1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
9 * Copyright (c) 2011 by:
10 * Mauro Carvalho Chehab
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
27 #include "edac_core.h"
30 static LIST_HEAD(sbridge_edac_list
);
31 static DEFINE_MUTEX(sbridge_edac_lock
);
35 * Alter this version for the module when modifications are made
37 #define SBRIDGE_REVISION " Ver: 1.1.0 "
38 #define EDAC_MOD_STR "sbridge_edac"
43 #define sbridge_printk(level, fmt, arg...) \
44 edac_printk(level, "sbridge", fmt, ##arg)
46 #define sbridge_mc_printk(mci, level, fmt, arg...) \
47 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
50 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52 #define GET_BITFIELD(v, lo, hi) \
53 (((v) & GENMASK_ULL(hi, lo)) >> (lo))
55 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56 static const u32 sbridge_dram_rule
[] = {
57 0x80, 0x88, 0x90, 0x98, 0xa0,
58 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
61 static const u32 ibridge_dram_rule
[] = {
62 0x60, 0x68, 0x70, 0x78, 0x80,
63 0x88, 0x90, 0x98, 0xa0, 0xa8,
64 0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
65 0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
68 #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
69 #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
70 #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
71 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
72 #define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
74 static char *get_dram_attr(u32 reg
)
76 switch(DRAM_ATTR(reg
)) {
88 static const u32 sbridge_interleave_list
[] = {
89 0x84, 0x8c, 0x94, 0x9c, 0xa4,
90 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
93 static const u32 ibridge_interleave_list
[] = {
94 0x64, 0x6c, 0x74, 0x7c, 0x84,
95 0x8c, 0x94, 0x9c, 0xa4, 0xac,
96 0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
97 0xdc, 0xe4, 0xec, 0xf4, 0xfc,
100 struct interleave_pkg
{
105 static const struct interleave_pkg sbridge_interleave_pkg
[] = {
116 static const struct interleave_pkg ibridge_interleave_pkg
[] = {
127 static inline int sad_pkg(const struct interleave_pkg
*table
, u32 reg
,
130 return GET_BITFIELD(reg
, table
[interleave
].start
,
131 table
[interleave
].end
);
134 /* Devices 12 Function 7 */
138 #define HASWELL_TOHM_0 0xd4
139 #define HASWELL_TOHM_1 0xd8
141 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
142 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
144 /* Device 13 Function 6 */
146 #define SAD_TARGET 0xf0
148 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
150 #define SAD_CONTROL 0xf4
152 /* Device 14 function 0 */
154 static const u32 tad_dram_rule
[] = {
155 0x40, 0x44, 0x48, 0x4c,
156 0x50, 0x54, 0x58, 0x5c,
157 0x60, 0x64, 0x68, 0x6c,
159 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
161 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
162 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
163 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
164 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
165 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
166 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
167 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
169 /* Device 15, function 0 */
173 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
174 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
175 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
177 /* Device 15, function 1 */
179 #define RASENABLES 0xac
180 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
182 /* Device 15, functions 2-5 */
184 static const int mtr_regs
[] = {
188 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
189 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
190 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
191 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
192 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
194 static const u32 tad_ch_nilv_offset
[] = {
195 0x90, 0x94, 0x98, 0x9c,
196 0xa0, 0xa4, 0xa8, 0xac,
197 0xb0, 0xb4, 0xb8, 0xbc,
199 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
200 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
202 static const u32 rir_way_limit
[] = {
203 0x108, 0x10c, 0x110, 0x114, 0x118,
205 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
207 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
208 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
210 #define MAX_RIR_WAY 8
212 static const u32 rir_offset
[MAX_RIR_RANGES
][MAX_RIR_WAY
] = {
213 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
214 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
215 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
216 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
217 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
220 #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
221 #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
223 /* Device 16, functions 2-7 */
226 * FIXME: Implement the error count reads directly
229 static const u32 correrrcnt
[] = {
230 0x104, 0x108, 0x10c, 0x110,
233 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
234 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
235 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
236 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
238 static const u32 correrrthrsld
[] = {
239 0x11c, 0x120, 0x124, 0x128,
242 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
243 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
246 /* Device 17, function 0 */
248 #define SB_RANK_CFG_A 0x0328
250 #define IB_RANK_CFG_A 0x0320
256 #define NUM_CHANNELS 4
257 #define MAX_DIMMS 3 /* Max DIMMS per channel */
258 #define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
267 struct sbridge_info
{
271 u64 (*get_tolm
)(struct sbridge_pvt
*pvt
);
272 u64 (*get_tohm
)(struct sbridge_pvt
*pvt
);
273 u64 (*rir_limit
)(u32 reg
);
274 const u32
*dram_rule
;
275 const u32
*interleave_list
;
276 const struct interleave_pkg
*interleave_pkg
;
279 u8 (*get_node_id
)(struct sbridge_pvt
*pvt
);
280 enum mem_type (*get_memory_type
)(struct sbridge_pvt
*pvt
);
281 struct pci_dev
*pci_vtd
;
284 struct sbridge_channel
{
289 struct pci_id_descr
{
294 struct pci_id_table
{
295 const struct pci_id_descr
*descr
;
300 struct list_head list
;
302 u8 node_id
, source_id
;
303 struct pci_dev
**pdev
;
305 struct mem_ctl_info
*mci
;
309 struct pci_dev
*pci_ta
, *pci_ddrio
, *pci_ras
;
310 struct pci_dev
*pci_sad0
, *pci_sad1
;
311 struct pci_dev
*pci_ha0
, *pci_ha1
;
312 struct pci_dev
*pci_br0
, *pci_br1
;
313 struct pci_dev
*pci_ha1_ta
;
314 struct pci_dev
*pci_tad
[NUM_CHANNELS
];
316 struct sbridge_dev
*sbridge_dev
;
318 struct sbridge_info info
;
319 struct sbridge_channel channel
[NUM_CHANNELS
];
321 /* Memory type detection */
322 bool is_mirrored
, is_lockstep
, is_close_pg
;
324 /* Fifo double buffers */
325 struct mce mce_entry
[MCE_LOG_LEN
];
326 struct mce mce_outentry
[MCE_LOG_LEN
];
328 /* Fifo in/out counters */
329 unsigned mce_in
, mce_out
;
331 /* Count indicator to show errors not got */
332 unsigned mce_overrun
;
334 /* Memory description */
338 #define PCI_DESCR(device_id, opt) \
339 .dev_id = (device_id), \
342 static const struct pci_id_descr pci_dev_descr_sbridge
[] = {
343 /* Processor Home Agent */
344 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
, 0) },
346 /* Memory controller */
347 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
, 0) },
348 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
, 0) },
349 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
, 0) },
350 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
, 0) },
351 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
, 0) },
352 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
, 0) },
353 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
, 1) },
355 /* System Address Decoder */
356 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
, 0) },
357 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
, 0) },
359 /* Broadcast Registers */
360 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR
, 0) },
363 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
364 static const struct pci_id_table pci_dev_descr_sbridge_table
[] = {
365 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge
),
366 {0,} /* 0 terminated list. */
369 /* This changes depending if 1HA or 2HA:
371 * 0x0eb8 (17.0) is DDRIO0
373 * 0x0ebc (17.4) is DDRIO0
375 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
376 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
379 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
380 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
381 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
382 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
383 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
384 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
385 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
386 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
387 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
388 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
389 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
390 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
391 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
392 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
393 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
395 static const struct pci_id_descr pci_dev_descr_ibridge
[] = {
396 /* Processor Home Agent */
397 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
, 0) },
399 /* Memory controller */
400 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
, 0) },
401 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
, 0) },
402 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
, 0) },
403 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
, 0) },
404 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
, 0) },
405 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
, 0) },
407 /* System Address Decoder */
408 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
, 0) },
410 /* Broadcast Registers */
411 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
, 1) },
412 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
, 0) },
414 /* Optional, mode 2HA */
415 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
, 1) },
417 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA
, 1) },
418 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS
, 1) },
420 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
, 1) },
421 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
, 1) },
423 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
, 1) },
424 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
, 1) },
427 static const struct pci_id_table pci_dev_descr_ibridge_table
[] = {
428 PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge
),
429 {0,} /* 0 terminated list. */
432 /* Haswell support */
435 * - 3 DDR3 channels, 2 DPC per channel
438 * - 4 DDR4 channels, 3 DPC per channel
441 * - 4 DDR4 channels, 3 DPC per channel
444 * - each IMC interfaces with a SMI 2 channel
445 * - each SMI channel interfaces with a scalable memory buffer
446 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
448 #define HASWELL_DDRCRCLKCONTROLS 0xa10
449 #define HASWELL_HASYSDEFEATURE2 0x84
450 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
451 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
452 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
453 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
454 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
455 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
456 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
457 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
458 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
459 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
460 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
461 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
462 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
463 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
464 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
465 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
466 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
467 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
468 static const struct pci_id_descr pci_dev_descr_haswell
[] = {
469 /* first item must be the HA */
470 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
, 0) },
472 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
, 0) },
473 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
, 0) },
475 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
, 1) },
477 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
, 0) },
478 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL
, 0) },
479 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
, 0) },
480 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
, 0) },
481 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
, 1) },
482 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
, 1) },
484 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
, 1) },
486 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
, 1) },
487 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL
, 1) },
488 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
, 1) },
489 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
, 1) },
490 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
, 1) },
491 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
, 1) },
494 static const struct pci_id_table pci_dev_descr_haswell_table
[] = {
495 PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell
),
496 {0,} /* 0 terminated list. */
500 * pci_device_id table for which devices we are looking for
502 static const struct pci_device_id sbridge_pci_tbl
[] = {
503 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
)},
504 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
)},
505 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
)},
506 {0,} /* 0 terminated list. */
510 /****************************************************************************
511 Ancillary status routines
512 ****************************************************************************/
514 static inline int numrank(enum type type
, u32 mtr
)
516 int ranks
= (1 << RANK_CNT_BITS(mtr
));
523 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
524 ranks
, max
, (unsigned int)RANK_CNT_BITS(mtr
), mtr
);
531 static inline int numrow(u32 mtr
)
533 int rows
= (RANK_WIDTH_BITS(mtr
) + 12);
535 if (rows
< 13 || rows
> 18) {
536 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
537 rows
, (unsigned int)RANK_WIDTH_BITS(mtr
), mtr
);
544 static inline int numcol(u32 mtr
)
546 int cols
= (COL_WIDTH_BITS(mtr
) + 10);
549 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
550 cols
, (unsigned int)COL_WIDTH_BITS(mtr
), mtr
);
557 static struct sbridge_dev
*get_sbridge_dev(u8 bus
)
559 struct sbridge_dev
*sbridge_dev
;
561 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
562 if (sbridge_dev
->bus
== bus
)
569 static struct sbridge_dev
*alloc_sbridge_dev(u8 bus
,
570 const struct pci_id_table
*table
)
572 struct sbridge_dev
*sbridge_dev
;
574 sbridge_dev
= kzalloc(sizeof(*sbridge_dev
), GFP_KERNEL
);
578 sbridge_dev
->pdev
= kzalloc(sizeof(*sbridge_dev
->pdev
) * table
->n_devs
,
580 if (!sbridge_dev
->pdev
) {
585 sbridge_dev
->bus
= bus
;
586 sbridge_dev
->n_devs
= table
->n_devs
;
587 list_add_tail(&sbridge_dev
->list
, &sbridge_edac_list
);
592 static void free_sbridge_dev(struct sbridge_dev
*sbridge_dev
)
594 list_del(&sbridge_dev
->list
);
595 kfree(sbridge_dev
->pdev
);
599 static u64
sbridge_get_tolm(struct sbridge_pvt
*pvt
)
603 /* Address range is 32:28 */
604 pci_read_config_dword(pvt
->pci_sad1
, TOLM
, ®
);
605 return GET_TOLM(reg
);
608 static u64
sbridge_get_tohm(struct sbridge_pvt
*pvt
)
612 pci_read_config_dword(pvt
->pci_sad1
, TOHM
, ®
);
613 return GET_TOHM(reg
);
616 static u64
ibridge_get_tolm(struct sbridge_pvt
*pvt
)
620 pci_read_config_dword(pvt
->pci_br1
, TOLM
, ®
);
622 return GET_TOLM(reg
);
625 static u64
ibridge_get_tohm(struct sbridge_pvt
*pvt
)
629 pci_read_config_dword(pvt
->pci_br1
, TOHM
, ®
);
631 return GET_TOHM(reg
);
634 static u64
rir_limit(u32 reg
)
636 return ((u64
)GET_BITFIELD(reg
, 1, 10) << 29) | 0x1fffffff;
639 static enum mem_type
get_memory_type(struct sbridge_pvt
*pvt
)
644 if (pvt
->pci_ddrio
) {
645 pci_read_config_dword(pvt
->pci_ddrio
, pvt
->info
.rankcfgr
,
647 if (GET_BITFIELD(reg
, 11, 11))
648 /* FIXME: Can also be LRDIMM */
658 static enum mem_type
haswell_get_memory_type(struct sbridge_pvt
*pvt
)
661 bool registered
= false;
662 enum mem_type mtype
= MEM_UNKNOWN
;
667 pci_read_config_dword(pvt
->pci_ddrio
,
668 HASWELL_DDRCRCLKCONTROLS
, ®
);
670 if (GET_BITFIELD(reg
, 16, 16))
673 pci_read_config_dword(pvt
->pci_ta
, MCMTR
, ®
);
674 if (GET_BITFIELD(reg
, 14, 14)) {
690 static u8
get_node_id(struct sbridge_pvt
*pvt
)
693 pci_read_config_dword(pvt
->pci_br0
, SAD_CONTROL
, ®
);
694 return GET_BITFIELD(reg
, 0, 2);
697 static u8
haswell_get_node_id(struct sbridge_pvt
*pvt
)
701 pci_read_config_dword(pvt
->pci_sad1
, SAD_CONTROL
, ®
);
702 return GET_BITFIELD(reg
, 0, 3);
705 static u64
haswell_get_tolm(struct sbridge_pvt
*pvt
)
709 pci_read_config_dword(pvt
->info
.pci_vtd
, TOLM
, ®
);
710 return (GET_BITFIELD(reg
, 26, 31) << 26) | 0x1ffffff;
713 static u64
haswell_get_tohm(struct sbridge_pvt
*pvt
)
718 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_0
, ®
);
719 rc
= GET_BITFIELD(reg
, 26, 31);
720 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_1
, ®
);
721 rc
= ((reg
<< 6) | rc
) << 26;
723 return rc
| 0x1ffffff;
726 static u64
haswell_rir_limit(u32 reg
)
728 return (((u64
)GET_BITFIELD(reg
, 1, 11) + 1) << 29) - 1;
731 static inline u8
sad_pkg_socket(u8 pkg
)
733 /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
734 return ((pkg
>> 3) << 2) | (pkg
& 0x3);
737 static inline u8
sad_pkg_ha(u8 pkg
)
739 return (pkg
>> 2) & 0x1;
742 /****************************************************************************
743 Memory check routines
744 ****************************************************************************/
745 static struct pci_dev
*get_pdev_same_bus(u8 bus
, u32 id
)
747 struct pci_dev
*pdev
= NULL
;
750 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, id
, pdev
);
751 if (pdev
&& pdev
->bus
->number
== bus
)
759 * check_if_ecc_is_active() - Checks if ECC is active
761 * @type: Memory controller type
762 * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
765 static int check_if_ecc_is_active(const u8 bus
, enum type type
)
767 struct pci_dev
*pdev
= NULL
;
770 if (type
== IVY_BRIDGE
)
771 id
= PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
;
772 else if (type
== HASWELL
)
773 id
= PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
;
775 id
= PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
;
777 pdev
= get_pdev_same_bus(bus
, id
);
779 sbridge_printk(KERN_ERR
, "Couldn't find PCI device "
780 "%04x:%04x! on bus %02d\n",
781 PCI_VENDOR_ID_INTEL
, id
, bus
);
785 pci_read_config_dword(pdev
, MCMTR
, &mcmtr
);
786 if (!IS_ECC_ENABLED(mcmtr
)) {
787 sbridge_printk(KERN_ERR
, "ECC is disabled. Aborting\n");
793 static int get_dimm_config(struct mem_ctl_info
*mci
)
795 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
796 struct dimm_info
*dimm
;
797 unsigned i
, j
, banks
, ranks
, rows
, cols
, npages
;
803 if (pvt
->info
.type
== HASWELL
)
804 pci_read_config_dword(pvt
->pci_sad1
, SAD_TARGET
, ®
);
806 pci_read_config_dword(pvt
->pci_br0
, SAD_TARGET
, ®
);
808 pvt
->sbridge_dev
->source_id
= SOURCE_ID(reg
);
810 pvt
->sbridge_dev
->node_id
= pvt
->info
.get_node_id(pvt
);
811 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
812 pvt
->sbridge_dev
->mc
,
813 pvt
->sbridge_dev
->node_id
,
814 pvt
->sbridge_dev
->source_id
);
816 pci_read_config_dword(pvt
->pci_ras
, RASENABLES
, ®
);
817 if (IS_MIRROR_ENABLED(reg
)) {
818 edac_dbg(0, "Memory mirror is enabled\n");
819 pvt
->is_mirrored
= true;
821 edac_dbg(0, "Memory mirror is disabled\n");
822 pvt
->is_mirrored
= false;
825 pci_read_config_dword(pvt
->pci_ta
, MCMTR
, &pvt
->info
.mcmtr
);
826 if (IS_LOCKSTEP_ENABLED(pvt
->info
.mcmtr
)) {
827 edac_dbg(0, "Lockstep is enabled\n");
828 mode
= EDAC_S8ECD8ED
;
829 pvt
->is_lockstep
= true;
831 edac_dbg(0, "Lockstep is disabled\n");
832 mode
= EDAC_S4ECD4ED
;
833 pvt
->is_lockstep
= false;
835 if (IS_CLOSE_PG(pvt
->info
.mcmtr
)) {
836 edac_dbg(0, "address map is on closed page mode\n");
837 pvt
->is_close_pg
= true;
839 edac_dbg(0, "address map is on open page mode\n");
840 pvt
->is_close_pg
= false;
843 mtype
= pvt
->info
.get_memory_type(pvt
);
844 if (mtype
== MEM_RDDR3
|| mtype
== MEM_RDDR4
)
845 edac_dbg(0, "Memory is registered\n");
846 else if (mtype
== MEM_UNKNOWN
)
847 edac_dbg(0, "Cannot determine memory type\n");
849 edac_dbg(0, "Memory is unregistered\n");
851 if (mtype
== MEM_DDR4
|| MEM_RDDR4
)
856 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
859 for (j
= 0; j
< ARRAY_SIZE(mtr_regs
); j
++) {
860 dimm
= EDAC_DIMM_PTR(mci
->layers
, mci
->dimms
, mci
->n_layers
,
862 pci_read_config_dword(pvt
->pci_tad
[i
],
864 edac_dbg(4, "Channel #%d MTR%d = %x\n", i
, j
, mtr
);
865 if (IS_DIMM_PRESENT(mtr
)) {
866 pvt
->channel
[i
].dimms
++;
868 ranks
= numrank(pvt
->info
.type
, mtr
);
872 size
= ((u64
)rows
* cols
* banks
* ranks
) >> (20 - 3);
873 npages
= MiB_TO_PAGES(size
);
875 edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
876 pvt
->sbridge_dev
->mc
, i
, j
,
878 banks
, ranks
, rows
, cols
);
880 dimm
->nr_pages
= npages
;
884 dimm
->dtype
= DEV_X16
;
887 dimm
->dtype
= DEV_X8
;
890 dimm
->dtype
= DEV_X4
;
894 dimm
->edac_mode
= mode
;
895 snprintf(dimm
->label
, sizeof(dimm
->label
),
896 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
897 pvt
->sbridge_dev
->source_id
, i
, j
);
905 static void get_memory_layout(const struct mem_ctl_info
*mci
)
907 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
908 int i
, j
, k
, n_sads
, n_tads
, sad_interl
;
916 * Step 1) Get TOLM/TOHM ranges
919 pvt
->tolm
= pvt
->info
.get_tolm(pvt
);
920 tmp_mb
= (1 + pvt
->tolm
) >> 20;
922 mb
= div_u64_rem(tmp_mb
, 1000, &kb
);
923 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb
, kb
, (u64
)pvt
->tolm
);
925 /* Address range is already 45:25 */
926 pvt
->tohm
= pvt
->info
.get_tohm(pvt
);
927 tmp_mb
= (1 + pvt
->tohm
) >> 20;
929 mb
= div_u64_rem(tmp_mb
, 1000, &kb
);
930 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n", mb
, kb
, (u64
)pvt
->tohm
);
933 * Step 2) Get SAD range and SAD Interleave list
934 * TAD registers contain the interleave wayness. However, it
935 * seems simpler to just discover it indirectly, with the
939 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
940 /* SAD_LIMIT Address range is 45:26 */
941 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
943 limit
= SAD_LIMIT(reg
);
945 if (!DRAM_RULE_ENABLE(reg
))
951 tmp_mb
= (limit
+ 1) >> 20;
952 mb
= div_u64_rem(tmp_mb
, 1000, &kb
);
953 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
957 ((u64
)tmp_mb
) << 20L,
958 INTERLEAVE_MODE(reg
) ? "8:6" : "[8:6]XOR[18:16]",
962 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
964 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
965 for (j
= 0; j
< 8; j
++) {
966 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, j
);
967 if (j
> 0 && sad_interl
== pkg
)
970 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
976 * Step 3) Get TAD range
979 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
980 pci_read_config_dword(pvt
->pci_ha0
, tad_dram_rule
[n_tads
],
982 limit
= TAD_LIMIT(reg
);
985 tmp_mb
= (limit
+ 1) >> 20;
987 mb
= div_u64_rem(tmp_mb
, 1000, &kb
);
988 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
990 ((u64
)tmp_mb
) << 20L,
1002 * Step 4) Get TAD offsets, per each channel
1004 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1005 if (!pvt
->channel
[i
].dimms
)
1007 for (j
= 0; j
< n_tads
; j
++) {
1008 pci_read_config_dword(pvt
->pci_tad
[i
],
1009 tad_ch_nilv_offset
[j
],
1011 tmp_mb
= TAD_OFFSET(reg
) >> 20;
1012 mb
= div_u64_rem(tmp_mb
, 1000, &kb
);
1013 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1016 ((u64
)tmp_mb
) << 20L,
1022 * Step 6) Get RIR Wayness/Limit, per each channel
1024 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1025 if (!pvt
->channel
[i
].dimms
)
1027 for (j
= 0; j
< MAX_RIR_RANGES
; j
++) {
1028 pci_read_config_dword(pvt
->pci_tad
[i
],
1032 if (!IS_RIR_VALID(reg
))
1035 tmp_mb
= pvt
->info
.rir_limit(reg
) >> 20;
1036 rir_way
= 1 << RIR_WAY(reg
);
1037 mb
= div_u64_rem(tmp_mb
, 1000, &kb
);
1038 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1041 ((u64
)tmp_mb
) << 20L,
1045 for (k
= 0; k
< rir_way
; k
++) {
1046 pci_read_config_dword(pvt
->pci_tad
[i
],
1049 tmp_mb
= RIR_OFFSET(reg
) << 6;
1051 mb
= div_u64_rem(tmp_mb
, 1000, &kb
);
1052 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1055 ((u64
)tmp_mb
) << 20L,
1056 (u32
)RIR_RNK_TGT(reg
),
1063 static struct mem_ctl_info
*get_mci_for_node_id(u8 node_id
)
1065 struct sbridge_dev
*sbridge_dev
;
1067 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
1068 if (sbridge_dev
->node_id
== node_id
)
1069 return sbridge_dev
->mci
;
1074 static int get_memory_error_data(struct mem_ctl_info
*mci
,
1079 char **area_type
, char *msg
)
1081 struct mem_ctl_info
*new_mci
;
1082 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1083 struct pci_dev
*pci_ha
;
1084 int n_rir
, n_sads
, n_tads
, sad_way
, sck_xch
;
1085 int sad_interl
, idx
, base_ch
;
1086 int interleave_mode
, shiftup
= 0;
1087 unsigned sad_interleave
[pvt
->info
.max_interleave
];
1089 u8 ch_way
, sck_way
, pkg
, sad_ha
= 0;
1093 u64 ch_addr
, offset
, limit
= 0, prv
= 0;
1097 * Step 0) Check if the address is at special memory ranges
1098 * The check bellow is probably enough to fill all cases where
1099 * the error is not inside a memory, except for the legacy
1100 * range (e. g. VGA addresses). It is unlikely, however, that the
1101 * memory controller would generate an error on that range.
1103 if ((addr
> (u64
) pvt
->tolm
) && (addr
< (1LL << 32))) {
1104 sprintf(msg
, "Error at TOLM area, on addr 0x%08Lx", addr
);
1107 if (addr
>= (u64
)pvt
->tohm
) {
1108 sprintf(msg
, "Error at MMIOH area, on addr 0x%016Lx", addr
);
1113 * Step 1) Get socket
1115 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
1116 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
1119 if (!DRAM_RULE_ENABLE(reg
))
1122 limit
= SAD_LIMIT(reg
);
1124 sprintf(msg
, "Can't discover the memory socket");
1131 if (n_sads
== pvt
->info
.max_sad
) {
1132 sprintf(msg
, "Can't discover the memory socket");
1136 *area_type
= get_dram_attr(dram_rule
);
1137 interleave_mode
= INTERLEAVE_MODE(dram_rule
);
1139 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
1142 if (pvt
->info
.type
== SANDY_BRIDGE
) {
1143 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
1144 for (sad_way
= 0; sad_way
< 8; sad_way
++) {
1145 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, sad_way
);
1146 if (sad_way
> 0 && sad_interl
== pkg
)
1148 sad_interleave
[sad_way
] = pkg
;
1149 edac_dbg(0, "SAD interleave #%d: %d\n",
1150 sad_way
, sad_interleave
[sad_way
]);
1152 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1153 pvt
->sbridge_dev
->mc
,
1158 !interleave_mode
? "" : "XOR[18:16]");
1159 if (interleave_mode
)
1160 idx
= ((addr
>> 6) ^ (addr
>> 16)) & 7;
1162 idx
= (addr
>> 6) & 7;
1176 sprintf(msg
, "Can't discover socket interleave");
1179 *socket
= sad_interleave
[idx
];
1180 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1181 idx
, sad_way
, *socket
);
1182 } else if (pvt
->info
.type
== HASWELL
) {
1183 int bits
, a7mode
= A7MODE(dram_rule
);
1186 /* A7 mode swaps P9 with P6 */
1187 bits
= GET_BITFIELD(addr
, 7, 8) << 1;
1188 bits
|= GET_BITFIELD(addr
, 9, 9);
1190 bits
= GET_BITFIELD(addr
, 7, 9);
1192 if (interleave_mode
) {
1193 /* interleave mode will XOR {8,7,6} with {18,17,16} */
1194 idx
= GET_BITFIELD(addr
, 16, 18);
1199 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
1200 *socket
= sad_pkg_socket(pkg
);
1201 sad_ha
= sad_pkg_ha(pkg
);
1204 /* MCChanShiftUpEnable */
1205 pci_read_config_dword(pvt
->pci_ha0
,
1206 HASWELL_HASYSDEFEATURE2
, ®
);
1207 shiftup
= GET_BITFIELD(reg
, 22, 22);
1210 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
1211 idx
, *socket
, sad_ha
, shiftup
);
1213 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
1214 idx
= (addr
>> 6) & 7;
1215 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
1216 *socket
= sad_pkg_socket(pkg
);
1217 sad_ha
= sad_pkg_ha(pkg
);
1218 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
1219 idx
, *socket
, sad_ha
);
1223 * Move to the proper node structure, in order to access the
1224 * right PCI registers
1226 new_mci
= get_mci_for_node_id(*socket
);
1228 sprintf(msg
, "Struct for socket #%u wasn't initialized",
1233 pvt
= mci
->pvt_info
;
1236 * Step 2) Get memory channel
1239 if (pvt
->info
.type
== SANDY_BRIDGE
)
1240 pci_ha
= pvt
->pci_ha0
;
1243 pci_ha
= pvt
->pci_ha1
;
1245 pci_ha
= pvt
->pci_ha0
;
1247 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
1248 pci_read_config_dword(pci_ha
, tad_dram_rule
[n_tads
], ®
);
1249 limit
= TAD_LIMIT(reg
);
1251 sprintf(msg
, "Can't discover the memory channel");
1258 if (n_tads
== MAX_TAD
) {
1259 sprintf(msg
, "Can't discover the memory channel");
1263 ch_way
= TAD_CH(reg
) + 1;
1264 sck_way
= TAD_SOCK(reg
) + 1;
1269 idx
= (addr
>> (6 + sck_way
+ shiftup
)) & 0x3;
1273 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
1277 base_ch
= TAD_TGT0(reg
);
1280 base_ch
= TAD_TGT1(reg
);
1283 base_ch
= TAD_TGT2(reg
);
1286 base_ch
= TAD_TGT3(reg
);
1289 sprintf(msg
, "Can't discover the TAD target");
1292 *channel_mask
= 1 << base_ch
;
1294 pci_read_config_dword(pvt
->pci_tad
[base_ch
],
1295 tad_ch_nilv_offset
[n_tads
],
1298 if (pvt
->is_mirrored
) {
1299 *channel_mask
|= 1 << ((base_ch
+ 2) % 4);
1303 sck_xch
= 1 << sck_way
* (ch_way
>> 1);
1306 sprintf(msg
, "Invalid mirror set. Can't decode addr");
1310 sck_xch
= (1 << sck_way
) * ch_way
;
1312 if (pvt
->is_lockstep
)
1313 *channel_mask
|= 1 << ((base_ch
+ 1) % 4);
1315 offset
= TAD_OFFSET(tad_offset
);
1317 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
1328 /* Calculate channel address */
1329 /* Remove the TAD offset */
1331 if (offset
> addr
) {
1332 sprintf(msg
, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1337 /* Store the low bits [0:6] of the addr */
1338 ch_addr
= addr
& 0x7f;
1339 /* Remove socket wayness and remove 6 bits */
1341 addr
= div_u64(addr
, sck_xch
);
1343 /* Divide by channel way */
1344 addr
= addr
/ ch_way
;
1346 /* Recover the last 6 bits */
1347 ch_addr
|= addr
<< 6;
1350 * Step 3) Decode rank
1352 for (n_rir
= 0; n_rir
< MAX_RIR_RANGES
; n_rir
++) {
1353 pci_read_config_dword(pvt
->pci_tad
[base_ch
],
1354 rir_way_limit
[n_rir
],
1357 if (!IS_RIR_VALID(reg
))
1360 limit
= pvt
->info
.rir_limit(reg
);
1361 mb
= div_u64_rem(limit
>> 20, 1000, &kb
);
1362 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1367 if (ch_addr
<= limit
)
1370 if (n_rir
== MAX_RIR_RANGES
) {
1371 sprintf(msg
, "Can't discover the memory rank for ch addr 0x%08Lx",
1375 rir_way
= RIR_WAY(reg
);
1377 if (pvt
->is_close_pg
)
1378 idx
= (ch_addr
>> 6);
1380 idx
= (ch_addr
>> 13); /* FIXME: Datasheet says to shift by 15 */
1381 idx
%= 1 << rir_way
;
1383 pci_read_config_dword(pvt
->pci_tad
[base_ch
],
1384 rir_offset
[n_rir
][idx
],
1386 *rank
= RIR_RNK_TGT(reg
);
1388 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1398 /****************************************************************************
1399 Device initialization routines: put/get, init/exit
1400 ****************************************************************************/
1403 * sbridge_put_all_devices 'put' all the devices that we have
1404 * reserved via 'get'
1406 static void sbridge_put_devices(struct sbridge_dev
*sbridge_dev
)
1411 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
1412 struct pci_dev
*pdev
= sbridge_dev
->pdev
[i
];
1415 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1417 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
));
1422 static void sbridge_put_all_devices(void)
1424 struct sbridge_dev
*sbridge_dev
, *tmp
;
1426 list_for_each_entry_safe(sbridge_dev
, tmp
, &sbridge_edac_list
, list
) {
1427 sbridge_put_devices(sbridge_dev
);
1428 free_sbridge_dev(sbridge_dev
);
1432 static int sbridge_get_onedevice(struct pci_dev
**prev
,
1434 const struct pci_id_table
*table
,
1435 const unsigned devno
)
1437 struct sbridge_dev
*sbridge_dev
;
1438 const struct pci_id_descr
*dev_descr
= &table
->descr
[devno
];
1439 struct pci_dev
*pdev
= NULL
;
1442 sbridge_printk(KERN_DEBUG
,
1443 "Seeking for: PCI ID %04x:%04x\n",
1444 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1446 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
1447 dev_descr
->dev_id
, *prev
);
1455 if (dev_descr
->optional
)
1458 /* if the HA wasn't found */
1462 sbridge_printk(KERN_INFO
,
1463 "Device not found: %04x:%04x\n",
1464 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1466 /* End of list, leave */
1469 bus
= pdev
->bus
->number
;
1471 sbridge_dev
= get_sbridge_dev(bus
);
1473 sbridge_dev
= alloc_sbridge_dev(bus
, table
);
1481 if (sbridge_dev
->pdev
[devno
]) {
1482 sbridge_printk(KERN_ERR
,
1483 "Duplicated device for %04x:%04x\n",
1484 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1489 sbridge_dev
->pdev
[devno
] = pdev
;
1491 /* Be sure that the device is enabled */
1492 if (unlikely(pci_enable_device(pdev
) < 0)) {
1493 sbridge_printk(KERN_ERR
,
1494 "Couldn't enable %04x:%04x\n",
1495 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1499 edac_dbg(0, "Detected %04x:%04x\n",
1500 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1503 * As stated on drivers/pci/search.c, the reference count for
1504 * @from is always decremented if it is not %NULL. So, as we need
1505 * to get all devices up to null, we need to do a get for the device
1515 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
1516 * devices we want to reference for this driver.
1517 * @num_mc: pointer to the memory controllers count, to be incremented in case
1519 * @table: model specific table
1521 * returns 0 in case of success or error code
1523 static int sbridge_get_all_devices(u8
*num_mc
,
1524 const struct pci_id_table
*table
)
1527 struct pci_dev
*pdev
= NULL
;
1529 while (table
&& table
->descr
) {
1530 for (i
= 0; i
< table
->n_devs
; i
++) {
1533 rc
= sbridge_get_onedevice(&pdev
, num_mc
,
1540 sbridge_put_all_devices();
1551 static int sbridge_mci_bind_devs(struct mem_ctl_info
*mci
,
1552 struct sbridge_dev
*sbridge_dev
)
1554 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1555 struct pci_dev
*pdev
;
1558 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
1559 pdev
= sbridge_dev
->pdev
[i
];
1563 switch (pdev
->device
) {
1564 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
:
1565 pvt
->pci_sad0
= pdev
;
1567 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
:
1568 pvt
->pci_sad1
= pdev
;
1570 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR
:
1571 pvt
->pci_br0
= pdev
;
1573 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
:
1574 pvt
->pci_ha0
= pdev
;
1576 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
:
1579 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
:
1580 pvt
->pci_ras
= pdev
;
1582 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
:
1583 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
:
1584 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
:
1585 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
:
1587 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
;
1588 pvt
->pci_tad
[id
] = pdev
;
1591 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
:
1592 pvt
->pci_ddrio
= pdev
;
1598 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
1599 pdev
->vendor
, pdev
->device
,
1604 /* Check if everything were registered */
1605 if (!pvt
->pci_sad0
|| !pvt
->pci_sad1
|| !pvt
->pci_ha0
||
1606 !pvt
-> pci_tad
|| !pvt
->pci_ras
|| !pvt
->pci_ta
)
1609 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1610 if (!pvt
->pci_tad
[i
])
1616 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
1620 sbridge_printk(KERN_ERR
, "Unexpected device %02x:%02x\n",
1621 PCI_VENDOR_ID_INTEL
, pdev
->device
);
1625 static int ibridge_mci_bind_devs(struct mem_ctl_info
*mci
,
1626 struct sbridge_dev
*sbridge_dev
)
1628 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1629 struct pci_dev
*pdev
, *tmp
;
1631 bool mode_2ha
= false;
1633 tmp
= pci_get_device(PCI_VENDOR_ID_INTEL
,
1634 PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
, NULL
);
1640 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
1641 pdev
= sbridge_dev
->pdev
[i
];
1645 switch (pdev
->device
) {
1646 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
:
1647 pvt
->pci_ha0
= pdev
;
1649 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
:
1651 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
:
1652 pvt
->pci_ras
= pdev
;
1654 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
:
1655 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
:
1656 /* if we have 2 HAs active, channels 2 and 3
1657 * are in other device */
1661 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
:
1662 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
:
1664 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
;
1665 pvt
->pci_tad
[id
] = pdev
;
1668 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
:
1669 pvt
->pci_ddrio
= pdev
;
1671 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
:
1673 pvt
->pci_ddrio
= pdev
;
1675 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
:
1676 pvt
->pci_sad0
= pdev
;
1678 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
:
1679 pvt
->pci_br0
= pdev
;
1681 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
:
1682 pvt
->pci_br1
= pdev
;
1684 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
:
1685 pvt
->pci_ha1
= pdev
;
1687 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
:
1688 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
:
1690 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
+ 2;
1692 /* we shouldn't have this device if we have just one
1695 pvt
->pci_tad
[id
] = pdev
;
1702 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1704 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
1708 /* Check if everything were registered */
1709 if (!pvt
->pci_sad0
|| !pvt
->pci_ha0
|| !pvt
->pci_br0
||
1710 !pvt
->pci_br1
|| !pvt
->pci_tad
|| !pvt
->pci_ras
||
1714 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1715 if (!pvt
->pci_tad
[i
])
1721 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
1725 sbridge_printk(KERN_ERR
,
1726 "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL
,
1731 static int haswell_mci_bind_devs(struct mem_ctl_info
*mci
,
1732 struct sbridge_dev
*sbridge_dev
)
1734 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1735 struct pci_dev
*pdev
, *tmp
;
1737 bool mode_2ha
= false;
1739 tmp
= pci_get_device(PCI_VENDOR_ID_INTEL
,
1740 PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
, NULL
);
1746 /* there's only one device per system; not tied to any bus */
1747 if (pvt
->info
.pci_vtd
== NULL
)
1748 /* result will be checked later */
1749 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
1750 PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC
,
1753 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
1754 pdev
= sbridge_dev
->pdev
[i
];
1758 switch (pdev
->device
) {
1759 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
:
1760 pvt
->pci_sad0
= pdev
;
1762 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
:
1763 pvt
->pci_sad1
= pdev
;
1765 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
:
1766 pvt
->pci_ha0
= pdev
;
1768 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
:
1771 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL
:
1772 pvt
->pci_ras
= pdev
;
1774 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
:
1775 pvt
->pci_tad
[0] = pdev
;
1777 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
:
1778 pvt
->pci_tad
[1] = pdev
;
1780 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
:
1782 pvt
->pci_tad
[2] = pdev
;
1784 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
:
1786 pvt
->pci_tad
[3] = pdev
;
1788 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
:
1789 pvt
->pci_ddrio
= pdev
;
1791 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
:
1792 pvt
->pci_ha1
= pdev
;
1794 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
:
1795 pvt
->pci_ha1_ta
= pdev
;
1797 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
:
1799 pvt
->pci_tad
[2] = pdev
;
1801 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
:
1803 pvt
->pci_tad
[3] = pdev
;
1809 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1811 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
1815 /* Check if everything were registered */
1816 if (!pvt
->pci_sad0
|| !pvt
->pci_ha0
|| !pvt
->pci_sad1
||
1817 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
1820 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1821 if (!pvt
->pci_tad
[i
])
1827 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
1831 /****************************************************************************
1832 Error check routines
1833 ****************************************************************************/
1836 * While Sandy Bridge has error count registers, SMI BIOS read values from
1837 * and resets the counters. So, they are not reliable for the OS to read
1838 * from them. So, we have no option but to just trust on whatever MCE is
1839 * telling us about the errors.
1841 static void sbridge_mce_output_error(struct mem_ctl_info
*mci
,
1842 const struct mce
*m
)
1844 struct mem_ctl_info
*new_mci
;
1845 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1846 enum hw_event_mc_err_type tp_event
;
1847 char *type
, *optype
, msg
[256];
1848 bool ripv
= GET_BITFIELD(m
->mcgstatus
, 0, 0);
1849 bool overflow
= GET_BITFIELD(m
->status
, 62, 62);
1850 bool uncorrected_error
= GET_BITFIELD(m
->status
, 61, 61);
1852 u32 core_err_cnt
= GET_BITFIELD(m
->status
, 38, 52);
1853 u32 mscod
= GET_BITFIELD(m
->status
, 16, 31);
1854 u32 errcode
= GET_BITFIELD(m
->status
, 0, 15);
1855 u32 channel
= GET_BITFIELD(m
->status
, 0, 3);
1856 u32 optypenum
= GET_BITFIELD(m
->status
, 4, 6);
1857 long channel_mask
, first_channel
;
1860 char *area_type
= NULL
;
1862 if (pvt
->info
.type
== IVY_BRIDGE
)
1865 recoverable
= GET_BITFIELD(m
->status
, 56, 56);
1867 if (uncorrected_error
) {
1870 tp_event
= HW_EVENT_ERR_FATAL
;
1873 tp_event
= HW_EVENT_ERR_UNCORRECTED
;
1877 tp_event
= HW_EVENT_ERR_CORRECTED
;
1881 * According with Table 15-9 of the Intel Architecture spec vol 3A,
1882 * memory errors should fit in this mask:
1883 * 000f 0000 1mmm cccc (binary)
1885 * f = Correction Report Filtering Bit. If 1, subsequent errors
1889 * If the mask doesn't match, report an error to the parsing logic
1891 if (! ((errcode
& 0xef80) == 0x80)) {
1892 optype
= "Can't parse: it is not a mem";
1894 switch (optypenum
) {
1896 optype
= "generic undef request error";
1899 optype
= "memory read error";
1902 optype
= "memory write error";
1905 optype
= "addr/cmd error";
1908 optype
= "memory scrubbing error";
1911 optype
= "reserved";
1916 /* Only decode errors with an valid address (ADDRV) */
1917 if (!GET_BITFIELD(m
->status
, 58, 58))
1920 rc
= get_memory_error_data(mci
, m
->addr
, &socket
,
1921 &channel_mask
, &rank
, &area_type
, msg
);
1924 new_mci
= get_mci_for_node_id(socket
);
1926 strcpy(msg
, "Error: socket got corrupted!");
1930 pvt
= mci
->pvt_info
;
1932 first_channel
= find_first_bit(&channel_mask
, NUM_CHANNELS
);
1943 * FIXME: On some memory configurations (mirror, lockstep), the
1944 * Memory Controller can't point the error to a single DIMM. The
1945 * EDAC core should be handling the channel mask, in order to point
1946 * to the group of dimm's where the error may be happening.
1948 if (!pvt
->is_lockstep
&& !pvt
->is_mirrored
&& !pvt
->is_close_pg
)
1949 channel
= first_channel
;
1951 snprintf(msg
, sizeof(msg
),
1952 "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
1953 overflow
? " OVERFLOW" : "",
1954 (uncorrected_error
&& recoverable
) ? " recoverable" : "",
1961 edac_dbg(0, "%s\n", msg
);
1963 /* FIXME: need support for channel mask */
1965 if (channel
== CHANNEL_UNSPECIFIED
)
1968 /* Call the helper to output message */
1969 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
1970 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
1975 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
, 0, 0, 0,
1982 * sbridge_check_error Retrieve and process errors reported by the
1983 * hardware. Called by the Core module.
1985 static void sbridge_check_error(struct mem_ctl_info
*mci
)
1987 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1993 * MCE first step: Copy all mce errors into a temporary buffer
1994 * We use a double buffering here, to reduce the risk of
1998 count
= (pvt
->mce_out
+ MCE_LOG_LEN
- pvt
->mce_in
)
2003 m
= pvt
->mce_outentry
;
2004 if (pvt
->mce_in
+ count
> MCE_LOG_LEN
) {
2005 unsigned l
= MCE_LOG_LEN
- pvt
->mce_in
;
2007 memcpy(m
, &pvt
->mce_entry
[pvt
->mce_in
], sizeof(*m
) * l
);
2013 memcpy(m
, &pvt
->mce_entry
[pvt
->mce_in
], sizeof(*m
) * count
);
2015 pvt
->mce_in
+= count
;
2018 if (pvt
->mce_overrun
) {
2019 sbridge_printk(KERN_ERR
, "Lost %d memory errors\n",
2022 pvt
->mce_overrun
= 0;
2026 * MCE second step: parse errors and display
2028 for (i
= 0; i
< count
; i
++)
2029 sbridge_mce_output_error(mci
, &pvt
->mce_outentry
[i
]);
2033 * sbridge_mce_check_error Replicates mcelog routine to get errors
2034 * This routine simply queues mcelog errors, and
2035 * return. The error itself should be handled later
2036 * by sbridge_check_error.
2037 * WARNING: As this routine should be called at NMI time, extra care should
2038 * be taken to avoid deadlocks, and to be as fast as possible.
2040 static int sbridge_mce_check_error(struct notifier_block
*nb
, unsigned long val
,
2043 struct mce
*mce
= (struct mce
*)data
;
2044 struct mem_ctl_info
*mci
;
2045 struct sbridge_pvt
*pvt
;
2048 if (get_edac_report_status() == EDAC_REPORTING_DISABLED
)
2051 mci
= get_mci_for_node_id(mce
->socketid
);
2054 pvt
= mci
->pvt_info
;
2057 * Just let mcelog handle it if the error is
2058 * outside the memory controller. A memory error
2059 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
2060 * bit 12 has an special meaning.
2062 if ((mce
->status
& 0xefff) >> 7 != 1)
2065 if (mce
->mcgstatus
& MCG_STATUS_MCIP
)
2070 sbridge_mc_printk(mci
, KERN_DEBUG
, "HANDLING MCE MEMORY ERROR\n");
2072 sbridge_mc_printk(mci
, KERN_DEBUG
, "CPU %d: Machine Check %s: %Lx "
2073 "Bank %d: %016Lx\n", mce
->extcpu
, type
,
2074 mce
->mcgstatus
, mce
->bank
, mce
->status
);
2075 sbridge_mc_printk(mci
, KERN_DEBUG
, "TSC %llx ", mce
->tsc
);
2076 sbridge_mc_printk(mci
, KERN_DEBUG
, "ADDR %llx ", mce
->addr
);
2077 sbridge_mc_printk(mci
, KERN_DEBUG
, "MISC %llx ", mce
->misc
);
2079 sbridge_mc_printk(mci
, KERN_DEBUG
, "PROCESSOR %u:%x TIME %llu SOCKET "
2080 "%u APIC %x\n", mce
->cpuvendor
, mce
->cpuid
,
2081 mce
->time
, mce
->socketid
, mce
->apicid
);
2084 if ((pvt
->mce_out
+ 1) % MCE_LOG_LEN
== pvt
->mce_in
) {
2090 /* Copy memory error at the ringbuffer */
2091 memcpy(&pvt
->mce_entry
[pvt
->mce_out
], mce
, sizeof(*mce
));
2093 pvt
->mce_out
= (pvt
->mce_out
+ 1) % MCE_LOG_LEN
;
2095 /* Handle fatal errors immediately */
2096 if (mce
->mcgstatus
& 1)
2097 sbridge_check_error(mci
);
2099 /* Advice mcelog that the error were handled */
2103 static struct notifier_block sbridge_mce_dec
= {
2104 .notifier_call
= sbridge_mce_check_error
,
2107 /****************************************************************************
2108 EDAC register/unregister logic
2109 ****************************************************************************/
2111 static void sbridge_unregister_mci(struct sbridge_dev
*sbridge_dev
)
2113 struct mem_ctl_info
*mci
= sbridge_dev
->mci
;
2114 struct sbridge_pvt
*pvt
;
2116 if (unlikely(!mci
|| !mci
->pvt_info
)) {
2117 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev
->pdev
[0]->dev
);
2119 sbridge_printk(KERN_ERR
, "Couldn't find mci handler\n");
2123 pvt
= mci
->pvt_info
;
2125 edac_dbg(0, "MC: mci = %p, dev = %p\n",
2126 mci
, &sbridge_dev
->pdev
[0]->dev
);
2128 /* Remove MC sysfs nodes */
2129 edac_mc_del_mc(mci
->pdev
);
2131 edac_dbg(1, "%s: free mci struct\n", mci
->ctl_name
);
2132 kfree(mci
->ctl_name
);
2134 sbridge_dev
->mci
= NULL
;
2137 static int sbridge_register_mci(struct sbridge_dev
*sbridge_dev
, enum type type
)
2139 struct mem_ctl_info
*mci
;
2140 struct edac_mc_layer layers
[2];
2141 struct sbridge_pvt
*pvt
;
2142 struct pci_dev
*pdev
= sbridge_dev
->pdev
[0];
2145 /* Check the number of active and not disabled channels */
2146 rc
= check_if_ecc_is_active(sbridge_dev
->bus
, type
);
2147 if (unlikely(rc
< 0))
2150 /* allocate a new MC control structure */
2151 layers
[0].type
= EDAC_MC_LAYER_CHANNEL
;
2152 layers
[0].size
= NUM_CHANNELS
;
2153 layers
[0].is_virt_csrow
= false;
2154 layers
[1].type
= EDAC_MC_LAYER_SLOT
;
2155 layers
[1].size
= MAX_DIMMS
;
2156 layers
[1].is_virt_csrow
= true;
2157 mci
= edac_mc_alloc(sbridge_dev
->mc
, ARRAY_SIZE(layers
), layers
,
2163 edac_dbg(0, "MC: mci = %p, dev = %p\n",
2166 pvt
= mci
->pvt_info
;
2167 memset(pvt
, 0, sizeof(*pvt
));
2169 /* Associate sbridge_dev and mci for future usage */
2170 pvt
->sbridge_dev
= sbridge_dev
;
2171 sbridge_dev
->mci
= mci
;
2173 mci
->mtype_cap
= MEM_FLAG_DDR3
;
2174 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
2175 mci
->edac_cap
= EDAC_FLAG_NONE
;
2176 mci
->mod_name
= "sbridge_edac.c";
2177 mci
->mod_ver
= SBRIDGE_REVISION
;
2178 mci
->dev_name
= pci_name(pdev
);
2179 mci
->ctl_page_to_phys
= NULL
;
2181 /* Set the function pointer to an actual operation function */
2182 mci
->edac_check
= sbridge_check_error
;
2184 pvt
->info
.type
= type
;
2187 pvt
->info
.rankcfgr
= IB_RANK_CFG_A
;
2188 pvt
->info
.get_tolm
= ibridge_get_tolm
;
2189 pvt
->info
.get_tohm
= ibridge_get_tohm
;
2190 pvt
->info
.dram_rule
= ibridge_dram_rule
;
2191 pvt
->info
.get_memory_type
= get_memory_type
;
2192 pvt
->info
.get_node_id
= get_node_id
;
2193 pvt
->info
.rir_limit
= rir_limit
;
2194 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
2195 pvt
->info
.interleave_list
= ibridge_interleave_list
;
2196 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
2197 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
2198 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Ivy Bridge Socket#%d", mci
->mc_idx
);
2200 /* Store pci devices at mci for faster access */
2201 rc
= ibridge_mci_bind_devs(mci
, sbridge_dev
);
2202 if (unlikely(rc
< 0))
2206 pvt
->info
.rankcfgr
= SB_RANK_CFG_A
;
2207 pvt
->info
.get_tolm
= sbridge_get_tolm
;
2208 pvt
->info
.get_tohm
= sbridge_get_tohm
;
2209 pvt
->info
.dram_rule
= sbridge_dram_rule
;
2210 pvt
->info
.get_memory_type
= get_memory_type
;
2211 pvt
->info
.get_node_id
= get_node_id
;
2212 pvt
->info
.rir_limit
= rir_limit
;
2213 pvt
->info
.max_sad
= ARRAY_SIZE(sbridge_dram_rule
);
2214 pvt
->info
.interleave_list
= sbridge_interleave_list
;
2215 pvt
->info
.max_interleave
= ARRAY_SIZE(sbridge_interleave_list
);
2216 pvt
->info
.interleave_pkg
= sbridge_interleave_pkg
;
2217 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Sandy Bridge Socket#%d", mci
->mc_idx
);
2219 /* Store pci devices at mci for faster access */
2220 rc
= sbridge_mci_bind_devs(mci
, sbridge_dev
);
2221 if (unlikely(rc
< 0))
2225 /* rankcfgr isn't used */
2226 pvt
->info
.get_tolm
= haswell_get_tolm
;
2227 pvt
->info
.get_tohm
= haswell_get_tohm
;
2228 pvt
->info
.dram_rule
= ibridge_dram_rule
;
2229 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
2230 pvt
->info
.get_node_id
= haswell_get_node_id
;
2231 pvt
->info
.rir_limit
= haswell_rir_limit
;
2232 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
2233 pvt
->info
.interleave_list
= ibridge_interleave_list
;
2234 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
2235 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
2236 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Haswell Socket#%d", mci
->mc_idx
);
2238 /* Store pci devices at mci for faster access */
2239 rc
= haswell_mci_bind_devs(mci
, sbridge_dev
);
2240 if (unlikely(rc
< 0))
2245 /* Get dimm basic config and the memory layout */
2246 get_dimm_config(mci
);
2247 get_memory_layout(mci
);
2249 /* record ptr to the generic device */
2250 mci
->pdev
= &pdev
->dev
;
2252 /* add this new MC control structure to EDAC's list of MCs */
2253 if (unlikely(edac_mc_add_mc(mci
))) {
2254 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2262 kfree(mci
->ctl_name
);
2264 sbridge_dev
->mci
= NULL
;
2269 * sbridge_probe Probe for ONE instance of device to see if it is
2272 * 0 for FOUND a device
2273 * < 0 for error code
2276 static int sbridge_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
2280 struct sbridge_dev
*sbridge_dev
;
2281 enum type type
= SANDY_BRIDGE
;
2283 /* get the pci devices we want to reserve for our use */
2284 mutex_lock(&sbridge_edac_lock
);
2287 * All memory controllers are allocated at the first pass.
2289 if (unlikely(probed
>= 1)) {
2290 mutex_unlock(&sbridge_edac_lock
);
2295 switch (pdev
->device
) {
2296 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
:
2297 rc
= sbridge_get_all_devices(&num_mc
, pci_dev_descr_ibridge_table
);
2300 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
:
2301 rc
= sbridge_get_all_devices(&num_mc
, pci_dev_descr_sbridge_table
);
2302 type
= SANDY_BRIDGE
;
2304 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
:
2305 rc
= sbridge_get_all_devices(&num_mc
, pci_dev_descr_haswell_table
);
2309 if (unlikely(rc
< 0))
2313 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
2314 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
2315 mc
, mc
+ 1, num_mc
);
2317 sbridge_dev
->mc
= mc
++;
2318 rc
= sbridge_register_mci(sbridge_dev
, type
);
2319 if (unlikely(rc
< 0))
2323 sbridge_printk(KERN_INFO
, "Driver loaded.\n");
2325 mutex_unlock(&sbridge_edac_lock
);
2329 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
2330 sbridge_unregister_mci(sbridge_dev
);
2332 sbridge_put_all_devices();
2334 mutex_unlock(&sbridge_edac_lock
);
2339 * sbridge_remove destructor for one instance of device
2342 static void sbridge_remove(struct pci_dev
*pdev
)
2344 struct sbridge_dev
*sbridge_dev
;
2349 * we have a trouble here: pdev value for removal will be wrong, since
2350 * it will point to the X58 register used to detect that the machine
2351 * is a Nehalem or upper design. However, due to the way several PCI
2352 * devices are grouped together to provide MC functionality, we need
2353 * to use a different method for releasing the devices
2356 mutex_lock(&sbridge_edac_lock
);
2358 if (unlikely(!probed
)) {
2359 mutex_unlock(&sbridge_edac_lock
);
2363 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
2364 sbridge_unregister_mci(sbridge_dev
);
2366 /* Release PCI resources */
2367 sbridge_put_all_devices();
2371 mutex_unlock(&sbridge_edac_lock
);
2374 MODULE_DEVICE_TABLE(pci
, sbridge_pci_tbl
);
2377 * sbridge_driver pci_driver structure for this module
2380 static struct pci_driver sbridge_driver
= {
2381 .name
= "sbridge_edac",
2382 .probe
= sbridge_probe
,
2383 .remove
= sbridge_remove
,
2384 .id_table
= sbridge_pci_tbl
,
2388 * sbridge_init Module entry function
2389 * Try to initialize this module for its devices
2391 static int __init
sbridge_init(void)
2397 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2400 pci_rc
= pci_register_driver(&sbridge_driver
);
2402 mce_register_decode_chain(&sbridge_mce_dec
);
2403 if (get_edac_report_status() == EDAC_REPORTING_DISABLED
)
2404 sbridge_printk(KERN_WARNING
, "Loading driver, error reporting disabled.\n");
2408 sbridge_printk(KERN_ERR
, "Failed to register device with error %d.\n",
2415 * sbridge_exit() Module exit function
2416 * Unregister the driver
2418 static void __exit
sbridge_exit(void)
2421 pci_unregister_driver(&sbridge_driver
);
2422 mce_unregister_decode_chain(&sbridge_mce_dec
);
2425 module_init(sbridge_init
);
2426 module_exit(sbridge_exit
);
2428 module_param(edac_op_state
, int, 0444);
2429 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");
2431 MODULE_LICENSE("GPL");
2432 MODULE_AUTHOR("Mauro Carvalho Chehab");
2433 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2434 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "