLAG2_DISABLE_ASPM_L1
;
5237 e1000e_disable_aspm(adapter
->pdev
, PCIE_LINK_STATE_L1
);
5240 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
5241 usleep_range(1000, 2000);
5242 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5243 adapter
->max_frame_size
= max_frame
;
5244 e_info("changing MTU from %d to %d\n", netdev
->mtu
, new_mtu
);
5245 netdev
->mtu
= new_mtu
;
5246 if (netif_running(netdev
))
5247 e1000e_down(adapter
);
5250 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5251 * means we reserve 2 more, this pushes us to allocate from the next
5253 * i.e. RXBUFFER_2048 --> size-4096 slab
5254 * However with the new *_jumbo_rx* routines, jumbo receives will use
5258 if (max_frame
<= 2048)
5259 adapter
->rx_buffer_len
= 2048;
5261 adapter
->rx_buffer_len
= 4096;
5263 /* adjust allocation if LPE protects us, and we aren't using SBP */
5264 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
5265 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
5266 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
5269 if (netif_running(netdev
))
5272 e1000e_reset(adapter
);
5274 clear_bit(__E1000_RESETTING
, &adapter
->state
);
5279 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
5282 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5283 struct mii_ioctl_data
*data
= if_mii(ifr
);
5285 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
5290 data
->phy_id
= adapter
->hw
.phy
.addr
;
5293 e1000_phy_read_status(adapter
);
5295 switch (data
->reg_num
& 0x1F) {
5297 data
->val_out
= adapter
->phy_regs
.bmcr
;
5300 data
->val_out
= adapter
->phy_regs
.bmsr
;
5303 data
->val_out
= (adapter
->hw
.phy
.id
>> 16);
5306 data
->val_out
= (adapter
->hw
.phy
.id
& 0xFFFF);
5309 data
->val_out
= adapter
->phy_regs
.advertise
;
5312 data
->val_out
= adapter
->phy_regs
.lpa
;
5315 data
->val_out
= adapter
->phy_regs
.expansion
;
5318 data
->val_out
= adapter
->phy_regs
.ctrl1000
;
5321 data
->val_out
= adapter
->phy_regs
.stat1000
;
5324 data
->val_out
= adapter
->phy_regs
.estatus
;
5337 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
5343 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
5349 static int e1000_init_phy_wakeup(struct e1000_adapter
*adapter
, u32 wufc
)
5351 struct e1000_hw
*hw
= &adapter
->hw
;
5353 u16 phy_reg
, wuc_enable
;
5356 /* copy MAC RARs to PHY RARs */
5357 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
5359 retval
= hw
->phy
.ops
.acquire(hw
);
5361 e_err("Could not acquire PHY\n");
5365 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5366 retval
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &wuc_enable
);
5370 /* copy MAC MTA to PHY MTA - only needed for pchlan */
5371 for (i
= 0; i
< adapter
->hw
.mac
.mta_reg_count
; i
++) {
5372 mac_reg
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, i
);
5373 hw
->phy
.ops
.write_reg_page(hw
, BM_MTA(i
),
5374 (u16
)(mac_reg
& 0xFFFF));
5375 hw
->phy
.ops
.write_reg_page(hw
, BM_MTA(i
) + 1,
5376 (u16
)((mac_reg
>> 16) & 0xFFFF));
5379 /* configure PHY Rx Control register */
5380 hw
->phy
.ops
.read_reg_page(&adapter
->hw
, BM_RCTL
, &phy_reg
);
5381 mac_reg
= er32(RCTL
);
5382 if (mac_reg
& E1000_RCTL_UPE
)
5383 phy_reg
|= BM_RCTL_UPE
;
5384 if (mac_reg
& E1000_RCTL_MPE
)
5385 phy_reg
|= BM_RCTL_MPE
;
5386 phy_reg
&= ~(BM_RCTL_MO_MASK
);
5387 if (mac_reg
& E1000_RCTL_MO_3
)
5388 phy_reg
|= (((mac_reg
& E1000_RCTL_MO_3
) >> E1000_RCTL_MO_SHIFT
)
5389 << BM_RCTL_MO_SHIFT
);
5390 if (mac_reg
& E1000_RCTL_BAM
)
5391 phy_reg
|= BM_RCTL_BAM
;
5392 if (mac_reg
& E1000_RCTL_PMCF
)
5393 phy_reg
|= BM_RCTL_PMCF
;
5394 mac_reg
= er32(CTRL
);
5395 if (mac_reg
& E1000_CTRL_RFCE
)
5396 phy_reg
|= BM_RCTL_RFCE
;
5397 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_RCTL
, phy_reg
);
5399 /* enable PHY wakeup in MAC register */
5401 ew32(WUC
, E1000_WUC_PHY_WAKE
| E1000_WUC_PME_EN
);
5403 /* configure and enable PHY wakeup in PHY registers */
5404 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_WUFC
, wufc
);
5405 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_WUC
, E1000_WUC_PME_EN
);
5407 /* activate PHY wakeup */
5408 wuc_enable
|= BM_WUC_ENABLE_BIT
| BM_WUC_HOST_WU_BIT
;
5409 retval
= e1000_disable_phy_wakeup_reg_access_bm(hw
, &wuc_enable
);
5411 e_err("Could not set PHY Host Wakeup bit\n");
5413 hw
->phy
.ops
.release(hw
);
5418 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
,
5421 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5422 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5423 struct e1000_hw
*hw
= &adapter
->hw
;
5424 u32 ctrl
, ctrl_ext
, rctl
, status
;
5425 /* Runtime suspend should only enable wakeup for link changes */
5426 u32 wufc
= runtime
? E1000_WUFC_LNKC
: adapter
->wol
;
5429 netif_device_detach(netdev
);
5431 if (netif_running(netdev
)) {
5432 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
5433 e1000e_down(adapter
);
5434 e1000_free_irq(adapter
);
5436 e1000e_reset_interrupt_capability(adapter
);
5438 retval
= pci_save_state(pdev
);
5442 status
= er32(STATUS
);
5443 if (status
& E1000_STATUS_LU
)
5444 wufc
&= ~E1000_WUFC_LNKC
;
5447 e1000_setup_rctl(adapter
);
5448 e1000e_set_rx_mode(netdev
);
5450 /* turn on all-multi mode if wake on multicast is enabled */
5451 if (wufc
& E1000_WUFC_MC
) {
5453 rctl
|= E1000_RCTL_MPE
;
5458 /* advertise wake from D3Cold */
5459 #define E1000_CTRL_ADVD3WUC 0x00100000
5460 /* phy power management enable */
5461 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5462 ctrl
|= E1000_CTRL_ADVD3WUC
;
5463 if (!(adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
))
5464 ctrl
|= E1000_CTRL_EN_PHY_PWR_MGMT
;
5467 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
5468 adapter
->hw
.phy
.media_type
==
5469 e1000_media_type_internal_serdes
) {
5470 /* keep the laser running in D3 */
5471 ctrl_ext
= er32(CTRL_EXT
);
5472 ctrl_ext
|= E1000_CTRL_EXT_SDP3_DATA
;
5473 ew32(CTRL_EXT
, ctrl_ext
);
5476 if (adapter
->flags
& FLAG_IS_ICH
)
5477 e1000_suspend_workarounds_ich8lan(&adapter
->hw
);
5479 /* Allow time for pending master requests to run */
5480 e1000e_disable_pcie_master(&adapter
->hw
);
5482 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
5483 /* enable wakeup by the PHY */
5484 retval
= e1000_init_phy_wakeup(adapter
, wufc
);
5488 /* enable wakeup by the MAC */
5490 ew32(WUC
, E1000_WUC_PME_EN
);
5497 *enable_wake
= !!wufc
;
5499 /* make sure adapter isn't asleep if manageability is enabled */
5500 if ((adapter
->flags
& FLAG_MNG_PT_ENABLED
) ||
5501 (hw
->mac
.ops
.check_mng_mode(hw
)))
5502 *enable_wake
= true;
5504 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
)
5505 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
5508 * Release control of h/w to f/w. If f/w is AMT enabled, this
5509 * would have already happened in close and is redundant.
5511 e1000e_release_hw_control(adapter
);
5513 pci_disable_device(pdev
);
5518 static void e1000_power_off(struct pci_dev
*pdev
, bool sleep
, bool wake
)
5520 if (sleep
&& wake
) {
5521 pci_prepare_to_sleep(pdev
);
5525 pci_wake_from_d3(pdev
, wake
);
5526 pci_set_power_state(pdev
, PCI_D3hot
);
5529 static void e1000_complete_shutdown(struct pci_dev
*pdev
, bool sleep
,
5532 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5533 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5536 * The pci-e switch on some quad port adapters will report a
5537 * correctable error when the MAC transitions from D0 to D3. To
5538 * prevent this we need to mask off the correctable errors on the
5539 * downstream port of the pci-e switch.
5541 if (adapter
->flags
& FLAG_IS_QUAD_PORT
) {
5542 struct pci_dev
*us_dev
= pdev
->bus
->self
;
5543 int pos
= pci_pcie_cap(us_dev
);
5546 pci_read_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
, &devctl
);
5547 pci_write_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
,
5548 (devctl
& ~PCI_EXP_DEVCTL_CERE
));
5550 e1000_power_off(pdev
, sleep
, wake
);
5552 pci_write_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
, devctl
);
5554 e1000_power_off(pdev
, sleep
, wake
);
5558 #ifdef CONFIG_PCIEASPM
5559 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
5561 pci_disable_link_state_locked(pdev
, state
);
5564 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
5570 * Both device and parent should have the same ASPM setting.
5571 * Disable ASPM in downstream component first and then upstream.
5573 pos
= pci_pcie_cap(pdev
);
5574 pci_read_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, ®16
);
5576 pci_write_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, reg16
);
5578 if (!pdev
->bus
->self
)
5581 pos
= pci_pcie_cap(pdev
->bus
->self
);
5582 pci_read_config_word(pdev
->bus
->self
, pos
+ PCI_EXP_LNKCTL
, ®16
);
5584 pci_write_config_word(pdev
->bus
->self
, pos
+ PCI_EXP_LNKCTL
, reg16
);
5587 static void e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
5589 dev_info(&pdev
->dev
, "Disabling ASPM %s %s\n",
5590 (state
& PCIE_LINK_STATE_L0S
) ? "L0s" : "",
5591 (state
& PCIE_LINK_STATE_L1
) ? "L1" : "");
5593 __e1000e_disable_aspm(pdev
, state
);
5597 static bool e1000e_pm_ready(struct e1000_adapter
*adapter
)
5599 return !!adapter
->tx_ring
->buffer_info
;
5602 static int __e1000_resume(struct pci_dev
*pdev
)
5604 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5605 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5606 struct e1000_hw
*hw
= &adapter
->hw
;
5607 u16 aspm_disable_flag
= 0;
5610 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
5611 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
5612 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
5613 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
5614 if (aspm_disable_flag
)
5615 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
5617 pci_set_power_state(pdev
, PCI_D0
);
5618 pci_restore_state(pdev
);
5619 pci_save_state(pdev
);
5621 e1000e_set_interrupt_capability(adapter
);
5622 if (netif_running(netdev
)) {
5623 err
= e1000_request_irq(adapter
);
5628 if (hw
->mac
.type
== e1000_pch2lan
)
5629 e1000_resume_workarounds_pchlan(&adapter
->hw
);
5631 e1000e_power_up_phy(adapter
);
5633 /* report the system wakeup cause from S3/S4 */
5634 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
5637 e1e_rphy(&adapter
->hw
, BM_WUS
, &phy_data
);
5639 e_info("PHY Wakeup cause - %s\n",
5640 phy_data
& E1000_WUS_EX
? "Unicast Packet" :
5641 phy_data
& E1000_WUS_MC
? "Multicast Packet" :
5642 phy_data
& E1000_WUS_BC
? "Broadcast Packet" :
5643 phy_data
& E1000_WUS_MAG
? "Magic Packet" :
5644 phy_data
& E1000_WUS_LNKC
?
5645 "Link Status Change" : "other");
5647 e1e_wphy(&adapter
->hw
, BM_WUS
, ~0);
5649 u32 wus
= er32(WUS
);
5651 e_info("MAC Wakeup cause - %s\n",
5652 wus
& E1000_WUS_EX
? "Unicast Packet" :
5653 wus
& E1000_WUS_MC
? "Multicast Packet" :
5654 wus
& E1000_WUS_BC
? "Broadcast Packet" :
5655 wus
& E1000_WUS_MAG
? "Magic Packet" :
5656 wus
& E1000_WUS_LNKC
? "Link Status Change" :
5662 e1000e_reset(adapter
);
5664 e1000_init_manageability_pt(adapter
);
5666 if (netif_running(netdev
))
5669 netif_device_attach(netdev
);
5672 * If the controller has AMT, do not set DRV_LOAD until the interface
5673 * is up. For all other cases, let the f/w know that the h/w is now
5674 * under the control of the driver.
5676 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5677 e1000e_get_hw_control(adapter
);
5682 #ifdef CONFIG_PM_SLEEP
5683 static int e1000_suspend(struct device
*dev
)
5685 struct pci_dev
*pdev
= to_pci_dev(dev
);
5689 retval
= __e1000_shutdown(pdev
, &wake
, false);
5691 e1000_complete_shutdown(pdev
, true, wake
);
5696 static int e1000_resume(struct device
*dev
)
5698 struct pci_dev
*pdev
= to_pci_dev(dev
);
5699 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5700 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5702 if (e1000e_pm_ready(adapter
))
5703 adapter
->idle_check
= true;
5705 return __e1000_resume(pdev
);
5707 #endif /* CONFIG_PM_SLEEP */
5709 #ifdef CONFIG_PM_RUNTIME
5710 static int e1000_runtime_suspend(struct device
*dev
)
5712 struct pci_dev
*pdev
= to_pci_dev(dev
);
5713 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5714 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5716 if (e1000e_pm_ready(adapter
)) {
5719 __e1000_shutdown(pdev
, &wake
, true);
5725 static int e1000_idle(struct device
*dev
)
5727 struct pci_dev
*pdev
= to_pci_dev(dev
);
5728 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5729 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5731 if (!e1000e_pm_ready(adapter
))
5734 if (adapter
->idle_check
) {
5735 adapter
->idle_check
= false;
5736 if (!e1000e_has_link(adapter
))
5737 pm_schedule_suspend(dev
, MSEC_PER_SEC
);
5743 static int e1000_runtime_resume(struct device
*dev
)
5745 struct pci_dev
*pdev
= to_pci_dev(dev
);
5746 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5747 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5749 if (!e1000e_pm_ready(adapter
))
5752 adapter
->idle_check
= !dev
->power
.runtime_auto
;
5753 return __e1000_resume(pdev
);
5755 #endif /* CONFIG_PM_RUNTIME */
5756 #endif /* CONFIG_PM */
5758 static void e1000_shutdown(struct pci_dev
*pdev
)
5762 __e1000_shutdown(pdev
, &wake
, false);
5764 if (system_state
== SYSTEM_POWER_OFF
)
5765 e1000_complete_shutdown(pdev
, false, wake
);
5768 #ifdef CONFIG_NET_POLL_CONTROLLER
5770 static irqreturn_t
e1000_intr_msix(int irq
, void *data
)
5772 struct net_device
*netdev
= data
;
5773 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5775 if (adapter
->msix_entries
) {
5776 int vector
, msix_irq
;
5779 msix_irq
= adapter
->msix_entries
[vector
].vector
;
5780 disable_irq(msix_irq
);
5781 e1000_intr_msix_rx(msix_irq
, netdev
);
5782 enable_irq(msix_irq
);
5785 msix_irq
= adapter
->msix_entries
[vector
].vector
;
5786 disable_irq(msix_irq
);
5787 e1000_intr_msix_tx(msix_irq
, netdev
);
5788 enable_irq(msix_irq
);
5791 msix_irq
= adapter
->msix_entries
[vector
].vector
;
5792 disable_irq(msix_irq
);
5793 e1000_msix_other(msix_irq
, netdev
);
5794 enable_irq(msix_irq
);
5801 * Polling 'interrupt' - used by things like netconsole to send skbs
5802 * without having to re-enable interrupts. It's not called while
5803 * the interrupt routine is executing.
5805 static void e1000_netpoll(struct net_device
*netdev
)
5807 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5809 switch (adapter
->int_mode
) {
5810 case E1000E_INT_MODE_MSIX
:
5811 e1000_intr_msix(adapter
->pdev
->irq
, netdev
);
5813 case E1000E_INT_MODE_MSI
:
5814 disable_irq(adapter
->pdev
->irq
);
5815 e1000_intr_msi(adapter
->pdev
->irq
, netdev
);
5816 enable_irq(adapter
->pdev
->irq
);
5818 default: /* E1000E_INT_MODE_LEGACY */
5819 disable_irq(adapter
->pdev
->irq
);
5820 e1000_intr(adapter
->pdev
->irq
, netdev
);
5821 enable_irq(adapter
->pdev
->irq
);
5828 * e1000_io_error_detected - called when PCI error is detected
5829 * @pdev: Pointer to PCI device
5830 * @state: The current pci connection state
5832 * This function is called after a PCI bus error affecting
5833 * this device has been detected.
5835 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
5836 pci_channel_state_t state
)
5838 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5839 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5841 netif_device_detach(netdev
);
5843 if (state
== pci_channel_io_perm_failure
)
5844 return PCI_ERS_RESULT_DISCONNECT
;
5846 if (netif_running(netdev
))
5847 e1000e_down(adapter
);
5848 pci_disable_device(pdev
);
5850 /* Request a slot slot reset. */
5851 return PCI_ERS_RESULT_NEED_RESET
;
5855 * e1000_io_slot_reset - called after the pci bus has been reset.
5856 * @pdev: Pointer to PCI device
5858 * Restart the card from scratch, as if from a cold-boot. Implementation
5859 * resembles the first-half of the e1000_resume routine.
5861 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
5863 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5864 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5865 struct e1000_hw
*hw
= &adapter
->hw
;
5866 u16 aspm_disable_flag
= 0;
5868 pci_ers_result_t result
;
5870 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
5871 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
5872 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
5873 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
5874 if (aspm_disable_flag
)
5875 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
5877 err
= pci_enable_device_mem(pdev
);
5880 "Cannot re-enable PCI device after reset.\n");
5881 result
= PCI_ERS_RESULT_DISCONNECT
;
5883 pci_set_master(pdev
);
5884 pdev
->state_saved
= true;
5885 pci_restore_state(pdev
);
5887 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5888 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5890 e1000e_reset(adapter
);
5892 result
= PCI_ERS_RESULT_RECOVERED
;
5895 pci_cleanup_aer_uncorrect_error_status(pdev
);
5901 * e1000_io_resume - called when traffic can start flowing again.
5902 * @pdev: Pointer to PCI device
5904 * This callback is called when the error recovery driver tells us that
5905 * its OK to resume normal operation. Implementation resembles the
5906 * second-half of the e1000_resume routine.
5908 static void e1000_io_resume(struct pci_dev
*pdev
)
5910 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5911 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5913 e1000_init_manageability_pt(adapter
);
5915 if (netif_running(netdev
)) {
5916 if (e1000e_up(adapter
)) {
5918 "can't bring device back up after reset\n");
5923 netif_device_attach(netdev
);
5926 * If the controller has AMT, do not set DRV_LOAD until the interface
5927 * is up. For all other cases, let the f/w know that the h/w is now
5928 * under the control of the driver.
5930 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5931 e1000e_get_hw_control(adapter
);
5935 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
5937 struct e1000_hw
*hw
= &adapter
->hw
;
5938 struct net_device
*netdev
= adapter
->netdev
;
5940 u8 pba_str
[E1000_PBANUM_LENGTH
];
5942 /* print bus type/speed/width info */
5943 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5945 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
5949 e_info("Intel(R) PRO/%s Network Connection\n",
5950 (hw
->phy
.type
== e1000_phy_ife
) ? "10/100" : "1000");
5951 ret_val
= e1000_read_pba_string_generic(hw
, pba_str
,
5952 E1000_PBANUM_LENGTH
);
5954 strlcpy((char *)pba_str
, "Unknown", sizeof(pba_str
));
5955 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5956 hw
->mac
.type
, hw
->phy
.type
, pba_str
);
5959 static void e1000_eeprom_checks(struct e1000_adapter
*adapter
)
5961 struct e1000_hw
*hw
= &adapter
->hw
;
5965 if (hw
->mac
.type
!= e1000_82573
)
5968 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &buf
);
5970 if (!ret_val
&& (!(buf
& (1 << 0)))) {
5971 /* Deep Smart Power Down (DSPD) */
5972 dev_warn(&adapter
->pdev
->dev
,
5973 "Warning: detected DSPD enabled in EEPROM\n");
5977 static int e1000_set_features(struct net_device
*netdev
,
5978 netdev_features_t features
)
5980 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5981 netdev_features_t changed
= features
^ netdev
->features
;
5983 if (changed
& (NETIF_F_TSO
| NETIF_F_TSO6
))
5984 adapter
->flags
|= FLAG_TSO_FORCE
;
5986 if (!(changed
& (NETIF_F_HW_VLAN_RX
| NETIF_F_HW_VLAN_TX
|
5987 NETIF_F_RXCSUM
| NETIF_F_RXHASH
)))
5991 * IP payload checksum (enabled with jumbos/packet-split when Rx
5992 * checksum is enabled) and generation of RSS hash is mutually
5993 * exclusive in the hardware.
5995 if (adapter
->rx_ps_pages
&&
5996 (features
& NETIF_F_RXCSUM
) && (features
& NETIF_F_RXHASH
)) {
5997 e_err("Enabling both receive checksum offload and receive hashing is not possible with jumbo frames. Disable jumbos or enable only one of the receive offload features.\n");
6001 netdev
->features
= features
;
6003 if (netif_running(netdev
))
6004 e1000e_reinit_locked(adapter
);
6006 e1000e_reset(adapter
);
6011 static const struct net_device_ops e1000e_netdev_ops
= {
6012 .ndo_open
= e1000_open
,
6013 .ndo_stop
= e1000_close
,
6014 .ndo_start_xmit
= e1000_xmit_frame
,
6015 .ndo_get_stats64
= e1000e_get_stats64
,
6016 .ndo_set_rx_mode
= e1000e_set_rx_mode
,
6017 .ndo_set_mac_address
= e1000_set_mac
,
6018 .ndo_change_mtu
= e1000_change_mtu
,
6019 .ndo_do_ioctl
= e1000_ioctl
,
6020 .ndo_tx_timeout
= e1000_tx_timeout
,
6021 .ndo_validate_addr
= eth_validate_addr
,
6023 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
6024 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
6025 #ifdef CONFIG_NET_POLL_CONTROLLER
6026 .ndo_poll_controller
= e1000_netpoll
,
6028 .ndo_set_features
= e1000_set_features
,
6032 * e1000_probe - Device Initialization Routine
6033 * @pdev: PCI device information struct
6034 * @ent: entry in e1000_pci_tbl
6036 * Returns 0 on success, negative on failure
6038 * e1000_probe initializes an adapter identified by a pci_dev structure.
6039 * The OS initialization, configuring of the adapter private structure,
6040 * and a hardware reset occur.
6042 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
6043 const struct pci_device_id
*ent
)
6045 struct net_device
*netdev
;
6046 struct e1000_adapter
*adapter
;
6047 struct e1000_hw
*hw
;
6048 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
6049 resource_size_t mmio_start
, mmio_len
;
6050 resource_size_t flash_start
, flash_len
;
6052 static int cards_found
;
6053 u16 aspm_disable_flag
= 0;
6054 int i
, err
, pci_using_dac
;
6055 u16 eeprom_data
= 0;
6056 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
6058 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
6059 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
6060 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L1
)
6061 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
6062 if (aspm_disable_flag
)
6063 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
6065 err
= pci_enable_device_mem(pdev
);
6070 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64));
6072 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
6076 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
6078 err
= dma_set_coherent_mask(&pdev
->dev
,
6081 dev_err(&pdev
->dev
, "No usable DMA configuration, aborting\n");
6087 err
= pci_request_selected_regions_exclusive(pdev
,
6088 pci_select_bars(pdev
, IORESOURCE_MEM
),
6089 e1000e_driver_name
);
6093 /* AER (Advanced Error Reporting) hooks */
6094 pci_enable_pcie_error_reporting(pdev
);
6096 pci_set_master(pdev
);
6097 /* PCI config space info */
6098 err
= pci_save_state(pdev
);
6100 goto err_alloc_etherdev
;
6103 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
6105 goto err_alloc_etherdev
;
6107 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
6109 netdev
->irq
= pdev
->irq
;
6111 pci_set_drvdata(pdev
, netdev
);
6112 adapter
= netdev_priv(netdev
);
6114 adapter
->netdev
= netdev
;
6115 adapter
->pdev
= pdev
;
6117 adapter
->pba
= ei
->pba
;
6118 adapter
->flags
= ei
->flags
;
6119 adapter
->flags2
= ei
->flags2
;
6120 adapter
->hw
.adapter
= adapter
;
6121 adapter
->hw
.mac
.type
= ei
->mac
;
6122 adapter
->max_hw_frame_size
= ei
->max_hw_frame_size
;
6123 adapter
->msg_enable
= (1 << NETIF_MSG_DRV
| NETIF_MSG_PROBE
) - 1;
6125 mmio_start
= pci_resource_start(pdev
, 0);
6126 mmio_len
= pci_resource_len(pdev
, 0);
6129 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
6130 if (!adapter
->hw
.hw_addr
)
6133 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
6134 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
6135 flash_start
= pci_resource_start(pdev
, 1);
6136 flash_len
= pci_resource_len(pdev
, 1);
6137 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
6138 if (!adapter
->hw
.flash_address
)
6142 /* construct the net_device struct */
6143 netdev
->netdev_ops
= &e1000e_netdev_ops
;
6144 e1000e_set_ethtool_ops(netdev
);
6145 netdev
->watchdog_timeo
= 5 * HZ
;
6146 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
6147 strlcpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
));
6149 netdev
->mem_start
= mmio_start
;
6150 netdev
->mem_end
= mmio_start
+ mmio_len
;
6152 adapter
->bd_number
= cards_found
++;
6154 e1000e_check_options(adapter
);
6156 /* setup adapter struct */
6157 err
= e1000_sw_init(adapter
);
6161 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
6162 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
6163 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
6165 err
= ei
->get_variants(adapter
);
6169 if ((adapter
->flags
& FLAG_IS_ICH
) &&
6170 (adapter
->flags
& FLAG_READ_ONLY_NVM
))
6171 e1000e_write_protect_nvm_ich8lan(&adapter
->hw
);
6173 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
6175 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
6177 /* Copper options */
6178 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
6179 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
6180 adapter
->hw
.phy
.disable_polarity_correction
= 0;
6181 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
6184 if (e1000_check_reset_block(&adapter
->hw
))
6185 e_info("PHY reset is blocked due to SOL/IDER session.\n");
6187 /* Set initial default active device features */
6188 netdev
->features
= (NETIF_F_SG
|
6189 NETIF_F_HW_VLAN_RX
|
6190 NETIF_F_HW_VLAN_TX
|
6197 /* Set user-changeable features (subset of all device features) */
6198 netdev
->hw_features
= netdev
->features
;
6200 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
6201 netdev
->features
|= NETIF_F_HW_VLAN_FILTER
;
6203 netdev
->vlan_features
|= (NETIF_F_SG
|
6208 netdev
->priv_flags
|= IFF_UNICAST_FLT
;
6210 if (pci_using_dac
) {
6211 netdev
->features
|= NETIF_F_HIGHDMA
;
6212 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
6215 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
6216 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
6219 * before reading the NVM, reset the controller to
6220 * put the device in a known good starting state
6222 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
6225 * systems with ASPM and others may see the checksum fail on the first
6226 * attempt. Let's give it a few tries
6229 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
6232 e_err("The NVM Checksum Is Not Valid\n");
6238 e1000_eeprom_checks(adapter
);
6240 /* copy the MAC address */
6241 if (e1000e_read_mac_addr(&adapter
->hw
))
6242 e_err("NVM Read Error while reading MAC address\n");
6244 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
6245 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
6247 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
6248 e_err("Invalid MAC Address: %pM\n", netdev
->perm_addr
);
6253 init_timer(&adapter
->watchdog_timer
);
6254 adapter
->watchdog_timer
.function
= e1000_watchdog
;
6255 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
6257 init_timer(&adapter
->phy_info_timer
);
6258 adapter
->phy_info_timer
.function
= e1000_update_phy_info
;
6259 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
6261 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
6262 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
6263 INIT_WORK(&adapter
->downshift_task
, e1000e_downshift_workaround
);
6264 INIT_WORK(&adapter
->update_phy_task
, e1000e_update_phy_task
);
6265 INIT_WORK(&adapter
->print_hang_task
, e1000_print_hw_hang
);
6267 /* Initialize link parameters. User can change them with ethtool */
6268 adapter
->hw
.mac
.autoneg
= 1;
6269 adapter
->fc_autoneg
= true;
6270 adapter
->hw
.fc
.requested_mode
= e1000_fc_default
;
6271 adapter
->hw
.fc
.current_mode
= e1000_fc_default
;
6272 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
6274 /* ring size defaults */
6275 adapter
->rx_ring
->count
= 256;
6276 adapter
->tx_ring
->count
= 256;
6279 * Initial Wake on LAN setting - If APM wake is enabled in
6280 * the EEPROM, enable the ACPI Magic Packet filter
6282 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
6283 /* APME bit in EEPROM is mapped to WUC.APME */
6284 eeprom_data
= er32(WUC
);
6285 eeprom_apme_mask
= E1000_WUC_APME
;
6286 if ((hw
->mac
.type
> e1000_ich10lan
) &&
6287 (eeprom_data
& E1000_WUC_PHY_WAKE
))
6288 adapter
->flags2
|= FLAG2_HAS_PHY_WAKEUP
;
6289 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
6290 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
6291 (adapter
->hw
.bus
.func
== 1))
6292 e1000_read_nvm(&adapter
->hw
,
6293 NVM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
6295 e1000_read_nvm(&adapter
->hw
,
6296 NVM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
6299 /* fetch WoL from EEPROM */
6300 if (eeprom_data
& eeprom_apme_mask
)
6301 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
6304 * now that we have the eeprom settings, apply the special cases
6305 * where the eeprom may be wrong or the board simply won't support
6306 * wake on lan on a particular port
6308 if (!(adapter
->flags
& FLAG_HAS_WOL
))
6309 adapter
->eeprom_wol
= 0;
6311 /* initialize the wol settings based on the eeprom settings */
6312 adapter
->wol
= adapter
->eeprom_wol
;
6313 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
6315 /* save off EEPROM version number */
6316 e1000_read_nvm(&adapter
->hw
, 5, 1, &adapter
->eeprom_vers
);
6318 /* reset the hardware with the new settings */
6319 e1000e_reset(adapter
);
6322 * If the controller has AMT, do not set DRV_LOAD until the interface
6323 * is up. For all other cases, let the f/w know that the h/w is now
6324 * under the control of the driver.
6326 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6327 e1000e_get_hw_control(adapter
);
6329 strlcpy(netdev
->name
, "eth%d", sizeof(netdev
->name
));
6330 err
= register_netdev(netdev
);
6334 /* carrier off reporting is important to ethtool even BEFORE open */
6335 netif_carrier_off(netdev
);
6337 e1000_print_device_info(adapter
);
6339 if (pci_dev_run_wake(pdev
))
6340 pm_runtime_put_noidle(&pdev
->dev
);
6345 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6346 e1000e_release_hw_control(adapter
);
6348 if (!e1000_check_reset_block(&adapter
->hw
))
6349 e1000_phy_hw_reset(&adapter
->hw
);
6351 kfree(adapter
->tx_ring
);
6352 kfree(adapter
->rx_ring
);
6354 if (adapter
->hw
.flash_address
)
6355 iounmap(adapter
->hw
.flash_address
);
6356 e1000e_reset_interrupt_capability(adapter
);
6358 iounmap(adapter
->hw
.hw_addr
);
6360 free_netdev(netdev
);
6362 pci_release_selected_regions(pdev
,
6363 pci_select_bars(pdev
, IORESOURCE_MEM
));
6366 pci_disable_device(pdev
);
6371 * e1000_remove - Device Removal Routine
6372 * @pdev: PCI device information struct
6374 * e1000_remove is called by the PCI subsystem to alert the driver
6375 * that it should release a PCI device. The could be caused by a
6376 * Hot-Plug event, or because the driver is going to be removed from
6379 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
6381 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6382 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6383 bool down
= test_bit(__E1000_DOWN
, &adapter
->state
);
6386 * The timers may be rescheduled, so explicitly disable them
6387 * from being rescheduled.
6390 set_bit(__E1000_DOWN
, &adapter
->state
);
6391 del_timer_sync(&adapter
->watchdog_timer
);
6392 del_timer_sync(&adapter
->phy_info_timer
);
6394 cancel_work_sync(&adapter
->reset_task
);
6395 cancel_work_sync(&adapter
->watchdog_task
);
6396 cancel_work_sync(&adapter
->downshift_task
);
6397 cancel_work_sync(&adapter
->update_phy_task
);
6398 cancel_work_sync(&adapter
->print_hang_task
);
6400 if (!(netdev
->flags
& IFF_UP
))
6401 e1000_power_down_phy(adapter
);
6403 /* Don't lie to e1000_close() down the road. */
6405 clear_bit(__E1000_DOWN
, &adapter
->state
);
6406 unregister_netdev(netdev
);
6408 if (pci_dev_run_wake(pdev
))
6409 pm_runtime_get_noresume(&pdev
->dev
);
6412 * Release control of h/w to f/w. If f/w is AMT enabled, this
6413 * would have already happened in close and is redundant.
6415 e1000e_release_hw_control(adapter
);
6417 e1000e_reset_interrupt_capability(adapter
);
6418 kfree(adapter
->tx_ring
);
6419 kfree(adapter
->rx_ring
);
6421 iounmap(adapter
->hw
.hw_addr
);
6422 if (adapter
->hw
.flash_address
)
6423 iounmap(adapter
->hw
.flash_address
);
6424 pci_release_selected_regions(pdev
,
6425 pci_select_bars(pdev
, IORESOURCE_MEM
));
6427 free_netdev(netdev
);
6430 pci_disable_pcie_error_reporting(pdev
);
6432 pci_disable_device(pdev
);
6435 /* PCI Error Recovery (ERS) */
6436 static struct pci_error_handlers e1000_err_handler
= {
6437 .error_detected
= e1000_io_error_detected
,
6438 .slot_reset
= e1000_io_slot_reset
,
6439 .resume
= e1000_io_resume
,
6442 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl
) = {
6443 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_COPPER
), board_82571
},
6444 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_FIBER
), board_82571
},
6445 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER
), board_82571
},
6446 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER_LP
), board_82571
},
6447 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_FIBER
), board_82571
},
6448 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES
), board_82571
},
6449 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_DUAL
), board_82571
},
6450 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_QUAD
), board_82571
},
6451 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571PT_QUAD_COPPER
), board_82571
},
6453 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI
), board_82572
},
6454 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_COPPER
), board_82572
},
6455 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_FIBER
), board_82572
},
6456 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_SERDES
), board_82572
},
6458 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E
), board_82573
},
6459 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E_IAMT
), board_82573
},
6460 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573L
), board_82573
},
6462 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574L
), board_82574
},
6463 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574LA
), board_82574
},
6464 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82583V
), board_82583
},
6466 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_DPT
),
6467 board_80003es2lan
},
6468 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_SPT
),
6469 board_80003es2lan
},
6470 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_DPT
),
6471 board_80003es2lan
},
6472 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_SPT
),
6473 board_80003es2lan
},
6475 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE
), board_ich8lan
},
6476 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_G
), board_ich8lan
},
6477 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_GT
), board_ich8lan
},
6478 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_AMT
), board_ich8lan
},
6479 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_C
), board_ich8lan
},
6480 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M
), board_ich8lan
},
6481 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M_AMT
), board_ich8lan
},
6482 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_82567V_3
), board_ich8lan
},
6484 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
6485 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
6486 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
6487 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
6488 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
6489 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_BM
), board_ich9lan
},
6490 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M
), board_ich9lan
},
6491 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_AMT
), board_ich9lan
},
6492 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_V
), board_ich9lan
},
6494 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LM
), board_ich9lan
},
6495 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LF
), board_ich9lan
},
6496 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_V
), board_ich9lan
},
6498 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LM
), board_ich10lan
},
6499 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LF
), board_ich10lan
},
6500 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_V
), board_ich10lan
},
6502 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LM
), board_pchlan
},
6503 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LC
), board_pchlan
},
6504 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DM
), board_pchlan
},
6505 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DC
), board_pchlan
},
6507 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_LM
), board_pch2lan
},
6508 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_V
), board_pch2lan
},
6510 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
6512 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
6515 static const struct dev_pm_ops e1000_pm_ops
= {
6516 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend
, e1000_resume
)
6517 SET_RUNTIME_PM_OPS(e1000_runtime_suspend
,
6518 e1000_runtime_resume
, e1000_idle
)
6522 /* PCI Device API Driver */
6523 static struct pci_driver e1000_driver
= {
6524 .name
= e1000e_driver_name
,
6525 .id_table
= e1000_pci_tbl
,
6526 .probe
= e1000_probe
,
6527 .remove
= __devexit_p(e1000_remove
),
6530 .pm
= &e1000_pm_ops
,
6533 .shutdown
= e1000_shutdown
,
6534 .err_handler
= &e1000_err_handler
6538 * e1000_init_module - Driver Registration Routine
6540 * e1000_init_module is the first routine called when the driver is
6541 * loaded. All it does is register with the PCI subsystem.
6543 static int __init
e1000_init_module(void)
6546 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6547 e1000e_driver_version
);
6548 pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6549 ret
= pci_register_driver(&e1000_driver
);
6553 module_init(e1000_init_module
);
6556 * e1000_exit_module - Driver Exit Cleanup Routine
6558 * e1000_exit_module is called just before the driver is removed
6561 static void __exit
e1000_exit_module(void)
6563 pci_unregister_driver(&e1000_driver
);
6565 module_exit(e1000_exit_module
);
6568 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6569 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6570 MODULE_LICENSE("GPL");
6571 MODULE_VERSION(DRV_VERSION
);