bna: fix interrupts storm caused by erroneous packets
[linux/fpc-iii.git] / arch / x86 / kvm / svm.c
blob4911bf19122b48ccd6a267d4a2eac26e5371f54b
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * AMD SVM support
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
17 #include <linux/kvm_host.h>
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
25 #include <linux/module.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/kernel.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/sched.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
34 #include <asm/perf_event.h>
35 #include <asm/tlbflush.h>
36 #include <asm/desc.h>
37 #include <asm/debugreg.h>
38 #include <asm/kvm_para.h>
40 #include <asm/virtext.h>
41 #include "trace.h"
43 #define __ex(x) __kvm_handle_fault_on_reboot(x)
45 MODULE_AUTHOR("Qumranet");
46 MODULE_LICENSE("GPL");
48 static const struct x86_cpu_id svm_cpu_id[] = {
49 X86_FEATURE_MATCH(X86_FEATURE_SVM),
52 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
54 #define IOPM_ALLOC_ORDER 2
55 #define MSRPM_ALLOC_ORDER 1
57 #define SEG_TYPE_LDT 2
58 #define SEG_TYPE_BUSY_TSS16 3
60 #define SVM_FEATURE_NPT (1 << 0)
61 #define SVM_FEATURE_LBRV (1 << 1)
62 #define SVM_FEATURE_SVML (1 << 2)
63 #define SVM_FEATURE_NRIP (1 << 3)
64 #define SVM_FEATURE_TSC_RATE (1 << 4)
65 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
66 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
67 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
68 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
70 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
71 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
72 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
74 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
76 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
77 #define TSC_RATIO_MIN 0x0000000000000001ULL
78 #define TSC_RATIO_MAX 0x000000ffffffffffULL
80 static bool erratum_383_found __read_mostly;
82 static const u32 host_save_user_msrs[] = {
83 #ifdef CONFIG_X86_64
84 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
85 MSR_FS_BASE,
86 #endif
87 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
90 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
92 struct kvm_vcpu;
94 struct nested_state {
95 struct vmcb *hsave;
96 u64 hsave_msr;
97 u64 vm_cr_msr;
98 u64 vmcb;
100 /* These are the merged vectors */
101 u32 *msrpm;
103 /* gpa pointers to the real vectors */
104 u64 vmcb_msrpm;
105 u64 vmcb_iopm;
107 /* A VMEXIT is required but not yet emulated */
108 bool exit_required;
110 /* cache for intercepts of the guest */
111 u32 intercept_cr;
112 u32 intercept_dr;
113 u32 intercept_exceptions;
114 u64 intercept;
116 /* Nested Paging related state */
117 u64 nested_cr3;
120 #define MSRPM_OFFSETS 16
121 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
124 * Set osvw_len to higher value when updated Revision Guides
125 * are published and we know what the new status bits are
127 static uint64_t osvw_len = 4, osvw_status;
129 struct vcpu_svm {
130 struct kvm_vcpu vcpu;
131 struct vmcb *vmcb;
132 unsigned long vmcb_pa;
133 struct svm_cpu_data *svm_data;
134 uint64_t asid_generation;
135 uint64_t sysenter_esp;
136 uint64_t sysenter_eip;
138 u64 next_rip;
140 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
141 struct {
142 u16 fs;
143 u16 gs;
144 u16 ldt;
145 u64 gs_base;
146 } host;
148 u32 *msrpm;
150 ulong nmi_iret_rip;
152 struct nested_state nested;
154 bool nmi_singlestep;
156 unsigned int3_injected;
157 unsigned long int3_rip;
158 u32 apf_reason;
160 u64 tsc_ratio;
163 static DEFINE_PER_CPU(u64, current_tsc_ratio);
164 #define TSC_RATIO_DEFAULT 0x0100000000ULL
166 #define MSR_INVALID 0xffffffffU
168 static const struct svm_direct_access_msrs {
169 u32 index; /* Index of the MSR */
170 bool always; /* True if intercept is always on */
171 } direct_access_msrs[] = {
172 { .index = MSR_STAR, .always = true },
173 { .index = MSR_IA32_SYSENTER_CS, .always = true },
174 #ifdef CONFIG_X86_64
175 { .index = MSR_GS_BASE, .always = true },
176 { .index = MSR_FS_BASE, .always = true },
177 { .index = MSR_KERNEL_GS_BASE, .always = true },
178 { .index = MSR_LSTAR, .always = true },
179 { .index = MSR_CSTAR, .always = true },
180 { .index = MSR_SYSCALL_MASK, .always = true },
181 #endif
182 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
183 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
184 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
185 { .index = MSR_IA32_LASTINTTOIP, .always = false },
186 { .index = MSR_INVALID, .always = false },
189 /* enable NPT for AMD64 and X86 with PAE */
190 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
191 static bool npt_enabled = true;
192 #else
193 static bool npt_enabled;
194 #endif
196 /* allow nested paging (virtualized MMU) for all guests */
197 static int npt = true;
198 module_param(npt, int, S_IRUGO);
200 /* allow nested virtualization in KVM/SVM */
201 static int nested = true;
202 module_param(nested, int, S_IRUGO);
204 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
205 static void svm_complete_interrupts(struct vcpu_svm *svm);
207 static int nested_svm_exit_handled(struct vcpu_svm *svm);
208 static int nested_svm_intercept(struct vcpu_svm *svm);
209 static int nested_svm_vmexit(struct vcpu_svm *svm);
210 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
211 bool has_error_code, u32 error_code);
212 static u64 __scale_tsc(u64 ratio, u64 tsc);
214 enum {
215 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
216 pause filter count */
217 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
218 VMCB_ASID, /* ASID */
219 VMCB_INTR, /* int_ctl, int_vector */
220 VMCB_NPT, /* npt_en, nCR3, gPAT */
221 VMCB_CR, /* CR0, CR3, CR4, EFER */
222 VMCB_DR, /* DR6, DR7 */
223 VMCB_DT, /* GDT, IDT */
224 VMCB_SEG, /* CS, DS, SS, ES, CPL */
225 VMCB_CR2, /* CR2 only */
226 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
227 VMCB_DIRTY_MAX,
230 /* TPR and CR2 are always written before VMRUN */
231 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
233 static inline void mark_all_dirty(struct vmcb *vmcb)
235 vmcb->control.clean = 0;
238 static inline void mark_all_clean(struct vmcb *vmcb)
240 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
241 & ~VMCB_ALWAYS_DIRTY_MASK;
244 static inline void mark_dirty(struct vmcb *vmcb, int bit)
246 vmcb->control.clean &= ~(1 << bit);
249 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
251 return container_of(vcpu, struct vcpu_svm, vcpu);
254 static void recalc_intercepts(struct vcpu_svm *svm)
256 struct vmcb_control_area *c, *h;
257 struct nested_state *g;
259 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
261 if (!is_guest_mode(&svm->vcpu))
262 return;
264 c = &svm->vmcb->control;
265 h = &svm->nested.hsave->control;
266 g = &svm->nested;
268 c->intercept_cr = h->intercept_cr | g->intercept_cr;
269 c->intercept_dr = h->intercept_dr | g->intercept_dr;
270 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
271 c->intercept = h->intercept | g->intercept;
274 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
276 if (is_guest_mode(&svm->vcpu))
277 return svm->nested.hsave;
278 else
279 return svm->vmcb;
282 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
284 struct vmcb *vmcb = get_host_vmcb(svm);
286 vmcb->control.intercept_cr |= (1U << bit);
288 recalc_intercepts(svm);
291 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
293 struct vmcb *vmcb = get_host_vmcb(svm);
295 vmcb->control.intercept_cr &= ~(1U << bit);
297 recalc_intercepts(svm);
300 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
302 struct vmcb *vmcb = get_host_vmcb(svm);
304 return vmcb->control.intercept_cr & (1U << bit);
307 static inline void set_dr_intercepts(struct vcpu_svm *svm)
309 struct vmcb *vmcb = get_host_vmcb(svm);
311 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
312 | (1 << INTERCEPT_DR1_READ)
313 | (1 << INTERCEPT_DR2_READ)
314 | (1 << INTERCEPT_DR3_READ)
315 | (1 << INTERCEPT_DR4_READ)
316 | (1 << INTERCEPT_DR5_READ)
317 | (1 << INTERCEPT_DR6_READ)
318 | (1 << INTERCEPT_DR7_READ)
319 | (1 << INTERCEPT_DR0_WRITE)
320 | (1 << INTERCEPT_DR1_WRITE)
321 | (1 << INTERCEPT_DR2_WRITE)
322 | (1 << INTERCEPT_DR3_WRITE)
323 | (1 << INTERCEPT_DR4_WRITE)
324 | (1 << INTERCEPT_DR5_WRITE)
325 | (1 << INTERCEPT_DR6_WRITE)
326 | (1 << INTERCEPT_DR7_WRITE);
328 recalc_intercepts(svm);
331 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
333 struct vmcb *vmcb = get_host_vmcb(svm);
335 vmcb->control.intercept_dr = 0;
337 recalc_intercepts(svm);
340 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
342 struct vmcb *vmcb = get_host_vmcb(svm);
344 vmcb->control.intercept_exceptions |= (1U << bit);
346 recalc_intercepts(svm);
349 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
351 struct vmcb *vmcb = get_host_vmcb(svm);
353 vmcb->control.intercept_exceptions &= ~(1U << bit);
355 recalc_intercepts(svm);
358 static inline void set_intercept(struct vcpu_svm *svm, int bit)
360 struct vmcb *vmcb = get_host_vmcb(svm);
362 vmcb->control.intercept |= (1ULL << bit);
364 recalc_intercepts(svm);
367 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
369 struct vmcb *vmcb = get_host_vmcb(svm);
371 vmcb->control.intercept &= ~(1ULL << bit);
373 recalc_intercepts(svm);
376 static inline void enable_gif(struct vcpu_svm *svm)
378 svm->vcpu.arch.hflags |= HF_GIF_MASK;
381 static inline void disable_gif(struct vcpu_svm *svm)
383 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
386 static inline bool gif_set(struct vcpu_svm *svm)
388 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
391 static unsigned long iopm_base;
393 struct kvm_ldttss_desc {
394 u16 limit0;
395 u16 base0;
396 unsigned base1:8, type:5, dpl:2, p:1;
397 unsigned limit1:4, zero0:3, g:1, base2:8;
398 u32 base3;
399 u32 zero1;
400 } __attribute__((packed));
402 struct svm_cpu_data {
403 int cpu;
405 u64 asid_generation;
406 u32 max_asid;
407 u32 next_asid;
408 struct kvm_ldttss_desc *tss_desc;
410 struct page *save_area;
413 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
415 struct svm_init_data {
416 int cpu;
417 int r;
420 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
422 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
423 #define MSRS_RANGE_SIZE 2048
424 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
426 static u32 svm_msrpm_offset(u32 msr)
428 u32 offset;
429 int i;
431 for (i = 0; i < NUM_MSR_MAPS; i++) {
432 if (msr < msrpm_ranges[i] ||
433 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
434 continue;
436 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
437 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
439 /* Now we have the u8 offset - but need the u32 offset */
440 return offset / 4;
443 /* MSR not in any range */
444 return MSR_INVALID;
447 #define MAX_INST_SIZE 15
449 static inline void clgi(void)
451 asm volatile (__ex(SVM_CLGI));
454 static inline void stgi(void)
456 asm volatile (__ex(SVM_STGI));
459 static inline void invlpga(unsigned long addr, u32 asid)
461 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
464 static int get_npt_level(void)
466 #ifdef CONFIG_X86_64
467 return PT64_ROOT_LEVEL;
468 #else
469 return PT32E_ROOT_LEVEL;
470 #endif
473 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
475 vcpu->arch.efer = efer;
476 if (!npt_enabled && !(efer & EFER_LMA))
477 efer &= ~EFER_LME;
479 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
480 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
483 static int is_external_interrupt(u32 info)
485 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
486 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
489 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
491 struct vcpu_svm *svm = to_svm(vcpu);
492 u32 ret = 0;
494 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
495 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
496 return ret;
499 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
501 struct vcpu_svm *svm = to_svm(vcpu);
503 if (mask == 0)
504 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
505 else
506 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
510 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
512 struct vcpu_svm *svm = to_svm(vcpu);
514 if (svm->vmcb->control.next_rip != 0) {
515 WARN_ON(!static_cpu_has(X86_FEATURE_NRIPS));
516 svm->next_rip = svm->vmcb->control.next_rip;
519 if (!svm->next_rip) {
520 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
521 EMULATE_DONE)
522 printk(KERN_DEBUG "%s: NOP\n", __func__);
523 return;
525 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
526 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
527 __func__, kvm_rip_read(vcpu), svm->next_rip);
529 kvm_rip_write(vcpu, svm->next_rip);
530 svm_set_interrupt_shadow(vcpu, 0);
533 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
534 bool has_error_code, u32 error_code,
535 bool reinject)
537 struct vcpu_svm *svm = to_svm(vcpu);
540 * If we are within a nested VM we'd better #VMEXIT and let the guest
541 * handle the exception
543 if (!reinject &&
544 nested_svm_check_exception(svm, nr, has_error_code, error_code))
545 return;
547 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
548 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
551 * For guest debugging where we have to reinject #BP if some
552 * INT3 is guest-owned:
553 * Emulate nRIP by moving RIP forward. Will fail if injection
554 * raises a fault that is not intercepted. Still better than
555 * failing in all cases.
557 skip_emulated_instruction(&svm->vcpu);
558 rip = kvm_rip_read(&svm->vcpu);
559 svm->int3_rip = rip + svm->vmcb->save.cs.base;
560 svm->int3_injected = rip - old_rip;
563 svm->vmcb->control.event_inj = nr
564 | SVM_EVTINJ_VALID
565 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
566 | SVM_EVTINJ_TYPE_EXEPT;
567 svm->vmcb->control.event_inj_err = error_code;
570 static void svm_init_erratum_383(void)
572 u32 low, high;
573 int err;
574 u64 val;
576 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
577 return;
579 /* Use _safe variants to not break nested virtualization */
580 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
581 if (err)
582 return;
584 val |= (1ULL << 47);
586 low = lower_32_bits(val);
587 high = upper_32_bits(val);
589 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
591 erratum_383_found = true;
594 static void svm_init_osvw(struct kvm_vcpu *vcpu)
597 * Guests should see errata 400 and 415 as fixed (assuming that
598 * HLT and IO instructions are intercepted).
600 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
601 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
604 * By increasing VCPU's osvw.length to 3 we are telling the guest that
605 * all osvw.status bits inside that length, including bit 0 (which is
606 * reserved for erratum 298), are valid. However, if host processor's
607 * osvw_len is 0 then osvw_status[0] carries no information. We need to
608 * be conservative here and therefore we tell the guest that erratum 298
609 * is present (because we really don't know).
611 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
612 vcpu->arch.osvw.status |= 1;
615 static int has_svm(void)
617 const char *msg;
619 if (!cpu_has_svm(&msg)) {
620 printk(KERN_INFO "has_svm: %s\n", msg);
621 return 0;
624 return 1;
627 static void svm_hardware_disable(void)
629 /* Make sure we clean up behind us */
630 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
631 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
633 cpu_svm_disable();
635 amd_pmu_disable_virt();
638 static int svm_hardware_enable(void)
641 struct svm_cpu_data *sd;
642 uint64_t efer;
643 struct desc_ptr gdt_descr;
644 struct desc_struct *gdt;
645 int me = raw_smp_processor_id();
647 rdmsrl(MSR_EFER, efer);
648 if (efer & EFER_SVME)
649 return -EBUSY;
651 if (!has_svm()) {
652 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
653 return -EINVAL;
655 sd = per_cpu(svm_data, me);
656 if (!sd) {
657 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
658 return -EINVAL;
661 sd->asid_generation = 1;
662 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
663 sd->next_asid = sd->max_asid + 1;
665 native_store_gdt(&gdt_descr);
666 gdt = (struct desc_struct *)gdt_descr.address;
667 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
669 wrmsrl(MSR_EFER, efer | EFER_SVME);
671 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
673 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
674 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
675 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
680 * Get OSVW bits.
682 * Note that it is possible to have a system with mixed processor
683 * revisions and therefore different OSVW bits. If bits are not the same
684 * on different processors then choose the worst case (i.e. if erratum
685 * is present on one processor and not on another then assume that the
686 * erratum is present everywhere).
688 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
689 uint64_t len, status = 0;
690 int err;
692 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
693 if (!err)
694 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
695 &err);
697 if (err)
698 osvw_status = osvw_len = 0;
699 else {
700 if (len < osvw_len)
701 osvw_len = len;
702 osvw_status |= status;
703 osvw_status &= (1ULL << osvw_len) - 1;
705 } else
706 osvw_status = osvw_len = 0;
708 svm_init_erratum_383();
710 amd_pmu_enable_virt();
712 return 0;
715 static void svm_cpu_uninit(int cpu)
717 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
719 if (!sd)
720 return;
722 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
723 __free_page(sd->save_area);
724 kfree(sd);
727 static int svm_cpu_init(int cpu)
729 struct svm_cpu_data *sd;
730 int r;
732 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
733 if (!sd)
734 return -ENOMEM;
735 sd->cpu = cpu;
736 sd->save_area = alloc_page(GFP_KERNEL);
737 r = -ENOMEM;
738 if (!sd->save_area)
739 goto err_1;
741 per_cpu(svm_data, cpu) = sd;
743 return 0;
745 err_1:
746 kfree(sd);
747 return r;
751 static bool valid_msr_intercept(u32 index)
753 int i;
755 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
756 if (direct_access_msrs[i].index == index)
757 return true;
759 return false;
762 static void set_msr_interception(u32 *msrpm, unsigned msr,
763 int read, int write)
765 u8 bit_read, bit_write;
766 unsigned long tmp;
767 u32 offset;
770 * If this warning triggers extend the direct_access_msrs list at the
771 * beginning of the file
773 WARN_ON(!valid_msr_intercept(msr));
775 offset = svm_msrpm_offset(msr);
776 bit_read = 2 * (msr & 0x0f);
777 bit_write = 2 * (msr & 0x0f) + 1;
778 tmp = msrpm[offset];
780 BUG_ON(offset == MSR_INVALID);
782 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
783 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
785 msrpm[offset] = tmp;
788 static void svm_vcpu_init_msrpm(u32 *msrpm)
790 int i;
792 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
794 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
795 if (!direct_access_msrs[i].always)
796 continue;
798 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
802 static void add_msr_offset(u32 offset)
804 int i;
806 for (i = 0; i < MSRPM_OFFSETS; ++i) {
808 /* Offset already in list? */
809 if (msrpm_offsets[i] == offset)
810 return;
812 /* Slot used by another offset? */
813 if (msrpm_offsets[i] != MSR_INVALID)
814 continue;
816 /* Add offset to list */
817 msrpm_offsets[i] = offset;
819 return;
823 * If this BUG triggers the msrpm_offsets table has an overflow. Just
824 * increase MSRPM_OFFSETS in this case.
826 BUG();
829 static void init_msrpm_offsets(void)
831 int i;
833 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
835 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
836 u32 offset;
838 offset = svm_msrpm_offset(direct_access_msrs[i].index);
839 BUG_ON(offset == MSR_INVALID);
841 add_msr_offset(offset);
845 static void svm_enable_lbrv(struct vcpu_svm *svm)
847 u32 *msrpm = svm->msrpm;
849 svm->vmcb->control.lbr_ctl = 1;
850 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
851 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
852 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
853 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
856 static void svm_disable_lbrv(struct vcpu_svm *svm)
858 u32 *msrpm = svm->msrpm;
860 svm->vmcb->control.lbr_ctl = 0;
861 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
862 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
863 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
864 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
867 static __init int svm_hardware_setup(void)
869 int cpu;
870 struct page *iopm_pages;
871 void *iopm_va;
872 int r;
874 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
876 if (!iopm_pages)
877 return -ENOMEM;
879 iopm_va = page_address(iopm_pages);
880 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
881 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
883 init_msrpm_offsets();
885 if (boot_cpu_has(X86_FEATURE_NX))
886 kvm_enable_efer_bits(EFER_NX);
888 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
889 kvm_enable_efer_bits(EFER_FFXSR);
891 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
892 u64 max;
894 kvm_has_tsc_control = true;
897 * Make sure the user can only configure tsc_khz values that
898 * fit into a signed integer.
899 * A min value is not calculated needed because it will always
900 * be 1 on all machines and a value of 0 is used to disable
901 * tsc-scaling for the vcpu.
903 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
905 kvm_max_guest_tsc_khz = max;
908 if (nested) {
909 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
910 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
913 for_each_possible_cpu(cpu) {
914 r = svm_cpu_init(cpu);
915 if (r)
916 goto err;
919 if (!boot_cpu_has(X86_FEATURE_NPT))
920 npt_enabled = false;
922 if (npt_enabled && !npt) {
923 printk(KERN_INFO "kvm: Nested Paging disabled\n");
924 npt_enabled = false;
927 if (npt_enabled) {
928 printk(KERN_INFO "kvm: Nested Paging enabled\n");
929 kvm_enable_tdp();
930 } else
931 kvm_disable_tdp();
933 return 0;
935 err:
936 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
937 iopm_base = 0;
938 return r;
941 static __exit void svm_hardware_unsetup(void)
943 int cpu;
945 for_each_possible_cpu(cpu)
946 svm_cpu_uninit(cpu);
948 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
949 iopm_base = 0;
952 static void init_seg(struct vmcb_seg *seg)
954 seg->selector = 0;
955 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
956 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
957 seg->limit = 0xffff;
958 seg->base = 0;
961 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
963 seg->selector = 0;
964 seg->attrib = SVM_SELECTOR_P_MASK | type;
965 seg->limit = 0xffff;
966 seg->base = 0;
969 static u64 __scale_tsc(u64 ratio, u64 tsc)
971 u64 mult, frac, _tsc;
973 mult = ratio >> 32;
974 frac = ratio & ((1ULL << 32) - 1);
976 _tsc = tsc;
977 _tsc *= mult;
978 _tsc += (tsc >> 32) * frac;
979 _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
981 return _tsc;
984 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
986 struct vcpu_svm *svm = to_svm(vcpu);
987 u64 _tsc = tsc;
989 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
990 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
992 return _tsc;
995 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
997 struct vcpu_svm *svm = to_svm(vcpu);
998 u64 ratio;
999 u64 khz;
1001 /* Guest TSC same frequency as host TSC? */
1002 if (!scale) {
1003 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1004 return;
1007 /* TSC scaling supported? */
1008 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1009 if (user_tsc_khz > tsc_khz) {
1010 vcpu->arch.tsc_catchup = 1;
1011 vcpu->arch.tsc_always_catchup = 1;
1012 } else
1013 WARN(1, "user requested TSC rate below hardware speed\n");
1014 return;
1017 khz = user_tsc_khz;
1019 /* TSC scaling required - calculate ratio */
1020 ratio = khz << 32;
1021 do_div(ratio, tsc_khz);
1023 if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1024 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1025 user_tsc_khz);
1026 return;
1028 svm->tsc_ratio = ratio;
1031 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1033 struct vcpu_svm *svm = to_svm(vcpu);
1035 return svm->vmcb->control.tsc_offset;
1038 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1040 struct vcpu_svm *svm = to_svm(vcpu);
1041 u64 g_tsc_offset = 0;
1043 if (is_guest_mode(vcpu)) {
1044 g_tsc_offset = svm->vmcb->control.tsc_offset -
1045 svm->nested.hsave->control.tsc_offset;
1046 svm->nested.hsave->control.tsc_offset = offset;
1047 } else
1048 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1049 svm->vmcb->control.tsc_offset,
1050 offset);
1052 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1054 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1057 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1059 struct vcpu_svm *svm = to_svm(vcpu);
1061 if (host) {
1062 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
1063 WARN_ON(adjustment < 0);
1064 adjustment = svm_scale_tsc(vcpu, (u64)adjustment);
1067 svm->vmcb->control.tsc_offset += adjustment;
1068 if (is_guest_mode(vcpu))
1069 svm->nested.hsave->control.tsc_offset += adjustment;
1070 else
1071 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1072 svm->vmcb->control.tsc_offset - adjustment,
1073 svm->vmcb->control.tsc_offset);
1075 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1078 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1080 u64 tsc;
1082 tsc = svm_scale_tsc(vcpu, native_read_tsc());
1084 return target_tsc - tsc;
1087 static void init_vmcb(struct vcpu_svm *svm)
1089 struct vmcb_control_area *control = &svm->vmcb->control;
1090 struct vmcb_save_area *save = &svm->vmcb->save;
1092 svm->vcpu.fpu_active = 1;
1093 svm->vcpu.arch.hflags = 0;
1095 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1096 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1097 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1098 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1099 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1100 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1101 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1103 set_dr_intercepts(svm);
1105 set_exception_intercept(svm, PF_VECTOR);
1106 set_exception_intercept(svm, UD_VECTOR);
1107 set_exception_intercept(svm, MC_VECTOR);
1109 set_intercept(svm, INTERCEPT_INTR);
1110 set_intercept(svm, INTERCEPT_NMI);
1111 set_intercept(svm, INTERCEPT_SMI);
1112 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1113 set_intercept(svm, INTERCEPT_RDPMC);
1114 set_intercept(svm, INTERCEPT_CPUID);
1115 set_intercept(svm, INTERCEPT_INVD);
1116 set_intercept(svm, INTERCEPT_HLT);
1117 set_intercept(svm, INTERCEPT_INVLPG);
1118 set_intercept(svm, INTERCEPT_INVLPGA);
1119 set_intercept(svm, INTERCEPT_IOIO_PROT);
1120 set_intercept(svm, INTERCEPT_MSR_PROT);
1121 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1122 set_intercept(svm, INTERCEPT_SHUTDOWN);
1123 set_intercept(svm, INTERCEPT_VMRUN);
1124 set_intercept(svm, INTERCEPT_VMMCALL);
1125 set_intercept(svm, INTERCEPT_VMLOAD);
1126 set_intercept(svm, INTERCEPT_VMSAVE);
1127 set_intercept(svm, INTERCEPT_STGI);
1128 set_intercept(svm, INTERCEPT_CLGI);
1129 set_intercept(svm, INTERCEPT_SKINIT);
1130 set_intercept(svm, INTERCEPT_WBINVD);
1131 set_intercept(svm, INTERCEPT_MONITOR);
1132 set_intercept(svm, INTERCEPT_MWAIT);
1133 set_intercept(svm, INTERCEPT_XSETBV);
1135 control->iopm_base_pa = iopm_base;
1136 control->msrpm_base_pa = __pa(svm->msrpm);
1137 control->int_ctl = V_INTR_MASKING_MASK;
1139 init_seg(&save->es);
1140 init_seg(&save->ss);
1141 init_seg(&save->ds);
1142 init_seg(&save->fs);
1143 init_seg(&save->gs);
1145 save->cs.selector = 0xf000;
1146 save->cs.base = 0xffff0000;
1147 /* Executable/Readable Code Segment */
1148 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1149 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1150 save->cs.limit = 0xffff;
1152 save->gdtr.limit = 0xffff;
1153 save->idtr.limit = 0xffff;
1155 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1156 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1158 svm_set_efer(&svm->vcpu, 0);
1159 save->dr6 = 0xffff0ff0;
1160 kvm_set_rflags(&svm->vcpu, 2);
1161 save->rip = 0x0000fff0;
1162 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1165 * This is the guest-visible cr0 value.
1166 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1168 svm->vcpu.arch.cr0 = 0;
1169 (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1171 save->cr4 = X86_CR4_PAE;
1172 /* rdx = ?? */
1174 if (npt_enabled) {
1175 /* Setup VMCB for Nested Paging */
1176 control->nested_ctl = 1;
1177 clr_intercept(svm, INTERCEPT_INVLPG);
1178 clr_exception_intercept(svm, PF_VECTOR);
1179 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1180 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1181 save->g_pat = 0x0007040600070406ULL;
1182 save->cr3 = 0;
1183 save->cr4 = 0;
1185 svm->asid_generation = 0;
1187 svm->nested.vmcb = 0;
1188 svm->vcpu.arch.hflags = 0;
1190 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1191 control->pause_filter_count = 3000;
1192 set_intercept(svm, INTERCEPT_PAUSE);
1195 mark_all_dirty(svm->vmcb);
1197 enable_gif(svm);
1200 static void svm_vcpu_reset(struct kvm_vcpu *vcpu)
1202 struct vcpu_svm *svm = to_svm(vcpu);
1203 u32 dummy;
1204 u32 eax = 1;
1206 init_vmcb(svm);
1208 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1209 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1212 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1214 struct vcpu_svm *svm;
1215 struct page *page;
1216 struct page *msrpm_pages;
1217 struct page *hsave_page;
1218 struct page *nested_msrpm_pages;
1219 int err;
1221 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1222 if (!svm) {
1223 err = -ENOMEM;
1224 goto out;
1227 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1229 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1230 if (err)
1231 goto free_svm;
1233 err = -ENOMEM;
1234 page = alloc_page(GFP_KERNEL);
1235 if (!page)
1236 goto uninit;
1238 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1239 if (!msrpm_pages)
1240 goto free_page1;
1242 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1243 if (!nested_msrpm_pages)
1244 goto free_page2;
1246 hsave_page = alloc_page(GFP_KERNEL);
1247 if (!hsave_page)
1248 goto free_page3;
1250 svm->nested.hsave = page_address(hsave_page);
1252 svm->msrpm = page_address(msrpm_pages);
1253 svm_vcpu_init_msrpm(svm->msrpm);
1255 svm->nested.msrpm = page_address(nested_msrpm_pages);
1256 svm_vcpu_init_msrpm(svm->nested.msrpm);
1258 svm->vmcb = page_address(page);
1259 clear_page(svm->vmcb);
1260 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1261 svm->asid_generation = 0;
1262 init_vmcb(svm);
1264 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1265 MSR_IA32_APICBASE_ENABLE;
1266 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1267 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1269 svm_init_osvw(&svm->vcpu);
1271 return &svm->vcpu;
1273 free_page3:
1274 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1275 free_page2:
1276 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1277 free_page1:
1278 __free_page(page);
1279 uninit:
1280 kvm_vcpu_uninit(&svm->vcpu);
1281 free_svm:
1282 kmem_cache_free(kvm_vcpu_cache, svm);
1283 out:
1284 return ERR_PTR(err);
1287 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1289 struct vcpu_svm *svm = to_svm(vcpu);
1291 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1292 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1293 __free_page(virt_to_page(svm->nested.hsave));
1294 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1295 kvm_vcpu_uninit(vcpu);
1296 kmem_cache_free(kvm_vcpu_cache, svm);
1299 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1301 struct vcpu_svm *svm = to_svm(vcpu);
1302 int i;
1304 if (unlikely(cpu != vcpu->cpu)) {
1305 svm->asid_generation = 0;
1306 mark_all_dirty(svm->vmcb);
1309 #ifdef CONFIG_X86_64
1310 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1311 #endif
1312 savesegment(fs, svm->host.fs);
1313 savesegment(gs, svm->host.gs);
1314 svm->host.ldt = kvm_read_ldt();
1316 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1317 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1319 if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1320 svm->tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1321 __this_cpu_write(current_tsc_ratio, svm->tsc_ratio);
1322 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1326 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1328 struct vcpu_svm *svm = to_svm(vcpu);
1329 int i;
1331 ++vcpu->stat.host_state_reload;
1332 kvm_load_ldt(svm->host.ldt);
1333 #ifdef CONFIG_X86_64
1334 loadsegment(fs, svm->host.fs);
1335 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1336 load_gs_index(svm->host.gs);
1337 #else
1338 #ifdef CONFIG_X86_32_LAZY_GS
1339 loadsegment(gs, svm->host.gs);
1340 #endif
1341 #endif
1342 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1343 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1346 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1348 return to_svm(vcpu)->vmcb->save.rflags;
1351 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1354 * Any change of EFLAGS.VM is accompained by a reload of SS
1355 * (caused by either a task switch or an inter-privilege IRET),
1356 * so we do not need to update the CPL here.
1358 to_svm(vcpu)->vmcb->save.rflags = rflags;
1361 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1363 switch (reg) {
1364 case VCPU_EXREG_PDPTR:
1365 BUG_ON(!npt_enabled);
1366 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1367 break;
1368 default:
1369 BUG();
1373 static void svm_set_vintr(struct vcpu_svm *svm)
1375 set_intercept(svm, INTERCEPT_VINTR);
1378 static void svm_clear_vintr(struct vcpu_svm *svm)
1380 clr_intercept(svm, INTERCEPT_VINTR);
1383 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1385 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1387 switch (seg) {
1388 case VCPU_SREG_CS: return &save->cs;
1389 case VCPU_SREG_DS: return &save->ds;
1390 case VCPU_SREG_ES: return &save->es;
1391 case VCPU_SREG_FS: return &save->fs;
1392 case VCPU_SREG_GS: return &save->gs;
1393 case VCPU_SREG_SS: return &save->ss;
1394 case VCPU_SREG_TR: return &save->tr;
1395 case VCPU_SREG_LDTR: return &save->ldtr;
1397 BUG();
1398 return NULL;
1401 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1403 struct vmcb_seg *s = svm_seg(vcpu, seg);
1405 return s->base;
1408 static void svm_get_segment(struct kvm_vcpu *vcpu,
1409 struct kvm_segment *var, int seg)
1411 struct vmcb_seg *s = svm_seg(vcpu, seg);
1413 var->base = s->base;
1414 var->limit = s->limit;
1415 var->selector = s->selector;
1416 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1417 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1418 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1419 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1420 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1421 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1422 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1425 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1426 * However, the SVM spec states that the G bit is not observed by the
1427 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1428 * So let's synthesize a legal G bit for all segments, this helps
1429 * running KVM nested. It also helps cross-vendor migration, because
1430 * Intel's vmentry has a check on the 'G' bit.
1432 var->g = s->limit > 0xfffff;
1435 * AMD's VMCB does not have an explicit unusable field, so emulate it
1436 * for cross vendor migration purposes by "not present"
1438 var->unusable = !var->present || (var->type == 0);
1440 switch (seg) {
1441 case VCPU_SREG_TR:
1443 * Work around a bug where the busy flag in the tr selector
1444 * isn't exposed
1446 var->type |= 0x2;
1447 break;
1448 case VCPU_SREG_DS:
1449 case VCPU_SREG_ES:
1450 case VCPU_SREG_FS:
1451 case VCPU_SREG_GS:
1453 * The accessed bit must always be set in the segment
1454 * descriptor cache, although it can be cleared in the
1455 * descriptor, the cached bit always remains at 1. Since
1456 * Intel has a check on this, set it here to support
1457 * cross-vendor migration.
1459 if (!var->unusable)
1460 var->type |= 0x1;
1461 break;
1462 case VCPU_SREG_SS:
1464 * On AMD CPUs sometimes the DB bit in the segment
1465 * descriptor is left as 1, although the whole segment has
1466 * been made unusable. Clear it here to pass an Intel VMX
1467 * entry check when cross vendor migrating.
1469 if (var->unusable)
1470 var->db = 0;
1471 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1472 break;
1476 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1478 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1480 return save->cpl;
1483 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1485 struct vcpu_svm *svm = to_svm(vcpu);
1487 dt->size = svm->vmcb->save.idtr.limit;
1488 dt->address = svm->vmcb->save.idtr.base;
1491 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1493 struct vcpu_svm *svm = to_svm(vcpu);
1495 svm->vmcb->save.idtr.limit = dt->size;
1496 svm->vmcb->save.idtr.base = dt->address ;
1497 mark_dirty(svm->vmcb, VMCB_DT);
1500 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1502 struct vcpu_svm *svm = to_svm(vcpu);
1504 dt->size = svm->vmcb->save.gdtr.limit;
1505 dt->address = svm->vmcb->save.gdtr.base;
1508 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1510 struct vcpu_svm *svm = to_svm(vcpu);
1512 svm->vmcb->save.gdtr.limit = dt->size;
1513 svm->vmcb->save.gdtr.base = dt->address ;
1514 mark_dirty(svm->vmcb, VMCB_DT);
1517 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1521 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1525 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1529 static void update_cr0_intercept(struct vcpu_svm *svm)
1531 ulong gcr0 = svm->vcpu.arch.cr0;
1532 u64 *hcr0 = &svm->vmcb->save.cr0;
1534 if (!svm->vcpu.fpu_active)
1535 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1536 else
1537 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1538 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1540 mark_dirty(svm->vmcb, VMCB_CR);
1542 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1543 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1544 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1545 } else {
1546 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1547 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1551 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1553 struct vcpu_svm *svm = to_svm(vcpu);
1555 #ifdef CONFIG_X86_64
1556 if (vcpu->arch.efer & EFER_LME) {
1557 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1558 vcpu->arch.efer |= EFER_LMA;
1559 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1562 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1563 vcpu->arch.efer &= ~EFER_LMA;
1564 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1567 #endif
1568 vcpu->arch.cr0 = cr0;
1570 if (!npt_enabled)
1571 cr0 |= X86_CR0_PG | X86_CR0_WP;
1573 if (!vcpu->fpu_active)
1574 cr0 |= X86_CR0_TS;
1576 * re-enable caching here because the QEMU bios
1577 * does not do it - this results in some delay at
1578 * reboot
1580 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1581 svm->vmcb->save.cr0 = cr0;
1582 mark_dirty(svm->vmcb, VMCB_CR);
1583 update_cr0_intercept(svm);
1586 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1588 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1589 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1591 if (cr4 & X86_CR4_VMXE)
1592 return 1;
1594 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1595 svm_flush_tlb(vcpu);
1597 vcpu->arch.cr4 = cr4;
1598 if (!npt_enabled)
1599 cr4 |= X86_CR4_PAE;
1600 cr4 |= host_cr4_mce;
1601 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1602 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1603 return 0;
1606 static void svm_set_segment(struct kvm_vcpu *vcpu,
1607 struct kvm_segment *var, int seg)
1609 struct vcpu_svm *svm = to_svm(vcpu);
1610 struct vmcb_seg *s = svm_seg(vcpu, seg);
1612 s->base = var->base;
1613 s->limit = var->limit;
1614 s->selector = var->selector;
1615 if (var->unusable)
1616 s->attrib = 0;
1617 else {
1618 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1619 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1620 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1621 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1622 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1623 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1624 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1625 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1629 * This is always accurate, except if SYSRET returned to a segment
1630 * with SS.DPL != 3. Intel does not have this quirk, and always
1631 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1632 * would entail passing the CPL to userspace and back.
1634 if (seg == VCPU_SREG_SS)
1635 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1637 mark_dirty(svm->vmcb, VMCB_SEG);
1640 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1642 struct vcpu_svm *svm = to_svm(vcpu);
1644 clr_exception_intercept(svm, DB_VECTOR);
1645 clr_exception_intercept(svm, BP_VECTOR);
1647 if (svm->nmi_singlestep)
1648 set_exception_intercept(svm, DB_VECTOR);
1650 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1651 if (vcpu->guest_debug &
1652 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1653 set_exception_intercept(svm, DB_VECTOR);
1654 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1655 set_exception_intercept(svm, BP_VECTOR);
1656 } else
1657 vcpu->guest_debug = 0;
1660 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1662 if (sd->next_asid > sd->max_asid) {
1663 ++sd->asid_generation;
1664 sd->next_asid = 1;
1665 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1668 svm->asid_generation = sd->asid_generation;
1669 svm->vmcb->control.asid = sd->next_asid++;
1671 mark_dirty(svm->vmcb, VMCB_ASID);
1674 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1676 return to_svm(vcpu)->vmcb->save.dr6;
1679 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1681 struct vcpu_svm *svm = to_svm(vcpu);
1683 svm->vmcb->save.dr6 = value;
1684 mark_dirty(svm->vmcb, VMCB_DR);
1687 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1689 struct vcpu_svm *svm = to_svm(vcpu);
1691 get_debugreg(vcpu->arch.db[0], 0);
1692 get_debugreg(vcpu->arch.db[1], 1);
1693 get_debugreg(vcpu->arch.db[2], 2);
1694 get_debugreg(vcpu->arch.db[3], 3);
1695 vcpu->arch.dr6 = svm_get_dr6(vcpu);
1696 vcpu->arch.dr7 = svm->vmcb->save.dr7;
1698 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1699 set_dr_intercepts(svm);
1702 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1704 struct vcpu_svm *svm = to_svm(vcpu);
1706 svm->vmcb->save.dr7 = value;
1707 mark_dirty(svm->vmcb, VMCB_DR);
1710 static int pf_interception(struct vcpu_svm *svm)
1712 u64 fault_address = svm->vmcb->control.exit_info_2;
1713 u32 error_code;
1714 int r = 1;
1716 switch (svm->apf_reason) {
1717 default:
1718 error_code = svm->vmcb->control.exit_info_1;
1720 trace_kvm_page_fault(fault_address, error_code);
1721 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1722 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1723 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1724 svm->vmcb->control.insn_bytes,
1725 svm->vmcb->control.insn_len);
1726 break;
1727 case KVM_PV_REASON_PAGE_NOT_PRESENT:
1728 svm->apf_reason = 0;
1729 local_irq_disable();
1730 kvm_async_pf_task_wait(fault_address);
1731 local_irq_enable();
1732 break;
1733 case KVM_PV_REASON_PAGE_READY:
1734 svm->apf_reason = 0;
1735 local_irq_disable();
1736 kvm_async_pf_task_wake(fault_address);
1737 local_irq_enable();
1738 break;
1740 return r;
1743 static int db_interception(struct vcpu_svm *svm)
1745 struct kvm_run *kvm_run = svm->vcpu.run;
1747 if (!(svm->vcpu.guest_debug &
1748 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1749 !svm->nmi_singlestep) {
1750 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1751 return 1;
1754 if (svm->nmi_singlestep) {
1755 svm->nmi_singlestep = false;
1756 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1757 svm->vmcb->save.rflags &=
1758 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1759 update_db_bp_intercept(&svm->vcpu);
1762 if (svm->vcpu.guest_debug &
1763 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1764 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1765 kvm_run->debug.arch.pc =
1766 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1767 kvm_run->debug.arch.exception = DB_VECTOR;
1768 return 0;
1771 return 1;
1774 static int bp_interception(struct vcpu_svm *svm)
1776 struct kvm_run *kvm_run = svm->vcpu.run;
1778 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1779 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1780 kvm_run->debug.arch.exception = BP_VECTOR;
1781 return 0;
1784 static int ud_interception(struct vcpu_svm *svm)
1786 int er;
1788 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1789 if (er != EMULATE_DONE)
1790 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1791 return 1;
1794 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1796 struct vcpu_svm *svm = to_svm(vcpu);
1798 clr_exception_intercept(svm, NM_VECTOR);
1800 svm->vcpu.fpu_active = 1;
1801 update_cr0_intercept(svm);
1804 static int nm_interception(struct vcpu_svm *svm)
1806 svm_fpu_activate(&svm->vcpu);
1807 return 1;
1810 static bool is_erratum_383(void)
1812 int err, i;
1813 u64 value;
1815 if (!erratum_383_found)
1816 return false;
1818 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1819 if (err)
1820 return false;
1822 /* Bit 62 may or may not be set for this mce */
1823 value &= ~(1ULL << 62);
1825 if (value != 0xb600000000010015ULL)
1826 return false;
1828 /* Clear MCi_STATUS registers */
1829 for (i = 0; i < 6; ++i)
1830 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1832 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1833 if (!err) {
1834 u32 low, high;
1836 value &= ~(1ULL << 2);
1837 low = lower_32_bits(value);
1838 high = upper_32_bits(value);
1840 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1843 /* Flush tlb to evict multi-match entries */
1844 __flush_tlb_all();
1846 return true;
1849 static void svm_handle_mce(struct vcpu_svm *svm)
1851 if (is_erratum_383()) {
1853 * Erratum 383 triggered. Guest state is corrupt so kill the
1854 * guest.
1856 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1858 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1860 return;
1864 * On an #MC intercept the MCE handler is not called automatically in
1865 * the host. So do it by hand here.
1867 asm volatile (
1868 "int $0x12\n");
1869 /* not sure if we ever come back to this point */
1871 return;
1874 static int mc_interception(struct vcpu_svm *svm)
1876 return 1;
1879 static int shutdown_interception(struct vcpu_svm *svm)
1881 struct kvm_run *kvm_run = svm->vcpu.run;
1884 * VMCB is undefined after a SHUTDOWN intercept
1885 * so reinitialize it.
1887 clear_page(svm->vmcb);
1888 init_vmcb(svm);
1890 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1891 return 0;
1894 static int io_interception(struct vcpu_svm *svm)
1896 struct kvm_vcpu *vcpu = &svm->vcpu;
1897 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1898 int size, in, string;
1899 unsigned port;
1901 ++svm->vcpu.stat.io_exits;
1902 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1903 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1904 if (string || in)
1905 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1907 port = io_info >> 16;
1908 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1909 svm->next_rip = svm->vmcb->control.exit_info_2;
1910 skip_emulated_instruction(&svm->vcpu);
1912 return kvm_fast_pio_out(vcpu, size, port);
1915 static int nmi_interception(struct vcpu_svm *svm)
1917 return 1;
1920 static int intr_interception(struct vcpu_svm *svm)
1922 ++svm->vcpu.stat.irq_exits;
1923 return 1;
1926 static int nop_on_interception(struct vcpu_svm *svm)
1928 return 1;
1931 static int halt_interception(struct vcpu_svm *svm)
1933 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1934 return kvm_emulate_halt(&svm->vcpu);
1937 static int vmmcall_interception(struct vcpu_svm *svm)
1939 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1940 kvm_emulate_hypercall(&svm->vcpu);
1941 return 1;
1944 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1946 struct vcpu_svm *svm = to_svm(vcpu);
1948 return svm->nested.nested_cr3;
1951 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1953 struct vcpu_svm *svm = to_svm(vcpu);
1954 u64 cr3 = svm->nested.nested_cr3;
1955 u64 pdpte;
1956 int ret;
1958 ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1959 offset_in_page(cr3) + index * 8, 8);
1960 if (ret)
1961 return 0;
1962 return pdpte;
1965 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1966 unsigned long root)
1968 struct vcpu_svm *svm = to_svm(vcpu);
1970 svm->vmcb->control.nested_cr3 = root;
1971 mark_dirty(svm->vmcb, VMCB_NPT);
1972 svm_flush_tlb(vcpu);
1975 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1976 struct x86_exception *fault)
1978 struct vcpu_svm *svm = to_svm(vcpu);
1980 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
1982 * TODO: track the cause of the nested page fault, and
1983 * correctly fill in the high bits of exit_info_1.
1985 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1986 svm->vmcb->control.exit_code_hi = 0;
1987 svm->vmcb->control.exit_info_1 = (1ULL << 32);
1988 svm->vmcb->control.exit_info_2 = fault->address;
1991 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
1992 svm->vmcb->control.exit_info_1 |= fault->error_code;
1995 * The present bit is always zero for page structure faults on real
1996 * hardware.
1998 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
1999 svm->vmcb->control.exit_info_1 &= ~1;
2001 nested_svm_vmexit(svm);
2004 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2006 WARN_ON(mmu_is_nested(vcpu));
2007 kvm_init_shadow_mmu(vcpu);
2008 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2009 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2010 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
2011 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2012 vcpu->arch.mmu.shadow_root_level = get_npt_level();
2013 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2016 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2018 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2021 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2023 if (!(svm->vcpu.arch.efer & EFER_SVME)
2024 || !is_paging(&svm->vcpu)) {
2025 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2026 return 1;
2029 if (svm->vmcb->save.cpl) {
2030 kvm_inject_gp(&svm->vcpu, 0);
2031 return 1;
2034 return 0;
2037 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2038 bool has_error_code, u32 error_code)
2040 int vmexit;
2042 if (!is_guest_mode(&svm->vcpu))
2043 return 0;
2045 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2046 svm->vmcb->control.exit_code_hi = 0;
2047 svm->vmcb->control.exit_info_1 = error_code;
2048 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2050 vmexit = nested_svm_intercept(svm);
2051 if (vmexit == NESTED_EXIT_DONE)
2052 svm->nested.exit_required = true;
2054 return vmexit;
2057 /* This function returns true if it is save to enable the irq window */
2058 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2060 if (!is_guest_mode(&svm->vcpu))
2061 return true;
2063 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2064 return true;
2066 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2067 return false;
2070 * if vmexit was already requested (by intercepted exception
2071 * for instance) do not overwrite it with "external interrupt"
2072 * vmexit.
2074 if (svm->nested.exit_required)
2075 return false;
2077 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2078 svm->vmcb->control.exit_info_1 = 0;
2079 svm->vmcb->control.exit_info_2 = 0;
2081 if (svm->nested.intercept & 1ULL) {
2083 * The #vmexit can't be emulated here directly because this
2084 * code path runs with irqs and preemption disabled. A
2085 * #vmexit emulation might sleep. Only signal request for
2086 * the #vmexit here.
2088 svm->nested.exit_required = true;
2089 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2090 return false;
2093 return true;
2096 /* This function returns true if it is save to enable the nmi window */
2097 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2099 if (!is_guest_mode(&svm->vcpu))
2100 return true;
2102 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2103 return true;
2105 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2106 svm->nested.exit_required = true;
2108 return false;
2111 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2113 struct page *page;
2115 might_sleep();
2117 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2118 if (is_error_page(page))
2119 goto error;
2121 *_page = page;
2123 return kmap(page);
2125 error:
2126 kvm_inject_gp(&svm->vcpu, 0);
2128 return NULL;
2131 static void nested_svm_unmap(struct page *page)
2133 kunmap(page);
2134 kvm_release_page_dirty(page);
2137 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2139 unsigned port, size, iopm_len;
2140 u16 val, mask;
2141 u8 start_bit;
2142 u64 gpa;
2144 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2145 return NESTED_EXIT_HOST;
2147 port = svm->vmcb->control.exit_info_1 >> 16;
2148 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2149 SVM_IOIO_SIZE_SHIFT;
2150 gpa = svm->nested.vmcb_iopm + (port / 8);
2151 start_bit = port % 8;
2152 iopm_len = (start_bit + size > 8) ? 2 : 1;
2153 mask = (0xf >> (4 - size)) << start_bit;
2154 val = 0;
2156 if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, iopm_len))
2157 return NESTED_EXIT_DONE;
2159 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2162 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2164 u32 offset, msr, value;
2165 int write, mask;
2167 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2168 return NESTED_EXIT_HOST;
2170 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2171 offset = svm_msrpm_offset(msr);
2172 write = svm->vmcb->control.exit_info_1 & 1;
2173 mask = 1 << ((2 * (msr & 0xf)) + write);
2175 if (offset == MSR_INVALID)
2176 return NESTED_EXIT_DONE;
2178 /* Offset is in 32 bit units but need in 8 bit units */
2179 offset *= 4;
2181 if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2182 return NESTED_EXIT_DONE;
2184 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2187 static int nested_svm_exit_special(struct vcpu_svm *svm)
2189 u32 exit_code = svm->vmcb->control.exit_code;
2191 switch (exit_code) {
2192 case SVM_EXIT_INTR:
2193 case SVM_EXIT_NMI:
2194 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2195 return NESTED_EXIT_HOST;
2196 case SVM_EXIT_NPF:
2197 /* For now we are always handling NPFs when using them */
2198 if (npt_enabled)
2199 return NESTED_EXIT_HOST;
2200 break;
2201 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2202 /* When we're shadowing, trap PFs, but not async PF */
2203 if (!npt_enabled && svm->apf_reason == 0)
2204 return NESTED_EXIT_HOST;
2205 break;
2206 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2207 nm_interception(svm);
2208 break;
2209 default:
2210 break;
2213 return NESTED_EXIT_CONTINUE;
2217 * If this function returns true, this #vmexit was already handled
2219 static int nested_svm_intercept(struct vcpu_svm *svm)
2221 u32 exit_code = svm->vmcb->control.exit_code;
2222 int vmexit = NESTED_EXIT_HOST;
2224 switch (exit_code) {
2225 case SVM_EXIT_MSR:
2226 vmexit = nested_svm_exit_handled_msr(svm);
2227 break;
2228 case SVM_EXIT_IOIO:
2229 vmexit = nested_svm_intercept_ioio(svm);
2230 break;
2231 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2232 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2233 if (svm->nested.intercept_cr & bit)
2234 vmexit = NESTED_EXIT_DONE;
2235 break;
2237 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2238 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2239 if (svm->nested.intercept_dr & bit)
2240 vmexit = NESTED_EXIT_DONE;
2241 break;
2243 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2244 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2245 if (svm->nested.intercept_exceptions & excp_bits)
2246 vmexit = NESTED_EXIT_DONE;
2247 /* async page fault always cause vmexit */
2248 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2249 svm->apf_reason != 0)
2250 vmexit = NESTED_EXIT_DONE;
2251 break;
2253 case SVM_EXIT_ERR: {
2254 vmexit = NESTED_EXIT_DONE;
2255 break;
2257 default: {
2258 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2259 if (svm->nested.intercept & exit_bits)
2260 vmexit = NESTED_EXIT_DONE;
2264 return vmexit;
2267 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2269 int vmexit;
2271 vmexit = nested_svm_intercept(svm);
2273 if (vmexit == NESTED_EXIT_DONE)
2274 nested_svm_vmexit(svm);
2276 return vmexit;
2279 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2281 struct vmcb_control_area *dst = &dst_vmcb->control;
2282 struct vmcb_control_area *from = &from_vmcb->control;
2284 dst->intercept_cr = from->intercept_cr;
2285 dst->intercept_dr = from->intercept_dr;
2286 dst->intercept_exceptions = from->intercept_exceptions;
2287 dst->intercept = from->intercept;
2288 dst->iopm_base_pa = from->iopm_base_pa;
2289 dst->msrpm_base_pa = from->msrpm_base_pa;
2290 dst->tsc_offset = from->tsc_offset;
2291 dst->asid = from->asid;
2292 dst->tlb_ctl = from->tlb_ctl;
2293 dst->int_ctl = from->int_ctl;
2294 dst->int_vector = from->int_vector;
2295 dst->int_state = from->int_state;
2296 dst->exit_code = from->exit_code;
2297 dst->exit_code_hi = from->exit_code_hi;
2298 dst->exit_info_1 = from->exit_info_1;
2299 dst->exit_info_2 = from->exit_info_2;
2300 dst->exit_int_info = from->exit_int_info;
2301 dst->exit_int_info_err = from->exit_int_info_err;
2302 dst->nested_ctl = from->nested_ctl;
2303 dst->event_inj = from->event_inj;
2304 dst->event_inj_err = from->event_inj_err;
2305 dst->nested_cr3 = from->nested_cr3;
2306 dst->lbr_ctl = from->lbr_ctl;
2309 static int nested_svm_vmexit(struct vcpu_svm *svm)
2311 struct vmcb *nested_vmcb;
2312 struct vmcb *hsave = svm->nested.hsave;
2313 struct vmcb *vmcb = svm->vmcb;
2314 struct page *page;
2316 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2317 vmcb->control.exit_info_1,
2318 vmcb->control.exit_info_2,
2319 vmcb->control.exit_int_info,
2320 vmcb->control.exit_int_info_err,
2321 KVM_ISA_SVM);
2323 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2324 if (!nested_vmcb)
2325 return 1;
2327 /* Exit Guest-Mode */
2328 leave_guest_mode(&svm->vcpu);
2329 svm->nested.vmcb = 0;
2331 /* Give the current vmcb to the guest */
2332 disable_gif(svm);
2334 nested_vmcb->save.es = vmcb->save.es;
2335 nested_vmcb->save.cs = vmcb->save.cs;
2336 nested_vmcb->save.ss = vmcb->save.ss;
2337 nested_vmcb->save.ds = vmcb->save.ds;
2338 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2339 nested_vmcb->save.idtr = vmcb->save.idtr;
2340 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2341 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2342 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2343 nested_vmcb->save.cr2 = vmcb->save.cr2;
2344 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2345 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2346 nested_vmcb->save.rip = vmcb->save.rip;
2347 nested_vmcb->save.rsp = vmcb->save.rsp;
2348 nested_vmcb->save.rax = vmcb->save.rax;
2349 nested_vmcb->save.dr7 = vmcb->save.dr7;
2350 nested_vmcb->save.dr6 = vmcb->save.dr6;
2351 nested_vmcb->save.cpl = vmcb->save.cpl;
2353 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2354 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2355 nested_vmcb->control.int_state = vmcb->control.int_state;
2356 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2357 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2358 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2359 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2360 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2361 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2362 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2365 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2366 * to make sure that we do not lose injected events. So check event_inj
2367 * here and copy it to exit_int_info if it is valid.
2368 * Exit_int_info and event_inj can't be both valid because the case
2369 * below only happens on a VMRUN instruction intercept which has
2370 * no valid exit_int_info set.
2372 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2373 struct vmcb_control_area *nc = &nested_vmcb->control;
2375 nc->exit_int_info = vmcb->control.event_inj;
2376 nc->exit_int_info_err = vmcb->control.event_inj_err;
2379 nested_vmcb->control.tlb_ctl = 0;
2380 nested_vmcb->control.event_inj = 0;
2381 nested_vmcb->control.event_inj_err = 0;
2383 /* We always set V_INTR_MASKING and remember the old value in hflags */
2384 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2385 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2387 /* Restore the original control entries */
2388 copy_vmcb_control_area(vmcb, hsave);
2390 kvm_clear_exception_queue(&svm->vcpu);
2391 kvm_clear_interrupt_queue(&svm->vcpu);
2393 svm->nested.nested_cr3 = 0;
2395 /* Restore selected save entries */
2396 svm->vmcb->save.es = hsave->save.es;
2397 svm->vmcb->save.cs = hsave->save.cs;
2398 svm->vmcb->save.ss = hsave->save.ss;
2399 svm->vmcb->save.ds = hsave->save.ds;
2400 svm->vmcb->save.gdtr = hsave->save.gdtr;
2401 svm->vmcb->save.idtr = hsave->save.idtr;
2402 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2403 svm_set_efer(&svm->vcpu, hsave->save.efer);
2404 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2405 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2406 if (npt_enabled) {
2407 svm->vmcb->save.cr3 = hsave->save.cr3;
2408 svm->vcpu.arch.cr3 = hsave->save.cr3;
2409 } else {
2410 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2412 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2413 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2414 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2415 svm->vmcb->save.dr7 = 0;
2416 svm->vmcb->save.cpl = 0;
2417 svm->vmcb->control.exit_int_info = 0;
2419 mark_all_dirty(svm->vmcb);
2421 nested_svm_unmap(page);
2423 nested_svm_uninit_mmu_context(&svm->vcpu);
2424 kvm_mmu_reset_context(&svm->vcpu);
2425 kvm_mmu_load(&svm->vcpu);
2427 return 0;
2430 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2433 * This function merges the msr permission bitmaps of kvm and the
2434 * nested vmcb. It is optimized in that it only merges the parts where
2435 * the kvm msr permission bitmap may contain zero bits
2437 int i;
2439 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2440 return true;
2442 for (i = 0; i < MSRPM_OFFSETS; i++) {
2443 u32 value, p;
2444 u64 offset;
2446 if (msrpm_offsets[i] == 0xffffffff)
2447 break;
2449 p = msrpm_offsets[i];
2450 offset = svm->nested.vmcb_msrpm + (p * 4);
2452 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2453 return false;
2455 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2458 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2460 return true;
2463 static bool nested_vmcb_checks(struct vmcb *vmcb)
2465 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2466 return false;
2468 if (vmcb->control.asid == 0)
2469 return false;
2471 if (vmcb->control.nested_ctl && !npt_enabled)
2472 return false;
2474 return true;
2477 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2479 struct vmcb *nested_vmcb;
2480 struct vmcb *hsave = svm->nested.hsave;
2481 struct vmcb *vmcb = svm->vmcb;
2482 struct page *page;
2483 u64 vmcb_gpa;
2485 vmcb_gpa = svm->vmcb->save.rax;
2487 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2488 if (!nested_vmcb)
2489 return false;
2491 if (!nested_vmcb_checks(nested_vmcb)) {
2492 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2493 nested_vmcb->control.exit_code_hi = 0;
2494 nested_vmcb->control.exit_info_1 = 0;
2495 nested_vmcb->control.exit_info_2 = 0;
2497 nested_svm_unmap(page);
2499 return false;
2502 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2503 nested_vmcb->save.rip,
2504 nested_vmcb->control.int_ctl,
2505 nested_vmcb->control.event_inj,
2506 nested_vmcb->control.nested_ctl);
2508 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2509 nested_vmcb->control.intercept_cr >> 16,
2510 nested_vmcb->control.intercept_exceptions,
2511 nested_vmcb->control.intercept);
2513 /* Clear internal status */
2514 kvm_clear_exception_queue(&svm->vcpu);
2515 kvm_clear_interrupt_queue(&svm->vcpu);
2518 * Save the old vmcb, so we don't need to pick what we save, but can
2519 * restore everything when a VMEXIT occurs
2521 hsave->save.es = vmcb->save.es;
2522 hsave->save.cs = vmcb->save.cs;
2523 hsave->save.ss = vmcb->save.ss;
2524 hsave->save.ds = vmcb->save.ds;
2525 hsave->save.gdtr = vmcb->save.gdtr;
2526 hsave->save.idtr = vmcb->save.idtr;
2527 hsave->save.efer = svm->vcpu.arch.efer;
2528 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2529 hsave->save.cr4 = svm->vcpu.arch.cr4;
2530 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2531 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2532 hsave->save.rsp = vmcb->save.rsp;
2533 hsave->save.rax = vmcb->save.rax;
2534 if (npt_enabled)
2535 hsave->save.cr3 = vmcb->save.cr3;
2536 else
2537 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2539 copy_vmcb_control_area(hsave, vmcb);
2541 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2542 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2543 else
2544 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2546 if (nested_vmcb->control.nested_ctl) {
2547 kvm_mmu_unload(&svm->vcpu);
2548 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2549 nested_svm_init_mmu_context(&svm->vcpu);
2552 /* Load the nested guest state */
2553 svm->vmcb->save.es = nested_vmcb->save.es;
2554 svm->vmcb->save.cs = nested_vmcb->save.cs;
2555 svm->vmcb->save.ss = nested_vmcb->save.ss;
2556 svm->vmcb->save.ds = nested_vmcb->save.ds;
2557 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2558 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2559 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2560 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2561 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2562 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2563 if (npt_enabled) {
2564 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2565 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2566 } else
2567 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2569 /* Guest paging mode is active - reset mmu */
2570 kvm_mmu_reset_context(&svm->vcpu);
2572 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2573 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2574 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2575 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2577 /* In case we don't even reach vcpu_run, the fields are not updated */
2578 svm->vmcb->save.rax = nested_vmcb->save.rax;
2579 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2580 svm->vmcb->save.rip = nested_vmcb->save.rip;
2581 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2582 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2583 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2585 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2586 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2588 /* cache intercepts */
2589 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2590 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2591 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2592 svm->nested.intercept = nested_vmcb->control.intercept;
2594 svm_flush_tlb(&svm->vcpu);
2595 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2596 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2597 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2598 else
2599 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2601 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2602 /* We only want the cr8 intercept bits of the guest */
2603 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2604 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2607 /* We don't want to see VMMCALLs from a nested guest */
2608 clr_intercept(svm, INTERCEPT_VMMCALL);
2610 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2611 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2612 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2613 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2614 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2615 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2617 nested_svm_unmap(page);
2619 /* Enter Guest-Mode */
2620 enter_guest_mode(&svm->vcpu);
2623 * Merge guest and host intercepts - must be called with vcpu in
2624 * guest-mode to take affect here
2626 recalc_intercepts(svm);
2628 svm->nested.vmcb = vmcb_gpa;
2630 enable_gif(svm);
2632 mark_all_dirty(svm->vmcb);
2634 return true;
2637 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2639 to_vmcb->save.fs = from_vmcb->save.fs;
2640 to_vmcb->save.gs = from_vmcb->save.gs;
2641 to_vmcb->save.tr = from_vmcb->save.tr;
2642 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2643 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2644 to_vmcb->save.star = from_vmcb->save.star;
2645 to_vmcb->save.lstar = from_vmcb->save.lstar;
2646 to_vmcb->save.cstar = from_vmcb->save.cstar;
2647 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2648 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2649 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2650 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2653 static int vmload_interception(struct vcpu_svm *svm)
2655 struct vmcb *nested_vmcb;
2656 struct page *page;
2658 if (nested_svm_check_permissions(svm))
2659 return 1;
2661 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2662 if (!nested_vmcb)
2663 return 1;
2665 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2666 skip_emulated_instruction(&svm->vcpu);
2668 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2669 nested_svm_unmap(page);
2671 return 1;
2674 static int vmsave_interception(struct vcpu_svm *svm)
2676 struct vmcb *nested_vmcb;
2677 struct page *page;
2679 if (nested_svm_check_permissions(svm))
2680 return 1;
2682 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2683 if (!nested_vmcb)
2684 return 1;
2686 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2687 skip_emulated_instruction(&svm->vcpu);
2689 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2690 nested_svm_unmap(page);
2692 return 1;
2695 static int vmrun_interception(struct vcpu_svm *svm)
2697 if (nested_svm_check_permissions(svm))
2698 return 1;
2700 /* Save rip after vmrun instruction */
2701 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2703 if (!nested_svm_vmrun(svm))
2704 return 1;
2706 if (!nested_svm_vmrun_msrpm(svm))
2707 goto failed;
2709 return 1;
2711 failed:
2713 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2714 svm->vmcb->control.exit_code_hi = 0;
2715 svm->vmcb->control.exit_info_1 = 0;
2716 svm->vmcb->control.exit_info_2 = 0;
2718 nested_svm_vmexit(svm);
2720 return 1;
2723 static int stgi_interception(struct vcpu_svm *svm)
2725 if (nested_svm_check_permissions(svm))
2726 return 1;
2728 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2729 skip_emulated_instruction(&svm->vcpu);
2730 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2732 enable_gif(svm);
2734 return 1;
2737 static int clgi_interception(struct vcpu_svm *svm)
2739 if (nested_svm_check_permissions(svm))
2740 return 1;
2742 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2743 skip_emulated_instruction(&svm->vcpu);
2745 disable_gif(svm);
2747 /* After a CLGI no interrupts should come */
2748 svm_clear_vintr(svm);
2749 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2751 mark_dirty(svm->vmcb, VMCB_INTR);
2753 return 1;
2756 static int invlpga_interception(struct vcpu_svm *svm)
2758 struct kvm_vcpu *vcpu = &svm->vcpu;
2760 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2761 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2763 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2764 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2766 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2767 skip_emulated_instruction(&svm->vcpu);
2768 return 1;
2771 static int skinit_interception(struct vcpu_svm *svm)
2773 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2775 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2776 return 1;
2779 static int wbinvd_interception(struct vcpu_svm *svm)
2781 kvm_emulate_wbinvd(&svm->vcpu);
2782 return 1;
2785 static int xsetbv_interception(struct vcpu_svm *svm)
2787 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2788 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2790 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2791 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2792 skip_emulated_instruction(&svm->vcpu);
2795 return 1;
2798 static int task_switch_interception(struct vcpu_svm *svm)
2800 u16 tss_selector;
2801 int reason;
2802 int int_type = svm->vmcb->control.exit_int_info &
2803 SVM_EXITINTINFO_TYPE_MASK;
2804 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2805 uint32_t type =
2806 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2807 uint32_t idt_v =
2808 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2809 bool has_error_code = false;
2810 u32 error_code = 0;
2812 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2814 if (svm->vmcb->control.exit_info_2 &
2815 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2816 reason = TASK_SWITCH_IRET;
2817 else if (svm->vmcb->control.exit_info_2 &
2818 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2819 reason = TASK_SWITCH_JMP;
2820 else if (idt_v)
2821 reason = TASK_SWITCH_GATE;
2822 else
2823 reason = TASK_SWITCH_CALL;
2825 if (reason == TASK_SWITCH_GATE) {
2826 switch (type) {
2827 case SVM_EXITINTINFO_TYPE_NMI:
2828 svm->vcpu.arch.nmi_injected = false;
2829 break;
2830 case SVM_EXITINTINFO_TYPE_EXEPT:
2831 if (svm->vmcb->control.exit_info_2 &
2832 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2833 has_error_code = true;
2834 error_code =
2835 (u32)svm->vmcb->control.exit_info_2;
2837 kvm_clear_exception_queue(&svm->vcpu);
2838 break;
2839 case SVM_EXITINTINFO_TYPE_INTR:
2840 kvm_clear_interrupt_queue(&svm->vcpu);
2841 break;
2842 default:
2843 break;
2847 if (reason != TASK_SWITCH_GATE ||
2848 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2849 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2850 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2851 skip_emulated_instruction(&svm->vcpu);
2853 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2854 int_vec = -1;
2856 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2857 has_error_code, error_code) == EMULATE_FAIL) {
2858 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2859 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2860 svm->vcpu.run->internal.ndata = 0;
2861 return 0;
2863 return 1;
2866 static int cpuid_interception(struct vcpu_svm *svm)
2868 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2869 kvm_emulate_cpuid(&svm->vcpu);
2870 return 1;
2873 static int iret_interception(struct vcpu_svm *svm)
2875 ++svm->vcpu.stat.nmi_window_exits;
2876 clr_intercept(svm, INTERCEPT_IRET);
2877 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2878 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2879 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2880 return 1;
2883 static int invlpg_interception(struct vcpu_svm *svm)
2885 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2886 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2888 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2889 skip_emulated_instruction(&svm->vcpu);
2890 return 1;
2893 static int emulate_on_interception(struct vcpu_svm *svm)
2895 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2898 static int rdpmc_interception(struct vcpu_svm *svm)
2900 int err;
2902 if (!static_cpu_has(X86_FEATURE_NRIPS))
2903 return emulate_on_interception(svm);
2905 err = kvm_rdpmc(&svm->vcpu);
2906 kvm_complete_insn_gp(&svm->vcpu, err);
2908 return 1;
2911 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2912 unsigned long val)
2914 unsigned long cr0 = svm->vcpu.arch.cr0;
2915 bool ret = false;
2916 u64 intercept;
2918 intercept = svm->nested.intercept;
2920 if (!is_guest_mode(&svm->vcpu) ||
2921 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2922 return false;
2924 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2925 val &= ~SVM_CR0_SELECTIVE_MASK;
2927 if (cr0 ^ val) {
2928 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2929 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2932 return ret;
2935 #define CR_VALID (1ULL << 63)
2937 static int cr_interception(struct vcpu_svm *svm)
2939 int reg, cr;
2940 unsigned long val;
2941 int err;
2943 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2944 return emulate_on_interception(svm);
2946 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2947 return emulate_on_interception(svm);
2949 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2950 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2951 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2952 else
2953 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2955 err = 0;
2956 if (cr >= 16) { /* mov to cr */
2957 cr -= 16;
2958 val = kvm_register_read(&svm->vcpu, reg);
2959 switch (cr) {
2960 case 0:
2961 if (!check_selective_cr0_intercepted(svm, val))
2962 err = kvm_set_cr0(&svm->vcpu, val);
2963 else
2964 return 1;
2966 break;
2967 case 3:
2968 err = kvm_set_cr3(&svm->vcpu, val);
2969 break;
2970 case 4:
2971 err = kvm_set_cr4(&svm->vcpu, val);
2972 break;
2973 case 8:
2974 err = kvm_set_cr8(&svm->vcpu, val);
2975 break;
2976 default:
2977 WARN(1, "unhandled write to CR%d", cr);
2978 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2979 return 1;
2981 } else { /* mov from cr */
2982 switch (cr) {
2983 case 0:
2984 val = kvm_read_cr0(&svm->vcpu);
2985 break;
2986 case 2:
2987 val = svm->vcpu.arch.cr2;
2988 break;
2989 case 3:
2990 val = kvm_read_cr3(&svm->vcpu);
2991 break;
2992 case 4:
2993 val = kvm_read_cr4(&svm->vcpu);
2994 break;
2995 case 8:
2996 val = kvm_get_cr8(&svm->vcpu);
2997 break;
2998 default:
2999 WARN(1, "unhandled read from CR%d", cr);
3000 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3001 return 1;
3003 kvm_register_write(&svm->vcpu, reg, val);
3005 kvm_complete_insn_gp(&svm->vcpu, err);
3007 return 1;
3010 static int dr_interception(struct vcpu_svm *svm)
3012 int reg, dr;
3013 unsigned long val;
3015 if (svm->vcpu.guest_debug == 0) {
3017 * No more DR vmexits; force a reload of the debug registers
3018 * and reenter on this instruction. The next vmexit will
3019 * retrieve the full state of the debug registers.
3021 clr_dr_intercepts(svm);
3022 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3023 return 1;
3026 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3027 return emulate_on_interception(svm);
3029 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3030 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3032 if (dr >= 16) { /* mov to DRn */
3033 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3034 return 1;
3035 val = kvm_register_read(&svm->vcpu, reg);
3036 kvm_set_dr(&svm->vcpu, dr - 16, val);
3037 } else {
3038 if (!kvm_require_dr(&svm->vcpu, dr))
3039 return 1;
3040 kvm_get_dr(&svm->vcpu, dr, &val);
3041 kvm_register_write(&svm->vcpu, reg, val);
3044 skip_emulated_instruction(&svm->vcpu);
3046 return 1;
3049 static int cr8_write_interception(struct vcpu_svm *svm)
3051 struct kvm_run *kvm_run = svm->vcpu.run;
3052 int r;
3054 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3055 /* instruction emulation calls kvm_set_cr8() */
3056 r = cr_interception(svm);
3057 if (irqchip_in_kernel(svm->vcpu.kvm))
3058 return r;
3059 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3060 return r;
3061 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3062 return 0;
3065 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3067 struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3068 return vmcb->control.tsc_offset +
3069 svm_scale_tsc(vcpu, host_tsc);
3072 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
3074 struct vcpu_svm *svm = to_svm(vcpu);
3076 switch (ecx) {
3077 case MSR_IA32_TSC: {
3078 *data = svm->vmcb->control.tsc_offset +
3079 svm_scale_tsc(vcpu, native_read_tsc());
3081 break;
3083 case MSR_STAR:
3084 *data = svm->vmcb->save.star;
3085 break;
3086 #ifdef CONFIG_X86_64
3087 case MSR_LSTAR:
3088 *data = svm->vmcb->save.lstar;
3089 break;
3090 case MSR_CSTAR:
3091 *data = svm->vmcb->save.cstar;
3092 break;
3093 case MSR_KERNEL_GS_BASE:
3094 *data = svm->vmcb->save.kernel_gs_base;
3095 break;
3096 case MSR_SYSCALL_MASK:
3097 *data = svm->vmcb->save.sfmask;
3098 break;
3099 #endif
3100 case MSR_IA32_SYSENTER_CS:
3101 *data = svm->vmcb->save.sysenter_cs;
3102 break;
3103 case MSR_IA32_SYSENTER_EIP:
3104 *data = svm->sysenter_eip;
3105 break;
3106 case MSR_IA32_SYSENTER_ESP:
3107 *data = svm->sysenter_esp;
3108 break;
3110 * Nobody will change the following 5 values in the VMCB so we can
3111 * safely return them on rdmsr. They will always be 0 until LBRV is
3112 * implemented.
3114 case MSR_IA32_DEBUGCTLMSR:
3115 *data = svm->vmcb->save.dbgctl;
3116 break;
3117 case MSR_IA32_LASTBRANCHFROMIP:
3118 *data = svm->vmcb->save.br_from;
3119 break;
3120 case MSR_IA32_LASTBRANCHTOIP:
3121 *data = svm->vmcb->save.br_to;
3122 break;
3123 case MSR_IA32_LASTINTFROMIP:
3124 *data = svm->vmcb->save.last_excp_from;
3125 break;
3126 case MSR_IA32_LASTINTTOIP:
3127 *data = svm->vmcb->save.last_excp_to;
3128 break;
3129 case MSR_VM_HSAVE_PA:
3130 *data = svm->nested.hsave_msr;
3131 break;
3132 case MSR_VM_CR:
3133 *data = svm->nested.vm_cr_msr;
3134 break;
3135 case MSR_IA32_UCODE_REV:
3136 *data = 0x01000065;
3137 break;
3138 default:
3139 return kvm_get_msr_common(vcpu, ecx, data);
3141 return 0;
3144 static int rdmsr_interception(struct vcpu_svm *svm)
3146 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3147 u64 data;
3149 if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3150 trace_kvm_msr_read_ex(ecx);
3151 kvm_inject_gp(&svm->vcpu, 0);
3152 } else {
3153 trace_kvm_msr_read(ecx, data);
3155 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, data & 0xffffffff);
3156 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX, data >> 32);
3157 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3158 skip_emulated_instruction(&svm->vcpu);
3160 return 1;
3163 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3165 struct vcpu_svm *svm = to_svm(vcpu);
3166 int svm_dis, chg_mask;
3168 if (data & ~SVM_VM_CR_VALID_MASK)
3169 return 1;
3171 chg_mask = SVM_VM_CR_VALID_MASK;
3173 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3174 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3176 svm->nested.vm_cr_msr &= ~chg_mask;
3177 svm->nested.vm_cr_msr |= (data & chg_mask);
3179 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3181 /* check for svm_disable while efer.svme is set */
3182 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3183 return 1;
3185 return 0;
3188 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3190 struct vcpu_svm *svm = to_svm(vcpu);
3192 u32 ecx = msr->index;
3193 u64 data = msr->data;
3194 switch (ecx) {
3195 case MSR_IA32_TSC:
3196 kvm_write_tsc(vcpu, msr);
3197 break;
3198 case MSR_STAR:
3199 svm->vmcb->save.star = data;
3200 break;
3201 #ifdef CONFIG_X86_64
3202 case MSR_LSTAR:
3203 svm->vmcb->save.lstar = data;
3204 break;
3205 case MSR_CSTAR:
3206 svm->vmcb->save.cstar = data;
3207 break;
3208 case MSR_KERNEL_GS_BASE:
3209 svm->vmcb->save.kernel_gs_base = data;
3210 break;
3211 case MSR_SYSCALL_MASK:
3212 svm->vmcb->save.sfmask = data;
3213 break;
3214 #endif
3215 case MSR_IA32_SYSENTER_CS:
3216 svm->vmcb->save.sysenter_cs = data;
3217 break;
3218 case MSR_IA32_SYSENTER_EIP:
3219 svm->sysenter_eip = data;
3220 svm->vmcb->save.sysenter_eip = data;
3221 break;
3222 case MSR_IA32_SYSENTER_ESP:
3223 svm->sysenter_esp = data;
3224 svm->vmcb->save.sysenter_esp = data;
3225 break;
3226 case MSR_IA32_DEBUGCTLMSR:
3227 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3228 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3229 __func__, data);
3230 break;
3232 if (data & DEBUGCTL_RESERVED_BITS)
3233 return 1;
3235 svm->vmcb->save.dbgctl = data;
3236 mark_dirty(svm->vmcb, VMCB_LBR);
3237 if (data & (1ULL<<0))
3238 svm_enable_lbrv(svm);
3239 else
3240 svm_disable_lbrv(svm);
3241 break;
3242 case MSR_VM_HSAVE_PA:
3243 svm->nested.hsave_msr = data;
3244 break;
3245 case MSR_VM_CR:
3246 return svm_set_vm_cr(vcpu, data);
3247 case MSR_VM_IGNNE:
3248 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3249 break;
3250 default:
3251 return kvm_set_msr_common(vcpu, msr);
3253 return 0;
3256 static int wrmsr_interception(struct vcpu_svm *svm)
3258 struct msr_data msr;
3259 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3260 u64 data = kvm_read_edx_eax(&svm->vcpu);
3262 msr.data = data;
3263 msr.index = ecx;
3264 msr.host_initiated = false;
3266 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3267 if (kvm_set_msr(&svm->vcpu, &msr)) {
3268 trace_kvm_msr_write_ex(ecx, data);
3269 kvm_inject_gp(&svm->vcpu, 0);
3270 } else {
3271 trace_kvm_msr_write(ecx, data);
3272 skip_emulated_instruction(&svm->vcpu);
3274 return 1;
3277 static int msr_interception(struct vcpu_svm *svm)
3279 if (svm->vmcb->control.exit_info_1)
3280 return wrmsr_interception(svm);
3281 else
3282 return rdmsr_interception(svm);
3285 static int interrupt_window_interception(struct vcpu_svm *svm)
3287 struct kvm_run *kvm_run = svm->vcpu.run;
3289 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3290 svm_clear_vintr(svm);
3291 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3292 mark_dirty(svm->vmcb, VMCB_INTR);
3293 ++svm->vcpu.stat.irq_window_exits;
3295 * If the user space waits to inject interrupts, exit as soon as
3296 * possible
3298 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3299 kvm_run->request_interrupt_window &&
3300 !kvm_cpu_has_interrupt(&svm->vcpu)) {
3301 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3302 return 0;
3305 return 1;
3308 static int pause_interception(struct vcpu_svm *svm)
3310 kvm_vcpu_on_spin(&(svm->vcpu));
3311 return 1;
3314 static int nop_interception(struct vcpu_svm *svm)
3316 skip_emulated_instruction(&(svm->vcpu));
3317 return 1;
3320 static int monitor_interception(struct vcpu_svm *svm)
3322 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3323 return nop_interception(svm);
3326 static int mwait_interception(struct vcpu_svm *svm)
3328 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3329 return nop_interception(svm);
3332 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3333 [SVM_EXIT_READ_CR0] = cr_interception,
3334 [SVM_EXIT_READ_CR3] = cr_interception,
3335 [SVM_EXIT_READ_CR4] = cr_interception,
3336 [SVM_EXIT_READ_CR8] = cr_interception,
3337 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3338 [SVM_EXIT_WRITE_CR0] = cr_interception,
3339 [SVM_EXIT_WRITE_CR3] = cr_interception,
3340 [SVM_EXIT_WRITE_CR4] = cr_interception,
3341 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3342 [SVM_EXIT_READ_DR0] = dr_interception,
3343 [SVM_EXIT_READ_DR1] = dr_interception,
3344 [SVM_EXIT_READ_DR2] = dr_interception,
3345 [SVM_EXIT_READ_DR3] = dr_interception,
3346 [SVM_EXIT_READ_DR4] = dr_interception,
3347 [SVM_EXIT_READ_DR5] = dr_interception,
3348 [SVM_EXIT_READ_DR6] = dr_interception,
3349 [SVM_EXIT_READ_DR7] = dr_interception,
3350 [SVM_EXIT_WRITE_DR0] = dr_interception,
3351 [SVM_EXIT_WRITE_DR1] = dr_interception,
3352 [SVM_EXIT_WRITE_DR2] = dr_interception,
3353 [SVM_EXIT_WRITE_DR3] = dr_interception,
3354 [SVM_EXIT_WRITE_DR4] = dr_interception,
3355 [SVM_EXIT_WRITE_DR5] = dr_interception,
3356 [SVM_EXIT_WRITE_DR6] = dr_interception,
3357 [SVM_EXIT_WRITE_DR7] = dr_interception,
3358 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3359 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3360 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3361 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3362 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
3363 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3364 [SVM_EXIT_INTR] = intr_interception,
3365 [SVM_EXIT_NMI] = nmi_interception,
3366 [SVM_EXIT_SMI] = nop_on_interception,
3367 [SVM_EXIT_INIT] = nop_on_interception,
3368 [SVM_EXIT_VINTR] = interrupt_window_interception,
3369 [SVM_EXIT_RDPMC] = rdpmc_interception,
3370 [SVM_EXIT_CPUID] = cpuid_interception,
3371 [SVM_EXIT_IRET] = iret_interception,
3372 [SVM_EXIT_INVD] = emulate_on_interception,
3373 [SVM_EXIT_PAUSE] = pause_interception,
3374 [SVM_EXIT_HLT] = halt_interception,
3375 [SVM_EXIT_INVLPG] = invlpg_interception,
3376 [SVM_EXIT_INVLPGA] = invlpga_interception,
3377 [SVM_EXIT_IOIO] = io_interception,
3378 [SVM_EXIT_MSR] = msr_interception,
3379 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3380 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3381 [SVM_EXIT_VMRUN] = vmrun_interception,
3382 [SVM_EXIT_VMMCALL] = vmmcall_interception,
3383 [SVM_EXIT_VMLOAD] = vmload_interception,
3384 [SVM_EXIT_VMSAVE] = vmsave_interception,
3385 [SVM_EXIT_STGI] = stgi_interception,
3386 [SVM_EXIT_CLGI] = clgi_interception,
3387 [SVM_EXIT_SKINIT] = skinit_interception,
3388 [SVM_EXIT_WBINVD] = wbinvd_interception,
3389 [SVM_EXIT_MONITOR] = monitor_interception,
3390 [SVM_EXIT_MWAIT] = mwait_interception,
3391 [SVM_EXIT_XSETBV] = xsetbv_interception,
3392 [SVM_EXIT_NPF] = pf_interception,
3395 static void dump_vmcb(struct kvm_vcpu *vcpu)
3397 struct vcpu_svm *svm = to_svm(vcpu);
3398 struct vmcb_control_area *control = &svm->vmcb->control;
3399 struct vmcb_save_area *save = &svm->vmcb->save;
3401 pr_err("VMCB Control Area:\n");
3402 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3403 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3404 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3405 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3406 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3407 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3408 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3409 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3410 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3411 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3412 pr_err("%-20s%d\n", "asid:", control->asid);
3413 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3414 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3415 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3416 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3417 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3418 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3419 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3420 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3421 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3422 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3423 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3424 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3425 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3426 pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3427 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3428 pr_err("VMCB State Save Area:\n");
3429 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3430 "es:",
3431 save->es.selector, save->es.attrib,
3432 save->es.limit, save->es.base);
3433 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3434 "cs:",
3435 save->cs.selector, save->cs.attrib,
3436 save->cs.limit, save->cs.base);
3437 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3438 "ss:",
3439 save->ss.selector, save->ss.attrib,
3440 save->ss.limit, save->ss.base);
3441 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3442 "ds:",
3443 save->ds.selector, save->ds.attrib,
3444 save->ds.limit, save->ds.base);
3445 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3446 "fs:",
3447 save->fs.selector, save->fs.attrib,
3448 save->fs.limit, save->fs.base);
3449 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3450 "gs:",
3451 save->gs.selector, save->gs.attrib,
3452 save->gs.limit, save->gs.base);
3453 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3454 "gdtr:",
3455 save->gdtr.selector, save->gdtr.attrib,
3456 save->gdtr.limit, save->gdtr.base);
3457 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3458 "ldtr:",
3459 save->ldtr.selector, save->ldtr.attrib,
3460 save->ldtr.limit, save->ldtr.base);
3461 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3462 "idtr:",
3463 save->idtr.selector, save->idtr.attrib,
3464 save->idtr.limit, save->idtr.base);
3465 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3466 "tr:",
3467 save->tr.selector, save->tr.attrib,
3468 save->tr.limit, save->tr.base);
3469 pr_err("cpl: %d efer: %016llx\n",
3470 save->cpl, save->efer);
3471 pr_err("%-15s %016llx %-13s %016llx\n",
3472 "cr0:", save->cr0, "cr2:", save->cr2);
3473 pr_err("%-15s %016llx %-13s %016llx\n",
3474 "cr3:", save->cr3, "cr4:", save->cr4);
3475 pr_err("%-15s %016llx %-13s %016llx\n",
3476 "dr6:", save->dr6, "dr7:", save->dr7);
3477 pr_err("%-15s %016llx %-13s %016llx\n",
3478 "rip:", save->rip, "rflags:", save->rflags);
3479 pr_err("%-15s %016llx %-13s %016llx\n",
3480 "rsp:", save->rsp, "rax:", save->rax);
3481 pr_err("%-15s %016llx %-13s %016llx\n",
3482 "star:", save->star, "lstar:", save->lstar);
3483 pr_err("%-15s %016llx %-13s %016llx\n",
3484 "cstar:", save->cstar, "sfmask:", save->sfmask);
3485 pr_err("%-15s %016llx %-13s %016llx\n",
3486 "kernel_gs_base:", save->kernel_gs_base,
3487 "sysenter_cs:", save->sysenter_cs);
3488 pr_err("%-15s %016llx %-13s %016llx\n",
3489 "sysenter_esp:", save->sysenter_esp,
3490 "sysenter_eip:", save->sysenter_eip);
3491 pr_err("%-15s %016llx %-13s %016llx\n",
3492 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3493 pr_err("%-15s %016llx %-13s %016llx\n",
3494 "br_from:", save->br_from, "br_to:", save->br_to);
3495 pr_err("%-15s %016llx %-13s %016llx\n",
3496 "excp_from:", save->last_excp_from,
3497 "excp_to:", save->last_excp_to);
3500 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3502 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3504 *info1 = control->exit_info_1;
3505 *info2 = control->exit_info_2;
3508 static int handle_exit(struct kvm_vcpu *vcpu)
3510 struct vcpu_svm *svm = to_svm(vcpu);
3511 struct kvm_run *kvm_run = vcpu->run;
3512 u32 exit_code = svm->vmcb->control.exit_code;
3514 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3515 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3516 if (npt_enabled)
3517 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3519 if (unlikely(svm->nested.exit_required)) {
3520 nested_svm_vmexit(svm);
3521 svm->nested.exit_required = false;
3523 return 1;
3526 if (is_guest_mode(vcpu)) {
3527 int vmexit;
3529 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3530 svm->vmcb->control.exit_info_1,
3531 svm->vmcb->control.exit_info_2,
3532 svm->vmcb->control.exit_int_info,
3533 svm->vmcb->control.exit_int_info_err,
3534 KVM_ISA_SVM);
3536 vmexit = nested_svm_exit_special(svm);
3538 if (vmexit == NESTED_EXIT_CONTINUE)
3539 vmexit = nested_svm_exit_handled(svm);
3541 if (vmexit == NESTED_EXIT_DONE)
3542 return 1;
3545 svm_complete_interrupts(svm);
3547 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3548 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3549 kvm_run->fail_entry.hardware_entry_failure_reason
3550 = svm->vmcb->control.exit_code;
3551 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3552 dump_vmcb(vcpu);
3553 return 0;
3556 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3557 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3558 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3559 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3560 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3561 "exit_code 0x%x\n",
3562 __func__, svm->vmcb->control.exit_int_info,
3563 exit_code);
3565 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3566 || !svm_exit_handlers[exit_code]) {
3567 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
3568 kvm_queue_exception(vcpu, UD_VECTOR);
3569 return 1;
3572 return svm_exit_handlers[exit_code](svm);
3575 static void reload_tss(struct kvm_vcpu *vcpu)
3577 int cpu = raw_smp_processor_id();
3579 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3580 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3581 load_TR_desc();
3584 static void pre_svm_run(struct vcpu_svm *svm)
3586 int cpu = raw_smp_processor_id();
3588 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3590 /* FIXME: handle wraparound of asid_generation */
3591 if (svm->asid_generation != sd->asid_generation)
3592 new_asid(svm, sd);
3595 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3597 struct vcpu_svm *svm = to_svm(vcpu);
3599 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3600 vcpu->arch.hflags |= HF_NMI_MASK;
3601 set_intercept(svm, INTERCEPT_IRET);
3602 ++vcpu->stat.nmi_injections;
3605 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3607 struct vmcb_control_area *control;
3609 control = &svm->vmcb->control;
3610 control->int_vector = irq;
3611 control->int_ctl &= ~V_INTR_PRIO_MASK;
3612 control->int_ctl |= V_IRQ_MASK |
3613 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3614 mark_dirty(svm->vmcb, VMCB_INTR);
3617 static void svm_set_irq(struct kvm_vcpu *vcpu)
3619 struct vcpu_svm *svm = to_svm(vcpu);
3621 BUG_ON(!(gif_set(svm)));
3623 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3624 ++vcpu->stat.irq_injections;
3626 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3627 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3630 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3632 struct vcpu_svm *svm = to_svm(vcpu);
3634 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3635 return;
3637 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3639 if (irr == -1)
3640 return;
3642 if (tpr >= irr)
3643 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3646 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3648 return;
3651 static int svm_vm_has_apicv(struct kvm *kvm)
3653 return 0;
3656 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3658 return;
3661 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3663 return;
3666 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3668 struct vcpu_svm *svm = to_svm(vcpu);
3669 struct vmcb *vmcb = svm->vmcb;
3670 int ret;
3671 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3672 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3673 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3675 return ret;
3678 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3680 struct vcpu_svm *svm = to_svm(vcpu);
3682 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3685 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3687 struct vcpu_svm *svm = to_svm(vcpu);
3689 if (masked) {
3690 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3691 set_intercept(svm, INTERCEPT_IRET);
3692 } else {
3693 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3694 clr_intercept(svm, INTERCEPT_IRET);
3698 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3700 struct vcpu_svm *svm = to_svm(vcpu);
3701 struct vmcb *vmcb = svm->vmcb;
3702 int ret;
3704 if (!gif_set(svm) ||
3705 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3706 return 0;
3708 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3710 if (is_guest_mode(vcpu))
3711 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3713 return ret;
3716 static void enable_irq_window(struct kvm_vcpu *vcpu)
3718 struct vcpu_svm *svm = to_svm(vcpu);
3721 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3722 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3723 * get that intercept, this function will be called again though and
3724 * we'll get the vintr intercept.
3726 if (gif_set(svm) && nested_svm_intr(svm)) {
3727 svm_set_vintr(svm);
3728 svm_inject_irq(svm, 0x0);
3732 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3734 struct vcpu_svm *svm = to_svm(vcpu);
3736 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3737 == HF_NMI_MASK)
3738 return; /* IRET will cause a vm exit */
3741 * Something prevents NMI from been injected. Single step over possible
3742 * problem (IRET or exception injection or interrupt shadow)
3744 svm->nmi_singlestep = true;
3745 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3746 update_db_bp_intercept(vcpu);
3749 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3751 return 0;
3754 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3756 struct vcpu_svm *svm = to_svm(vcpu);
3758 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3759 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3760 else
3761 svm->asid_generation--;
3764 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3768 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3770 struct vcpu_svm *svm = to_svm(vcpu);
3772 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3773 return;
3775 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3776 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3777 kvm_set_cr8(vcpu, cr8);
3781 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3783 struct vcpu_svm *svm = to_svm(vcpu);
3784 u64 cr8;
3786 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3787 return;
3789 cr8 = kvm_get_cr8(vcpu);
3790 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3791 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3794 static void svm_complete_interrupts(struct vcpu_svm *svm)
3796 u8 vector;
3797 int type;
3798 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3799 unsigned int3_injected = svm->int3_injected;
3801 svm->int3_injected = 0;
3804 * If we've made progress since setting HF_IRET_MASK, we've
3805 * executed an IRET and can allow NMI injection.
3807 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3808 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3809 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3810 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3813 svm->vcpu.arch.nmi_injected = false;
3814 kvm_clear_exception_queue(&svm->vcpu);
3815 kvm_clear_interrupt_queue(&svm->vcpu);
3817 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3818 return;
3820 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3822 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3823 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3825 switch (type) {
3826 case SVM_EXITINTINFO_TYPE_NMI:
3827 svm->vcpu.arch.nmi_injected = true;
3828 break;
3829 case SVM_EXITINTINFO_TYPE_EXEPT:
3831 * In case of software exceptions, do not reinject the vector,
3832 * but re-execute the instruction instead. Rewind RIP first
3833 * if we emulated INT3 before.
3835 if (kvm_exception_is_soft(vector)) {
3836 if (vector == BP_VECTOR && int3_injected &&
3837 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3838 kvm_rip_write(&svm->vcpu,
3839 kvm_rip_read(&svm->vcpu) -
3840 int3_injected);
3841 break;
3843 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3844 u32 err = svm->vmcb->control.exit_int_info_err;
3845 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3847 } else
3848 kvm_requeue_exception(&svm->vcpu, vector);
3849 break;
3850 case SVM_EXITINTINFO_TYPE_INTR:
3851 kvm_queue_interrupt(&svm->vcpu, vector, false);
3852 break;
3853 default:
3854 break;
3858 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3860 struct vcpu_svm *svm = to_svm(vcpu);
3861 struct vmcb_control_area *control = &svm->vmcb->control;
3863 control->exit_int_info = control->event_inj;
3864 control->exit_int_info_err = control->event_inj_err;
3865 control->event_inj = 0;
3866 svm_complete_interrupts(svm);
3869 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3871 struct vcpu_svm *svm = to_svm(vcpu);
3873 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3874 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3875 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3878 * A vmexit emulation is required before the vcpu can be executed
3879 * again.
3881 if (unlikely(svm->nested.exit_required))
3882 return;
3884 pre_svm_run(svm);
3886 sync_lapic_to_cr8(vcpu);
3888 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3890 clgi();
3892 local_irq_enable();
3894 asm volatile (
3895 "push %%" _ASM_BP "; \n\t"
3896 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3897 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3898 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3899 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3900 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3901 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3902 #ifdef CONFIG_X86_64
3903 "mov %c[r8](%[svm]), %%r8 \n\t"
3904 "mov %c[r9](%[svm]), %%r9 \n\t"
3905 "mov %c[r10](%[svm]), %%r10 \n\t"
3906 "mov %c[r11](%[svm]), %%r11 \n\t"
3907 "mov %c[r12](%[svm]), %%r12 \n\t"
3908 "mov %c[r13](%[svm]), %%r13 \n\t"
3909 "mov %c[r14](%[svm]), %%r14 \n\t"
3910 "mov %c[r15](%[svm]), %%r15 \n\t"
3911 #endif
3913 /* Enter guest mode */
3914 "push %%" _ASM_AX " \n\t"
3915 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3916 __ex(SVM_VMLOAD) "\n\t"
3917 __ex(SVM_VMRUN) "\n\t"
3918 __ex(SVM_VMSAVE) "\n\t"
3919 "pop %%" _ASM_AX " \n\t"
3921 /* Save guest registers, load host registers */
3922 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3923 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3924 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3925 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3926 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3927 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3928 #ifdef CONFIG_X86_64
3929 "mov %%r8, %c[r8](%[svm]) \n\t"
3930 "mov %%r9, %c[r9](%[svm]) \n\t"
3931 "mov %%r10, %c[r10](%[svm]) \n\t"
3932 "mov %%r11, %c[r11](%[svm]) \n\t"
3933 "mov %%r12, %c[r12](%[svm]) \n\t"
3934 "mov %%r13, %c[r13](%[svm]) \n\t"
3935 "mov %%r14, %c[r14](%[svm]) \n\t"
3936 "mov %%r15, %c[r15](%[svm]) \n\t"
3937 #endif
3938 "pop %%" _ASM_BP
3940 : [svm]"a"(svm),
3941 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3942 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3943 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3944 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3945 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3946 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3947 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3948 #ifdef CONFIG_X86_64
3949 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3950 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3951 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3952 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3953 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3954 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3955 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3956 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3957 #endif
3958 : "cc", "memory"
3959 #ifdef CONFIG_X86_64
3960 , "rbx", "rcx", "rdx", "rsi", "rdi"
3961 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3962 #else
3963 , "ebx", "ecx", "edx", "esi", "edi"
3964 #endif
3967 #ifdef CONFIG_X86_64
3968 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3969 #else
3970 loadsegment(fs, svm->host.fs);
3971 #ifndef CONFIG_X86_32_LAZY_GS
3972 loadsegment(gs, svm->host.gs);
3973 #endif
3974 #endif
3976 reload_tss(vcpu);
3978 local_irq_disable();
3980 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3981 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3982 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3983 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3985 trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3987 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3988 kvm_before_handle_nmi(&svm->vcpu);
3990 stgi();
3992 /* Any pending NMI will happen here */
3994 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3995 kvm_after_handle_nmi(&svm->vcpu);
3997 sync_cr8_to_lapic(vcpu);
3999 svm->next_rip = 0;
4001 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4003 /* if exit due to PF check for async PF */
4004 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4005 svm->apf_reason = kvm_read_and_reset_pf_reason();
4007 if (npt_enabled) {
4008 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4009 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4013 * We need to handle MC intercepts here before the vcpu has a chance to
4014 * change the physical cpu
4016 if (unlikely(svm->vmcb->control.exit_code ==
4017 SVM_EXIT_EXCP_BASE + MC_VECTOR))
4018 svm_handle_mce(svm);
4020 mark_all_clean(svm->vmcb);
4023 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4025 struct vcpu_svm *svm = to_svm(vcpu);
4027 svm->vmcb->save.cr3 = root;
4028 mark_dirty(svm->vmcb, VMCB_CR);
4029 svm_flush_tlb(vcpu);
4032 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4034 struct vcpu_svm *svm = to_svm(vcpu);
4036 svm->vmcb->control.nested_cr3 = root;
4037 mark_dirty(svm->vmcb, VMCB_NPT);
4039 /* Also sync guest cr3 here in case we live migrate */
4040 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4041 mark_dirty(svm->vmcb, VMCB_CR);
4043 svm_flush_tlb(vcpu);
4046 static int is_disabled(void)
4048 u64 vm_cr;
4050 rdmsrl(MSR_VM_CR, vm_cr);
4051 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4052 return 1;
4054 return 0;
4057 static void
4058 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4061 * Patch in the VMMCALL instruction:
4063 hypercall[0] = 0x0f;
4064 hypercall[1] = 0x01;
4065 hypercall[2] = 0xd9;
4068 static void svm_check_processor_compat(void *rtn)
4070 *(int *)rtn = 0;
4073 static bool svm_cpu_has_accelerated_tpr(void)
4075 return false;
4078 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4080 return 0;
4083 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4087 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4089 switch (func) {
4090 case 0x80000001:
4091 if (nested)
4092 entry->ecx |= (1 << 2); /* Set SVM bit */
4093 break;
4094 case 0x8000000A:
4095 entry->eax = 1; /* SVM revision 1 */
4096 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4097 ASID emulation to nested SVM */
4098 entry->ecx = 0; /* Reserved */
4099 entry->edx = 0; /* Per default do not support any
4100 additional features */
4102 /* Support next_rip if host supports it */
4103 if (boot_cpu_has(X86_FEATURE_NRIPS))
4104 entry->edx |= SVM_FEATURE_NRIP;
4106 /* Support NPT for the guest if enabled */
4107 if (npt_enabled)
4108 entry->edx |= SVM_FEATURE_NPT;
4110 break;
4114 static int svm_get_lpage_level(void)
4116 return PT_PDPE_LEVEL;
4119 static bool svm_rdtscp_supported(void)
4121 return false;
4124 static bool svm_invpcid_supported(void)
4126 return false;
4129 static bool svm_mpx_supported(void)
4131 return false;
4134 static bool svm_xsaves_supported(void)
4136 return false;
4139 static bool svm_has_wbinvd_exit(void)
4141 return true;
4144 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4146 struct vcpu_svm *svm = to_svm(vcpu);
4148 set_exception_intercept(svm, NM_VECTOR);
4149 update_cr0_intercept(svm);
4152 #define PRE_EX(exit) { .exit_code = (exit), \
4153 .stage = X86_ICPT_PRE_EXCEPT, }
4154 #define POST_EX(exit) { .exit_code = (exit), \
4155 .stage = X86_ICPT_POST_EXCEPT, }
4156 #define POST_MEM(exit) { .exit_code = (exit), \
4157 .stage = X86_ICPT_POST_MEMACCESS, }
4159 static const struct __x86_intercept {
4160 u32 exit_code;
4161 enum x86_intercept_stage stage;
4162 } x86_intercept_map[] = {
4163 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4164 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4165 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4166 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4167 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4168 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4169 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4170 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4171 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4172 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4173 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4174 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4175 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4176 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4177 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4178 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4179 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4180 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4181 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4182 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4183 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4184 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4185 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4186 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4187 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4188 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4189 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4190 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4191 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4192 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4193 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4194 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4195 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4196 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4197 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4198 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4199 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4200 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4201 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4202 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4203 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4204 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4205 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4206 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4207 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4208 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4211 #undef PRE_EX
4212 #undef POST_EX
4213 #undef POST_MEM
4215 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4216 struct x86_instruction_info *info,
4217 enum x86_intercept_stage stage)
4219 struct vcpu_svm *svm = to_svm(vcpu);
4220 int vmexit, ret = X86EMUL_CONTINUE;
4221 struct __x86_intercept icpt_info;
4222 struct vmcb *vmcb = svm->vmcb;
4224 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4225 goto out;
4227 icpt_info = x86_intercept_map[info->intercept];
4229 if (stage != icpt_info.stage)
4230 goto out;
4232 switch (icpt_info.exit_code) {
4233 case SVM_EXIT_READ_CR0:
4234 if (info->intercept == x86_intercept_cr_read)
4235 icpt_info.exit_code += info->modrm_reg;
4236 break;
4237 case SVM_EXIT_WRITE_CR0: {
4238 unsigned long cr0, val;
4239 u64 intercept;
4241 if (info->intercept == x86_intercept_cr_write)
4242 icpt_info.exit_code += info->modrm_reg;
4244 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4245 info->intercept == x86_intercept_clts)
4246 break;
4248 intercept = svm->nested.intercept;
4250 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4251 break;
4253 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4254 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4256 if (info->intercept == x86_intercept_lmsw) {
4257 cr0 &= 0xfUL;
4258 val &= 0xfUL;
4259 /* lmsw can't clear PE - catch this here */
4260 if (cr0 & X86_CR0_PE)
4261 val |= X86_CR0_PE;
4264 if (cr0 ^ val)
4265 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4267 break;
4269 case SVM_EXIT_READ_DR0:
4270 case SVM_EXIT_WRITE_DR0:
4271 icpt_info.exit_code += info->modrm_reg;
4272 break;
4273 case SVM_EXIT_MSR:
4274 if (info->intercept == x86_intercept_wrmsr)
4275 vmcb->control.exit_info_1 = 1;
4276 else
4277 vmcb->control.exit_info_1 = 0;
4278 break;
4279 case SVM_EXIT_PAUSE:
4281 * We get this for NOP only, but pause
4282 * is rep not, check this here
4284 if (info->rep_prefix != REPE_PREFIX)
4285 goto out;
4286 case SVM_EXIT_IOIO: {
4287 u64 exit_info;
4288 u32 bytes;
4290 if (info->intercept == x86_intercept_in ||
4291 info->intercept == x86_intercept_ins) {
4292 exit_info = ((info->src_val & 0xffff) << 16) |
4293 SVM_IOIO_TYPE_MASK;
4294 bytes = info->dst_bytes;
4295 } else {
4296 exit_info = (info->dst_val & 0xffff) << 16;
4297 bytes = info->src_bytes;
4300 if (info->intercept == x86_intercept_outs ||
4301 info->intercept == x86_intercept_ins)
4302 exit_info |= SVM_IOIO_STR_MASK;
4304 if (info->rep_prefix)
4305 exit_info |= SVM_IOIO_REP_MASK;
4307 bytes = min(bytes, 4u);
4309 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4311 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4313 vmcb->control.exit_info_1 = exit_info;
4314 vmcb->control.exit_info_2 = info->next_rip;
4316 break;
4318 default:
4319 break;
4322 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4323 if (static_cpu_has(X86_FEATURE_NRIPS))
4324 vmcb->control.next_rip = info->next_rip;
4325 vmcb->control.exit_code = icpt_info.exit_code;
4326 vmexit = nested_svm_exit_handled(svm);
4328 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4329 : X86EMUL_CONTINUE;
4331 out:
4332 return ret;
4335 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4337 local_irq_enable();
4340 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4344 static struct kvm_x86_ops svm_x86_ops = {
4345 .cpu_has_kvm_support = has_svm,
4346 .disabled_by_bios = is_disabled,
4347 .hardware_setup = svm_hardware_setup,
4348 .hardware_unsetup = svm_hardware_unsetup,
4349 .check_processor_compatibility = svm_check_processor_compat,
4350 .hardware_enable = svm_hardware_enable,
4351 .hardware_disable = svm_hardware_disable,
4352 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4354 .vcpu_create = svm_create_vcpu,
4355 .vcpu_free = svm_free_vcpu,
4356 .vcpu_reset = svm_vcpu_reset,
4358 .prepare_guest_switch = svm_prepare_guest_switch,
4359 .vcpu_load = svm_vcpu_load,
4360 .vcpu_put = svm_vcpu_put,
4362 .update_db_bp_intercept = update_db_bp_intercept,
4363 .get_msr = svm_get_msr,
4364 .set_msr = svm_set_msr,
4365 .get_segment_base = svm_get_segment_base,
4366 .get_segment = svm_get_segment,
4367 .set_segment = svm_set_segment,
4368 .get_cpl = svm_get_cpl,
4369 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4370 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4371 .decache_cr3 = svm_decache_cr3,
4372 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4373 .set_cr0 = svm_set_cr0,
4374 .set_cr3 = svm_set_cr3,
4375 .set_cr4 = svm_set_cr4,
4376 .set_efer = svm_set_efer,
4377 .get_idt = svm_get_idt,
4378 .set_idt = svm_set_idt,
4379 .get_gdt = svm_get_gdt,
4380 .set_gdt = svm_set_gdt,
4381 .get_dr6 = svm_get_dr6,
4382 .set_dr6 = svm_set_dr6,
4383 .set_dr7 = svm_set_dr7,
4384 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4385 .cache_reg = svm_cache_reg,
4386 .get_rflags = svm_get_rflags,
4387 .set_rflags = svm_set_rflags,
4388 .fpu_activate = svm_fpu_activate,
4389 .fpu_deactivate = svm_fpu_deactivate,
4391 .tlb_flush = svm_flush_tlb,
4393 .run = svm_vcpu_run,
4394 .handle_exit = handle_exit,
4395 .skip_emulated_instruction = skip_emulated_instruction,
4396 .set_interrupt_shadow = svm_set_interrupt_shadow,
4397 .get_interrupt_shadow = svm_get_interrupt_shadow,
4398 .patch_hypercall = svm_patch_hypercall,
4399 .set_irq = svm_set_irq,
4400 .set_nmi = svm_inject_nmi,
4401 .queue_exception = svm_queue_exception,
4402 .cancel_injection = svm_cancel_injection,
4403 .interrupt_allowed = svm_interrupt_allowed,
4404 .nmi_allowed = svm_nmi_allowed,
4405 .get_nmi_mask = svm_get_nmi_mask,
4406 .set_nmi_mask = svm_set_nmi_mask,
4407 .enable_nmi_window = enable_nmi_window,
4408 .enable_irq_window = enable_irq_window,
4409 .update_cr8_intercept = update_cr8_intercept,
4410 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4411 .vm_has_apicv = svm_vm_has_apicv,
4412 .load_eoi_exitmap = svm_load_eoi_exitmap,
4413 .sync_pir_to_irr = svm_sync_pir_to_irr,
4415 .set_tss_addr = svm_set_tss_addr,
4416 .get_tdp_level = get_npt_level,
4417 .get_mt_mask = svm_get_mt_mask,
4419 .get_exit_info = svm_get_exit_info,
4421 .get_lpage_level = svm_get_lpage_level,
4423 .cpuid_update = svm_cpuid_update,
4425 .rdtscp_supported = svm_rdtscp_supported,
4426 .invpcid_supported = svm_invpcid_supported,
4427 .mpx_supported = svm_mpx_supported,
4428 .xsaves_supported = svm_xsaves_supported,
4430 .set_supported_cpuid = svm_set_supported_cpuid,
4432 .has_wbinvd_exit = svm_has_wbinvd_exit,
4434 .set_tsc_khz = svm_set_tsc_khz,
4435 .read_tsc_offset = svm_read_tsc_offset,
4436 .write_tsc_offset = svm_write_tsc_offset,
4437 .adjust_tsc_offset = svm_adjust_tsc_offset,
4438 .compute_tsc_offset = svm_compute_tsc_offset,
4439 .read_l1_tsc = svm_read_l1_tsc,
4441 .set_tdp_cr3 = set_tdp_cr3,
4443 .check_intercept = svm_check_intercept,
4444 .handle_external_intr = svm_handle_external_intr,
4446 .sched_in = svm_sched_in,
4449 static int __init svm_init(void)
4451 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4452 __alignof__(struct vcpu_svm), THIS_MODULE);
4455 static void __exit svm_exit(void)
4457 kvm_exit();
4460 module_init(svm_init)
4461 module_exit(svm_exit)