rename dev_hw_addr_random and remove redundant second
[linux/fpc-iii.git] / drivers / net / ethernet / intel / e1000e / phy.c
blob6f44c3fb80b6b30d2abf8f0f6e086852aa9ce2f7
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/delay.h>
31 #include "e1000.h"
33 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
34 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
35 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
36 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
37 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
38 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
39 u16 *data, bool read, bool page_set);
40 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
41 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
42 u16 *data, bool read);
44 /* Cable length tables */
45 static const u16 e1000_m88_cable_length_table[] = {
46 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
47 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
48 ARRAY_SIZE(e1000_m88_cable_length_table)
50 static const u16 e1000_igp_2_cable_length_table[] = {
51 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
52 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
53 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
54 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
55 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
56 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
57 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
58 124};
59 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
60 ARRAY_SIZE(e1000_igp_2_cable_length_table)
62 #define BM_PHY_REG_PAGE(offset) \
63 ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
64 #define BM_PHY_REG_NUM(offset) \
65 ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
66 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
67 ~MAX_PHY_REG_ADDRESS)))
69 #define HV_INTC_FC_PAGE_START 768
70 #define I82578_ADDR_REG 29
71 #define I82577_ADDR_REG 16
72 #define I82577_CFG_REG 22
73 #define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
74 #define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
75 #define I82577_CTRL_REG 23
77 /* 82577 specific PHY registers */
78 #define I82577_PHY_CTRL_2 18
79 #define I82577_PHY_STATUS_2 26
80 #define I82577_PHY_DIAG_STATUS 31
82 /* I82577 PHY Status 2 */
83 #define I82577_PHY_STATUS2_REV_POLARITY 0x0400
84 #define I82577_PHY_STATUS2_MDIX 0x0800
85 #define I82577_PHY_STATUS2_SPEED_MASK 0x0300
86 #define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
88 /* I82577 PHY Control 2 */
89 #define I82577_PHY_CTRL2_AUTO_MDIX 0x0400
90 #define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200
92 /* I82577 PHY Diagnostics Status */
93 #define I82577_DSTATUS_CABLE_LENGTH 0x03FC
94 #define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
96 /* BM PHY Copper Specific Control 1 */
97 #define BM_CS_CTRL1 16
99 #define HV_MUX_DATA_CTRL PHY_REG(776, 16)
100 #define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
101 #define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
104 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
105 * @hw: pointer to the HW structure
107 * Read the PHY management control register and check whether a PHY reset
108 * is blocked. If a reset is not blocked return 0, otherwise
109 * return E1000_BLK_PHY_RESET (12).
111 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
113 u32 manc;
115 manc = er32(MANC);
117 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
118 E1000_BLK_PHY_RESET : 0;
122 * e1000e_get_phy_id - Retrieve the PHY ID and revision
123 * @hw: pointer to the HW structure
125 * Reads the PHY registers and stores the PHY ID and possibly the PHY
126 * revision in the hardware structure.
128 s32 e1000e_get_phy_id(struct e1000_hw *hw)
130 struct e1000_phy_info *phy = &hw->phy;
131 s32 ret_val = 0;
132 u16 phy_id;
133 u16 retry_count = 0;
135 if (!phy->ops.read_reg)
136 goto out;
138 while (retry_count < 2) {
139 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
140 if (ret_val)
141 goto out;
143 phy->id = (u32)(phy_id << 16);
144 udelay(20);
145 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
146 if (ret_val)
147 goto out;
149 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
150 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
152 if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
153 goto out;
155 retry_count++;
157 out:
158 return ret_val;
162 * e1000e_phy_reset_dsp - Reset PHY DSP
163 * @hw: pointer to the HW structure
165 * Reset the digital signal processor.
167 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
169 s32 ret_val;
171 ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
172 if (ret_val)
173 return ret_val;
175 return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
179 * e1000e_read_phy_reg_mdic - Read MDI control register
180 * @hw: pointer to the HW structure
181 * @offset: register offset to be read
182 * @data: pointer to the read data
184 * Reads the MDI control register in the PHY at offset and stores the
185 * information read to data.
187 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
189 struct e1000_phy_info *phy = &hw->phy;
190 u32 i, mdic = 0;
192 if (offset > MAX_PHY_REG_ADDRESS) {
193 e_dbg("PHY Address %d is out of range\n", offset);
194 return -E1000_ERR_PARAM;
198 * Set up Op-code, Phy Address, and register offset in the MDI
199 * Control register. The MAC will take care of interfacing with the
200 * PHY to retrieve the desired data.
202 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
203 (phy->addr << E1000_MDIC_PHY_SHIFT) |
204 (E1000_MDIC_OP_READ));
206 ew32(MDIC, mdic);
209 * Poll the ready bit to see if the MDI read completed
210 * Increasing the time out as testing showed failures with
211 * the lower time out
213 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
214 udelay(50);
215 mdic = er32(MDIC);
216 if (mdic & E1000_MDIC_READY)
217 break;
219 if (!(mdic & E1000_MDIC_READY)) {
220 e_dbg("MDI Read did not complete\n");
221 return -E1000_ERR_PHY;
223 if (mdic & E1000_MDIC_ERROR) {
224 e_dbg("MDI Error\n");
225 return -E1000_ERR_PHY;
227 *data = (u16) mdic;
230 * Allow some time after each MDIC transaction to avoid
231 * reading duplicate data in the next MDIC transaction.
233 if (hw->mac.type == e1000_pch2lan)
234 udelay(100);
236 return 0;
240 * e1000e_write_phy_reg_mdic - Write MDI control register
241 * @hw: pointer to the HW structure
242 * @offset: register offset to write to
243 * @data: data to write to register at offset
245 * Writes data to MDI control register in the PHY at offset.
247 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
249 struct e1000_phy_info *phy = &hw->phy;
250 u32 i, mdic = 0;
252 if (offset > MAX_PHY_REG_ADDRESS) {
253 e_dbg("PHY Address %d is out of range\n", offset);
254 return -E1000_ERR_PARAM;
258 * Set up Op-code, Phy Address, and register offset in the MDI
259 * Control register. The MAC will take care of interfacing with the
260 * PHY to retrieve the desired data.
262 mdic = (((u32)data) |
263 (offset << E1000_MDIC_REG_SHIFT) |
264 (phy->addr << E1000_MDIC_PHY_SHIFT) |
265 (E1000_MDIC_OP_WRITE));
267 ew32(MDIC, mdic);
270 * Poll the ready bit to see if the MDI read completed
271 * Increasing the time out as testing showed failures with
272 * the lower time out
274 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
275 udelay(50);
276 mdic = er32(MDIC);
277 if (mdic & E1000_MDIC_READY)
278 break;
280 if (!(mdic & E1000_MDIC_READY)) {
281 e_dbg("MDI Write did not complete\n");
282 return -E1000_ERR_PHY;
284 if (mdic & E1000_MDIC_ERROR) {
285 e_dbg("MDI Error\n");
286 return -E1000_ERR_PHY;
290 * Allow some time after each MDIC transaction to avoid
291 * reading duplicate data in the next MDIC transaction.
293 if (hw->mac.type == e1000_pch2lan)
294 udelay(100);
296 return 0;
300 * e1000e_read_phy_reg_m88 - Read m88 PHY register
301 * @hw: pointer to the HW structure
302 * @offset: register offset to be read
303 * @data: pointer to the read data
305 * Acquires semaphore, if necessary, then reads the PHY register at offset
306 * and storing the retrieved information in data. Release any acquired
307 * semaphores before exiting.
309 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
311 s32 ret_val;
313 ret_val = hw->phy.ops.acquire(hw);
314 if (ret_val)
315 return ret_val;
317 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
318 data);
320 hw->phy.ops.release(hw);
322 return ret_val;
326 * e1000e_write_phy_reg_m88 - Write m88 PHY register
327 * @hw: pointer to the HW structure
328 * @offset: register offset to write to
329 * @data: data to write at register offset
331 * Acquires semaphore, if necessary, then writes the data to PHY register
332 * at the offset. Release any acquired semaphores before exiting.
334 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
336 s32 ret_val;
338 ret_val = hw->phy.ops.acquire(hw);
339 if (ret_val)
340 return ret_val;
342 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
343 data);
345 hw->phy.ops.release(hw);
347 return ret_val;
351 * e1000_set_page_igp - Set page as on IGP-like PHY(s)
352 * @hw: pointer to the HW structure
353 * @page: page to set (shifted left when necessary)
355 * Sets PHY page required for PHY register access. Assumes semaphore is
356 * already acquired. Note, this function sets phy.addr to 1 so the caller
357 * must set it appropriately (if necessary) after this function returns.
359 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
361 e_dbg("Setting page 0x%x\n", page);
363 hw->phy.addr = 1;
365 return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
369 * __e1000e_read_phy_reg_igp - Read igp PHY register
370 * @hw: pointer to the HW structure
371 * @offset: register offset to be read
372 * @data: pointer to the read data
373 * @locked: semaphore has already been acquired or not
375 * Acquires semaphore, if necessary, then reads the PHY register at offset
376 * and stores the retrieved information in data. Release any acquired
377 * semaphores before exiting.
379 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
380 bool locked)
382 s32 ret_val = 0;
384 if (!locked) {
385 if (!hw->phy.ops.acquire)
386 goto out;
388 ret_val = hw->phy.ops.acquire(hw);
389 if (ret_val)
390 goto out;
393 if (offset > MAX_PHY_MULTI_PAGE_REG) {
394 ret_val = e1000e_write_phy_reg_mdic(hw,
395 IGP01E1000_PHY_PAGE_SELECT,
396 (u16)offset);
397 if (ret_val)
398 goto release;
401 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
402 data);
404 release:
405 if (!locked)
406 hw->phy.ops.release(hw);
407 out:
408 return ret_val;
412 * e1000e_read_phy_reg_igp - Read igp PHY register
413 * @hw: pointer to the HW structure
414 * @offset: register offset to be read
415 * @data: pointer to the read data
417 * Acquires semaphore then reads the PHY register at offset and stores the
418 * retrieved information in data.
419 * Release the acquired semaphore before exiting.
421 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
423 return __e1000e_read_phy_reg_igp(hw, offset, data, false);
427 * e1000e_read_phy_reg_igp_locked - Read igp PHY register
428 * @hw: pointer to the HW structure
429 * @offset: register offset to be read
430 * @data: pointer to the read data
432 * Reads the PHY register at offset and stores the retrieved information
433 * in data. Assumes semaphore already acquired.
435 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
437 return __e1000e_read_phy_reg_igp(hw, offset, data, true);
441 * e1000e_write_phy_reg_igp - Write igp PHY register
442 * @hw: pointer to the HW structure
443 * @offset: register offset to write to
444 * @data: data to write at register offset
445 * @locked: semaphore has already been acquired or not
447 * Acquires semaphore, if necessary, then writes the data to PHY register
448 * at the offset. Release any acquired semaphores before exiting.
450 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
451 bool locked)
453 s32 ret_val = 0;
455 if (!locked) {
456 if (!hw->phy.ops.acquire)
457 goto out;
459 ret_val = hw->phy.ops.acquire(hw);
460 if (ret_val)
461 goto out;
464 if (offset > MAX_PHY_MULTI_PAGE_REG) {
465 ret_val = e1000e_write_phy_reg_mdic(hw,
466 IGP01E1000_PHY_PAGE_SELECT,
467 (u16)offset);
468 if (ret_val)
469 goto release;
472 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
473 data);
475 release:
476 if (!locked)
477 hw->phy.ops.release(hw);
479 out:
480 return ret_val;
484 * e1000e_write_phy_reg_igp - Write igp PHY register
485 * @hw: pointer to the HW structure
486 * @offset: register offset to write to
487 * @data: data to write at register offset
489 * Acquires semaphore then writes the data to PHY register
490 * at the offset. Release any acquired semaphores before exiting.
492 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
494 return __e1000e_write_phy_reg_igp(hw, offset, data, false);
498 * e1000e_write_phy_reg_igp_locked - Write igp PHY register
499 * @hw: pointer to the HW structure
500 * @offset: register offset to write to
501 * @data: data to write at register offset
503 * Writes the data to PHY register at the offset.
504 * Assumes semaphore already acquired.
506 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
508 return __e1000e_write_phy_reg_igp(hw, offset, data, true);
512 * __e1000_read_kmrn_reg - Read kumeran register
513 * @hw: pointer to the HW structure
514 * @offset: register offset to be read
515 * @data: pointer to the read data
516 * @locked: semaphore has already been acquired or not
518 * Acquires semaphore, if necessary. Then reads the PHY register at offset
519 * using the kumeran interface. The information retrieved is stored in data.
520 * Release any acquired semaphores before exiting.
522 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
523 bool locked)
525 u32 kmrnctrlsta;
526 s32 ret_val = 0;
528 if (!locked) {
529 if (!hw->phy.ops.acquire)
530 goto out;
532 ret_val = hw->phy.ops.acquire(hw);
533 if (ret_val)
534 goto out;
537 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
538 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
539 ew32(KMRNCTRLSTA, kmrnctrlsta);
540 e1e_flush();
542 udelay(2);
544 kmrnctrlsta = er32(KMRNCTRLSTA);
545 *data = (u16)kmrnctrlsta;
547 if (!locked)
548 hw->phy.ops.release(hw);
550 out:
551 return ret_val;
555 * e1000e_read_kmrn_reg - Read kumeran register
556 * @hw: pointer to the HW structure
557 * @offset: register offset to be read
558 * @data: pointer to the read data
560 * Acquires semaphore then reads the PHY register at offset using the
561 * kumeran interface. The information retrieved is stored in data.
562 * Release the acquired semaphore before exiting.
564 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
566 return __e1000_read_kmrn_reg(hw, offset, data, false);
570 * e1000e_read_kmrn_reg_locked - Read kumeran register
571 * @hw: pointer to the HW structure
572 * @offset: register offset to be read
573 * @data: pointer to the read data
575 * Reads the PHY register at offset using the kumeran interface. The
576 * information retrieved is stored in data.
577 * Assumes semaphore already acquired.
579 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
581 return __e1000_read_kmrn_reg(hw, offset, data, true);
585 * __e1000_write_kmrn_reg - Write kumeran register
586 * @hw: pointer to the HW structure
587 * @offset: register offset to write to
588 * @data: data to write at register offset
589 * @locked: semaphore has already been acquired or not
591 * Acquires semaphore, if necessary. Then write the data to PHY register
592 * at the offset using the kumeran interface. Release any acquired semaphores
593 * before exiting.
595 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
596 bool locked)
598 u32 kmrnctrlsta;
599 s32 ret_val = 0;
601 if (!locked) {
602 if (!hw->phy.ops.acquire)
603 goto out;
605 ret_val = hw->phy.ops.acquire(hw);
606 if (ret_val)
607 goto out;
610 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
611 E1000_KMRNCTRLSTA_OFFSET) | data;
612 ew32(KMRNCTRLSTA, kmrnctrlsta);
613 e1e_flush();
615 udelay(2);
617 if (!locked)
618 hw->phy.ops.release(hw);
620 out:
621 return ret_val;
625 * e1000e_write_kmrn_reg - Write kumeran register
626 * @hw: pointer to the HW structure
627 * @offset: register offset to write to
628 * @data: data to write at register offset
630 * Acquires semaphore then writes the data to the PHY register at the offset
631 * using the kumeran interface. Release the acquired semaphore before exiting.
633 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
635 return __e1000_write_kmrn_reg(hw, offset, data, false);
639 * e1000e_write_kmrn_reg_locked - Write kumeran register
640 * @hw: pointer to the HW structure
641 * @offset: register offset to write to
642 * @data: data to write at register offset
644 * Write the data to PHY register at the offset using the kumeran interface.
645 * Assumes semaphore already acquired.
647 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
649 return __e1000_write_kmrn_reg(hw, offset, data, true);
653 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
654 * @hw: pointer to the HW structure
656 * Sets up Carrier-sense on Transmit and downshift values.
658 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
660 s32 ret_val;
661 u16 phy_data;
663 /* Enable CRS on Tx. This must be set for half-duplex operation. */
664 ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
665 if (ret_val)
666 goto out;
668 phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
670 /* Enable downshift */
671 phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
673 ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
675 out:
676 return ret_val;
680 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
681 * @hw: pointer to the HW structure
683 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
684 * and downshift values are set also.
686 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
688 struct e1000_phy_info *phy = &hw->phy;
689 s32 ret_val;
690 u16 phy_data;
692 /* Enable CRS on Tx. This must be set for half-duplex operation. */
693 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
694 if (ret_val)
695 return ret_val;
697 /* For BM PHY this bit is downshift enable */
698 if (phy->type != e1000_phy_bm)
699 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
702 * Options:
703 * MDI/MDI-X = 0 (default)
704 * 0 - Auto for all speeds
705 * 1 - MDI mode
706 * 2 - MDI-X mode
707 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
709 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
711 switch (phy->mdix) {
712 case 1:
713 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
714 break;
715 case 2:
716 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
717 break;
718 case 3:
719 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
720 break;
721 case 0:
722 default:
723 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
724 break;
728 * Options:
729 * disable_polarity_correction = 0 (default)
730 * Automatic Correction for Reversed Cable Polarity
731 * 0 - Disabled
732 * 1 - Enabled
734 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
735 if (phy->disable_polarity_correction == 1)
736 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
738 /* Enable downshift on BM (disabled by default) */
739 if (phy->type == e1000_phy_bm)
740 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
742 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
743 if (ret_val)
744 return ret_val;
746 if ((phy->type == e1000_phy_m88) &&
747 (phy->revision < E1000_REVISION_4) &&
748 (phy->id != BME1000_E_PHY_ID_R2)) {
750 * Force TX_CLK in the Extended PHY Specific Control Register
751 * to 25MHz clock.
753 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
754 if (ret_val)
755 return ret_val;
757 phy_data |= M88E1000_EPSCR_TX_CLK_25;
759 if ((phy->revision == 2) &&
760 (phy->id == M88E1111_I_PHY_ID)) {
761 /* 82573L PHY - set the downshift counter to 5x. */
762 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
763 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
764 } else {
765 /* Configure Master and Slave downshift values */
766 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
767 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
768 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
769 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
771 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
772 if (ret_val)
773 return ret_val;
776 if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
777 /* Set PHY page 0, register 29 to 0x0003 */
778 ret_val = e1e_wphy(hw, 29, 0x0003);
779 if (ret_val)
780 return ret_val;
782 /* Set PHY page 0, register 30 to 0x0000 */
783 ret_val = e1e_wphy(hw, 30, 0x0000);
784 if (ret_val)
785 return ret_val;
788 /* Commit the changes. */
789 ret_val = e1000e_commit_phy(hw);
790 if (ret_val) {
791 e_dbg("Error committing the PHY changes\n");
792 return ret_val;
795 if (phy->type == e1000_phy_82578) {
796 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
797 if (ret_val)
798 return ret_val;
800 /* 82578 PHY - set the downshift count to 1x. */
801 phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
802 phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
803 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
804 if (ret_val)
805 return ret_val;
808 return 0;
812 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
813 * @hw: pointer to the HW structure
815 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
816 * igp PHY's.
818 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
820 struct e1000_phy_info *phy = &hw->phy;
821 s32 ret_val;
822 u16 data;
824 ret_val = e1000_phy_hw_reset(hw);
825 if (ret_val) {
826 e_dbg("Error resetting the PHY.\n");
827 return ret_val;
831 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
832 * timeout issues when LFS is enabled.
834 msleep(100);
836 /* disable lplu d0 during driver init */
837 ret_val = e1000_set_d0_lplu_state(hw, false);
838 if (ret_val) {
839 e_dbg("Error Disabling LPLU D0\n");
840 return ret_val;
842 /* Configure mdi-mdix settings */
843 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
844 if (ret_val)
845 return ret_val;
847 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
849 switch (phy->mdix) {
850 case 1:
851 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
852 break;
853 case 2:
854 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
855 break;
856 case 0:
857 default:
858 data |= IGP01E1000_PSCR_AUTO_MDIX;
859 break;
861 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
862 if (ret_val)
863 return ret_val;
865 /* set auto-master slave resolution settings */
866 if (hw->mac.autoneg) {
868 * when autonegotiation advertisement is only 1000Mbps then we
869 * should disable SmartSpeed and enable Auto MasterSlave
870 * resolution as hardware default.
872 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
873 /* Disable SmartSpeed */
874 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
875 &data);
876 if (ret_val)
877 return ret_val;
879 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
880 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
881 data);
882 if (ret_val)
883 return ret_val;
885 /* Set auto Master/Slave resolution process */
886 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
887 if (ret_val)
888 return ret_val;
890 data &= ~CR_1000T_MS_ENABLE;
891 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
892 if (ret_val)
893 return ret_val;
896 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
897 if (ret_val)
898 return ret_val;
900 /* load defaults for future use */
901 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
902 ((data & CR_1000T_MS_VALUE) ?
903 e1000_ms_force_master :
904 e1000_ms_force_slave) :
905 e1000_ms_auto;
907 switch (phy->ms_type) {
908 case e1000_ms_force_master:
909 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
910 break;
911 case e1000_ms_force_slave:
912 data |= CR_1000T_MS_ENABLE;
913 data &= ~(CR_1000T_MS_VALUE);
914 break;
915 case e1000_ms_auto:
916 data &= ~CR_1000T_MS_ENABLE;
917 default:
918 break;
920 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
923 return ret_val;
927 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
928 * @hw: pointer to the HW structure
930 * Reads the MII auto-neg advertisement register and/or the 1000T control
931 * register and if the PHY is already setup for auto-negotiation, then
932 * return successful. Otherwise, setup advertisement and flow control to
933 * the appropriate values for the wanted auto-negotiation.
935 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
937 struct e1000_phy_info *phy = &hw->phy;
938 s32 ret_val;
939 u16 mii_autoneg_adv_reg;
940 u16 mii_1000t_ctrl_reg = 0;
942 phy->autoneg_advertised &= phy->autoneg_mask;
944 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
945 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
946 if (ret_val)
947 return ret_val;
949 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
950 /* Read the MII 1000Base-T Control Register (Address 9). */
951 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
952 if (ret_val)
953 return ret_val;
957 * Need to parse both autoneg_advertised and fc and set up
958 * the appropriate PHY registers. First we will parse for
959 * autoneg_advertised software override. Since we can advertise
960 * a plethora of combinations, we need to check each bit
961 * individually.
965 * First we clear all the 10/100 mb speed bits in the Auto-Neg
966 * Advertisement Register (Address 4) and the 1000 mb speed bits in
967 * the 1000Base-T Control Register (Address 9).
969 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
970 NWAY_AR_100TX_HD_CAPS |
971 NWAY_AR_10T_FD_CAPS |
972 NWAY_AR_10T_HD_CAPS);
973 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
975 e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
977 /* Do we want to advertise 10 Mb Half Duplex? */
978 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
979 e_dbg("Advertise 10mb Half duplex\n");
980 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
983 /* Do we want to advertise 10 Mb Full Duplex? */
984 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
985 e_dbg("Advertise 10mb Full duplex\n");
986 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
989 /* Do we want to advertise 100 Mb Half Duplex? */
990 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
991 e_dbg("Advertise 100mb Half duplex\n");
992 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
995 /* Do we want to advertise 100 Mb Full Duplex? */
996 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
997 e_dbg("Advertise 100mb Full duplex\n");
998 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1001 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1002 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1003 e_dbg("Advertise 1000mb Half duplex request denied!\n");
1005 /* Do we want to advertise 1000 Mb Full Duplex? */
1006 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1007 e_dbg("Advertise 1000mb Full duplex\n");
1008 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1012 * Check for a software override of the flow control settings, and
1013 * setup the PHY advertisement registers accordingly. If
1014 * auto-negotiation is enabled, then software will have to set the
1015 * "PAUSE" bits to the correct value in the Auto-Negotiation
1016 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1017 * negotiation.
1019 * The possible values of the "fc" parameter are:
1020 * 0: Flow control is completely disabled
1021 * 1: Rx flow control is enabled (we can receive pause frames
1022 * but not send pause frames).
1023 * 2: Tx flow control is enabled (we can send pause frames
1024 * but we do not support receiving pause frames).
1025 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1026 * other: No software override. The flow control configuration
1027 * in the EEPROM is used.
1029 switch (hw->fc.current_mode) {
1030 case e1000_fc_none:
1032 * Flow control (Rx & Tx) is completely disabled by a
1033 * software over-ride.
1035 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1036 break;
1037 case e1000_fc_rx_pause:
1039 * Rx Flow control is enabled, and Tx Flow control is
1040 * disabled, by a software over-ride.
1042 * Since there really isn't a way to advertise that we are
1043 * capable of Rx Pause ONLY, we will advertise that we
1044 * support both symmetric and asymmetric Rx PAUSE. Later
1045 * (in e1000e_config_fc_after_link_up) we will disable the
1046 * hw's ability to send PAUSE frames.
1048 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1049 break;
1050 case e1000_fc_tx_pause:
1052 * Tx Flow control is enabled, and Rx Flow control is
1053 * disabled, by a software over-ride.
1055 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1056 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1057 break;
1058 case e1000_fc_full:
1060 * Flow control (both Rx and Tx) is enabled by a software
1061 * over-ride.
1063 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1064 break;
1065 default:
1066 e_dbg("Flow control param set incorrectly\n");
1067 ret_val = -E1000_ERR_CONFIG;
1068 return ret_val;
1071 ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1072 if (ret_val)
1073 return ret_val;
1075 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1077 if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1078 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1080 return ret_val;
1084 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1085 * @hw: pointer to the HW structure
1087 * Performs initial bounds checking on autoneg advertisement parameter, then
1088 * configure to advertise the full capability. Setup the PHY to autoneg
1089 * and restart the negotiation process between the link partner. If
1090 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1092 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1094 struct e1000_phy_info *phy = &hw->phy;
1095 s32 ret_val;
1096 u16 phy_ctrl;
1099 * Perform some bounds checking on the autoneg advertisement
1100 * parameter.
1102 phy->autoneg_advertised &= phy->autoneg_mask;
1105 * If autoneg_advertised is zero, we assume it was not defaulted
1106 * by the calling code so we set to advertise full capability.
1108 if (phy->autoneg_advertised == 0)
1109 phy->autoneg_advertised = phy->autoneg_mask;
1111 e_dbg("Reconfiguring auto-neg advertisement params\n");
1112 ret_val = e1000_phy_setup_autoneg(hw);
1113 if (ret_val) {
1114 e_dbg("Error Setting up Auto-Negotiation\n");
1115 return ret_val;
1117 e_dbg("Restarting Auto-Neg\n");
1120 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1121 * the Auto Neg Restart bit in the PHY control register.
1123 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1124 if (ret_val)
1125 return ret_val;
1127 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1128 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1129 if (ret_val)
1130 return ret_val;
1133 * Does the user want to wait for Auto-Neg to complete here, or
1134 * check at a later time (for example, callback routine).
1136 if (phy->autoneg_wait_to_complete) {
1137 ret_val = e1000_wait_autoneg(hw);
1138 if (ret_val) {
1139 e_dbg("Error while waiting for autoneg to complete\n");
1140 return ret_val;
1144 hw->mac.get_link_status = true;
1146 return ret_val;
1150 * e1000e_setup_copper_link - Configure copper link settings
1151 * @hw: pointer to the HW structure
1153 * Calls the appropriate function to configure the link for auto-neg or forced
1154 * speed and duplex. Then we check for link, once link is established calls
1155 * to configure collision distance and flow control are called. If link is
1156 * not established, we return -E1000_ERR_PHY (-2).
1158 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1160 s32 ret_val;
1161 bool link;
1163 if (hw->mac.autoneg) {
1165 * Setup autoneg and flow control advertisement and perform
1166 * autonegotiation.
1168 ret_val = e1000_copper_link_autoneg(hw);
1169 if (ret_val)
1170 return ret_val;
1171 } else {
1173 * PHY will be set to 10H, 10F, 100H or 100F
1174 * depending on user settings.
1176 e_dbg("Forcing Speed and Duplex\n");
1177 ret_val = e1000_phy_force_speed_duplex(hw);
1178 if (ret_val) {
1179 e_dbg("Error Forcing Speed and Duplex\n");
1180 return ret_val;
1185 * Check link status. Wait up to 100 microseconds for link to become
1186 * valid.
1188 ret_val = e1000e_phy_has_link_generic(hw,
1189 COPPER_LINK_UP_LIMIT,
1191 &link);
1192 if (ret_val)
1193 return ret_val;
1195 if (link) {
1196 e_dbg("Valid link established!!!\n");
1197 e1000e_config_collision_dist(hw);
1198 ret_val = e1000e_config_fc_after_link_up(hw);
1199 } else {
1200 e_dbg("Unable to establish link!!!\n");
1203 return ret_val;
1207 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1208 * @hw: pointer to the HW structure
1210 * Calls the PHY setup function to force speed and duplex. Clears the
1211 * auto-crossover to force MDI manually. Waits for link and returns
1212 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1214 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1216 struct e1000_phy_info *phy = &hw->phy;
1217 s32 ret_val;
1218 u16 phy_data;
1219 bool link;
1221 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1222 if (ret_val)
1223 return ret_val;
1225 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1227 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1228 if (ret_val)
1229 return ret_val;
1232 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
1233 * forced whenever speed and duplex are forced.
1235 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1236 if (ret_val)
1237 return ret_val;
1239 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1240 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1242 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1243 if (ret_val)
1244 return ret_val;
1246 e_dbg("IGP PSCR: %X\n", phy_data);
1248 udelay(1);
1250 if (phy->autoneg_wait_to_complete) {
1251 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1253 ret_val = e1000e_phy_has_link_generic(hw,
1254 PHY_FORCE_LIMIT,
1255 100000,
1256 &link);
1257 if (ret_val)
1258 return ret_val;
1260 if (!link)
1261 e_dbg("Link taking longer than expected.\n");
1263 /* Try once more */
1264 ret_val = e1000e_phy_has_link_generic(hw,
1265 PHY_FORCE_LIMIT,
1266 100000,
1267 &link);
1268 if (ret_val)
1269 return ret_val;
1272 return ret_val;
1276 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1277 * @hw: pointer to the HW structure
1279 * Calls the PHY setup function to force speed and duplex. Clears the
1280 * auto-crossover to force MDI manually. Resets the PHY to commit the
1281 * changes. If time expires while waiting for link up, we reset the DSP.
1282 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1283 * successful completion, else return corresponding error code.
1285 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1287 struct e1000_phy_info *phy = &hw->phy;
1288 s32 ret_val;
1289 u16 phy_data;
1290 bool link;
1293 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1294 * forced whenever speed and duplex are forced.
1296 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1297 if (ret_val)
1298 return ret_val;
1300 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1301 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1302 if (ret_val)
1303 return ret_val;
1305 e_dbg("M88E1000 PSCR: %X\n", phy_data);
1307 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1308 if (ret_val)
1309 return ret_val;
1311 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1313 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1314 if (ret_val)
1315 return ret_val;
1317 /* Reset the phy to commit changes. */
1318 ret_val = e1000e_commit_phy(hw);
1319 if (ret_val)
1320 return ret_val;
1322 if (phy->autoneg_wait_to_complete) {
1323 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1325 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1326 100000, &link);
1327 if (ret_val)
1328 return ret_val;
1330 if (!link) {
1331 if (hw->phy.type != e1000_phy_m88) {
1332 e_dbg("Link taking longer than expected.\n");
1333 } else {
1335 * We didn't get link.
1336 * Reset the DSP and cross our fingers.
1338 ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1339 0x001d);
1340 if (ret_val)
1341 return ret_val;
1342 ret_val = e1000e_phy_reset_dsp(hw);
1343 if (ret_val)
1344 return ret_val;
1348 /* Try once more */
1349 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1350 100000, &link);
1351 if (ret_val)
1352 return ret_val;
1355 if (hw->phy.type != e1000_phy_m88)
1356 return 0;
1358 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1359 if (ret_val)
1360 return ret_val;
1363 * Resetting the phy means we need to re-force TX_CLK in the
1364 * Extended PHY Specific Control Register to 25MHz clock from
1365 * the reset value of 2.5MHz.
1367 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1368 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1369 if (ret_val)
1370 return ret_val;
1373 * In addition, we must re-enable CRS on Tx for both half and full
1374 * duplex.
1376 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1377 if (ret_val)
1378 return ret_val;
1380 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1381 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1383 return ret_val;
1387 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1388 * @hw: pointer to the HW structure
1390 * Forces the speed and duplex settings of the PHY.
1391 * This is a function pointer entry point only called by
1392 * PHY setup routines.
1394 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1396 struct e1000_phy_info *phy = &hw->phy;
1397 s32 ret_val;
1398 u16 data;
1399 bool link;
1401 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
1402 if (ret_val)
1403 goto out;
1405 e1000e_phy_force_speed_duplex_setup(hw, &data);
1407 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
1408 if (ret_val)
1409 goto out;
1411 /* Disable MDI-X support for 10/100 */
1412 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1413 if (ret_val)
1414 goto out;
1416 data &= ~IFE_PMC_AUTO_MDIX;
1417 data &= ~IFE_PMC_FORCE_MDIX;
1419 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1420 if (ret_val)
1421 goto out;
1423 e_dbg("IFE PMC: %X\n", data);
1425 udelay(1);
1427 if (phy->autoneg_wait_to_complete) {
1428 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1430 ret_val = e1000e_phy_has_link_generic(hw,
1431 PHY_FORCE_LIMIT,
1432 100000,
1433 &link);
1434 if (ret_val)
1435 goto out;
1437 if (!link)
1438 e_dbg("Link taking longer than expected.\n");
1440 /* Try once more */
1441 ret_val = e1000e_phy_has_link_generic(hw,
1442 PHY_FORCE_LIMIT,
1443 100000,
1444 &link);
1445 if (ret_val)
1446 goto out;
1449 out:
1450 return ret_val;
1454 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1455 * @hw: pointer to the HW structure
1456 * @phy_ctrl: pointer to current value of PHY_CONTROL
1458 * Forces speed and duplex on the PHY by doing the following: disable flow
1459 * control, force speed/duplex on the MAC, disable auto speed detection,
1460 * disable auto-negotiation, configure duplex, configure speed, configure
1461 * the collision distance, write configuration to CTRL register. The
1462 * caller must write to the PHY_CONTROL register for these settings to
1463 * take affect.
1465 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1467 struct e1000_mac_info *mac = &hw->mac;
1468 u32 ctrl;
1470 /* Turn off flow control when forcing speed/duplex */
1471 hw->fc.current_mode = e1000_fc_none;
1473 /* Force speed/duplex on the mac */
1474 ctrl = er32(CTRL);
1475 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1476 ctrl &= ~E1000_CTRL_SPD_SEL;
1478 /* Disable Auto Speed Detection */
1479 ctrl &= ~E1000_CTRL_ASDE;
1481 /* Disable autoneg on the phy */
1482 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1484 /* Forcing Full or Half Duplex? */
1485 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1486 ctrl &= ~E1000_CTRL_FD;
1487 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1488 e_dbg("Half Duplex\n");
1489 } else {
1490 ctrl |= E1000_CTRL_FD;
1491 *phy_ctrl |= MII_CR_FULL_DUPLEX;
1492 e_dbg("Full Duplex\n");
1495 /* Forcing 10mb or 100mb? */
1496 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1497 ctrl |= E1000_CTRL_SPD_100;
1498 *phy_ctrl |= MII_CR_SPEED_100;
1499 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1500 e_dbg("Forcing 100mb\n");
1501 } else {
1502 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1503 *phy_ctrl |= MII_CR_SPEED_10;
1504 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1505 e_dbg("Forcing 10mb\n");
1508 e1000e_config_collision_dist(hw);
1510 ew32(CTRL, ctrl);
1514 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1515 * @hw: pointer to the HW structure
1516 * @active: boolean used to enable/disable lplu
1518 * Success returns 0, Failure returns 1
1520 * The low power link up (lplu) state is set to the power management level D3
1521 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1522 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1523 * is used during Dx states where the power conservation is most important.
1524 * During driver activity, SmartSpeed should be enabled so performance is
1525 * maintained.
1527 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1529 struct e1000_phy_info *phy = &hw->phy;
1530 s32 ret_val;
1531 u16 data;
1533 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1534 if (ret_val)
1535 return ret_val;
1537 if (!active) {
1538 data &= ~IGP02E1000_PM_D3_LPLU;
1539 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1540 if (ret_val)
1541 return ret_val;
1543 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1544 * during Dx states where the power conservation is most
1545 * important. During driver activity we should enable
1546 * SmartSpeed, so performance is maintained.
1548 if (phy->smart_speed == e1000_smart_speed_on) {
1549 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1550 &data);
1551 if (ret_val)
1552 return ret_val;
1554 data |= IGP01E1000_PSCFR_SMART_SPEED;
1555 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1556 data);
1557 if (ret_val)
1558 return ret_val;
1559 } else if (phy->smart_speed == e1000_smart_speed_off) {
1560 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1561 &data);
1562 if (ret_val)
1563 return ret_val;
1565 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1566 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1567 data);
1568 if (ret_val)
1569 return ret_val;
1571 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1572 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1573 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1574 data |= IGP02E1000_PM_D3_LPLU;
1575 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1576 if (ret_val)
1577 return ret_val;
1579 /* When LPLU is enabled, we should disable SmartSpeed */
1580 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1581 if (ret_val)
1582 return ret_val;
1584 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1585 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1588 return ret_val;
1592 * e1000e_check_downshift - Checks whether a downshift in speed occurred
1593 * @hw: pointer to the HW structure
1595 * Success returns 0, Failure returns 1
1597 * A downshift is detected by querying the PHY link health.
1599 s32 e1000e_check_downshift(struct e1000_hw *hw)
1601 struct e1000_phy_info *phy = &hw->phy;
1602 s32 ret_val;
1603 u16 phy_data, offset, mask;
1605 switch (phy->type) {
1606 case e1000_phy_m88:
1607 case e1000_phy_gg82563:
1608 case e1000_phy_bm:
1609 case e1000_phy_82578:
1610 offset = M88E1000_PHY_SPEC_STATUS;
1611 mask = M88E1000_PSSR_DOWNSHIFT;
1612 break;
1613 case e1000_phy_igp_2:
1614 case e1000_phy_igp_3:
1615 offset = IGP01E1000_PHY_LINK_HEALTH;
1616 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1617 break;
1618 default:
1619 /* speed downshift not supported */
1620 phy->speed_downgraded = false;
1621 return 0;
1624 ret_val = e1e_rphy(hw, offset, &phy_data);
1626 if (!ret_val)
1627 phy->speed_downgraded = (phy_data & mask);
1629 return ret_val;
1633 * e1000_check_polarity_m88 - Checks the polarity.
1634 * @hw: pointer to the HW structure
1636 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1638 * Polarity is determined based on the PHY specific status register.
1640 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1642 struct e1000_phy_info *phy = &hw->phy;
1643 s32 ret_val;
1644 u16 data;
1646 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1648 if (!ret_val)
1649 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1650 ? e1000_rev_polarity_reversed
1651 : e1000_rev_polarity_normal;
1653 return ret_val;
1657 * e1000_check_polarity_igp - Checks the polarity.
1658 * @hw: pointer to the HW structure
1660 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1662 * Polarity is determined based on the PHY port status register, and the
1663 * current speed (since there is no polarity at 100Mbps).
1665 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1667 struct e1000_phy_info *phy = &hw->phy;
1668 s32 ret_val;
1669 u16 data, offset, mask;
1672 * Polarity is determined based on the speed of
1673 * our connection.
1675 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1676 if (ret_val)
1677 return ret_val;
1679 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1680 IGP01E1000_PSSR_SPEED_1000MBPS) {
1681 offset = IGP01E1000_PHY_PCS_INIT_REG;
1682 mask = IGP01E1000_PHY_POLARITY_MASK;
1683 } else {
1685 * This really only applies to 10Mbps since
1686 * there is no polarity for 100Mbps (always 0).
1688 offset = IGP01E1000_PHY_PORT_STATUS;
1689 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1692 ret_val = e1e_rphy(hw, offset, &data);
1694 if (!ret_val)
1695 phy->cable_polarity = (data & mask)
1696 ? e1000_rev_polarity_reversed
1697 : e1000_rev_polarity_normal;
1699 return ret_val;
1703 * e1000_check_polarity_ife - Check cable polarity for IFE PHY
1704 * @hw: pointer to the HW structure
1706 * Polarity is determined on the polarity reversal feature being enabled.
1708 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1710 struct e1000_phy_info *phy = &hw->phy;
1711 s32 ret_val;
1712 u16 phy_data, offset, mask;
1715 * Polarity is determined based on the reversal feature being enabled.
1717 if (phy->polarity_correction) {
1718 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1719 mask = IFE_PESC_POLARITY_REVERSED;
1720 } else {
1721 offset = IFE_PHY_SPECIAL_CONTROL;
1722 mask = IFE_PSC_FORCE_POLARITY;
1725 ret_val = e1e_rphy(hw, offset, &phy_data);
1727 if (!ret_val)
1728 phy->cable_polarity = (phy_data & mask)
1729 ? e1000_rev_polarity_reversed
1730 : e1000_rev_polarity_normal;
1732 return ret_val;
1736 * e1000_wait_autoneg - Wait for auto-neg completion
1737 * @hw: pointer to the HW structure
1739 * Waits for auto-negotiation to complete or for the auto-negotiation time
1740 * limit to expire, which ever happens first.
1742 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1744 s32 ret_val = 0;
1745 u16 i, phy_status;
1747 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1748 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1749 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1750 if (ret_val)
1751 break;
1752 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1753 if (ret_val)
1754 break;
1755 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1756 break;
1757 msleep(100);
1761 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1762 * has completed.
1764 return ret_val;
1768 * e1000e_phy_has_link_generic - Polls PHY for link
1769 * @hw: pointer to the HW structure
1770 * @iterations: number of times to poll for link
1771 * @usec_interval: delay between polling attempts
1772 * @success: pointer to whether polling was successful or not
1774 * Polls the PHY status register for link, 'iterations' number of times.
1776 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1777 u32 usec_interval, bool *success)
1779 s32 ret_val = 0;
1780 u16 i, phy_status;
1782 for (i = 0; i < iterations; i++) {
1784 * Some PHYs require the PHY_STATUS register to be read
1785 * twice due to the link bit being sticky. No harm doing
1786 * it across the board.
1788 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1789 if (ret_val)
1791 * If the first read fails, another entity may have
1792 * ownership of the resources, wait and try again to
1793 * see if they have relinquished the resources yet.
1795 udelay(usec_interval);
1796 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1797 if (ret_val)
1798 break;
1799 if (phy_status & MII_SR_LINK_STATUS)
1800 break;
1801 if (usec_interval >= 1000)
1802 mdelay(usec_interval/1000);
1803 else
1804 udelay(usec_interval);
1807 *success = (i < iterations);
1809 return ret_val;
1813 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1814 * @hw: pointer to the HW structure
1816 * Reads the PHY specific status register to retrieve the cable length
1817 * information. The cable length is determined by averaging the minimum and
1818 * maximum values to get the "average" cable length. The m88 PHY has four
1819 * possible cable length values, which are:
1820 * Register Value Cable Length
1821 * 0 < 50 meters
1822 * 1 50 - 80 meters
1823 * 2 80 - 110 meters
1824 * 3 110 - 140 meters
1825 * 4 > 140 meters
1827 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1829 struct e1000_phy_info *phy = &hw->phy;
1830 s32 ret_val;
1831 u16 phy_data, index;
1833 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1834 if (ret_val)
1835 goto out;
1837 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1838 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1839 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1840 ret_val = -E1000_ERR_PHY;
1841 goto out;
1844 phy->min_cable_length = e1000_m88_cable_length_table[index];
1845 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1847 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1849 out:
1850 return ret_val;
1854 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1855 * @hw: pointer to the HW structure
1857 * The automatic gain control (agc) normalizes the amplitude of the
1858 * received signal, adjusting for the attenuation produced by the
1859 * cable. By reading the AGC registers, which represent the
1860 * combination of coarse and fine gain value, the value can be put
1861 * into a lookup table to obtain the approximate cable length
1862 * for each channel.
1864 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1866 struct e1000_phy_info *phy = &hw->phy;
1867 s32 ret_val;
1868 u16 phy_data, i, agc_value = 0;
1869 u16 cur_agc_index, max_agc_index = 0;
1870 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1871 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1872 IGP02E1000_PHY_AGC_A,
1873 IGP02E1000_PHY_AGC_B,
1874 IGP02E1000_PHY_AGC_C,
1875 IGP02E1000_PHY_AGC_D
1878 /* Read the AGC registers for all channels */
1879 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1880 ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1881 if (ret_val)
1882 return ret_val;
1885 * Getting bits 15:9, which represent the combination of
1886 * coarse and fine gain values. The result is a number
1887 * that can be put into the lookup table to obtain the
1888 * approximate cable length.
1890 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1891 IGP02E1000_AGC_LENGTH_MASK;
1893 /* Array index bound check. */
1894 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1895 (cur_agc_index == 0))
1896 return -E1000_ERR_PHY;
1898 /* Remove min & max AGC values from calculation. */
1899 if (e1000_igp_2_cable_length_table[min_agc_index] >
1900 e1000_igp_2_cable_length_table[cur_agc_index])
1901 min_agc_index = cur_agc_index;
1902 if (e1000_igp_2_cable_length_table[max_agc_index] <
1903 e1000_igp_2_cable_length_table[cur_agc_index])
1904 max_agc_index = cur_agc_index;
1906 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1909 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1910 e1000_igp_2_cable_length_table[max_agc_index]);
1911 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1913 /* Calculate cable length with the error range of +/- 10 meters. */
1914 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1915 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1916 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1918 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1920 return ret_val;
1924 * e1000e_get_phy_info_m88 - Retrieve PHY information
1925 * @hw: pointer to the HW structure
1927 * Valid for only copper links. Read the PHY status register (sticky read)
1928 * to verify that link is up. Read the PHY special control register to
1929 * determine the polarity and 10base-T extended distance. Read the PHY
1930 * special status register to determine MDI/MDIx and current speed. If
1931 * speed is 1000, then determine cable length, local and remote receiver.
1933 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1935 struct e1000_phy_info *phy = &hw->phy;
1936 s32 ret_val;
1937 u16 phy_data;
1938 bool link;
1940 if (phy->media_type != e1000_media_type_copper) {
1941 e_dbg("Phy info is only valid for copper media\n");
1942 return -E1000_ERR_CONFIG;
1945 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1946 if (ret_val)
1947 return ret_val;
1949 if (!link) {
1950 e_dbg("Phy info is only valid if link is up\n");
1951 return -E1000_ERR_CONFIG;
1954 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1955 if (ret_val)
1956 return ret_val;
1958 phy->polarity_correction = (phy_data &
1959 M88E1000_PSCR_POLARITY_REVERSAL);
1961 ret_val = e1000_check_polarity_m88(hw);
1962 if (ret_val)
1963 return ret_val;
1965 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1966 if (ret_val)
1967 return ret_val;
1969 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
1971 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1972 ret_val = e1000_get_cable_length(hw);
1973 if (ret_val)
1974 return ret_val;
1976 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1977 if (ret_val)
1978 return ret_val;
1980 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1981 ? e1000_1000t_rx_status_ok
1982 : e1000_1000t_rx_status_not_ok;
1984 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1985 ? e1000_1000t_rx_status_ok
1986 : e1000_1000t_rx_status_not_ok;
1987 } else {
1988 /* Set values to "undefined" */
1989 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1990 phy->local_rx = e1000_1000t_rx_status_undefined;
1991 phy->remote_rx = e1000_1000t_rx_status_undefined;
1994 return ret_val;
1998 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1999 * @hw: pointer to the HW structure
2001 * Read PHY status to determine if link is up. If link is up, then
2002 * set/determine 10base-T extended distance and polarity correction. Read
2003 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2004 * determine on the cable length, local and remote receiver.
2006 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
2008 struct e1000_phy_info *phy = &hw->phy;
2009 s32 ret_val;
2010 u16 data;
2011 bool link;
2013 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2014 if (ret_val)
2015 return ret_val;
2017 if (!link) {
2018 e_dbg("Phy info is only valid if link is up\n");
2019 return -E1000_ERR_CONFIG;
2022 phy->polarity_correction = true;
2024 ret_val = e1000_check_polarity_igp(hw);
2025 if (ret_val)
2026 return ret_val;
2028 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2029 if (ret_val)
2030 return ret_val;
2032 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
2034 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2035 IGP01E1000_PSSR_SPEED_1000MBPS) {
2036 ret_val = e1000_get_cable_length(hw);
2037 if (ret_val)
2038 return ret_val;
2040 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
2041 if (ret_val)
2042 return ret_val;
2044 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2045 ? e1000_1000t_rx_status_ok
2046 : e1000_1000t_rx_status_not_ok;
2048 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2049 ? e1000_1000t_rx_status_ok
2050 : e1000_1000t_rx_status_not_ok;
2051 } else {
2052 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2053 phy->local_rx = e1000_1000t_rx_status_undefined;
2054 phy->remote_rx = e1000_1000t_rx_status_undefined;
2057 return ret_val;
2061 * e1000_get_phy_info_ife - Retrieves various IFE PHY states
2062 * @hw: pointer to the HW structure
2064 * Populates "phy" structure with various feature states.
2066 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2068 struct e1000_phy_info *phy = &hw->phy;
2069 s32 ret_val;
2070 u16 data;
2071 bool link;
2073 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2074 if (ret_val)
2075 goto out;
2077 if (!link) {
2078 e_dbg("Phy info is only valid if link is up\n");
2079 ret_val = -E1000_ERR_CONFIG;
2080 goto out;
2083 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2084 if (ret_val)
2085 goto out;
2086 phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
2087 ? false : true;
2089 if (phy->polarity_correction) {
2090 ret_val = e1000_check_polarity_ife(hw);
2091 if (ret_val)
2092 goto out;
2093 } else {
2094 /* Polarity is forced */
2095 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
2096 ? e1000_rev_polarity_reversed
2097 : e1000_rev_polarity_normal;
2100 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2101 if (ret_val)
2102 goto out;
2104 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false;
2106 /* The following parameters are undefined for 10/100 operation. */
2107 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2108 phy->local_rx = e1000_1000t_rx_status_undefined;
2109 phy->remote_rx = e1000_1000t_rx_status_undefined;
2111 out:
2112 return ret_val;
2116 * e1000e_phy_sw_reset - PHY software reset
2117 * @hw: pointer to the HW structure
2119 * Does a software reset of the PHY by reading the PHY control register and
2120 * setting/write the control register reset bit to the PHY.
2122 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2124 s32 ret_val;
2125 u16 phy_ctrl;
2127 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
2128 if (ret_val)
2129 return ret_val;
2131 phy_ctrl |= MII_CR_RESET;
2132 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
2133 if (ret_val)
2134 return ret_val;
2136 udelay(1);
2138 return ret_val;
2142 * e1000e_phy_hw_reset_generic - PHY hardware reset
2143 * @hw: pointer to the HW structure
2145 * Verify the reset block is not blocking us from resetting. Acquire
2146 * semaphore (if necessary) and read/set/write the device control reset
2147 * bit in the PHY. Wait the appropriate delay time for the device to
2148 * reset and release the semaphore (if necessary).
2150 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2152 struct e1000_phy_info *phy = &hw->phy;
2153 s32 ret_val;
2154 u32 ctrl;
2156 ret_val = e1000_check_reset_block(hw);
2157 if (ret_val)
2158 return 0;
2160 ret_val = phy->ops.acquire(hw);
2161 if (ret_val)
2162 return ret_val;
2164 ctrl = er32(CTRL);
2165 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2166 e1e_flush();
2168 udelay(phy->reset_delay_us);
2170 ew32(CTRL, ctrl);
2171 e1e_flush();
2173 udelay(150);
2175 phy->ops.release(hw);
2177 return e1000_get_phy_cfg_done(hw);
2181 * e1000e_get_cfg_done - Generic configuration done
2182 * @hw: pointer to the HW structure
2184 * Generic function to wait 10 milli-seconds for configuration to complete
2185 * and return success.
2187 s32 e1000e_get_cfg_done(struct e1000_hw *hw)
2189 mdelay(10);
2190 return 0;
2194 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2195 * @hw: pointer to the HW structure
2197 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2199 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2201 e_dbg("Running IGP 3 PHY init script\n");
2203 /* PHY init IGP 3 */
2204 /* Enable rise/fall, 10-mode work in class-A */
2205 e1e_wphy(hw, 0x2F5B, 0x9018);
2206 /* Remove all caps from Replica path filter */
2207 e1e_wphy(hw, 0x2F52, 0x0000);
2208 /* Bias trimming for ADC, AFE and Driver (Default) */
2209 e1e_wphy(hw, 0x2FB1, 0x8B24);
2210 /* Increase Hybrid poly bias */
2211 e1e_wphy(hw, 0x2FB2, 0xF8F0);
2212 /* Add 4% to Tx amplitude in Gig mode */
2213 e1e_wphy(hw, 0x2010, 0x10B0);
2214 /* Disable trimming (TTT) */
2215 e1e_wphy(hw, 0x2011, 0x0000);
2216 /* Poly DC correction to 94.6% + 2% for all channels */
2217 e1e_wphy(hw, 0x20DD, 0x249A);
2218 /* ABS DC correction to 95.9% */
2219 e1e_wphy(hw, 0x20DE, 0x00D3);
2220 /* BG temp curve trim */
2221 e1e_wphy(hw, 0x28B4, 0x04CE);
2222 /* Increasing ADC OPAMP stage 1 currents to max */
2223 e1e_wphy(hw, 0x2F70, 0x29E4);
2224 /* Force 1000 ( required for enabling PHY regs configuration) */
2225 e1e_wphy(hw, 0x0000, 0x0140);
2226 /* Set upd_freq to 6 */
2227 e1e_wphy(hw, 0x1F30, 0x1606);
2228 /* Disable NPDFE */
2229 e1e_wphy(hw, 0x1F31, 0xB814);
2230 /* Disable adaptive fixed FFE (Default) */
2231 e1e_wphy(hw, 0x1F35, 0x002A);
2232 /* Enable FFE hysteresis */
2233 e1e_wphy(hw, 0x1F3E, 0x0067);
2234 /* Fixed FFE for short cable lengths */
2235 e1e_wphy(hw, 0x1F54, 0x0065);
2236 /* Fixed FFE for medium cable lengths */
2237 e1e_wphy(hw, 0x1F55, 0x002A);
2238 /* Fixed FFE for long cable lengths */
2239 e1e_wphy(hw, 0x1F56, 0x002A);
2240 /* Enable Adaptive Clip Threshold */
2241 e1e_wphy(hw, 0x1F72, 0x3FB0);
2242 /* AHT reset limit to 1 */
2243 e1e_wphy(hw, 0x1F76, 0xC0FF);
2244 /* Set AHT master delay to 127 msec */
2245 e1e_wphy(hw, 0x1F77, 0x1DEC);
2246 /* Set scan bits for AHT */
2247 e1e_wphy(hw, 0x1F78, 0xF9EF);
2248 /* Set AHT Preset bits */
2249 e1e_wphy(hw, 0x1F79, 0x0210);
2250 /* Change integ_factor of channel A to 3 */
2251 e1e_wphy(hw, 0x1895, 0x0003);
2252 /* Change prop_factor of channels BCD to 8 */
2253 e1e_wphy(hw, 0x1796, 0x0008);
2254 /* Change cg_icount + enable integbp for channels BCD */
2255 e1e_wphy(hw, 0x1798, 0xD008);
2257 * Change cg_icount + enable integbp + change prop_factor_master
2258 * to 8 for channel A
2260 e1e_wphy(hw, 0x1898, 0xD918);
2261 /* Disable AHT in Slave mode on channel A */
2262 e1e_wphy(hw, 0x187A, 0x0800);
2264 * Enable LPLU and disable AN to 1000 in non-D0a states,
2265 * Enable SPD+B2B
2267 e1e_wphy(hw, 0x0019, 0x008D);
2268 /* Enable restart AN on an1000_dis change */
2269 e1e_wphy(hw, 0x001B, 0x2080);
2270 /* Enable wh_fifo read clock in 10/100 modes */
2271 e1e_wphy(hw, 0x0014, 0x0045);
2272 /* Restart AN, Speed selection is 1000 */
2273 e1e_wphy(hw, 0x0000, 0x1340);
2275 return 0;
2278 /* Internal function pointers */
2281 * e1000_get_phy_cfg_done - Generic PHY configuration done
2282 * @hw: pointer to the HW structure
2284 * Return success if silicon family did not implement a family specific
2285 * get_cfg_done function.
2287 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2289 if (hw->phy.ops.get_cfg_done)
2290 return hw->phy.ops.get_cfg_done(hw);
2292 return 0;
2296 * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2297 * @hw: pointer to the HW structure
2299 * When the silicon family has not implemented a forced speed/duplex
2300 * function for the PHY, simply return 0.
2302 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2304 if (hw->phy.ops.force_speed_duplex)
2305 return hw->phy.ops.force_speed_duplex(hw);
2307 return 0;
2311 * e1000e_get_phy_type_from_id - Get PHY type from id
2312 * @phy_id: phy_id read from the phy
2314 * Returns the phy type from the id.
2316 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2318 enum e1000_phy_type phy_type = e1000_phy_unknown;
2320 switch (phy_id) {
2321 case M88E1000_I_PHY_ID:
2322 case M88E1000_E_PHY_ID:
2323 case M88E1111_I_PHY_ID:
2324 case M88E1011_I_PHY_ID:
2325 phy_type = e1000_phy_m88;
2326 break;
2327 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2328 phy_type = e1000_phy_igp_2;
2329 break;
2330 case GG82563_E_PHY_ID:
2331 phy_type = e1000_phy_gg82563;
2332 break;
2333 case IGP03E1000_E_PHY_ID:
2334 phy_type = e1000_phy_igp_3;
2335 break;
2336 case IFE_E_PHY_ID:
2337 case IFE_PLUS_E_PHY_ID:
2338 case IFE_C_E_PHY_ID:
2339 phy_type = e1000_phy_ife;
2340 break;
2341 case BME1000_E_PHY_ID:
2342 case BME1000_E_PHY_ID_R2:
2343 phy_type = e1000_phy_bm;
2344 break;
2345 case I82578_E_PHY_ID:
2346 phy_type = e1000_phy_82578;
2347 break;
2348 case I82577_E_PHY_ID:
2349 phy_type = e1000_phy_82577;
2350 break;
2351 case I82579_E_PHY_ID:
2352 phy_type = e1000_phy_82579;
2353 break;
2354 default:
2355 phy_type = e1000_phy_unknown;
2356 break;
2358 return phy_type;
2362 * e1000e_determine_phy_address - Determines PHY address.
2363 * @hw: pointer to the HW structure
2365 * This uses a trial and error method to loop through possible PHY
2366 * addresses. It tests each by reading the PHY ID registers and
2367 * checking for a match.
2369 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2371 s32 ret_val = -E1000_ERR_PHY_TYPE;
2372 u32 phy_addr = 0;
2373 u32 i;
2374 enum e1000_phy_type phy_type = e1000_phy_unknown;
2376 hw->phy.id = phy_type;
2378 for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2379 hw->phy.addr = phy_addr;
2380 i = 0;
2382 do {
2383 e1000e_get_phy_id(hw);
2384 phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2387 * If phy_type is valid, break - we found our
2388 * PHY address
2390 if (phy_type != e1000_phy_unknown) {
2391 ret_val = 0;
2392 goto out;
2394 usleep_range(1000, 2000);
2395 i++;
2396 } while (i < 10);
2399 out:
2400 return ret_val;
2404 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2405 * @page: page to access
2407 * Returns the phy address for the page requested.
2409 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2411 u32 phy_addr = 2;
2413 if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2414 phy_addr = 1;
2416 return phy_addr;
2420 * e1000e_write_phy_reg_bm - Write BM PHY register
2421 * @hw: pointer to the HW structure
2422 * @offset: register offset to write to
2423 * @data: data to write at register offset
2425 * Acquires semaphore, if necessary, then writes the data to PHY register
2426 * at the offset. Release any acquired semaphores before exiting.
2428 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2430 s32 ret_val;
2431 u32 page = offset >> IGP_PAGE_SHIFT;
2433 ret_val = hw->phy.ops.acquire(hw);
2434 if (ret_val)
2435 return ret_val;
2437 /* Page 800 works differently than the rest so it has its own func */
2438 if (page == BM_WUC_PAGE) {
2439 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2440 false, false);
2441 goto out;
2444 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2446 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2447 u32 page_shift, page_select;
2450 * Page select is register 31 for phy address 1 and 22 for
2451 * phy address 2 and 3. Page select is shifted only for
2452 * phy address 1.
2454 if (hw->phy.addr == 1) {
2455 page_shift = IGP_PAGE_SHIFT;
2456 page_select = IGP01E1000_PHY_PAGE_SELECT;
2457 } else {
2458 page_shift = 0;
2459 page_select = BM_PHY_PAGE_SELECT;
2462 /* Page is shifted left, PHY expects (page x 32) */
2463 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2464 (page << page_shift));
2465 if (ret_val)
2466 goto out;
2469 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2470 data);
2472 out:
2473 hw->phy.ops.release(hw);
2474 return ret_val;
2478 * e1000e_read_phy_reg_bm - Read BM PHY register
2479 * @hw: pointer to the HW structure
2480 * @offset: register offset to be read
2481 * @data: pointer to the read data
2483 * Acquires semaphore, if necessary, then reads the PHY register at offset
2484 * and storing the retrieved information in data. Release any acquired
2485 * semaphores before exiting.
2487 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2489 s32 ret_val;
2490 u32 page = offset >> IGP_PAGE_SHIFT;
2492 ret_val = hw->phy.ops.acquire(hw);
2493 if (ret_val)
2494 return ret_val;
2496 /* Page 800 works differently than the rest so it has its own func */
2497 if (page == BM_WUC_PAGE) {
2498 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2499 true, false);
2500 goto out;
2503 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2505 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2506 u32 page_shift, page_select;
2509 * Page select is register 31 for phy address 1 and 22 for
2510 * phy address 2 and 3. Page select is shifted only for
2511 * phy address 1.
2513 if (hw->phy.addr == 1) {
2514 page_shift = IGP_PAGE_SHIFT;
2515 page_select = IGP01E1000_PHY_PAGE_SELECT;
2516 } else {
2517 page_shift = 0;
2518 page_select = BM_PHY_PAGE_SELECT;
2521 /* Page is shifted left, PHY expects (page x 32) */
2522 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2523 (page << page_shift));
2524 if (ret_val)
2525 goto out;
2528 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2529 data);
2530 out:
2531 hw->phy.ops.release(hw);
2532 return ret_val;
2536 * e1000e_read_phy_reg_bm2 - Read BM PHY register
2537 * @hw: pointer to the HW structure
2538 * @offset: register offset to be read
2539 * @data: pointer to the read data
2541 * Acquires semaphore, if necessary, then reads the PHY register at offset
2542 * and storing the retrieved information in data. Release any acquired
2543 * semaphores before exiting.
2545 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2547 s32 ret_val;
2548 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2550 ret_val = hw->phy.ops.acquire(hw);
2551 if (ret_val)
2552 return ret_val;
2554 /* Page 800 works differently than the rest so it has its own func */
2555 if (page == BM_WUC_PAGE) {
2556 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2557 true, false);
2558 goto out;
2561 hw->phy.addr = 1;
2563 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2565 /* Page is shifted left, PHY expects (page x 32) */
2566 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2567 page);
2569 if (ret_val)
2570 goto out;
2573 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2574 data);
2575 out:
2576 hw->phy.ops.release(hw);
2577 return ret_val;
2581 * e1000e_write_phy_reg_bm2 - Write BM PHY register
2582 * @hw: pointer to the HW structure
2583 * @offset: register offset to write to
2584 * @data: data to write at register offset
2586 * Acquires semaphore, if necessary, then writes the data to PHY register
2587 * at the offset. Release any acquired semaphores before exiting.
2589 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2591 s32 ret_val;
2592 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2594 ret_val = hw->phy.ops.acquire(hw);
2595 if (ret_val)
2596 return ret_val;
2598 /* Page 800 works differently than the rest so it has its own func */
2599 if (page == BM_WUC_PAGE) {
2600 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2601 false, false);
2602 goto out;
2605 hw->phy.addr = 1;
2607 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2608 /* Page is shifted left, PHY expects (page x 32) */
2609 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2610 page);
2612 if (ret_val)
2613 goto out;
2616 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2617 data);
2619 out:
2620 hw->phy.ops.release(hw);
2621 return ret_val;
2625 * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2626 * @hw: pointer to the HW structure
2627 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2629 * Assumes semaphore already acquired and phy_reg points to a valid memory
2630 * address to store contents of the BM_WUC_ENABLE_REG register.
2632 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2634 s32 ret_val;
2635 u16 temp;
2637 /* All page select, port ctrl and wakeup registers use phy address 1 */
2638 hw->phy.addr = 1;
2640 /* Select Port Control Registers page */
2641 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2642 if (ret_val) {
2643 e_dbg("Could not set Port Control page\n");
2644 goto out;
2647 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2648 if (ret_val) {
2649 e_dbg("Could not read PHY register %d.%d\n",
2650 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2651 goto out;
2655 * Enable both PHY wakeup mode and Wakeup register page writes.
2656 * Prevent a power state change by disabling ME and Host PHY wakeup.
2658 temp = *phy_reg;
2659 temp |= BM_WUC_ENABLE_BIT;
2660 temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2662 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2663 if (ret_val) {
2664 e_dbg("Could not write PHY register %d.%d\n",
2665 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2666 goto out;
2669 /* Select Host Wakeup Registers page */
2670 ret_val = e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2672 /* caller now able to write registers on the Wakeup registers page */
2673 out:
2674 return ret_val;
2678 * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2679 * @hw: pointer to the HW structure
2680 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2682 * Restore BM_WUC_ENABLE_REG to its original value.
2684 * Assumes semaphore already acquired and *phy_reg is the contents of the
2685 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2686 * caller.
2688 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2690 s32 ret_val = 0;
2692 /* Select Port Control Registers page */
2693 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2694 if (ret_val) {
2695 e_dbg("Could not set Port Control page\n");
2696 goto out;
2699 /* Restore 769.17 to its original value */
2700 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2701 if (ret_val)
2702 e_dbg("Could not restore PHY register %d.%d\n",
2703 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2704 out:
2705 return ret_val;
2709 * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2710 * @hw: pointer to the HW structure
2711 * @offset: register offset to be read or written
2712 * @data: pointer to the data to read or write
2713 * @read: determines if operation is read or write
2714 * @page_set: BM_WUC_PAGE already set and access enabled
2716 * Read the PHY register at offset and store the retrieved information in
2717 * data, or write data to PHY register at offset. Note the procedure to
2718 * access the PHY wakeup registers is different than reading the other PHY
2719 * registers. It works as such:
2720 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2721 * 2) Set page to 800 for host (801 if we were manageability)
2722 * 3) Write the address using the address opcode (0x11)
2723 * 4) Read or write the data using the data opcode (0x12)
2724 * 5) Restore 769.17.2 to its original value
2726 * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2727 * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2729 * Assumes semaphore is already acquired. When page_set==true, assumes
2730 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2731 * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2733 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2734 u16 *data, bool read, bool page_set)
2736 s32 ret_val;
2737 u16 reg = BM_PHY_REG_NUM(offset);
2738 u16 page = BM_PHY_REG_PAGE(offset);
2739 u16 phy_reg = 0;
2741 /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2742 if ((hw->mac.type == e1000_pchlan) &&
2743 (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2744 e_dbg("Attempting to access page %d while gig enabled.\n",
2745 page);
2747 if (!page_set) {
2748 /* Enable access to PHY wakeup registers */
2749 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2750 if (ret_val) {
2751 e_dbg("Could not enable PHY wakeup reg access\n");
2752 goto out;
2756 e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2758 /* Write the Wakeup register page offset value using opcode 0x11 */
2759 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2760 if (ret_val) {
2761 e_dbg("Could not write address opcode to page %d\n", page);
2762 goto out;
2765 if (read) {
2766 /* Read the Wakeup register page value using opcode 0x12 */
2767 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2768 data);
2769 } else {
2770 /* Write the Wakeup register page value using opcode 0x12 */
2771 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2772 *data);
2775 if (ret_val) {
2776 e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2777 goto out;
2780 if (!page_set)
2781 ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2783 out:
2784 return ret_val;
2788 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2789 * @hw: pointer to the HW structure
2791 * In the case of a PHY power down to save power, or to turn off link during a
2792 * driver unload, or wake on lan is not enabled, restore the link to previous
2793 * settings.
2795 void e1000_power_up_phy_copper(struct e1000_hw *hw)
2797 u16 mii_reg = 0;
2799 /* The PHY will retain its settings across a power down/up cycle */
2800 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2801 mii_reg &= ~MII_CR_POWER_DOWN;
2802 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2806 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2807 * @hw: pointer to the HW structure
2809 * In the case of a PHY power down to save power, or to turn off link during a
2810 * driver unload, or wake on lan is not enabled, restore the link to previous
2811 * settings.
2813 void e1000_power_down_phy_copper(struct e1000_hw *hw)
2815 u16 mii_reg = 0;
2817 /* The PHY will retain its settings across a power down/up cycle */
2818 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2819 mii_reg |= MII_CR_POWER_DOWN;
2820 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2821 usleep_range(1000, 2000);
2825 * e1000e_commit_phy - Soft PHY reset
2826 * @hw: pointer to the HW structure
2828 * Performs a soft PHY reset on those that apply. This is a function pointer
2829 * entry point called by drivers.
2831 s32 e1000e_commit_phy(struct e1000_hw *hw)
2833 if (hw->phy.ops.commit)
2834 return hw->phy.ops.commit(hw);
2836 return 0;
2840 * e1000_set_d0_lplu_state - Sets low power link up state for D0
2841 * @hw: pointer to the HW structure
2842 * @active: boolean used to enable/disable lplu
2844 * Success returns 0, Failure returns 1
2846 * The low power link up (lplu) state is set to the power management level D0
2847 * and SmartSpeed is disabled when active is true, else clear lplu for D0
2848 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
2849 * is used during Dx states where the power conservation is most important.
2850 * During driver activity, SmartSpeed should be enabled so performance is
2851 * maintained. This is a function pointer entry point called by drivers.
2853 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2855 if (hw->phy.ops.set_d0_lplu_state)
2856 return hw->phy.ops.set_d0_lplu_state(hw, active);
2858 return 0;
2862 * __e1000_read_phy_reg_hv - Read HV PHY register
2863 * @hw: pointer to the HW structure
2864 * @offset: register offset to be read
2865 * @data: pointer to the read data
2866 * @locked: semaphore has already been acquired or not
2868 * Acquires semaphore, if necessary, then reads the PHY register at offset
2869 * and stores the retrieved information in data. Release any acquired
2870 * semaphore before exiting.
2872 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2873 bool locked, bool page_set)
2875 s32 ret_val;
2876 u16 page = BM_PHY_REG_PAGE(offset);
2877 u16 reg = BM_PHY_REG_NUM(offset);
2878 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2880 if (!locked) {
2881 ret_val = hw->phy.ops.acquire(hw);
2882 if (ret_val)
2883 return ret_val;
2886 /* Page 800 works differently than the rest so it has its own func */
2887 if (page == BM_WUC_PAGE) {
2888 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2889 true, page_set);
2890 goto out;
2893 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2894 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2895 data, true);
2896 goto out;
2899 if (!page_set) {
2900 if (page == HV_INTC_FC_PAGE_START)
2901 page = 0;
2903 if (reg > MAX_PHY_MULTI_PAGE_REG) {
2904 /* Page is shifted left, PHY expects (page x 32) */
2905 ret_val = e1000_set_page_igp(hw,
2906 (page << IGP_PAGE_SHIFT));
2908 hw->phy.addr = phy_addr;
2910 if (ret_val)
2911 goto out;
2915 e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2916 page << IGP_PAGE_SHIFT, reg);
2918 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2919 data);
2920 out:
2921 if (!locked)
2922 hw->phy.ops.release(hw);
2924 return ret_val;
2928 * e1000_read_phy_reg_hv - Read HV PHY register
2929 * @hw: pointer to the HW structure
2930 * @offset: register offset to be read
2931 * @data: pointer to the read data
2933 * Acquires semaphore then reads the PHY register at offset and stores
2934 * the retrieved information in data. Release the acquired semaphore
2935 * before exiting.
2937 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2939 return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2943 * e1000_read_phy_reg_hv_locked - Read HV PHY register
2944 * @hw: pointer to the HW structure
2945 * @offset: register offset to be read
2946 * @data: pointer to the read data
2948 * Reads the PHY register at offset and stores the retrieved information
2949 * in data. Assumes semaphore already acquired.
2951 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2953 return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2957 * e1000_read_phy_reg_page_hv - Read HV PHY register
2958 * @hw: pointer to the HW structure
2959 * @offset: register offset to write to
2960 * @data: data to write at register offset
2962 * Reads the PHY register at offset and stores the retrieved information
2963 * in data. Assumes semaphore already acquired and page already set.
2965 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2967 return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2971 * __e1000_write_phy_reg_hv - Write HV PHY register
2972 * @hw: pointer to the HW structure
2973 * @offset: register offset to write to
2974 * @data: data to write at register offset
2975 * @locked: semaphore has already been acquired or not
2977 * Acquires semaphore, if necessary, then writes the data to PHY register
2978 * at the offset. Release any acquired semaphores before exiting.
2980 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2981 bool locked, bool page_set)
2983 s32 ret_val;
2984 u16 page = BM_PHY_REG_PAGE(offset);
2985 u16 reg = BM_PHY_REG_NUM(offset);
2986 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2988 if (!locked) {
2989 ret_val = hw->phy.ops.acquire(hw);
2990 if (ret_val)
2991 return ret_val;
2994 /* Page 800 works differently than the rest so it has its own func */
2995 if (page == BM_WUC_PAGE) {
2996 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2997 false, page_set);
2998 goto out;
3001 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
3002 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
3003 &data, false);
3004 goto out;
3007 if (!page_set) {
3008 if (page == HV_INTC_FC_PAGE_START)
3009 page = 0;
3012 * Workaround MDIO accesses being disabled after entering IEEE
3013 * Power Down (when bit 11 of the PHY Control register is set)
3015 if ((hw->phy.type == e1000_phy_82578) &&
3016 (hw->phy.revision >= 1) &&
3017 (hw->phy.addr == 2) &&
3018 ((MAX_PHY_REG_ADDRESS & reg) == 0) && (data & (1 << 11))) {
3019 u16 data2 = 0x7EFF;
3020 ret_val = e1000_access_phy_debug_regs_hv(hw,
3021 (1 << 6) | 0x3,
3022 &data2, false);
3023 if (ret_val)
3024 goto out;
3027 if (reg > MAX_PHY_MULTI_PAGE_REG) {
3028 /* Page is shifted left, PHY expects (page x 32) */
3029 ret_val = e1000_set_page_igp(hw,
3030 (page << IGP_PAGE_SHIFT));
3032 hw->phy.addr = phy_addr;
3034 if (ret_val)
3035 goto out;
3039 e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3040 page << IGP_PAGE_SHIFT, reg);
3042 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3043 data);
3045 out:
3046 if (!locked)
3047 hw->phy.ops.release(hw);
3049 return ret_val;
3053 * e1000_write_phy_reg_hv - Write HV PHY register
3054 * @hw: pointer to the HW structure
3055 * @offset: register offset to write to
3056 * @data: data to write at register offset
3058 * Acquires semaphore then writes the data to PHY register at the offset.
3059 * Release the acquired semaphores before exiting.
3061 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
3063 return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
3067 * e1000_write_phy_reg_hv_locked - Write HV PHY register
3068 * @hw: pointer to the HW structure
3069 * @offset: register offset to write to
3070 * @data: data to write at register offset
3072 * Writes the data to PHY register at the offset. Assumes semaphore
3073 * already acquired.
3075 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3077 return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
3081 * e1000_write_phy_reg_page_hv - Write HV PHY register
3082 * @hw: pointer to the HW structure
3083 * @offset: register offset to write to
3084 * @data: data to write at register offset
3086 * Writes the data to PHY register at the offset. Assumes semaphore
3087 * already acquired and page already set.
3089 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3091 return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
3095 * e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3096 * @page: page to be accessed
3098 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3100 u32 phy_addr = 2;
3102 if (page >= HV_INTC_FC_PAGE_START)
3103 phy_addr = 1;
3105 return phy_addr;
3109 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3110 * @hw: pointer to the HW structure
3111 * @offset: register offset to be read or written
3112 * @data: pointer to the data to be read or written
3113 * @read: determines if operation is read or write
3115 * Reads the PHY register at offset and stores the retreived information
3116 * in data. Assumes semaphore already acquired. Note that the procedure
3117 * to access these regs uses the address port and data port to read/write.
3118 * These accesses done with PHY address 2 and without using pages.
3120 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3121 u16 *data, bool read)
3123 s32 ret_val;
3124 u32 addr_reg = 0;
3125 u32 data_reg = 0;
3127 /* This takes care of the difference with desktop vs mobile phy */
3128 addr_reg = (hw->phy.type == e1000_phy_82578) ?
3129 I82578_ADDR_REG : I82577_ADDR_REG;
3130 data_reg = addr_reg + 1;
3132 /* All operations in this function are phy address 2 */
3133 hw->phy.addr = 2;
3135 /* masking with 0x3F to remove the page from offset */
3136 ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3137 if (ret_val) {
3138 e_dbg("Could not write the Address Offset port register\n");
3139 goto out;
3142 /* Read or write the data value next */
3143 if (read)
3144 ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3145 else
3146 ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3148 if (ret_val) {
3149 e_dbg("Could not access the Data port register\n");
3150 goto out;
3153 out:
3154 return ret_val;
3158 * e1000_link_stall_workaround_hv - Si workaround
3159 * @hw: pointer to the HW structure
3161 * This function works around a Si bug where the link partner can get
3162 * a link up indication before the PHY does. If small packets are sent
3163 * by the link partner they can be placed in the packet buffer without
3164 * being properly accounted for by the PHY and will stall preventing
3165 * further packets from being received. The workaround is to clear the
3166 * packet buffer after the PHY detects link up.
3168 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3170 s32 ret_val = 0;
3171 u16 data;
3173 if (hw->phy.type != e1000_phy_82578)
3174 goto out;
3176 /* Do not apply workaround if in PHY loopback bit 14 set */
3177 e1e_rphy(hw, PHY_CONTROL, &data);
3178 if (data & PHY_CONTROL_LB)
3179 goto out;
3181 /* check if link is up and at 1Gbps */
3182 ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3183 if (ret_val)
3184 goto out;
3186 data &= BM_CS_STATUS_LINK_UP |
3187 BM_CS_STATUS_RESOLVED |
3188 BM_CS_STATUS_SPEED_MASK;
3190 if (data != (BM_CS_STATUS_LINK_UP |
3191 BM_CS_STATUS_RESOLVED |
3192 BM_CS_STATUS_SPEED_1000))
3193 goto out;
3195 mdelay(200);
3197 /* flush the packets in the fifo buffer */
3198 ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
3199 HV_MUX_DATA_CTRL_FORCE_SPEED);
3200 if (ret_val)
3201 goto out;
3203 ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3205 out:
3206 return ret_val;
3210 * e1000_check_polarity_82577 - Checks the polarity.
3211 * @hw: pointer to the HW structure
3213 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3215 * Polarity is determined based on the PHY specific status register.
3217 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3219 struct e1000_phy_info *phy = &hw->phy;
3220 s32 ret_val;
3221 u16 data;
3223 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3225 if (!ret_val)
3226 phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
3227 ? e1000_rev_polarity_reversed
3228 : e1000_rev_polarity_normal;
3230 return ret_val;
3234 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3235 * @hw: pointer to the HW structure
3237 * Calls the PHY setup function to force speed and duplex.
3239 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3241 struct e1000_phy_info *phy = &hw->phy;
3242 s32 ret_val;
3243 u16 phy_data;
3244 bool link;
3246 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
3247 if (ret_val)
3248 goto out;
3250 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3252 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
3253 if (ret_val)
3254 goto out;
3256 udelay(1);
3258 if (phy->autoneg_wait_to_complete) {
3259 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3261 ret_val = e1000e_phy_has_link_generic(hw,
3262 PHY_FORCE_LIMIT,
3263 100000,
3264 &link);
3265 if (ret_val)
3266 goto out;
3268 if (!link)
3269 e_dbg("Link taking longer than expected.\n");
3271 /* Try once more */
3272 ret_val = e1000e_phy_has_link_generic(hw,
3273 PHY_FORCE_LIMIT,
3274 100000,
3275 &link);
3276 if (ret_val)
3277 goto out;
3280 out:
3281 return ret_val;
3285 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3286 * @hw: pointer to the HW structure
3288 * Read PHY status to determine if link is up. If link is up, then
3289 * set/determine 10base-T extended distance and polarity correction. Read
3290 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3291 * determine on the cable length, local and remote receiver.
3293 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3295 struct e1000_phy_info *phy = &hw->phy;
3296 s32 ret_val;
3297 u16 data;
3298 bool link;
3300 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3301 if (ret_val)
3302 goto out;
3304 if (!link) {
3305 e_dbg("Phy info is only valid if link is up\n");
3306 ret_val = -E1000_ERR_CONFIG;
3307 goto out;
3310 phy->polarity_correction = true;
3312 ret_val = e1000_check_polarity_82577(hw);
3313 if (ret_val)
3314 goto out;
3316 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3317 if (ret_val)
3318 goto out;
3320 phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
3322 if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3323 I82577_PHY_STATUS2_SPEED_1000MBPS) {
3324 ret_val = hw->phy.ops.get_cable_length(hw);
3325 if (ret_val)
3326 goto out;
3328 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
3329 if (ret_val)
3330 goto out;
3332 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3333 ? e1000_1000t_rx_status_ok
3334 : e1000_1000t_rx_status_not_ok;
3336 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3337 ? e1000_1000t_rx_status_ok
3338 : e1000_1000t_rx_status_not_ok;
3339 } else {
3340 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3341 phy->local_rx = e1000_1000t_rx_status_undefined;
3342 phy->remote_rx = e1000_1000t_rx_status_undefined;
3345 out:
3346 return ret_val;
3350 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3351 * @hw: pointer to the HW structure
3353 * Reads the diagnostic status register and verifies result is valid before
3354 * placing it in the phy_cable_length field.
3356 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3358 struct e1000_phy_info *phy = &hw->phy;
3359 s32 ret_val;
3360 u16 phy_data, length;
3362 ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3363 if (ret_val)
3364 goto out;
3366 length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3367 I82577_DSTATUS_CABLE_LENGTH_SHIFT;
3369 if (length == E1000_CABLE_LENGTH_UNDEFINED)
3370 ret_val = -E1000_ERR_PHY;
3372 phy->cable_length = length;
3374 out:
3375 return ret_val;