1 // SPDX-License-Identifier: GPL-2.0
3 * Main bcache entry point - handle a read or a write request and decide what to
4 * do with it; the make_request functions are called by the block layer.
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
14 #include "writeback.h"
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include <linux/backing-dev.h>
21 #include <trace/events/bcache.h>
23 #define CUTOFF_CACHE_ADD 95
24 #define CUTOFF_CACHE_READA 90
26 struct kmem_cache
*bch_search_cache
;
28 static void bch_data_insert_start(struct closure
*);
30 static unsigned cache_mode(struct cached_dev
*dc
)
32 return BDEV_CACHE_MODE(&dc
->sb
);
35 static bool verify(struct cached_dev
*dc
)
40 static void bio_csum(struct bio
*bio
, struct bkey
*k
)
43 struct bvec_iter iter
;
46 bio_for_each_segment(bv
, bio
, iter
) {
47 void *d
= kmap(bv
.bv_page
) + bv
.bv_offset
;
48 csum
= bch_crc64_update(csum
, d
, bv
.bv_len
);
52 k
->ptr
[KEY_PTRS(k
)] = csum
& (~0ULL >> 1);
55 /* Insert data into cache */
57 static void bch_data_insert_keys(struct closure
*cl
)
59 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
60 atomic_t
*journal_ref
= NULL
;
61 struct bkey
*replace_key
= op
->replace
? &op
->replace_key
: NULL
;
65 * If we're looping, might already be waiting on
66 * another journal write - can't wait on more than one journal write at
69 * XXX: this looks wrong
72 while (atomic_read(&s
->cl
.remaining
) & CLOSURE_WAITING
)
77 journal_ref
= bch_journal(op
->c
, &op
->insert_keys
,
78 op
->flush_journal
? cl
: NULL
);
80 ret
= bch_btree_insert(op
->c
, &op
->insert_keys
,
81 journal_ref
, replace_key
);
83 op
->replace_collision
= true;
85 op
->status
= BLK_STS_RESOURCE
;
86 op
->insert_data_done
= true;
90 atomic_dec_bug(journal_ref
);
92 if (!op
->insert_data_done
) {
93 continue_at(cl
, bch_data_insert_start
, op
->wq
);
97 bch_keylist_free(&op
->insert_keys
);
101 static int bch_keylist_realloc(struct keylist
*l
, unsigned u64s
,
104 size_t oldsize
= bch_keylist_nkeys(l
);
105 size_t newsize
= oldsize
+ u64s
;
108 * The journalling code doesn't handle the case where the keys to insert
109 * is bigger than an empty write: If we just return -ENOMEM here,
110 * bio_insert() and bio_invalidate() will insert the keys created so far
111 * and finish the rest when the keylist is empty.
113 if (newsize
* sizeof(uint64_t) > block_bytes(c
) - sizeof(struct jset
))
116 return __bch_keylist_realloc(l
, u64s
);
119 static void bch_data_invalidate(struct closure
*cl
)
121 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
122 struct bio
*bio
= op
->bio
;
124 pr_debug("invalidating %i sectors from %llu",
125 bio_sectors(bio
), (uint64_t) bio
->bi_iter
.bi_sector
);
127 while (bio_sectors(bio
)) {
128 unsigned sectors
= min(bio_sectors(bio
),
129 1U << (KEY_SIZE_BITS
- 1));
131 if (bch_keylist_realloc(&op
->insert_keys
, 2, op
->c
))
134 bio
->bi_iter
.bi_sector
+= sectors
;
135 bio
->bi_iter
.bi_size
-= sectors
<< 9;
137 bch_keylist_add(&op
->insert_keys
,
138 &KEY(op
->inode
, bio
->bi_iter
.bi_sector
, sectors
));
141 op
->insert_data_done
= true;
142 /* get in bch_data_insert() */
145 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
148 static void bch_data_insert_error(struct closure
*cl
)
150 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
153 * Our data write just errored, which means we've got a bunch of keys to
154 * insert that point to data that wasn't succesfully written.
156 * We don't have to insert those keys but we still have to invalidate
157 * that region of the cache - so, if we just strip off all the pointers
158 * from the keys we'll accomplish just that.
161 struct bkey
*src
= op
->insert_keys
.keys
, *dst
= op
->insert_keys
.keys
;
163 while (src
!= op
->insert_keys
.top
) {
164 struct bkey
*n
= bkey_next(src
);
166 SET_KEY_PTRS(src
, 0);
167 memmove(dst
, src
, bkey_bytes(src
));
169 dst
= bkey_next(dst
);
173 op
->insert_keys
.top
= dst
;
175 bch_data_insert_keys(cl
);
178 static void bch_data_insert_endio(struct bio
*bio
)
180 struct closure
*cl
= bio
->bi_private
;
181 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
183 if (bio
->bi_status
) {
184 /* TODO: We could try to recover from this. */
186 op
->status
= bio
->bi_status
;
187 else if (!op
->replace
)
188 set_closure_fn(cl
, bch_data_insert_error
, op
->wq
);
190 set_closure_fn(cl
, NULL
, NULL
);
193 bch_bbio_endio(op
->c
, bio
, bio
->bi_status
, "writing data to cache");
196 static void bch_data_insert_start(struct closure
*cl
)
198 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
199 struct bio
*bio
= op
->bio
, *n
;
202 return bch_data_invalidate(cl
);
204 if (atomic_sub_return(bio_sectors(bio
), &op
->c
->sectors_to_gc
) < 0)
208 * Journal writes are marked REQ_PREFLUSH; if the original write was a
209 * flush, it'll wait on the journal write.
211 bio
->bi_opf
&= ~(REQ_PREFLUSH
|REQ_FUA
);
216 struct bio_set
*split
= op
->c
->bio_split
;
218 /* 1 for the device pointer and 1 for the chksum */
219 if (bch_keylist_realloc(&op
->insert_keys
,
220 3 + (op
->csum
? 1 : 0),
222 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
226 k
= op
->insert_keys
.top
;
228 SET_KEY_INODE(k
, op
->inode
);
229 SET_KEY_OFFSET(k
, bio
->bi_iter
.bi_sector
);
231 if (!bch_alloc_sectors(op
->c
, k
, bio_sectors(bio
),
232 op
->write_point
, op
->write_prio
,
236 n
= bio_next_split(bio
, KEY_SIZE(k
), GFP_NOIO
, split
);
238 n
->bi_end_io
= bch_data_insert_endio
;
242 SET_KEY_DIRTY(k
, true);
244 for (i
= 0; i
< KEY_PTRS(k
); i
++)
245 SET_GC_MARK(PTR_BUCKET(op
->c
, k
, i
),
249 SET_KEY_CSUM(k
, op
->csum
);
253 trace_bcache_cache_insert(k
);
254 bch_keylist_push(&op
->insert_keys
);
256 bio_set_op_attrs(n
, REQ_OP_WRITE
, 0);
257 bch_submit_bbio(n
, op
->c
, k
, 0);
260 op
->insert_data_done
= true;
261 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
264 /* bch_alloc_sectors() blocks if s->writeback = true */
265 BUG_ON(op
->writeback
);
268 * But if it's not a writeback write we'd rather just bail out if
269 * there aren't any buckets ready to write to - it might take awhile and
270 * we might be starving btree writes for gc or something.
275 * Writethrough write: We can't complete the write until we've
276 * updated the index. But we don't want to delay the write while
277 * we wait for buckets to be freed up, so just invalidate the
281 return bch_data_invalidate(cl
);
284 * From a cache miss, we can just insert the keys for the data
285 * we have written or bail out if we didn't do anything.
287 op
->insert_data_done
= true;
290 if (!bch_keylist_empty(&op
->insert_keys
))
291 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
298 * bch_data_insert - stick some data in the cache
299 * @cl: closure pointer.
301 * This is the starting point for any data to end up in a cache device; it could
302 * be from a normal write, or a writeback write, or a write to a flash only
303 * volume - it's also used by the moving garbage collector to compact data in
304 * mostly empty buckets.
306 * It first writes the data to the cache, creating a list of keys to be inserted
307 * (if the data had to be fragmented there will be multiple keys); after the
308 * data is written it calls bch_journal, and after the keys have been added to
309 * the next journal write they're inserted into the btree.
311 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
312 * and op->inode is used for the key inode.
314 * If s->bypass is true, instead of inserting the data it invalidates the
315 * region of the cache represented by s->cache_bio and op->inode.
317 void bch_data_insert(struct closure
*cl
)
319 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
321 trace_bcache_write(op
->c
, op
->inode
, op
->bio
,
322 op
->writeback
, op
->bypass
);
324 bch_keylist_init(&op
->insert_keys
);
326 bch_data_insert_start(cl
);
331 unsigned bch_get_congested(struct cache_set
*c
)
336 if (!c
->congested_read_threshold_us
&&
337 !c
->congested_write_threshold_us
)
340 i
= (local_clock_us() - c
->congested_last_us
) / 1024;
344 i
+= atomic_read(&c
->congested
);
351 i
= fract_exp_two(i
, 6);
353 rand
= get_random_int();
354 i
-= bitmap_weight(&rand
, BITS_PER_LONG
);
356 return i
> 0 ? i
: 1;
359 static void add_sequential(struct task_struct
*t
)
361 ewma_add(t
->sequential_io_avg
,
362 t
->sequential_io
, 8, 0);
364 t
->sequential_io
= 0;
367 static struct hlist_head
*iohash(struct cached_dev
*dc
, uint64_t k
)
369 return &dc
->io_hash
[hash_64(k
, RECENT_IO_BITS
)];
372 static bool check_should_bypass(struct cached_dev
*dc
, struct bio
*bio
)
374 struct cache_set
*c
= dc
->disk
.c
;
375 unsigned mode
= cache_mode(dc
);
376 unsigned sectors
, congested
= bch_get_congested(c
);
377 struct task_struct
*task
= current
;
380 if (test_bit(BCACHE_DEV_DETACHING
, &dc
->disk
.flags
) ||
381 c
->gc_stats
.in_use
> CUTOFF_CACHE_ADD
||
382 (bio_op(bio
) == REQ_OP_DISCARD
))
385 if (mode
== CACHE_MODE_NONE
||
386 (mode
== CACHE_MODE_WRITEAROUND
&&
387 op_is_write(bio_op(bio
))))
391 * Flag for bypass if the IO is for read-ahead or background,
392 * unless the read-ahead request is for metadata (eg, for gfs2).
394 if (bio
->bi_opf
& (REQ_RAHEAD
|REQ_BACKGROUND
) &&
395 !(bio
->bi_opf
& REQ_META
))
398 if (bio
->bi_iter
.bi_sector
& (c
->sb
.block_size
- 1) ||
399 bio_sectors(bio
) & (c
->sb
.block_size
- 1)) {
400 pr_debug("skipping unaligned io");
404 if (bypass_torture_test(dc
)) {
405 if ((get_random_int() & 3) == 3)
411 if (!congested
&& !dc
->sequential_cutoff
)
414 spin_lock(&dc
->io_lock
);
416 hlist_for_each_entry(i
, iohash(dc
, bio
->bi_iter
.bi_sector
), hash
)
417 if (i
->last
== bio
->bi_iter
.bi_sector
&&
418 time_before(jiffies
, i
->jiffies
))
421 i
= list_first_entry(&dc
->io_lru
, struct io
, lru
);
423 add_sequential(task
);
426 if (i
->sequential
+ bio
->bi_iter
.bi_size
> i
->sequential
)
427 i
->sequential
+= bio
->bi_iter
.bi_size
;
429 i
->last
= bio_end_sector(bio
);
430 i
->jiffies
= jiffies
+ msecs_to_jiffies(5000);
431 task
->sequential_io
= i
->sequential
;
434 hlist_add_head(&i
->hash
, iohash(dc
, i
->last
));
435 list_move_tail(&i
->lru
, &dc
->io_lru
);
437 spin_unlock(&dc
->io_lock
);
439 sectors
= max(task
->sequential_io
,
440 task
->sequential_io_avg
) >> 9;
442 if (dc
->sequential_cutoff
&&
443 sectors
>= dc
->sequential_cutoff
>> 9) {
444 trace_bcache_bypass_sequential(bio
);
448 if (congested
&& sectors
>= congested
) {
449 trace_bcache_bypass_congested(bio
);
454 bch_rescale_priorities(c
, bio_sectors(bio
));
457 bch_mark_sectors_bypassed(c
, dc
, bio_sectors(bio
));
464 /* Stack frame for bio_complete */
468 struct bio
*orig_bio
;
469 struct bio
*cache_miss
;
470 struct bcache_device
*d
;
472 unsigned insert_bio_sectors
;
473 unsigned recoverable
:1;
475 unsigned read_dirty_data
:1;
476 unsigned cache_missed
:1;
478 unsigned long start_time
;
481 struct data_insert_op iop
;
484 static void bch_cache_read_endio(struct bio
*bio
)
486 struct bbio
*b
= container_of(bio
, struct bbio
, bio
);
487 struct closure
*cl
= bio
->bi_private
;
488 struct search
*s
= container_of(cl
, struct search
, cl
);
491 * If the bucket was reused while our bio was in flight, we might have
492 * read the wrong data. Set s->error but not error so it doesn't get
493 * counted against the cache device, but we'll still reread the data
494 * from the backing device.
498 s
->iop
.status
= bio
->bi_status
;
499 else if (!KEY_DIRTY(&b
->key
) &&
500 ptr_stale(s
->iop
.c
, &b
->key
, 0)) {
501 atomic_long_inc(&s
->iop
.c
->cache_read_races
);
502 s
->iop
.status
= BLK_STS_IOERR
;
505 bch_bbio_endio(s
->iop
.c
, bio
, bio
->bi_status
, "reading from cache");
509 * Read from a single key, handling the initial cache miss if the key starts in
510 * the middle of the bio
512 static int cache_lookup_fn(struct btree_op
*op
, struct btree
*b
, struct bkey
*k
)
514 struct search
*s
= container_of(op
, struct search
, op
);
515 struct bio
*n
, *bio
= &s
->bio
.bio
;
516 struct bkey
*bio_key
;
519 if (bkey_cmp(k
, &KEY(s
->iop
.inode
, bio
->bi_iter
.bi_sector
, 0)) <= 0)
522 if (KEY_INODE(k
) != s
->iop
.inode
||
523 KEY_START(k
) > bio
->bi_iter
.bi_sector
) {
524 unsigned bio_sectors
= bio_sectors(bio
);
525 unsigned sectors
= KEY_INODE(k
) == s
->iop
.inode
526 ? min_t(uint64_t, INT_MAX
,
527 KEY_START(k
) - bio
->bi_iter
.bi_sector
)
530 int ret
= s
->d
->cache_miss(b
, s
, bio
, sectors
);
531 if (ret
!= MAP_CONTINUE
)
534 /* if this was a complete miss we shouldn't get here */
535 BUG_ON(bio_sectors
<= sectors
);
541 /* XXX: figure out best pointer - for multiple cache devices */
544 PTR_BUCKET(b
->c
, k
, ptr
)->prio
= INITIAL_PRIO
;
547 s
->read_dirty_data
= true;
549 n
= bio_next_split(bio
, min_t(uint64_t, INT_MAX
,
550 KEY_OFFSET(k
) - bio
->bi_iter
.bi_sector
),
551 GFP_NOIO
, s
->d
->bio_split
);
553 bio_key
= &container_of(n
, struct bbio
, bio
)->key
;
554 bch_bkey_copy_single_ptr(bio_key
, k
, ptr
);
556 bch_cut_front(&KEY(s
->iop
.inode
, n
->bi_iter
.bi_sector
, 0), bio_key
);
557 bch_cut_back(&KEY(s
->iop
.inode
, bio_end_sector(n
), 0), bio_key
);
559 n
->bi_end_io
= bch_cache_read_endio
;
560 n
->bi_private
= &s
->cl
;
563 * The bucket we're reading from might be reused while our bio
564 * is in flight, and we could then end up reading the wrong
567 * We guard against this by checking (in cache_read_endio()) if
568 * the pointer is stale again; if so, we treat it as an error
569 * and reread from the backing device (but we don't pass that
570 * error up anywhere).
573 __bch_submit_bbio(n
, b
->c
);
574 return n
== bio
? MAP_DONE
: MAP_CONTINUE
;
577 static void cache_lookup(struct closure
*cl
)
579 struct search
*s
= container_of(cl
, struct search
, iop
.cl
);
580 struct bio
*bio
= &s
->bio
.bio
;
581 struct cached_dev
*dc
;
584 bch_btree_op_init(&s
->op
, -1);
586 ret
= bch_btree_map_keys(&s
->op
, s
->iop
.c
,
587 &KEY(s
->iop
.inode
, bio
->bi_iter
.bi_sector
, 0),
588 cache_lookup_fn
, MAP_END_KEY
);
589 if (ret
== -EAGAIN
) {
590 continue_at(cl
, cache_lookup
, bcache_wq
);
595 * We might meet err when searching the btree, If that happens, we will
596 * get negative ret, in this scenario we should not recover data from
597 * backing device (when cache device is dirty) because we don't know
598 * whether bkeys the read request covered are all clean.
600 * And after that happened, s->iop.status is still its initial value
601 * before we submit s->bio.bio
604 BUG_ON(ret
== -EINTR
);
605 if (s
->d
&& s
->d
->c
&&
606 !UUID_FLASH_ONLY(&s
->d
->c
->uuids
[s
->d
->id
])) {
607 dc
= container_of(s
->d
, struct cached_dev
, disk
);
608 if (dc
&& atomic_read(&dc
->has_dirty
))
609 s
->recoverable
= false;
612 s
->iop
.status
= BLK_STS_IOERR
;
618 /* Common code for the make_request functions */
620 static void request_endio(struct bio
*bio
)
622 struct closure
*cl
= bio
->bi_private
;
624 if (bio
->bi_status
) {
625 struct search
*s
= container_of(cl
, struct search
, cl
);
626 s
->iop
.status
= bio
->bi_status
;
627 /* Only cache read errors are recoverable */
628 s
->recoverable
= false;
635 static void backing_request_endio(struct bio
*bio
)
637 struct closure
*cl
= bio
->bi_private
;
639 if (bio
->bi_status
) {
640 struct search
*s
= container_of(cl
, struct search
, cl
);
641 struct cached_dev
*dc
= container_of(s
->d
,
642 struct cached_dev
, disk
);
644 * If a bio has REQ_PREFLUSH for writeback mode, it is
645 * speically assembled in cached_dev_write() for a non-zero
646 * write request which has REQ_PREFLUSH. we don't set
647 * s->iop.status by this failure, the status will be decided
648 * by result of bch_data_insert() operation.
650 if (unlikely(s
->iop
.writeback
&&
651 bio
->bi_opf
& REQ_PREFLUSH
)) {
652 pr_err("Can't flush %s: returned bi_status %i",
653 dc
->backing_dev_name
, bio
->bi_status
);
655 /* set to orig_bio->bi_status in bio_complete() */
656 s
->iop
.status
= bio
->bi_status
;
658 s
->recoverable
= false;
659 /* should count I/O error for backing device here */
660 bch_count_backing_io_errors(dc
, bio
);
667 static void bio_complete(struct search
*s
)
670 generic_end_io_acct(s
->d
->disk
->queue
,
671 bio_data_dir(s
->orig_bio
),
672 &s
->d
->disk
->part0
, s
->start_time
);
674 trace_bcache_request_end(s
->d
, s
->orig_bio
);
675 s
->orig_bio
->bi_status
= s
->iop
.status
;
676 bio_endio(s
->orig_bio
);
681 static void do_bio_hook(struct search
*s
,
682 struct bio
*orig_bio
,
683 bio_end_io_t
*end_io_fn
)
685 struct bio
*bio
= &s
->bio
.bio
;
687 bio_init(bio
, NULL
, 0);
688 __bio_clone_fast(bio
, orig_bio
);
690 * bi_end_io can be set separately somewhere else, e.g. the
692 * - cache_bio->bi_end_io from cached_dev_cache_miss()
693 * - n->bi_end_io from cache_lookup_fn()
695 bio
->bi_end_io
= end_io_fn
;
696 bio
->bi_private
= &s
->cl
;
701 static void search_free(struct closure
*cl
)
703 struct search
*s
= container_of(cl
, struct search
, cl
);
709 closure_debug_destroy(cl
);
710 mempool_free(s
, s
->d
->c
->search
);
713 static inline struct search
*search_alloc(struct bio
*bio
,
714 struct bcache_device
*d
)
718 s
= mempool_alloc(d
->c
->search
, GFP_NOIO
);
720 closure_init(&s
->cl
, NULL
);
721 do_bio_hook(s
, bio
, request_endio
);
724 s
->cache_miss
= NULL
;
728 s
->write
= op_is_write(bio_op(bio
));
729 s
->read_dirty_data
= 0;
730 s
->start_time
= jiffies
;
734 s
->iop
.inode
= d
->id
;
735 s
->iop
.write_point
= hash_long((unsigned long) current
, 16);
736 s
->iop
.write_prio
= 0;
739 s
->iop
.flush_journal
= op_is_flush(bio
->bi_opf
);
740 s
->iop
.wq
= bcache_wq
;
747 static void cached_dev_bio_complete(struct closure
*cl
)
749 struct search
*s
= container_of(cl
, struct search
, cl
);
750 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
758 static void cached_dev_cache_miss_done(struct closure
*cl
)
760 struct search
*s
= container_of(cl
, struct search
, cl
);
762 if (s
->iop
.replace_collision
)
763 bch_mark_cache_miss_collision(s
->iop
.c
, s
->d
);
766 bio_free_pages(s
->iop
.bio
);
768 cached_dev_bio_complete(cl
);
771 static void cached_dev_read_error(struct closure
*cl
)
773 struct search
*s
= container_of(cl
, struct search
, cl
);
774 struct bio
*bio
= &s
->bio
.bio
;
777 * If read request hit dirty data (s->read_dirty_data is true),
778 * then recovery a failed read request from cached device may
779 * get a stale data back. So read failure recovery is only
780 * permitted when read request hit clean data in cache device,
781 * or when cache read race happened.
783 if (s
->recoverable
&& !s
->read_dirty_data
) {
784 /* Retry from the backing device: */
785 trace_bcache_read_retry(s
->orig_bio
);
788 do_bio_hook(s
, s
->orig_bio
, backing_request_endio
);
790 /* XXX: invalidate cache */
792 /* I/O request sent to backing device */
793 closure_bio_submit(s
->iop
.c
, bio
, cl
);
796 continue_at(cl
, cached_dev_cache_miss_done
, NULL
);
799 static void cached_dev_read_done(struct closure
*cl
)
801 struct search
*s
= container_of(cl
, struct search
, cl
);
802 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
805 * We had a cache miss; cache_bio now contains data ready to be inserted
808 * First, we copy the data we just read from cache_bio's bounce buffers
809 * to the buffers the original bio pointed to:
813 bio_reset(s
->iop
.bio
);
814 s
->iop
.bio
->bi_iter
.bi_sector
= s
->cache_miss
->bi_iter
.bi_sector
;
815 bio_copy_dev(s
->iop
.bio
, s
->cache_miss
);
816 s
->iop
.bio
->bi_iter
.bi_size
= s
->insert_bio_sectors
<< 9;
817 bch_bio_map(s
->iop
.bio
, NULL
);
819 bio_copy_data(s
->cache_miss
, s
->iop
.bio
);
821 bio_put(s
->cache_miss
);
822 s
->cache_miss
= NULL
;
825 if (verify(dc
) && s
->recoverable
&& !s
->read_dirty_data
)
826 bch_data_verify(dc
, s
->orig_bio
);
831 !test_bit(CACHE_SET_STOPPING
, &s
->iop
.c
->flags
)) {
832 BUG_ON(!s
->iop
.replace
);
833 closure_call(&s
->iop
.cl
, bch_data_insert
, NULL
, cl
);
836 continue_at(cl
, cached_dev_cache_miss_done
, NULL
);
839 static void cached_dev_read_done_bh(struct closure
*cl
)
841 struct search
*s
= container_of(cl
, struct search
, cl
);
842 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
844 bch_mark_cache_accounting(s
->iop
.c
, s
->d
,
845 !s
->cache_missed
, s
->iop
.bypass
);
846 trace_bcache_read(s
->orig_bio
, !s
->cache_miss
, s
->iop
.bypass
);
849 continue_at_nobarrier(cl
, cached_dev_read_error
, bcache_wq
);
850 else if (s
->iop
.bio
|| verify(dc
))
851 continue_at_nobarrier(cl
, cached_dev_read_done
, bcache_wq
);
853 continue_at_nobarrier(cl
, cached_dev_bio_complete
, NULL
);
856 static int cached_dev_cache_miss(struct btree
*b
, struct search
*s
,
857 struct bio
*bio
, unsigned sectors
)
859 int ret
= MAP_CONTINUE
;
861 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
862 struct bio
*miss
, *cache_bio
;
866 if (s
->cache_miss
|| s
->iop
.bypass
) {
867 miss
= bio_next_split(bio
, sectors
, GFP_NOIO
, s
->d
->bio_split
);
868 ret
= miss
== bio
? MAP_DONE
: MAP_CONTINUE
;
872 if (!(bio
->bi_opf
& REQ_RAHEAD
) &&
873 !(bio
->bi_opf
& REQ_META
) &&
874 s
->iop
.c
->gc_stats
.in_use
< CUTOFF_CACHE_READA
)
875 reada
= min_t(sector_t
, dc
->readahead
>> 9,
876 get_capacity(bio
->bi_disk
) - bio_end_sector(bio
));
878 s
->insert_bio_sectors
= min(sectors
, bio_sectors(bio
) + reada
);
880 s
->iop
.replace_key
= KEY(s
->iop
.inode
,
881 bio
->bi_iter
.bi_sector
+ s
->insert_bio_sectors
,
882 s
->insert_bio_sectors
);
884 ret
= bch_btree_insert_check_key(b
, &s
->op
, &s
->iop
.replace_key
);
888 s
->iop
.replace
= true;
890 miss
= bio_next_split(bio
, sectors
, GFP_NOIO
, s
->d
->bio_split
);
892 /* btree_search_recurse()'s btree iterator is no good anymore */
893 ret
= miss
== bio
? MAP_DONE
: -EINTR
;
895 cache_bio
= bio_alloc_bioset(GFP_NOWAIT
,
896 DIV_ROUND_UP(s
->insert_bio_sectors
, PAGE_SECTORS
),
901 cache_bio
->bi_iter
.bi_sector
= miss
->bi_iter
.bi_sector
;
902 bio_copy_dev(cache_bio
, miss
);
903 cache_bio
->bi_iter
.bi_size
= s
->insert_bio_sectors
<< 9;
905 cache_bio
->bi_end_io
= backing_request_endio
;
906 cache_bio
->bi_private
= &s
->cl
;
908 bch_bio_map(cache_bio
, NULL
);
909 if (bch_bio_alloc_pages(cache_bio
, __GFP_NOWARN
|GFP_NOIO
))
913 bch_mark_cache_readahead(s
->iop
.c
, s
->d
);
915 s
->cache_miss
= miss
;
916 s
->iop
.bio
= cache_bio
;
918 /* I/O request sent to backing device */
919 closure_bio_submit(s
->iop
.c
, cache_bio
, &s
->cl
);
925 miss
->bi_end_io
= backing_request_endio
;
926 miss
->bi_private
= &s
->cl
;
927 /* I/O request sent to backing device */
928 closure_bio_submit(s
->iop
.c
, miss
, &s
->cl
);
932 static void cached_dev_read(struct cached_dev
*dc
, struct search
*s
)
934 struct closure
*cl
= &s
->cl
;
936 closure_call(&s
->iop
.cl
, cache_lookup
, NULL
, cl
);
937 continue_at(cl
, cached_dev_read_done_bh
, NULL
);
942 static void cached_dev_write_complete(struct closure
*cl
)
944 struct search
*s
= container_of(cl
, struct search
, cl
);
945 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
947 up_read_non_owner(&dc
->writeback_lock
);
948 cached_dev_bio_complete(cl
);
951 static void cached_dev_write(struct cached_dev
*dc
, struct search
*s
)
953 struct closure
*cl
= &s
->cl
;
954 struct bio
*bio
= &s
->bio
.bio
;
955 struct bkey start
= KEY(dc
->disk
.id
, bio
->bi_iter
.bi_sector
, 0);
956 struct bkey end
= KEY(dc
->disk
.id
, bio_end_sector(bio
), 0);
958 bch_keybuf_check_overlapping(&s
->iop
.c
->moving_gc_keys
, &start
, &end
);
960 down_read_non_owner(&dc
->writeback_lock
);
961 if (bch_keybuf_check_overlapping(&dc
->writeback_keys
, &start
, &end
)) {
963 * We overlap with some dirty data undergoing background
964 * writeback, force this write to writeback
966 s
->iop
.bypass
= false;
967 s
->iop
.writeback
= true;
971 * Discards aren't _required_ to do anything, so skipping if
972 * check_overlapping returned true is ok
974 * But check_overlapping drops dirty keys for which io hasn't started,
975 * so we still want to call it.
977 if (bio_op(bio
) == REQ_OP_DISCARD
)
978 s
->iop
.bypass
= true;
980 if (should_writeback(dc
, s
->orig_bio
,
983 s
->iop
.bypass
= false;
984 s
->iop
.writeback
= true;
988 s
->iop
.bio
= s
->orig_bio
;
991 if (bio_op(bio
) == REQ_OP_DISCARD
&&
992 !blk_queue_discard(bdev_get_queue(dc
->bdev
)))
995 /* I/O request sent to backing device */
996 bio
->bi_end_io
= backing_request_endio
;
997 closure_bio_submit(s
->iop
.c
, bio
, cl
);
999 } else if (s
->iop
.writeback
) {
1000 bch_writeback_add(dc
);
1003 if (bio
->bi_opf
& REQ_PREFLUSH
) {
1005 * Also need to send a flush to the backing
1010 flush
= bio_alloc_bioset(GFP_NOIO
, 0,
1011 dc
->disk
.bio_split
);
1013 s
->iop
.status
= BLK_STS_RESOURCE
;
1016 bio_copy_dev(flush
, bio
);
1017 flush
->bi_end_io
= backing_request_endio
;
1018 flush
->bi_private
= cl
;
1019 flush
->bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
;
1020 /* I/O request sent to backing device */
1021 closure_bio_submit(s
->iop
.c
, flush
, cl
);
1024 s
->iop
.bio
= bio_clone_fast(bio
, GFP_NOIO
, dc
->disk
.bio_split
);
1025 /* I/O request sent to backing device */
1026 bio
->bi_end_io
= backing_request_endio
;
1027 closure_bio_submit(s
->iop
.c
, bio
, cl
);
1031 closure_call(&s
->iop
.cl
, bch_data_insert
, NULL
, cl
);
1032 continue_at(cl
, cached_dev_write_complete
, NULL
);
1035 static void cached_dev_nodata(struct closure
*cl
)
1037 struct search
*s
= container_of(cl
, struct search
, cl
);
1038 struct bio
*bio
= &s
->bio
.bio
;
1040 if (s
->iop
.flush_journal
)
1041 bch_journal_meta(s
->iop
.c
, cl
);
1043 /* If it's a flush, we send the flush to the backing device too */
1044 bio
->bi_end_io
= backing_request_endio
;
1045 closure_bio_submit(s
->iop
.c
, bio
, cl
);
1047 continue_at(cl
, cached_dev_bio_complete
, NULL
);
1050 struct detached_dev_io_private
{
1051 struct bcache_device
*d
;
1052 unsigned long start_time
;
1053 bio_end_io_t
*bi_end_io
;
1057 static void detached_dev_end_io(struct bio
*bio
)
1059 struct detached_dev_io_private
*ddip
;
1061 ddip
= bio
->bi_private
;
1062 bio
->bi_end_io
= ddip
->bi_end_io
;
1063 bio
->bi_private
= ddip
->bi_private
;
1065 generic_end_io_acct(ddip
->d
->disk
->queue
,
1067 &ddip
->d
->disk
->part0
, ddip
->start_time
);
1069 if (bio
->bi_status
) {
1070 struct cached_dev
*dc
= container_of(ddip
->d
,
1071 struct cached_dev
, disk
);
1072 /* should count I/O error for backing device here */
1073 bch_count_backing_io_errors(dc
, bio
);
1077 bio
->bi_end_io(bio
);
1080 static void detached_dev_do_request(struct bcache_device
*d
, struct bio
*bio
)
1082 struct detached_dev_io_private
*ddip
;
1083 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
1086 * no need to call closure_get(&dc->disk.cl),
1087 * because upper layer had already opened bcache device,
1088 * which would call closure_get(&dc->disk.cl)
1090 ddip
= kzalloc(sizeof(struct detached_dev_io_private
), GFP_NOIO
);
1092 ddip
->start_time
= jiffies
;
1093 ddip
->bi_end_io
= bio
->bi_end_io
;
1094 ddip
->bi_private
= bio
->bi_private
;
1095 bio
->bi_end_io
= detached_dev_end_io
;
1096 bio
->bi_private
= ddip
;
1098 if ((bio_op(bio
) == REQ_OP_DISCARD
) &&
1099 !blk_queue_discard(bdev_get_queue(dc
->bdev
)))
1100 bio
->bi_end_io(bio
);
1102 generic_make_request(bio
);
1105 /* Cached devices - read & write stuff */
1107 static blk_qc_t
cached_dev_make_request(struct request_queue
*q
,
1111 struct bcache_device
*d
= bio
->bi_disk
->private_data
;
1112 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
1113 int rw
= bio_data_dir(bio
);
1115 if (unlikely((d
->c
&& test_bit(CACHE_SET_IO_DISABLE
, &d
->c
->flags
)) ||
1117 bio
->bi_status
= BLK_STS_IOERR
;
1119 return BLK_QC_T_NONE
;
1122 atomic_set(&dc
->backing_idle
, 0);
1123 generic_start_io_acct(q
, rw
, bio_sectors(bio
), &d
->disk
->part0
);
1125 bio_set_dev(bio
, dc
->bdev
);
1126 bio
->bi_iter
.bi_sector
+= dc
->sb
.data_offset
;
1128 if (cached_dev_get(dc
)) {
1129 s
= search_alloc(bio
, d
);
1130 trace_bcache_request_start(s
->d
, bio
);
1132 if (!bio
->bi_iter
.bi_size
) {
1134 * can't call bch_journal_meta from under
1135 * generic_make_request
1137 continue_at_nobarrier(&s
->cl
,
1141 s
->iop
.bypass
= check_should_bypass(dc
, bio
);
1144 cached_dev_write(dc
, s
);
1146 cached_dev_read(dc
, s
);
1149 /* I/O request sent to backing device */
1150 detached_dev_do_request(d
, bio
);
1152 return BLK_QC_T_NONE
;
1155 static int cached_dev_ioctl(struct bcache_device
*d
, fmode_t mode
,
1156 unsigned int cmd
, unsigned long arg
)
1158 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
1159 return __blkdev_driver_ioctl(dc
->bdev
, mode
, cmd
, arg
);
1162 static int cached_dev_congested(void *data
, int bits
)
1164 struct bcache_device
*d
= data
;
1165 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
1166 struct request_queue
*q
= bdev_get_queue(dc
->bdev
);
1169 if (bdi_congested(q
->backing_dev_info
, bits
))
1172 if (cached_dev_get(dc
)) {
1176 for_each_cache(ca
, d
->c
, i
) {
1177 q
= bdev_get_queue(ca
->bdev
);
1178 ret
|= bdi_congested(q
->backing_dev_info
, bits
);
1187 void bch_cached_dev_request_init(struct cached_dev
*dc
)
1189 struct gendisk
*g
= dc
->disk
.disk
;
1191 g
->queue
->make_request_fn
= cached_dev_make_request
;
1192 g
->queue
->backing_dev_info
->congested_fn
= cached_dev_congested
;
1193 dc
->disk
.cache_miss
= cached_dev_cache_miss
;
1194 dc
->disk
.ioctl
= cached_dev_ioctl
;
1197 /* Flash backed devices */
1199 static int flash_dev_cache_miss(struct btree
*b
, struct search
*s
,
1200 struct bio
*bio
, unsigned sectors
)
1202 unsigned bytes
= min(sectors
, bio_sectors(bio
)) << 9;
1204 swap(bio
->bi_iter
.bi_size
, bytes
);
1206 swap(bio
->bi_iter
.bi_size
, bytes
);
1208 bio_advance(bio
, bytes
);
1210 if (!bio
->bi_iter
.bi_size
)
1213 return MAP_CONTINUE
;
1216 static void flash_dev_nodata(struct closure
*cl
)
1218 struct search
*s
= container_of(cl
, struct search
, cl
);
1220 if (s
->iop
.flush_journal
)
1221 bch_journal_meta(s
->iop
.c
, cl
);
1223 continue_at(cl
, search_free
, NULL
);
1226 static blk_qc_t
flash_dev_make_request(struct request_queue
*q
,
1231 struct bcache_device
*d
= bio
->bi_disk
->private_data
;
1232 int rw
= bio_data_dir(bio
);
1234 if (unlikely(d
->c
&& test_bit(CACHE_SET_IO_DISABLE
, &d
->c
->flags
))) {
1235 bio
->bi_status
= BLK_STS_IOERR
;
1237 return BLK_QC_T_NONE
;
1240 generic_start_io_acct(q
, rw
, bio_sectors(bio
), &d
->disk
->part0
);
1242 s
= search_alloc(bio
, d
);
1246 trace_bcache_request_start(s
->d
, bio
);
1248 if (!bio
->bi_iter
.bi_size
) {
1250 * can't call bch_journal_meta from under
1251 * generic_make_request
1253 continue_at_nobarrier(&s
->cl
,
1256 return BLK_QC_T_NONE
;
1258 bch_keybuf_check_overlapping(&s
->iop
.c
->moving_gc_keys
,
1259 &KEY(d
->id
, bio
->bi_iter
.bi_sector
, 0),
1260 &KEY(d
->id
, bio_end_sector(bio
), 0));
1262 s
->iop
.bypass
= (bio_op(bio
) == REQ_OP_DISCARD
) != 0;
1263 s
->iop
.writeback
= true;
1266 closure_call(&s
->iop
.cl
, bch_data_insert
, NULL
, cl
);
1268 closure_call(&s
->iop
.cl
, cache_lookup
, NULL
, cl
);
1271 continue_at(cl
, search_free
, NULL
);
1272 return BLK_QC_T_NONE
;
1275 static int flash_dev_ioctl(struct bcache_device
*d
, fmode_t mode
,
1276 unsigned int cmd
, unsigned long arg
)
1281 static int flash_dev_congested(void *data
, int bits
)
1283 struct bcache_device
*d
= data
;
1284 struct request_queue
*q
;
1289 for_each_cache(ca
, d
->c
, i
) {
1290 q
= bdev_get_queue(ca
->bdev
);
1291 ret
|= bdi_congested(q
->backing_dev_info
, bits
);
1297 void bch_flash_dev_request_init(struct bcache_device
*d
)
1299 struct gendisk
*g
= d
->disk
;
1301 g
->queue
->make_request_fn
= flash_dev_make_request
;
1302 g
->queue
->backing_dev_info
->congested_fn
= flash_dev_congested
;
1303 d
->cache_miss
= flash_dev_cache_miss
;
1304 d
->ioctl
= flash_dev_ioctl
;
1307 void bch_request_exit(void)
1309 if (bch_search_cache
)
1310 kmem_cache_destroy(bch_search_cache
);
1313 int __init
bch_request_init(void)
1315 bch_search_cache
= KMEM_CACHE(search
, 0);
1316 if (!bch_search_cache
)