2 * This is the Launcher code, a simple program which lays out the "physical"
3 * memory for the new Guest by mapping the kernel image and the virtual
4 * devices, then opens /dev/lguest to tell the kernel about the Guest and
7 #define _LARGEFILE64_SOURCE
17 #include <sys/param.h>
18 #include <sys/types.h>
21 #include <sys/eventfd.h>
26 #include <sys/socket.h>
27 #include <sys/ioctl.h>
30 #include <netinet/in.h>
32 #include <linux/sockios.h>
33 #include <linux/if_tun.h>
45 #include <linux/pci_regs.h>
47 #ifndef VIRTIO_F_ANY_LAYOUT
48 #define VIRTIO_F_ANY_LAYOUT 27
52 * We can ignore the 43 include files we need for this program, but I do want
53 * to draw attention to the use of kernel-style types.
55 * As Linus said, "C is a Spartan language, and so should your naming be." I
56 * like these abbreviations, so we define them here. Note that u64 is always
57 * unsigned long long, which works on all Linux systems: this means that we can
58 * use %llu in printf for any u64.
60 typedef unsigned long long u64
;
66 #define VIRTIO_CONFIG_NO_LEGACY
67 #define VIRTIO_PCI_NO_LEGACY
68 #define VIRTIO_BLK_NO_LEGACY
69 #define VIRTIO_NET_NO_LEGACY
71 /* Use in-kernel ones, which defines VIRTIO_F_VERSION_1 */
72 #include "../../include/uapi/linux/virtio_config.h"
73 #include "../../include/uapi/linux/virtio_net.h"
74 #include "../../include/uapi/linux/virtio_blk.h"
75 #include "../../include/uapi/linux/virtio_console.h"
76 #include "../../include/uapi/linux/virtio_rng.h"
77 #include <linux/virtio_ring.h>
78 #include "../../include/uapi/linux/virtio_pci.h"
79 #include <asm/bootparam.h>
80 #include "../../include/linux/lguest_launcher.h"
82 #define BRIDGE_PFX "bridge:"
84 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
86 /* We can have up to 256 pages for devices. */
87 #define DEVICE_PAGES 256
88 /* This will occupy 3 pages: it must be a power of 2. */
89 #define VIRTQUEUE_NUM 256
92 * verbose is both a global flag and a macro. The C preprocessor allows
93 * this, and although I wouldn't recommend it, it works quite nicely here.
96 #define verbose(args...) \
97 do { if (verbose) printf(args); } while(0)
100 /* The pointer to the start of guest memory. */
101 static void *guest_base
;
102 /* The maximum guest physical address allowed, and maximum possible. */
103 static unsigned long guest_limit
, guest_max
, guest_mmio
;
104 /* The /dev/lguest file descriptor. */
105 static int lguest_fd
;
107 /* a per-cpu variable indicating whose vcpu is currently running */
108 static unsigned int __thread cpu_id
;
110 /* 5 bit device number in the PCI_CONFIG_ADDR => 32 only */
111 #define MAX_PCI_DEVICES 32
113 /* This is our list of devices. */
115 /* Counter to assign interrupt numbers. */
116 unsigned int next_irq
;
118 /* Counter to print out convenient device numbers. */
119 unsigned int device_num
;
122 struct device
*pci
[MAX_PCI_DEVICES
];
125 /* The list of Guest devices, based on command line arguments. */
126 static struct device_list devices
;
128 struct virtio_pci_cfg_cap
{
129 struct virtio_pci_cap cap
;
130 u32 pci_cfg_data
; /* Data for BAR access. */
133 struct virtio_pci_mmio
{
134 struct virtio_pci_common_cfg cfg
;
138 /* Device-specific configuration follows this. */
141 /* This is the layout (little-endian) of the PCI config space. */
143 u16 vendor_id
, device_id
;
145 u8 revid
, prog_if
, subclass
, class;
146 u8 cacheline_size
, lat_timer
, header_type
, bist
;
149 u16 subsystem_vendor_id
, subsystem_device_id
;
150 u32 expansion_rom_addr
;
151 u8 capabilities
, reserved1
[3];
153 u8 irq_line
, irq_pin
, min_grant
, max_latency
;
155 /* Now, this is the linked capability list. */
156 struct virtio_pci_cap common
;
157 struct virtio_pci_notify_cap notify
;
158 struct virtio_pci_cap isr
;
159 struct virtio_pci_cap device
;
160 struct virtio_pci_cfg_cap cfg_access
;
163 /* The device structure describes a single device. */
165 /* The name of this device, for --verbose. */
168 /* Any queues attached to this device */
169 struct virtqueue
*vq
;
171 /* Is it operational */
174 /* Has it written FEATURES_OK but not re-checked it? */
175 bool wrote_features_ok
;
177 /* PCI configuration */
179 struct pci_config config
;
180 u32 config_words
[sizeof(struct pci_config
) / sizeof(u32
)];
183 /* Features we offer, and those accepted. */
184 u64 features
, features_accepted
;
186 /* Device-specific config hangs off the end of this. */
187 struct virtio_pci_mmio
*mmio
;
189 /* PCI MMIO resources (all in BAR0) */
193 /* Device-specific data. */
197 /* The virtqueue structure describes a queue attached to a device. */
199 struct virtqueue
*next
;
201 /* Which device owns me. */
204 /* Name for printing errors. */
207 /* The actual ring of buffers. */
210 /* The information about this virtqueue (we only use queue_size on) */
211 struct virtio_pci_common_cfg pci_config
;
213 /* Last available index we saw. */
216 /* How many are used since we sent last irq? */
217 unsigned int pending_used
;
219 /* Eventfd where Guest notifications arrive. */
222 /* Function for the thread which is servicing this virtqueue. */
223 void (*service
)(struct virtqueue
*vq
);
227 /* Remember the arguments to the program so we can "reboot" */
228 static char **main_args
;
230 /* The original tty settings to restore on exit. */
231 static struct termios orig_term
;
234 * We have to be careful with barriers: our devices are all run in separate
235 * threads and so we need to make sure that changes visible to the Guest happen
238 #define wmb() __asm__ __volatile__("" : : : "memory")
239 #define rmb() __asm__ __volatile__("lock; addl $0,0(%%esp)" : : : "memory")
240 #define mb() __asm__ __volatile__("lock; addl $0,0(%%esp)" : : : "memory")
242 /* Wrapper for the last available index. Makes it easier to change. */
243 #define lg_last_avail(vq) ((vq)->last_avail_idx)
246 * The virtio configuration space is defined to be little-endian. x86 is
247 * little-endian too, but it's nice to be explicit so we have these helpers.
249 #define cpu_to_le16(v16) (v16)
250 #define cpu_to_le32(v32) (v32)
251 #define cpu_to_le64(v64) (v64)
252 #define le16_to_cpu(v16) (v16)
253 #define le32_to_cpu(v32) (v32)
254 #define le64_to_cpu(v64) (v64)
257 * A real device would ignore weird/non-compliant driver behaviour. We
258 * stop and flag it, to help debugging Linux problems.
260 #define bad_driver(d, fmt, ...) \
261 errx(1, "%s: bad driver: " fmt, (d)->name, ## __VA_ARGS__)
262 #define bad_driver_vq(vq, fmt, ...) \
263 errx(1, "%s vq %s: bad driver: " fmt, (vq)->dev->name, \
264 vq->name, ## __VA_ARGS__)
266 /* Is this iovec empty? */
267 static bool iov_empty(const struct iovec iov
[], unsigned int num_iov
)
271 for (i
= 0; i
< num_iov
; i
++)
277 /* Take len bytes from the front of this iovec. */
278 static void iov_consume(struct device
*d
,
279 struct iovec iov
[], unsigned num_iov
,
280 void *dest
, unsigned len
)
284 for (i
= 0; i
< num_iov
; i
++) {
287 used
= iov
[i
].iov_len
< len
? iov
[i
].iov_len
: len
;
289 memcpy(dest
, iov
[i
].iov_base
, used
);
292 iov
[i
].iov_base
+= used
;
293 iov
[i
].iov_len
-= used
;
297 bad_driver(d
, "iovec too short!");
301 * The Launcher code itself takes us out into userspace, that scary place where
302 * pointers run wild and free! Unfortunately, like most userspace programs,
303 * it's quite boring (which is why everyone likes to hack on the kernel!).
304 * Perhaps if you make up an Lguest Drinking Game at this point, it will get
305 * you through this section. Or, maybe not.
307 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
308 * memory and stores it in "guest_base". In other words, Guest physical ==
309 * Launcher virtual with an offset.
311 * This can be tough to get your head around, but usually it just means that we
312 * use these trivial conversion functions when the Guest gives us its
313 * "physical" addresses:
315 static void *from_guest_phys(unsigned long addr
)
317 return guest_base
+ addr
;
320 static unsigned long to_guest_phys(const void *addr
)
322 return (addr
- guest_base
);
326 * Loading the Kernel.
328 * We start with couple of simple helper routines. open_or_die() avoids
329 * error-checking code cluttering the callers:
331 static int open_or_die(const char *name
, int flags
)
333 int fd
= open(name
, flags
);
335 err(1, "Failed to open %s", name
);
339 /* map_zeroed_pages() takes a number of pages. */
340 static void *map_zeroed_pages(unsigned int num
)
342 int fd
= open_or_die("/dev/zero", O_RDONLY
);
346 * We use a private mapping (ie. if we write to the page, it will be
347 * copied). We allocate an extra two pages PROT_NONE to act as guard
348 * pages against read/write attempts that exceed allocated space.
350 addr
= mmap(NULL
, getpagesize() * (num
+2),
351 PROT_NONE
, MAP_PRIVATE
, fd
, 0);
353 if (addr
== MAP_FAILED
)
354 err(1, "Mmapping %u pages of /dev/zero", num
);
356 if (mprotect(addr
+ getpagesize(), getpagesize() * num
,
357 PROT_READ
|PROT_WRITE
) == -1)
358 err(1, "mprotect rw %u pages failed", num
);
361 * One neat mmap feature is that you can close the fd, and it
366 /* Return address after PROT_NONE page */
367 return addr
+ getpagesize();
370 /* Get some bytes which won't be mapped into the guest. */
371 static unsigned long get_mmio_region(size_t size
)
373 unsigned long addr
= guest_mmio
;
379 /* Size has to be a power of 2 (and multiple of 16) */
380 for (i
= 1; i
< size
; i
<<= 1);
388 * This routine is used to load the kernel or initrd. It tries mmap, but if
389 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
390 * it falls back to reading the memory in.
392 static void map_at(int fd
, void *addr
, unsigned long offset
, unsigned long len
)
397 * We map writable even though for some segments are marked read-only.
398 * The kernel really wants to be writable: it patches its own
401 * MAP_PRIVATE means that the page won't be copied until a write is
402 * done to it. This allows us to share untouched memory between
405 if (mmap(addr
, len
, PROT_READ
|PROT_WRITE
,
406 MAP_FIXED
|MAP_PRIVATE
, fd
, offset
) != MAP_FAILED
)
409 /* pread does a seek and a read in one shot: saves a few lines. */
410 r
= pread(fd
, addr
, len
, offset
);
412 err(1, "Reading offset %lu len %lu gave %zi", offset
, len
, r
);
416 * This routine takes an open vmlinux image, which is in ELF, and maps it into
417 * the Guest memory. ELF = Embedded Linking Format, which is the format used
418 * by all modern binaries on Linux including the kernel.
420 * The ELF headers give *two* addresses: a physical address, and a virtual
421 * address. We use the physical address; the Guest will map itself to the
424 * We return the starting address.
426 static unsigned long map_elf(int elf_fd
, const Elf32_Ehdr
*ehdr
)
428 Elf32_Phdr phdr
[ehdr
->e_phnum
];
432 * Sanity checks on the main ELF header: an x86 executable with a
433 * reasonable number of correctly-sized program headers.
435 if (ehdr
->e_type
!= ET_EXEC
436 || ehdr
->e_machine
!= EM_386
437 || ehdr
->e_phentsize
!= sizeof(Elf32_Phdr
)
438 || ehdr
->e_phnum
< 1 || ehdr
->e_phnum
> 65536U/sizeof(Elf32_Phdr
))
439 errx(1, "Malformed elf header");
442 * An ELF executable contains an ELF header and a number of "program"
443 * headers which indicate which parts ("segments") of the program to
447 /* We read in all the program headers at once: */
448 if (lseek(elf_fd
, ehdr
->e_phoff
, SEEK_SET
) < 0)
449 err(1, "Seeking to program headers");
450 if (read(elf_fd
, phdr
, sizeof(phdr
)) != sizeof(phdr
))
451 err(1, "Reading program headers");
454 * Try all the headers: there are usually only three. A read-only one,
455 * a read-write one, and a "note" section which we don't load.
457 for (i
= 0; i
< ehdr
->e_phnum
; i
++) {
458 /* If this isn't a loadable segment, we ignore it */
459 if (phdr
[i
].p_type
!= PT_LOAD
)
462 verbose("Section %i: size %i addr %p\n",
463 i
, phdr
[i
].p_memsz
, (void *)phdr
[i
].p_paddr
);
465 /* We map this section of the file at its physical address. */
466 map_at(elf_fd
, from_guest_phys(phdr
[i
].p_paddr
),
467 phdr
[i
].p_offset
, phdr
[i
].p_filesz
);
470 /* The entry point is given in the ELF header. */
471 return ehdr
->e_entry
;
475 * A bzImage, unlike an ELF file, is not meant to be loaded. You're supposed
476 * to jump into it and it will unpack itself. We used to have to perform some
477 * hairy magic because the unpacking code scared me.
479 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
480 * a small patch to jump over the tricky bits in the Guest, so now we just read
481 * the funky header so we know where in the file to load, and away we go!
483 static unsigned long load_bzimage(int fd
)
485 struct boot_params boot
;
487 /* Modern bzImages get loaded at 1M. */
488 void *p
= from_guest_phys(0x100000);
491 * Go back to the start of the file and read the header. It should be
492 * a Linux boot header (see Documentation/x86/boot.txt)
494 lseek(fd
, 0, SEEK_SET
);
495 read(fd
, &boot
, sizeof(boot
));
497 /* Inside the setup_hdr, we expect the magic "HdrS" */
498 if (memcmp(&boot
.hdr
.header
, "HdrS", 4) != 0)
499 errx(1, "This doesn't look like a bzImage to me");
501 /* Skip over the extra sectors of the header. */
502 lseek(fd
, (boot
.hdr
.setup_sects
+1) * 512, SEEK_SET
);
504 /* Now read everything into memory. in nice big chunks. */
505 while ((r
= read(fd
, p
, 65536)) > 0)
508 /* Finally, code32_start tells us where to enter the kernel. */
509 return boot
.hdr
.code32_start
;
513 * Loading the kernel is easy when it's a "vmlinux", but most kernels
514 * come wrapped up in the self-decompressing "bzImage" format. With a little
515 * work, we can load those, too.
517 static unsigned long load_kernel(int fd
)
521 /* Read in the first few bytes. */
522 if (read(fd
, &hdr
, sizeof(hdr
)) != sizeof(hdr
))
523 err(1, "Reading kernel");
525 /* If it's an ELF file, it starts with "\177ELF" */
526 if (memcmp(hdr
.e_ident
, ELFMAG
, SELFMAG
) == 0)
527 return map_elf(fd
, &hdr
);
529 /* Otherwise we assume it's a bzImage, and try to load it. */
530 return load_bzimage(fd
);
534 * This is a trivial little helper to align pages. Andi Kleen hated it because
535 * it calls getpagesize() twice: "it's dumb code."
537 * Kernel guys get really het up about optimization, even when it's not
538 * necessary. I leave this code as a reaction against that.
540 static inline unsigned long page_align(unsigned long addr
)
542 /* Add upwards and truncate downwards. */
543 return ((addr
+ getpagesize()-1) & ~(getpagesize()-1));
547 * An "initial ram disk" is a disk image loaded into memory along with the
548 * kernel which the kernel can use to boot from without needing any drivers.
549 * Most distributions now use this as standard: the initrd contains the code to
550 * load the appropriate driver modules for the current machine.
552 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
553 * kernels. He sent me this (and tells me when I break it).
555 static unsigned long load_initrd(const char *name
, unsigned long mem
)
561 ifd
= open_or_die(name
, O_RDONLY
);
562 /* fstat() is needed to get the file size. */
563 if (fstat(ifd
, &st
) < 0)
564 err(1, "fstat() on initrd '%s'", name
);
567 * We map the initrd at the top of memory, but mmap wants it to be
568 * page-aligned, so we round the size up for that.
570 len
= page_align(st
.st_size
);
571 map_at(ifd
, from_guest_phys(mem
- len
), 0, st
.st_size
);
573 * Once a file is mapped, you can close the file descriptor. It's a
574 * little odd, but quite useful.
577 verbose("mapped initrd %s size=%lu @ %p\n", name
, len
, (void*)mem
-len
);
579 /* We return the initrd size. */
585 * Simple routine to roll all the commandline arguments together with spaces
588 static void concat(char *dst
, char *args
[])
590 unsigned int i
, len
= 0;
592 for (i
= 0; args
[i
]; i
++) {
594 strcat(dst
+len
, " ");
597 strcpy(dst
+len
, args
[i
]);
598 len
+= strlen(args
[i
]);
600 /* In case it's empty. */
605 * This is where we actually tell the kernel to initialize the Guest. We
606 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
607 * the base of Guest "physical" memory, the top physical page to allow and the
608 * entry point for the Guest.
610 static void tell_kernel(unsigned long start
)
612 unsigned long args
[] = { LHREQ_INITIALIZE
,
613 (unsigned long)guest_base
,
614 guest_limit
/ getpagesize(), start
,
615 (guest_mmio
+getpagesize()-1) / getpagesize() };
616 verbose("Guest: %p - %p (%#lx, MMIO %#lx)\n",
617 guest_base
, guest_base
+ guest_limit
,
618 guest_limit
, guest_mmio
);
619 lguest_fd
= open_or_die("/dev/lguest", O_RDWR
);
620 if (write(lguest_fd
, args
, sizeof(args
)) < 0)
621 err(1, "Writing to /dev/lguest");
628 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
629 * We need to make sure it's not trying to reach into the Launcher itself, so
630 * we have a convenient routine which checks it and exits with an error message
631 * if something funny is going on:
633 static void *_check_pointer(struct device
*d
,
634 unsigned long addr
, unsigned int size
,
638 * Check if the requested address and size exceeds the allocated memory,
639 * or addr + size wraps around.
641 if ((addr
+ size
) > guest_limit
|| (addr
+ size
) < addr
)
642 bad_driver(d
, "%s:%i: Invalid address %#lx",
643 __FILE__
, line
, addr
);
645 * We return a pointer for the caller's convenience, now we know it's
648 return from_guest_phys(addr
);
650 /* A macro which transparently hands the line number to the real function. */
651 #define check_pointer(d,addr,size) _check_pointer(d, addr, size, __LINE__)
654 * Each buffer in the virtqueues is actually a chain of descriptors. This
655 * function returns the next descriptor in the chain, or vq->vring.num if we're
658 static unsigned next_desc(struct device
*d
, struct vring_desc
*desc
,
659 unsigned int i
, unsigned int max
)
663 /* If this descriptor says it doesn't chain, we're done. */
664 if (!(desc
[i
].flags
& VRING_DESC_F_NEXT
))
667 /* Check they're not leading us off end of descriptors. */
669 /* Make sure compiler knows to grab that: we don't want it changing! */
673 bad_driver(d
, "Desc next is %u", next
);
679 * This actually sends the interrupt for this virtqueue, if we've used a
682 static void trigger_irq(struct virtqueue
*vq
)
684 unsigned long buf
[] = { LHREQ_IRQ
, vq
->dev
->config
.irq_line
};
686 /* Don't inform them if nothing used. */
687 if (!vq
->pending_used
)
689 vq
->pending_used
= 0;
694 * If the VIRTIO_F_EVENT_IDX feature bit is not negotiated:
695 * The driver MUST set flags to 0 or 1.
697 if (vq
->vring
.avail
->flags
> 1)
698 bad_driver_vq(vq
, "avail->flags = %u\n", vq
->vring
.avail
->flags
);
703 * If the VIRTIO_F_EVENT_IDX feature bit is not negotiated:
705 * - The device MUST ignore the used_event value.
706 * - After the device writes a descriptor index into the used ring:
707 * - If flags is 1, the device SHOULD NOT send an interrupt.
708 * - If flags is 0, the device MUST send an interrupt.
710 if (vq
->vring
.avail
->flags
& VRING_AVAIL_F_NO_INTERRUPT
) {
717 * If MSI-X capability is disabled, the device MUST set the Queue
718 * Interrupt bit in ISR status before sending a virtqueue notification
721 vq
->dev
->mmio
->isr
= 0x1;
723 /* Send the Guest an interrupt tell them we used something up. */
724 if (write(lguest_fd
, buf
, sizeof(buf
)) != 0)
725 err(1, "Triggering irq %i", vq
->dev
->config
.irq_line
);
729 * This looks in the virtqueue for the first available buffer, and converts
730 * it to an iovec for convenient access. Since descriptors consist of some
731 * number of output then some number of input descriptors, it's actually two
732 * iovecs, but we pack them into one and note how many of each there were.
734 * This function waits if necessary, and returns the descriptor number found.
736 static unsigned wait_for_vq_desc(struct virtqueue
*vq
,
738 unsigned int *out_num
, unsigned int *in_num
)
740 unsigned int i
, head
, max
;
741 struct vring_desc
*desc
;
742 u16 last_avail
= lg_last_avail(vq
);
747 * The driver MUST handle spurious interrupts from the device.
749 * That's why this is a while loop.
752 /* There's nothing available? */
753 while (last_avail
== vq
->vring
.avail
->idx
) {
757 * Since we're about to sleep, now is a good time to tell the
758 * Guest about what we've used up to now.
762 /* OK, now we need to know about added descriptors. */
763 vq
->vring
.used
->flags
&= ~VRING_USED_F_NO_NOTIFY
;
766 * They could have slipped one in as we were doing that: make
767 * sure it's written, then check again.
770 if (last_avail
!= vq
->vring
.avail
->idx
) {
771 vq
->vring
.used
->flags
|= VRING_USED_F_NO_NOTIFY
;
775 /* Nothing new? Wait for eventfd to tell us they refilled. */
776 if (read(vq
->eventfd
, &event
, sizeof(event
)) != sizeof(event
))
777 errx(1, "Event read failed?");
779 /* We don't need to be notified again. */
780 vq
->vring
.used
->flags
|= VRING_USED_F_NO_NOTIFY
;
783 /* Check it isn't doing very strange things with descriptor numbers. */
784 if ((u16
)(vq
->vring
.avail
->idx
- last_avail
) > vq
->vring
.num
)
785 bad_driver_vq(vq
, "Guest moved used index from %u to %u",
786 last_avail
, vq
->vring
.avail
->idx
);
789 * Make sure we read the descriptor number *after* we read the ring
790 * update; don't let the cpu or compiler change the order.
795 * Grab the next descriptor number they're advertising, and increment
796 * the index we've seen.
798 head
= vq
->vring
.avail
->ring
[last_avail
% vq
->vring
.num
];
801 /* If their number is silly, that's a fatal mistake. */
802 if (head
>= vq
->vring
.num
)
803 bad_driver_vq(vq
, "Guest says index %u is available", head
);
805 /* When we start there are none of either input nor output. */
806 *out_num
= *in_num
= 0;
809 desc
= vq
->vring
.desc
;
813 * We have to read the descriptor after we read the descriptor number,
814 * but there's a data dependency there so the CPU shouldn't reorder
815 * that: no rmb() required.
820 * If this is an indirect entry, then this buffer contains a
821 * descriptor table which we handle as if it's any normal
824 if (desc
[i
].flags
& VRING_DESC_F_INDIRECT
) {
827 * The driver MUST NOT set the VIRTQ_DESC_F_INDIRECT
828 * flag unless the VIRTIO_F_INDIRECT_DESC feature was
831 if (!(vq
->dev
->features_accepted
&
832 (1<<VIRTIO_RING_F_INDIRECT_DESC
)))
833 bad_driver_vq(vq
, "vq indirect not negotiated");
838 * The driver MUST NOT set the VIRTQ_DESC_F_INDIRECT
839 * flag within an indirect descriptor (ie. only one
840 * table per descriptor).
842 if (desc
!= vq
->vring
.desc
)
843 bad_driver_vq(vq
, "Indirect within indirect");
846 * Proposed update VIRTIO-134 spells this out:
848 * A driver MUST NOT set both VIRTQ_DESC_F_INDIRECT
849 * and VIRTQ_DESC_F_NEXT in flags.
851 if (desc
[i
].flags
& VRING_DESC_F_NEXT
)
852 bad_driver_vq(vq
, "indirect and next together");
854 if (desc
[i
].len
% sizeof(struct vring_desc
))
856 "Invalid size for indirect table");
860 * The device MUST ignore the write-only flag
861 * (flags&VIRTQ_DESC_F_WRITE) in the descriptor that
862 * refers to an indirect table.
864 * We ignore it here: :)
867 max
= desc
[i
].len
/ sizeof(struct vring_desc
);
868 desc
= check_pointer(vq
->dev
, desc
[i
].addr
, desc
[i
].len
);
873 * A driver MUST NOT create a descriptor chain longer
874 * than the Queue Size of the device.
876 if (max
> vq
->pci_config
.queue_size
)
878 "indirect has too many entries");
881 /* Grab the first descriptor, and check it's OK. */
882 iov
[*out_num
+ *in_num
].iov_len
= desc
[i
].len
;
883 iov
[*out_num
+ *in_num
].iov_base
884 = check_pointer(vq
->dev
, desc
[i
].addr
, desc
[i
].len
);
885 /* If this is an input descriptor, increment that count. */
886 if (desc
[i
].flags
& VRING_DESC_F_WRITE
)
890 * If it's an output descriptor, they're all supposed
891 * to come before any input descriptors.
895 "Descriptor has out after in");
899 /* If we've got too many, that implies a descriptor loop. */
900 if (*out_num
+ *in_num
> max
)
901 bad_driver_vq(vq
, "Looped descriptor");
902 } while ((i
= next_desc(vq
->dev
, desc
, i
, max
)) != max
);
908 * After we've used one of their buffers, we tell the Guest about it. Sometime
909 * later we'll want to send them an interrupt using trigger_irq(); note that
910 * wait_for_vq_desc() does that for us if it has to wait.
912 static void add_used(struct virtqueue
*vq
, unsigned int head
, int len
)
914 struct vring_used_elem
*used
;
917 * The virtqueue contains a ring of used buffers. Get a pointer to the
918 * next entry in that used ring.
920 used
= &vq
->vring
.used
->ring
[vq
->vring
.used
->idx
% vq
->vring
.num
];
923 /* Make sure buffer is written before we update index. */
925 vq
->vring
.used
->idx
++;
929 /* And here's the combo meal deal. Supersize me! */
930 static void add_used_and_trigger(struct virtqueue
*vq
, unsigned head
, int len
)
932 add_used(vq
, head
, len
);
939 * We associate some data with the console for our exit hack.
941 struct console_abort
{
942 /* How many times have they hit ^C? */
944 /* When did they start? */
945 struct timeval start
;
948 /* This is the routine which handles console input (ie. stdin). */
949 static void console_input(struct virtqueue
*vq
)
952 unsigned int head
, in_num
, out_num
;
953 struct console_abort
*abort
= vq
->dev
->priv
;
954 struct iovec iov
[vq
->vring
.num
];
956 /* Make sure there's a descriptor available. */
957 head
= wait_for_vq_desc(vq
, iov
, &out_num
, &in_num
);
959 bad_driver_vq(vq
, "Output buffers in console in queue?");
961 /* Read into it. This is where we usually wait. */
962 len
= readv(STDIN_FILENO
, iov
, in_num
);
964 /* Ran out of input? */
965 warnx("Failed to get console input, ignoring console.");
967 * For simplicity, dying threads kill the whole Launcher. So
974 /* Tell the Guest we used a buffer. */
975 add_used_and_trigger(vq
, head
, len
);
978 * Three ^C within one second? Exit.
980 * This is such a hack, but works surprisingly well. Each ^C has to
981 * be in a buffer by itself, so they can't be too fast. But we check
982 * that we get three within about a second, so they can't be too
985 if (len
!= 1 || ((char *)iov
[0].iov_base
)[0] != 3) {
991 if (abort
->count
== 1)
992 gettimeofday(&abort
->start
, NULL
);
993 else if (abort
->count
== 3) {
995 gettimeofday(&now
, NULL
);
996 /* Kill all Launcher processes with SIGINT, like normal ^C */
997 if (now
.tv_sec
<= abort
->start
.tv_sec
+1)
1003 /* This is the routine which handles console output (ie. stdout). */
1004 static void console_output(struct virtqueue
*vq
)
1006 unsigned int head
, out
, in
;
1007 struct iovec iov
[vq
->vring
.num
];
1009 /* We usually wait in here, for the Guest to give us something. */
1010 head
= wait_for_vq_desc(vq
, iov
, &out
, &in
);
1012 bad_driver_vq(vq
, "Input buffers in console output queue?");
1014 /* writev can return a partial write, so we loop here. */
1015 while (!iov_empty(iov
, out
)) {
1016 int len
= writev(STDOUT_FILENO
, iov
, out
);
1018 warn("Write to stdout gave %i (%d)", len
, errno
);
1021 iov_consume(vq
->dev
, iov
, out
, NULL
, len
);
1025 * We're finished with that buffer: if we're going to sleep,
1026 * wait_for_vq_desc() will prod the Guest with an interrupt.
1028 add_used(vq
, head
, 0);
1034 * Handling output for network is also simple: we get all the output buffers
1035 * and write them to /dev/net/tun.
1041 static void net_output(struct virtqueue
*vq
)
1043 struct net_info
*net_info
= vq
->dev
->priv
;
1044 unsigned int head
, out
, in
;
1045 struct iovec iov
[vq
->vring
.num
];
1047 /* We usually wait in here for the Guest to give us a packet. */
1048 head
= wait_for_vq_desc(vq
, iov
, &out
, &in
);
1050 bad_driver_vq(vq
, "Input buffers in net output queue?");
1052 * Send the whole thing through to /dev/net/tun. It expects the exact
1053 * same format: what a coincidence!
1055 if (writev(net_info
->tunfd
, iov
, out
) < 0)
1056 warnx("Write to tun failed (%d)?", errno
);
1059 * Done with that one; wait_for_vq_desc() will send the interrupt if
1060 * all packets are processed.
1062 add_used(vq
, head
, 0);
1066 * Handling network input is a bit trickier, because I've tried to optimize it.
1068 * First we have a helper routine which tells is if from this file descriptor
1069 * (ie. the /dev/net/tun device) will block:
1071 static bool will_block(int fd
)
1074 struct timeval zero
= { 0, 0 };
1077 return select(fd
+1, &fdset
, NULL
, NULL
, &zero
) != 1;
1081 * This handles packets coming in from the tun device to our Guest. Like all
1082 * service routines, it gets called again as soon as it returns, so you don't
1083 * see a while(1) loop here.
1085 static void net_input(struct virtqueue
*vq
)
1088 unsigned int head
, out
, in
;
1089 struct iovec iov
[vq
->vring
.num
];
1090 struct net_info
*net_info
= vq
->dev
->priv
;
1093 * Get a descriptor to write an incoming packet into. This will also
1094 * send an interrupt if they're out of descriptors.
1096 head
= wait_for_vq_desc(vq
, iov
, &out
, &in
);
1098 bad_driver_vq(vq
, "Output buffers in net input queue?");
1101 * If it looks like we'll block reading from the tun device, send them
1104 if (vq
->pending_used
&& will_block(net_info
->tunfd
))
1108 * Read in the packet. This is where we normally wait (when there's no
1109 * incoming network traffic).
1111 len
= readv(net_info
->tunfd
, iov
, in
);
1113 warn("Failed to read from tun (%d).", errno
);
1116 * Mark that packet buffer as used, but don't interrupt here. We want
1117 * to wait until we've done as much work as we can.
1119 add_used(vq
, head
, len
);
1123 /* This is the helper to create threads: run the service routine in a loop. */
1124 static int do_thread(void *_vq
)
1126 struct virtqueue
*vq
= _vq
;
1134 * When a child dies, we kill our entire process group with SIGTERM. This
1135 * also has the side effect that the shell restores the console for us!
1137 static void kill_launcher(int signal
)
1142 static void reset_vq_pci_config(struct virtqueue
*vq
)
1144 vq
->pci_config
.queue_size
= VIRTQUEUE_NUM
;
1145 vq
->pci_config
.queue_enable
= 0;
1148 static void reset_device(struct device
*dev
)
1150 struct virtqueue
*vq
;
1152 verbose("Resetting device %s\n", dev
->name
);
1154 /* Clear any features they've acked. */
1155 dev
->features_accepted
= 0;
1157 /* We're going to be explicitly killing threads, so ignore them. */
1158 signal(SIGCHLD
, SIG_IGN
);
1163 * The device MUST present a 0 in queue_enable on reset.
1165 * This means we set it here, and reset the saved ones in every vq.
1167 dev
->mmio
->cfg
.queue_enable
= 0;
1169 /* Get rid of the virtqueue threads */
1170 for (vq
= dev
->vq
; vq
; vq
= vq
->next
) {
1171 vq
->last_avail_idx
= 0;
1172 reset_vq_pci_config(vq
);
1173 if (vq
->thread
!= (pid_t
)-1) {
1174 kill(vq
->thread
, SIGTERM
);
1175 waitpid(vq
->thread
, NULL
, 0);
1176 vq
->thread
= (pid_t
)-1;
1179 dev
->running
= false;
1180 dev
->wrote_features_ok
= false;
1182 /* Now we care if threads die. */
1183 signal(SIGCHLD
, (void *)kill_launcher
);
1186 static void cleanup_devices(void)
1190 for (i
= 1; i
< MAX_PCI_DEVICES
; i
++) {
1191 struct device
*d
= devices
.pci
[i
];
1197 /* If we saved off the original terminal settings, restore them now. */
1198 if (orig_term
.c_lflag
& (ISIG
|ICANON
|ECHO
))
1199 tcsetattr(STDIN_FILENO
, TCSANOW
, &orig_term
);
1203 * We do PCI. This is mainly done to let us test the kernel virtio PCI
1207 /* Linux expects a PCI host bridge: ours is a dummy, and first on the bus. */
1208 static struct device pci_host_bridge
;
1210 static void init_pci_host_bridge(void)
1212 pci_host_bridge
.name
= "PCI Host Bridge";
1213 pci_host_bridge
.config
.class = 0x06; /* bridge */
1214 pci_host_bridge
.config
.subclass
= 0; /* host bridge */
1215 devices
.pci
[0] = &pci_host_bridge
;
1218 /* The IO ports used to read the PCI config space. */
1219 #define PCI_CONFIG_ADDR 0xCF8
1220 #define PCI_CONFIG_DATA 0xCFC
1223 * Not really portable, but does help readability: this is what the Guest
1224 * writes to the PCI_CONFIG_ADDR IO port.
1226 union pci_config_addr
{
1230 unsigned funcnum
: 3;
1233 unsigned reserved
: 7;
1234 unsigned enabled
: 1;
1240 * We cache what they wrote to the address port, so we know what they're
1241 * talking about when they access the data port.
1243 static union pci_config_addr pci_config_addr
;
1245 static struct device
*find_pci_device(unsigned int index
)
1247 return devices
.pci
[index
];
1250 /* PCI can do 1, 2 and 4 byte reads; we handle that here. */
1251 static void ioread(u16 off
, u32 v
, u32 mask
, u32
*val
)
1254 assert(mask
== 0xFF || mask
== 0xFFFF || mask
== 0xFFFFFFFF);
1255 *val
= (v
>> (off
* 8)) & mask
;
1258 /* PCI can do 1, 2 and 4 byte writes; we handle that here. */
1259 static void iowrite(u16 off
, u32 v
, u32 mask
, u32
*dst
)
1262 assert(mask
== 0xFF || mask
== 0xFFFF || mask
== 0xFFFFFFFF);
1263 *dst
&= ~(mask
<< (off
* 8));
1264 *dst
|= (v
& mask
) << (off
* 8);
1268 * Where PCI_CONFIG_DATA accesses depends on the previous write to
1271 static struct device
*dev_and_reg(u32
*reg
)
1273 if (!pci_config_addr
.bits
.enabled
)
1276 if (pci_config_addr
.bits
.funcnum
!= 0)
1279 if (pci_config_addr
.bits
.busnum
!= 0)
1282 if (pci_config_addr
.bits
.offset
* 4 >= sizeof(struct pci_config
))
1285 *reg
= pci_config_addr
.bits
.offset
;
1286 return find_pci_device(pci_config_addr
.bits
.devnum
);
1290 * We can get invalid combinations of values while they're writing, so we
1291 * only fault if they try to write with some invalid bar/offset/length.
1293 static bool valid_bar_access(struct device
*d
,
1294 struct virtio_pci_cfg_cap
*cfg_access
)
1296 /* We only have 1 bar (BAR0) */
1297 if (cfg_access
->cap
.bar
!= 0)
1300 /* Check it's within BAR0. */
1301 if (cfg_access
->cap
.offset
>= d
->mmio_size
1302 || cfg_access
->cap
.offset
+ cfg_access
->cap
.length
> d
->mmio_size
)
1305 /* Check length is 1, 2 or 4. */
1306 if (cfg_access
->cap
.length
!= 1
1307 && cfg_access
->cap
.length
!= 2
1308 && cfg_access
->cap
.length
!= 4)
1314 * The driver MUST NOT write a cap.offset which is not a multiple of
1315 * cap.length (ie. all accesses MUST be aligned).
1317 if (cfg_access
->cap
.offset
% cfg_access
->cap
.length
!= 0)
1320 /* Return pointer into word in BAR0. */
1324 /* Is this accessing the PCI config address port?. */
1325 static bool is_pci_addr_port(u16 port
)
1327 return port
>= PCI_CONFIG_ADDR
&& port
< PCI_CONFIG_ADDR
+ 4;
1330 static bool pci_addr_iowrite(u16 port
, u32 mask
, u32 val
)
1332 iowrite(port
- PCI_CONFIG_ADDR
, val
, mask
,
1333 &pci_config_addr
.val
);
1334 verbose("PCI%s: %#x/%x: bus %u dev %u func %u reg %u\n",
1335 pci_config_addr
.bits
.enabled
? "" : " DISABLED",
1337 pci_config_addr
.bits
.busnum
,
1338 pci_config_addr
.bits
.devnum
,
1339 pci_config_addr
.bits
.funcnum
,
1340 pci_config_addr
.bits
.offset
);
1344 static void pci_addr_ioread(u16 port
, u32 mask
, u32
*val
)
1346 ioread(port
- PCI_CONFIG_ADDR
, pci_config_addr
.val
, mask
, val
);
1349 /* Is this accessing the PCI config data port?. */
1350 static bool is_pci_data_port(u16 port
)
1352 return port
>= PCI_CONFIG_DATA
&& port
< PCI_CONFIG_DATA
+ 4;
1355 static void emulate_mmio_write(struct device
*d
, u32 off
, u32 val
, u32 mask
);
1357 static bool pci_data_iowrite(u16 port
, u32 mask
, u32 val
)
1360 struct device
*d
= dev_and_reg(®
);
1362 /* Complain if they don't belong to a device. */
1366 /* They can do 1 byte writes, etc. */
1367 portoff
= port
- PCI_CONFIG_DATA
;
1370 * PCI uses a weird way to determine the BAR size: the OS
1371 * writes all 1's, and sees which ones stick.
1373 if (&d
->config_words
[reg
] == &d
->config
.bar
[0]) {
1376 iowrite(portoff
, val
, mask
, &d
->config
.bar
[0]);
1377 for (i
= 0; (1 << i
) < d
->mmio_size
; i
++)
1378 d
->config
.bar
[0] &= ~(1 << i
);
1380 } else if ((&d
->config_words
[reg
] > &d
->config
.bar
[0]
1381 && &d
->config_words
[reg
] <= &d
->config
.bar
[6])
1382 || &d
->config_words
[reg
] == &d
->config
.expansion_rom_addr
) {
1383 /* Allow writing to any other BAR, or expansion ROM */
1384 iowrite(portoff
, val
, mask
, &d
->config_words
[reg
]);
1386 /* We let them overide latency timer and cacheline size */
1387 } else if (&d
->config_words
[reg
] == (void *)&d
->config
.cacheline_size
) {
1388 /* Only let them change the first two fields. */
1389 if (mask
== 0xFFFFFFFF)
1391 iowrite(portoff
, val
, mask
, &d
->config_words
[reg
]);
1393 } else if (&d
->config_words
[reg
] == (void *)&d
->config
.command
1394 && mask
== 0xFFFF) {
1395 /* Ignore command writes. */
1397 } else if (&d
->config_words
[reg
]
1398 == (void *)&d
->config
.cfg_access
.cap
.bar
1399 || &d
->config_words
[reg
]
1400 == &d
->config
.cfg_access
.cap
.length
1401 || &d
->config_words
[reg
]
1402 == &d
->config
.cfg_access
.cap
.offset
) {
1405 * The VIRTIO_PCI_CAP_PCI_CFG capability
1406 * provides a backdoor to access the MMIO
1407 * regions without mapping them. Weird, but
1410 iowrite(portoff
, val
, mask
, &d
->config_words
[reg
]);
1412 } else if (&d
->config_words
[reg
] == &d
->config
.cfg_access
.pci_cfg_data
) {
1418 * Upon detecting driver write access to pci_cfg_data, the
1419 * device MUST execute a write access at offset cap.offset at
1420 * BAR selected by cap.bar using the first cap.length bytes
1421 * from pci_cfg_data.
1425 if (!valid_bar_access(d
, &d
->config
.cfg_access
))
1428 iowrite(portoff
, val
, mask
, &d
->config
.cfg_access
.pci_cfg_data
);
1431 * Now emulate a write. The mask we use is set by
1432 * len, *not* this write!
1434 write_mask
= (1ULL<<(8*d
->config
.cfg_access
.cap
.length
)) - 1;
1435 verbose("Window writing %#x/%#x to bar %u, offset %u len %u\n",
1436 d
->config
.cfg_access
.pci_cfg_data
, write_mask
,
1437 d
->config
.cfg_access
.cap
.bar
,
1438 d
->config
.cfg_access
.cap
.offset
,
1439 d
->config
.cfg_access
.cap
.length
);
1441 emulate_mmio_write(d
, d
->config
.cfg_access
.cap
.offset
,
1442 d
->config
.cfg_access
.pci_cfg_data
,
1450 * The driver MUST NOT write into any field of the capability
1451 * structure, with the exception of those with cap_type
1452 * VIRTIO_PCI_CAP_PCI_CFG...
1457 static u32
emulate_mmio_read(struct device
*d
, u32 off
, u32 mask
);
1459 static void pci_data_ioread(u16 port
, u32 mask
, u32
*val
)
1462 struct device
*d
= dev_and_reg(®
);
1467 /* Read through the PCI MMIO access window is special */
1468 if (&d
->config_words
[reg
] == &d
->config
.cfg_access
.pci_cfg_data
) {
1474 * Upon detecting driver read access to pci_cfg_data, the
1475 * device MUST execute a read access of length cap.length at
1476 * offset cap.offset at BAR selected by cap.bar and store the
1477 * first cap.length bytes in pci_cfg_data.
1480 if (!valid_bar_access(d
, &d
->config
.cfg_access
))
1482 "Invalid cfg_access to bar%u, offset %u len %u",
1483 d
->config
.cfg_access
.cap
.bar
,
1484 d
->config
.cfg_access
.cap
.offset
,
1485 d
->config
.cfg_access
.cap
.length
);
1488 * Read into the window. The mask we use is set by
1489 * len, *not* this read!
1491 read_mask
= (1ULL<<(8*d
->config
.cfg_access
.cap
.length
))-1;
1492 d
->config
.cfg_access
.pci_cfg_data
1493 = emulate_mmio_read(d
,
1494 d
->config
.cfg_access
.cap
.offset
,
1496 verbose("Window read %#x/%#x from bar %u, offset %u len %u\n",
1497 d
->config
.cfg_access
.pci_cfg_data
, read_mask
,
1498 d
->config
.cfg_access
.cap
.bar
,
1499 d
->config
.cfg_access
.cap
.offset
,
1500 d
->config
.cfg_access
.cap
.length
);
1502 ioread(port
- PCI_CONFIG_DATA
, d
->config_words
[reg
], mask
, val
);
1506 * This is where we emulate a handful of Guest instructions. It's ugly
1507 * and we used to do it in the kernel but it grew over time.
1511 * We use the ptrace syscall's pt_regs struct to talk about registers
1512 * to lguest: these macros convert the names to the offsets.
1514 #define getreg(name) getreg_off(offsetof(struct user_regs_struct, name))
1515 #define setreg(name, val) \
1516 setreg_off(offsetof(struct user_regs_struct, name), (val))
1518 static u32
getreg_off(size_t offset
)
1521 unsigned long args
[] = { LHREQ_GETREG
, offset
};
1523 if (pwrite(lguest_fd
, args
, sizeof(args
), cpu_id
) < 0)
1524 err(1, "Getting register %u", offset
);
1525 if (pread(lguest_fd
, &r
, sizeof(r
), cpu_id
) != sizeof(r
))
1526 err(1, "Reading register %u", offset
);
1531 static void setreg_off(size_t offset
, u32 val
)
1533 unsigned long args
[] = { LHREQ_SETREG
, offset
, val
};
1535 if (pwrite(lguest_fd
, args
, sizeof(args
), cpu_id
) < 0)
1536 err(1, "Setting register %u", offset
);
1539 /* Get register by instruction encoding */
1540 static u32
getreg_num(unsigned regnum
, u32 mask
)
1542 /* 8 bit ops use regnums 4-7 for high parts of word */
1543 if (mask
== 0xFF && (regnum
& 0x4))
1544 return getreg_num(regnum
& 0x3, 0xFFFF) >> 8;
1547 case 0: return getreg(eax
) & mask
;
1548 case 1: return getreg(ecx
) & mask
;
1549 case 2: return getreg(edx
) & mask
;
1550 case 3: return getreg(ebx
) & mask
;
1551 case 4: return getreg(esp
) & mask
;
1552 case 5: return getreg(ebp
) & mask
;
1553 case 6: return getreg(esi
) & mask
;
1554 case 7: return getreg(edi
) & mask
;
1559 /* Set register by instruction encoding */
1560 static void setreg_num(unsigned regnum
, u32 val
, u32 mask
)
1562 /* Don't try to set bits out of range */
1563 assert(~(val
& ~mask
));
1565 /* 8 bit ops use regnums 4-7 for high parts of word */
1566 if (mask
== 0xFF && (regnum
& 0x4)) {
1567 /* Construct the 16 bits we want. */
1568 val
= (val
<< 8) | getreg_num(regnum
& 0x3, 0xFF);
1569 setreg_num(regnum
& 0x3, val
, 0xFFFF);
1574 case 0: setreg(eax
, val
| (getreg(eax
) & ~mask
)); return;
1575 case 1: setreg(ecx
, val
| (getreg(ecx
) & ~mask
)); return;
1576 case 2: setreg(edx
, val
| (getreg(edx
) & ~mask
)); return;
1577 case 3: setreg(ebx
, val
| (getreg(ebx
) & ~mask
)); return;
1578 case 4: setreg(esp
, val
| (getreg(esp
) & ~mask
)); return;
1579 case 5: setreg(ebp
, val
| (getreg(ebp
) & ~mask
)); return;
1580 case 6: setreg(esi
, val
| (getreg(esi
) & ~mask
)); return;
1581 case 7: setreg(edi
, val
| (getreg(edi
) & ~mask
)); return;
1586 /* Get bytes of displacement appended to instruction, from r/m encoding */
1587 static u32
insn_displacement_len(u8 mod_reg_rm
)
1589 /* Switch on the mod bits */
1590 switch (mod_reg_rm
>> 6) {
1592 /* If mod == 0, and r/m == 101, 16-bit displacement follows */
1593 if ((mod_reg_rm
& 0x7) == 0x5)
1595 /* Normally, mod == 0 means no literal displacement */
1598 /* One byte displacement */
1601 /* Four byte displacement */
1610 static void emulate_insn(const u8 insn
[])
1612 unsigned long args
[] = { LHREQ_TRAP
, 13 };
1613 unsigned int insnlen
= 0, in
= 0, small_operand
= 0, byte_access
;
1614 unsigned int eax
, port
, mask
;
1616 * Default is to return all-ones on IO port reads, which traditionally
1617 * means "there's nothing there".
1619 u32 val
= 0xFFFFFFFF;
1622 * This must be the Guest kernel trying to do something, not userspace!
1623 * The bottom two bits of the CS segment register are the privilege
1626 if ((getreg(xcs
) & 3) != 0x1)
1629 /* Decoding x86 instructions is icky. */
1632 * Around 2.6.33, the kernel started using an emulation for the
1633 * cmpxchg8b instruction in early boot on many configurations. This
1634 * code isn't paravirtualized, and it tries to disable interrupts.
1635 * Ignore it, which will Mostly Work.
1637 if (insn
[insnlen
] == 0xfa) {
1638 /* "cli", or Clear Interrupt Enable instruction. Skip it. */
1644 * 0x66 is an "operand prefix". It means a 16, not 32 bit in/out.
1646 if (insn
[insnlen
] == 0x66) {
1648 /* The instruction is 1 byte so far, read the next byte. */
1652 /* If the lower bit isn't set, it's a single byte access */
1653 byte_access
= !(insn
[insnlen
] & 1);
1656 * Now we can ignore the lower bit and decode the 4 opcodes
1657 * we need to emulate.
1659 switch (insn
[insnlen
] & 0xFE) {
1660 case 0xE4: /* in <next byte>,%al */
1661 port
= insn
[insnlen
+1];
1665 case 0xEC: /* in (%dx),%al */
1666 port
= getreg(edx
) & 0xFFFF;
1670 case 0xE6: /* out %al,<next byte> */
1671 port
= insn
[insnlen
+1];
1674 case 0xEE: /* out %al,(%dx) */
1675 port
= getreg(edx
) & 0xFFFF;
1679 /* OK, we don't know what this is, can't emulate. */
1683 /* Set a mask of the 1, 2 or 4 bytes, depending on size of IO */
1686 else if (small_operand
)
1692 * If it was an "IN" instruction, they expect the result to be read
1693 * into %eax, so we change %eax.
1698 /* This is the PS/2 keyboard status; 1 means ready for output */
1701 else if (is_pci_addr_port(port
))
1702 pci_addr_ioread(port
, mask
, &val
);
1703 else if (is_pci_data_port(port
))
1704 pci_data_ioread(port
, mask
, &val
);
1706 /* Clear the bits we're about to read */
1708 /* Copy bits in from val. */
1710 /* Now update the register. */
1713 if (is_pci_addr_port(port
)) {
1714 if (!pci_addr_iowrite(port
, mask
, eax
))
1716 } else if (is_pci_data_port(port
)) {
1717 if (!pci_data_iowrite(port
, mask
, eax
))
1720 /* There are many other ports, eg. CMOS clock, serial
1721 * and parallel ports, so we ignore them all. */
1724 verbose("IO %s of %x to %u: %#08x\n",
1725 in
? "IN" : "OUT", mask
, port
, eax
);
1727 /* Finally, we've "done" the instruction, so move past it. */
1728 setreg(eip
, getreg(eip
) + insnlen
);
1732 warnx("Attempt to %s port %u (%#x mask)",
1733 in
? "read from" : "write to", port
, mask
);
1736 /* Inject trap into Guest. */
1737 if (write(lguest_fd
, args
, sizeof(args
)) < 0)
1738 err(1, "Reinjecting trap 13 for fault at %#x", getreg(eip
));
1741 static struct device
*find_mmio_region(unsigned long paddr
, u32
*off
)
1745 for (i
= 1; i
< MAX_PCI_DEVICES
; i
++) {
1746 struct device
*d
= devices
.pci
[i
];
1750 if (paddr
< d
->mmio_addr
)
1752 if (paddr
>= d
->mmio_addr
+ d
->mmio_size
)
1754 *off
= paddr
- d
->mmio_addr
;
1760 /* FIXME: Use vq array. */
1761 static struct virtqueue
*vq_by_num(struct device
*d
, u32 num
)
1763 struct virtqueue
*vq
= d
->vq
;
1771 static void save_vq_config(const struct virtio_pci_common_cfg
*cfg
,
1772 struct virtqueue
*vq
)
1774 vq
->pci_config
= *cfg
;
1777 static void restore_vq_config(struct virtio_pci_common_cfg
*cfg
,
1778 struct virtqueue
*vq
)
1780 /* Only restore the per-vq part */
1781 size_t off
= offsetof(struct virtio_pci_common_cfg
, queue_size
);
1783 memcpy((void *)cfg
+ off
, (void *)&vq
->pci_config
+ off
,
1784 sizeof(*cfg
) - off
);
1790 * The driver MUST configure the other virtqueue fields before
1791 * enabling the virtqueue with queue_enable.
1793 * When they enable the virtqueue, we check that their setup is valid.
1795 static void check_virtqueue(struct device
*d
, struct virtqueue
*vq
)
1797 /* Because lguest is 32 bit, all the descriptor high bits must be 0 */
1798 if (vq
->pci_config
.queue_desc_hi
1799 || vq
->pci_config
.queue_avail_hi
1800 || vq
->pci_config
.queue_used_hi
)
1801 bad_driver_vq(vq
, "invalid 64-bit queue address");
1806 * The driver MUST ensure that the physical address of the first byte
1807 * of each virtqueue part is a multiple of the specified alignment
1808 * value in the above table.
1810 if (vq
->pci_config
.queue_desc_lo
% 16
1811 || vq
->pci_config
.queue_avail_lo
% 2
1812 || vq
->pci_config
.queue_used_lo
% 4)
1813 bad_driver_vq(vq
, "invalid alignment in queue addresses");
1815 /* Initialize the virtqueue and check they're all in range. */
1816 vq
->vring
.num
= vq
->pci_config
.queue_size
;
1817 vq
->vring
.desc
= check_pointer(vq
->dev
,
1818 vq
->pci_config
.queue_desc_lo
,
1819 sizeof(*vq
->vring
.desc
) * vq
->vring
.num
);
1820 vq
->vring
.avail
= check_pointer(vq
->dev
,
1821 vq
->pci_config
.queue_avail_lo
,
1822 sizeof(*vq
->vring
.avail
)
1823 + (sizeof(vq
->vring
.avail
->ring
[0])
1825 vq
->vring
.used
= check_pointer(vq
->dev
,
1826 vq
->pci_config
.queue_used_lo
,
1827 sizeof(*vq
->vring
.used
)
1828 + (sizeof(vq
->vring
.used
->ring
[0])
1834 * The driver MUST initialize flags in the used ring to 0
1835 * when allocating the used ring.
1837 if (vq
->vring
.used
->flags
!= 0)
1838 bad_driver_vq(vq
, "invalid initial used.flags %#x",
1839 vq
->vring
.used
->flags
);
1842 static void start_virtqueue(struct virtqueue
*vq
)
1845 * Create stack for thread. Since the stack grows upwards, we point
1846 * the stack pointer to the end of this region.
1848 char *stack
= malloc(32768);
1850 /* Create a zero-initialized eventfd. */
1851 vq
->eventfd
= eventfd(0, 0);
1852 if (vq
->eventfd
< 0)
1853 err(1, "Creating eventfd");
1856 * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
1857 * we get a signal if it dies.
1859 vq
->thread
= clone(do_thread
, stack
+ 32768, CLONE_VM
| SIGCHLD
, vq
);
1860 if (vq
->thread
== (pid_t
)-1)
1861 err(1, "Creating clone");
1864 static void start_virtqueues(struct device
*d
)
1866 struct virtqueue
*vq
;
1868 for (vq
= d
->vq
; vq
; vq
= vq
->next
) {
1869 if (vq
->pci_config
.queue_enable
)
1870 start_virtqueue(vq
);
1874 static void emulate_mmio_write(struct device
*d
, u32 off
, u32 val
, u32 mask
)
1876 struct virtqueue
*vq
;
1879 case offsetof(struct virtio_pci_mmio
, cfg
.device_feature_select
):
1883 * The device MUST present the feature bits it is offering in
1884 * device_feature, starting at bit device_feature_select ∗ 32
1885 * for any device_feature_select written by the driver
1888 d
->mmio
->cfg
.device_feature
= d
->features
;
1890 d
->mmio
->cfg
.device_feature
= (d
->features
>> 32);
1892 d
->mmio
->cfg
.device_feature
= 0;
1893 goto feature_write_through32
;
1894 case offsetof(struct virtio_pci_mmio
, cfg
.guest_feature_select
):
1896 bad_driver(d
, "Unexpected driver select %u", val
);
1897 goto feature_write_through32
;
1898 case offsetof(struct virtio_pci_mmio
, cfg
.guest_feature
):
1899 if (d
->mmio
->cfg
.guest_feature_select
== 0) {
1900 d
->features_accepted
&= ~((u64
)0xFFFFFFFF);
1901 d
->features_accepted
|= val
;
1903 assert(d
->mmio
->cfg
.guest_feature_select
== 1);
1904 d
->features_accepted
&= 0xFFFFFFFF;
1905 d
->features_accepted
|= ((u64
)val
) << 32;
1910 * The driver MUST NOT accept a feature which the device did
1913 if (d
->features_accepted
& ~d
->features
)
1914 bad_driver(d
, "over-accepted features %#llx of %#llx",
1915 d
->features_accepted
, d
->features
);
1916 goto feature_write_through32
;
1917 case offsetof(struct virtio_pci_mmio
, cfg
.device_status
): {
1920 verbose("%s: device status -> %#x\n", d
->name
, val
);
1924 * The device MUST reset when 0 is written to device_status,
1925 * and present a 0 in device_status once that is done.
1929 goto write_through8
;
1932 /* 2.1.1: The driver MUST NOT clear a device status bit. */
1933 if (d
->mmio
->cfg
.device_status
& ~val
)
1934 bad_driver(d
, "unset of device status bit %#x -> %#x",
1935 d
->mmio
->cfg
.device_status
, val
);
1940 * The device MUST NOT consume buffers or notify the driver
1943 if (val
& VIRTIO_CONFIG_S_DRIVER_OK
1944 && !(d
->mmio
->cfg
.device_status
& VIRTIO_CONFIG_S_DRIVER_OK
))
1945 start_virtqueues(d
);
1950 * The driver MUST follow this sequence to initialize a device:
1951 * - Reset the device.
1952 * - Set the ACKNOWLEDGE status bit: the guest OS has
1953 * notice the device.
1954 * - Set the DRIVER status bit: the guest OS knows how
1955 * to drive the device.
1956 * - Read device feature bits, and write the subset
1957 * of feature bits understood by the OS and driver
1958 * to the device. During this step the driver MAY
1959 * read (but MUST NOT write) the device-specific
1960 * configuration fields to check that it can
1961 * support the device before accepting it.
1962 * - Set the FEATURES_OK status bit. The driver
1963 * MUST not accept new feature bits after this
1965 * - Re-read device status to ensure the FEATURES_OK
1966 * bit is still set: otherwise, the device does
1967 * not support our subset of features and the
1968 * device is unusable.
1969 * - Perform device-specific setup, including
1970 * discovery of virtqueues for the device,
1971 * optional per-bus setup, reading and possibly
1972 * writing the device’s virtio configuration
1973 * space, and population of virtqueues.
1974 * - Set the DRIVER_OK status bit. At this point the
1978 switch (val
& ~d
->mmio
->cfg
.device_status
) {
1979 case VIRTIO_CONFIG_S_DRIVER_OK
:
1980 prev
|= VIRTIO_CONFIG_S_FEATURES_OK
; /* fall thru */
1981 case VIRTIO_CONFIG_S_FEATURES_OK
:
1982 prev
|= VIRTIO_CONFIG_S_DRIVER
; /* fall thru */
1983 case VIRTIO_CONFIG_S_DRIVER
:
1984 prev
|= VIRTIO_CONFIG_S_ACKNOWLEDGE
; /* fall thru */
1985 case VIRTIO_CONFIG_S_ACKNOWLEDGE
:
1988 bad_driver(d
, "unknown device status bit %#x -> %#x",
1989 d
->mmio
->cfg
.device_status
, val
);
1991 if (d
->mmio
->cfg
.device_status
!= prev
)
1992 bad_driver(d
, "unexpected status transition %#x -> %#x",
1993 d
->mmio
->cfg
.device_status
, val
);
1995 /* If they just wrote FEATURES_OK, we make sure they read */
1996 switch (val
& ~d
->mmio
->cfg
.device_status
) {
1997 case VIRTIO_CONFIG_S_FEATURES_OK
:
1998 d
->wrote_features_ok
= true;
2000 case VIRTIO_CONFIG_S_DRIVER_OK
:
2001 if (d
->wrote_features_ok
)
2002 bad_driver(d
, "did not re-read FEATURES_OK");
2005 goto write_through8
;
2007 case offsetof(struct virtio_pci_mmio
, cfg
.queue_select
):
2008 vq
= vq_by_num(d
, val
);
2012 * The device MUST present a 0 in queue_size if the virtqueue
2013 * corresponding to the current queue_select is unavailable.
2016 d
->mmio
->cfg
.queue_size
= 0;
2017 goto write_through16
;
2019 /* Save registers for old vq, if it was a valid vq */
2020 if (d
->mmio
->cfg
.queue_size
)
2021 save_vq_config(&d
->mmio
->cfg
,
2022 vq_by_num(d
, d
->mmio
->cfg
.queue_select
));
2023 /* Restore the registers for the queue they asked for */
2024 restore_vq_config(&d
->mmio
->cfg
, vq
);
2025 goto write_through16
;
2026 case offsetof(struct virtio_pci_mmio
, cfg
.queue_size
):
2030 * The driver MUST NOT write a value which is not a power of 2
2034 bad_driver(d
, "invalid queue size %u", val
);
2035 if (d
->mmio
->cfg
.queue_enable
)
2036 bad_driver(d
, "changing queue size on live device");
2037 goto write_through16
;
2038 case offsetof(struct virtio_pci_mmio
, cfg
.queue_msix_vector
):
2039 bad_driver(d
, "attempt to set MSIX vector to %u", val
);
2040 case offsetof(struct virtio_pci_mmio
, cfg
.queue_enable
): {
2041 struct virtqueue
*vq
= vq_by_num(d
, d
->mmio
->cfg
.queue_select
);
2046 * The driver MUST NOT write a 0 to queue_enable.
2049 bad_driver(d
, "setting queue_enable to %u", val
);
2054 * 7. Perform device-specific setup, including discovery of
2055 * virtqueues for the device, optional per-bus setup,
2056 * reading and possibly writing the device’s virtio
2057 * configuration space, and population of virtqueues.
2058 * 8. Set the DRIVER_OK status bit.
2060 * All our devices require all virtqueues to be enabled, so
2061 * they should have done that before setting DRIVER_OK.
2063 if (d
->mmio
->cfg
.device_status
& VIRTIO_CONFIG_S_DRIVER_OK
)
2064 bad_driver(d
, "enabling vq after DRIVER_OK");
2066 d
->mmio
->cfg
.queue_enable
= val
;
2067 save_vq_config(&d
->mmio
->cfg
, vq
);
2068 check_virtqueue(d
, vq
);
2069 goto write_through16
;
2071 case offsetof(struct virtio_pci_mmio
, cfg
.queue_notify_off
):
2072 bad_driver(d
, "attempt to write to queue_notify_off");
2073 case offsetof(struct virtio_pci_mmio
, cfg
.queue_desc_lo
):
2074 case offsetof(struct virtio_pci_mmio
, cfg
.queue_desc_hi
):
2075 case offsetof(struct virtio_pci_mmio
, cfg
.queue_avail_lo
):
2076 case offsetof(struct virtio_pci_mmio
, cfg
.queue_avail_hi
):
2077 case offsetof(struct virtio_pci_mmio
, cfg
.queue_used_lo
):
2078 case offsetof(struct virtio_pci_mmio
, cfg
.queue_used_hi
):
2082 * The driver MUST configure the other virtqueue fields before
2083 * enabling the virtqueue with queue_enable.
2085 if (d
->mmio
->cfg
.queue_enable
)
2086 bad_driver(d
, "changing queue on live device");
2091 * The driver MUST follow this sequence to initialize a device:
2093 * 5. Set the FEATURES_OK status bit. The driver MUST not
2094 * accept new feature bits after this step.
2096 if (!(d
->mmio
->cfg
.device_status
& VIRTIO_CONFIG_S_FEATURES_OK
))
2097 bad_driver(d
, "setting up vq before FEATURES_OK");
2100 * 6. Re-read device status to ensure the FEATURES_OK bit is
2103 if (d
->wrote_features_ok
)
2104 bad_driver(d
, "didn't re-read FEATURES_OK before setup");
2106 goto write_through32
;
2107 case offsetof(struct virtio_pci_mmio
, notify
):
2108 vq
= vq_by_num(d
, val
);
2110 bad_driver(d
, "Invalid vq notification on %u", val
);
2111 /* Notify the process handling this vq by adding 1 to eventfd */
2112 write(vq
->eventfd
, "\1\0\0\0\0\0\0\0", 8);
2113 goto write_through16
;
2114 case offsetof(struct virtio_pci_mmio
, isr
):
2115 bad_driver(d
, "Unexpected write to isr");
2116 /* Weird corner case: write to emerg_wr of console */
2117 case sizeof(struct virtio_pci_mmio
)
2118 + offsetof(struct virtio_console_config
, emerg_wr
):
2119 if (strcmp(d
->name
, "console") == 0) {
2121 write(STDOUT_FILENO
, &c
, 1);
2122 goto write_through32
;
2124 /* Fall through... */
2129 * The driver MUST NOT write to device_feature, num_queues,
2130 * config_generation or queue_notify_off.
2132 bad_driver(d
, "Unexpected write to offset %u", off
);
2135 feature_write_through32
:
2139 * The driver MUST follow this sequence to initialize a device:
2141 * - Set the DRIVER status bit: the guest OS knows how
2142 * to drive the device.
2143 * - Read device feature bits, and write the subset
2144 * of feature bits understood by the OS and driver
2147 * - Set the FEATURES_OK status bit. The driver MUST not
2148 * accept new feature bits after this step.
2150 if (!(d
->mmio
->cfg
.device_status
& VIRTIO_CONFIG_S_DRIVER
))
2151 bad_driver(d
, "feature write before VIRTIO_CONFIG_S_DRIVER");
2152 if (d
->mmio
->cfg
.device_status
& VIRTIO_CONFIG_S_FEATURES_OK
)
2153 bad_driver(d
, "feature write after VIRTIO_CONFIG_S_FEATURES_OK");
2158 * The driver MUST access each field using the “natural” access
2159 * method, i.e. 32-bit accesses for 32-bit fields, 16-bit accesses for
2160 * 16-bit fields and 8-bit accesses for 8-bit fields.
2163 if (mask
!= 0xFFFFFFFF) {
2164 bad_driver(d
, "non-32-bit write to offset %u (%#x)",
2168 memcpy((char *)d
->mmio
+ off
, &val
, 4);
2173 bad_driver(d
, "non-16-bit write to offset %u (%#x)",
2175 memcpy((char *)d
->mmio
+ off
, &val
, 2);
2180 bad_driver(d
, "non-8-bit write to offset %u (%#x)",
2182 memcpy((char *)d
->mmio
+ off
, &val
, 1);
2186 static u32
emulate_mmio_read(struct device
*d
, u32 off
, u32 mask
)
2192 case offsetof(struct virtio_pci_mmio
, cfg
.device_feature_select
):
2193 case offsetof(struct virtio_pci_mmio
, cfg
.device_feature
):
2194 case offsetof(struct virtio_pci_mmio
, cfg
.guest_feature_select
):
2195 case offsetof(struct virtio_pci_mmio
, cfg
.guest_feature
):
2199 * The driver MUST follow this sequence to initialize a device:
2201 * - Set the DRIVER status bit: the guest OS knows how
2202 * to drive the device.
2203 * - Read device feature bits, and write the subset
2204 * of feature bits understood by the OS and driver
2207 if (!(d
->mmio
->cfg
.device_status
& VIRTIO_CONFIG_S_DRIVER
))
2209 "feature read before VIRTIO_CONFIG_S_DRIVER");
2210 goto read_through32
;
2211 case offsetof(struct virtio_pci_mmio
, cfg
.msix_config
):
2212 bad_driver(d
, "read of msix_config");
2213 case offsetof(struct virtio_pci_mmio
, cfg
.num_queues
):
2214 goto read_through16
;
2215 case offsetof(struct virtio_pci_mmio
, cfg
.device_status
):
2216 /* As they did read, any write of FEATURES_OK is now fine. */
2217 d
->wrote_features_ok
= false;
2219 case offsetof(struct virtio_pci_mmio
, cfg
.config_generation
):
2223 * The device MUST present a changed config_generation after
2224 * the driver has read a device-specific configuration value
2225 * which has changed since any part of the device-specific
2226 * configuration was last read.
2228 * This is simple: none of our devices change config, so this
2232 case offsetof(struct virtio_pci_mmio
, notify
):
2236 * The driver MUST NOT notify the device before setting
2239 if (!(d
->mmio
->cfg
.device_status
& VIRTIO_CONFIG_S_DRIVER_OK
))
2240 bad_driver(d
, "notify before VIRTIO_CONFIG_S_DRIVER_OK");
2241 goto read_through16
;
2242 case offsetof(struct virtio_pci_mmio
, isr
):
2244 bad_driver(d
, "non-8-bit read from offset %u (%#x)",
2250 * The device MUST reset ISR status to 0 on driver read.
2254 case offsetof(struct virtio_pci_mmio
, padding
):
2255 bad_driver(d
, "read from padding (%#x)", getreg(eip
));
2257 /* Read from device config space, beware unaligned overflow */
2258 if (off
> d
->mmio_size
- 4)
2259 bad_driver(d
, "read past end (%#x)", getreg(eip
));
2263 * The driver MUST follow this sequence to initialize a device:
2265 * 3. Set the DRIVER status bit: the guest OS knows how to
2267 * 4. Read device feature bits, and write the subset of
2268 * feature bits understood by the OS and driver to the
2269 * device. During this step the driver MAY read (but MUST NOT
2270 * write) the device-specific configuration fields to check
2271 * that it can support the device before accepting it.
2273 if (!(d
->mmio
->cfg
.device_status
& VIRTIO_CONFIG_S_DRIVER
))
2275 "config read before VIRTIO_CONFIG_S_DRIVER");
2277 if (mask
== 0xFFFFFFFF)
2278 goto read_through32
;
2279 else if (mask
== 0xFFFF)
2280 goto read_through16
;
2288 * The driver MUST access each field using the “natural” access
2289 * method, i.e. 32-bit accesses for 32-bit fields, 16-bit accesses for
2290 * 16-bit fields and 8-bit accesses for 8-bit fields.
2293 if (mask
!= 0xFFFFFFFF)
2294 bad_driver(d
, "non-32-bit read to offset %u (%#x)",
2296 memcpy(&val
, (char *)d
->mmio
+ off
, 4);
2301 bad_driver(d
, "non-16-bit read to offset %u (%#x)",
2303 memcpy(&val
, (char *)d
->mmio
+ off
, 2);
2308 bad_driver(d
, "non-8-bit read to offset %u (%#x)",
2310 memcpy(&val
, (char *)d
->mmio
+ off
, 1);
2314 static void emulate_mmio(unsigned long paddr
, const u8
*insn
)
2316 u32 val
, off
, mask
= 0xFFFFFFFF, insnlen
= 0;
2317 struct device
*d
= find_mmio_region(paddr
, &off
);
2318 unsigned long args
[] = { LHREQ_TRAP
, 14 };
2321 warnx("MMIO touching %#08lx (not a device)", paddr
);
2325 /* Prefix makes it a 16 bit op */
2326 if (insn
[0] == 0x66) {
2332 if (insn
[insnlen
] == 0x89) {
2333 /* Next byte is r/m byte: bits 3-5 are register. */
2334 val
= getreg_num((insn
[insnlen
+1] >> 3) & 0x7, mask
);
2335 emulate_mmio_write(d
, off
, val
, mask
);
2336 insnlen
+= 2 + insn_displacement_len(insn
[insnlen
+1]);
2337 } else if (insn
[insnlen
] == 0x8b) { /* ioread */
2338 /* Next byte is r/m byte: bits 3-5 are register. */
2339 val
= emulate_mmio_read(d
, off
, mask
);
2340 setreg_num((insn
[insnlen
+1] >> 3) & 0x7, val
, mask
);
2341 insnlen
+= 2 + insn_displacement_len(insn
[insnlen
+1]);
2342 } else if (insn
[0] == 0x88) { /* 8-bit iowrite */
2344 /* Next byte is r/m byte: bits 3-5 are register. */
2345 val
= getreg_num((insn
[1] >> 3) & 0x7, mask
);
2346 emulate_mmio_write(d
, off
, val
, mask
);
2347 insnlen
= 2 + insn_displacement_len(insn
[1]);
2348 } else if (insn
[0] == 0x8a) { /* 8-bit ioread */
2350 val
= emulate_mmio_read(d
, off
, mask
);
2351 setreg_num((insn
[1] >> 3) & 0x7, val
, mask
);
2352 insnlen
= 2 + insn_displacement_len(insn
[1]);
2354 warnx("Unknown MMIO instruction touching %#08lx:"
2355 " %02x %02x %02x %02x at %u",
2356 paddr
, insn
[0], insn
[1], insn
[2], insn
[3], getreg(eip
));
2358 /* Inject trap into Guest. */
2359 if (write(lguest_fd
, args
, sizeof(args
)) < 0)
2360 err(1, "Reinjecting trap 14 for fault at %#x",
2365 /* Finally, we've "done" the instruction, so move past it. */
2366 setreg(eip
, getreg(eip
) + insnlen
);
2372 * All devices need a descriptor so the Guest knows it exists, and a "struct
2373 * device" so the Launcher can keep track of it. We have common helper
2374 * routines to allocate and manage them.
2376 static void add_pci_virtqueue(struct device
*dev
,
2377 void (*service
)(struct virtqueue
*),
2380 struct virtqueue
**i
, *vq
= malloc(sizeof(*vq
));
2382 /* Initialize the virtqueue */
2384 vq
->last_avail_idx
= 0;
2389 * This is the routine the service thread will run, and its Process ID
2390 * once it's running.
2392 vq
->service
= service
;
2393 vq
->thread
= (pid_t
)-1;
2395 /* Initialize the configuration. */
2396 reset_vq_pci_config(vq
);
2397 vq
->pci_config
.queue_notify_off
= 0;
2399 /* Add one to the number of queues */
2400 vq
->dev
->mmio
->cfg
.num_queues
++;
2403 * Add to tail of list, so dev->vq is first vq, dev->vq->next is
2406 for (i
= &dev
->vq
; *i
; i
= &(*i
)->next
);
2410 /* The Guest accesses the feature bits via the PCI common config MMIO region */
2411 static void add_pci_feature(struct device
*dev
, unsigned bit
)
2413 dev
->features
|= (1ULL << bit
);
2416 /* For devices with no config. */
2417 static void no_device_config(struct device
*dev
)
2419 dev
->mmio_addr
= get_mmio_region(dev
->mmio_size
);
2421 dev
->config
.bar
[0] = dev
->mmio_addr
;
2422 /* Bottom 4 bits must be zero */
2423 assert(~(dev
->config
.bar
[0] & 0xF));
2426 /* This puts the device config into BAR0 */
2427 static void set_device_config(struct device
*dev
, const void *conf
, size_t len
)
2430 dev
->mmio_size
+= len
;
2431 dev
->mmio
= realloc(dev
->mmio
, dev
->mmio_size
);
2432 memcpy(dev
->mmio
+ 1, conf
, len
);
2437 * The device MUST present at least one VIRTIO_PCI_CAP_DEVICE_CFG
2438 * capability for any device type which has a device-specific
2441 /* Hook up device cfg */
2442 dev
->config
.cfg_access
.cap
.cap_next
2443 = offsetof(struct pci_config
, device
);
2448 * The offset for the device-specific configuration MUST be 4-byte
2451 assert(dev
->config
.cfg_access
.cap
.cap_next
% 4 == 0);
2453 /* Fix up device cfg field length. */
2454 dev
->config
.device
.length
= len
;
2456 /* The rest is the same as the no-config case */
2457 no_device_config(dev
);
2460 static void init_cap(struct virtio_pci_cap
*cap
, size_t caplen
, int type
,
2461 size_t bar_offset
, size_t bar_bytes
, u8 next
)
2463 cap
->cap_vndr
= PCI_CAP_ID_VNDR
;
2464 cap
->cap_next
= next
;
2465 cap
->cap_len
= caplen
;
2466 cap
->cfg_type
= type
;
2468 memset(cap
->padding
, 0, sizeof(cap
->padding
));
2469 cap
->offset
= bar_offset
;
2470 cap
->length
= bar_bytes
;
2474 * This sets up the pci_config structure, as defined in the virtio 1.0
2475 * standard (and PCI standard).
2477 static void init_pci_config(struct pci_config
*pci
, u16 type
,
2478 u8
class, u8 subclass
)
2480 size_t bar_offset
, bar_len
;
2485 * The device MUST either present notify_off_multiplier as an even
2486 * power of 2, or present notify_off_multiplier as 0.
2490 * The device MUST initialize device status to 0 upon reset.
2492 memset(pci
, 0, sizeof(*pci
));
2494 /* 4.1.2.1: Devices MUST have the PCI Vendor ID 0x1AF4 */
2495 pci
->vendor_id
= 0x1AF4;
2496 /* 4.1.2.1: ... PCI Device ID calculated by adding 0x1040 ... */
2497 pci
->device_id
= 0x1040 + type
;
2500 * PCI have specific codes for different types of devices.
2501 * Linux doesn't care, but it's a good clue for people looking
2505 pci
->subclass
= subclass
;
2510 * Non-transitional devices SHOULD have a PCI Revision ID of 1 or
2518 * Non-transitional devices SHOULD have a PCI Subsystem Device ID of
2521 pci
->subsystem_device_id
= 0x40;
2523 /* We use our dummy interrupt controller, and irq_line is the irq */
2524 pci
->irq_line
= devices
.next_irq
++;
2527 /* Support for extended capabilities. */
2528 pci
->status
= (1 << 4);
2534 * The device MUST present at least one common configuration
2537 pci
->capabilities
= offsetof(struct pci_config
, common
);
2539 /* 4.1.4.3.1 ... offset MUST be 4-byte aligned. */
2540 assert(pci
->capabilities
% 4 == 0);
2542 bar_offset
= offsetof(struct virtio_pci_mmio
, cfg
);
2543 bar_len
= sizeof(((struct virtio_pci_mmio
*)0)->cfg
);
2544 init_cap(&pci
->common
, sizeof(pci
->common
), VIRTIO_PCI_CAP_COMMON_CFG
,
2545 bar_offset
, bar_len
,
2546 offsetof(struct pci_config
, notify
));
2551 * The device MUST present at least one notification capability.
2553 bar_offset
+= bar_len
;
2554 bar_len
= sizeof(((struct virtio_pci_mmio
*)0)->notify
);
2559 * The cap.offset MUST be 2-byte aligned.
2561 assert(pci
->common
.cap_next
% 2 == 0);
2563 /* FIXME: Use a non-zero notify_off, for per-queue notification? */
2567 * The value cap.length presented by the device MUST be at least 2 and
2568 * MUST be large enough to support queue notification offsets for all
2569 * supported queues in all possible configurations.
2571 assert(bar_len
>= 2);
2573 init_cap(&pci
->notify
.cap
, sizeof(pci
->notify
),
2574 VIRTIO_PCI_CAP_NOTIFY_CFG
,
2575 bar_offset
, bar_len
,
2576 offsetof(struct pci_config
, isr
));
2578 bar_offset
+= bar_len
;
2579 bar_len
= sizeof(((struct virtio_pci_mmio
*)0)->isr
);
2583 * The device MUST present at least one VIRTIO_PCI_CAP_ISR_CFG
2586 init_cap(&pci
->isr
, sizeof(pci
->isr
),
2587 VIRTIO_PCI_CAP_ISR_CFG
,
2588 bar_offset
, bar_len
,
2589 offsetof(struct pci_config
, cfg_access
));
2594 * The device MUST present at least one VIRTIO_PCI_CAP_PCI_CFG
2597 /* This doesn't have any presence in the BAR */
2598 init_cap(&pci
->cfg_access
.cap
, sizeof(pci
->cfg_access
),
2599 VIRTIO_PCI_CAP_PCI_CFG
,
2602 bar_offset
+= bar_len
+ sizeof(((struct virtio_pci_mmio
*)0)->padding
);
2603 assert(bar_offset
== sizeof(struct virtio_pci_mmio
));
2606 * This gets sewn in and length set in set_device_config().
2607 * Some devices don't have a device configuration interface, so
2608 * we never expose this if we don't call set_device_config().
2610 init_cap(&pci
->device
, sizeof(pci
->device
), VIRTIO_PCI_CAP_DEVICE_CFG
,
2615 * This routine does all the creation and setup of a new device, but we don't
2616 * actually place the MMIO region until we know the size (if any) of the
2617 * device-specific config. And we don't actually start the service threads
2620 * See what I mean about userspace being boring?
2622 static struct device
*new_pci_device(const char *name
, u16 type
,
2623 u8
class, u8 subclass
)
2625 struct device
*dev
= malloc(sizeof(*dev
));
2627 /* Now we populate the fields one at a time. */
2630 dev
->running
= false;
2631 dev
->wrote_features_ok
= false;
2632 dev
->mmio_size
= sizeof(struct virtio_pci_mmio
);
2633 dev
->mmio
= calloc(1, dev
->mmio_size
);
2634 dev
->features
= (u64
)1 << VIRTIO_F_VERSION_1
;
2635 dev
->features_accepted
= 0;
2637 if (devices
.device_num
+ 1 >= MAX_PCI_DEVICES
)
2638 errx(1, "Can only handle 31 PCI devices");
2640 init_pci_config(&dev
->config
, type
, class, subclass
);
2641 assert(!devices
.pci
[devices
.device_num
+1]);
2642 devices
.pci
[++devices
.device_num
] = dev
;
2648 * Our first setup routine is the console. It's a fairly simple device, but
2649 * UNIX tty handling makes it uglier than it could be.
2651 static void setup_console(void)
2654 struct virtio_console_config conf
;
2656 /* If we can save the initial standard input settings... */
2657 if (tcgetattr(STDIN_FILENO
, &orig_term
) == 0) {
2658 struct termios term
= orig_term
;
2660 * Then we turn off echo, line buffering and ^C etc: We want a
2661 * raw input stream to the Guest.
2663 term
.c_lflag
&= ~(ISIG
|ICANON
|ECHO
);
2664 tcsetattr(STDIN_FILENO
, TCSANOW
, &term
);
2667 dev
= new_pci_device("console", VIRTIO_ID_CONSOLE
, 0x07, 0x00);
2669 /* We store the console state in dev->priv, and initialize it. */
2670 dev
->priv
= malloc(sizeof(struct console_abort
));
2671 ((struct console_abort
*)dev
->priv
)->count
= 0;
2674 * The console needs two virtqueues: the input then the output. When
2675 * they put something the input queue, we make sure we're listening to
2676 * stdin. When they put something in the output queue, we write it to
2679 add_pci_virtqueue(dev
, console_input
, "input");
2680 add_pci_virtqueue(dev
, console_output
, "output");
2682 /* We need a configuration area for the emerg_wr early writes. */
2683 add_pci_feature(dev
, VIRTIO_CONSOLE_F_EMERG_WRITE
);
2684 set_device_config(dev
, &conf
, sizeof(conf
));
2686 verbose("device %u: console\n", devices
.device_num
);
2691 * Inter-guest networking is an interesting area. Simplest is to have a
2692 * --sharenet=<name> option which opens or creates a named pipe. This can be
2693 * used to send packets to another guest in a 1:1 manner.
2695 * More sophisticated is to use one of the tools developed for project like UML
2698 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
2699 * completely generic ("here's my vring, attach to your vring") and would work
2700 * for any traffic. Of course, namespace and permissions issues need to be
2701 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
2702 * multiple inter-guest channels behind one interface, although it would
2703 * require some manner of hotplugging new virtio channels.
2705 * Finally, we could use a virtio network switch in the kernel, ie. vhost.
2708 static u32
str2ip(const char *ipaddr
)
2712 if (sscanf(ipaddr
, "%u.%u.%u.%u", &b
[0], &b
[1], &b
[2], &b
[3]) != 4)
2713 errx(1, "Failed to parse IP address '%s'", ipaddr
);
2714 return (b
[0] << 24) | (b
[1] << 16) | (b
[2] << 8) | b
[3];
2717 static void str2mac(const char *macaddr
, unsigned char mac
[6])
2720 if (sscanf(macaddr
, "%02x:%02x:%02x:%02x:%02x:%02x",
2721 &m
[0], &m
[1], &m
[2], &m
[3], &m
[4], &m
[5]) != 6)
2722 errx(1, "Failed to parse mac address '%s'", macaddr
);
2732 * This code is "adapted" from libbridge: it attaches the Host end of the
2733 * network device to the bridge device specified by the command line.
2735 * This is yet another James Morris contribution (I'm an IP-level guy, so I
2736 * dislike bridging), and I just try not to break it.
2738 static void add_to_bridge(int fd
, const char *if_name
, const char *br_name
)
2744 errx(1, "must specify bridge name");
2746 ifidx
= if_nametoindex(if_name
);
2748 errx(1, "interface %s does not exist!", if_name
);
2750 strncpy(ifr
.ifr_name
, br_name
, IFNAMSIZ
);
2751 ifr
.ifr_name
[IFNAMSIZ
-1] = '\0';
2752 ifr
.ifr_ifindex
= ifidx
;
2753 if (ioctl(fd
, SIOCBRADDIF
, &ifr
) < 0)
2754 err(1, "can't add %s to bridge %s", if_name
, br_name
);
2758 * This sets up the Host end of the network device with an IP address, brings
2759 * it up so packets will flow, the copies the MAC address into the hwaddr
2762 static void configure_device(int fd
, const char *tapif
, u32 ipaddr
)
2765 struct sockaddr_in sin
;
2767 memset(&ifr
, 0, sizeof(ifr
));
2768 strcpy(ifr
.ifr_name
, tapif
);
2770 /* Don't read these incantations. Just cut & paste them like I did! */
2771 sin
.sin_family
= AF_INET
;
2772 sin
.sin_addr
.s_addr
= htonl(ipaddr
);
2773 memcpy(&ifr
.ifr_addr
, &sin
, sizeof(sin
));
2774 if (ioctl(fd
, SIOCSIFADDR
, &ifr
) != 0)
2775 err(1, "Setting %s interface address", tapif
);
2776 ifr
.ifr_flags
= IFF_UP
;
2777 if (ioctl(fd
, SIOCSIFFLAGS
, &ifr
) != 0)
2778 err(1, "Bringing interface %s up", tapif
);
2781 static int get_tun_device(char tapif
[IFNAMSIZ
])
2787 /* Start with this zeroed. Messy but sure. */
2788 memset(&ifr
, 0, sizeof(ifr
));
2791 * We open the /dev/net/tun device and tell it we want a tap device. A
2792 * tap device is like a tun device, only somehow different. To tell
2793 * the truth, I completely blundered my way through this code, but it
2796 netfd
= open_or_die("/dev/net/tun", O_RDWR
);
2797 ifr
.ifr_flags
= IFF_TAP
| IFF_NO_PI
| IFF_VNET_HDR
;
2798 strcpy(ifr
.ifr_name
, "tap%d");
2799 if (ioctl(netfd
, TUNSETIFF
, &ifr
) != 0)
2800 err(1, "configuring /dev/net/tun");
2802 if (ioctl(netfd
, TUNSETOFFLOAD
,
2803 TUN_F_CSUM
|TUN_F_TSO4
|TUN_F_TSO6
|TUN_F_TSO_ECN
) != 0)
2804 err(1, "Could not set features for tun device");
2807 * We don't need checksums calculated for packets coming in this
2810 ioctl(netfd
, TUNSETNOCSUM
, 1);
2813 * In virtio before 1.0 (aka legacy virtio), we added a 16-bit
2814 * field at the end of the network header iff
2815 * VIRTIO_NET_F_MRG_RXBUF was negotiated. For virtio 1.0,
2816 * that became the norm, but we need to tell the tun device
2817 * about our expanded header (which is called
2818 * virtio_net_hdr_mrg_rxbuf in the legacy system).
2820 vnet_hdr_sz
= sizeof(struct virtio_net_hdr_v1
);
2821 if (ioctl(netfd
, TUNSETVNETHDRSZ
, &vnet_hdr_sz
) != 0)
2822 err(1, "Setting tun header size to %u", vnet_hdr_sz
);
2824 memcpy(tapif
, ifr
.ifr_name
, IFNAMSIZ
);
2829 * Our network is a Host<->Guest network. This can either use bridging or
2830 * routing, but the principle is the same: it uses the "tun" device to inject
2831 * packets into the Host as if they came in from a normal network card. We
2832 * just shunt packets between the Guest and the tun device.
2834 static void setup_tun_net(char *arg
)
2837 struct net_info
*net_info
= malloc(sizeof(*net_info
));
2839 u32 ip
= INADDR_ANY
;
2840 bool bridging
= false;
2841 char tapif
[IFNAMSIZ
], *p
;
2842 struct virtio_net_config conf
;
2844 net_info
->tunfd
= get_tun_device(tapif
);
2846 /* First we create a new network device. */
2847 dev
= new_pci_device("net", VIRTIO_ID_NET
, 0x02, 0x00);
2848 dev
->priv
= net_info
;
2850 /* Network devices need a recv and a send queue, just like console. */
2851 add_pci_virtqueue(dev
, net_input
, "rx");
2852 add_pci_virtqueue(dev
, net_output
, "tx");
2855 * We need a socket to perform the magic network ioctls to bring up the
2856 * tap interface, connect to the bridge etc. Any socket will do!
2858 ipfd
= socket(PF_INET
, SOCK_DGRAM
, IPPROTO_IP
);
2860 err(1, "opening IP socket");
2862 /* If the command line was --tunnet=bridge:<name> do bridging. */
2863 if (!strncmp(BRIDGE_PFX
, arg
, strlen(BRIDGE_PFX
))) {
2864 arg
+= strlen(BRIDGE_PFX
);
2868 /* A mac address may follow the bridge name or IP address */
2869 p
= strchr(arg
, ':');
2871 str2mac(p
+1, conf
.mac
);
2872 add_pci_feature(dev
, VIRTIO_NET_F_MAC
);
2876 /* arg is now either an IP address or a bridge name */
2878 add_to_bridge(ipfd
, tapif
, arg
);
2882 /* Set up the tun device. */
2883 configure_device(ipfd
, tapif
, ip
);
2885 /* Expect Guest to handle everything except UFO */
2886 add_pci_feature(dev
, VIRTIO_NET_F_CSUM
);
2887 add_pci_feature(dev
, VIRTIO_NET_F_GUEST_CSUM
);
2888 add_pci_feature(dev
, VIRTIO_NET_F_GUEST_TSO4
);
2889 add_pci_feature(dev
, VIRTIO_NET_F_GUEST_TSO6
);
2890 add_pci_feature(dev
, VIRTIO_NET_F_GUEST_ECN
);
2891 add_pci_feature(dev
, VIRTIO_NET_F_HOST_TSO4
);
2892 add_pci_feature(dev
, VIRTIO_NET_F_HOST_TSO6
);
2893 add_pci_feature(dev
, VIRTIO_NET_F_HOST_ECN
);
2894 /* We handle indirect ring entries */
2895 add_pci_feature(dev
, VIRTIO_RING_F_INDIRECT_DESC
);
2896 set_device_config(dev
, &conf
, sizeof(conf
));
2898 /* We don't need the socket any more; setup is done. */
2902 verbose("device %u: tun %s attached to bridge: %s\n",
2903 devices
.device_num
, tapif
, arg
);
2905 verbose("device %u: tun %s: %s\n",
2906 devices
.device_num
, tapif
, arg
);
2910 /* This hangs off device->priv. */
2912 /* The size of the file. */
2915 /* The file descriptor for the file. */
2923 * The disk only has one virtqueue, so it only has one thread. It is really
2924 * simple: the Guest asks for a block number and we read or write that position
2927 * Before we serviced each virtqueue in a separate thread, that was unacceptably
2928 * slow: the Guest waits until the read is finished before running anything
2929 * else, even if it could have been doing useful work.
2931 * We could have used async I/O, except it's reputed to suck so hard that
2932 * characters actually go missing from your code when you try to use it.
2934 static void blk_request(struct virtqueue
*vq
)
2936 struct vblk_info
*vblk
= vq
->dev
->priv
;
2937 unsigned int head
, out_num
, in_num
, wlen
;
2940 struct virtio_blk_outhdr out
;
2941 struct iovec iov
[vq
->vring
.num
];
2945 * Get the next request, where we normally wait. It triggers the
2946 * interrupt to acknowledge previously serviced requests (if any).
2948 head
= wait_for_vq_desc(vq
, iov
, &out_num
, &in_num
);
2950 /* Copy the output header from the front of the iov (adjusts iov) */
2951 iov_consume(vq
->dev
, iov
, out_num
, &out
, sizeof(out
));
2953 /* Find and trim end of iov input array, for our status byte. */
2955 for (i
= out_num
+ in_num
- 1; i
>= out_num
; i
--) {
2956 if (iov
[i
].iov_len
> 0) {
2957 in
= iov
[i
].iov_base
+ iov
[i
].iov_len
- 1;
2963 bad_driver_vq(vq
, "Bad virtblk cmd with no room for status");
2966 * For historical reasons, block operations are expressed in 512 byte
2969 off
= out
.sector
* 512;
2971 if (out
.type
& VIRTIO_BLK_T_OUT
) {
2975 * Move to the right location in the block file. This can fail
2976 * if they try to write past end.
2978 if (lseek64(vblk
->fd
, off
, SEEK_SET
) != off
)
2979 err(1, "Bad seek to sector %llu", out
.sector
);
2981 ret
= writev(vblk
->fd
, iov
, out_num
);
2982 verbose("WRITE to sector %llu: %i\n", out
.sector
, ret
);
2985 * Grr... Now we know how long the descriptor they sent was, we
2986 * make sure they didn't try to write over the end of the block
2987 * file (possibly extending it).
2989 if (ret
> 0 && off
+ ret
> vblk
->len
) {
2990 /* Trim it back to the correct length */
2991 ftruncate64(vblk
->fd
, vblk
->len
);
2992 /* Die, bad Guest, die. */
2993 bad_driver_vq(vq
, "Write past end %llu+%u", off
, ret
);
2997 *in
= (ret
>= 0 ? VIRTIO_BLK_S_OK
: VIRTIO_BLK_S_IOERR
);
2998 } else if (out
.type
& VIRTIO_BLK_T_FLUSH
) {
3000 ret
= fdatasync(vblk
->fd
);
3001 verbose("FLUSH fdatasync: %i\n", ret
);
3003 *in
= (ret
>= 0 ? VIRTIO_BLK_S_OK
: VIRTIO_BLK_S_IOERR
);
3008 * Move to the right location in the block file. This can fail
3009 * if they try to read past end.
3011 if (lseek64(vblk
->fd
, off
, SEEK_SET
) != off
)
3012 err(1, "Bad seek to sector %llu", out
.sector
);
3014 ret
= readv(vblk
->fd
, iov
+ out_num
, in_num
);
3016 wlen
= sizeof(*in
) + ret
;
3017 *in
= VIRTIO_BLK_S_OK
;
3020 *in
= VIRTIO_BLK_S_IOERR
;
3024 /* Finished that request. */
3025 add_used(vq
, head
, wlen
);
3028 /*L:198 This actually sets up a virtual block device. */
3029 static void setup_block_file(const char *filename
)
3032 struct vblk_info
*vblk
;
3033 struct virtio_blk_config conf
;
3035 /* Create the device. */
3036 dev
= new_pci_device("block", VIRTIO_ID_BLOCK
, 0x01, 0x80);
3038 /* The device has one virtqueue, where the Guest places requests. */
3039 add_pci_virtqueue(dev
, blk_request
, "request");
3041 /* Allocate the room for our own bookkeeping */
3042 vblk
= dev
->priv
= malloc(sizeof(*vblk
));
3044 /* First we open the file and store the length. */
3045 vblk
->fd
= open_or_die(filename
, O_RDWR
|O_LARGEFILE
);
3046 vblk
->len
= lseek64(vblk
->fd
, 0, SEEK_END
);
3048 /* Tell Guest how many sectors this device has. */
3049 conf
.capacity
= cpu_to_le64(vblk
->len
/ 512);
3052 * Tell Guest not to put in too many descriptors at once: two are used
3053 * for the in and out elements.
3055 add_pci_feature(dev
, VIRTIO_BLK_F_SEG_MAX
);
3056 conf
.seg_max
= cpu_to_le32(VIRTQUEUE_NUM
- 2);
3058 set_device_config(dev
, &conf
, sizeof(struct virtio_blk_config
));
3060 verbose("device %u: virtblock %llu sectors\n",
3061 devices
.device_num
, le64_to_cpu(conf
.capacity
));
3065 * Our random number generator device reads from /dev/urandom into the Guest's
3066 * input buffers. The usual case is that the Guest doesn't want random numbers
3067 * and so has no buffers although /dev/urandom is still readable, whereas
3068 * console is the reverse.
3070 * The same logic applies, however.
3076 static void rng_input(struct virtqueue
*vq
)
3079 unsigned int head
, in_num
, out_num
, totlen
= 0;
3080 struct rng_info
*rng_info
= vq
->dev
->priv
;
3081 struct iovec iov
[vq
->vring
.num
];
3083 /* First we need a buffer from the Guests's virtqueue. */
3084 head
= wait_for_vq_desc(vq
, iov
, &out_num
, &in_num
);
3086 bad_driver_vq(vq
, "Output buffers in rng?");
3089 * Just like the console write, we loop to cover the whole iovec.
3090 * In this case, short reads actually happen quite a bit.
3092 while (!iov_empty(iov
, in_num
)) {
3093 len
= readv(rng_info
->rfd
, iov
, in_num
);
3095 err(1, "Read from /dev/urandom gave %i", len
);
3096 iov_consume(vq
->dev
, iov
, in_num
, NULL
, len
);
3100 /* Tell the Guest about the new input. */
3101 add_used(vq
, head
, totlen
);
3105 * This creates a "hardware" random number device for the Guest.
3107 static void setup_rng(void)
3110 struct rng_info
*rng_info
= malloc(sizeof(*rng_info
));
3112 /* Our device's private info simply contains the /dev/urandom fd. */
3113 rng_info
->rfd
= open_or_die("/dev/urandom", O_RDONLY
);
3115 /* Create the new device. */
3116 dev
= new_pci_device("rng", VIRTIO_ID_RNG
, 0xff, 0);
3117 dev
->priv
= rng_info
;
3119 /* The device has one virtqueue, where the Guest places inbufs. */
3120 add_pci_virtqueue(dev
, rng_input
, "input");
3122 /* We don't have any configuration space */
3123 no_device_config(dev
);
3125 verbose("device %u: rng\n", devices
.device_num
);
3127 /* That's the end of device setup. */
3129 /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
3130 static void __attribute__((noreturn
)) restart_guest(void)
3135 * Since we don't track all open fds, we simply close everything beyond
3138 for (i
= 3; i
< FD_SETSIZE
; i
++)
3141 /* Reset all the devices (kills all threads). */
3144 execv(main_args
[0], main_args
);
3145 err(1, "Could not exec %s", main_args
[0]);
3149 * Finally we reach the core of the Launcher which runs the Guest, serves
3150 * its input and output, and finally, lays it to rest.
3152 static void __attribute__((noreturn
)) run_guest(void)
3155 struct lguest_pending notify
;
3158 /* We read from the /dev/lguest device to run the Guest. */
3159 readval
= pread(lguest_fd
, ¬ify
, sizeof(notify
), cpu_id
);
3160 if (readval
== sizeof(notify
)) {
3161 if (notify
.trap
== 13) {
3162 verbose("Emulating instruction at %#x\n",
3164 emulate_insn(notify
.insn
);
3165 } else if (notify
.trap
== 14) {
3166 verbose("Emulating MMIO at %#x\n",
3168 emulate_mmio(notify
.addr
, notify
.insn
);
3170 errx(1, "Unknown trap %i addr %#08x\n",
3171 notify
.trap
, notify
.addr
);
3172 /* ENOENT means the Guest died. Reading tells us why. */
3173 } else if (errno
== ENOENT
) {
3174 char reason
[1024] = { 0 };
3175 pread(lguest_fd
, reason
, sizeof(reason
)-1, cpu_id
);
3176 errx(1, "%s", reason
);
3177 /* ERESTART means that we need to reboot the guest */
3178 } else if (errno
== ERESTART
) {
3180 /* Anything else means a bug or incompatible change. */
3182 err(1, "Running guest failed");
3186 * This is the end of the Launcher. The good news: we are over halfway
3187 * through! The bad news: the most fiendish part of the code still lies ahead
3190 * Are you ready? Take a deep breath and join me in the core of the Host, in
3194 static struct option opts
[] = {
3195 { "verbose", 0, NULL
, 'v' },
3196 { "tunnet", 1, NULL
, 't' },
3197 { "block", 1, NULL
, 'b' },
3198 { "rng", 0, NULL
, 'r' },
3199 { "initrd", 1, NULL
, 'i' },
3200 { "username", 1, NULL
, 'u' },
3201 { "chroot", 1, NULL
, 'c' },
3204 static void usage(void)
3206 errx(1, "Usage: lguest [--verbose] "
3207 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
3208 "|--block=<filename>|--initrd=<filename>]...\n"
3209 "<mem-in-mb> vmlinux [args...]");
3212 /*L:105 The main routine is where the real work begins: */
3213 int main(int argc
, char *argv
[])
3215 /* Memory, code startpoint and size of the (optional) initrd. */
3216 unsigned long mem
= 0, start
, initrd_size
= 0;
3217 /* Two temporaries. */
3219 /* The boot information for the Guest. */
3220 struct boot_params
*boot
;
3221 /* If they specify an initrd file to load. */
3222 const char *initrd_name
= NULL
;
3224 /* Password structure for initgroups/setres[gu]id */
3225 struct passwd
*user_details
= NULL
;
3227 /* Directory to chroot to */
3228 char *chroot_path
= NULL
;
3230 /* Save the args: we "reboot" by execing ourselves again. */
3234 * First we initialize the device list. We remember next interrupt
3235 * number to use for devices (1: remember that 0 is used by the timer).
3237 devices
.next_irq
= 1;
3239 /* We're CPU 0. In fact, that's the only CPU possible right now. */
3243 * We need to know how much memory so we can set up the device
3244 * descriptor and memory pages for the devices as we parse the command
3245 * line. So we quickly look through the arguments to find the amount
3248 for (i
= 1; i
< argc
; i
++) {
3249 if (argv
[i
][0] != '-') {
3250 mem
= atoi(argv
[i
]) * 1024 * 1024;
3252 * We start by mapping anonymous pages over all of
3253 * guest-physical memory range. This fills it with 0,
3254 * and ensures that the Guest won't be killed when it
3255 * tries to access it.
3257 guest_base
= map_zeroed_pages(mem
/ getpagesize()
3260 guest_max
= guest_mmio
= mem
+ DEVICE_PAGES
*getpagesize();
3265 /* We always have a console device, and it's always device 1. */
3268 /* The options are fairly straight-forward */
3269 while ((c
= getopt_long(argc
, argv
, "v", opts
, NULL
)) != EOF
) {
3275 setup_tun_net(optarg
);
3278 setup_block_file(optarg
);
3284 initrd_name
= optarg
;
3287 user_details
= getpwnam(optarg
);
3289 err(1, "getpwnam failed, incorrect username?");
3292 chroot_path
= optarg
;
3295 warnx("Unknown argument %s", argv
[optind
]);
3300 * After the other arguments we expect memory and kernel image name,
3301 * followed by command line arguments for the kernel.
3303 if (optind
+ 2 > argc
)
3306 verbose("Guest base is at %p\n", guest_base
);
3308 /* Initialize the (fake) PCI host bridge device. */
3309 init_pci_host_bridge();
3311 /* Now we load the kernel */
3312 start
= load_kernel(open_or_die(argv
[optind
+1], O_RDONLY
));
3314 /* Boot information is stashed at physical address 0 */
3315 boot
= from_guest_phys(0);
3317 /* Map the initrd image if requested (at top of physical memory) */
3319 initrd_size
= load_initrd(initrd_name
, mem
);
3321 * These are the location in the Linux boot header where the
3322 * start and size of the initrd are expected to be found.
3324 boot
->hdr
.ramdisk_image
= mem
- initrd_size
;
3325 boot
->hdr
.ramdisk_size
= initrd_size
;
3326 /* The bootloader type 0xFF means "unknown"; that's OK. */
3327 boot
->hdr
.type_of_loader
= 0xFF;
3331 * The Linux boot header contains an "E820" memory map: ours is a
3332 * simple, single region.
3334 boot
->e820_entries
= 1;
3335 boot
->e820_map
[0] = ((struct e820entry
) { 0, mem
, E820_RAM
});
3337 * The boot header contains a command line pointer: we put the command
3338 * line after the boot header.
3340 boot
->hdr
.cmd_line_ptr
= to_guest_phys(boot
+ 1);
3341 /* We use a simple helper to copy the arguments separated by spaces. */
3342 concat((char *)(boot
+ 1), argv
+optind
+2);
3344 /* Set kernel alignment to 16M (CONFIG_PHYSICAL_ALIGN) */
3345 boot
->hdr
.kernel_alignment
= 0x1000000;
3347 /* Boot protocol version: 2.07 supports the fields for lguest. */
3348 boot
->hdr
.version
= 0x207;
3350 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
3351 boot
->hdr
.hardware_subarch
= 1;
3353 /* Tell the entry path not to try to reload segment registers. */
3354 boot
->hdr
.loadflags
|= KEEP_SEGMENTS
;
3356 /* We tell the kernel to initialize the Guest. */
3359 /* Ensure that we terminate if a device-servicing child dies. */
3360 signal(SIGCHLD
, kill_launcher
);
3362 /* If we exit via err(), this kills all the threads, restores tty. */
3363 atexit(cleanup_devices
);
3365 /* If requested, chroot to a directory */
3367 if (chroot(chroot_path
) != 0)
3368 err(1, "chroot(\"%s\") failed", chroot_path
);
3370 if (chdir("/") != 0)
3371 err(1, "chdir(\"/\") failed");
3373 verbose("chroot done\n");
3376 /* If requested, drop privileges */
3381 u
= user_details
->pw_uid
;
3382 g
= user_details
->pw_gid
;
3384 if (initgroups(user_details
->pw_name
, g
) != 0)
3385 err(1, "initgroups failed");
3387 if (setresgid(g
, g
, g
) != 0)
3388 err(1, "setresgid failed");
3390 if (setresuid(u
, u
, u
) != 0)
3391 err(1, "setresuid failed");
3393 verbose("Dropping privileges completed\n");
3396 /* Finally, run the Guest. This doesn't return. */
3402 * Mastery is done: you now know everything I do.
3404 * But surely you have seen code, features and bugs in your wanderings which
3405 * you now yearn to attack? That is the real game, and I look forward to you
3406 * patching and forking lguest into the Your-Name-Here-visor.
3408 * Farewell, and good coding!