1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
51 #include <linux/namei.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
86 /* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
93 /* number of audit rules */
96 /* determines whether we collect data for signals sent */
99 struct audit_aux_data
{
100 struct audit_aux_data
*next
;
104 #define AUDIT_AUX_IPCPERM 0
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS 16
109 struct audit_aux_data_pids
{
110 struct audit_aux_data d
;
111 pid_t target_pid
[AUDIT_AUX_PIDS
];
112 kuid_t target_auid
[AUDIT_AUX_PIDS
];
113 kuid_t target_uid
[AUDIT_AUX_PIDS
];
114 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
115 u32 target_sid
[AUDIT_AUX_PIDS
];
116 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
120 struct audit_aux_data_bprm_fcaps
{
121 struct audit_aux_data d
;
122 struct audit_cap_data fcap
;
123 unsigned int fcap_ver
;
124 struct audit_cap_data old_pcap
;
125 struct audit_cap_data new_pcap
;
128 struct audit_tree_refs
{
129 struct audit_tree_refs
*next
;
130 struct audit_chunk
*c
[31];
133 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
140 switch (audit_classify_syscall(ctx
->arch
, n
)) {
142 if ((mask
& AUDIT_PERM_WRITE
) &&
143 audit_match_class(AUDIT_CLASS_WRITE
, n
))
145 if ((mask
& AUDIT_PERM_READ
) &&
146 audit_match_class(AUDIT_CLASS_READ
, n
))
148 if ((mask
& AUDIT_PERM_ATTR
) &&
149 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
152 case 1: /* 32bit on biarch */
153 if ((mask
& AUDIT_PERM_WRITE
) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
156 if ((mask
& AUDIT_PERM_READ
) &&
157 audit_match_class(AUDIT_CLASS_READ_32
, n
))
159 if ((mask
& AUDIT_PERM_ATTR
) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
164 return mask
& ACC_MODE(ctx
->argv
[1]);
166 return mask
& ACC_MODE(ctx
->argv
[2]);
167 case 4: /* socketcall */
168 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
170 return mask
& AUDIT_PERM_EXEC
;
176 static int audit_match_filetype(struct audit_context
*ctx
, int val
)
178 struct audit_names
*n
;
179 umode_t mode
= (umode_t
)val
;
184 list_for_each_entry(n
, &ctx
->names_list
, list
) {
185 if ((n
->ino
!= AUDIT_INO_UNSET
) &&
186 ((n
->mode
& S_IFMT
) == mode
))
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
203 static void audit_set_auditable(struct audit_context
*ctx
)
207 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
211 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
213 struct audit_tree_refs
*p
= ctx
->trees
;
214 int left
= ctx
->tree_count
;
216 p
->c
[--left
] = chunk
;
217 ctx
->tree_count
= left
;
226 ctx
->tree_count
= 30;
232 static int grow_tree_refs(struct audit_context
*ctx
)
234 struct audit_tree_refs
*p
= ctx
->trees
;
235 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
241 p
->next
= ctx
->trees
;
243 ctx
->first_trees
= ctx
->trees
;
244 ctx
->tree_count
= 31;
248 static void unroll_tree_refs(struct audit_context
*ctx
,
249 struct audit_tree_refs
*p
, int count
)
251 struct audit_tree_refs
*q
;
254 /* we started with empty chain */
255 p
= ctx
->first_trees
;
257 /* if the very first allocation has failed, nothing to do */
262 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
264 audit_put_chunk(q
->c
[n
]);
268 while (n
-- > ctx
->tree_count
) {
269 audit_put_chunk(q
->c
[n
]);
273 ctx
->tree_count
= count
;
276 static void free_tree_refs(struct audit_context
*ctx
)
278 struct audit_tree_refs
*p
, *q
;
279 for (p
= ctx
->first_trees
; p
; p
= q
) {
285 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
287 struct audit_tree_refs
*p
;
292 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
293 for (n
= 0; n
< 31; n
++)
294 if (audit_tree_match(p
->c
[n
], tree
))
299 for (n
= ctx
->tree_count
; n
< 31; n
++)
300 if (audit_tree_match(p
->c
[n
], tree
))
306 static int audit_compare_uid(kuid_t uid
,
307 struct audit_names
*name
,
308 struct audit_field
*f
,
309 struct audit_context
*ctx
)
311 struct audit_names
*n
;
315 rc
= audit_uid_comparator(uid
, f
->op
, name
->uid
);
321 list_for_each_entry(n
, &ctx
->names_list
, list
) {
322 rc
= audit_uid_comparator(uid
, f
->op
, n
->uid
);
330 static int audit_compare_gid(kgid_t gid
,
331 struct audit_names
*name
,
332 struct audit_field
*f
,
333 struct audit_context
*ctx
)
335 struct audit_names
*n
;
339 rc
= audit_gid_comparator(gid
, f
->op
, name
->gid
);
345 list_for_each_entry(n
, &ctx
->names_list
, list
) {
346 rc
= audit_gid_comparator(gid
, f
->op
, n
->gid
);
354 static int audit_field_compare(struct task_struct
*tsk
,
355 const struct cred
*cred
,
356 struct audit_field
*f
,
357 struct audit_context
*ctx
,
358 struct audit_names
*name
)
361 /* process to file object comparisons */
362 case AUDIT_COMPARE_UID_TO_OBJ_UID
:
363 return audit_compare_uid(cred
->uid
, name
, f
, ctx
);
364 case AUDIT_COMPARE_GID_TO_OBJ_GID
:
365 return audit_compare_gid(cred
->gid
, name
, f
, ctx
);
366 case AUDIT_COMPARE_EUID_TO_OBJ_UID
:
367 return audit_compare_uid(cred
->euid
, name
, f
, ctx
);
368 case AUDIT_COMPARE_EGID_TO_OBJ_GID
:
369 return audit_compare_gid(cred
->egid
, name
, f
, ctx
);
370 case AUDIT_COMPARE_AUID_TO_OBJ_UID
:
371 return audit_compare_uid(audit_get_loginuid(tsk
), name
, f
, ctx
);
372 case AUDIT_COMPARE_SUID_TO_OBJ_UID
:
373 return audit_compare_uid(cred
->suid
, name
, f
, ctx
);
374 case AUDIT_COMPARE_SGID_TO_OBJ_GID
:
375 return audit_compare_gid(cred
->sgid
, name
, f
, ctx
);
376 case AUDIT_COMPARE_FSUID_TO_OBJ_UID
:
377 return audit_compare_uid(cred
->fsuid
, name
, f
, ctx
);
378 case AUDIT_COMPARE_FSGID_TO_OBJ_GID
:
379 return audit_compare_gid(cred
->fsgid
, name
, f
, ctx
);
380 /* uid comparisons */
381 case AUDIT_COMPARE_UID_TO_AUID
:
382 return audit_uid_comparator(cred
->uid
, f
->op
,
383 audit_get_loginuid(tsk
));
384 case AUDIT_COMPARE_UID_TO_EUID
:
385 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->euid
);
386 case AUDIT_COMPARE_UID_TO_SUID
:
387 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->suid
);
388 case AUDIT_COMPARE_UID_TO_FSUID
:
389 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->fsuid
);
390 /* auid comparisons */
391 case AUDIT_COMPARE_AUID_TO_EUID
:
392 return audit_uid_comparator(audit_get_loginuid(tsk
), f
->op
,
394 case AUDIT_COMPARE_AUID_TO_SUID
:
395 return audit_uid_comparator(audit_get_loginuid(tsk
), f
->op
,
397 case AUDIT_COMPARE_AUID_TO_FSUID
:
398 return audit_uid_comparator(audit_get_loginuid(tsk
), f
->op
,
400 /* euid comparisons */
401 case AUDIT_COMPARE_EUID_TO_SUID
:
402 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->suid
);
403 case AUDIT_COMPARE_EUID_TO_FSUID
:
404 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->fsuid
);
405 /* suid comparisons */
406 case AUDIT_COMPARE_SUID_TO_FSUID
:
407 return audit_uid_comparator(cred
->suid
, f
->op
, cred
->fsuid
);
408 /* gid comparisons */
409 case AUDIT_COMPARE_GID_TO_EGID
:
410 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->egid
);
411 case AUDIT_COMPARE_GID_TO_SGID
:
412 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->sgid
);
413 case AUDIT_COMPARE_GID_TO_FSGID
:
414 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->fsgid
);
415 /* egid comparisons */
416 case AUDIT_COMPARE_EGID_TO_SGID
:
417 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->sgid
);
418 case AUDIT_COMPARE_EGID_TO_FSGID
:
419 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->fsgid
);
420 /* sgid comparison */
421 case AUDIT_COMPARE_SGID_TO_FSGID
:
422 return audit_gid_comparator(cred
->sgid
, f
->op
, cred
->fsgid
);
424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
430 /* Determine if any context name data matches a rule's watch data */
431 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
434 * If task_creation is true, this is an explicit indication that we are
435 * filtering a task rule at task creation time. This and tsk == current are
436 * the only situations where tsk->cred may be accessed without an rcu read lock.
438 static int audit_filter_rules(struct task_struct
*tsk
,
439 struct audit_krule
*rule
,
440 struct audit_context
*ctx
,
441 struct audit_names
*name
,
442 enum audit_state
*state
,
445 const struct cred
*cred
;
448 unsigned int sessionid
;
450 cred
= rcu_dereference_check(tsk
->cred
, tsk
== current
|| task_creation
);
452 for (i
= 0; i
< rule
->field_count
; i
++) {
453 struct audit_field
*f
= &rule
->fields
[i
];
454 struct audit_names
*n
;
460 pid
= task_tgid_nr(tsk
);
461 result
= audit_comparator(pid
, f
->op
, f
->val
);
466 ctx
->ppid
= task_ppid_nr(tsk
);
467 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
471 result
= audit_exe_compare(tsk
, rule
->exe
);
472 if (f
->op
== Audit_not_equal
)
476 result
= audit_uid_comparator(cred
->uid
, f
->op
, f
->uid
);
479 result
= audit_uid_comparator(cred
->euid
, f
->op
, f
->uid
);
482 result
= audit_uid_comparator(cred
->suid
, f
->op
, f
->uid
);
485 result
= audit_uid_comparator(cred
->fsuid
, f
->op
, f
->uid
);
488 result
= audit_gid_comparator(cred
->gid
, f
->op
, f
->gid
);
489 if (f
->op
== Audit_equal
) {
491 result
= groups_search(cred
->group_info
, f
->gid
);
492 } else if (f
->op
== Audit_not_equal
) {
494 result
= !groups_search(cred
->group_info
, f
->gid
);
498 result
= audit_gid_comparator(cred
->egid
, f
->op
, f
->gid
);
499 if (f
->op
== Audit_equal
) {
501 result
= groups_search(cred
->group_info
, f
->gid
);
502 } else if (f
->op
== Audit_not_equal
) {
504 result
= !groups_search(cred
->group_info
, f
->gid
);
508 result
= audit_gid_comparator(cred
->sgid
, f
->op
, f
->gid
);
511 result
= audit_gid_comparator(cred
->fsgid
, f
->op
, f
->gid
);
513 case AUDIT_SESSIONID
:
514 sessionid
= audit_get_sessionid(tsk
);
515 result
= audit_comparator(sessionid
, f
->op
, f
->val
);
518 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
522 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
526 if (ctx
&& ctx
->return_valid
)
527 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
530 if (ctx
&& ctx
->return_valid
) {
532 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
534 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
539 if (audit_comparator(MAJOR(name
->dev
), f
->op
, f
->val
) ||
540 audit_comparator(MAJOR(name
->rdev
), f
->op
, f
->val
))
543 list_for_each_entry(n
, &ctx
->names_list
, list
) {
544 if (audit_comparator(MAJOR(n
->dev
), f
->op
, f
->val
) ||
545 audit_comparator(MAJOR(n
->rdev
), f
->op
, f
->val
)) {
554 if (audit_comparator(MINOR(name
->dev
), f
->op
, f
->val
) ||
555 audit_comparator(MINOR(name
->rdev
), f
->op
, f
->val
))
558 list_for_each_entry(n
, &ctx
->names_list
, list
) {
559 if (audit_comparator(MINOR(n
->dev
), f
->op
, f
->val
) ||
560 audit_comparator(MINOR(n
->rdev
), f
->op
, f
->val
)) {
569 result
= audit_comparator(name
->ino
, f
->op
, f
->val
);
571 list_for_each_entry(n
, &ctx
->names_list
, list
) {
572 if (audit_comparator(n
->ino
, f
->op
, f
->val
)) {
581 result
= audit_uid_comparator(name
->uid
, f
->op
, f
->uid
);
583 list_for_each_entry(n
, &ctx
->names_list
, list
) {
584 if (audit_uid_comparator(n
->uid
, f
->op
, f
->uid
)) {
593 result
= audit_gid_comparator(name
->gid
, f
->op
, f
->gid
);
595 list_for_each_entry(n
, &ctx
->names_list
, list
) {
596 if (audit_gid_comparator(n
->gid
, f
->op
, f
->gid
)) {
605 result
= audit_watch_compare(rule
->watch
,
608 if (f
->op
== Audit_not_equal
)
614 result
= match_tree_refs(ctx
, rule
->tree
);
615 if (f
->op
== Audit_not_equal
)
620 result
= audit_uid_comparator(audit_get_loginuid(tsk
),
623 case AUDIT_LOGINUID_SET
:
624 result
= audit_comparator(audit_loginuid_set(tsk
), f
->op
, f
->val
);
626 case AUDIT_SADDR_FAM
:
628 result
= audit_comparator(ctx
->sockaddr
->ss_family
,
631 case AUDIT_SUBJ_USER
:
632 case AUDIT_SUBJ_ROLE
:
633 case AUDIT_SUBJ_TYPE
:
636 /* NOTE: this may return negative values indicating
637 a temporary error. We simply treat this as a
638 match for now to avoid losing information that
639 may be wanted. An error message will also be
643 security_task_getsecid(tsk
, &sid
);
646 result
= security_audit_rule_match(sid
, f
->type
,
654 case AUDIT_OBJ_LEV_LOW
:
655 case AUDIT_OBJ_LEV_HIGH
:
656 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
659 /* Find files that match */
661 result
= security_audit_rule_match(
667 list_for_each_entry(n
, &ctx
->names_list
, list
) {
668 if (security_audit_rule_match(
678 /* Find ipc objects that match */
679 if (!ctx
|| ctx
->type
!= AUDIT_IPC
)
681 if (security_audit_rule_match(ctx
->ipc
.osid
,
692 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
694 case AUDIT_FILTERKEY
:
695 /* ignore this field for filtering */
699 result
= audit_match_perm(ctx
, f
->val
);
700 if (f
->op
== Audit_not_equal
)
704 result
= audit_match_filetype(ctx
, f
->val
);
705 if (f
->op
== Audit_not_equal
)
708 case AUDIT_FIELD_COMPARE
:
709 result
= audit_field_compare(tsk
, cred
, f
, ctx
, name
);
717 if (rule
->prio
<= ctx
->prio
)
719 if (rule
->filterkey
) {
720 kfree(ctx
->filterkey
);
721 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
723 ctx
->prio
= rule
->prio
;
725 switch (rule
->action
) {
727 *state
= AUDIT_DISABLED
;
730 *state
= AUDIT_RECORD_CONTEXT
;
736 /* At process creation time, we can determine if system-call auditing is
737 * completely disabled for this task. Since we only have the task
738 * structure at this point, we can only check uid and gid.
740 static enum audit_state
audit_filter_task(struct task_struct
*tsk
, char **key
)
742 struct audit_entry
*e
;
743 enum audit_state state
;
746 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
747 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
,
749 if (state
== AUDIT_RECORD_CONTEXT
)
750 *key
= kstrdup(e
->rule
.filterkey
, GFP_ATOMIC
);
756 return AUDIT_BUILD_CONTEXT
;
759 static int audit_in_mask(const struct audit_krule
*rule
, unsigned long val
)
763 if (val
> 0xffffffff)
766 word
= AUDIT_WORD(val
);
767 if (word
>= AUDIT_BITMASK_SIZE
)
770 bit
= AUDIT_BIT(val
);
772 return rule
->mask
[word
] & bit
;
775 /* At syscall entry and exit time, this filter is called if the
776 * audit_state is not low enough that auditing cannot take place, but is
777 * also not high enough that we already know we have to write an audit
778 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
780 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
781 struct audit_context
*ctx
,
782 struct list_head
*list
)
784 struct audit_entry
*e
;
785 enum audit_state state
;
787 if (auditd_test_task(tsk
))
788 return AUDIT_DISABLED
;
791 list_for_each_entry_rcu(e
, list
, list
) {
792 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
793 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
796 ctx
->current_state
= state
;
801 return AUDIT_BUILD_CONTEXT
;
805 * Given an audit_name check the inode hash table to see if they match.
806 * Called holding the rcu read lock to protect the use of audit_inode_hash
808 static int audit_filter_inode_name(struct task_struct
*tsk
,
809 struct audit_names
*n
,
810 struct audit_context
*ctx
) {
811 int h
= audit_hash_ino((u32
)n
->ino
);
812 struct list_head
*list
= &audit_inode_hash
[h
];
813 struct audit_entry
*e
;
814 enum audit_state state
;
816 list_for_each_entry_rcu(e
, list
, list
) {
817 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
818 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
, false)) {
819 ctx
->current_state
= state
;
826 /* At syscall exit time, this filter is called if any audit_names have been
827 * collected during syscall processing. We only check rules in sublists at hash
828 * buckets applicable to the inode numbers in audit_names.
829 * Regarding audit_state, same rules apply as for audit_filter_syscall().
831 void audit_filter_inodes(struct task_struct
*tsk
, struct audit_context
*ctx
)
833 struct audit_names
*n
;
835 if (auditd_test_task(tsk
))
840 list_for_each_entry(n
, &ctx
->names_list
, list
) {
841 if (audit_filter_inode_name(tsk
, n
, ctx
))
847 static inline void audit_proctitle_free(struct audit_context
*context
)
849 kfree(context
->proctitle
.value
);
850 context
->proctitle
.value
= NULL
;
851 context
->proctitle
.len
= 0;
854 static inline void audit_free_module(struct audit_context
*context
)
856 if (context
->type
== AUDIT_KERN_MODULE
) {
857 kfree(context
->module
.name
);
858 context
->module
.name
= NULL
;
861 static inline void audit_free_names(struct audit_context
*context
)
863 struct audit_names
*n
, *next
;
865 list_for_each_entry_safe(n
, next
, &context
->names_list
, list
) {
872 context
->name_count
= 0;
873 path_put(&context
->pwd
);
874 context
->pwd
.dentry
= NULL
;
875 context
->pwd
.mnt
= NULL
;
878 static inline void audit_free_aux(struct audit_context
*context
)
880 struct audit_aux_data
*aux
;
882 while ((aux
= context
->aux
)) {
883 context
->aux
= aux
->next
;
886 while ((aux
= context
->aux_pids
)) {
887 context
->aux_pids
= aux
->next
;
892 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
894 struct audit_context
*context
;
896 context
= kzalloc(sizeof(*context
), GFP_KERNEL
);
899 context
->state
= state
;
900 context
->prio
= state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
901 INIT_LIST_HEAD(&context
->killed_trees
);
902 INIT_LIST_HEAD(&context
->names_list
);
907 * audit_alloc - allocate an audit context block for a task
910 * Filter on the task information and allocate a per-task audit context
911 * if necessary. Doing so turns on system call auditing for the
912 * specified task. This is called from copy_process, so no lock is
915 int audit_alloc(struct task_struct
*tsk
)
917 struct audit_context
*context
;
918 enum audit_state state
;
921 if (likely(!audit_ever_enabled
))
922 return 0; /* Return if not auditing. */
924 state
= audit_filter_task(tsk
, &key
);
925 if (state
== AUDIT_DISABLED
) {
926 clear_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
930 if (!(context
= audit_alloc_context(state
))) {
932 audit_log_lost("out of memory in audit_alloc");
935 context
->filterkey
= key
;
937 audit_set_context(tsk
, context
);
938 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
942 static inline void audit_free_context(struct audit_context
*context
)
944 audit_free_module(context
);
945 audit_free_names(context
);
946 unroll_tree_refs(context
, NULL
, 0);
947 free_tree_refs(context
);
948 audit_free_aux(context
);
949 kfree(context
->filterkey
);
950 kfree(context
->sockaddr
);
951 audit_proctitle_free(context
);
955 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
956 kuid_t auid
, kuid_t uid
, unsigned int sessionid
,
959 struct audit_buffer
*ab
;
964 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
968 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
,
969 from_kuid(&init_user_ns
, auid
),
970 from_kuid(&init_user_ns
, uid
), sessionid
);
972 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
973 audit_log_format(ab
, " obj=(none)");
976 audit_log_format(ab
, " obj=%s", ctx
);
977 security_release_secctx(ctx
, len
);
980 audit_log_format(ab
, " ocomm=");
981 audit_log_untrustedstring(ab
, comm
);
987 static void audit_log_execve_info(struct audit_context
*context
,
988 struct audit_buffer
**ab
)
1002 const char __user
*p
= (const char __user
*)current
->mm
->arg_start
;
1004 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1005 * data we put in the audit record for this argument (see the
1006 * code below) ... at this point in time 96 is plenty */
1009 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1010 * current value of 7500 is not as important as the fact that it
1011 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1012 * room if we go over a little bit in the logging below */
1013 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN
> 7500);
1014 len_max
= MAX_EXECVE_AUDIT_LEN
;
1016 /* scratch buffer to hold the userspace args */
1017 buf_head
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1019 audit_panic("out of memory for argv string");
1024 audit_log_format(*ab
, "argc=%d", context
->execve
.argc
);
1029 require_data
= true;
1034 /* NOTE: we don't ever want to trust this value for anything
1035 * serious, but the audit record format insists we
1036 * provide an argument length for really long arguments,
1037 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1038 * to use strncpy_from_user() to obtain this value for
1039 * recording in the log, although we don't use it
1040 * anywhere here to avoid a double-fetch problem */
1042 len_full
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1044 /* read more data from userspace */
1046 /* can we make more room in the buffer? */
1047 if (buf
!= buf_head
) {
1048 memmove(buf_head
, buf
, len_buf
);
1052 /* fetch as much as we can of the argument */
1053 len_tmp
= strncpy_from_user(&buf_head
[len_buf
], p
,
1055 if (len_tmp
== -EFAULT
) {
1056 /* unable to copy from userspace */
1057 send_sig(SIGKILL
, current
, 0);
1059 } else if (len_tmp
== (len_max
- len_buf
)) {
1060 /* buffer is not large enough */
1061 require_data
= true;
1062 /* NOTE: if we are going to span multiple
1063 * buffers force the encoding so we stand
1064 * a chance at a sane len_full value and
1065 * consistent record encoding */
1067 len_full
= len_full
* 2;
1070 require_data
= false;
1072 encode
= audit_string_contains_control(
1074 /* try to use a trusted value for len_full */
1075 if (len_full
< len_max
)
1076 len_full
= (encode
?
1077 len_tmp
* 2 : len_tmp
);
1081 buf_head
[len_buf
] = '\0';
1083 /* length of the buffer in the audit record? */
1084 len_abuf
= (encode
? len_buf
* 2 : len_buf
+ 2);
1087 /* write as much as we can to the audit log */
1089 /* NOTE: some magic numbers here - basically if we
1090 * can't fit a reasonable amount of data into the
1091 * existing audit buffer, flush it and start with
1093 if ((sizeof(abuf
) + 8) > len_rem
) {
1096 *ab
= audit_log_start(context
,
1097 GFP_KERNEL
, AUDIT_EXECVE
);
1102 /* create the non-arg portion of the arg record */
1104 if (require_data
|| (iter
> 0) ||
1105 ((len_abuf
+ sizeof(abuf
)) > len_rem
)) {
1107 len_tmp
+= snprintf(&abuf
[len_tmp
],
1108 sizeof(abuf
) - len_tmp
,
1112 len_tmp
+= snprintf(&abuf
[len_tmp
],
1113 sizeof(abuf
) - len_tmp
,
1114 " a%d[%d]=", arg
, iter
++);
1116 len_tmp
+= snprintf(&abuf
[len_tmp
],
1117 sizeof(abuf
) - len_tmp
,
1119 WARN_ON(len_tmp
>= sizeof(abuf
));
1120 abuf
[sizeof(abuf
) - 1] = '\0';
1122 /* log the arg in the audit record */
1123 audit_log_format(*ab
, "%s", abuf
);
1127 if (len_abuf
> len_rem
)
1128 len_tmp
= len_rem
/ 2; /* encoding */
1129 audit_log_n_hex(*ab
, buf
, len_tmp
);
1130 len_rem
-= len_tmp
* 2;
1131 len_abuf
-= len_tmp
* 2;
1133 if (len_abuf
> len_rem
)
1134 len_tmp
= len_rem
- 2; /* quotes */
1135 audit_log_n_string(*ab
, buf
, len_tmp
);
1136 len_rem
-= len_tmp
+ 2;
1137 /* don't subtract the "2" because we still need
1138 * to add quotes to the remaining string */
1139 len_abuf
-= len_tmp
;
1145 /* ready to move to the next argument? */
1146 if ((len_buf
== 0) && !require_data
) {
1150 require_data
= true;
1153 } while (arg
< context
->execve
.argc
);
1155 /* NOTE: the caller handles the final audit_log_end() call */
1161 static void audit_log_cap(struct audit_buffer
*ab
, char *prefix
,
1166 if (cap_isclear(*cap
)) {
1167 audit_log_format(ab
, " %s=0", prefix
);
1170 audit_log_format(ab
, " %s=", prefix
);
1172 audit_log_format(ab
, "%08x", cap
->cap
[CAP_LAST_U32
- i
]);
1175 static void audit_log_fcaps(struct audit_buffer
*ab
, struct audit_names
*name
)
1177 if (name
->fcap_ver
== -1) {
1178 audit_log_format(ab
, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1181 audit_log_cap(ab
, "cap_fp", &name
->fcap
.permitted
);
1182 audit_log_cap(ab
, "cap_fi", &name
->fcap
.inheritable
);
1183 audit_log_format(ab
, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1184 name
->fcap
.fE
, name
->fcap_ver
,
1185 from_kuid(&init_user_ns
, name
->fcap
.rootid
));
1188 static void show_special(struct audit_context
*context
, int *call_panic
)
1190 struct audit_buffer
*ab
;
1193 ab
= audit_log_start(context
, GFP_KERNEL
, context
->type
);
1197 switch (context
->type
) {
1198 case AUDIT_SOCKETCALL
: {
1199 int nargs
= context
->socketcall
.nargs
;
1200 audit_log_format(ab
, "nargs=%d", nargs
);
1201 for (i
= 0; i
< nargs
; i
++)
1202 audit_log_format(ab
, " a%d=%lx", i
,
1203 context
->socketcall
.args
[i
]);
1206 u32 osid
= context
->ipc
.osid
;
1208 audit_log_format(ab
, "ouid=%u ogid=%u mode=%#ho",
1209 from_kuid(&init_user_ns
, context
->ipc
.uid
),
1210 from_kgid(&init_user_ns
, context
->ipc
.gid
),
1215 if (security_secid_to_secctx(osid
, &ctx
, &len
)) {
1216 audit_log_format(ab
, " osid=%u", osid
);
1219 audit_log_format(ab
, " obj=%s", ctx
);
1220 security_release_secctx(ctx
, len
);
1223 if (context
->ipc
.has_perm
) {
1225 ab
= audit_log_start(context
, GFP_KERNEL
,
1226 AUDIT_IPC_SET_PERM
);
1229 audit_log_format(ab
,
1230 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1231 context
->ipc
.qbytes
,
1232 context
->ipc
.perm_uid
,
1233 context
->ipc
.perm_gid
,
1234 context
->ipc
.perm_mode
);
1238 audit_log_format(ab
,
1239 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1240 "mq_msgsize=%ld mq_curmsgs=%ld",
1241 context
->mq_open
.oflag
, context
->mq_open
.mode
,
1242 context
->mq_open
.attr
.mq_flags
,
1243 context
->mq_open
.attr
.mq_maxmsg
,
1244 context
->mq_open
.attr
.mq_msgsize
,
1245 context
->mq_open
.attr
.mq_curmsgs
);
1247 case AUDIT_MQ_SENDRECV
:
1248 audit_log_format(ab
,
1249 "mqdes=%d msg_len=%zd msg_prio=%u "
1250 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1251 context
->mq_sendrecv
.mqdes
,
1252 context
->mq_sendrecv
.msg_len
,
1253 context
->mq_sendrecv
.msg_prio
,
1254 (long long) context
->mq_sendrecv
.abs_timeout
.tv_sec
,
1255 context
->mq_sendrecv
.abs_timeout
.tv_nsec
);
1257 case AUDIT_MQ_NOTIFY
:
1258 audit_log_format(ab
, "mqdes=%d sigev_signo=%d",
1259 context
->mq_notify
.mqdes
,
1260 context
->mq_notify
.sigev_signo
);
1262 case AUDIT_MQ_GETSETATTR
: {
1263 struct mq_attr
*attr
= &context
->mq_getsetattr
.mqstat
;
1264 audit_log_format(ab
,
1265 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1267 context
->mq_getsetattr
.mqdes
,
1268 attr
->mq_flags
, attr
->mq_maxmsg
,
1269 attr
->mq_msgsize
, attr
->mq_curmsgs
);
1272 audit_log_format(ab
, "pid=%d", context
->capset
.pid
);
1273 audit_log_cap(ab
, "cap_pi", &context
->capset
.cap
.inheritable
);
1274 audit_log_cap(ab
, "cap_pp", &context
->capset
.cap
.permitted
);
1275 audit_log_cap(ab
, "cap_pe", &context
->capset
.cap
.effective
);
1276 audit_log_cap(ab
, "cap_pa", &context
->capset
.cap
.ambient
);
1279 audit_log_format(ab
, "fd=%d flags=0x%x", context
->mmap
.fd
,
1280 context
->mmap
.flags
);
1283 audit_log_execve_info(context
, &ab
);
1285 case AUDIT_KERN_MODULE
:
1286 audit_log_format(ab
, "name=");
1287 if (context
->module
.name
) {
1288 audit_log_untrustedstring(ab
, context
->module
.name
);
1290 audit_log_format(ab
, "(null)");
1297 static inline int audit_proctitle_rtrim(char *proctitle
, int len
)
1299 char *end
= proctitle
+ len
- 1;
1300 while (end
> proctitle
&& !isprint(*end
))
1303 /* catch the case where proctitle is only 1 non-print character */
1304 len
= end
- proctitle
+ 1;
1305 len
-= isprint(proctitle
[len
-1]) == 0;
1310 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1311 * @context: audit_context for the task
1312 * @n: audit_names structure with reportable details
1313 * @path: optional path to report instead of audit_names->name
1314 * @record_num: record number to report when handling a list of names
1315 * @call_panic: optional pointer to int that will be updated if secid fails
1317 static void audit_log_name(struct audit_context
*context
, struct audit_names
*n
,
1318 const struct path
*path
, int record_num
, int *call_panic
)
1320 struct audit_buffer
*ab
;
1322 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PATH
);
1326 audit_log_format(ab
, "item=%d", record_num
);
1329 audit_log_d_path(ab
, " name=", path
);
1331 switch (n
->name_len
) {
1332 case AUDIT_NAME_FULL
:
1333 /* log the full path */
1334 audit_log_format(ab
, " name=");
1335 audit_log_untrustedstring(ab
, n
->name
->name
);
1338 /* name was specified as a relative path and the
1339 * directory component is the cwd
1341 audit_log_d_path(ab
, " name=", &context
->pwd
);
1344 /* log the name's directory component */
1345 audit_log_format(ab
, " name=");
1346 audit_log_n_untrustedstring(ab
, n
->name
->name
,
1350 audit_log_format(ab
, " name=(null)");
1352 if (n
->ino
!= AUDIT_INO_UNSET
)
1353 audit_log_format(ab
, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1358 from_kuid(&init_user_ns
, n
->uid
),
1359 from_kgid(&init_user_ns
, n
->gid
),
1366 if (security_secid_to_secctx(
1367 n
->osid
, &ctx
, &len
)) {
1368 audit_log_format(ab
, " osid=%u", n
->osid
);
1372 audit_log_format(ab
, " obj=%s", ctx
);
1373 security_release_secctx(ctx
, len
);
1377 /* log the audit_names record type */
1379 case AUDIT_TYPE_NORMAL
:
1380 audit_log_format(ab
, " nametype=NORMAL");
1382 case AUDIT_TYPE_PARENT
:
1383 audit_log_format(ab
, " nametype=PARENT");
1385 case AUDIT_TYPE_CHILD_DELETE
:
1386 audit_log_format(ab
, " nametype=DELETE");
1388 case AUDIT_TYPE_CHILD_CREATE
:
1389 audit_log_format(ab
, " nametype=CREATE");
1392 audit_log_format(ab
, " nametype=UNKNOWN");
1396 audit_log_fcaps(ab
, n
);
1400 static void audit_log_proctitle(void)
1404 char *msg
= "(null)";
1405 int len
= strlen(msg
);
1406 struct audit_context
*context
= audit_context();
1407 struct audit_buffer
*ab
;
1409 if (!context
|| context
->dummy
)
1412 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PROCTITLE
);
1414 return; /* audit_panic or being filtered */
1416 audit_log_format(ab
, "proctitle=");
1419 if (!context
->proctitle
.value
) {
1420 buf
= kmalloc(MAX_PROCTITLE_AUDIT_LEN
, GFP_KERNEL
);
1423 /* Historically called this from procfs naming */
1424 res
= get_cmdline(current
, buf
, MAX_PROCTITLE_AUDIT_LEN
);
1429 res
= audit_proctitle_rtrim(buf
, res
);
1434 context
->proctitle
.value
= buf
;
1435 context
->proctitle
.len
= res
;
1437 msg
= context
->proctitle
.value
;
1438 len
= context
->proctitle
.len
;
1440 audit_log_n_untrustedstring(ab
, msg
, len
);
1444 static void audit_log_exit(void)
1446 int i
, call_panic
= 0;
1447 struct audit_context
*context
= audit_context();
1448 struct audit_buffer
*ab
;
1449 struct audit_aux_data
*aux
;
1450 struct audit_names
*n
;
1452 context
->personality
= current
->personality
;
1454 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1456 return; /* audit_panic has been called */
1457 audit_log_format(ab
, "arch=%x syscall=%d",
1458 context
->arch
, context
->major
);
1459 if (context
->personality
!= PER_LINUX
)
1460 audit_log_format(ab
, " per=%lx", context
->personality
);
1461 if (context
->return_valid
)
1462 audit_log_format(ab
, " success=%s exit=%ld",
1463 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1464 context
->return_code
);
1466 audit_log_format(ab
,
1467 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1472 context
->name_count
);
1474 audit_log_task_info(ab
);
1475 audit_log_key(ab
, context
->filterkey
);
1478 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1480 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1482 continue; /* audit_panic has been called */
1484 switch (aux
->type
) {
1486 case AUDIT_BPRM_FCAPS
: {
1487 struct audit_aux_data_bprm_fcaps
*axs
= (void *)aux
;
1488 audit_log_format(ab
, "fver=%x", axs
->fcap_ver
);
1489 audit_log_cap(ab
, "fp", &axs
->fcap
.permitted
);
1490 audit_log_cap(ab
, "fi", &axs
->fcap
.inheritable
);
1491 audit_log_format(ab
, " fe=%d", axs
->fcap
.fE
);
1492 audit_log_cap(ab
, "old_pp", &axs
->old_pcap
.permitted
);
1493 audit_log_cap(ab
, "old_pi", &axs
->old_pcap
.inheritable
);
1494 audit_log_cap(ab
, "old_pe", &axs
->old_pcap
.effective
);
1495 audit_log_cap(ab
, "old_pa", &axs
->old_pcap
.ambient
);
1496 audit_log_cap(ab
, "pp", &axs
->new_pcap
.permitted
);
1497 audit_log_cap(ab
, "pi", &axs
->new_pcap
.inheritable
);
1498 audit_log_cap(ab
, "pe", &axs
->new_pcap
.effective
);
1499 audit_log_cap(ab
, "pa", &axs
->new_pcap
.ambient
);
1500 audit_log_format(ab
, " frootid=%d",
1501 from_kuid(&init_user_ns
,
1510 show_special(context
, &call_panic
);
1512 if (context
->fds
[0] >= 0) {
1513 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_FD_PAIR
);
1515 audit_log_format(ab
, "fd0=%d fd1=%d",
1516 context
->fds
[0], context
->fds
[1]);
1521 if (context
->sockaddr_len
) {
1522 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SOCKADDR
);
1524 audit_log_format(ab
, "saddr=");
1525 audit_log_n_hex(ab
, (void *)context
->sockaddr
,
1526 context
->sockaddr_len
);
1531 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1532 struct audit_aux_data_pids
*axs
= (void *)aux
;
1534 for (i
= 0; i
< axs
->pid_count
; i
++)
1535 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1536 axs
->target_auid
[i
],
1538 axs
->target_sessionid
[i
],
1540 axs
->target_comm
[i
]))
1544 if (context
->target_pid
&&
1545 audit_log_pid_context(context
, context
->target_pid
,
1546 context
->target_auid
, context
->target_uid
,
1547 context
->target_sessionid
,
1548 context
->target_sid
, context
->target_comm
))
1551 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1552 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1554 audit_log_d_path(ab
, "cwd=", &context
->pwd
);
1560 list_for_each_entry(n
, &context
->names_list
, list
) {
1563 audit_log_name(context
, n
, NULL
, i
++, &call_panic
);
1566 audit_log_proctitle();
1568 /* Send end of event record to help user space know we are finished */
1569 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1573 audit_panic("error converting sid to string");
1577 * __audit_free - free a per-task audit context
1578 * @tsk: task whose audit context block to free
1580 * Called from copy_process and do_exit
1582 void __audit_free(struct task_struct
*tsk
)
1584 struct audit_context
*context
= tsk
->audit_context
;
1589 if (!list_empty(&context
->killed_trees
))
1590 audit_kill_trees(context
);
1592 /* We are called either by do_exit() or the fork() error handling code;
1593 * in the former case tsk == current and in the latter tsk is a
1594 * random task_struct that doesn't doesn't have any meaningful data we
1595 * need to log via audit_log_exit().
1597 if (tsk
== current
&& !context
->dummy
&& context
->in_syscall
) {
1598 context
->return_valid
= 0;
1599 context
->return_code
= 0;
1601 audit_filter_syscall(tsk
, context
,
1602 &audit_filter_list
[AUDIT_FILTER_EXIT
]);
1603 audit_filter_inodes(tsk
, context
);
1604 if (context
->current_state
== AUDIT_RECORD_CONTEXT
)
1608 audit_set_context(tsk
, NULL
);
1609 audit_free_context(context
);
1613 * __audit_syscall_entry - fill in an audit record at syscall entry
1614 * @major: major syscall type (function)
1615 * @a1: additional syscall register 1
1616 * @a2: additional syscall register 2
1617 * @a3: additional syscall register 3
1618 * @a4: additional syscall register 4
1620 * Fill in audit context at syscall entry. This only happens if the
1621 * audit context was created when the task was created and the state or
1622 * filters demand the audit context be built. If the state from the
1623 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1624 * then the record will be written at syscall exit time (otherwise, it
1625 * will only be written if another part of the kernel requests that it
1628 void __audit_syscall_entry(int major
, unsigned long a1
, unsigned long a2
,
1629 unsigned long a3
, unsigned long a4
)
1631 struct audit_context
*context
= audit_context();
1632 enum audit_state state
;
1634 if (!audit_enabled
|| !context
)
1637 BUG_ON(context
->in_syscall
|| context
->name_count
);
1639 state
= context
->state
;
1640 if (state
== AUDIT_DISABLED
)
1643 context
->dummy
= !audit_n_rules
;
1644 if (!context
->dummy
&& state
== AUDIT_BUILD_CONTEXT
) {
1646 if (auditd_test_task(current
))
1650 context
->arch
= syscall_get_arch(current
);
1651 context
->major
= major
;
1652 context
->argv
[0] = a1
;
1653 context
->argv
[1] = a2
;
1654 context
->argv
[2] = a3
;
1655 context
->argv
[3] = a4
;
1656 context
->serial
= 0;
1657 context
->in_syscall
= 1;
1658 context
->current_state
= state
;
1660 ktime_get_coarse_real_ts64(&context
->ctime
);
1664 * __audit_syscall_exit - deallocate audit context after a system call
1665 * @success: success value of the syscall
1666 * @return_code: return value of the syscall
1668 * Tear down after system call. If the audit context has been marked as
1669 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1670 * filtering, or because some other part of the kernel wrote an audit
1671 * message), then write out the syscall information. In call cases,
1672 * free the names stored from getname().
1674 void __audit_syscall_exit(int success
, long return_code
)
1676 struct audit_context
*context
;
1678 context
= audit_context();
1682 if (!list_empty(&context
->killed_trees
))
1683 audit_kill_trees(context
);
1685 if (!context
->dummy
&& context
->in_syscall
) {
1687 context
->return_valid
= AUDITSC_SUCCESS
;
1689 context
->return_valid
= AUDITSC_FAILURE
;
1692 * we need to fix up the return code in the audit logs if the
1693 * actual return codes are later going to be fixed up by the
1694 * arch specific signal handlers
1696 * This is actually a test for:
1697 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1698 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1700 * but is faster than a bunch of ||
1702 if (unlikely(return_code
<= -ERESTARTSYS
) &&
1703 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
1704 (return_code
!= -ENOIOCTLCMD
))
1705 context
->return_code
= -EINTR
;
1707 context
->return_code
= return_code
;
1709 audit_filter_syscall(current
, context
,
1710 &audit_filter_list
[AUDIT_FILTER_EXIT
]);
1711 audit_filter_inodes(current
, context
);
1712 if (context
->current_state
== AUDIT_RECORD_CONTEXT
)
1716 context
->in_syscall
= 0;
1717 context
->prio
= context
->state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1719 audit_free_module(context
);
1720 audit_free_names(context
);
1721 unroll_tree_refs(context
, NULL
, 0);
1722 audit_free_aux(context
);
1723 context
->aux
= NULL
;
1724 context
->aux_pids
= NULL
;
1725 context
->target_pid
= 0;
1726 context
->target_sid
= 0;
1727 context
->sockaddr_len
= 0;
1729 context
->fds
[0] = -1;
1730 if (context
->state
!= AUDIT_RECORD_CONTEXT
) {
1731 kfree(context
->filterkey
);
1732 context
->filterkey
= NULL
;
1736 static inline void handle_one(const struct inode
*inode
)
1738 struct audit_context
*context
;
1739 struct audit_tree_refs
*p
;
1740 struct audit_chunk
*chunk
;
1742 if (likely(!inode
->i_fsnotify_marks
))
1744 context
= audit_context();
1746 count
= context
->tree_count
;
1748 chunk
= audit_tree_lookup(inode
);
1752 if (likely(put_tree_ref(context
, chunk
)))
1754 if (unlikely(!grow_tree_refs(context
))) {
1755 pr_warn("out of memory, audit has lost a tree reference\n");
1756 audit_set_auditable(context
);
1757 audit_put_chunk(chunk
);
1758 unroll_tree_refs(context
, p
, count
);
1761 put_tree_ref(context
, chunk
);
1764 static void handle_path(const struct dentry
*dentry
)
1766 struct audit_context
*context
;
1767 struct audit_tree_refs
*p
;
1768 const struct dentry
*d
, *parent
;
1769 struct audit_chunk
*drop
;
1773 context
= audit_context();
1775 count
= context
->tree_count
;
1780 seq
= read_seqbegin(&rename_lock
);
1782 struct inode
*inode
= d_backing_inode(d
);
1783 if (inode
&& unlikely(inode
->i_fsnotify_marks
)) {
1784 struct audit_chunk
*chunk
;
1785 chunk
= audit_tree_lookup(inode
);
1787 if (unlikely(!put_tree_ref(context
, chunk
))) {
1793 parent
= d
->d_parent
;
1798 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1801 /* just a race with rename */
1802 unroll_tree_refs(context
, p
, count
);
1805 audit_put_chunk(drop
);
1806 if (grow_tree_refs(context
)) {
1807 /* OK, got more space */
1808 unroll_tree_refs(context
, p
, count
);
1812 pr_warn("out of memory, audit has lost a tree reference\n");
1813 unroll_tree_refs(context
, p
, count
);
1814 audit_set_auditable(context
);
1820 static struct audit_names
*audit_alloc_name(struct audit_context
*context
,
1823 struct audit_names
*aname
;
1825 if (context
->name_count
< AUDIT_NAMES
) {
1826 aname
= &context
->preallocated_names
[context
->name_count
];
1827 memset(aname
, 0, sizeof(*aname
));
1829 aname
= kzalloc(sizeof(*aname
), GFP_NOFS
);
1832 aname
->should_free
= true;
1835 aname
->ino
= AUDIT_INO_UNSET
;
1837 list_add_tail(&aname
->list
, &context
->names_list
);
1839 context
->name_count
++;
1844 * __audit_reusename - fill out filename with info from existing entry
1845 * @uptr: userland ptr to pathname
1847 * Search the audit_names list for the current audit context. If there is an
1848 * existing entry with a matching "uptr" then return the filename
1849 * associated with that audit_name. If not, return NULL.
1852 __audit_reusename(const __user
char *uptr
)
1854 struct audit_context
*context
= audit_context();
1855 struct audit_names
*n
;
1857 list_for_each_entry(n
, &context
->names_list
, list
) {
1860 if (n
->name
->uptr
== uptr
) {
1869 * __audit_getname - add a name to the list
1870 * @name: name to add
1872 * Add a name to the list of audit names for this context.
1873 * Called from fs/namei.c:getname().
1875 void __audit_getname(struct filename
*name
)
1877 struct audit_context
*context
= audit_context();
1878 struct audit_names
*n
;
1880 if (!context
->in_syscall
)
1883 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
1888 n
->name_len
= AUDIT_NAME_FULL
;
1892 if (!context
->pwd
.dentry
)
1893 get_fs_pwd(current
->fs
, &context
->pwd
);
1896 static inline int audit_copy_fcaps(struct audit_names
*name
,
1897 const struct dentry
*dentry
)
1899 struct cpu_vfs_cap_data caps
;
1905 rc
= get_vfs_caps_from_disk(dentry
, &caps
);
1909 name
->fcap
.permitted
= caps
.permitted
;
1910 name
->fcap
.inheritable
= caps
.inheritable
;
1911 name
->fcap
.fE
= !!(caps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
1912 name
->fcap
.rootid
= caps
.rootid
;
1913 name
->fcap_ver
= (caps
.magic_etc
& VFS_CAP_REVISION_MASK
) >>
1914 VFS_CAP_REVISION_SHIFT
;
1919 /* Copy inode data into an audit_names. */
1920 static void audit_copy_inode(struct audit_names
*name
,
1921 const struct dentry
*dentry
,
1922 struct inode
*inode
, unsigned int flags
)
1924 name
->ino
= inode
->i_ino
;
1925 name
->dev
= inode
->i_sb
->s_dev
;
1926 name
->mode
= inode
->i_mode
;
1927 name
->uid
= inode
->i_uid
;
1928 name
->gid
= inode
->i_gid
;
1929 name
->rdev
= inode
->i_rdev
;
1930 security_inode_getsecid(inode
, &name
->osid
);
1931 if (flags
& AUDIT_INODE_NOEVAL
) {
1932 name
->fcap_ver
= -1;
1935 audit_copy_fcaps(name
, dentry
);
1939 * __audit_inode - store the inode and device from a lookup
1940 * @name: name being audited
1941 * @dentry: dentry being audited
1942 * @flags: attributes for this particular entry
1944 void __audit_inode(struct filename
*name
, const struct dentry
*dentry
,
1947 struct audit_context
*context
= audit_context();
1948 struct inode
*inode
= d_backing_inode(dentry
);
1949 struct audit_names
*n
;
1950 bool parent
= flags
& AUDIT_INODE_PARENT
;
1951 struct audit_entry
*e
;
1952 struct list_head
*list
= &audit_filter_list
[AUDIT_FILTER_FS
];
1955 if (!context
->in_syscall
)
1959 list_for_each_entry_rcu(e
, list
, list
) {
1960 for (i
= 0; i
< e
->rule
.field_count
; i
++) {
1961 struct audit_field
*f
= &e
->rule
.fields
[i
];
1963 if (f
->type
== AUDIT_FSTYPE
1964 && audit_comparator(inode
->i_sb
->s_magic
,
1966 && e
->rule
.action
== AUDIT_NEVER
) {
1978 * If we have a pointer to an audit_names entry already, then we can
1979 * just use it directly if the type is correct.
1984 if (n
->type
== AUDIT_TYPE_PARENT
||
1985 n
->type
== AUDIT_TYPE_UNKNOWN
)
1988 if (n
->type
!= AUDIT_TYPE_PARENT
)
1993 list_for_each_entry_reverse(n
, &context
->names_list
, list
) {
1995 /* valid inode number, use that for the comparison */
1996 if (n
->ino
!= inode
->i_ino
||
1997 n
->dev
!= inode
->i_sb
->s_dev
)
1999 } else if (n
->name
) {
2000 /* inode number has not been set, check the name */
2001 if (strcmp(n
->name
->name
, name
->name
))
2004 /* no inode and no name (?!) ... this is odd ... */
2007 /* match the correct record type */
2009 if (n
->type
== AUDIT_TYPE_PARENT
||
2010 n
->type
== AUDIT_TYPE_UNKNOWN
)
2013 if (n
->type
!= AUDIT_TYPE_PARENT
)
2019 /* unable to find an entry with both a matching name and type */
2020 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
2030 n
->name_len
= n
->name
? parent_len(n
->name
->name
) : AUDIT_NAME_FULL
;
2031 n
->type
= AUDIT_TYPE_PARENT
;
2032 if (flags
& AUDIT_INODE_HIDDEN
)
2035 n
->name_len
= AUDIT_NAME_FULL
;
2036 n
->type
= AUDIT_TYPE_NORMAL
;
2038 handle_path(dentry
);
2039 audit_copy_inode(n
, dentry
, inode
, flags
& AUDIT_INODE_NOEVAL
);
2042 void __audit_file(const struct file
*file
)
2044 __audit_inode(NULL
, file
->f_path
.dentry
, 0);
2048 * __audit_inode_child - collect inode info for created/removed objects
2049 * @parent: inode of dentry parent
2050 * @dentry: dentry being audited
2051 * @type: AUDIT_TYPE_* value that we're looking for
2053 * For syscalls that create or remove filesystem objects, audit_inode
2054 * can only collect information for the filesystem object's parent.
2055 * This call updates the audit context with the child's information.
2056 * Syscalls that create a new filesystem object must be hooked after
2057 * the object is created. Syscalls that remove a filesystem object
2058 * must be hooked prior, in order to capture the target inode during
2059 * unsuccessful attempts.
2061 void __audit_inode_child(struct inode
*parent
,
2062 const struct dentry
*dentry
,
2063 const unsigned char type
)
2065 struct audit_context
*context
= audit_context();
2066 struct inode
*inode
= d_backing_inode(dentry
);
2067 const struct qstr
*dname
= &dentry
->d_name
;
2068 struct audit_names
*n
, *found_parent
= NULL
, *found_child
= NULL
;
2069 struct audit_entry
*e
;
2070 struct list_head
*list
= &audit_filter_list
[AUDIT_FILTER_FS
];
2073 if (!context
->in_syscall
)
2077 list_for_each_entry_rcu(e
, list
, list
) {
2078 for (i
= 0; i
< e
->rule
.field_count
; i
++) {
2079 struct audit_field
*f
= &e
->rule
.fields
[i
];
2081 if (f
->type
== AUDIT_FSTYPE
2082 && audit_comparator(parent
->i_sb
->s_magic
,
2084 && e
->rule
.action
== AUDIT_NEVER
) {
2095 /* look for a parent entry first */
2096 list_for_each_entry(n
, &context
->names_list
, list
) {
2098 (n
->type
!= AUDIT_TYPE_PARENT
&&
2099 n
->type
!= AUDIT_TYPE_UNKNOWN
))
2102 if (n
->ino
== parent
->i_ino
&& n
->dev
== parent
->i_sb
->s_dev
&&
2103 !audit_compare_dname_path(dname
,
2104 n
->name
->name
, n
->name_len
)) {
2105 if (n
->type
== AUDIT_TYPE_UNKNOWN
)
2106 n
->type
= AUDIT_TYPE_PARENT
;
2112 /* is there a matching child entry? */
2113 list_for_each_entry(n
, &context
->names_list
, list
) {
2114 /* can only match entries that have a name */
2116 (n
->type
!= type
&& n
->type
!= AUDIT_TYPE_UNKNOWN
))
2119 if (!strcmp(dname
->name
, n
->name
->name
) ||
2120 !audit_compare_dname_path(dname
, n
->name
->name
,
2122 found_parent
->name_len
:
2124 if (n
->type
== AUDIT_TYPE_UNKNOWN
)
2131 if (!found_parent
) {
2132 /* create a new, "anonymous" parent record */
2133 n
= audit_alloc_name(context
, AUDIT_TYPE_PARENT
);
2136 audit_copy_inode(n
, NULL
, parent
, 0);
2140 found_child
= audit_alloc_name(context
, type
);
2144 /* Re-use the name belonging to the slot for a matching parent
2145 * directory. All names for this context are relinquished in
2146 * audit_free_names() */
2148 found_child
->name
= found_parent
->name
;
2149 found_child
->name_len
= AUDIT_NAME_FULL
;
2150 found_child
->name
->refcnt
++;
2155 audit_copy_inode(found_child
, dentry
, inode
, 0);
2157 found_child
->ino
= AUDIT_INO_UNSET
;
2159 EXPORT_SYMBOL_GPL(__audit_inode_child
);
2162 * auditsc_get_stamp - get local copies of audit_context values
2163 * @ctx: audit_context for the task
2164 * @t: timespec64 to store time recorded in the audit_context
2165 * @serial: serial value that is recorded in the audit_context
2167 * Also sets the context as auditable.
2169 int auditsc_get_stamp(struct audit_context
*ctx
,
2170 struct timespec64
*t
, unsigned int *serial
)
2172 if (!ctx
->in_syscall
)
2175 ctx
->serial
= audit_serial();
2176 t
->tv_sec
= ctx
->ctime
.tv_sec
;
2177 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
2178 *serial
= ctx
->serial
;
2181 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
2187 * __audit_mq_open - record audit data for a POSIX MQ open
2190 * @attr: queue attributes
2193 void __audit_mq_open(int oflag
, umode_t mode
, struct mq_attr
*attr
)
2195 struct audit_context
*context
= audit_context();
2198 memcpy(&context
->mq_open
.attr
, attr
, sizeof(struct mq_attr
));
2200 memset(&context
->mq_open
.attr
, 0, sizeof(struct mq_attr
));
2202 context
->mq_open
.oflag
= oflag
;
2203 context
->mq_open
.mode
= mode
;
2205 context
->type
= AUDIT_MQ_OPEN
;
2209 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2210 * @mqdes: MQ descriptor
2211 * @msg_len: Message length
2212 * @msg_prio: Message priority
2213 * @abs_timeout: Message timeout in absolute time
2216 void __audit_mq_sendrecv(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2217 const struct timespec64
*abs_timeout
)
2219 struct audit_context
*context
= audit_context();
2220 struct timespec64
*p
= &context
->mq_sendrecv
.abs_timeout
;
2223 memcpy(p
, abs_timeout
, sizeof(*p
));
2225 memset(p
, 0, sizeof(*p
));
2227 context
->mq_sendrecv
.mqdes
= mqdes
;
2228 context
->mq_sendrecv
.msg_len
= msg_len
;
2229 context
->mq_sendrecv
.msg_prio
= msg_prio
;
2231 context
->type
= AUDIT_MQ_SENDRECV
;
2235 * __audit_mq_notify - record audit data for a POSIX MQ notify
2236 * @mqdes: MQ descriptor
2237 * @notification: Notification event
2241 void __audit_mq_notify(mqd_t mqdes
, const struct sigevent
*notification
)
2243 struct audit_context
*context
= audit_context();
2246 context
->mq_notify
.sigev_signo
= notification
->sigev_signo
;
2248 context
->mq_notify
.sigev_signo
= 0;
2250 context
->mq_notify
.mqdes
= mqdes
;
2251 context
->type
= AUDIT_MQ_NOTIFY
;
2255 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2256 * @mqdes: MQ descriptor
2260 void __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2262 struct audit_context
*context
= audit_context();
2263 context
->mq_getsetattr
.mqdes
= mqdes
;
2264 context
->mq_getsetattr
.mqstat
= *mqstat
;
2265 context
->type
= AUDIT_MQ_GETSETATTR
;
2269 * __audit_ipc_obj - record audit data for ipc object
2270 * @ipcp: ipc permissions
2273 void __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2275 struct audit_context
*context
= audit_context();
2276 context
->ipc
.uid
= ipcp
->uid
;
2277 context
->ipc
.gid
= ipcp
->gid
;
2278 context
->ipc
.mode
= ipcp
->mode
;
2279 context
->ipc
.has_perm
= 0;
2280 security_ipc_getsecid(ipcp
, &context
->ipc
.osid
);
2281 context
->type
= AUDIT_IPC
;
2285 * __audit_ipc_set_perm - record audit data for new ipc permissions
2286 * @qbytes: msgq bytes
2287 * @uid: msgq user id
2288 * @gid: msgq group id
2289 * @mode: msgq mode (permissions)
2291 * Called only after audit_ipc_obj().
2293 void __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, umode_t mode
)
2295 struct audit_context
*context
= audit_context();
2297 context
->ipc
.qbytes
= qbytes
;
2298 context
->ipc
.perm_uid
= uid
;
2299 context
->ipc
.perm_gid
= gid
;
2300 context
->ipc
.perm_mode
= mode
;
2301 context
->ipc
.has_perm
= 1;
2304 void __audit_bprm(struct linux_binprm
*bprm
)
2306 struct audit_context
*context
= audit_context();
2308 context
->type
= AUDIT_EXECVE
;
2309 context
->execve
.argc
= bprm
->argc
;
2314 * __audit_socketcall - record audit data for sys_socketcall
2315 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2319 int __audit_socketcall(int nargs
, unsigned long *args
)
2321 struct audit_context
*context
= audit_context();
2323 if (nargs
<= 0 || nargs
> AUDITSC_ARGS
|| !args
)
2325 context
->type
= AUDIT_SOCKETCALL
;
2326 context
->socketcall
.nargs
= nargs
;
2327 memcpy(context
->socketcall
.args
, args
, nargs
* sizeof(unsigned long));
2332 * __audit_fd_pair - record audit data for pipe and socketpair
2333 * @fd1: the first file descriptor
2334 * @fd2: the second file descriptor
2337 void __audit_fd_pair(int fd1
, int fd2
)
2339 struct audit_context
*context
= audit_context();
2340 context
->fds
[0] = fd1
;
2341 context
->fds
[1] = fd2
;
2345 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2346 * @len: data length in user space
2347 * @a: data address in kernel space
2349 * Returns 0 for success or NULL context or < 0 on error.
2351 int __audit_sockaddr(int len
, void *a
)
2353 struct audit_context
*context
= audit_context();
2355 if (!context
->sockaddr
) {
2356 void *p
= kmalloc(sizeof(struct sockaddr_storage
), GFP_KERNEL
);
2359 context
->sockaddr
= p
;
2362 context
->sockaddr_len
= len
;
2363 memcpy(context
->sockaddr
, a
, len
);
2367 void __audit_ptrace(struct task_struct
*t
)
2369 struct audit_context
*context
= audit_context();
2371 context
->target_pid
= task_tgid_nr(t
);
2372 context
->target_auid
= audit_get_loginuid(t
);
2373 context
->target_uid
= task_uid(t
);
2374 context
->target_sessionid
= audit_get_sessionid(t
);
2375 security_task_getsecid(t
, &context
->target_sid
);
2376 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2380 * audit_signal_info_syscall - record signal info for syscalls
2381 * @t: task being signaled
2383 * If the audit subsystem is being terminated, record the task (pid)
2384 * and uid that is doing that.
2386 int audit_signal_info_syscall(struct task_struct
*t
)
2388 struct audit_aux_data_pids
*axp
;
2389 struct audit_context
*ctx
= audit_context();
2390 kuid_t t_uid
= task_uid(t
);
2392 if (!audit_signals
|| audit_dummy_context())
2395 /* optimize the common case by putting first signal recipient directly
2396 * in audit_context */
2397 if (!ctx
->target_pid
) {
2398 ctx
->target_pid
= task_tgid_nr(t
);
2399 ctx
->target_auid
= audit_get_loginuid(t
);
2400 ctx
->target_uid
= t_uid
;
2401 ctx
->target_sessionid
= audit_get_sessionid(t
);
2402 security_task_getsecid(t
, &ctx
->target_sid
);
2403 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2407 axp
= (void *)ctx
->aux_pids
;
2408 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2409 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2413 axp
->d
.type
= AUDIT_OBJ_PID
;
2414 axp
->d
.next
= ctx
->aux_pids
;
2415 ctx
->aux_pids
= (void *)axp
;
2417 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2419 axp
->target_pid
[axp
->pid_count
] = task_tgid_nr(t
);
2420 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2421 axp
->target_uid
[axp
->pid_count
] = t_uid
;
2422 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2423 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2424 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2431 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2432 * @bprm: pointer to the bprm being processed
2433 * @new: the proposed new credentials
2434 * @old: the old credentials
2436 * Simply check if the proc already has the caps given by the file and if not
2437 * store the priv escalation info for later auditing at the end of the syscall
2441 int __audit_log_bprm_fcaps(struct linux_binprm
*bprm
,
2442 const struct cred
*new, const struct cred
*old
)
2444 struct audit_aux_data_bprm_fcaps
*ax
;
2445 struct audit_context
*context
= audit_context();
2446 struct cpu_vfs_cap_data vcaps
;
2448 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2452 ax
->d
.type
= AUDIT_BPRM_FCAPS
;
2453 ax
->d
.next
= context
->aux
;
2454 context
->aux
= (void *)ax
;
2456 get_vfs_caps_from_disk(bprm
->file
->f_path
.dentry
, &vcaps
);
2458 ax
->fcap
.permitted
= vcaps
.permitted
;
2459 ax
->fcap
.inheritable
= vcaps
.inheritable
;
2460 ax
->fcap
.fE
= !!(vcaps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2461 ax
->fcap
.rootid
= vcaps
.rootid
;
2462 ax
->fcap_ver
= (vcaps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2464 ax
->old_pcap
.permitted
= old
->cap_permitted
;
2465 ax
->old_pcap
.inheritable
= old
->cap_inheritable
;
2466 ax
->old_pcap
.effective
= old
->cap_effective
;
2467 ax
->old_pcap
.ambient
= old
->cap_ambient
;
2469 ax
->new_pcap
.permitted
= new->cap_permitted
;
2470 ax
->new_pcap
.inheritable
= new->cap_inheritable
;
2471 ax
->new_pcap
.effective
= new->cap_effective
;
2472 ax
->new_pcap
.ambient
= new->cap_ambient
;
2477 * __audit_log_capset - store information about the arguments to the capset syscall
2478 * @new: the new credentials
2479 * @old: the old (current) credentials
2481 * Record the arguments userspace sent to sys_capset for later printing by the
2482 * audit system if applicable
2484 void __audit_log_capset(const struct cred
*new, const struct cred
*old
)
2486 struct audit_context
*context
= audit_context();
2487 context
->capset
.pid
= task_tgid_nr(current
);
2488 context
->capset
.cap
.effective
= new->cap_effective
;
2489 context
->capset
.cap
.inheritable
= new->cap_effective
;
2490 context
->capset
.cap
.permitted
= new->cap_permitted
;
2491 context
->capset
.cap
.ambient
= new->cap_ambient
;
2492 context
->type
= AUDIT_CAPSET
;
2495 void __audit_mmap_fd(int fd
, int flags
)
2497 struct audit_context
*context
= audit_context();
2498 context
->mmap
.fd
= fd
;
2499 context
->mmap
.flags
= flags
;
2500 context
->type
= AUDIT_MMAP
;
2503 void __audit_log_kern_module(char *name
)
2505 struct audit_context
*context
= audit_context();
2507 context
->module
.name
= kstrdup(name
, GFP_KERNEL
);
2508 if (!context
->module
.name
)
2509 audit_log_lost("out of memory in __audit_log_kern_module");
2510 context
->type
= AUDIT_KERN_MODULE
;
2513 void __audit_fanotify(unsigned int response
)
2515 audit_log(audit_context(), GFP_KERNEL
,
2516 AUDIT_FANOTIFY
, "resp=%u", response
);
2519 void __audit_tk_injoffset(struct timespec64 offset
)
2521 audit_log(audit_context(), GFP_KERNEL
, AUDIT_TIME_INJOFFSET
,
2522 "sec=%lli nsec=%li",
2523 (long long)offset
.tv_sec
, offset
.tv_nsec
);
2526 static void audit_log_ntp_val(const struct audit_ntp_data
*ad
,
2527 const char *op
, enum audit_ntp_type type
)
2529 const struct audit_ntp_val
*val
= &ad
->vals
[type
];
2531 if (val
->newval
== val
->oldval
)
2534 audit_log(audit_context(), GFP_KERNEL
, AUDIT_TIME_ADJNTPVAL
,
2535 "op=%s old=%lli new=%lli", op
, val
->oldval
, val
->newval
);
2538 void __audit_ntp_log(const struct audit_ntp_data
*ad
)
2540 audit_log_ntp_val(ad
, "offset", AUDIT_NTP_OFFSET
);
2541 audit_log_ntp_val(ad
, "freq", AUDIT_NTP_FREQ
);
2542 audit_log_ntp_val(ad
, "status", AUDIT_NTP_STATUS
);
2543 audit_log_ntp_val(ad
, "tai", AUDIT_NTP_TAI
);
2544 audit_log_ntp_val(ad
, "tick", AUDIT_NTP_TICK
);
2545 audit_log_ntp_val(ad
, "adjust", AUDIT_NTP_ADJUST
);
2548 static void audit_log_task(struct audit_buffer
*ab
)
2552 unsigned int sessionid
;
2553 char comm
[sizeof(current
->comm
)];
2555 auid
= audit_get_loginuid(current
);
2556 sessionid
= audit_get_sessionid(current
);
2557 current_uid_gid(&uid
, &gid
);
2559 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2560 from_kuid(&init_user_ns
, auid
),
2561 from_kuid(&init_user_ns
, uid
),
2562 from_kgid(&init_user_ns
, gid
),
2564 audit_log_task_context(ab
);
2565 audit_log_format(ab
, " pid=%d comm=", task_tgid_nr(current
));
2566 audit_log_untrustedstring(ab
, get_task_comm(comm
, current
));
2567 audit_log_d_path_exe(ab
, current
->mm
);
2571 * audit_core_dumps - record information about processes that end abnormally
2572 * @signr: signal value
2574 * If a process ends with a core dump, something fishy is going on and we
2575 * should record the event for investigation.
2577 void audit_core_dumps(long signr
)
2579 struct audit_buffer
*ab
;
2584 if (signr
== SIGQUIT
) /* don't care for those */
2587 ab
= audit_log_start(audit_context(), GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2591 audit_log_format(ab
, " sig=%ld res=1", signr
);
2596 * audit_seccomp - record information about a seccomp action
2597 * @syscall: syscall number
2598 * @signr: signal value
2599 * @code: the seccomp action
2601 * Record the information associated with a seccomp action. Event filtering for
2602 * seccomp actions that are not to be logged is done in seccomp_log().
2603 * Therefore, this function forces auditing independent of the audit_enabled
2604 * and dummy context state because seccomp actions should be logged even when
2605 * audit is not in use.
2607 void audit_seccomp(unsigned long syscall
, long signr
, int code
)
2609 struct audit_buffer
*ab
;
2611 ab
= audit_log_start(audit_context(), GFP_KERNEL
, AUDIT_SECCOMP
);
2615 audit_log_format(ab
, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2616 signr
, syscall_get_arch(current
), syscall
,
2617 in_compat_syscall(), KSTK_EIP(current
), code
);
2621 void audit_seccomp_actions_logged(const char *names
, const char *old_names
,
2624 struct audit_buffer
*ab
;
2629 ab
= audit_log_start(audit_context(), GFP_KERNEL
,
2630 AUDIT_CONFIG_CHANGE
);
2634 audit_log_format(ab
,
2635 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2636 names
, old_names
, res
);
2640 struct list_head
*audit_killed_trees(void)
2642 struct audit_context
*ctx
= audit_context();
2643 if (likely(!ctx
|| !ctx
->in_syscall
))
2645 return &ctx
->killed_trees
;