ARM: 8060/1: mm: allow sub-architectures to override PCI I/O memory type
[linux/fpc-iii.git] / drivers / cpufreq / imx6q-cpufreq.c
blobe27fca86fe4f8e22547fa3f90d3bde5cec81fca6
1 /*
2 * Copyright (C) 2013 Freescale Semiconductor, Inc.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/delay.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/pm_opp.h>
17 #include <linux/platform_device.h>
18 #include <linux/regulator/consumer.h>
20 #define PU_SOC_VOLTAGE_NORMAL 1250000
21 #define PU_SOC_VOLTAGE_HIGH 1275000
22 #define FREQ_1P2_GHZ 1200000000
24 static struct regulator *arm_reg;
25 static struct regulator *pu_reg;
26 static struct regulator *soc_reg;
28 static struct clk *arm_clk;
29 static struct clk *pll1_sys_clk;
30 static struct clk *pll1_sw_clk;
31 static struct clk *step_clk;
32 static struct clk *pll2_pfd2_396m_clk;
34 static struct device *cpu_dev;
35 static struct cpufreq_frequency_table *freq_table;
36 static unsigned int transition_latency;
38 static u32 *imx6_soc_volt;
39 static u32 soc_opp_count;
41 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
43 struct dev_pm_opp *opp;
44 unsigned long freq_hz, volt, volt_old;
45 unsigned int old_freq, new_freq;
46 int ret;
48 new_freq = freq_table[index].frequency;
49 freq_hz = new_freq * 1000;
50 old_freq = clk_get_rate(arm_clk) / 1000;
52 rcu_read_lock();
53 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
54 if (IS_ERR(opp)) {
55 rcu_read_unlock();
56 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
57 return PTR_ERR(opp);
60 volt = dev_pm_opp_get_voltage(opp);
61 rcu_read_unlock();
62 volt_old = regulator_get_voltage(arm_reg);
64 dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
65 old_freq / 1000, volt_old / 1000,
66 new_freq / 1000, volt / 1000);
68 /* scaling up? scale voltage before frequency */
69 if (new_freq > old_freq) {
70 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
71 if (ret) {
72 dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
73 return ret;
75 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
76 if (ret) {
77 dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
78 return ret;
80 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
81 if (ret) {
82 dev_err(cpu_dev,
83 "failed to scale vddarm up: %d\n", ret);
84 return ret;
89 * The setpoints are selected per PLL/PDF frequencies, so we need to
90 * reprogram PLL for frequency scaling. The procedure of reprogramming
91 * PLL1 is as below.
93 * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
94 * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
95 * - Disable pll2_pfd2_396m_clk
97 clk_set_parent(step_clk, pll2_pfd2_396m_clk);
98 clk_set_parent(pll1_sw_clk, step_clk);
99 if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
100 clk_set_rate(pll1_sys_clk, new_freq * 1000);
101 clk_set_parent(pll1_sw_clk, pll1_sys_clk);
104 /* Ensure the arm clock divider is what we expect */
105 ret = clk_set_rate(arm_clk, new_freq * 1000);
106 if (ret) {
107 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
108 regulator_set_voltage_tol(arm_reg, volt_old, 0);
109 return ret;
112 /* scaling down? scale voltage after frequency */
113 if (new_freq < old_freq) {
114 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
115 if (ret) {
116 dev_warn(cpu_dev,
117 "failed to scale vddarm down: %d\n", ret);
118 ret = 0;
120 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
121 if (ret) {
122 dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
123 ret = 0;
125 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
126 if (ret) {
127 dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
128 ret = 0;
132 return 0;
135 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
137 policy->clk = arm_clk;
138 return cpufreq_generic_init(policy, freq_table, transition_latency);
141 static struct cpufreq_driver imx6q_cpufreq_driver = {
142 .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
143 .verify = cpufreq_generic_frequency_table_verify,
144 .target_index = imx6q_set_target,
145 .get = cpufreq_generic_get,
146 .init = imx6q_cpufreq_init,
147 .name = "imx6q-cpufreq",
148 .attr = cpufreq_generic_attr,
151 static int imx6q_cpufreq_probe(struct platform_device *pdev)
153 struct device_node *np;
154 struct dev_pm_opp *opp;
155 unsigned long min_volt, max_volt;
156 int num, ret;
157 const struct property *prop;
158 const __be32 *val;
159 u32 nr, i, j;
161 cpu_dev = get_cpu_device(0);
162 if (!cpu_dev) {
163 pr_err("failed to get cpu0 device\n");
164 return -ENODEV;
167 np = of_node_get(cpu_dev->of_node);
168 if (!np) {
169 dev_err(cpu_dev, "failed to find cpu0 node\n");
170 return -ENOENT;
173 arm_clk = devm_clk_get(cpu_dev, "arm");
174 pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys");
175 pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw");
176 step_clk = devm_clk_get(cpu_dev, "step");
177 pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m");
178 if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
179 IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
180 dev_err(cpu_dev, "failed to get clocks\n");
181 ret = -ENOENT;
182 goto put_node;
185 arm_reg = devm_regulator_get(cpu_dev, "arm");
186 pu_reg = devm_regulator_get(cpu_dev, "pu");
187 soc_reg = devm_regulator_get(cpu_dev, "soc");
188 if (IS_ERR(arm_reg) || IS_ERR(pu_reg) || IS_ERR(soc_reg)) {
189 dev_err(cpu_dev, "failed to get regulators\n");
190 ret = -ENOENT;
191 goto put_node;
195 * We expect an OPP table supplied by platform.
196 * Just, incase the platform did not supply the OPP
197 * table, it will try to get it.
199 num = dev_pm_opp_get_opp_count(cpu_dev);
200 if (num < 0) {
201 ret = of_init_opp_table(cpu_dev);
202 if (ret < 0) {
203 dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
204 goto put_node;
207 num = dev_pm_opp_get_opp_count(cpu_dev);
208 if (num < 0) {
209 ret = num;
210 dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
211 goto put_node;
215 ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
216 if (ret) {
217 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
218 goto put_node;
221 /* Make imx6_soc_volt array's size same as arm opp number */
222 imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
223 if (imx6_soc_volt == NULL) {
224 ret = -ENOMEM;
225 goto free_freq_table;
228 prop = of_find_property(np, "fsl,soc-operating-points", NULL);
229 if (!prop || !prop->value)
230 goto soc_opp_out;
233 * Each OPP is a set of tuples consisting of frequency and
234 * voltage like <freq-kHz vol-uV>.
236 nr = prop->length / sizeof(u32);
237 if (nr % 2 || (nr / 2) < num)
238 goto soc_opp_out;
240 for (j = 0; j < num; j++) {
241 val = prop->value;
242 for (i = 0; i < nr / 2; i++) {
243 unsigned long freq = be32_to_cpup(val++);
244 unsigned long volt = be32_to_cpup(val++);
245 if (freq_table[j].frequency == freq) {
246 imx6_soc_volt[soc_opp_count++] = volt;
247 break;
252 soc_opp_out:
253 /* use fixed soc opp volt if no valid soc opp info found in dtb */
254 if (soc_opp_count != num) {
255 dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
256 for (j = 0; j < num; j++)
257 imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
258 if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
259 imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
262 if (of_property_read_u32(np, "clock-latency", &transition_latency))
263 transition_latency = CPUFREQ_ETERNAL;
266 * Calculate the ramp time for max voltage change in the
267 * VDDSOC and VDDPU regulators.
269 ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
270 if (ret > 0)
271 transition_latency += ret * 1000;
272 ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
273 if (ret > 0)
274 transition_latency += ret * 1000;
277 * OPP is maintained in order of increasing frequency, and
278 * freq_table initialised from OPP is therefore sorted in the
279 * same order.
281 rcu_read_lock();
282 opp = dev_pm_opp_find_freq_exact(cpu_dev,
283 freq_table[0].frequency * 1000, true);
284 min_volt = dev_pm_opp_get_voltage(opp);
285 opp = dev_pm_opp_find_freq_exact(cpu_dev,
286 freq_table[--num].frequency * 1000, true);
287 max_volt = dev_pm_opp_get_voltage(opp);
288 rcu_read_unlock();
289 ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
290 if (ret > 0)
291 transition_latency += ret * 1000;
293 ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
294 if (ret) {
295 dev_err(cpu_dev, "failed register driver: %d\n", ret);
296 goto free_freq_table;
299 of_node_put(np);
300 return 0;
302 free_freq_table:
303 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
304 put_node:
305 of_node_put(np);
306 return ret;
309 static int imx6q_cpufreq_remove(struct platform_device *pdev)
311 cpufreq_unregister_driver(&imx6q_cpufreq_driver);
312 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
314 return 0;
317 static struct platform_driver imx6q_cpufreq_platdrv = {
318 .driver = {
319 .name = "imx6q-cpufreq",
320 .owner = THIS_MODULE,
322 .probe = imx6q_cpufreq_probe,
323 .remove = imx6q_cpufreq_remove,
325 module_platform_driver(imx6q_cpufreq_platdrv);
327 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
328 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
329 MODULE_LICENSE("GPL");