hwmon: (adt7475) fan stall prevention
[linux/fpc-iii.git] / block / blk-mq-sched.c
blob1f5b692526ae1a7199ee9bbaef305c4b0a42e696
1 /*
2 * blk-mq scheduling framework
4 * Copyright (C) 2016 Jens Axboe
5 */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
10 #include <trace/events/block.h>
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-debugfs.h"
15 #include "blk-mq-sched.h"
16 #include "blk-mq-tag.h"
17 #include "blk-wbt.h"
19 void blk_mq_sched_free_hctx_data(struct request_queue *q,
20 void (*exit)(struct blk_mq_hw_ctx *))
22 struct blk_mq_hw_ctx *hctx;
23 int i;
25 queue_for_each_hw_ctx(q, hctx, i) {
26 if (exit && hctx->sched_data)
27 exit(hctx);
28 kfree(hctx->sched_data);
29 hctx->sched_data = NULL;
32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
34 static void __blk_mq_sched_assign_ioc(struct request_queue *q,
35 struct request *rq,
36 struct bio *bio,
37 struct io_context *ioc)
39 struct io_cq *icq;
41 spin_lock_irq(q->queue_lock);
42 icq = ioc_lookup_icq(ioc, q);
43 spin_unlock_irq(q->queue_lock);
45 if (!icq) {
46 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
47 if (!icq)
48 return;
51 rq->elv.icq = icq;
52 if (!blk_mq_sched_get_rq_priv(q, rq, bio)) {
53 rq->rq_flags |= RQF_ELVPRIV;
54 get_io_context(icq->ioc);
55 return;
58 rq->elv.icq = NULL;
61 static void blk_mq_sched_assign_ioc(struct request_queue *q,
62 struct request *rq, struct bio *bio)
64 struct io_context *ioc;
66 ioc = rq_ioc(bio);
67 if (ioc)
68 __blk_mq_sched_assign_ioc(q, rq, bio, ioc);
71 struct request *blk_mq_sched_get_request(struct request_queue *q,
72 struct bio *bio,
73 unsigned int op,
74 struct blk_mq_alloc_data *data)
76 struct elevator_queue *e = q->elevator;
77 struct request *rq;
79 blk_queue_enter_live(q);
80 data->q = q;
81 if (likely(!data->ctx))
82 data->ctx = blk_mq_get_ctx(q);
83 if (likely(!data->hctx))
84 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
86 if (e) {
87 data->flags |= BLK_MQ_REQ_INTERNAL;
90 * Flush requests are special and go directly to the
91 * dispatch list.
93 if (!op_is_flush(op) && e->type->ops.mq.get_request) {
94 rq = e->type->ops.mq.get_request(q, op, data);
95 if (rq)
96 rq->rq_flags |= RQF_QUEUED;
97 } else
98 rq = __blk_mq_alloc_request(data, op);
99 } else {
100 rq = __blk_mq_alloc_request(data, op);
103 if (rq) {
104 if (!op_is_flush(op)) {
105 rq->elv.icq = NULL;
106 if (e && e->type->icq_cache)
107 blk_mq_sched_assign_ioc(q, rq, bio);
109 data->hctx->queued++;
110 return rq;
113 blk_queue_exit(q);
114 return NULL;
117 void blk_mq_sched_put_request(struct request *rq)
119 struct request_queue *q = rq->q;
120 struct elevator_queue *e = q->elevator;
122 if (rq->rq_flags & RQF_ELVPRIV) {
123 blk_mq_sched_put_rq_priv(rq->q, rq);
124 if (rq->elv.icq) {
125 put_io_context(rq->elv.icq->ioc);
126 rq->elv.icq = NULL;
130 if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request)
131 e->type->ops.mq.put_request(rq);
132 else
133 blk_mq_finish_request(rq);
136 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
138 struct request_queue *q = hctx->queue;
139 struct elevator_queue *e = q->elevator;
140 const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
141 bool did_work = false;
142 LIST_HEAD(rq_list);
144 if (unlikely(blk_mq_hctx_stopped(hctx)))
145 return;
147 hctx->run++;
150 * If we have previous entries on our dispatch list, grab them first for
151 * more fair dispatch.
153 if (!list_empty_careful(&hctx->dispatch)) {
154 spin_lock(&hctx->lock);
155 if (!list_empty(&hctx->dispatch))
156 list_splice_init(&hctx->dispatch, &rq_list);
157 spin_unlock(&hctx->lock);
161 * Only ask the scheduler for requests, if we didn't have residual
162 * requests from the dispatch list. This is to avoid the case where
163 * we only ever dispatch a fraction of the requests available because
164 * of low device queue depth. Once we pull requests out of the IO
165 * scheduler, we can no longer merge or sort them. So it's best to
166 * leave them there for as long as we can. Mark the hw queue as
167 * needing a restart in that case.
169 if (!list_empty(&rq_list)) {
170 blk_mq_sched_mark_restart_hctx(hctx);
171 did_work = blk_mq_dispatch_rq_list(q, &rq_list);
172 } else if (!has_sched_dispatch) {
173 blk_mq_flush_busy_ctxs(hctx, &rq_list);
174 blk_mq_dispatch_rq_list(q, &rq_list);
178 * We want to dispatch from the scheduler if we had no work left
179 * on the dispatch list, OR if we did have work but weren't able
180 * to make progress.
182 if (!did_work && has_sched_dispatch) {
183 do {
184 struct request *rq;
186 rq = e->type->ops.mq.dispatch_request(hctx);
187 if (!rq)
188 break;
189 list_add(&rq->queuelist, &rq_list);
190 } while (blk_mq_dispatch_rq_list(q, &rq_list));
194 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
195 struct request **merged_request)
197 struct request *rq;
199 switch (elv_merge(q, &rq, bio)) {
200 case ELEVATOR_BACK_MERGE:
201 if (!blk_mq_sched_allow_merge(q, rq, bio))
202 return false;
203 if (!bio_attempt_back_merge(q, rq, bio))
204 return false;
205 *merged_request = attempt_back_merge(q, rq);
206 if (!*merged_request)
207 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
208 return true;
209 case ELEVATOR_FRONT_MERGE:
210 if (!blk_mq_sched_allow_merge(q, rq, bio))
211 return false;
212 if (!bio_attempt_front_merge(q, rq, bio))
213 return false;
214 *merged_request = attempt_front_merge(q, rq);
215 if (!*merged_request)
216 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
217 return true;
218 default:
219 return false;
222 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
224 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
226 struct elevator_queue *e = q->elevator;
228 if (e->type->ops.mq.bio_merge) {
229 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
230 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
232 blk_mq_put_ctx(ctx);
233 return e->type->ops.mq.bio_merge(hctx, bio);
236 return false;
239 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
241 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
243 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
245 void blk_mq_sched_request_inserted(struct request *rq)
247 trace_block_rq_insert(rq->q, rq);
249 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
251 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
252 struct request *rq)
254 if (rq->tag == -1) {
255 rq->rq_flags |= RQF_SORTED;
256 return false;
260 * If we already have a real request tag, send directly to
261 * the dispatch list.
263 spin_lock(&hctx->lock);
264 list_add(&rq->queuelist, &hctx->dispatch);
265 spin_unlock(&hctx->lock);
266 return true;
269 static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
271 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) {
272 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
273 if (blk_mq_hctx_has_pending(hctx)) {
274 blk_mq_run_hw_queue(hctx, true);
275 return true;
278 return false;
282 * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list
283 * @pos: loop cursor.
284 * @skip: the list element that will not be examined. Iteration starts at
285 * @skip->next.
286 * @head: head of the list to examine. This list must have at least one
287 * element, namely @skip.
288 * @member: name of the list_head structure within typeof(*pos).
290 #define list_for_each_entry_rcu_rr(pos, skip, head, member) \
291 for ((pos) = (skip); \
292 (pos = (pos)->member.next != (head) ? list_entry_rcu( \
293 (pos)->member.next, typeof(*pos), member) : \
294 list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \
295 (pos) != (skip); )
298 * Called after a driver tag has been freed to check whether a hctx needs to
299 * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware
300 * queues in a round-robin fashion if the tag set of @hctx is shared with other
301 * hardware queues.
303 void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx)
305 struct blk_mq_tags *const tags = hctx->tags;
306 struct blk_mq_tag_set *const set = hctx->queue->tag_set;
307 struct request_queue *const queue = hctx->queue, *q;
308 struct blk_mq_hw_ctx *hctx2;
309 unsigned int i, j;
311 if (set->flags & BLK_MQ_F_TAG_SHARED) {
312 rcu_read_lock();
313 list_for_each_entry_rcu_rr(q, queue, &set->tag_list,
314 tag_set_list) {
315 queue_for_each_hw_ctx(q, hctx2, i)
316 if (hctx2->tags == tags &&
317 blk_mq_sched_restart_hctx(hctx2))
318 goto done;
320 j = hctx->queue_num + 1;
321 for (i = 0; i < queue->nr_hw_queues; i++, j++) {
322 if (j == queue->nr_hw_queues)
323 j = 0;
324 hctx2 = queue->queue_hw_ctx[j];
325 if (hctx2->tags == tags &&
326 blk_mq_sched_restart_hctx(hctx2))
327 break;
329 done:
330 rcu_read_unlock();
331 } else {
332 blk_mq_sched_restart_hctx(hctx);
337 * Add flush/fua to the queue. If we fail getting a driver tag, then
338 * punt to the requeue list. Requeue will re-invoke us from a context
339 * that's safe to block from.
341 static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
342 struct request *rq, bool can_block)
344 if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
345 blk_insert_flush(rq);
346 blk_mq_run_hw_queue(hctx, true);
347 } else
348 blk_mq_add_to_requeue_list(rq, false, true);
351 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
352 bool run_queue, bool async, bool can_block)
354 struct request_queue *q = rq->q;
355 struct elevator_queue *e = q->elevator;
356 struct blk_mq_ctx *ctx = rq->mq_ctx;
357 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
359 if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
360 blk_mq_sched_insert_flush(hctx, rq, can_block);
361 return;
364 if (e && blk_mq_sched_bypass_insert(hctx, rq))
365 goto run;
367 if (e && e->type->ops.mq.insert_requests) {
368 LIST_HEAD(list);
370 list_add(&rq->queuelist, &list);
371 e->type->ops.mq.insert_requests(hctx, &list, at_head);
372 } else {
373 spin_lock(&ctx->lock);
374 __blk_mq_insert_request(hctx, rq, at_head);
375 spin_unlock(&ctx->lock);
378 run:
379 if (run_queue)
380 blk_mq_run_hw_queue(hctx, async);
383 void blk_mq_sched_insert_requests(struct request_queue *q,
384 struct blk_mq_ctx *ctx,
385 struct list_head *list, bool run_queue_async)
387 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
388 struct elevator_queue *e = hctx->queue->elevator;
390 if (e) {
391 struct request *rq, *next;
394 * We bypass requests that already have a driver tag assigned,
395 * which should only be flushes. Flushes are only ever inserted
396 * as single requests, so we shouldn't ever hit the
397 * WARN_ON_ONCE() below (but let's handle it just in case).
399 list_for_each_entry_safe(rq, next, list, queuelist) {
400 if (WARN_ON_ONCE(rq->tag != -1)) {
401 list_del_init(&rq->queuelist);
402 blk_mq_sched_bypass_insert(hctx, rq);
407 if (e && e->type->ops.mq.insert_requests)
408 e->type->ops.mq.insert_requests(hctx, list, false);
409 else
410 blk_mq_insert_requests(hctx, ctx, list);
412 blk_mq_run_hw_queue(hctx, run_queue_async);
415 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
416 struct blk_mq_hw_ctx *hctx,
417 unsigned int hctx_idx)
419 if (hctx->sched_tags) {
420 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
421 blk_mq_free_rq_map(hctx->sched_tags);
422 hctx->sched_tags = NULL;
426 static int blk_mq_sched_alloc_tags(struct request_queue *q,
427 struct blk_mq_hw_ctx *hctx,
428 unsigned int hctx_idx)
430 struct blk_mq_tag_set *set = q->tag_set;
431 int ret;
433 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
434 set->reserved_tags);
435 if (!hctx->sched_tags)
436 return -ENOMEM;
438 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
439 if (ret)
440 blk_mq_sched_free_tags(set, hctx, hctx_idx);
442 return ret;
445 static void blk_mq_sched_tags_teardown(struct request_queue *q)
447 struct blk_mq_tag_set *set = q->tag_set;
448 struct blk_mq_hw_ctx *hctx;
449 int i;
451 queue_for_each_hw_ctx(q, hctx, i)
452 blk_mq_sched_free_tags(set, hctx, i);
455 int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
456 unsigned int hctx_idx)
458 struct elevator_queue *e = q->elevator;
459 int ret;
461 if (!e)
462 return 0;
464 ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
465 if (ret)
466 return ret;
468 if (e->type->ops.mq.init_hctx) {
469 ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
470 if (ret) {
471 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
472 return ret;
476 blk_mq_debugfs_register_sched_hctx(q, hctx);
478 return 0;
481 void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
482 unsigned int hctx_idx)
484 struct elevator_queue *e = q->elevator;
486 if (!e)
487 return;
489 blk_mq_debugfs_unregister_sched_hctx(hctx);
491 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
492 e->type->ops.mq.exit_hctx(hctx, hctx_idx);
493 hctx->sched_data = NULL;
496 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
499 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
501 struct blk_mq_hw_ctx *hctx;
502 struct elevator_queue *eq;
503 unsigned int i;
504 int ret;
506 if (!e) {
507 q->elevator = NULL;
508 return 0;
512 * Default to 256, since we don't split into sync/async like the
513 * old code did. Additionally, this is a per-hw queue depth.
515 q->nr_requests = 2 * BLKDEV_MAX_RQ;
517 queue_for_each_hw_ctx(q, hctx, i) {
518 ret = blk_mq_sched_alloc_tags(q, hctx, i);
519 if (ret)
520 goto err;
523 ret = e->ops.mq.init_sched(q, e);
524 if (ret)
525 goto err;
527 blk_mq_debugfs_register_sched(q);
529 queue_for_each_hw_ctx(q, hctx, i) {
530 if (e->ops.mq.init_hctx) {
531 ret = e->ops.mq.init_hctx(hctx, i);
532 if (ret) {
533 eq = q->elevator;
534 blk_mq_exit_sched(q, eq);
535 kobject_put(&eq->kobj);
536 return ret;
539 blk_mq_debugfs_register_sched_hctx(q, hctx);
542 return 0;
544 err:
545 blk_mq_sched_tags_teardown(q);
546 q->elevator = NULL;
547 return ret;
550 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
552 struct blk_mq_hw_ctx *hctx;
553 unsigned int i;
555 queue_for_each_hw_ctx(q, hctx, i) {
556 blk_mq_debugfs_unregister_sched_hctx(hctx);
557 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
558 e->type->ops.mq.exit_hctx(hctx, i);
559 hctx->sched_data = NULL;
562 blk_mq_debugfs_unregister_sched(q);
563 if (e->type->ops.mq.exit_sched)
564 e->type->ops.mq.exit_sched(e);
565 blk_mq_sched_tags_teardown(q);
566 q->elevator = NULL;
569 int blk_mq_sched_init(struct request_queue *q)
571 int ret;
573 mutex_lock(&q->sysfs_lock);
574 ret = elevator_init(q, NULL);
575 mutex_unlock(&q->sysfs_lock);
577 return ret;