1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/delay.h>
33 static s32
e1000_get_phy_cfg_done(struct e1000_hw
*hw
);
34 static s32
e1000_phy_force_speed_duplex(struct e1000_hw
*hw
);
35 static s32
e1000_set_d0_lplu_state(struct e1000_hw
*hw
, bool active
);
36 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
);
37 static u32
e1000_get_phy_addr_for_bm_page(u32 page
, u32 reg
);
38 static s32
e1000_access_phy_wakeup_reg_bm(struct e1000_hw
*hw
, u32 offset
,
39 u16
*data
, bool read
, bool page_set
);
40 static u32
e1000_get_phy_addr_for_hv_page(u32 page
);
41 static s32
e1000_access_phy_debug_regs_hv(struct e1000_hw
*hw
, u32 offset
,
42 u16
*data
, bool read
);
44 /* Cable length tables */
45 static const u16 e1000_m88_cable_length_table
[] = {
46 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
};
47 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
48 ARRAY_SIZE(e1000_m88_cable_length_table)
50 static const u16 e1000_igp_2_cable_length_table
[] = {
51 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
52 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
53 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
54 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
55 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
56 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
57 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
59 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
60 ARRAY_SIZE(e1000_igp_2_cable_length_table)
62 #define BM_PHY_REG_PAGE(offset) \
63 ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
64 #define BM_PHY_REG_NUM(offset) \
65 ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
66 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
67 ~MAX_PHY_REG_ADDRESS)))
69 #define HV_INTC_FC_PAGE_START 768
70 #define I82578_ADDR_REG 29
71 #define I82577_ADDR_REG 16
72 #define I82577_CFG_REG 22
73 #define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
74 #define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
75 #define I82577_CTRL_REG 23
77 /* 82577 specific PHY registers */
78 #define I82577_PHY_CTRL_2 18
79 #define I82577_PHY_STATUS_2 26
80 #define I82577_PHY_DIAG_STATUS 31
82 /* I82577 PHY Status 2 */
83 #define I82577_PHY_STATUS2_REV_POLARITY 0x0400
84 #define I82577_PHY_STATUS2_MDIX 0x0800
85 #define I82577_PHY_STATUS2_SPEED_MASK 0x0300
86 #define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
88 /* I82577 PHY Control 2 */
89 #define I82577_PHY_CTRL2_AUTO_MDIX 0x0400
90 #define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200
92 /* I82577 PHY Diagnostics Status */
93 #define I82577_DSTATUS_CABLE_LENGTH 0x03FC
94 #define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
96 /* BM PHY Copper Specific Control 1 */
97 #define BM_CS_CTRL1 16
99 #define HV_MUX_DATA_CTRL PHY_REG(776, 16)
100 #define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
101 #define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
104 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
105 * @hw: pointer to the HW structure
107 * Read the PHY management control register and check whether a PHY reset
108 * is blocked. If a reset is not blocked return 0, otherwise
109 * return E1000_BLK_PHY_RESET (12).
111 s32
e1000e_check_reset_block_generic(struct e1000_hw
*hw
)
117 return (manc
& E1000_MANC_BLK_PHY_RST_ON_IDE
) ?
118 E1000_BLK_PHY_RESET
: 0;
122 * e1000e_get_phy_id - Retrieve the PHY ID and revision
123 * @hw: pointer to the HW structure
125 * Reads the PHY registers and stores the PHY ID and possibly the PHY
126 * revision in the hardware structure.
128 s32
e1000e_get_phy_id(struct e1000_hw
*hw
)
130 struct e1000_phy_info
*phy
= &hw
->phy
;
135 if (!phy
->ops
.read_reg
)
138 while (retry_count
< 2) {
139 ret_val
= e1e_rphy(hw
, PHY_ID1
, &phy_id
);
143 phy
->id
= (u32
)(phy_id
<< 16);
145 ret_val
= e1e_rphy(hw
, PHY_ID2
, &phy_id
);
149 phy
->id
|= (u32
)(phy_id
& PHY_REVISION_MASK
);
150 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
152 if (phy
->id
!= 0 && phy
->id
!= PHY_REVISION_MASK
)
162 * e1000e_phy_reset_dsp - Reset PHY DSP
163 * @hw: pointer to the HW structure
165 * Reset the digital signal processor.
167 s32
e1000e_phy_reset_dsp(struct e1000_hw
*hw
)
171 ret_val
= e1e_wphy(hw
, M88E1000_PHY_GEN_CONTROL
, 0xC1);
175 return e1e_wphy(hw
, M88E1000_PHY_GEN_CONTROL
, 0);
179 * e1000e_read_phy_reg_mdic - Read MDI control register
180 * @hw: pointer to the HW structure
181 * @offset: register offset to be read
182 * @data: pointer to the read data
184 * Reads the MDI control register in the PHY at offset and stores the
185 * information read to data.
187 s32
e1000e_read_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
189 struct e1000_phy_info
*phy
= &hw
->phy
;
192 if (offset
> MAX_PHY_REG_ADDRESS
) {
193 e_dbg("PHY Address %d is out of range\n", offset
);
194 return -E1000_ERR_PARAM
;
198 * Set up Op-code, Phy Address, and register offset in the MDI
199 * Control register. The MAC will take care of interfacing with the
200 * PHY to retrieve the desired data.
202 mdic
= ((offset
<< E1000_MDIC_REG_SHIFT
) |
203 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
204 (E1000_MDIC_OP_READ
));
209 * Poll the ready bit to see if the MDI read completed
210 * Increasing the time out as testing showed failures with
213 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
216 if (mdic
& E1000_MDIC_READY
)
219 if (!(mdic
& E1000_MDIC_READY
)) {
220 e_dbg("MDI Read did not complete\n");
221 return -E1000_ERR_PHY
;
223 if (mdic
& E1000_MDIC_ERROR
) {
224 e_dbg("MDI Error\n");
225 return -E1000_ERR_PHY
;
230 * Allow some time after each MDIC transaction to avoid
231 * reading duplicate data in the next MDIC transaction.
233 if (hw
->mac
.type
== e1000_pch2lan
)
240 * e1000e_write_phy_reg_mdic - Write MDI control register
241 * @hw: pointer to the HW structure
242 * @offset: register offset to write to
243 * @data: data to write to register at offset
245 * Writes data to MDI control register in the PHY at offset.
247 s32
e1000e_write_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16 data
)
249 struct e1000_phy_info
*phy
= &hw
->phy
;
252 if (offset
> MAX_PHY_REG_ADDRESS
) {
253 e_dbg("PHY Address %d is out of range\n", offset
);
254 return -E1000_ERR_PARAM
;
258 * Set up Op-code, Phy Address, and register offset in the MDI
259 * Control register. The MAC will take care of interfacing with the
260 * PHY to retrieve the desired data.
262 mdic
= (((u32
)data
) |
263 (offset
<< E1000_MDIC_REG_SHIFT
) |
264 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
265 (E1000_MDIC_OP_WRITE
));
270 * Poll the ready bit to see if the MDI read completed
271 * Increasing the time out as testing showed failures with
274 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
277 if (mdic
& E1000_MDIC_READY
)
280 if (!(mdic
& E1000_MDIC_READY
)) {
281 e_dbg("MDI Write did not complete\n");
282 return -E1000_ERR_PHY
;
284 if (mdic
& E1000_MDIC_ERROR
) {
285 e_dbg("MDI Error\n");
286 return -E1000_ERR_PHY
;
290 * Allow some time after each MDIC transaction to avoid
291 * reading duplicate data in the next MDIC transaction.
293 if (hw
->mac
.type
== e1000_pch2lan
)
300 * e1000e_read_phy_reg_m88 - Read m88 PHY register
301 * @hw: pointer to the HW structure
302 * @offset: register offset to be read
303 * @data: pointer to the read data
305 * Acquires semaphore, if necessary, then reads the PHY register at offset
306 * and storing the retrieved information in data. Release any acquired
307 * semaphores before exiting.
309 s32
e1000e_read_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
313 ret_val
= hw
->phy
.ops
.acquire(hw
);
317 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
320 hw
->phy
.ops
.release(hw
);
326 * e1000e_write_phy_reg_m88 - Write m88 PHY register
327 * @hw: pointer to the HW structure
328 * @offset: register offset to write to
329 * @data: data to write at register offset
331 * Acquires semaphore, if necessary, then writes the data to PHY register
332 * at the offset. Release any acquired semaphores before exiting.
334 s32
e1000e_write_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16 data
)
338 ret_val
= hw
->phy
.ops
.acquire(hw
);
342 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
345 hw
->phy
.ops
.release(hw
);
351 * e1000_set_page_igp - Set page as on IGP-like PHY(s)
352 * @hw: pointer to the HW structure
353 * @page: page to set (shifted left when necessary)
355 * Sets PHY page required for PHY register access. Assumes semaphore is
356 * already acquired. Note, this function sets phy.addr to 1 so the caller
357 * must set it appropriately (if necessary) after this function returns.
359 s32
e1000_set_page_igp(struct e1000_hw
*hw
, u16 page
)
361 e_dbg("Setting page 0x%x\n", page
);
365 return e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
, page
);
369 * __e1000e_read_phy_reg_igp - Read igp PHY register
370 * @hw: pointer to the HW structure
371 * @offset: register offset to be read
372 * @data: pointer to the read data
373 * @locked: semaphore has already been acquired or not
375 * Acquires semaphore, if necessary, then reads the PHY register at offset
376 * and stores the retrieved information in data. Release any acquired
377 * semaphores before exiting.
379 static s32
__e1000e_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
385 if (!hw
->phy
.ops
.acquire
)
388 ret_val
= hw
->phy
.ops
.acquire(hw
);
393 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
394 ret_val
= e1000e_write_phy_reg_mdic(hw
,
395 IGP01E1000_PHY_PAGE_SELECT
,
401 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
406 hw
->phy
.ops
.release(hw
);
412 * e1000e_read_phy_reg_igp - Read igp PHY register
413 * @hw: pointer to the HW structure
414 * @offset: register offset to be read
415 * @data: pointer to the read data
417 * Acquires semaphore then reads the PHY register at offset and stores the
418 * retrieved information in data.
419 * Release the acquired semaphore before exiting.
421 s32
e1000e_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
423 return __e1000e_read_phy_reg_igp(hw
, offset
, data
, false);
427 * e1000e_read_phy_reg_igp_locked - Read igp PHY register
428 * @hw: pointer to the HW structure
429 * @offset: register offset to be read
430 * @data: pointer to the read data
432 * Reads the PHY register at offset and stores the retrieved information
433 * in data. Assumes semaphore already acquired.
435 s32
e1000e_read_phy_reg_igp_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
437 return __e1000e_read_phy_reg_igp(hw
, offset
, data
, true);
441 * e1000e_write_phy_reg_igp - Write igp PHY register
442 * @hw: pointer to the HW structure
443 * @offset: register offset to write to
444 * @data: data to write at register offset
445 * @locked: semaphore has already been acquired or not
447 * Acquires semaphore, if necessary, then writes the data to PHY register
448 * at the offset. Release any acquired semaphores before exiting.
450 static s32
__e1000e_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
,
456 if (!hw
->phy
.ops
.acquire
)
459 ret_val
= hw
->phy
.ops
.acquire(hw
);
464 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
465 ret_val
= e1000e_write_phy_reg_mdic(hw
,
466 IGP01E1000_PHY_PAGE_SELECT
,
472 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
477 hw
->phy
.ops
.release(hw
);
484 * e1000e_write_phy_reg_igp - Write igp PHY register
485 * @hw: pointer to the HW structure
486 * @offset: register offset to write to
487 * @data: data to write at register offset
489 * Acquires semaphore then writes the data to PHY register
490 * at the offset. Release any acquired semaphores before exiting.
492 s32
e1000e_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
)
494 return __e1000e_write_phy_reg_igp(hw
, offset
, data
, false);
498 * e1000e_write_phy_reg_igp_locked - Write igp PHY register
499 * @hw: pointer to the HW structure
500 * @offset: register offset to write to
501 * @data: data to write at register offset
503 * Writes the data to PHY register at the offset.
504 * Assumes semaphore already acquired.
506 s32
e1000e_write_phy_reg_igp_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
508 return __e1000e_write_phy_reg_igp(hw
, offset
, data
, true);
512 * __e1000_read_kmrn_reg - Read kumeran register
513 * @hw: pointer to the HW structure
514 * @offset: register offset to be read
515 * @data: pointer to the read data
516 * @locked: semaphore has already been acquired or not
518 * Acquires semaphore, if necessary. Then reads the PHY register at offset
519 * using the kumeran interface. The information retrieved is stored in data.
520 * Release any acquired semaphores before exiting.
522 static s32
__e1000_read_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
529 if (!hw
->phy
.ops
.acquire
)
532 ret_val
= hw
->phy
.ops
.acquire(hw
);
537 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
538 E1000_KMRNCTRLSTA_OFFSET
) | E1000_KMRNCTRLSTA_REN
;
539 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
544 kmrnctrlsta
= er32(KMRNCTRLSTA
);
545 *data
= (u16
)kmrnctrlsta
;
548 hw
->phy
.ops
.release(hw
);
555 * e1000e_read_kmrn_reg - Read kumeran register
556 * @hw: pointer to the HW structure
557 * @offset: register offset to be read
558 * @data: pointer to the read data
560 * Acquires semaphore then reads the PHY register at offset using the
561 * kumeran interface. The information retrieved is stored in data.
562 * Release the acquired semaphore before exiting.
564 s32
e1000e_read_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
566 return __e1000_read_kmrn_reg(hw
, offset
, data
, false);
570 * e1000e_read_kmrn_reg_locked - Read kumeran register
571 * @hw: pointer to the HW structure
572 * @offset: register offset to be read
573 * @data: pointer to the read data
575 * Reads the PHY register at offset using the kumeran interface. The
576 * information retrieved is stored in data.
577 * Assumes semaphore already acquired.
579 s32
e1000e_read_kmrn_reg_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
581 return __e1000_read_kmrn_reg(hw
, offset
, data
, true);
585 * __e1000_write_kmrn_reg - Write kumeran register
586 * @hw: pointer to the HW structure
587 * @offset: register offset to write to
588 * @data: data to write at register offset
589 * @locked: semaphore has already been acquired or not
591 * Acquires semaphore, if necessary. Then write the data to PHY register
592 * at the offset using the kumeran interface. Release any acquired semaphores
595 static s32
__e1000_write_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16 data
,
602 if (!hw
->phy
.ops
.acquire
)
605 ret_val
= hw
->phy
.ops
.acquire(hw
);
610 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
611 E1000_KMRNCTRLSTA_OFFSET
) | data
;
612 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
618 hw
->phy
.ops
.release(hw
);
625 * e1000e_write_kmrn_reg - Write kumeran register
626 * @hw: pointer to the HW structure
627 * @offset: register offset to write to
628 * @data: data to write at register offset
630 * Acquires semaphore then writes the data to the PHY register at the offset
631 * using the kumeran interface. Release the acquired semaphore before exiting.
633 s32
e1000e_write_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16 data
)
635 return __e1000_write_kmrn_reg(hw
, offset
, data
, false);
639 * e1000e_write_kmrn_reg_locked - Write kumeran register
640 * @hw: pointer to the HW structure
641 * @offset: register offset to write to
642 * @data: data to write at register offset
644 * Write the data to PHY register at the offset using the kumeran interface.
645 * Assumes semaphore already acquired.
647 s32
e1000e_write_kmrn_reg_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
649 return __e1000_write_kmrn_reg(hw
, offset
, data
, true);
653 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
654 * @hw: pointer to the HW structure
656 * Sets up Carrier-sense on Transmit and downshift values.
658 s32
e1000_copper_link_setup_82577(struct e1000_hw
*hw
)
663 /* Enable CRS on Tx. This must be set for half-duplex operation. */
664 ret_val
= e1e_rphy(hw
, I82577_CFG_REG
, &phy_data
);
668 phy_data
|= I82577_CFG_ASSERT_CRS_ON_TX
;
670 /* Enable downshift */
671 phy_data
|= I82577_CFG_ENABLE_DOWNSHIFT
;
673 ret_val
= e1e_wphy(hw
, I82577_CFG_REG
, phy_data
);
680 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
681 * @hw: pointer to the HW structure
683 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
684 * and downshift values are set also.
686 s32
e1000e_copper_link_setup_m88(struct e1000_hw
*hw
)
688 struct e1000_phy_info
*phy
= &hw
->phy
;
692 /* Enable CRS on Tx. This must be set for half-duplex operation. */
693 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
697 /* For BM PHY this bit is downshift enable */
698 if (phy
->type
!= e1000_phy_bm
)
699 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
703 * MDI/MDI-X = 0 (default)
704 * 0 - Auto for all speeds
707 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
709 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
713 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
716 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
719 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
723 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
729 * disable_polarity_correction = 0 (default)
730 * Automatic Correction for Reversed Cable Polarity
734 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
735 if (phy
->disable_polarity_correction
== 1)
736 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
738 /* Enable downshift on BM (disabled by default) */
739 if (phy
->type
== e1000_phy_bm
)
740 phy_data
|= BME1000_PSCR_ENABLE_DOWNSHIFT
;
742 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
746 if ((phy
->type
== e1000_phy_m88
) &&
747 (phy
->revision
< E1000_REVISION_4
) &&
748 (phy
->id
!= BME1000_E_PHY_ID_R2
)) {
750 * Force TX_CLK in the Extended PHY Specific Control Register
753 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
757 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
759 if ((phy
->revision
== 2) &&
760 (phy
->id
== M88E1111_I_PHY_ID
)) {
761 /* 82573L PHY - set the downshift counter to 5x. */
762 phy_data
&= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK
;
763 phy_data
|= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X
;
765 /* Configure Master and Slave downshift values */
766 phy_data
&= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
|
767 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK
);
768 phy_data
|= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
|
769 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X
);
771 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
776 if ((phy
->type
== e1000_phy_bm
) && (phy
->id
== BME1000_E_PHY_ID_R2
)) {
777 /* Set PHY page 0, register 29 to 0x0003 */
778 ret_val
= e1e_wphy(hw
, 29, 0x0003);
782 /* Set PHY page 0, register 30 to 0x0000 */
783 ret_val
= e1e_wphy(hw
, 30, 0x0000);
788 /* Commit the changes. */
789 ret_val
= e1000e_commit_phy(hw
);
791 e_dbg("Error committing the PHY changes\n");
795 if (phy
->type
== e1000_phy_82578
) {
796 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
800 /* 82578 PHY - set the downshift count to 1x. */
801 phy_data
|= I82578_EPSCR_DOWNSHIFT_ENABLE
;
802 phy_data
&= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK
;
803 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
812 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
813 * @hw: pointer to the HW structure
815 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
818 s32
e1000e_copper_link_setup_igp(struct e1000_hw
*hw
)
820 struct e1000_phy_info
*phy
= &hw
->phy
;
824 ret_val
= e1000_phy_hw_reset(hw
);
826 e_dbg("Error resetting the PHY.\n");
831 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
832 * timeout issues when LFS is enabled.
836 /* disable lplu d0 during driver init */
837 ret_val
= e1000_set_d0_lplu_state(hw
, false);
839 e_dbg("Error Disabling LPLU D0\n");
842 /* Configure mdi-mdix settings */
843 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CTRL
, &data
);
847 data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
851 data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
854 data
|= IGP01E1000_PSCR_FORCE_MDI_MDIX
;
858 data
|= IGP01E1000_PSCR_AUTO_MDIX
;
861 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CTRL
, data
);
865 /* set auto-master slave resolution settings */
866 if (hw
->mac
.autoneg
) {
868 * when autonegotiation advertisement is only 1000Mbps then we
869 * should disable SmartSpeed and enable Auto MasterSlave
870 * resolution as hardware default.
872 if (phy
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
873 /* Disable SmartSpeed */
874 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
879 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
880 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
885 /* Set auto Master/Slave resolution process */
886 ret_val
= e1e_rphy(hw
, PHY_1000T_CTRL
, &data
);
890 data
&= ~CR_1000T_MS_ENABLE
;
891 ret_val
= e1e_wphy(hw
, PHY_1000T_CTRL
, data
);
896 ret_val
= e1e_rphy(hw
, PHY_1000T_CTRL
, &data
);
900 /* load defaults for future use */
901 phy
->original_ms_type
= (data
& CR_1000T_MS_ENABLE
) ?
902 ((data
& CR_1000T_MS_VALUE
) ?
903 e1000_ms_force_master
:
904 e1000_ms_force_slave
) :
907 switch (phy
->ms_type
) {
908 case e1000_ms_force_master
:
909 data
|= (CR_1000T_MS_ENABLE
| CR_1000T_MS_VALUE
);
911 case e1000_ms_force_slave
:
912 data
|= CR_1000T_MS_ENABLE
;
913 data
&= ~(CR_1000T_MS_VALUE
);
916 data
&= ~CR_1000T_MS_ENABLE
;
920 ret_val
= e1e_wphy(hw
, PHY_1000T_CTRL
, data
);
927 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
928 * @hw: pointer to the HW structure
930 * Reads the MII auto-neg advertisement register and/or the 1000T control
931 * register and if the PHY is already setup for auto-negotiation, then
932 * return successful. Otherwise, setup advertisement and flow control to
933 * the appropriate values for the wanted auto-negotiation.
935 static s32
e1000_phy_setup_autoneg(struct e1000_hw
*hw
)
937 struct e1000_phy_info
*phy
= &hw
->phy
;
939 u16 mii_autoneg_adv_reg
;
940 u16 mii_1000t_ctrl_reg
= 0;
942 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
944 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
945 ret_val
= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &mii_autoneg_adv_reg
);
949 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
950 /* Read the MII 1000Base-T Control Register (Address 9). */
951 ret_val
= e1e_rphy(hw
, PHY_1000T_CTRL
, &mii_1000t_ctrl_reg
);
957 * Need to parse both autoneg_advertised and fc and set up
958 * the appropriate PHY registers. First we will parse for
959 * autoneg_advertised software override. Since we can advertise
960 * a plethora of combinations, we need to check each bit
965 * First we clear all the 10/100 mb speed bits in the Auto-Neg
966 * Advertisement Register (Address 4) and the 1000 mb speed bits in
967 * the 1000Base-T Control Register (Address 9).
969 mii_autoneg_adv_reg
&= ~(NWAY_AR_100TX_FD_CAPS
|
970 NWAY_AR_100TX_HD_CAPS
|
971 NWAY_AR_10T_FD_CAPS
|
972 NWAY_AR_10T_HD_CAPS
);
973 mii_1000t_ctrl_reg
&= ~(CR_1000T_HD_CAPS
| CR_1000T_FD_CAPS
);
975 e_dbg("autoneg_advertised %x\n", phy
->autoneg_advertised
);
977 /* Do we want to advertise 10 Mb Half Duplex? */
978 if (phy
->autoneg_advertised
& ADVERTISE_10_HALF
) {
979 e_dbg("Advertise 10mb Half duplex\n");
980 mii_autoneg_adv_reg
|= NWAY_AR_10T_HD_CAPS
;
983 /* Do we want to advertise 10 Mb Full Duplex? */
984 if (phy
->autoneg_advertised
& ADVERTISE_10_FULL
) {
985 e_dbg("Advertise 10mb Full duplex\n");
986 mii_autoneg_adv_reg
|= NWAY_AR_10T_FD_CAPS
;
989 /* Do we want to advertise 100 Mb Half Duplex? */
990 if (phy
->autoneg_advertised
& ADVERTISE_100_HALF
) {
991 e_dbg("Advertise 100mb Half duplex\n");
992 mii_autoneg_adv_reg
|= NWAY_AR_100TX_HD_CAPS
;
995 /* Do we want to advertise 100 Mb Full Duplex? */
996 if (phy
->autoneg_advertised
& ADVERTISE_100_FULL
) {
997 e_dbg("Advertise 100mb Full duplex\n");
998 mii_autoneg_adv_reg
|= NWAY_AR_100TX_FD_CAPS
;
1001 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1002 if (phy
->autoneg_advertised
& ADVERTISE_1000_HALF
)
1003 e_dbg("Advertise 1000mb Half duplex request denied!\n");
1005 /* Do we want to advertise 1000 Mb Full Duplex? */
1006 if (phy
->autoneg_advertised
& ADVERTISE_1000_FULL
) {
1007 e_dbg("Advertise 1000mb Full duplex\n");
1008 mii_1000t_ctrl_reg
|= CR_1000T_FD_CAPS
;
1012 * Check for a software override of the flow control settings, and
1013 * setup the PHY advertisement registers accordingly. If
1014 * auto-negotiation is enabled, then software will have to set the
1015 * "PAUSE" bits to the correct value in the Auto-Negotiation
1016 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1019 * The possible values of the "fc" parameter are:
1020 * 0: Flow control is completely disabled
1021 * 1: Rx flow control is enabled (we can receive pause frames
1022 * but not send pause frames).
1023 * 2: Tx flow control is enabled (we can send pause frames
1024 * but we do not support receiving pause frames).
1025 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1026 * other: No software override. The flow control configuration
1027 * in the EEPROM is used.
1029 switch (hw
->fc
.current_mode
) {
1032 * Flow control (Rx & Tx) is completely disabled by a
1033 * software over-ride.
1035 mii_autoneg_adv_reg
&= ~(NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
1037 case e1000_fc_rx_pause
:
1039 * Rx Flow control is enabled, and Tx Flow control is
1040 * disabled, by a software over-ride.
1042 * Since there really isn't a way to advertise that we are
1043 * capable of Rx Pause ONLY, we will advertise that we
1044 * support both symmetric and asymmetric Rx PAUSE. Later
1045 * (in e1000e_config_fc_after_link_up) we will disable the
1046 * hw's ability to send PAUSE frames.
1048 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
1050 case e1000_fc_tx_pause
:
1052 * Tx Flow control is enabled, and Rx Flow control is
1053 * disabled, by a software over-ride.
1055 mii_autoneg_adv_reg
|= NWAY_AR_ASM_DIR
;
1056 mii_autoneg_adv_reg
&= ~NWAY_AR_PAUSE
;
1060 * Flow control (both Rx and Tx) is enabled by a software
1063 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
1066 e_dbg("Flow control param set incorrectly\n");
1067 ret_val
= -E1000_ERR_CONFIG
;
1071 ret_val
= e1e_wphy(hw
, PHY_AUTONEG_ADV
, mii_autoneg_adv_reg
);
1075 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg
);
1077 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
)
1078 ret_val
= e1e_wphy(hw
, PHY_1000T_CTRL
, mii_1000t_ctrl_reg
);
1084 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1085 * @hw: pointer to the HW structure
1087 * Performs initial bounds checking on autoneg advertisement parameter, then
1088 * configure to advertise the full capability. Setup the PHY to autoneg
1089 * and restart the negotiation process between the link partner. If
1090 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1092 static s32
e1000_copper_link_autoneg(struct e1000_hw
*hw
)
1094 struct e1000_phy_info
*phy
= &hw
->phy
;
1099 * Perform some bounds checking on the autoneg advertisement
1102 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
1105 * If autoneg_advertised is zero, we assume it was not defaulted
1106 * by the calling code so we set to advertise full capability.
1108 if (phy
->autoneg_advertised
== 0)
1109 phy
->autoneg_advertised
= phy
->autoneg_mask
;
1111 e_dbg("Reconfiguring auto-neg advertisement params\n");
1112 ret_val
= e1000_phy_setup_autoneg(hw
);
1114 e_dbg("Error Setting up Auto-Negotiation\n");
1117 e_dbg("Restarting Auto-Neg\n");
1120 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1121 * the Auto Neg Restart bit in the PHY control register.
1123 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_ctrl
);
1127 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
| MII_CR_RESTART_AUTO_NEG
);
1128 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_ctrl
);
1133 * Does the user want to wait for Auto-Neg to complete here, or
1134 * check at a later time (for example, callback routine).
1136 if (phy
->autoneg_wait_to_complete
) {
1137 ret_val
= e1000_wait_autoneg(hw
);
1139 e_dbg("Error while waiting for autoneg to complete\n");
1144 hw
->mac
.get_link_status
= true;
1150 * e1000e_setup_copper_link - Configure copper link settings
1151 * @hw: pointer to the HW structure
1153 * Calls the appropriate function to configure the link for auto-neg or forced
1154 * speed and duplex. Then we check for link, once link is established calls
1155 * to configure collision distance and flow control are called. If link is
1156 * not established, we return -E1000_ERR_PHY (-2).
1158 s32
e1000e_setup_copper_link(struct e1000_hw
*hw
)
1163 if (hw
->mac
.autoneg
) {
1165 * Setup autoneg and flow control advertisement and perform
1168 ret_val
= e1000_copper_link_autoneg(hw
);
1173 * PHY will be set to 10H, 10F, 100H or 100F
1174 * depending on user settings.
1176 e_dbg("Forcing Speed and Duplex\n");
1177 ret_val
= e1000_phy_force_speed_duplex(hw
);
1179 e_dbg("Error Forcing Speed and Duplex\n");
1185 * Check link status. Wait up to 100 microseconds for link to become
1188 ret_val
= e1000e_phy_has_link_generic(hw
,
1189 COPPER_LINK_UP_LIMIT
,
1196 e_dbg("Valid link established!!!\n");
1197 e1000e_config_collision_dist(hw
);
1198 ret_val
= e1000e_config_fc_after_link_up(hw
);
1200 e_dbg("Unable to establish link!!!\n");
1207 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1208 * @hw: pointer to the HW structure
1210 * Calls the PHY setup function to force speed and duplex. Clears the
1211 * auto-crossover to force MDI manually. Waits for link and returns
1212 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1214 s32
e1000e_phy_force_speed_duplex_igp(struct e1000_hw
*hw
)
1216 struct e1000_phy_info
*phy
= &hw
->phy
;
1221 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_data
);
1225 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
1227 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_data
);
1232 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
1233 * forced whenever speed and duplex are forced.
1235 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CTRL
, &phy_data
);
1239 phy_data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
1240 phy_data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
1242 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CTRL
, phy_data
);
1246 e_dbg("IGP PSCR: %X\n", phy_data
);
1250 if (phy
->autoneg_wait_to_complete
) {
1251 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1253 ret_val
= e1000e_phy_has_link_generic(hw
,
1261 e_dbg("Link taking longer than expected.\n");
1264 ret_val
= e1000e_phy_has_link_generic(hw
,
1276 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1277 * @hw: pointer to the HW structure
1279 * Calls the PHY setup function to force speed and duplex. Clears the
1280 * auto-crossover to force MDI manually. Resets the PHY to commit the
1281 * changes. If time expires while waiting for link up, we reset the DSP.
1282 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1283 * successful completion, else return corresponding error code.
1285 s32
e1000e_phy_force_speed_duplex_m88(struct e1000_hw
*hw
)
1287 struct e1000_phy_info
*phy
= &hw
->phy
;
1293 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1294 * forced whenever speed and duplex are forced.
1296 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1300 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1301 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1305 e_dbg("M88E1000 PSCR: %X\n", phy_data
);
1307 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_data
);
1311 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
1313 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_data
);
1317 /* Reset the phy to commit changes. */
1318 ret_val
= e1000e_commit_phy(hw
);
1322 if (phy
->autoneg_wait_to_complete
) {
1323 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1325 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1331 if (hw
->phy
.type
!= e1000_phy_m88
) {
1332 e_dbg("Link taking longer than expected.\n");
1335 * We didn't get link.
1336 * Reset the DSP and cross our fingers.
1338 ret_val
= e1e_wphy(hw
, M88E1000_PHY_PAGE_SELECT
,
1342 ret_val
= e1000e_phy_reset_dsp(hw
);
1349 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1355 if (hw
->phy
.type
!= e1000_phy_m88
)
1358 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
1363 * Resetting the phy means we need to re-force TX_CLK in the
1364 * Extended PHY Specific Control Register to 25MHz clock from
1365 * the reset value of 2.5MHz.
1367 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
1368 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
1373 * In addition, we must re-enable CRS on Tx for both half and full
1376 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1380 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1381 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1387 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1388 * @hw: pointer to the HW structure
1390 * Forces the speed and duplex settings of the PHY.
1391 * This is a function pointer entry point only called by
1392 * PHY setup routines.
1394 s32
e1000_phy_force_speed_duplex_ife(struct e1000_hw
*hw
)
1396 struct e1000_phy_info
*phy
= &hw
->phy
;
1401 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &data
);
1405 e1000e_phy_force_speed_duplex_setup(hw
, &data
);
1407 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, data
);
1411 /* Disable MDI-X support for 10/100 */
1412 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
1416 data
&= ~IFE_PMC_AUTO_MDIX
;
1417 data
&= ~IFE_PMC_FORCE_MDIX
;
1419 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, data
);
1423 e_dbg("IFE PMC: %X\n", data
);
1427 if (phy
->autoneg_wait_to_complete
) {
1428 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1430 ret_val
= e1000e_phy_has_link_generic(hw
,
1438 e_dbg("Link taking longer than expected.\n");
1441 ret_val
= e1000e_phy_has_link_generic(hw
,
1454 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1455 * @hw: pointer to the HW structure
1456 * @phy_ctrl: pointer to current value of PHY_CONTROL
1458 * Forces speed and duplex on the PHY by doing the following: disable flow
1459 * control, force speed/duplex on the MAC, disable auto speed detection,
1460 * disable auto-negotiation, configure duplex, configure speed, configure
1461 * the collision distance, write configuration to CTRL register. The
1462 * caller must write to the PHY_CONTROL register for these settings to
1465 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw
*hw
, u16
*phy_ctrl
)
1467 struct e1000_mac_info
*mac
= &hw
->mac
;
1470 /* Turn off flow control when forcing speed/duplex */
1471 hw
->fc
.current_mode
= e1000_fc_none
;
1473 /* Force speed/duplex on the mac */
1475 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1476 ctrl
&= ~E1000_CTRL_SPD_SEL
;
1478 /* Disable Auto Speed Detection */
1479 ctrl
&= ~E1000_CTRL_ASDE
;
1481 /* Disable autoneg on the phy */
1482 *phy_ctrl
&= ~MII_CR_AUTO_NEG_EN
;
1484 /* Forcing Full or Half Duplex? */
1485 if (mac
->forced_speed_duplex
& E1000_ALL_HALF_DUPLEX
) {
1486 ctrl
&= ~E1000_CTRL_FD
;
1487 *phy_ctrl
&= ~MII_CR_FULL_DUPLEX
;
1488 e_dbg("Half Duplex\n");
1490 ctrl
|= E1000_CTRL_FD
;
1491 *phy_ctrl
|= MII_CR_FULL_DUPLEX
;
1492 e_dbg("Full Duplex\n");
1495 /* Forcing 10mb or 100mb? */
1496 if (mac
->forced_speed_duplex
& E1000_ALL_100_SPEED
) {
1497 ctrl
|= E1000_CTRL_SPD_100
;
1498 *phy_ctrl
|= MII_CR_SPEED_100
;
1499 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_10
);
1500 e_dbg("Forcing 100mb\n");
1502 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1503 *phy_ctrl
|= MII_CR_SPEED_10
;
1504 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_100
);
1505 e_dbg("Forcing 10mb\n");
1508 e1000e_config_collision_dist(hw
);
1514 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1515 * @hw: pointer to the HW structure
1516 * @active: boolean used to enable/disable lplu
1518 * Success returns 0, Failure returns 1
1520 * The low power link up (lplu) state is set to the power management level D3
1521 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1522 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1523 * is used during Dx states where the power conservation is most important.
1524 * During driver activity, SmartSpeed should be enabled so performance is
1527 s32
e1000e_set_d3_lplu_state(struct e1000_hw
*hw
, bool active
)
1529 struct e1000_phy_info
*phy
= &hw
->phy
;
1533 ret_val
= e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
1538 data
&= ~IGP02E1000_PM_D3_LPLU
;
1539 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
1543 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1544 * during Dx states where the power conservation is most
1545 * important. During driver activity we should enable
1546 * SmartSpeed, so performance is maintained.
1548 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1549 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1554 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1555 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1559 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1560 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1565 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1566 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1571 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1572 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1573 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1574 data
|= IGP02E1000_PM_D3_LPLU
;
1575 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
1579 /* When LPLU is enabled, we should disable SmartSpeed */
1580 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1584 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1585 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1592 * e1000e_check_downshift - Checks whether a downshift in speed occurred
1593 * @hw: pointer to the HW structure
1595 * Success returns 0, Failure returns 1
1597 * A downshift is detected by querying the PHY link health.
1599 s32
e1000e_check_downshift(struct e1000_hw
*hw
)
1601 struct e1000_phy_info
*phy
= &hw
->phy
;
1603 u16 phy_data
, offset
, mask
;
1605 switch (phy
->type
) {
1607 case e1000_phy_gg82563
:
1609 case e1000_phy_82578
:
1610 offset
= M88E1000_PHY_SPEC_STATUS
;
1611 mask
= M88E1000_PSSR_DOWNSHIFT
;
1613 case e1000_phy_igp_2
:
1614 case e1000_phy_igp_3
:
1615 offset
= IGP01E1000_PHY_LINK_HEALTH
;
1616 mask
= IGP01E1000_PLHR_SS_DOWNGRADE
;
1619 /* speed downshift not supported */
1620 phy
->speed_downgraded
= false;
1624 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
1627 phy
->speed_downgraded
= (phy_data
& mask
);
1633 * e1000_check_polarity_m88 - Checks the polarity.
1634 * @hw: pointer to the HW structure
1636 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1638 * Polarity is determined based on the PHY specific status register.
1640 s32
e1000_check_polarity_m88(struct e1000_hw
*hw
)
1642 struct e1000_phy_info
*phy
= &hw
->phy
;
1646 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &data
);
1649 phy
->cable_polarity
= (data
& M88E1000_PSSR_REV_POLARITY
)
1650 ? e1000_rev_polarity_reversed
1651 : e1000_rev_polarity_normal
;
1657 * e1000_check_polarity_igp - Checks the polarity.
1658 * @hw: pointer to the HW structure
1660 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1662 * Polarity is determined based on the PHY port status register, and the
1663 * current speed (since there is no polarity at 100Mbps).
1665 s32
e1000_check_polarity_igp(struct e1000_hw
*hw
)
1667 struct e1000_phy_info
*phy
= &hw
->phy
;
1669 u16 data
, offset
, mask
;
1672 * Polarity is determined based on the speed of
1675 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1679 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1680 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1681 offset
= IGP01E1000_PHY_PCS_INIT_REG
;
1682 mask
= IGP01E1000_PHY_POLARITY_MASK
;
1685 * This really only applies to 10Mbps since
1686 * there is no polarity for 100Mbps (always 0).
1688 offset
= IGP01E1000_PHY_PORT_STATUS
;
1689 mask
= IGP01E1000_PSSR_POLARITY_REVERSED
;
1692 ret_val
= e1e_rphy(hw
, offset
, &data
);
1695 phy
->cable_polarity
= (data
& mask
)
1696 ? e1000_rev_polarity_reversed
1697 : e1000_rev_polarity_normal
;
1703 * e1000_check_polarity_ife - Check cable polarity for IFE PHY
1704 * @hw: pointer to the HW structure
1706 * Polarity is determined on the polarity reversal feature being enabled.
1708 s32
e1000_check_polarity_ife(struct e1000_hw
*hw
)
1710 struct e1000_phy_info
*phy
= &hw
->phy
;
1712 u16 phy_data
, offset
, mask
;
1715 * Polarity is determined based on the reversal feature being enabled.
1717 if (phy
->polarity_correction
) {
1718 offset
= IFE_PHY_EXTENDED_STATUS_CONTROL
;
1719 mask
= IFE_PESC_POLARITY_REVERSED
;
1721 offset
= IFE_PHY_SPECIAL_CONTROL
;
1722 mask
= IFE_PSC_FORCE_POLARITY
;
1725 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
1728 phy
->cable_polarity
= (phy_data
& mask
)
1729 ? e1000_rev_polarity_reversed
1730 : e1000_rev_polarity_normal
;
1736 * e1000_wait_autoneg - Wait for auto-neg completion
1737 * @hw: pointer to the HW structure
1739 * Waits for auto-negotiation to complete or for the auto-negotiation time
1740 * limit to expire, which ever happens first.
1742 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
)
1747 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1748 for (i
= PHY_AUTO_NEG_LIMIT
; i
> 0; i
--) {
1749 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1752 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1755 if (phy_status
& MII_SR_AUTONEG_COMPLETE
)
1761 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1768 * e1000e_phy_has_link_generic - Polls PHY for link
1769 * @hw: pointer to the HW structure
1770 * @iterations: number of times to poll for link
1771 * @usec_interval: delay between polling attempts
1772 * @success: pointer to whether polling was successful or not
1774 * Polls the PHY status register for link, 'iterations' number of times.
1776 s32
e1000e_phy_has_link_generic(struct e1000_hw
*hw
, u32 iterations
,
1777 u32 usec_interval
, bool *success
)
1782 for (i
= 0; i
< iterations
; i
++) {
1784 * Some PHYs require the PHY_STATUS register to be read
1785 * twice due to the link bit being sticky. No harm doing
1786 * it across the board.
1788 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1791 * If the first read fails, another entity may have
1792 * ownership of the resources, wait and try again to
1793 * see if they have relinquished the resources yet.
1795 udelay(usec_interval
);
1796 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1799 if (phy_status
& MII_SR_LINK_STATUS
)
1801 if (usec_interval
>= 1000)
1802 mdelay(usec_interval
/1000);
1804 udelay(usec_interval
);
1807 *success
= (i
< iterations
);
1813 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1814 * @hw: pointer to the HW structure
1816 * Reads the PHY specific status register to retrieve the cable length
1817 * information. The cable length is determined by averaging the minimum and
1818 * maximum values to get the "average" cable length. The m88 PHY has four
1819 * possible cable length values, which are:
1820 * Register Value Cable Length
1824 * 3 110 - 140 meters
1827 s32
e1000e_get_cable_length_m88(struct e1000_hw
*hw
)
1829 struct e1000_phy_info
*phy
= &hw
->phy
;
1831 u16 phy_data
, index
;
1833 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1837 index
= (phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
1838 M88E1000_PSSR_CABLE_LENGTH_SHIFT
;
1839 if (index
>= M88E1000_CABLE_LENGTH_TABLE_SIZE
- 1) {
1840 ret_val
= -E1000_ERR_PHY
;
1844 phy
->min_cable_length
= e1000_m88_cable_length_table
[index
];
1845 phy
->max_cable_length
= e1000_m88_cable_length_table
[index
+ 1];
1847 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1854 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1855 * @hw: pointer to the HW structure
1857 * The automatic gain control (agc) normalizes the amplitude of the
1858 * received signal, adjusting for the attenuation produced by the
1859 * cable. By reading the AGC registers, which represent the
1860 * combination of coarse and fine gain value, the value can be put
1861 * into a lookup table to obtain the approximate cable length
1864 s32
e1000e_get_cable_length_igp_2(struct e1000_hw
*hw
)
1866 struct e1000_phy_info
*phy
= &hw
->phy
;
1868 u16 phy_data
, i
, agc_value
= 0;
1869 u16 cur_agc_index
, max_agc_index
= 0;
1870 u16 min_agc_index
= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
- 1;
1871 static const u16 agc_reg_array
[IGP02E1000_PHY_CHANNEL_NUM
] = {
1872 IGP02E1000_PHY_AGC_A
,
1873 IGP02E1000_PHY_AGC_B
,
1874 IGP02E1000_PHY_AGC_C
,
1875 IGP02E1000_PHY_AGC_D
1878 /* Read the AGC registers for all channels */
1879 for (i
= 0; i
< IGP02E1000_PHY_CHANNEL_NUM
; i
++) {
1880 ret_val
= e1e_rphy(hw
, agc_reg_array
[i
], &phy_data
);
1885 * Getting bits 15:9, which represent the combination of
1886 * coarse and fine gain values. The result is a number
1887 * that can be put into the lookup table to obtain the
1888 * approximate cable length.
1890 cur_agc_index
= (phy_data
>> IGP02E1000_AGC_LENGTH_SHIFT
) &
1891 IGP02E1000_AGC_LENGTH_MASK
;
1893 /* Array index bound check. */
1894 if ((cur_agc_index
>= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
) ||
1895 (cur_agc_index
== 0))
1896 return -E1000_ERR_PHY
;
1898 /* Remove min & max AGC values from calculation. */
1899 if (e1000_igp_2_cable_length_table
[min_agc_index
] >
1900 e1000_igp_2_cable_length_table
[cur_agc_index
])
1901 min_agc_index
= cur_agc_index
;
1902 if (e1000_igp_2_cable_length_table
[max_agc_index
] <
1903 e1000_igp_2_cable_length_table
[cur_agc_index
])
1904 max_agc_index
= cur_agc_index
;
1906 agc_value
+= e1000_igp_2_cable_length_table
[cur_agc_index
];
1909 agc_value
-= (e1000_igp_2_cable_length_table
[min_agc_index
] +
1910 e1000_igp_2_cable_length_table
[max_agc_index
]);
1911 agc_value
/= (IGP02E1000_PHY_CHANNEL_NUM
- 2);
1913 /* Calculate cable length with the error range of +/- 10 meters. */
1914 phy
->min_cable_length
= ((agc_value
- IGP02E1000_AGC_RANGE
) > 0) ?
1915 (agc_value
- IGP02E1000_AGC_RANGE
) : 0;
1916 phy
->max_cable_length
= agc_value
+ IGP02E1000_AGC_RANGE
;
1918 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1924 * e1000e_get_phy_info_m88 - Retrieve PHY information
1925 * @hw: pointer to the HW structure
1927 * Valid for only copper links. Read the PHY status register (sticky read)
1928 * to verify that link is up. Read the PHY special control register to
1929 * determine the polarity and 10base-T extended distance. Read the PHY
1930 * special status register to determine MDI/MDIx and current speed. If
1931 * speed is 1000, then determine cable length, local and remote receiver.
1933 s32
e1000e_get_phy_info_m88(struct e1000_hw
*hw
)
1935 struct e1000_phy_info
*phy
= &hw
->phy
;
1940 if (phy
->media_type
!= e1000_media_type_copper
) {
1941 e_dbg("Phy info is only valid for copper media\n");
1942 return -E1000_ERR_CONFIG
;
1945 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1950 e_dbg("Phy info is only valid if link is up\n");
1951 return -E1000_ERR_CONFIG
;
1954 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1958 phy
->polarity_correction
= (phy_data
&
1959 M88E1000_PSCR_POLARITY_REVERSAL
);
1961 ret_val
= e1000_check_polarity_m88(hw
);
1965 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1969 phy
->is_mdix
= (phy_data
& M88E1000_PSSR_MDIX
);
1971 if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_1000MBS
) {
1972 ret_val
= e1000_get_cable_length(hw
);
1976 ret_val
= e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_data
);
1980 phy
->local_rx
= (phy_data
& SR_1000T_LOCAL_RX_STATUS
)
1981 ? e1000_1000t_rx_status_ok
1982 : e1000_1000t_rx_status_not_ok
;
1984 phy
->remote_rx
= (phy_data
& SR_1000T_REMOTE_RX_STATUS
)
1985 ? e1000_1000t_rx_status_ok
1986 : e1000_1000t_rx_status_not_ok
;
1988 /* Set values to "undefined" */
1989 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1990 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1991 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1998 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1999 * @hw: pointer to the HW structure
2001 * Read PHY status to determine if link is up. If link is up, then
2002 * set/determine 10base-T extended distance and polarity correction. Read
2003 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2004 * determine on the cable length, local and remote receiver.
2006 s32
e1000e_get_phy_info_igp(struct e1000_hw
*hw
)
2008 struct e1000_phy_info
*phy
= &hw
->phy
;
2013 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
2018 e_dbg("Phy info is only valid if link is up\n");
2019 return -E1000_ERR_CONFIG
;
2022 phy
->polarity_correction
= true;
2024 ret_val
= e1000_check_polarity_igp(hw
);
2028 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
2032 phy
->is_mdix
= (data
& IGP01E1000_PSSR_MDIX
);
2034 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
2035 IGP01E1000_PSSR_SPEED_1000MBPS
) {
2036 ret_val
= e1000_get_cable_length(hw
);
2040 ret_val
= e1e_rphy(hw
, PHY_1000T_STATUS
, &data
);
2044 phy
->local_rx
= (data
& SR_1000T_LOCAL_RX_STATUS
)
2045 ? e1000_1000t_rx_status_ok
2046 : e1000_1000t_rx_status_not_ok
;
2048 phy
->remote_rx
= (data
& SR_1000T_REMOTE_RX_STATUS
)
2049 ? e1000_1000t_rx_status_ok
2050 : e1000_1000t_rx_status_not_ok
;
2052 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2053 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2054 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2061 * e1000_get_phy_info_ife - Retrieves various IFE PHY states
2062 * @hw: pointer to the HW structure
2064 * Populates "phy" structure with various feature states.
2066 s32
e1000_get_phy_info_ife(struct e1000_hw
*hw
)
2068 struct e1000_phy_info
*phy
= &hw
->phy
;
2073 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
2078 e_dbg("Phy info is only valid if link is up\n");
2079 ret_val
= -E1000_ERR_CONFIG
;
2083 ret_val
= e1e_rphy(hw
, IFE_PHY_SPECIAL_CONTROL
, &data
);
2086 phy
->polarity_correction
= (data
& IFE_PSC_AUTO_POLARITY_DISABLE
)
2089 if (phy
->polarity_correction
) {
2090 ret_val
= e1000_check_polarity_ife(hw
);
2094 /* Polarity is forced */
2095 phy
->cable_polarity
= (data
& IFE_PSC_FORCE_POLARITY
)
2096 ? e1000_rev_polarity_reversed
2097 : e1000_rev_polarity_normal
;
2100 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
2104 phy
->is_mdix
= (data
& IFE_PMC_MDIX_STATUS
) ? true : false;
2106 /* The following parameters are undefined for 10/100 operation. */
2107 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2108 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2109 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2116 * e1000e_phy_sw_reset - PHY software reset
2117 * @hw: pointer to the HW structure
2119 * Does a software reset of the PHY by reading the PHY control register and
2120 * setting/write the control register reset bit to the PHY.
2122 s32
e1000e_phy_sw_reset(struct e1000_hw
*hw
)
2127 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_ctrl
);
2131 phy_ctrl
|= MII_CR_RESET
;
2132 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_ctrl
);
2142 * e1000e_phy_hw_reset_generic - PHY hardware reset
2143 * @hw: pointer to the HW structure
2145 * Verify the reset block is not blocking us from resetting. Acquire
2146 * semaphore (if necessary) and read/set/write the device control reset
2147 * bit in the PHY. Wait the appropriate delay time for the device to
2148 * reset and release the semaphore (if necessary).
2150 s32
e1000e_phy_hw_reset_generic(struct e1000_hw
*hw
)
2152 struct e1000_phy_info
*phy
= &hw
->phy
;
2156 ret_val
= e1000_check_reset_block(hw
);
2160 ret_val
= phy
->ops
.acquire(hw
);
2165 ew32(CTRL
, ctrl
| E1000_CTRL_PHY_RST
);
2168 udelay(phy
->reset_delay_us
);
2175 phy
->ops
.release(hw
);
2177 return e1000_get_phy_cfg_done(hw
);
2181 * e1000e_get_cfg_done - Generic configuration done
2182 * @hw: pointer to the HW structure
2184 * Generic function to wait 10 milli-seconds for configuration to complete
2185 * and return success.
2187 s32
e1000e_get_cfg_done(struct e1000_hw
*hw
)
2194 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2195 * @hw: pointer to the HW structure
2197 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2199 s32
e1000e_phy_init_script_igp3(struct e1000_hw
*hw
)
2201 e_dbg("Running IGP 3 PHY init script\n");
2203 /* PHY init IGP 3 */
2204 /* Enable rise/fall, 10-mode work in class-A */
2205 e1e_wphy(hw
, 0x2F5B, 0x9018);
2206 /* Remove all caps from Replica path filter */
2207 e1e_wphy(hw
, 0x2F52, 0x0000);
2208 /* Bias trimming for ADC, AFE and Driver (Default) */
2209 e1e_wphy(hw
, 0x2FB1, 0x8B24);
2210 /* Increase Hybrid poly bias */
2211 e1e_wphy(hw
, 0x2FB2, 0xF8F0);
2212 /* Add 4% to Tx amplitude in Gig mode */
2213 e1e_wphy(hw
, 0x2010, 0x10B0);
2214 /* Disable trimming (TTT) */
2215 e1e_wphy(hw
, 0x2011, 0x0000);
2216 /* Poly DC correction to 94.6% + 2% for all channels */
2217 e1e_wphy(hw
, 0x20DD, 0x249A);
2218 /* ABS DC correction to 95.9% */
2219 e1e_wphy(hw
, 0x20DE, 0x00D3);
2220 /* BG temp curve trim */
2221 e1e_wphy(hw
, 0x28B4, 0x04CE);
2222 /* Increasing ADC OPAMP stage 1 currents to max */
2223 e1e_wphy(hw
, 0x2F70, 0x29E4);
2224 /* Force 1000 ( required for enabling PHY regs configuration) */
2225 e1e_wphy(hw
, 0x0000, 0x0140);
2226 /* Set upd_freq to 6 */
2227 e1e_wphy(hw
, 0x1F30, 0x1606);
2229 e1e_wphy(hw
, 0x1F31, 0xB814);
2230 /* Disable adaptive fixed FFE (Default) */
2231 e1e_wphy(hw
, 0x1F35, 0x002A);
2232 /* Enable FFE hysteresis */
2233 e1e_wphy(hw
, 0x1F3E, 0x0067);
2234 /* Fixed FFE for short cable lengths */
2235 e1e_wphy(hw
, 0x1F54, 0x0065);
2236 /* Fixed FFE for medium cable lengths */
2237 e1e_wphy(hw
, 0x1F55, 0x002A);
2238 /* Fixed FFE for long cable lengths */
2239 e1e_wphy(hw
, 0x1F56, 0x002A);
2240 /* Enable Adaptive Clip Threshold */
2241 e1e_wphy(hw
, 0x1F72, 0x3FB0);
2242 /* AHT reset limit to 1 */
2243 e1e_wphy(hw
, 0x1F76, 0xC0FF);
2244 /* Set AHT master delay to 127 msec */
2245 e1e_wphy(hw
, 0x1F77, 0x1DEC);
2246 /* Set scan bits for AHT */
2247 e1e_wphy(hw
, 0x1F78, 0xF9EF);
2248 /* Set AHT Preset bits */
2249 e1e_wphy(hw
, 0x1F79, 0x0210);
2250 /* Change integ_factor of channel A to 3 */
2251 e1e_wphy(hw
, 0x1895, 0x0003);
2252 /* Change prop_factor of channels BCD to 8 */
2253 e1e_wphy(hw
, 0x1796, 0x0008);
2254 /* Change cg_icount + enable integbp for channels BCD */
2255 e1e_wphy(hw
, 0x1798, 0xD008);
2257 * Change cg_icount + enable integbp + change prop_factor_master
2258 * to 8 for channel A
2260 e1e_wphy(hw
, 0x1898, 0xD918);
2261 /* Disable AHT in Slave mode on channel A */
2262 e1e_wphy(hw
, 0x187A, 0x0800);
2264 * Enable LPLU and disable AN to 1000 in non-D0a states,
2267 e1e_wphy(hw
, 0x0019, 0x008D);
2268 /* Enable restart AN on an1000_dis change */
2269 e1e_wphy(hw
, 0x001B, 0x2080);
2270 /* Enable wh_fifo read clock in 10/100 modes */
2271 e1e_wphy(hw
, 0x0014, 0x0045);
2272 /* Restart AN, Speed selection is 1000 */
2273 e1e_wphy(hw
, 0x0000, 0x1340);
2278 /* Internal function pointers */
2281 * e1000_get_phy_cfg_done - Generic PHY configuration done
2282 * @hw: pointer to the HW structure
2284 * Return success if silicon family did not implement a family specific
2285 * get_cfg_done function.
2287 static s32
e1000_get_phy_cfg_done(struct e1000_hw
*hw
)
2289 if (hw
->phy
.ops
.get_cfg_done
)
2290 return hw
->phy
.ops
.get_cfg_done(hw
);
2296 * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2297 * @hw: pointer to the HW structure
2299 * When the silicon family has not implemented a forced speed/duplex
2300 * function for the PHY, simply return 0.
2302 static s32
e1000_phy_force_speed_duplex(struct e1000_hw
*hw
)
2304 if (hw
->phy
.ops
.force_speed_duplex
)
2305 return hw
->phy
.ops
.force_speed_duplex(hw
);
2311 * e1000e_get_phy_type_from_id - Get PHY type from id
2312 * @phy_id: phy_id read from the phy
2314 * Returns the phy type from the id.
2316 enum e1000_phy_type
e1000e_get_phy_type_from_id(u32 phy_id
)
2318 enum e1000_phy_type phy_type
= e1000_phy_unknown
;
2321 case M88E1000_I_PHY_ID
:
2322 case M88E1000_E_PHY_ID
:
2323 case M88E1111_I_PHY_ID
:
2324 case M88E1011_I_PHY_ID
:
2325 phy_type
= e1000_phy_m88
;
2327 case IGP01E1000_I_PHY_ID
: /* IGP 1 & 2 share this */
2328 phy_type
= e1000_phy_igp_2
;
2330 case GG82563_E_PHY_ID
:
2331 phy_type
= e1000_phy_gg82563
;
2333 case IGP03E1000_E_PHY_ID
:
2334 phy_type
= e1000_phy_igp_3
;
2337 case IFE_PLUS_E_PHY_ID
:
2338 case IFE_C_E_PHY_ID
:
2339 phy_type
= e1000_phy_ife
;
2341 case BME1000_E_PHY_ID
:
2342 case BME1000_E_PHY_ID_R2
:
2343 phy_type
= e1000_phy_bm
;
2345 case I82578_E_PHY_ID
:
2346 phy_type
= e1000_phy_82578
;
2348 case I82577_E_PHY_ID
:
2349 phy_type
= e1000_phy_82577
;
2351 case I82579_E_PHY_ID
:
2352 phy_type
= e1000_phy_82579
;
2355 phy_type
= e1000_phy_unknown
;
2362 * e1000e_determine_phy_address - Determines PHY address.
2363 * @hw: pointer to the HW structure
2365 * This uses a trial and error method to loop through possible PHY
2366 * addresses. It tests each by reading the PHY ID registers and
2367 * checking for a match.
2369 s32
e1000e_determine_phy_address(struct e1000_hw
*hw
)
2371 s32 ret_val
= -E1000_ERR_PHY_TYPE
;
2374 enum e1000_phy_type phy_type
= e1000_phy_unknown
;
2376 hw
->phy
.id
= phy_type
;
2378 for (phy_addr
= 0; phy_addr
< E1000_MAX_PHY_ADDR
; phy_addr
++) {
2379 hw
->phy
.addr
= phy_addr
;
2383 e1000e_get_phy_id(hw
);
2384 phy_type
= e1000e_get_phy_type_from_id(hw
->phy
.id
);
2387 * If phy_type is valid, break - we found our
2390 if (phy_type
!= e1000_phy_unknown
) {
2394 usleep_range(1000, 2000);
2404 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2405 * @page: page to access
2407 * Returns the phy address for the page requested.
2409 static u32
e1000_get_phy_addr_for_bm_page(u32 page
, u32 reg
)
2413 if ((page
>= 768) || (page
== 0 && reg
== 25) || (reg
== 31))
2420 * e1000e_write_phy_reg_bm - Write BM PHY register
2421 * @hw: pointer to the HW structure
2422 * @offset: register offset to write to
2423 * @data: data to write at register offset
2425 * Acquires semaphore, if necessary, then writes the data to PHY register
2426 * at the offset. Release any acquired semaphores before exiting.
2428 s32
e1000e_write_phy_reg_bm(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2431 u32 page
= offset
>> IGP_PAGE_SHIFT
;
2433 ret_val
= hw
->phy
.ops
.acquire(hw
);
2437 /* Page 800 works differently than the rest so it has its own func */
2438 if (page
== BM_WUC_PAGE
) {
2439 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
2444 hw
->phy
.addr
= e1000_get_phy_addr_for_bm_page(page
, offset
);
2446 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2447 u32 page_shift
, page_select
;
2450 * Page select is register 31 for phy address 1 and 22 for
2451 * phy address 2 and 3. Page select is shifted only for
2454 if (hw
->phy
.addr
== 1) {
2455 page_shift
= IGP_PAGE_SHIFT
;
2456 page_select
= IGP01E1000_PHY_PAGE_SELECT
;
2459 page_select
= BM_PHY_PAGE_SELECT
;
2462 /* Page is shifted left, PHY expects (page x 32) */
2463 ret_val
= e1000e_write_phy_reg_mdic(hw
, page_select
,
2464 (page
<< page_shift
));
2469 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2473 hw
->phy
.ops
.release(hw
);
2478 * e1000e_read_phy_reg_bm - Read BM PHY register
2479 * @hw: pointer to the HW structure
2480 * @offset: register offset to be read
2481 * @data: pointer to the read data
2483 * Acquires semaphore, if necessary, then reads the PHY register at offset
2484 * and storing the retrieved information in data. Release any acquired
2485 * semaphores before exiting.
2487 s32
e1000e_read_phy_reg_bm(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2490 u32 page
= offset
>> IGP_PAGE_SHIFT
;
2492 ret_val
= hw
->phy
.ops
.acquire(hw
);
2496 /* Page 800 works differently than the rest so it has its own func */
2497 if (page
== BM_WUC_PAGE
) {
2498 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2503 hw
->phy
.addr
= e1000_get_phy_addr_for_bm_page(page
, offset
);
2505 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2506 u32 page_shift
, page_select
;
2509 * Page select is register 31 for phy address 1 and 22 for
2510 * phy address 2 and 3. Page select is shifted only for
2513 if (hw
->phy
.addr
== 1) {
2514 page_shift
= IGP_PAGE_SHIFT
;
2515 page_select
= IGP01E1000_PHY_PAGE_SELECT
;
2518 page_select
= BM_PHY_PAGE_SELECT
;
2521 /* Page is shifted left, PHY expects (page x 32) */
2522 ret_val
= e1000e_write_phy_reg_mdic(hw
, page_select
,
2523 (page
<< page_shift
));
2528 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2531 hw
->phy
.ops
.release(hw
);
2536 * e1000e_read_phy_reg_bm2 - Read BM PHY register
2537 * @hw: pointer to the HW structure
2538 * @offset: register offset to be read
2539 * @data: pointer to the read data
2541 * Acquires semaphore, if necessary, then reads the PHY register at offset
2542 * and storing the retrieved information in data. Release any acquired
2543 * semaphores before exiting.
2545 s32
e1000e_read_phy_reg_bm2(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2548 u16 page
= (u16
)(offset
>> IGP_PAGE_SHIFT
);
2550 ret_val
= hw
->phy
.ops
.acquire(hw
);
2554 /* Page 800 works differently than the rest so it has its own func */
2555 if (page
== BM_WUC_PAGE
) {
2556 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2563 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2565 /* Page is shifted left, PHY expects (page x 32) */
2566 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_PHY_PAGE_SELECT
,
2573 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2576 hw
->phy
.ops
.release(hw
);
2581 * e1000e_write_phy_reg_bm2 - Write BM PHY register
2582 * @hw: pointer to the HW structure
2583 * @offset: register offset to write to
2584 * @data: data to write at register offset
2586 * Acquires semaphore, if necessary, then writes the data to PHY register
2587 * at the offset. Release any acquired semaphores before exiting.
2589 s32
e1000e_write_phy_reg_bm2(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2592 u16 page
= (u16
)(offset
>> IGP_PAGE_SHIFT
);
2594 ret_val
= hw
->phy
.ops
.acquire(hw
);
2598 /* Page 800 works differently than the rest so it has its own func */
2599 if (page
== BM_WUC_PAGE
) {
2600 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
2607 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2608 /* Page is shifted left, PHY expects (page x 32) */
2609 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_PHY_PAGE_SELECT
,
2616 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2620 hw
->phy
.ops
.release(hw
);
2625 * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2626 * @hw: pointer to the HW structure
2627 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2629 * Assumes semaphore already acquired and phy_reg points to a valid memory
2630 * address to store contents of the BM_WUC_ENABLE_REG register.
2632 s32
e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw
*hw
, u16
*phy_reg
)
2637 /* All page select, port ctrl and wakeup registers use phy address 1 */
2640 /* Select Port Control Registers page */
2641 ret_val
= e1000_set_page_igp(hw
, (BM_PORT_CTRL_PAGE
<< IGP_PAGE_SHIFT
));
2643 e_dbg("Could not set Port Control page\n");
2647 ret_val
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, phy_reg
);
2649 e_dbg("Could not read PHY register %d.%d\n",
2650 BM_PORT_CTRL_PAGE
, BM_WUC_ENABLE_REG
);
2655 * Enable both PHY wakeup mode and Wakeup register page writes.
2656 * Prevent a power state change by disabling ME and Host PHY wakeup.
2659 temp
|= BM_WUC_ENABLE_BIT
;
2660 temp
&= ~(BM_WUC_ME_WU_BIT
| BM_WUC_HOST_WU_BIT
);
2662 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, temp
);
2664 e_dbg("Could not write PHY register %d.%d\n",
2665 BM_PORT_CTRL_PAGE
, BM_WUC_ENABLE_REG
);
2669 /* Select Host Wakeup Registers page */
2670 ret_val
= e1000_set_page_igp(hw
, (BM_WUC_PAGE
<< IGP_PAGE_SHIFT
));
2672 /* caller now able to write registers on the Wakeup registers page */
2678 * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2679 * @hw: pointer to the HW structure
2680 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2682 * Restore BM_WUC_ENABLE_REG to its original value.
2684 * Assumes semaphore already acquired and *phy_reg is the contents of the
2685 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2688 s32
e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw
*hw
, u16
*phy_reg
)
2692 /* Select Port Control Registers page */
2693 ret_val
= e1000_set_page_igp(hw
, (BM_PORT_CTRL_PAGE
<< IGP_PAGE_SHIFT
));
2695 e_dbg("Could not set Port Control page\n");
2699 /* Restore 769.17 to its original value */
2700 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, *phy_reg
);
2702 e_dbg("Could not restore PHY register %d.%d\n",
2703 BM_PORT_CTRL_PAGE
, BM_WUC_ENABLE_REG
);
2709 * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2710 * @hw: pointer to the HW structure
2711 * @offset: register offset to be read or written
2712 * @data: pointer to the data to read or write
2713 * @read: determines if operation is read or write
2714 * @page_set: BM_WUC_PAGE already set and access enabled
2716 * Read the PHY register at offset and store the retrieved information in
2717 * data, or write data to PHY register at offset. Note the procedure to
2718 * access the PHY wakeup registers is different than reading the other PHY
2719 * registers. It works as such:
2720 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2721 * 2) Set page to 800 for host (801 if we were manageability)
2722 * 3) Write the address using the address opcode (0x11)
2723 * 4) Read or write the data using the data opcode (0x12)
2724 * 5) Restore 769.17.2 to its original value
2726 * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2727 * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2729 * Assumes semaphore is already acquired. When page_set==true, assumes
2730 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2731 * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2733 static s32
e1000_access_phy_wakeup_reg_bm(struct e1000_hw
*hw
, u32 offset
,
2734 u16
*data
, bool read
, bool page_set
)
2737 u16 reg
= BM_PHY_REG_NUM(offset
);
2738 u16 page
= BM_PHY_REG_PAGE(offset
);
2741 /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2742 if ((hw
->mac
.type
== e1000_pchlan
) &&
2743 (!(er32(PHY_CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)))
2744 e_dbg("Attempting to access page %d while gig enabled.\n",
2748 /* Enable access to PHY wakeup registers */
2749 ret_val
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
2751 e_dbg("Could not enable PHY wakeup reg access\n");
2756 e_dbg("Accessing PHY page %d reg 0x%x\n", page
, reg
);
2758 /* Write the Wakeup register page offset value using opcode 0x11 */
2759 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ADDRESS_OPCODE
, reg
);
2761 e_dbg("Could not write address opcode to page %d\n", page
);
2766 /* Read the Wakeup register page value using opcode 0x12 */
2767 ret_val
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_DATA_OPCODE
,
2770 /* Write the Wakeup register page value using opcode 0x12 */
2771 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_DATA_OPCODE
,
2776 e_dbg("Could not access PHY reg %d.%d\n", page
, reg
);
2781 ret_val
= e1000_disable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
2788 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2789 * @hw: pointer to the HW structure
2791 * In the case of a PHY power down to save power, or to turn off link during a
2792 * driver unload, or wake on lan is not enabled, restore the link to previous
2795 void e1000_power_up_phy_copper(struct e1000_hw
*hw
)
2799 /* The PHY will retain its settings across a power down/up cycle */
2800 e1e_rphy(hw
, PHY_CONTROL
, &mii_reg
);
2801 mii_reg
&= ~MII_CR_POWER_DOWN
;
2802 e1e_wphy(hw
, PHY_CONTROL
, mii_reg
);
2806 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2807 * @hw: pointer to the HW structure
2809 * In the case of a PHY power down to save power, or to turn off link during a
2810 * driver unload, or wake on lan is not enabled, restore the link to previous
2813 void e1000_power_down_phy_copper(struct e1000_hw
*hw
)
2817 /* The PHY will retain its settings across a power down/up cycle */
2818 e1e_rphy(hw
, PHY_CONTROL
, &mii_reg
);
2819 mii_reg
|= MII_CR_POWER_DOWN
;
2820 e1e_wphy(hw
, PHY_CONTROL
, mii_reg
);
2821 usleep_range(1000, 2000);
2825 * e1000e_commit_phy - Soft PHY reset
2826 * @hw: pointer to the HW structure
2828 * Performs a soft PHY reset on those that apply. This is a function pointer
2829 * entry point called by drivers.
2831 s32
e1000e_commit_phy(struct e1000_hw
*hw
)
2833 if (hw
->phy
.ops
.commit
)
2834 return hw
->phy
.ops
.commit(hw
);
2840 * e1000_set_d0_lplu_state - Sets low power link up state for D0
2841 * @hw: pointer to the HW structure
2842 * @active: boolean used to enable/disable lplu
2844 * Success returns 0, Failure returns 1
2846 * The low power link up (lplu) state is set to the power management level D0
2847 * and SmartSpeed is disabled when active is true, else clear lplu for D0
2848 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
2849 * is used during Dx states where the power conservation is most important.
2850 * During driver activity, SmartSpeed should be enabled so performance is
2851 * maintained. This is a function pointer entry point called by drivers.
2853 static s32
e1000_set_d0_lplu_state(struct e1000_hw
*hw
, bool active
)
2855 if (hw
->phy
.ops
.set_d0_lplu_state
)
2856 return hw
->phy
.ops
.set_d0_lplu_state(hw
, active
);
2862 * __e1000_read_phy_reg_hv - Read HV PHY register
2863 * @hw: pointer to the HW structure
2864 * @offset: register offset to be read
2865 * @data: pointer to the read data
2866 * @locked: semaphore has already been acquired or not
2868 * Acquires semaphore, if necessary, then reads the PHY register at offset
2869 * and stores the retrieved information in data. Release any acquired
2870 * semaphore before exiting.
2872 static s32
__e1000_read_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
2873 bool locked
, bool page_set
)
2876 u16 page
= BM_PHY_REG_PAGE(offset
);
2877 u16 reg
= BM_PHY_REG_NUM(offset
);
2878 u32 phy_addr
= hw
->phy
.addr
= e1000_get_phy_addr_for_hv_page(page
);
2881 ret_val
= hw
->phy
.ops
.acquire(hw
);
2886 /* Page 800 works differently than the rest so it has its own func */
2887 if (page
== BM_WUC_PAGE
) {
2888 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2893 if (page
> 0 && page
< HV_INTC_FC_PAGE_START
) {
2894 ret_val
= e1000_access_phy_debug_regs_hv(hw
, offset
,
2900 if (page
== HV_INTC_FC_PAGE_START
)
2903 if (reg
> MAX_PHY_MULTI_PAGE_REG
) {
2904 /* Page is shifted left, PHY expects (page x 32) */
2905 ret_val
= e1000_set_page_igp(hw
,
2906 (page
<< IGP_PAGE_SHIFT
));
2908 hw
->phy
.addr
= phy_addr
;
2915 e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page
,
2916 page
<< IGP_PAGE_SHIFT
, reg
);
2918 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& reg
,
2922 hw
->phy
.ops
.release(hw
);
2928 * e1000_read_phy_reg_hv - Read HV PHY register
2929 * @hw: pointer to the HW structure
2930 * @offset: register offset to be read
2931 * @data: pointer to the read data
2933 * Acquires semaphore then reads the PHY register at offset and stores
2934 * the retrieved information in data. Release the acquired semaphore
2937 s32
e1000_read_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2939 return __e1000_read_phy_reg_hv(hw
, offset
, data
, false, false);
2943 * e1000_read_phy_reg_hv_locked - Read HV PHY register
2944 * @hw: pointer to the HW structure
2945 * @offset: register offset to be read
2946 * @data: pointer to the read data
2948 * Reads the PHY register at offset and stores the retrieved information
2949 * in data. Assumes semaphore already acquired.
2951 s32
e1000_read_phy_reg_hv_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2953 return __e1000_read_phy_reg_hv(hw
, offset
, data
, true, false);
2957 * e1000_read_phy_reg_page_hv - Read HV PHY register
2958 * @hw: pointer to the HW structure
2959 * @offset: register offset to write to
2960 * @data: data to write at register offset
2962 * Reads the PHY register at offset and stores the retrieved information
2963 * in data. Assumes semaphore already acquired and page already set.
2965 s32
e1000_read_phy_reg_page_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2967 return __e1000_read_phy_reg_hv(hw
, offset
, data
, true, true);
2971 * __e1000_write_phy_reg_hv - Write HV PHY register
2972 * @hw: pointer to the HW structure
2973 * @offset: register offset to write to
2974 * @data: data to write at register offset
2975 * @locked: semaphore has already been acquired or not
2977 * Acquires semaphore, if necessary, then writes the data to PHY register
2978 * at the offset. Release any acquired semaphores before exiting.
2980 static s32
__e1000_write_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
,
2981 bool locked
, bool page_set
)
2984 u16 page
= BM_PHY_REG_PAGE(offset
);
2985 u16 reg
= BM_PHY_REG_NUM(offset
);
2986 u32 phy_addr
= hw
->phy
.addr
= e1000_get_phy_addr_for_hv_page(page
);
2989 ret_val
= hw
->phy
.ops
.acquire(hw
);
2994 /* Page 800 works differently than the rest so it has its own func */
2995 if (page
== BM_WUC_PAGE
) {
2996 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
3001 if (page
> 0 && page
< HV_INTC_FC_PAGE_START
) {
3002 ret_val
= e1000_access_phy_debug_regs_hv(hw
, offset
,
3008 if (page
== HV_INTC_FC_PAGE_START
)
3012 * Workaround MDIO accesses being disabled after entering IEEE
3013 * Power Down (when bit 11 of the PHY Control register is set)
3015 if ((hw
->phy
.type
== e1000_phy_82578
) &&
3016 (hw
->phy
.revision
>= 1) &&
3017 (hw
->phy
.addr
== 2) &&
3018 ((MAX_PHY_REG_ADDRESS
& reg
) == 0) && (data
& (1 << 11))) {
3020 ret_val
= e1000_access_phy_debug_regs_hv(hw
,
3027 if (reg
> MAX_PHY_MULTI_PAGE_REG
) {
3028 /* Page is shifted left, PHY expects (page x 32) */
3029 ret_val
= e1000_set_page_igp(hw
,
3030 (page
<< IGP_PAGE_SHIFT
));
3032 hw
->phy
.addr
= phy_addr
;
3039 e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page
,
3040 page
<< IGP_PAGE_SHIFT
, reg
);
3042 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& reg
,
3047 hw
->phy
.ops
.release(hw
);
3053 * e1000_write_phy_reg_hv - Write HV PHY register
3054 * @hw: pointer to the HW structure
3055 * @offset: register offset to write to
3056 * @data: data to write at register offset
3058 * Acquires semaphore then writes the data to PHY register at the offset.
3059 * Release the acquired semaphores before exiting.
3061 s32
e1000_write_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
)
3063 return __e1000_write_phy_reg_hv(hw
, offset
, data
, false, false);
3067 * e1000_write_phy_reg_hv_locked - Write HV PHY register
3068 * @hw: pointer to the HW structure
3069 * @offset: register offset to write to
3070 * @data: data to write at register offset
3072 * Writes the data to PHY register at the offset. Assumes semaphore
3075 s32
e1000_write_phy_reg_hv_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
3077 return __e1000_write_phy_reg_hv(hw
, offset
, data
, true, false);
3081 * e1000_write_phy_reg_page_hv - Write HV PHY register
3082 * @hw: pointer to the HW structure
3083 * @offset: register offset to write to
3084 * @data: data to write at register offset
3086 * Writes the data to PHY register at the offset. Assumes semaphore
3087 * already acquired and page already set.
3089 s32
e1000_write_phy_reg_page_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
)
3091 return __e1000_write_phy_reg_hv(hw
, offset
, data
, true, true);
3095 * e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3096 * @page: page to be accessed
3098 static u32
e1000_get_phy_addr_for_hv_page(u32 page
)
3102 if (page
>= HV_INTC_FC_PAGE_START
)
3109 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3110 * @hw: pointer to the HW structure
3111 * @offset: register offset to be read or written
3112 * @data: pointer to the data to be read or written
3113 * @read: determines if operation is read or write
3115 * Reads the PHY register at offset and stores the retreived information
3116 * in data. Assumes semaphore already acquired. Note that the procedure
3117 * to access these regs uses the address port and data port to read/write.
3118 * These accesses done with PHY address 2 and without using pages.
3120 static s32
e1000_access_phy_debug_regs_hv(struct e1000_hw
*hw
, u32 offset
,
3121 u16
*data
, bool read
)
3127 /* This takes care of the difference with desktop vs mobile phy */
3128 addr_reg
= (hw
->phy
.type
== e1000_phy_82578
) ?
3129 I82578_ADDR_REG
: I82577_ADDR_REG
;
3130 data_reg
= addr_reg
+ 1;
3132 /* All operations in this function are phy address 2 */
3135 /* masking with 0x3F to remove the page from offset */
3136 ret_val
= e1000e_write_phy_reg_mdic(hw
, addr_reg
, (u16
)offset
& 0x3F);
3138 e_dbg("Could not write the Address Offset port register\n");
3142 /* Read or write the data value next */
3144 ret_val
= e1000e_read_phy_reg_mdic(hw
, data_reg
, data
);
3146 ret_val
= e1000e_write_phy_reg_mdic(hw
, data_reg
, *data
);
3149 e_dbg("Could not access the Data port register\n");
3158 * e1000_link_stall_workaround_hv - Si workaround
3159 * @hw: pointer to the HW structure
3161 * This function works around a Si bug where the link partner can get
3162 * a link up indication before the PHY does. If small packets are sent
3163 * by the link partner they can be placed in the packet buffer without
3164 * being properly accounted for by the PHY and will stall preventing
3165 * further packets from being received. The workaround is to clear the
3166 * packet buffer after the PHY detects link up.
3168 s32
e1000_link_stall_workaround_hv(struct e1000_hw
*hw
)
3173 if (hw
->phy
.type
!= e1000_phy_82578
)
3176 /* Do not apply workaround if in PHY loopback bit 14 set */
3177 e1e_rphy(hw
, PHY_CONTROL
, &data
);
3178 if (data
& PHY_CONTROL_LB
)
3181 /* check if link is up and at 1Gbps */
3182 ret_val
= e1e_rphy(hw
, BM_CS_STATUS
, &data
);
3186 data
&= BM_CS_STATUS_LINK_UP
|
3187 BM_CS_STATUS_RESOLVED
|
3188 BM_CS_STATUS_SPEED_MASK
;
3190 if (data
!= (BM_CS_STATUS_LINK_UP
|
3191 BM_CS_STATUS_RESOLVED
|
3192 BM_CS_STATUS_SPEED_1000
))
3197 /* flush the packets in the fifo buffer */
3198 ret_val
= e1e_wphy(hw
, HV_MUX_DATA_CTRL
, HV_MUX_DATA_CTRL_GEN_TO_MAC
|
3199 HV_MUX_DATA_CTRL_FORCE_SPEED
);
3203 ret_val
= e1e_wphy(hw
, HV_MUX_DATA_CTRL
, HV_MUX_DATA_CTRL_GEN_TO_MAC
);
3210 * e1000_check_polarity_82577 - Checks the polarity.
3211 * @hw: pointer to the HW structure
3213 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3215 * Polarity is determined based on the PHY specific status register.
3217 s32
e1000_check_polarity_82577(struct e1000_hw
*hw
)
3219 struct e1000_phy_info
*phy
= &hw
->phy
;
3223 ret_val
= e1e_rphy(hw
, I82577_PHY_STATUS_2
, &data
);
3226 phy
->cable_polarity
= (data
& I82577_PHY_STATUS2_REV_POLARITY
)
3227 ? e1000_rev_polarity_reversed
3228 : e1000_rev_polarity_normal
;
3234 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3235 * @hw: pointer to the HW structure
3237 * Calls the PHY setup function to force speed and duplex.
3239 s32
e1000_phy_force_speed_duplex_82577(struct e1000_hw
*hw
)
3241 struct e1000_phy_info
*phy
= &hw
->phy
;
3246 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_data
);
3250 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
3252 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_data
);
3258 if (phy
->autoneg_wait_to_complete
) {
3259 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3261 ret_val
= e1000e_phy_has_link_generic(hw
,
3269 e_dbg("Link taking longer than expected.\n");
3272 ret_val
= e1000e_phy_has_link_generic(hw
,
3285 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3286 * @hw: pointer to the HW structure
3288 * Read PHY status to determine if link is up. If link is up, then
3289 * set/determine 10base-T extended distance and polarity correction. Read
3290 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3291 * determine on the cable length, local and remote receiver.
3293 s32
e1000_get_phy_info_82577(struct e1000_hw
*hw
)
3295 struct e1000_phy_info
*phy
= &hw
->phy
;
3300 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
3305 e_dbg("Phy info is only valid if link is up\n");
3306 ret_val
= -E1000_ERR_CONFIG
;
3310 phy
->polarity_correction
= true;
3312 ret_val
= e1000_check_polarity_82577(hw
);
3316 ret_val
= e1e_rphy(hw
, I82577_PHY_STATUS_2
, &data
);
3320 phy
->is_mdix
= (data
& I82577_PHY_STATUS2_MDIX
) ? true : false;
3322 if ((data
& I82577_PHY_STATUS2_SPEED_MASK
) ==
3323 I82577_PHY_STATUS2_SPEED_1000MBPS
) {
3324 ret_val
= hw
->phy
.ops
.get_cable_length(hw
);
3328 ret_val
= e1e_rphy(hw
, PHY_1000T_STATUS
, &data
);
3332 phy
->local_rx
= (data
& SR_1000T_LOCAL_RX_STATUS
)
3333 ? e1000_1000t_rx_status_ok
3334 : e1000_1000t_rx_status_not_ok
;
3336 phy
->remote_rx
= (data
& SR_1000T_REMOTE_RX_STATUS
)
3337 ? e1000_1000t_rx_status_ok
3338 : e1000_1000t_rx_status_not_ok
;
3340 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
3341 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
3342 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
3350 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3351 * @hw: pointer to the HW structure
3353 * Reads the diagnostic status register and verifies result is valid before
3354 * placing it in the phy_cable_length field.
3356 s32
e1000_get_cable_length_82577(struct e1000_hw
*hw
)
3358 struct e1000_phy_info
*phy
= &hw
->phy
;
3360 u16 phy_data
, length
;
3362 ret_val
= e1e_rphy(hw
, I82577_PHY_DIAG_STATUS
, &phy_data
);
3366 length
= (phy_data
& I82577_DSTATUS_CABLE_LENGTH
) >>
3367 I82577_DSTATUS_CABLE_LENGTH_SHIFT
;
3369 if (length
== E1000_CABLE_LENGTH_UNDEFINED
)
3370 ret_val
= -E1000_ERR_PHY
;
3372 phy
->cable_length
= length
;