Input: tm2-touchkey - add support for aries touchkey variant
[linux/fpc-iii.git] / drivers / md / bcache / request.c
blob8e3e8655ed6388308064c40935f7df05fe9f220f
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Main bcache entry point - handle a read or a write request and decide what to
4 * do with it; the make_request functions are called by the block layer.
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "request.h"
14 #include "writeback.h"
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include <linux/backing-dev.h>
21 #include <trace/events/bcache.h>
23 #define CUTOFF_CACHE_ADD 95
24 #define CUTOFF_CACHE_READA 90
26 struct kmem_cache *bch_search_cache;
28 static void bch_data_insert_start(struct closure *);
30 static unsigned cache_mode(struct cached_dev *dc)
32 return BDEV_CACHE_MODE(&dc->sb);
35 static bool verify(struct cached_dev *dc)
37 return dc->verify;
40 static void bio_csum(struct bio *bio, struct bkey *k)
42 struct bio_vec bv;
43 struct bvec_iter iter;
44 uint64_t csum = 0;
46 bio_for_each_segment(bv, bio, iter) {
47 void *d = kmap(bv.bv_page) + bv.bv_offset;
48 csum = bch_crc64_update(csum, d, bv.bv_len);
49 kunmap(bv.bv_page);
52 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
55 /* Insert data into cache */
57 static void bch_data_insert_keys(struct closure *cl)
59 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
60 atomic_t *journal_ref = NULL;
61 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
62 int ret;
65 * If we're looping, might already be waiting on
66 * another journal write - can't wait on more than one journal write at
67 * a time
69 * XXX: this looks wrong
71 #if 0
72 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
73 closure_sync(&s->cl);
74 #endif
76 if (!op->replace)
77 journal_ref = bch_journal(op->c, &op->insert_keys,
78 op->flush_journal ? cl : NULL);
80 ret = bch_btree_insert(op->c, &op->insert_keys,
81 journal_ref, replace_key);
82 if (ret == -ESRCH) {
83 op->replace_collision = true;
84 } else if (ret) {
85 op->status = BLK_STS_RESOURCE;
86 op->insert_data_done = true;
89 if (journal_ref)
90 atomic_dec_bug(journal_ref);
92 if (!op->insert_data_done) {
93 continue_at(cl, bch_data_insert_start, op->wq);
94 return;
97 bch_keylist_free(&op->insert_keys);
98 closure_return(cl);
101 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
102 struct cache_set *c)
104 size_t oldsize = bch_keylist_nkeys(l);
105 size_t newsize = oldsize + u64s;
108 * The journalling code doesn't handle the case where the keys to insert
109 * is bigger than an empty write: If we just return -ENOMEM here,
110 * bio_insert() and bio_invalidate() will insert the keys created so far
111 * and finish the rest when the keylist is empty.
113 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
114 return -ENOMEM;
116 return __bch_keylist_realloc(l, u64s);
119 static void bch_data_invalidate(struct closure *cl)
121 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
122 struct bio *bio = op->bio;
124 pr_debug("invalidating %i sectors from %llu",
125 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
127 while (bio_sectors(bio)) {
128 unsigned sectors = min(bio_sectors(bio),
129 1U << (KEY_SIZE_BITS - 1));
131 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
132 goto out;
134 bio->bi_iter.bi_sector += sectors;
135 bio->bi_iter.bi_size -= sectors << 9;
137 bch_keylist_add(&op->insert_keys,
138 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
141 op->insert_data_done = true;
142 /* get in bch_data_insert() */
143 bio_put(bio);
144 out:
145 continue_at(cl, bch_data_insert_keys, op->wq);
148 static void bch_data_insert_error(struct closure *cl)
150 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
153 * Our data write just errored, which means we've got a bunch of keys to
154 * insert that point to data that wasn't succesfully written.
156 * We don't have to insert those keys but we still have to invalidate
157 * that region of the cache - so, if we just strip off all the pointers
158 * from the keys we'll accomplish just that.
161 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
163 while (src != op->insert_keys.top) {
164 struct bkey *n = bkey_next(src);
166 SET_KEY_PTRS(src, 0);
167 memmove(dst, src, bkey_bytes(src));
169 dst = bkey_next(dst);
170 src = n;
173 op->insert_keys.top = dst;
175 bch_data_insert_keys(cl);
178 static void bch_data_insert_endio(struct bio *bio)
180 struct closure *cl = bio->bi_private;
181 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
183 if (bio->bi_status) {
184 /* TODO: We could try to recover from this. */
185 if (op->writeback)
186 op->status = bio->bi_status;
187 else if (!op->replace)
188 set_closure_fn(cl, bch_data_insert_error, op->wq);
189 else
190 set_closure_fn(cl, NULL, NULL);
193 bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
196 static void bch_data_insert_start(struct closure *cl)
198 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
199 struct bio *bio = op->bio, *n;
201 if (op->bypass)
202 return bch_data_invalidate(cl);
204 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
205 wake_up_gc(op->c);
208 * Journal writes are marked REQ_PREFLUSH; if the original write was a
209 * flush, it'll wait on the journal write.
211 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
213 do {
214 unsigned i;
215 struct bkey *k;
216 struct bio_set *split = op->c->bio_split;
218 /* 1 for the device pointer and 1 for the chksum */
219 if (bch_keylist_realloc(&op->insert_keys,
220 3 + (op->csum ? 1 : 0),
221 op->c)) {
222 continue_at(cl, bch_data_insert_keys, op->wq);
223 return;
226 k = op->insert_keys.top;
227 bkey_init(k);
228 SET_KEY_INODE(k, op->inode);
229 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
231 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
232 op->write_point, op->write_prio,
233 op->writeback))
234 goto err;
236 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
238 n->bi_end_io = bch_data_insert_endio;
239 n->bi_private = cl;
241 if (op->writeback) {
242 SET_KEY_DIRTY(k, true);
244 for (i = 0; i < KEY_PTRS(k); i++)
245 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
246 GC_MARK_DIRTY);
249 SET_KEY_CSUM(k, op->csum);
250 if (KEY_CSUM(k))
251 bio_csum(n, k);
253 trace_bcache_cache_insert(k);
254 bch_keylist_push(&op->insert_keys);
256 bio_set_op_attrs(n, REQ_OP_WRITE, 0);
257 bch_submit_bbio(n, op->c, k, 0);
258 } while (n != bio);
260 op->insert_data_done = true;
261 continue_at(cl, bch_data_insert_keys, op->wq);
262 return;
263 err:
264 /* bch_alloc_sectors() blocks if s->writeback = true */
265 BUG_ON(op->writeback);
268 * But if it's not a writeback write we'd rather just bail out if
269 * there aren't any buckets ready to write to - it might take awhile and
270 * we might be starving btree writes for gc or something.
273 if (!op->replace) {
275 * Writethrough write: We can't complete the write until we've
276 * updated the index. But we don't want to delay the write while
277 * we wait for buckets to be freed up, so just invalidate the
278 * rest of the write.
280 op->bypass = true;
281 return bch_data_invalidate(cl);
282 } else {
284 * From a cache miss, we can just insert the keys for the data
285 * we have written or bail out if we didn't do anything.
287 op->insert_data_done = true;
288 bio_put(bio);
290 if (!bch_keylist_empty(&op->insert_keys))
291 continue_at(cl, bch_data_insert_keys, op->wq);
292 else
293 closure_return(cl);
298 * bch_data_insert - stick some data in the cache
299 * @cl: closure pointer.
301 * This is the starting point for any data to end up in a cache device; it could
302 * be from a normal write, or a writeback write, or a write to a flash only
303 * volume - it's also used by the moving garbage collector to compact data in
304 * mostly empty buckets.
306 * It first writes the data to the cache, creating a list of keys to be inserted
307 * (if the data had to be fragmented there will be multiple keys); after the
308 * data is written it calls bch_journal, and after the keys have been added to
309 * the next journal write they're inserted into the btree.
311 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
312 * and op->inode is used for the key inode.
314 * If s->bypass is true, instead of inserting the data it invalidates the
315 * region of the cache represented by s->cache_bio and op->inode.
317 void bch_data_insert(struct closure *cl)
319 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
321 trace_bcache_write(op->c, op->inode, op->bio,
322 op->writeback, op->bypass);
324 bch_keylist_init(&op->insert_keys);
325 bio_get(op->bio);
326 bch_data_insert_start(cl);
329 /* Congested? */
331 unsigned bch_get_congested(struct cache_set *c)
333 int i;
334 long rand;
336 if (!c->congested_read_threshold_us &&
337 !c->congested_write_threshold_us)
338 return 0;
340 i = (local_clock_us() - c->congested_last_us) / 1024;
341 if (i < 0)
342 return 0;
344 i += atomic_read(&c->congested);
345 if (i >= 0)
346 return 0;
348 i += CONGESTED_MAX;
350 if (i > 0)
351 i = fract_exp_two(i, 6);
353 rand = get_random_int();
354 i -= bitmap_weight(&rand, BITS_PER_LONG);
356 return i > 0 ? i : 1;
359 static void add_sequential(struct task_struct *t)
361 ewma_add(t->sequential_io_avg,
362 t->sequential_io, 8, 0);
364 t->sequential_io = 0;
367 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
369 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
372 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
374 struct cache_set *c = dc->disk.c;
375 unsigned mode = cache_mode(dc);
376 unsigned sectors, congested = bch_get_congested(c);
377 struct task_struct *task = current;
378 struct io *i;
380 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
381 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
382 (bio_op(bio) == REQ_OP_DISCARD))
383 goto skip;
385 if (mode == CACHE_MODE_NONE ||
386 (mode == CACHE_MODE_WRITEAROUND &&
387 op_is_write(bio_op(bio))))
388 goto skip;
391 * Flag for bypass if the IO is for read-ahead or background,
392 * unless the read-ahead request is for metadata (eg, for gfs2).
394 if (bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND) &&
395 !(bio->bi_opf & REQ_META))
396 goto skip;
398 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
399 bio_sectors(bio) & (c->sb.block_size - 1)) {
400 pr_debug("skipping unaligned io");
401 goto skip;
404 if (bypass_torture_test(dc)) {
405 if ((get_random_int() & 3) == 3)
406 goto skip;
407 else
408 goto rescale;
411 if (!congested && !dc->sequential_cutoff)
412 goto rescale;
414 spin_lock(&dc->io_lock);
416 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
417 if (i->last == bio->bi_iter.bi_sector &&
418 time_before(jiffies, i->jiffies))
419 goto found;
421 i = list_first_entry(&dc->io_lru, struct io, lru);
423 add_sequential(task);
424 i->sequential = 0;
425 found:
426 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
427 i->sequential += bio->bi_iter.bi_size;
429 i->last = bio_end_sector(bio);
430 i->jiffies = jiffies + msecs_to_jiffies(5000);
431 task->sequential_io = i->sequential;
433 hlist_del(&i->hash);
434 hlist_add_head(&i->hash, iohash(dc, i->last));
435 list_move_tail(&i->lru, &dc->io_lru);
437 spin_unlock(&dc->io_lock);
439 sectors = max(task->sequential_io,
440 task->sequential_io_avg) >> 9;
442 if (dc->sequential_cutoff &&
443 sectors >= dc->sequential_cutoff >> 9) {
444 trace_bcache_bypass_sequential(bio);
445 goto skip;
448 if (congested && sectors >= congested) {
449 trace_bcache_bypass_congested(bio);
450 goto skip;
453 rescale:
454 bch_rescale_priorities(c, bio_sectors(bio));
455 return false;
456 skip:
457 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
458 return true;
461 /* Cache lookup */
463 struct search {
464 /* Stack frame for bio_complete */
465 struct closure cl;
467 struct bbio bio;
468 struct bio *orig_bio;
469 struct bio *cache_miss;
470 struct bcache_device *d;
472 unsigned insert_bio_sectors;
473 unsigned recoverable:1;
474 unsigned write:1;
475 unsigned read_dirty_data:1;
476 unsigned cache_missed:1;
478 unsigned long start_time;
480 struct btree_op op;
481 struct data_insert_op iop;
484 static void bch_cache_read_endio(struct bio *bio)
486 struct bbio *b = container_of(bio, struct bbio, bio);
487 struct closure *cl = bio->bi_private;
488 struct search *s = container_of(cl, struct search, cl);
491 * If the bucket was reused while our bio was in flight, we might have
492 * read the wrong data. Set s->error but not error so it doesn't get
493 * counted against the cache device, but we'll still reread the data
494 * from the backing device.
497 if (bio->bi_status)
498 s->iop.status = bio->bi_status;
499 else if (!KEY_DIRTY(&b->key) &&
500 ptr_stale(s->iop.c, &b->key, 0)) {
501 atomic_long_inc(&s->iop.c->cache_read_races);
502 s->iop.status = BLK_STS_IOERR;
505 bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
509 * Read from a single key, handling the initial cache miss if the key starts in
510 * the middle of the bio
512 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
514 struct search *s = container_of(op, struct search, op);
515 struct bio *n, *bio = &s->bio.bio;
516 struct bkey *bio_key;
517 unsigned ptr;
519 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
520 return MAP_CONTINUE;
522 if (KEY_INODE(k) != s->iop.inode ||
523 KEY_START(k) > bio->bi_iter.bi_sector) {
524 unsigned bio_sectors = bio_sectors(bio);
525 unsigned sectors = KEY_INODE(k) == s->iop.inode
526 ? min_t(uint64_t, INT_MAX,
527 KEY_START(k) - bio->bi_iter.bi_sector)
528 : INT_MAX;
530 int ret = s->d->cache_miss(b, s, bio, sectors);
531 if (ret != MAP_CONTINUE)
532 return ret;
534 /* if this was a complete miss we shouldn't get here */
535 BUG_ON(bio_sectors <= sectors);
538 if (!KEY_SIZE(k))
539 return MAP_CONTINUE;
541 /* XXX: figure out best pointer - for multiple cache devices */
542 ptr = 0;
544 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
546 if (KEY_DIRTY(k))
547 s->read_dirty_data = true;
549 n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
550 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
551 GFP_NOIO, s->d->bio_split);
553 bio_key = &container_of(n, struct bbio, bio)->key;
554 bch_bkey_copy_single_ptr(bio_key, k, ptr);
556 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
557 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
559 n->bi_end_io = bch_cache_read_endio;
560 n->bi_private = &s->cl;
563 * The bucket we're reading from might be reused while our bio
564 * is in flight, and we could then end up reading the wrong
565 * data.
567 * We guard against this by checking (in cache_read_endio()) if
568 * the pointer is stale again; if so, we treat it as an error
569 * and reread from the backing device (but we don't pass that
570 * error up anywhere).
573 __bch_submit_bbio(n, b->c);
574 return n == bio ? MAP_DONE : MAP_CONTINUE;
577 static void cache_lookup(struct closure *cl)
579 struct search *s = container_of(cl, struct search, iop.cl);
580 struct bio *bio = &s->bio.bio;
581 struct cached_dev *dc;
582 int ret;
584 bch_btree_op_init(&s->op, -1);
586 ret = bch_btree_map_keys(&s->op, s->iop.c,
587 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
588 cache_lookup_fn, MAP_END_KEY);
589 if (ret == -EAGAIN) {
590 continue_at(cl, cache_lookup, bcache_wq);
591 return;
595 * We might meet err when searching the btree, If that happens, we will
596 * get negative ret, in this scenario we should not recover data from
597 * backing device (when cache device is dirty) because we don't know
598 * whether bkeys the read request covered are all clean.
600 * And after that happened, s->iop.status is still its initial value
601 * before we submit s->bio.bio
603 if (ret < 0) {
604 BUG_ON(ret == -EINTR);
605 if (s->d && s->d->c &&
606 !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
607 dc = container_of(s->d, struct cached_dev, disk);
608 if (dc && atomic_read(&dc->has_dirty))
609 s->recoverable = false;
611 if (!s->iop.status)
612 s->iop.status = BLK_STS_IOERR;
615 closure_return(cl);
618 /* Common code for the make_request functions */
620 static void request_endio(struct bio *bio)
622 struct closure *cl = bio->bi_private;
624 if (bio->bi_status) {
625 struct search *s = container_of(cl, struct search, cl);
626 s->iop.status = bio->bi_status;
627 /* Only cache read errors are recoverable */
628 s->recoverable = false;
631 bio_put(bio);
632 closure_put(cl);
635 static void backing_request_endio(struct bio *bio)
637 struct closure *cl = bio->bi_private;
639 if (bio->bi_status) {
640 struct search *s = container_of(cl, struct search, cl);
641 struct cached_dev *dc = container_of(s->d,
642 struct cached_dev, disk);
644 * If a bio has REQ_PREFLUSH for writeback mode, it is
645 * speically assembled in cached_dev_write() for a non-zero
646 * write request which has REQ_PREFLUSH. we don't set
647 * s->iop.status by this failure, the status will be decided
648 * by result of bch_data_insert() operation.
650 if (unlikely(s->iop.writeback &&
651 bio->bi_opf & REQ_PREFLUSH)) {
652 pr_err("Can't flush %s: returned bi_status %i",
653 dc->backing_dev_name, bio->bi_status);
654 } else {
655 /* set to orig_bio->bi_status in bio_complete() */
656 s->iop.status = bio->bi_status;
658 s->recoverable = false;
659 /* should count I/O error for backing device here */
660 bch_count_backing_io_errors(dc, bio);
663 bio_put(bio);
664 closure_put(cl);
667 static void bio_complete(struct search *s)
669 if (s->orig_bio) {
670 generic_end_io_acct(s->d->disk->queue,
671 bio_data_dir(s->orig_bio),
672 &s->d->disk->part0, s->start_time);
674 trace_bcache_request_end(s->d, s->orig_bio);
675 s->orig_bio->bi_status = s->iop.status;
676 bio_endio(s->orig_bio);
677 s->orig_bio = NULL;
681 static void do_bio_hook(struct search *s,
682 struct bio *orig_bio,
683 bio_end_io_t *end_io_fn)
685 struct bio *bio = &s->bio.bio;
687 bio_init(bio, NULL, 0);
688 __bio_clone_fast(bio, orig_bio);
690 * bi_end_io can be set separately somewhere else, e.g. the
691 * variants in,
692 * - cache_bio->bi_end_io from cached_dev_cache_miss()
693 * - n->bi_end_io from cache_lookup_fn()
695 bio->bi_end_io = end_io_fn;
696 bio->bi_private = &s->cl;
698 bio_cnt_set(bio, 3);
701 static void search_free(struct closure *cl)
703 struct search *s = container_of(cl, struct search, cl);
705 if (s->iop.bio)
706 bio_put(s->iop.bio);
708 bio_complete(s);
709 closure_debug_destroy(cl);
710 mempool_free(s, s->d->c->search);
713 static inline struct search *search_alloc(struct bio *bio,
714 struct bcache_device *d)
716 struct search *s;
718 s = mempool_alloc(d->c->search, GFP_NOIO);
720 closure_init(&s->cl, NULL);
721 do_bio_hook(s, bio, request_endio);
723 s->orig_bio = bio;
724 s->cache_miss = NULL;
725 s->cache_missed = 0;
726 s->d = d;
727 s->recoverable = 1;
728 s->write = op_is_write(bio_op(bio));
729 s->read_dirty_data = 0;
730 s->start_time = jiffies;
732 s->iop.c = d->c;
733 s->iop.bio = NULL;
734 s->iop.inode = d->id;
735 s->iop.write_point = hash_long((unsigned long) current, 16);
736 s->iop.write_prio = 0;
737 s->iop.status = 0;
738 s->iop.flags = 0;
739 s->iop.flush_journal = op_is_flush(bio->bi_opf);
740 s->iop.wq = bcache_wq;
742 return s;
745 /* Cached devices */
747 static void cached_dev_bio_complete(struct closure *cl)
749 struct search *s = container_of(cl, struct search, cl);
750 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
752 search_free(cl);
753 cached_dev_put(dc);
756 /* Process reads */
758 static void cached_dev_cache_miss_done(struct closure *cl)
760 struct search *s = container_of(cl, struct search, cl);
762 if (s->iop.replace_collision)
763 bch_mark_cache_miss_collision(s->iop.c, s->d);
765 if (s->iop.bio)
766 bio_free_pages(s->iop.bio);
768 cached_dev_bio_complete(cl);
771 static void cached_dev_read_error(struct closure *cl)
773 struct search *s = container_of(cl, struct search, cl);
774 struct bio *bio = &s->bio.bio;
777 * If read request hit dirty data (s->read_dirty_data is true),
778 * then recovery a failed read request from cached device may
779 * get a stale data back. So read failure recovery is only
780 * permitted when read request hit clean data in cache device,
781 * or when cache read race happened.
783 if (s->recoverable && !s->read_dirty_data) {
784 /* Retry from the backing device: */
785 trace_bcache_read_retry(s->orig_bio);
787 s->iop.status = 0;
788 do_bio_hook(s, s->orig_bio, backing_request_endio);
790 /* XXX: invalidate cache */
792 /* I/O request sent to backing device */
793 closure_bio_submit(s->iop.c, bio, cl);
796 continue_at(cl, cached_dev_cache_miss_done, NULL);
799 static void cached_dev_read_done(struct closure *cl)
801 struct search *s = container_of(cl, struct search, cl);
802 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
805 * We had a cache miss; cache_bio now contains data ready to be inserted
806 * into the cache.
808 * First, we copy the data we just read from cache_bio's bounce buffers
809 * to the buffers the original bio pointed to:
812 if (s->iop.bio) {
813 bio_reset(s->iop.bio);
814 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
815 bio_copy_dev(s->iop.bio, s->cache_miss);
816 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
817 bch_bio_map(s->iop.bio, NULL);
819 bio_copy_data(s->cache_miss, s->iop.bio);
821 bio_put(s->cache_miss);
822 s->cache_miss = NULL;
825 if (verify(dc) && s->recoverable && !s->read_dirty_data)
826 bch_data_verify(dc, s->orig_bio);
828 bio_complete(s);
830 if (s->iop.bio &&
831 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
832 BUG_ON(!s->iop.replace);
833 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
836 continue_at(cl, cached_dev_cache_miss_done, NULL);
839 static void cached_dev_read_done_bh(struct closure *cl)
841 struct search *s = container_of(cl, struct search, cl);
842 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
844 bch_mark_cache_accounting(s->iop.c, s->d,
845 !s->cache_missed, s->iop.bypass);
846 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
848 if (s->iop.status)
849 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
850 else if (s->iop.bio || verify(dc))
851 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
852 else
853 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
856 static int cached_dev_cache_miss(struct btree *b, struct search *s,
857 struct bio *bio, unsigned sectors)
859 int ret = MAP_CONTINUE;
860 unsigned reada = 0;
861 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
862 struct bio *miss, *cache_bio;
864 s->cache_missed = 1;
866 if (s->cache_miss || s->iop.bypass) {
867 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
868 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
869 goto out_submit;
872 if (!(bio->bi_opf & REQ_RAHEAD) &&
873 !(bio->bi_opf & REQ_META) &&
874 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
875 reada = min_t(sector_t, dc->readahead >> 9,
876 get_capacity(bio->bi_disk) - bio_end_sector(bio));
878 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
880 s->iop.replace_key = KEY(s->iop.inode,
881 bio->bi_iter.bi_sector + s->insert_bio_sectors,
882 s->insert_bio_sectors);
884 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
885 if (ret)
886 return ret;
888 s->iop.replace = true;
890 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
892 /* btree_search_recurse()'s btree iterator is no good anymore */
893 ret = miss == bio ? MAP_DONE : -EINTR;
895 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
896 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
897 dc->disk.bio_split);
898 if (!cache_bio)
899 goto out_submit;
901 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
902 bio_copy_dev(cache_bio, miss);
903 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
905 cache_bio->bi_end_io = backing_request_endio;
906 cache_bio->bi_private = &s->cl;
908 bch_bio_map(cache_bio, NULL);
909 if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
910 goto out_put;
912 if (reada)
913 bch_mark_cache_readahead(s->iop.c, s->d);
915 s->cache_miss = miss;
916 s->iop.bio = cache_bio;
917 bio_get(cache_bio);
918 /* I/O request sent to backing device */
919 closure_bio_submit(s->iop.c, cache_bio, &s->cl);
921 return ret;
922 out_put:
923 bio_put(cache_bio);
924 out_submit:
925 miss->bi_end_io = backing_request_endio;
926 miss->bi_private = &s->cl;
927 /* I/O request sent to backing device */
928 closure_bio_submit(s->iop.c, miss, &s->cl);
929 return ret;
932 static void cached_dev_read(struct cached_dev *dc, struct search *s)
934 struct closure *cl = &s->cl;
936 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
937 continue_at(cl, cached_dev_read_done_bh, NULL);
940 /* Process writes */
942 static void cached_dev_write_complete(struct closure *cl)
944 struct search *s = container_of(cl, struct search, cl);
945 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
947 up_read_non_owner(&dc->writeback_lock);
948 cached_dev_bio_complete(cl);
951 static void cached_dev_write(struct cached_dev *dc, struct search *s)
953 struct closure *cl = &s->cl;
954 struct bio *bio = &s->bio.bio;
955 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
956 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
958 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
960 down_read_non_owner(&dc->writeback_lock);
961 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
963 * We overlap with some dirty data undergoing background
964 * writeback, force this write to writeback
966 s->iop.bypass = false;
967 s->iop.writeback = true;
971 * Discards aren't _required_ to do anything, so skipping if
972 * check_overlapping returned true is ok
974 * But check_overlapping drops dirty keys for which io hasn't started,
975 * so we still want to call it.
977 if (bio_op(bio) == REQ_OP_DISCARD)
978 s->iop.bypass = true;
980 if (should_writeback(dc, s->orig_bio,
981 cache_mode(dc),
982 s->iop.bypass)) {
983 s->iop.bypass = false;
984 s->iop.writeback = true;
987 if (s->iop.bypass) {
988 s->iop.bio = s->orig_bio;
989 bio_get(s->iop.bio);
991 if (bio_op(bio) == REQ_OP_DISCARD &&
992 !blk_queue_discard(bdev_get_queue(dc->bdev)))
993 goto insert_data;
995 /* I/O request sent to backing device */
996 bio->bi_end_io = backing_request_endio;
997 closure_bio_submit(s->iop.c, bio, cl);
999 } else if (s->iop.writeback) {
1000 bch_writeback_add(dc);
1001 s->iop.bio = bio;
1003 if (bio->bi_opf & REQ_PREFLUSH) {
1005 * Also need to send a flush to the backing
1006 * device.
1008 struct bio *flush;
1010 flush = bio_alloc_bioset(GFP_NOIO, 0,
1011 dc->disk.bio_split);
1012 if (!flush) {
1013 s->iop.status = BLK_STS_RESOURCE;
1014 goto insert_data;
1016 bio_copy_dev(flush, bio);
1017 flush->bi_end_io = backing_request_endio;
1018 flush->bi_private = cl;
1019 flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1020 /* I/O request sent to backing device */
1021 closure_bio_submit(s->iop.c, flush, cl);
1023 } else {
1024 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
1025 /* I/O request sent to backing device */
1026 bio->bi_end_io = backing_request_endio;
1027 closure_bio_submit(s->iop.c, bio, cl);
1030 insert_data:
1031 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1032 continue_at(cl, cached_dev_write_complete, NULL);
1035 static void cached_dev_nodata(struct closure *cl)
1037 struct search *s = container_of(cl, struct search, cl);
1038 struct bio *bio = &s->bio.bio;
1040 if (s->iop.flush_journal)
1041 bch_journal_meta(s->iop.c, cl);
1043 /* If it's a flush, we send the flush to the backing device too */
1044 bio->bi_end_io = backing_request_endio;
1045 closure_bio_submit(s->iop.c, bio, cl);
1047 continue_at(cl, cached_dev_bio_complete, NULL);
1050 struct detached_dev_io_private {
1051 struct bcache_device *d;
1052 unsigned long start_time;
1053 bio_end_io_t *bi_end_io;
1054 void *bi_private;
1057 static void detached_dev_end_io(struct bio *bio)
1059 struct detached_dev_io_private *ddip;
1061 ddip = bio->bi_private;
1062 bio->bi_end_io = ddip->bi_end_io;
1063 bio->bi_private = ddip->bi_private;
1065 generic_end_io_acct(ddip->d->disk->queue,
1066 bio_data_dir(bio),
1067 &ddip->d->disk->part0, ddip->start_time);
1069 if (bio->bi_status) {
1070 struct cached_dev *dc = container_of(ddip->d,
1071 struct cached_dev, disk);
1072 /* should count I/O error for backing device here */
1073 bch_count_backing_io_errors(dc, bio);
1076 kfree(ddip);
1077 bio->bi_end_io(bio);
1080 static void detached_dev_do_request(struct bcache_device *d, struct bio *bio)
1082 struct detached_dev_io_private *ddip;
1083 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1086 * no need to call closure_get(&dc->disk.cl),
1087 * because upper layer had already opened bcache device,
1088 * which would call closure_get(&dc->disk.cl)
1090 ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1091 ddip->d = d;
1092 ddip->start_time = jiffies;
1093 ddip->bi_end_io = bio->bi_end_io;
1094 ddip->bi_private = bio->bi_private;
1095 bio->bi_end_io = detached_dev_end_io;
1096 bio->bi_private = ddip;
1098 if ((bio_op(bio) == REQ_OP_DISCARD) &&
1099 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1100 bio->bi_end_io(bio);
1101 else
1102 generic_make_request(bio);
1105 /* Cached devices - read & write stuff */
1107 static blk_qc_t cached_dev_make_request(struct request_queue *q,
1108 struct bio *bio)
1110 struct search *s;
1111 struct bcache_device *d = bio->bi_disk->private_data;
1112 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1113 int rw = bio_data_dir(bio);
1115 if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1116 dc->io_disable)) {
1117 bio->bi_status = BLK_STS_IOERR;
1118 bio_endio(bio);
1119 return BLK_QC_T_NONE;
1122 atomic_set(&dc->backing_idle, 0);
1123 generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
1125 bio_set_dev(bio, dc->bdev);
1126 bio->bi_iter.bi_sector += dc->sb.data_offset;
1128 if (cached_dev_get(dc)) {
1129 s = search_alloc(bio, d);
1130 trace_bcache_request_start(s->d, bio);
1132 if (!bio->bi_iter.bi_size) {
1134 * can't call bch_journal_meta from under
1135 * generic_make_request
1137 continue_at_nobarrier(&s->cl,
1138 cached_dev_nodata,
1139 bcache_wq);
1140 } else {
1141 s->iop.bypass = check_should_bypass(dc, bio);
1143 if (rw)
1144 cached_dev_write(dc, s);
1145 else
1146 cached_dev_read(dc, s);
1148 } else
1149 /* I/O request sent to backing device */
1150 detached_dev_do_request(d, bio);
1152 return BLK_QC_T_NONE;
1155 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1156 unsigned int cmd, unsigned long arg)
1158 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1159 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1162 static int cached_dev_congested(void *data, int bits)
1164 struct bcache_device *d = data;
1165 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1166 struct request_queue *q = bdev_get_queue(dc->bdev);
1167 int ret = 0;
1169 if (bdi_congested(q->backing_dev_info, bits))
1170 return 1;
1172 if (cached_dev_get(dc)) {
1173 unsigned i;
1174 struct cache *ca;
1176 for_each_cache(ca, d->c, i) {
1177 q = bdev_get_queue(ca->bdev);
1178 ret |= bdi_congested(q->backing_dev_info, bits);
1181 cached_dev_put(dc);
1184 return ret;
1187 void bch_cached_dev_request_init(struct cached_dev *dc)
1189 struct gendisk *g = dc->disk.disk;
1191 g->queue->make_request_fn = cached_dev_make_request;
1192 g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1193 dc->disk.cache_miss = cached_dev_cache_miss;
1194 dc->disk.ioctl = cached_dev_ioctl;
1197 /* Flash backed devices */
1199 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1200 struct bio *bio, unsigned sectors)
1202 unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1204 swap(bio->bi_iter.bi_size, bytes);
1205 zero_fill_bio(bio);
1206 swap(bio->bi_iter.bi_size, bytes);
1208 bio_advance(bio, bytes);
1210 if (!bio->bi_iter.bi_size)
1211 return MAP_DONE;
1213 return MAP_CONTINUE;
1216 static void flash_dev_nodata(struct closure *cl)
1218 struct search *s = container_of(cl, struct search, cl);
1220 if (s->iop.flush_journal)
1221 bch_journal_meta(s->iop.c, cl);
1223 continue_at(cl, search_free, NULL);
1226 static blk_qc_t flash_dev_make_request(struct request_queue *q,
1227 struct bio *bio)
1229 struct search *s;
1230 struct closure *cl;
1231 struct bcache_device *d = bio->bi_disk->private_data;
1232 int rw = bio_data_dir(bio);
1234 if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1235 bio->bi_status = BLK_STS_IOERR;
1236 bio_endio(bio);
1237 return BLK_QC_T_NONE;
1240 generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
1242 s = search_alloc(bio, d);
1243 cl = &s->cl;
1244 bio = &s->bio.bio;
1246 trace_bcache_request_start(s->d, bio);
1248 if (!bio->bi_iter.bi_size) {
1250 * can't call bch_journal_meta from under
1251 * generic_make_request
1253 continue_at_nobarrier(&s->cl,
1254 flash_dev_nodata,
1255 bcache_wq);
1256 return BLK_QC_T_NONE;
1257 } else if (rw) {
1258 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1259 &KEY(d->id, bio->bi_iter.bi_sector, 0),
1260 &KEY(d->id, bio_end_sector(bio), 0));
1262 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0;
1263 s->iop.writeback = true;
1264 s->iop.bio = bio;
1266 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1267 } else {
1268 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1271 continue_at(cl, search_free, NULL);
1272 return BLK_QC_T_NONE;
1275 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1276 unsigned int cmd, unsigned long arg)
1278 return -ENOTTY;
1281 static int flash_dev_congested(void *data, int bits)
1283 struct bcache_device *d = data;
1284 struct request_queue *q;
1285 struct cache *ca;
1286 unsigned i;
1287 int ret = 0;
1289 for_each_cache(ca, d->c, i) {
1290 q = bdev_get_queue(ca->bdev);
1291 ret |= bdi_congested(q->backing_dev_info, bits);
1294 return ret;
1297 void bch_flash_dev_request_init(struct bcache_device *d)
1299 struct gendisk *g = d->disk;
1301 g->queue->make_request_fn = flash_dev_make_request;
1302 g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1303 d->cache_miss = flash_dev_cache_miss;
1304 d->ioctl = flash_dev_ioctl;
1307 void bch_request_exit(void)
1309 if (bch_search_cache)
1310 kmem_cache_destroy(bch_search_cache);
1313 int __init bch_request_init(void)
1315 bch_search_cache = KMEM_CACHE(search, 0);
1316 if (!bch_search_cache)
1317 return -ENOMEM;
1319 return 0;