1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
32 * e1000_raise_eec_clk - Raise EEPROM clock
33 * @hw: pointer to the HW structure
34 * @eecd: pointer to the EEPROM
36 * Enable/Raise the EEPROM clock bit.
38 static void e1000_raise_eec_clk(struct e1000_hw
*hw
, u32
*eecd
)
40 *eecd
= *eecd
| E1000_EECD_SK
;
43 udelay(hw
->nvm
.delay_usec
);
47 * e1000_lower_eec_clk - Lower EEPROM clock
48 * @hw: pointer to the HW structure
49 * @eecd: pointer to the EEPROM
51 * Clear/Lower the EEPROM clock bit.
53 static void e1000_lower_eec_clk(struct e1000_hw
*hw
, u32
*eecd
)
55 *eecd
= *eecd
& ~E1000_EECD_SK
;
58 udelay(hw
->nvm
.delay_usec
);
62 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
63 * @hw: pointer to the HW structure
64 * @data: data to send to the EEPROM
65 * @count: number of bits to shift out
67 * We need to shift 'count' bits out to the EEPROM. So, the value in the
68 * "data" parameter will be shifted out to the EEPROM one bit at a time.
69 * In order to do this, "data" must be broken down into bits.
71 static void e1000_shift_out_eec_bits(struct e1000_hw
*hw
, u16 data
, u16 count
)
73 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
74 u32 eecd
= er32(EECD
);
77 mask
= 0x01 << (count
- 1);
78 if (nvm
->type
== e1000_nvm_eeprom_spi
)
79 eecd
|= E1000_EECD_DO
;
82 eecd
&= ~E1000_EECD_DI
;
85 eecd
|= E1000_EECD_DI
;
90 udelay(nvm
->delay_usec
);
92 e1000_raise_eec_clk(hw
, &eecd
);
93 e1000_lower_eec_clk(hw
, &eecd
);
98 eecd
&= ~E1000_EECD_DI
;
103 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
104 * @hw: pointer to the HW structure
105 * @count: number of bits to shift in
107 * In order to read a register from the EEPROM, we need to shift 'count' bits
108 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
109 * the EEPROM (setting the SK bit), and then reading the value of the data out
110 * "DO" bit. During this "shifting in" process the data in "DI" bit should
113 static u16
e1000_shift_in_eec_bits(struct e1000_hw
*hw
, u16 count
)
121 eecd
&= ~(E1000_EECD_DO
| E1000_EECD_DI
);
124 for (i
= 0; i
< count
; i
++) {
126 e1000_raise_eec_clk(hw
, &eecd
);
130 eecd
&= ~E1000_EECD_DI
;
131 if (eecd
& E1000_EECD_DO
)
134 e1000_lower_eec_clk(hw
, &eecd
);
141 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
142 * @hw: pointer to the HW structure
143 * @ee_reg: EEPROM flag for polling
145 * Polls the EEPROM status bit for either read or write completion based
146 * upon the value of 'ee_reg'.
148 s32
e1000e_poll_eerd_eewr_done(struct e1000_hw
*hw
, int ee_reg
)
150 u32 attempts
= 100000;
153 for (i
= 0; i
< attempts
; i
++) {
154 if (ee_reg
== E1000_NVM_POLL_READ
)
159 if (reg
& E1000_NVM_RW_REG_DONE
)
165 return -E1000_ERR_NVM
;
169 * e1000e_acquire_nvm - Generic request for access to EEPROM
170 * @hw: pointer to the HW structure
172 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
173 * Return successful if access grant bit set, else clear the request for
174 * EEPROM access and return -E1000_ERR_NVM (-1).
176 s32
e1000e_acquire_nvm(struct e1000_hw
*hw
)
178 u32 eecd
= er32(EECD
);
179 s32 timeout
= E1000_NVM_GRANT_ATTEMPTS
;
181 ew32(EECD
, eecd
| E1000_EECD_REQ
);
185 if (eecd
& E1000_EECD_GNT
)
193 eecd
&= ~E1000_EECD_REQ
;
195 e_dbg("Could not acquire NVM grant\n");
196 return -E1000_ERR_NVM
;
203 * e1000_standby_nvm - Return EEPROM to standby state
204 * @hw: pointer to the HW structure
206 * Return the EEPROM to a standby state.
208 static void e1000_standby_nvm(struct e1000_hw
*hw
)
210 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
211 u32 eecd
= er32(EECD
);
213 if (nvm
->type
== e1000_nvm_eeprom_spi
) {
214 /* Toggle CS to flush commands */
215 eecd
|= E1000_EECD_CS
;
218 udelay(nvm
->delay_usec
);
219 eecd
&= ~E1000_EECD_CS
;
222 udelay(nvm
->delay_usec
);
227 * e1000_stop_nvm - Terminate EEPROM command
228 * @hw: pointer to the HW structure
230 * Terminates the current command by inverting the EEPROM's chip select pin.
232 static void e1000_stop_nvm(struct e1000_hw
*hw
)
237 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
) {
239 eecd
|= E1000_EECD_CS
;
240 e1000_lower_eec_clk(hw
, &eecd
);
245 * e1000e_release_nvm - Release exclusive access to EEPROM
246 * @hw: pointer to the HW structure
248 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
250 void e1000e_release_nvm(struct e1000_hw
*hw
)
257 eecd
&= ~E1000_EECD_REQ
;
262 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
263 * @hw: pointer to the HW structure
265 * Setups the EEPROM for reading and writing.
267 static s32
e1000_ready_nvm_eeprom(struct e1000_hw
*hw
)
269 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
270 u32 eecd
= er32(EECD
);
273 if (nvm
->type
== e1000_nvm_eeprom_spi
) {
274 u16 timeout
= NVM_MAX_RETRY_SPI
;
276 /* Clear SK and CS */
277 eecd
&= ~(E1000_EECD_CS
| E1000_EECD_SK
);
283 * Read "Status Register" repeatedly until the LSB is cleared.
284 * The EEPROM will signal that the command has been completed
285 * by clearing bit 0 of the internal status register. If it's
286 * not cleared within 'timeout', then error out.
289 e1000_shift_out_eec_bits(hw
, NVM_RDSR_OPCODE_SPI
,
290 hw
->nvm
.opcode_bits
);
291 spi_stat_reg
= (u8
)e1000_shift_in_eec_bits(hw
, 8);
292 if (!(spi_stat_reg
& NVM_STATUS_RDY_SPI
))
296 e1000_standby_nvm(hw
);
301 e_dbg("SPI NVM Status error\n");
302 return -E1000_ERR_NVM
;
310 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
311 * @hw: pointer to the HW structure
312 * @offset: offset of word in the EEPROM to read
313 * @words: number of words to read
314 * @data: word read from the EEPROM
316 * Reads a 16 bit word from the EEPROM using the EERD register.
318 s32
e1000e_read_nvm_eerd(struct e1000_hw
*hw
, u16 offset
, u16 words
, u16
*data
)
320 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
325 * A check for invalid values: offset too large, too many words,
326 * too many words for the offset, and not enough words.
328 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
330 e_dbg("nvm parameter(s) out of bounds\n");
331 return -E1000_ERR_NVM
;
334 for (i
= 0; i
< words
; i
++) {
335 eerd
= ((offset
+ i
) << E1000_NVM_RW_ADDR_SHIFT
) +
336 E1000_NVM_RW_REG_START
;
339 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_READ
);
343 data
[i
] = (er32(EERD
) >> E1000_NVM_RW_REG_DATA
);
350 * e1000e_write_nvm_spi - Write to EEPROM using SPI
351 * @hw: pointer to the HW structure
352 * @offset: offset within the EEPROM to be written to
353 * @words: number of words to write
354 * @data: 16 bit word(s) to be written to the EEPROM
356 * Writes data to EEPROM at offset using SPI interface.
358 * If e1000e_update_nvm_checksum is not called after this function , the
359 * EEPROM will most likely contain an invalid checksum.
361 s32
e1000e_write_nvm_spi(struct e1000_hw
*hw
, u16 offset
, u16 words
, u16
*data
)
363 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
368 * A check for invalid values: offset too large, too many words,
369 * and not enough words.
371 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
373 e_dbg("nvm parameter(s) out of bounds\n");
374 return -E1000_ERR_NVM
;
377 ret_val
= nvm
->ops
.acquire(hw
);
381 while (widx
< words
) {
382 u8 write_opcode
= NVM_WRITE_OPCODE_SPI
;
384 ret_val
= e1000_ready_nvm_eeprom(hw
);
386 nvm
->ops
.release(hw
);
390 e1000_standby_nvm(hw
);
392 /* Send the WRITE ENABLE command (8 bit opcode) */
393 e1000_shift_out_eec_bits(hw
, NVM_WREN_OPCODE_SPI
,
396 e1000_standby_nvm(hw
);
399 * Some SPI eeproms use the 8th address bit embedded in the
402 if ((nvm
->address_bits
== 8) && (offset
>= 128))
403 write_opcode
|= NVM_A8_OPCODE_SPI
;
405 /* Send the Write command (8-bit opcode + addr) */
406 e1000_shift_out_eec_bits(hw
, write_opcode
, nvm
->opcode_bits
);
407 e1000_shift_out_eec_bits(hw
, (u16
)((offset
+ widx
) * 2),
410 /* Loop to allow for up to whole page write of eeprom */
411 while (widx
< words
) {
412 u16 word_out
= data
[widx
];
413 word_out
= (word_out
>> 8) | (word_out
<< 8);
414 e1000_shift_out_eec_bits(hw
, word_out
, 16);
417 if ((((offset
+ widx
) * 2) % nvm
->page_size
) == 0) {
418 e1000_standby_nvm(hw
);
424 usleep_range(10000, 20000);
425 nvm
->ops
.release(hw
);
430 * e1000_read_pba_string_generic - Read device part number
431 * @hw: pointer to the HW structure
432 * @pba_num: pointer to device part number
433 * @pba_num_size: size of part number buffer
435 * Reads the product board assembly (PBA) number from the EEPROM and stores
436 * the value in pba_num.
438 s32
e1000_read_pba_string_generic(struct e1000_hw
*hw
, u8
*pba_num
,
447 if (pba_num
== NULL
) {
448 e_dbg("PBA string buffer was null\n");
449 ret_val
= E1000_ERR_INVALID_ARGUMENT
;
453 ret_val
= e1000_read_nvm(hw
, NVM_PBA_OFFSET_0
, 1, &nvm_data
);
455 e_dbg("NVM Read Error\n");
459 ret_val
= e1000_read_nvm(hw
, NVM_PBA_OFFSET_1
, 1, &pba_ptr
);
461 e_dbg("NVM Read Error\n");
466 * if nvm_data is not ptr guard the PBA must be in legacy format which
467 * means pba_ptr is actually our second data word for the PBA number
468 * and we can decode it into an ascii string
470 if (nvm_data
!= NVM_PBA_PTR_GUARD
) {
471 e_dbg("NVM PBA number is not stored as string\n");
473 /* we will need 11 characters to store the PBA */
474 if (pba_num_size
< 11) {
475 e_dbg("PBA string buffer too small\n");
476 return E1000_ERR_NO_SPACE
;
479 /* extract hex string from data and pba_ptr */
480 pba_num
[0] = (nvm_data
>> 12) & 0xF;
481 pba_num
[1] = (nvm_data
>> 8) & 0xF;
482 pba_num
[2] = (nvm_data
>> 4) & 0xF;
483 pba_num
[3] = nvm_data
& 0xF;
484 pba_num
[4] = (pba_ptr
>> 12) & 0xF;
485 pba_num
[5] = (pba_ptr
>> 8) & 0xF;
488 pba_num
[8] = (pba_ptr
>> 4) & 0xF;
489 pba_num
[9] = pba_ptr
& 0xF;
491 /* put a null character on the end of our string */
494 /* switch all the data but the '-' to hex char */
495 for (offset
= 0; offset
< 10; offset
++) {
496 if (pba_num
[offset
] < 0xA)
497 pba_num
[offset
] += '0';
498 else if (pba_num
[offset
] < 0x10)
499 pba_num
[offset
] += 'A' - 0xA;
505 ret_val
= e1000_read_nvm(hw
, pba_ptr
, 1, &length
);
507 e_dbg("NVM Read Error\n");
511 if (length
== 0xFFFF || length
== 0) {
512 e_dbg("NVM PBA number section invalid length\n");
513 ret_val
= E1000_ERR_NVM_PBA_SECTION
;
516 /* check if pba_num buffer is big enough */
517 if (pba_num_size
< (((u32
)length
* 2) - 1)) {
518 e_dbg("PBA string buffer too small\n");
519 ret_val
= E1000_ERR_NO_SPACE
;
523 /* trim pba length from start of string */
527 for (offset
= 0; offset
< length
; offset
++) {
528 ret_val
= e1000_read_nvm(hw
, pba_ptr
+ offset
, 1, &nvm_data
);
530 e_dbg("NVM Read Error\n");
533 pba_num
[offset
* 2] = (u8
)(nvm_data
>> 8);
534 pba_num
[(offset
* 2) + 1] = (u8
)(nvm_data
& 0xFF);
536 pba_num
[offset
* 2] = '\0';
543 * e1000_read_mac_addr_generic - Read device MAC address
544 * @hw: pointer to the HW structure
546 * Reads the device MAC address from the EEPROM and stores the value.
547 * Since devices with two ports use the same EEPROM, we increment the
548 * last bit in the MAC address for the second port.
550 s32
e1000_read_mac_addr_generic(struct e1000_hw
*hw
)
556 rar_high
= er32(RAH(0));
557 rar_low
= er32(RAL(0));
559 for (i
= 0; i
< E1000_RAL_MAC_ADDR_LEN
; i
++)
560 hw
->mac
.perm_addr
[i
] = (u8
)(rar_low
>> (i
* 8));
562 for (i
= 0; i
< E1000_RAH_MAC_ADDR_LEN
; i
++)
563 hw
->mac
.perm_addr
[i
+ 4] = (u8
)(rar_high
>> (i
* 8));
565 for (i
= 0; i
< ETH_ALEN
; i
++)
566 hw
->mac
.addr
[i
] = hw
->mac
.perm_addr
[i
];
572 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
573 * @hw: pointer to the HW structure
575 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
576 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
578 s32
e1000e_validate_nvm_checksum_generic(struct e1000_hw
*hw
)
584 for (i
= 0; i
< (NVM_CHECKSUM_REG
+ 1); i
++) {
585 ret_val
= e1000_read_nvm(hw
, i
, 1, &nvm_data
);
587 e_dbg("NVM Read Error\n");
590 checksum
+= nvm_data
;
593 if (checksum
!= (u16
)NVM_SUM
) {
594 e_dbg("NVM Checksum Invalid\n");
595 return -E1000_ERR_NVM
;
602 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
603 * @hw: pointer to the HW structure
605 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
606 * up to the checksum. Then calculates the EEPROM checksum and writes the
607 * value to the EEPROM.
609 s32
e1000e_update_nvm_checksum_generic(struct e1000_hw
*hw
)
615 for (i
= 0; i
< NVM_CHECKSUM_REG
; i
++) {
616 ret_val
= e1000_read_nvm(hw
, i
, 1, &nvm_data
);
618 e_dbg("NVM Read Error while updating checksum.\n");
621 checksum
+= nvm_data
;
623 checksum
= (u16
)NVM_SUM
- checksum
;
624 ret_val
= e1000_write_nvm(hw
, NVM_CHECKSUM_REG
, 1, &checksum
);
626 e_dbg("NVM Write Error while updating checksum.\n");
632 * e1000e_reload_nvm - Reloads EEPROM
633 * @hw: pointer to the HW structure
635 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
636 * extended control register.
638 void e1000e_reload_nvm(struct e1000_hw
*hw
)
643 ctrl_ext
= er32(CTRL_EXT
);
644 ctrl_ext
|= E1000_CTRL_EXT_EE_RST
;
645 ew32(CTRL_EXT
, ctrl_ext
);