2 * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
5 * EXYNOS - CPU frequency scaling support for EXYNOS series
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/kernel.h>
13 #include <linux/err.h>
14 #include <linux/clk.h>
16 #include <linux/slab.h>
17 #include <linux/regulator/consumer.h>
18 #include <linux/cpufreq.h>
19 #include <linux/suspend.h>
21 #include <mach/cpufreq.h>
25 static struct exynos_dvfs_info
*exynos_info
;
27 static struct regulator
*arm_regulator
;
28 static struct cpufreq_freqs freqs
;
30 static unsigned int locking_frequency
;
31 static bool frequency_locked
;
32 static DEFINE_MUTEX(cpufreq_lock
);
34 int exynos_verify_speed(struct cpufreq_policy
*policy
)
36 return cpufreq_frequency_table_verify(policy
,
37 exynos_info
->freq_table
);
40 unsigned int exynos_getspeed(unsigned int cpu
)
42 return clk_get_rate(exynos_info
->cpu_clk
) / 1000;
45 static int exynos_target(struct cpufreq_policy
*policy
,
46 unsigned int target_freq
,
47 unsigned int relation
)
49 unsigned int index
, old_index
;
50 unsigned int arm_volt
, safe_arm_volt
= 0;
52 struct cpufreq_frequency_table
*freq_table
= exynos_info
->freq_table
;
53 unsigned int *volt_table
= exynos_info
->volt_table
;
54 unsigned int mpll_freq_khz
= exynos_info
->mpll_freq_khz
;
56 mutex_lock(&cpufreq_lock
);
58 freqs
.old
= policy
->cur
;
60 if (frequency_locked
&& target_freq
!= locking_frequency
) {
65 if (cpufreq_frequency_table_target(policy
, freq_table
,
66 freqs
.old
, relation
, &old_index
)) {
71 if (cpufreq_frequency_table_target(policy
, freq_table
,
72 target_freq
, relation
, &index
)) {
77 freqs
.new = freq_table
[index
].frequency
;
78 freqs
.cpu
= policy
->cpu
;
81 * ARM clock source will be changed APLL to MPLL temporary
82 * To support this level, need to control regulator for
83 * required voltage level
85 if (exynos_info
->need_apll_change
!= NULL
) {
86 if (exynos_info
->need_apll_change(old_index
, index
) &&
87 (freq_table
[index
].frequency
< mpll_freq_khz
) &&
88 (freq_table
[old_index
].frequency
< mpll_freq_khz
))
89 safe_arm_volt
= volt_table
[exynos_info
->pll_safe_idx
];
91 arm_volt
= volt_table
[index
];
93 cpufreq_notify_transition(&freqs
, CPUFREQ_PRECHANGE
);
95 /* When the new frequency is higher than current frequency */
96 if ((freqs
.new > freqs
.old
) && !safe_arm_volt
) {
97 /* Firstly, voltage up to increase frequency */
98 regulator_set_voltage(arm_regulator
, arm_volt
,
103 regulator_set_voltage(arm_regulator
, safe_arm_volt
,
105 if (freqs
.new != freqs
.old
)
106 exynos_info
->set_freq(old_index
, index
);
108 cpufreq_notify_transition(&freqs
, CPUFREQ_POSTCHANGE
);
110 /* When the new frequency is lower than current frequency */
111 if ((freqs
.new < freqs
.old
) ||
112 ((freqs
.new > freqs
.old
) && safe_arm_volt
)) {
113 /* down the voltage after frequency change */
114 regulator_set_voltage(arm_regulator
, arm_volt
,
119 mutex_unlock(&cpufreq_lock
);
125 static int exynos_cpufreq_suspend(struct cpufreq_policy
*policy
)
130 static int exynos_cpufreq_resume(struct cpufreq_policy
*policy
)
137 * exynos_cpufreq_pm_notifier - block CPUFREQ's activities in suspend-resume
143 * While frequency_locked == true, target() ignores every frequency but
144 * locking_frequency. The locking_frequency value is the initial frequency,
145 * which is set by the bootloader. In order to eliminate possible
146 * inconsistency in clock values, we save and restore frequencies during
147 * suspend and resume and block CPUFREQ activities. Note that the standard
148 * suspend/resume cannot be used as they are too deep (syscore_ops) for
151 static int exynos_cpufreq_pm_notifier(struct notifier_block
*notifier
,
152 unsigned long pm_event
, void *v
)
154 struct cpufreq_policy
*policy
= cpufreq_cpu_get(0); /* boot CPU */
155 static unsigned int saved_frequency
;
158 mutex_lock(&cpufreq_lock
);
160 case PM_SUSPEND_PREPARE
:
161 if (frequency_locked
)
164 frequency_locked
= true;
166 if (locking_frequency
) {
167 saved_frequency
= exynos_getspeed(0);
169 mutex_unlock(&cpufreq_lock
);
170 exynos_target(policy
, locking_frequency
,
172 mutex_lock(&cpufreq_lock
);
176 case PM_POST_SUSPEND
:
177 if (saved_frequency
) {
179 * While frequency_locked, only locking_frequency
180 * is valid for target(). In order to use
181 * saved_frequency while keeping frequency_locked,
182 * we temporarly overwrite locking_frequency.
184 temp
= locking_frequency
;
185 locking_frequency
= saved_frequency
;
187 mutex_unlock(&cpufreq_lock
);
188 exynos_target(policy
, locking_frequency
,
190 mutex_lock(&cpufreq_lock
);
192 locking_frequency
= temp
;
194 frequency_locked
= false;
198 mutex_unlock(&cpufreq_lock
);
203 static struct notifier_block exynos_cpufreq_nb
= {
204 .notifier_call
= exynos_cpufreq_pm_notifier
,
207 static int exynos_cpufreq_cpu_init(struct cpufreq_policy
*policy
)
209 policy
->cur
= policy
->min
= policy
->max
= exynos_getspeed(policy
->cpu
);
211 cpufreq_frequency_table_get_attr(exynos_info
->freq_table
, policy
->cpu
);
213 locking_frequency
= exynos_getspeed(0);
215 /* set the transition latency value */
216 policy
->cpuinfo
.transition_latency
= 100000;
219 * EXYNOS4 multi-core processors has 2 cores
220 * that the frequency cannot be set independently.
221 * Each cpu is bound to the same speed.
222 * So the affected cpu is all of the cpus.
224 if (num_online_cpus() == 1) {
225 cpumask_copy(policy
->related_cpus
, cpu_possible_mask
);
226 cpumask_copy(policy
->cpus
, cpu_online_mask
);
228 cpumask_setall(policy
->cpus
);
231 return cpufreq_frequency_table_cpuinfo(policy
, exynos_info
->freq_table
);
234 static struct cpufreq_driver exynos_driver
= {
235 .flags
= CPUFREQ_STICKY
,
236 .verify
= exynos_verify_speed
,
237 .target
= exynos_target
,
238 .get
= exynos_getspeed
,
239 .init
= exynos_cpufreq_cpu_init
,
240 .name
= "exynos_cpufreq",
242 .suspend
= exynos_cpufreq_suspend
,
243 .resume
= exynos_cpufreq_resume
,
247 static int __init
exynos_cpufreq_init(void)
251 exynos_info
= kzalloc(sizeof(struct exynos_dvfs_info
), GFP_KERNEL
);
255 if (soc_is_exynos4210())
256 ret
= exynos4210_cpufreq_init(exynos_info
);
257 else if (soc_is_exynos4212() || soc_is_exynos4412())
258 ret
= exynos4x12_cpufreq_init(exynos_info
);
259 else if (soc_is_exynos5250())
260 ret
= exynos5250_cpufreq_init(exynos_info
);
262 pr_err("%s: CPU type not found\n", __func__
);
267 if (exynos_info
->set_freq
== NULL
) {
268 pr_err("%s: No set_freq function (ERR)\n", __func__
);
272 arm_regulator
= regulator_get(NULL
, "vdd_arm");
273 if (IS_ERR(arm_regulator
)) {
274 pr_err("%s: failed to get resource vdd_arm\n", __func__
);
278 register_pm_notifier(&exynos_cpufreq_nb
);
280 if (cpufreq_register_driver(&exynos_driver
)) {
281 pr_err("%s: failed to register cpufreq driver\n", __func__
);
287 unregister_pm_notifier(&exynos_cpufreq_nb
);
289 if (!IS_ERR(arm_regulator
))
290 regulator_put(arm_regulator
);
293 pr_debug("%s: failed initialization\n", __func__
);
296 late_initcall(exynos_cpufreq_init
);