2 * Kernel-based Virtual Machine driver for Linux
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
17 #include <linux/kvm_host.h>
21 #include "kvm_cache_regs.h"
25 #include <linux/module.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/kernel.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/sched.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
34 #include <asm/perf_event.h>
35 #include <asm/tlbflush.h>
37 #include <asm/debugreg.h>
38 #include <asm/kvm_para.h>
40 #include <asm/virtext.h>
43 #define __ex(x) __kvm_handle_fault_on_reboot(x)
45 MODULE_AUTHOR("Qumranet");
46 MODULE_LICENSE("GPL");
48 static const struct x86_cpu_id svm_cpu_id
[] = {
49 X86_FEATURE_MATCH(X86_FEATURE_SVM
),
52 MODULE_DEVICE_TABLE(x86cpu
, svm_cpu_id
);
54 #define IOPM_ALLOC_ORDER 2
55 #define MSRPM_ALLOC_ORDER 1
57 #define SEG_TYPE_LDT 2
58 #define SEG_TYPE_BUSY_TSS16 3
60 #define SVM_FEATURE_NPT (1 << 0)
61 #define SVM_FEATURE_LBRV (1 << 1)
62 #define SVM_FEATURE_SVML (1 << 2)
63 #define SVM_FEATURE_NRIP (1 << 3)
64 #define SVM_FEATURE_TSC_RATE (1 << 4)
65 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
66 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
67 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
68 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
70 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
71 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
72 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
74 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
76 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
77 #define TSC_RATIO_MIN 0x0000000000000001ULL
78 #define TSC_RATIO_MAX 0x000000ffffffffffULL
80 static bool erratum_383_found __read_mostly
;
82 static const u32 host_save_user_msrs
[] = {
84 MSR_STAR
, MSR_LSTAR
, MSR_CSTAR
, MSR_SYSCALL_MASK
, MSR_KERNEL_GS_BASE
,
87 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
90 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
100 /* These are the merged vectors */
103 /* gpa pointers to the real vectors */
107 /* A VMEXIT is required but not yet emulated */
110 /* cache for intercepts of the guest */
113 u32 intercept_exceptions
;
116 /* Nested Paging related state */
120 #define MSRPM_OFFSETS 16
121 static u32 msrpm_offsets
[MSRPM_OFFSETS
] __read_mostly
;
124 * Set osvw_len to higher value when updated Revision Guides
125 * are published and we know what the new status bits are
127 static uint64_t osvw_len
= 4, osvw_status
;
130 struct kvm_vcpu vcpu
;
132 unsigned long vmcb_pa
;
133 struct svm_cpu_data
*svm_data
;
134 uint64_t asid_generation
;
135 uint64_t sysenter_esp
;
136 uint64_t sysenter_eip
;
140 u64 host_user_msrs
[NR_HOST_SAVE_USER_MSRS
];
152 struct nested_state nested
;
156 unsigned int3_injected
;
157 unsigned long int3_rip
;
163 static DEFINE_PER_CPU(u64
, current_tsc_ratio
);
164 #define TSC_RATIO_DEFAULT 0x0100000000ULL
166 #define MSR_INVALID 0xffffffffU
168 static const struct svm_direct_access_msrs
{
169 u32 index
; /* Index of the MSR */
170 bool always
; /* True if intercept is always on */
171 } direct_access_msrs
[] = {
172 { .index
= MSR_STAR
, .always
= true },
173 { .index
= MSR_IA32_SYSENTER_CS
, .always
= true },
175 { .index
= MSR_GS_BASE
, .always
= true },
176 { .index
= MSR_FS_BASE
, .always
= true },
177 { .index
= MSR_KERNEL_GS_BASE
, .always
= true },
178 { .index
= MSR_LSTAR
, .always
= true },
179 { .index
= MSR_CSTAR
, .always
= true },
180 { .index
= MSR_SYSCALL_MASK
, .always
= true },
182 { .index
= MSR_IA32_LASTBRANCHFROMIP
, .always
= false },
183 { .index
= MSR_IA32_LASTBRANCHTOIP
, .always
= false },
184 { .index
= MSR_IA32_LASTINTFROMIP
, .always
= false },
185 { .index
= MSR_IA32_LASTINTTOIP
, .always
= false },
186 { .index
= MSR_INVALID
, .always
= false },
189 /* enable NPT for AMD64 and X86 with PAE */
190 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
191 static bool npt_enabled
= true;
193 static bool npt_enabled
;
196 /* allow nested paging (virtualized MMU) for all guests */
197 static int npt
= true;
198 module_param(npt
, int, S_IRUGO
);
200 /* allow nested virtualization in KVM/SVM */
201 static int nested
= true;
202 module_param(nested
, int, S_IRUGO
);
204 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
);
205 static void svm_complete_interrupts(struct vcpu_svm
*svm
);
207 static int nested_svm_exit_handled(struct vcpu_svm
*svm
);
208 static int nested_svm_intercept(struct vcpu_svm
*svm
);
209 static int nested_svm_vmexit(struct vcpu_svm
*svm
);
210 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
211 bool has_error_code
, u32 error_code
);
212 static u64
__scale_tsc(u64 ratio
, u64 tsc
);
215 VMCB_INTERCEPTS
, /* Intercept vectors, TSC offset,
216 pause filter count */
217 VMCB_PERM_MAP
, /* IOPM Base and MSRPM Base */
218 VMCB_ASID
, /* ASID */
219 VMCB_INTR
, /* int_ctl, int_vector */
220 VMCB_NPT
, /* npt_en, nCR3, gPAT */
221 VMCB_CR
, /* CR0, CR3, CR4, EFER */
222 VMCB_DR
, /* DR6, DR7 */
223 VMCB_DT
, /* GDT, IDT */
224 VMCB_SEG
, /* CS, DS, SS, ES, CPL */
225 VMCB_CR2
, /* CR2 only */
226 VMCB_LBR
, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
230 /* TPR and CR2 are always written before VMRUN */
231 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
233 static inline void mark_all_dirty(struct vmcb
*vmcb
)
235 vmcb
->control
.clean
= 0;
238 static inline void mark_all_clean(struct vmcb
*vmcb
)
240 vmcb
->control
.clean
= ((1 << VMCB_DIRTY_MAX
) - 1)
241 & ~VMCB_ALWAYS_DIRTY_MASK
;
244 static inline void mark_dirty(struct vmcb
*vmcb
, int bit
)
246 vmcb
->control
.clean
&= ~(1 << bit
);
249 static inline struct vcpu_svm
*to_svm(struct kvm_vcpu
*vcpu
)
251 return container_of(vcpu
, struct vcpu_svm
, vcpu
);
254 static void recalc_intercepts(struct vcpu_svm
*svm
)
256 struct vmcb_control_area
*c
, *h
;
257 struct nested_state
*g
;
259 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
261 if (!is_guest_mode(&svm
->vcpu
))
264 c
= &svm
->vmcb
->control
;
265 h
= &svm
->nested
.hsave
->control
;
268 c
->intercept_cr
= h
->intercept_cr
| g
->intercept_cr
;
269 c
->intercept_dr
= h
->intercept_dr
| g
->intercept_dr
;
270 c
->intercept_exceptions
= h
->intercept_exceptions
| g
->intercept_exceptions
;
271 c
->intercept
= h
->intercept
| g
->intercept
;
274 static inline struct vmcb
*get_host_vmcb(struct vcpu_svm
*svm
)
276 if (is_guest_mode(&svm
->vcpu
))
277 return svm
->nested
.hsave
;
282 static inline void set_cr_intercept(struct vcpu_svm
*svm
, int bit
)
284 struct vmcb
*vmcb
= get_host_vmcb(svm
);
286 vmcb
->control
.intercept_cr
|= (1U << bit
);
288 recalc_intercepts(svm
);
291 static inline void clr_cr_intercept(struct vcpu_svm
*svm
, int bit
)
293 struct vmcb
*vmcb
= get_host_vmcb(svm
);
295 vmcb
->control
.intercept_cr
&= ~(1U << bit
);
297 recalc_intercepts(svm
);
300 static inline bool is_cr_intercept(struct vcpu_svm
*svm
, int bit
)
302 struct vmcb
*vmcb
= get_host_vmcb(svm
);
304 return vmcb
->control
.intercept_cr
& (1U << bit
);
307 static inline void set_dr_intercepts(struct vcpu_svm
*svm
)
309 struct vmcb
*vmcb
= get_host_vmcb(svm
);
311 vmcb
->control
.intercept_dr
= (1 << INTERCEPT_DR0_READ
)
312 | (1 << INTERCEPT_DR1_READ
)
313 | (1 << INTERCEPT_DR2_READ
)
314 | (1 << INTERCEPT_DR3_READ
)
315 | (1 << INTERCEPT_DR4_READ
)
316 | (1 << INTERCEPT_DR5_READ
)
317 | (1 << INTERCEPT_DR6_READ
)
318 | (1 << INTERCEPT_DR7_READ
)
319 | (1 << INTERCEPT_DR0_WRITE
)
320 | (1 << INTERCEPT_DR1_WRITE
)
321 | (1 << INTERCEPT_DR2_WRITE
)
322 | (1 << INTERCEPT_DR3_WRITE
)
323 | (1 << INTERCEPT_DR4_WRITE
)
324 | (1 << INTERCEPT_DR5_WRITE
)
325 | (1 << INTERCEPT_DR6_WRITE
)
326 | (1 << INTERCEPT_DR7_WRITE
);
328 recalc_intercepts(svm
);
331 static inline void clr_dr_intercepts(struct vcpu_svm
*svm
)
333 struct vmcb
*vmcb
= get_host_vmcb(svm
);
335 vmcb
->control
.intercept_dr
= 0;
337 recalc_intercepts(svm
);
340 static inline void set_exception_intercept(struct vcpu_svm
*svm
, int bit
)
342 struct vmcb
*vmcb
= get_host_vmcb(svm
);
344 vmcb
->control
.intercept_exceptions
|= (1U << bit
);
346 recalc_intercepts(svm
);
349 static inline void clr_exception_intercept(struct vcpu_svm
*svm
, int bit
)
351 struct vmcb
*vmcb
= get_host_vmcb(svm
);
353 vmcb
->control
.intercept_exceptions
&= ~(1U << bit
);
355 recalc_intercepts(svm
);
358 static inline void set_intercept(struct vcpu_svm
*svm
, int bit
)
360 struct vmcb
*vmcb
= get_host_vmcb(svm
);
362 vmcb
->control
.intercept
|= (1ULL << bit
);
364 recalc_intercepts(svm
);
367 static inline void clr_intercept(struct vcpu_svm
*svm
, int bit
)
369 struct vmcb
*vmcb
= get_host_vmcb(svm
);
371 vmcb
->control
.intercept
&= ~(1ULL << bit
);
373 recalc_intercepts(svm
);
376 static inline void enable_gif(struct vcpu_svm
*svm
)
378 svm
->vcpu
.arch
.hflags
|= HF_GIF_MASK
;
381 static inline void disable_gif(struct vcpu_svm
*svm
)
383 svm
->vcpu
.arch
.hflags
&= ~HF_GIF_MASK
;
386 static inline bool gif_set(struct vcpu_svm
*svm
)
388 return !!(svm
->vcpu
.arch
.hflags
& HF_GIF_MASK
);
391 static unsigned long iopm_base
;
393 struct kvm_ldttss_desc
{
396 unsigned base1
:8, type
:5, dpl
:2, p
:1;
397 unsigned limit1
:4, zero0
:3, g
:1, base2
:8;
400 } __attribute__((packed
));
402 struct svm_cpu_data
{
408 struct kvm_ldttss_desc
*tss_desc
;
410 struct page
*save_area
;
413 static DEFINE_PER_CPU(struct svm_cpu_data
*, svm_data
);
415 struct svm_init_data
{
420 static const u32 msrpm_ranges
[] = {0, 0xc0000000, 0xc0010000};
422 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
423 #define MSRS_RANGE_SIZE 2048
424 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
426 static u32
svm_msrpm_offset(u32 msr
)
431 for (i
= 0; i
< NUM_MSR_MAPS
; i
++) {
432 if (msr
< msrpm_ranges
[i
] ||
433 msr
>= msrpm_ranges
[i
] + MSRS_IN_RANGE
)
436 offset
= (msr
- msrpm_ranges
[i
]) / 4; /* 4 msrs per u8 */
437 offset
+= (i
* MSRS_RANGE_SIZE
); /* add range offset */
439 /* Now we have the u8 offset - but need the u32 offset */
443 /* MSR not in any range */
447 #define MAX_INST_SIZE 15
449 static inline void clgi(void)
451 asm volatile (__ex(SVM_CLGI
));
454 static inline void stgi(void)
456 asm volatile (__ex(SVM_STGI
));
459 static inline void invlpga(unsigned long addr
, u32 asid
)
461 asm volatile (__ex(SVM_INVLPGA
) : : "a"(addr
), "c"(asid
));
464 static int get_npt_level(void)
467 return PT64_ROOT_LEVEL
;
469 return PT32E_ROOT_LEVEL
;
473 static void svm_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
475 vcpu
->arch
.efer
= efer
;
476 if (!npt_enabled
&& !(efer
& EFER_LMA
))
479 to_svm(vcpu
)->vmcb
->save
.efer
= efer
| EFER_SVME
;
480 mark_dirty(to_svm(vcpu
)->vmcb
, VMCB_CR
);
483 static int is_external_interrupt(u32 info
)
485 info
&= SVM_EVTINJ_TYPE_MASK
| SVM_EVTINJ_VALID
;
486 return info
== (SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
);
489 static u32
svm_get_interrupt_shadow(struct kvm_vcpu
*vcpu
)
491 struct vcpu_svm
*svm
= to_svm(vcpu
);
494 if (svm
->vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
)
495 ret
= KVM_X86_SHADOW_INT_STI
| KVM_X86_SHADOW_INT_MOV_SS
;
499 static void svm_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
501 struct vcpu_svm
*svm
= to_svm(vcpu
);
504 svm
->vmcb
->control
.int_state
&= ~SVM_INTERRUPT_SHADOW_MASK
;
506 svm
->vmcb
->control
.int_state
|= SVM_INTERRUPT_SHADOW_MASK
;
510 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
512 struct vcpu_svm
*svm
= to_svm(vcpu
);
514 if (svm
->vmcb
->control
.next_rip
!= 0) {
515 WARN_ON(!static_cpu_has(X86_FEATURE_NRIPS
));
516 svm
->next_rip
= svm
->vmcb
->control
.next_rip
;
519 if (!svm
->next_rip
) {
520 if (emulate_instruction(vcpu
, EMULTYPE_SKIP
) !=
522 printk(KERN_DEBUG
"%s: NOP\n", __func__
);
525 if (svm
->next_rip
- kvm_rip_read(vcpu
) > MAX_INST_SIZE
)
526 printk(KERN_ERR
"%s: ip 0x%lx next 0x%llx\n",
527 __func__
, kvm_rip_read(vcpu
), svm
->next_rip
);
529 kvm_rip_write(vcpu
, svm
->next_rip
);
530 svm_set_interrupt_shadow(vcpu
, 0);
533 static void svm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
534 bool has_error_code
, u32 error_code
,
537 struct vcpu_svm
*svm
= to_svm(vcpu
);
540 * If we are within a nested VM we'd better #VMEXIT and let the guest
541 * handle the exception
544 nested_svm_check_exception(svm
, nr
, has_error_code
, error_code
))
547 if (nr
== BP_VECTOR
&& !static_cpu_has(X86_FEATURE_NRIPS
)) {
548 unsigned long rip
, old_rip
= kvm_rip_read(&svm
->vcpu
);
551 * For guest debugging where we have to reinject #BP if some
552 * INT3 is guest-owned:
553 * Emulate nRIP by moving RIP forward. Will fail if injection
554 * raises a fault that is not intercepted. Still better than
555 * failing in all cases.
557 skip_emulated_instruction(&svm
->vcpu
);
558 rip
= kvm_rip_read(&svm
->vcpu
);
559 svm
->int3_rip
= rip
+ svm
->vmcb
->save
.cs
.base
;
560 svm
->int3_injected
= rip
- old_rip
;
563 svm
->vmcb
->control
.event_inj
= nr
565 | (has_error_code
? SVM_EVTINJ_VALID_ERR
: 0)
566 | SVM_EVTINJ_TYPE_EXEPT
;
567 svm
->vmcb
->control
.event_inj_err
= error_code
;
570 static void svm_init_erratum_383(void)
576 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH
))
579 /* Use _safe variants to not break nested virtualization */
580 val
= native_read_msr_safe(MSR_AMD64_DC_CFG
, &err
);
586 low
= lower_32_bits(val
);
587 high
= upper_32_bits(val
);
589 native_write_msr_safe(MSR_AMD64_DC_CFG
, low
, high
);
591 erratum_383_found
= true;
594 static void svm_init_osvw(struct kvm_vcpu
*vcpu
)
597 * Guests should see errata 400 and 415 as fixed (assuming that
598 * HLT and IO instructions are intercepted).
600 vcpu
->arch
.osvw
.length
= (osvw_len
>= 3) ? (osvw_len
) : 3;
601 vcpu
->arch
.osvw
.status
= osvw_status
& ~(6ULL);
604 * By increasing VCPU's osvw.length to 3 we are telling the guest that
605 * all osvw.status bits inside that length, including bit 0 (which is
606 * reserved for erratum 298), are valid. However, if host processor's
607 * osvw_len is 0 then osvw_status[0] carries no information. We need to
608 * be conservative here and therefore we tell the guest that erratum 298
609 * is present (because we really don't know).
611 if (osvw_len
== 0 && boot_cpu_data
.x86
== 0x10)
612 vcpu
->arch
.osvw
.status
|= 1;
615 static int has_svm(void)
619 if (!cpu_has_svm(&msg
)) {
620 printk(KERN_INFO
"has_svm: %s\n", msg
);
627 static void svm_hardware_disable(void)
629 /* Make sure we clean up behind us */
630 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
))
631 wrmsrl(MSR_AMD64_TSC_RATIO
, TSC_RATIO_DEFAULT
);
635 amd_pmu_disable_virt();
638 static int svm_hardware_enable(void)
641 struct svm_cpu_data
*sd
;
643 struct desc_ptr gdt_descr
;
644 struct desc_struct
*gdt
;
645 int me
= raw_smp_processor_id();
647 rdmsrl(MSR_EFER
, efer
);
648 if (efer
& EFER_SVME
)
652 pr_err("%s: err EOPNOTSUPP on %d\n", __func__
, me
);
655 sd
= per_cpu(svm_data
, me
);
657 pr_err("%s: svm_data is NULL on %d\n", __func__
, me
);
661 sd
->asid_generation
= 1;
662 sd
->max_asid
= cpuid_ebx(SVM_CPUID_FUNC
) - 1;
663 sd
->next_asid
= sd
->max_asid
+ 1;
665 native_store_gdt(&gdt_descr
);
666 gdt
= (struct desc_struct
*)gdt_descr
.address
;
667 sd
->tss_desc
= (struct kvm_ldttss_desc
*)(gdt
+ GDT_ENTRY_TSS
);
669 wrmsrl(MSR_EFER
, efer
| EFER_SVME
);
671 wrmsrl(MSR_VM_HSAVE_PA
, page_to_pfn(sd
->save_area
) << PAGE_SHIFT
);
673 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
674 wrmsrl(MSR_AMD64_TSC_RATIO
, TSC_RATIO_DEFAULT
);
675 __this_cpu_write(current_tsc_ratio
, TSC_RATIO_DEFAULT
);
682 * Note that it is possible to have a system with mixed processor
683 * revisions and therefore different OSVW bits. If bits are not the same
684 * on different processors then choose the worst case (i.e. if erratum
685 * is present on one processor and not on another then assume that the
686 * erratum is present everywhere).
688 if (cpu_has(&boot_cpu_data
, X86_FEATURE_OSVW
)) {
689 uint64_t len
, status
= 0;
692 len
= native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH
, &err
);
694 status
= native_read_msr_safe(MSR_AMD64_OSVW_STATUS
,
698 osvw_status
= osvw_len
= 0;
702 osvw_status
|= status
;
703 osvw_status
&= (1ULL << osvw_len
) - 1;
706 osvw_status
= osvw_len
= 0;
708 svm_init_erratum_383();
710 amd_pmu_enable_virt();
715 static void svm_cpu_uninit(int cpu
)
717 struct svm_cpu_data
*sd
= per_cpu(svm_data
, raw_smp_processor_id());
722 per_cpu(svm_data
, raw_smp_processor_id()) = NULL
;
723 __free_page(sd
->save_area
);
727 static int svm_cpu_init(int cpu
)
729 struct svm_cpu_data
*sd
;
732 sd
= kzalloc(sizeof(struct svm_cpu_data
), GFP_KERNEL
);
736 sd
->save_area
= alloc_page(GFP_KERNEL
);
741 per_cpu(svm_data
, cpu
) = sd
;
751 static bool valid_msr_intercept(u32 index
)
755 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++)
756 if (direct_access_msrs
[i
].index
== index
)
762 static void set_msr_interception(u32
*msrpm
, unsigned msr
,
765 u8 bit_read
, bit_write
;
770 * If this warning triggers extend the direct_access_msrs list at the
771 * beginning of the file
773 WARN_ON(!valid_msr_intercept(msr
));
775 offset
= svm_msrpm_offset(msr
);
776 bit_read
= 2 * (msr
& 0x0f);
777 bit_write
= 2 * (msr
& 0x0f) + 1;
780 BUG_ON(offset
== MSR_INVALID
);
782 read
? clear_bit(bit_read
, &tmp
) : set_bit(bit_read
, &tmp
);
783 write
? clear_bit(bit_write
, &tmp
) : set_bit(bit_write
, &tmp
);
788 static void svm_vcpu_init_msrpm(u32
*msrpm
)
792 memset(msrpm
, 0xff, PAGE_SIZE
* (1 << MSRPM_ALLOC_ORDER
));
794 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++) {
795 if (!direct_access_msrs
[i
].always
)
798 set_msr_interception(msrpm
, direct_access_msrs
[i
].index
, 1, 1);
802 static void add_msr_offset(u32 offset
)
806 for (i
= 0; i
< MSRPM_OFFSETS
; ++i
) {
808 /* Offset already in list? */
809 if (msrpm_offsets
[i
] == offset
)
812 /* Slot used by another offset? */
813 if (msrpm_offsets
[i
] != MSR_INVALID
)
816 /* Add offset to list */
817 msrpm_offsets
[i
] = offset
;
823 * If this BUG triggers the msrpm_offsets table has an overflow. Just
824 * increase MSRPM_OFFSETS in this case.
829 static void init_msrpm_offsets(void)
833 memset(msrpm_offsets
, 0xff, sizeof(msrpm_offsets
));
835 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++) {
838 offset
= svm_msrpm_offset(direct_access_msrs
[i
].index
);
839 BUG_ON(offset
== MSR_INVALID
);
841 add_msr_offset(offset
);
845 static void svm_enable_lbrv(struct vcpu_svm
*svm
)
847 u32
*msrpm
= svm
->msrpm
;
849 svm
->vmcb
->control
.lbr_ctl
= 1;
850 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 1, 1);
851 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 1, 1);
852 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 1, 1);
853 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 1, 1);
856 static void svm_disable_lbrv(struct vcpu_svm
*svm
)
858 u32
*msrpm
= svm
->msrpm
;
860 svm
->vmcb
->control
.lbr_ctl
= 0;
861 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 0, 0);
862 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 0, 0);
863 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 0, 0);
864 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 0, 0);
867 static __init
int svm_hardware_setup(void)
870 struct page
*iopm_pages
;
874 iopm_pages
= alloc_pages(GFP_KERNEL
, IOPM_ALLOC_ORDER
);
879 iopm_va
= page_address(iopm_pages
);
880 memset(iopm_va
, 0xff, PAGE_SIZE
* (1 << IOPM_ALLOC_ORDER
));
881 iopm_base
= page_to_pfn(iopm_pages
) << PAGE_SHIFT
;
883 init_msrpm_offsets();
885 if (boot_cpu_has(X86_FEATURE_NX
))
886 kvm_enable_efer_bits(EFER_NX
);
888 if (boot_cpu_has(X86_FEATURE_FXSR_OPT
))
889 kvm_enable_efer_bits(EFER_FFXSR
);
891 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
894 kvm_has_tsc_control
= true;
897 * Make sure the user can only configure tsc_khz values that
898 * fit into a signed integer.
899 * A min value is not calculated needed because it will always
900 * be 1 on all machines and a value of 0 is used to disable
901 * tsc-scaling for the vcpu.
903 max
= min(0x7fffffffULL
, __scale_tsc(tsc_khz
, TSC_RATIO_MAX
));
905 kvm_max_guest_tsc_khz
= max
;
909 printk(KERN_INFO
"kvm: Nested Virtualization enabled\n");
910 kvm_enable_efer_bits(EFER_SVME
| EFER_LMSLE
);
913 for_each_possible_cpu(cpu
) {
914 r
= svm_cpu_init(cpu
);
919 if (!boot_cpu_has(X86_FEATURE_NPT
))
922 if (npt_enabled
&& !npt
) {
923 printk(KERN_INFO
"kvm: Nested Paging disabled\n");
928 printk(KERN_INFO
"kvm: Nested Paging enabled\n");
936 __free_pages(iopm_pages
, IOPM_ALLOC_ORDER
);
941 static __exit
void svm_hardware_unsetup(void)
945 for_each_possible_cpu(cpu
)
948 __free_pages(pfn_to_page(iopm_base
>> PAGE_SHIFT
), IOPM_ALLOC_ORDER
);
952 static void init_seg(struct vmcb_seg
*seg
)
955 seg
->attrib
= SVM_SELECTOR_P_MASK
| SVM_SELECTOR_S_MASK
|
956 SVM_SELECTOR_WRITE_MASK
; /* Read/Write Data Segment */
961 static void init_sys_seg(struct vmcb_seg
*seg
, uint32_t type
)
964 seg
->attrib
= SVM_SELECTOR_P_MASK
| type
;
969 static u64
__scale_tsc(u64 ratio
, u64 tsc
)
971 u64 mult
, frac
, _tsc
;
974 frac
= ratio
& ((1ULL << 32) - 1);
978 _tsc
+= (tsc
>> 32) * frac
;
979 _tsc
+= ((tsc
& ((1ULL << 32) - 1)) * frac
) >> 32;
984 static u64
svm_scale_tsc(struct kvm_vcpu
*vcpu
, u64 tsc
)
986 struct vcpu_svm
*svm
= to_svm(vcpu
);
989 if (svm
->tsc_ratio
!= TSC_RATIO_DEFAULT
)
990 _tsc
= __scale_tsc(svm
->tsc_ratio
, tsc
);
995 static void svm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
, bool scale
)
997 struct vcpu_svm
*svm
= to_svm(vcpu
);
1001 /* Guest TSC same frequency as host TSC? */
1003 svm
->tsc_ratio
= TSC_RATIO_DEFAULT
;
1007 /* TSC scaling supported? */
1008 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
1009 if (user_tsc_khz
> tsc_khz
) {
1010 vcpu
->arch
.tsc_catchup
= 1;
1011 vcpu
->arch
.tsc_always_catchup
= 1;
1013 WARN(1, "user requested TSC rate below hardware speed\n");
1019 /* TSC scaling required - calculate ratio */
1021 do_div(ratio
, tsc_khz
);
1023 if (ratio
== 0 || ratio
& TSC_RATIO_RSVD
) {
1024 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1028 svm
->tsc_ratio
= ratio
;
1031 static u64
svm_read_tsc_offset(struct kvm_vcpu
*vcpu
)
1033 struct vcpu_svm
*svm
= to_svm(vcpu
);
1035 return svm
->vmcb
->control
.tsc_offset
;
1038 static void svm_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
1040 struct vcpu_svm
*svm
= to_svm(vcpu
);
1041 u64 g_tsc_offset
= 0;
1043 if (is_guest_mode(vcpu
)) {
1044 g_tsc_offset
= svm
->vmcb
->control
.tsc_offset
-
1045 svm
->nested
.hsave
->control
.tsc_offset
;
1046 svm
->nested
.hsave
->control
.tsc_offset
= offset
;
1048 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
,
1049 svm
->vmcb
->control
.tsc_offset
,
1052 svm
->vmcb
->control
.tsc_offset
= offset
+ g_tsc_offset
;
1054 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
1057 static void svm_adjust_tsc_offset(struct kvm_vcpu
*vcpu
, s64 adjustment
, bool host
)
1059 struct vcpu_svm
*svm
= to_svm(vcpu
);
1062 if (svm
->tsc_ratio
!= TSC_RATIO_DEFAULT
)
1063 WARN_ON(adjustment
< 0);
1064 adjustment
= svm_scale_tsc(vcpu
, (u64
)adjustment
);
1067 svm
->vmcb
->control
.tsc_offset
+= adjustment
;
1068 if (is_guest_mode(vcpu
))
1069 svm
->nested
.hsave
->control
.tsc_offset
+= adjustment
;
1071 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
,
1072 svm
->vmcb
->control
.tsc_offset
- adjustment
,
1073 svm
->vmcb
->control
.tsc_offset
);
1075 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
1078 static u64
svm_compute_tsc_offset(struct kvm_vcpu
*vcpu
, u64 target_tsc
)
1082 tsc
= svm_scale_tsc(vcpu
, native_read_tsc());
1084 return target_tsc
- tsc
;
1087 static void init_vmcb(struct vcpu_svm
*svm
)
1089 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
1090 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
1092 svm
->vcpu
.fpu_active
= 1;
1093 svm
->vcpu
.arch
.hflags
= 0;
1095 set_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1096 set_cr_intercept(svm
, INTERCEPT_CR3_READ
);
1097 set_cr_intercept(svm
, INTERCEPT_CR4_READ
);
1098 set_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1099 set_cr_intercept(svm
, INTERCEPT_CR3_WRITE
);
1100 set_cr_intercept(svm
, INTERCEPT_CR4_WRITE
);
1101 set_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
1103 set_dr_intercepts(svm
);
1105 set_exception_intercept(svm
, PF_VECTOR
);
1106 set_exception_intercept(svm
, UD_VECTOR
);
1107 set_exception_intercept(svm
, MC_VECTOR
);
1109 set_intercept(svm
, INTERCEPT_INTR
);
1110 set_intercept(svm
, INTERCEPT_NMI
);
1111 set_intercept(svm
, INTERCEPT_SMI
);
1112 set_intercept(svm
, INTERCEPT_SELECTIVE_CR0
);
1113 set_intercept(svm
, INTERCEPT_RDPMC
);
1114 set_intercept(svm
, INTERCEPT_CPUID
);
1115 set_intercept(svm
, INTERCEPT_INVD
);
1116 set_intercept(svm
, INTERCEPT_HLT
);
1117 set_intercept(svm
, INTERCEPT_INVLPG
);
1118 set_intercept(svm
, INTERCEPT_INVLPGA
);
1119 set_intercept(svm
, INTERCEPT_IOIO_PROT
);
1120 set_intercept(svm
, INTERCEPT_MSR_PROT
);
1121 set_intercept(svm
, INTERCEPT_TASK_SWITCH
);
1122 set_intercept(svm
, INTERCEPT_SHUTDOWN
);
1123 set_intercept(svm
, INTERCEPT_VMRUN
);
1124 set_intercept(svm
, INTERCEPT_VMMCALL
);
1125 set_intercept(svm
, INTERCEPT_VMLOAD
);
1126 set_intercept(svm
, INTERCEPT_VMSAVE
);
1127 set_intercept(svm
, INTERCEPT_STGI
);
1128 set_intercept(svm
, INTERCEPT_CLGI
);
1129 set_intercept(svm
, INTERCEPT_SKINIT
);
1130 set_intercept(svm
, INTERCEPT_WBINVD
);
1131 set_intercept(svm
, INTERCEPT_MONITOR
);
1132 set_intercept(svm
, INTERCEPT_MWAIT
);
1133 set_intercept(svm
, INTERCEPT_XSETBV
);
1135 control
->iopm_base_pa
= iopm_base
;
1136 control
->msrpm_base_pa
= __pa(svm
->msrpm
);
1137 control
->int_ctl
= V_INTR_MASKING_MASK
;
1139 init_seg(&save
->es
);
1140 init_seg(&save
->ss
);
1141 init_seg(&save
->ds
);
1142 init_seg(&save
->fs
);
1143 init_seg(&save
->gs
);
1145 save
->cs
.selector
= 0xf000;
1146 save
->cs
.base
= 0xffff0000;
1147 /* Executable/Readable Code Segment */
1148 save
->cs
.attrib
= SVM_SELECTOR_READ_MASK
| SVM_SELECTOR_P_MASK
|
1149 SVM_SELECTOR_S_MASK
| SVM_SELECTOR_CODE_MASK
;
1150 save
->cs
.limit
= 0xffff;
1152 save
->gdtr
.limit
= 0xffff;
1153 save
->idtr
.limit
= 0xffff;
1155 init_sys_seg(&save
->ldtr
, SEG_TYPE_LDT
);
1156 init_sys_seg(&save
->tr
, SEG_TYPE_BUSY_TSS16
);
1158 svm_set_efer(&svm
->vcpu
, 0);
1159 save
->dr6
= 0xffff0ff0;
1160 kvm_set_rflags(&svm
->vcpu
, 2);
1161 save
->rip
= 0x0000fff0;
1162 svm
->vcpu
.arch
.regs
[VCPU_REGS_RIP
] = save
->rip
;
1165 * This is the guest-visible cr0 value.
1166 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1168 svm
->vcpu
.arch
.cr0
= 0;
1169 (void)kvm_set_cr0(&svm
->vcpu
, X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
);
1171 save
->cr4
= X86_CR4_PAE
;
1175 /* Setup VMCB for Nested Paging */
1176 control
->nested_ctl
= 1;
1177 clr_intercept(svm
, INTERCEPT_INVLPG
);
1178 clr_exception_intercept(svm
, PF_VECTOR
);
1179 clr_cr_intercept(svm
, INTERCEPT_CR3_READ
);
1180 clr_cr_intercept(svm
, INTERCEPT_CR3_WRITE
);
1181 save
->g_pat
= 0x0007040600070406ULL
;
1185 svm
->asid_generation
= 0;
1187 svm
->nested
.vmcb
= 0;
1188 svm
->vcpu
.arch
.hflags
= 0;
1190 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER
)) {
1191 control
->pause_filter_count
= 3000;
1192 set_intercept(svm
, INTERCEPT_PAUSE
);
1195 mark_all_dirty(svm
->vmcb
);
1200 static void svm_vcpu_reset(struct kvm_vcpu
*vcpu
)
1202 struct vcpu_svm
*svm
= to_svm(vcpu
);
1208 kvm_cpuid(vcpu
, &eax
, &dummy
, &dummy
, &dummy
);
1209 kvm_register_write(vcpu
, VCPU_REGS_RDX
, eax
);
1212 static struct kvm_vcpu
*svm_create_vcpu(struct kvm
*kvm
, unsigned int id
)
1214 struct vcpu_svm
*svm
;
1216 struct page
*msrpm_pages
;
1217 struct page
*hsave_page
;
1218 struct page
*nested_msrpm_pages
;
1221 svm
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
1227 svm
->tsc_ratio
= TSC_RATIO_DEFAULT
;
1229 err
= kvm_vcpu_init(&svm
->vcpu
, kvm
, id
);
1234 page
= alloc_page(GFP_KERNEL
);
1238 msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
1242 nested_msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
1243 if (!nested_msrpm_pages
)
1246 hsave_page
= alloc_page(GFP_KERNEL
);
1250 svm
->nested
.hsave
= page_address(hsave_page
);
1252 svm
->msrpm
= page_address(msrpm_pages
);
1253 svm_vcpu_init_msrpm(svm
->msrpm
);
1255 svm
->nested
.msrpm
= page_address(nested_msrpm_pages
);
1256 svm_vcpu_init_msrpm(svm
->nested
.msrpm
);
1258 svm
->vmcb
= page_address(page
);
1259 clear_page(svm
->vmcb
);
1260 svm
->vmcb_pa
= page_to_pfn(page
) << PAGE_SHIFT
;
1261 svm
->asid_generation
= 0;
1264 svm
->vcpu
.arch
.apic_base
= APIC_DEFAULT_PHYS_BASE
|
1265 MSR_IA32_APICBASE_ENABLE
;
1266 if (kvm_vcpu_is_reset_bsp(&svm
->vcpu
))
1267 svm
->vcpu
.arch
.apic_base
|= MSR_IA32_APICBASE_BSP
;
1269 svm_init_osvw(&svm
->vcpu
);
1274 __free_pages(nested_msrpm_pages
, MSRPM_ALLOC_ORDER
);
1276 __free_pages(msrpm_pages
, MSRPM_ALLOC_ORDER
);
1280 kvm_vcpu_uninit(&svm
->vcpu
);
1282 kmem_cache_free(kvm_vcpu_cache
, svm
);
1284 return ERR_PTR(err
);
1287 static void svm_free_vcpu(struct kvm_vcpu
*vcpu
)
1289 struct vcpu_svm
*svm
= to_svm(vcpu
);
1291 __free_page(pfn_to_page(svm
->vmcb_pa
>> PAGE_SHIFT
));
1292 __free_pages(virt_to_page(svm
->msrpm
), MSRPM_ALLOC_ORDER
);
1293 __free_page(virt_to_page(svm
->nested
.hsave
));
1294 __free_pages(virt_to_page(svm
->nested
.msrpm
), MSRPM_ALLOC_ORDER
);
1295 kvm_vcpu_uninit(vcpu
);
1296 kmem_cache_free(kvm_vcpu_cache
, svm
);
1299 static void svm_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1301 struct vcpu_svm
*svm
= to_svm(vcpu
);
1304 if (unlikely(cpu
!= vcpu
->cpu
)) {
1305 svm
->asid_generation
= 0;
1306 mark_all_dirty(svm
->vmcb
);
1309 #ifdef CONFIG_X86_64
1310 rdmsrl(MSR_GS_BASE
, to_svm(vcpu
)->host
.gs_base
);
1312 savesegment(fs
, svm
->host
.fs
);
1313 savesegment(gs
, svm
->host
.gs
);
1314 svm
->host
.ldt
= kvm_read_ldt();
1316 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
1317 rdmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
1319 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
) &&
1320 svm
->tsc_ratio
!= __this_cpu_read(current_tsc_ratio
)) {
1321 __this_cpu_write(current_tsc_ratio
, svm
->tsc_ratio
);
1322 wrmsrl(MSR_AMD64_TSC_RATIO
, svm
->tsc_ratio
);
1326 static void svm_vcpu_put(struct kvm_vcpu
*vcpu
)
1328 struct vcpu_svm
*svm
= to_svm(vcpu
);
1331 ++vcpu
->stat
.host_state_reload
;
1332 kvm_load_ldt(svm
->host
.ldt
);
1333 #ifdef CONFIG_X86_64
1334 loadsegment(fs
, svm
->host
.fs
);
1335 wrmsrl(MSR_KERNEL_GS_BASE
, current
->thread
.gs
);
1336 load_gs_index(svm
->host
.gs
);
1338 #ifdef CONFIG_X86_32_LAZY_GS
1339 loadsegment(gs
, svm
->host
.gs
);
1342 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
1343 wrmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
1346 static unsigned long svm_get_rflags(struct kvm_vcpu
*vcpu
)
1348 return to_svm(vcpu
)->vmcb
->save
.rflags
;
1351 static void svm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
1354 * Any change of EFLAGS.VM is accompained by a reload of SS
1355 * (caused by either a task switch or an inter-privilege IRET),
1356 * so we do not need to update the CPL here.
1358 to_svm(vcpu
)->vmcb
->save
.rflags
= rflags
;
1361 static void svm_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
1364 case VCPU_EXREG_PDPTR
:
1365 BUG_ON(!npt_enabled
);
1366 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
1373 static void svm_set_vintr(struct vcpu_svm
*svm
)
1375 set_intercept(svm
, INTERCEPT_VINTR
);
1378 static void svm_clear_vintr(struct vcpu_svm
*svm
)
1380 clr_intercept(svm
, INTERCEPT_VINTR
);
1383 static struct vmcb_seg
*svm_seg(struct kvm_vcpu
*vcpu
, int seg
)
1385 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
1388 case VCPU_SREG_CS
: return &save
->cs
;
1389 case VCPU_SREG_DS
: return &save
->ds
;
1390 case VCPU_SREG_ES
: return &save
->es
;
1391 case VCPU_SREG_FS
: return &save
->fs
;
1392 case VCPU_SREG_GS
: return &save
->gs
;
1393 case VCPU_SREG_SS
: return &save
->ss
;
1394 case VCPU_SREG_TR
: return &save
->tr
;
1395 case VCPU_SREG_LDTR
: return &save
->ldtr
;
1401 static u64
svm_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1403 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1408 static void svm_get_segment(struct kvm_vcpu
*vcpu
,
1409 struct kvm_segment
*var
, int seg
)
1411 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1413 var
->base
= s
->base
;
1414 var
->limit
= s
->limit
;
1415 var
->selector
= s
->selector
;
1416 var
->type
= s
->attrib
& SVM_SELECTOR_TYPE_MASK
;
1417 var
->s
= (s
->attrib
>> SVM_SELECTOR_S_SHIFT
) & 1;
1418 var
->dpl
= (s
->attrib
>> SVM_SELECTOR_DPL_SHIFT
) & 3;
1419 var
->present
= (s
->attrib
>> SVM_SELECTOR_P_SHIFT
) & 1;
1420 var
->avl
= (s
->attrib
>> SVM_SELECTOR_AVL_SHIFT
) & 1;
1421 var
->l
= (s
->attrib
>> SVM_SELECTOR_L_SHIFT
) & 1;
1422 var
->db
= (s
->attrib
>> SVM_SELECTOR_DB_SHIFT
) & 1;
1425 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1426 * However, the SVM spec states that the G bit is not observed by the
1427 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1428 * So let's synthesize a legal G bit for all segments, this helps
1429 * running KVM nested. It also helps cross-vendor migration, because
1430 * Intel's vmentry has a check on the 'G' bit.
1432 var
->g
= s
->limit
> 0xfffff;
1435 * AMD's VMCB does not have an explicit unusable field, so emulate it
1436 * for cross vendor migration purposes by "not present"
1438 var
->unusable
= !var
->present
|| (var
->type
== 0);
1443 * Work around a bug where the busy flag in the tr selector
1453 * The accessed bit must always be set in the segment
1454 * descriptor cache, although it can be cleared in the
1455 * descriptor, the cached bit always remains at 1. Since
1456 * Intel has a check on this, set it here to support
1457 * cross-vendor migration.
1464 * On AMD CPUs sometimes the DB bit in the segment
1465 * descriptor is left as 1, although the whole segment has
1466 * been made unusable. Clear it here to pass an Intel VMX
1467 * entry check when cross vendor migrating.
1471 var
->dpl
= to_svm(vcpu
)->vmcb
->save
.cpl
;
1476 static int svm_get_cpl(struct kvm_vcpu
*vcpu
)
1478 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
1483 static void svm_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1485 struct vcpu_svm
*svm
= to_svm(vcpu
);
1487 dt
->size
= svm
->vmcb
->save
.idtr
.limit
;
1488 dt
->address
= svm
->vmcb
->save
.idtr
.base
;
1491 static void svm_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1493 struct vcpu_svm
*svm
= to_svm(vcpu
);
1495 svm
->vmcb
->save
.idtr
.limit
= dt
->size
;
1496 svm
->vmcb
->save
.idtr
.base
= dt
->address
;
1497 mark_dirty(svm
->vmcb
, VMCB_DT
);
1500 static void svm_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1502 struct vcpu_svm
*svm
= to_svm(vcpu
);
1504 dt
->size
= svm
->vmcb
->save
.gdtr
.limit
;
1505 dt
->address
= svm
->vmcb
->save
.gdtr
.base
;
1508 static void svm_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1510 struct vcpu_svm
*svm
= to_svm(vcpu
);
1512 svm
->vmcb
->save
.gdtr
.limit
= dt
->size
;
1513 svm
->vmcb
->save
.gdtr
.base
= dt
->address
;
1514 mark_dirty(svm
->vmcb
, VMCB_DT
);
1517 static void svm_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
1521 static void svm_decache_cr3(struct kvm_vcpu
*vcpu
)
1525 static void svm_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
1529 static void update_cr0_intercept(struct vcpu_svm
*svm
)
1531 ulong gcr0
= svm
->vcpu
.arch
.cr0
;
1532 u64
*hcr0
= &svm
->vmcb
->save
.cr0
;
1534 if (!svm
->vcpu
.fpu_active
)
1535 *hcr0
|= SVM_CR0_SELECTIVE_MASK
;
1537 *hcr0
= (*hcr0
& ~SVM_CR0_SELECTIVE_MASK
)
1538 | (gcr0
& SVM_CR0_SELECTIVE_MASK
);
1540 mark_dirty(svm
->vmcb
, VMCB_CR
);
1542 if (gcr0
== *hcr0
&& svm
->vcpu
.fpu_active
) {
1543 clr_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1544 clr_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1546 set_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1547 set_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1551 static void svm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1553 struct vcpu_svm
*svm
= to_svm(vcpu
);
1555 #ifdef CONFIG_X86_64
1556 if (vcpu
->arch
.efer
& EFER_LME
) {
1557 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
1558 vcpu
->arch
.efer
|= EFER_LMA
;
1559 svm
->vmcb
->save
.efer
|= EFER_LMA
| EFER_LME
;
1562 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
)) {
1563 vcpu
->arch
.efer
&= ~EFER_LMA
;
1564 svm
->vmcb
->save
.efer
&= ~(EFER_LMA
| EFER_LME
);
1568 vcpu
->arch
.cr0
= cr0
;
1571 cr0
|= X86_CR0_PG
| X86_CR0_WP
;
1573 if (!vcpu
->fpu_active
)
1576 * re-enable caching here because the QEMU bios
1577 * does not do it - this results in some delay at
1580 cr0
&= ~(X86_CR0_CD
| X86_CR0_NW
);
1581 svm
->vmcb
->save
.cr0
= cr0
;
1582 mark_dirty(svm
->vmcb
, VMCB_CR
);
1583 update_cr0_intercept(svm
);
1586 static int svm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1588 unsigned long host_cr4_mce
= cr4_read_shadow() & X86_CR4_MCE
;
1589 unsigned long old_cr4
= to_svm(vcpu
)->vmcb
->save
.cr4
;
1591 if (cr4
& X86_CR4_VMXE
)
1594 if (npt_enabled
&& ((old_cr4
^ cr4
) & X86_CR4_PGE
))
1595 svm_flush_tlb(vcpu
);
1597 vcpu
->arch
.cr4
= cr4
;
1600 cr4
|= host_cr4_mce
;
1601 to_svm(vcpu
)->vmcb
->save
.cr4
= cr4
;
1602 mark_dirty(to_svm(vcpu
)->vmcb
, VMCB_CR
);
1606 static void svm_set_segment(struct kvm_vcpu
*vcpu
,
1607 struct kvm_segment
*var
, int seg
)
1609 struct vcpu_svm
*svm
= to_svm(vcpu
);
1610 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1612 s
->base
= var
->base
;
1613 s
->limit
= var
->limit
;
1614 s
->selector
= var
->selector
;
1618 s
->attrib
= (var
->type
& SVM_SELECTOR_TYPE_MASK
);
1619 s
->attrib
|= (var
->s
& 1) << SVM_SELECTOR_S_SHIFT
;
1620 s
->attrib
|= (var
->dpl
& 3) << SVM_SELECTOR_DPL_SHIFT
;
1621 s
->attrib
|= (var
->present
& 1) << SVM_SELECTOR_P_SHIFT
;
1622 s
->attrib
|= (var
->avl
& 1) << SVM_SELECTOR_AVL_SHIFT
;
1623 s
->attrib
|= (var
->l
& 1) << SVM_SELECTOR_L_SHIFT
;
1624 s
->attrib
|= (var
->db
& 1) << SVM_SELECTOR_DB_SHIFT
;
1625 s
->attrib
|= (var
->g
& 1) << SVM_SELECTOR_G_SHIFT
;
1629 * This is always accurate, except if SYSRET returned to a segment
1630 * with SS.DPL != 3. Intel does not have this quirk, and always
1631 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1632 * would entail passing the CPL to userspace and back.
1634 if (seg
== VCPU_SREG_SS
)
1635 svm
->vmcb
->save
.cpl
= (s
->attrib
>> SVM_SELECTOR_DPL_SHIFT
) & 3;
1637 mark_dirty(svm
->vmcb
, VMCB_SEG
);
1640 static void update_db_bp_intercept(struct kvm_vcpu
*vcpu
)
1642 struct vcpu_svm
*svm
= to_svm(vcpu
);
1644 clr_exception_intercept(svm
, DB_VECTOR
);
1645 clr_exception_intercept(svm
, BP_VECTOR
);
1647 if (svm
->nmi_singlestep
)
1648 set_exception_intercept(svm
, DB_VECTOR
);
1650 if (vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
) {
1651 if (vcpu
->guest_debug
&
1652 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
1653 set_exception_intercept(svm
, DB_VECTOR
);
1654 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
1655 set_exception_intercept(svm
, BP_VECTOR
);
1657 vcpu
->guest_debug
= 0;
1660 static void new_asid(struct vcpu_svm
*svm
, struct svm_cpu_data
*sd
)
1662 if (sd
->next_asid
> sd
->max_asid
) {
1663 ++sd
->asid_generation
;
1665 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ALL_ASID
;
1668 svm
->asid_generation
= sd
->asid_generation
;
1669 svm
->vmcb
->control
.asid
= sd
->next_asid
++;
1671 mark_dirty(svm
->vmcb
, VMCB_ASID
);
1674 static u64
svm_get_dr6(struct kvm_vcpu
*vcpu
)
1676 return to_svm(vcpu
)->vmcb
->save
.dr6
;
1679 static void svm_set_dr6(struct kvm_vcpu
*vcpu
, unsigned long value
)
1681 struct vcpu_svm
*svm
= to_svm(vcpu
);
1683 svm
->vmcb
->save
.dr6
= value
;
1684 mark_dirty(svm
->vmcb
, VMCB_DR
);
1687 static void svm_sync_dirty_debug_regs(struct kvm_vcpu
*vcpu
)
1689 struct vcpu_svm
*svm
= to_svm(vcpu
);
1691 get_debugreg(vcpu
->arch
.db
[0], 0);
1692 get_debugreg(vcpu
->arch
.db
[1], 1);
1693 get_debugreg(vcpu
->arch
.db
[2], 2);
1694 get_debugreg(vcpu
->arch
.db
[3], 3);
1695 vcpu
->arch
.dr6
= svm_get_dr6(vcpu
);
1696 vcpu
->arch
.dr7
= svm
->vmcb
->save
.dr7
;
1698 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_WONT_EXIT
;
1699 set_dr_intercepts(svm
);
1702 static void svm_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long value
)
1704 struct vcpu_svm
*svm
= to_svm(vcpu
);
1706 svm
->vmcb
->save
.dr7
= value
;
1707 mark_dirty(svm
->vmcb
, VMCB_DR
);
1710 static int pf_interception(struct vcpu_svm
*svm
)
1712 u64 fault_address
= svm
->vmcb
->control
.exit_info_2
;
1716 switch (svm
->apf_reason
) {
1718 error_code
= svm
->vmcb
->control
.exit_info_1
;
1720 trace_kvm_page_fault(fault_address
, error_code
);
1721 if (!npt_enabled
&& kvm_event_needs_reinjection(&svm
->vcpu
))
1722 kvm_mmu_unprotect_page_virt(&svm
->vcpu
, fault_address
);
1723 r
= kvm_mmu_page_fault(&svm
->vcpu
, fault_address
, error_code
,
1724 svm
->vmcb
->control
.insn_bytes
,
1725 svm
->vmcb
->control
.insn_len
);
1727 case KVM_PV_REASON_PAGE_NOT_PRESENT
:
1728 svm
->apf_reason
= 0;
1729 local_irq_disable();
1730 kvm_async_pf_task_wait(fault_address
);
1733 case KVM_PV_REASON_PAGE_READY
:
1734 svm
->apf_reason
= 0;
1735 local_irq_disable();
1736 kvm_async_pf_task_wake(fault_address
);
1743 static int db_interception(struct vcpu_svm
*svm
)
1745 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1747 if (!(svm
->vcpu
.guest_debug
&
1748 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) &&
1749 !svm
->nmi_singlestep
) {
1750 kvm_queue_exception(&svm
->vcpu
, DB_VECTOR
);
1754 if (svm
->nmi_singlestep
) {
1755 svm
->nmi_singlestep
= false;
1756 if (!(svm
->vcpu
.guest_debug
& KVM_GUESTDBG_SINGLESTEP
))
1757 svm
->vmcb
->save
.rflags
&=
1758 ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
1759 update_db_bp_intercept(&svm
->vcpu
);
1762 if (svm
->vcpu
.guest_debug
&
1763 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) {
1764 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1765 kvm_run
->debug
.arch
.pc
=
1766 svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1767 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
1774 static int bp_interception(struct vcpu_svm
*svm
)
1776 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1778 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1779 kvm_run
->debug
.arch
.pc
= svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1780 kvm_run
->debug
.arch
.exception
= BP_VECTOR
;
1784 static int ud_interception(struct vcpu_svm
*svm
)
1788 er
= emulate_instruction(&svm
->vcpu
, EMULTYPE_TRAP_UD
);
1789 if (er
!= EMULATE_DONE
)
1790 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1794 static void svm_fpu_activate(struct kvm_vcpu
*vcpu
)
1796 struct vcpu_svm
*svm
= to_svm(vcpu
);
1798 clr_exception_intercept(svm
, NM_VECTOR
);
1800 svm
->vcpu
.fpu_active
= 1;
1801 update_cr0_intercept(svm
);
1804 static int nm_interception(struct vcpu_svm
*svm
)
1806 svm_fpu_activate(&svm
->vcpu
);
1810 static bool is_erratum_383(void)
1815 if (!erratum_383_found
)
1818 value
= native_read_msr_safe(MSR_IA32_MC0_STATUS
, &err
);
1822 /* Bit 62 may or may not be set for this mce */
1823 value
&= ~(1ULL << 62);
1825 if (value
!= 0xb600000000010015ULL
)
1828 /* Clear MCi_STATUS registers */
1829 for (i
= 0; i
< 6; ++i
)
1830 native_write_msr_safe(MSR_IA32_MCx_STATUS(i
), 0, 0);
1832 value
= native_read_msr_safe(MSR_IA32_MCG_STATUS
, &err
);
1836 value
&= ~(1ULL << 2);
1837 low
= lower_32_bits(value
);
1838 high
= upper_32_bits(value
);
1840 native_write_msr_safe(MSR_IA32_MCG_STATUS
, low
, high
);
1843 /* Flush tlb to evict multi-match entries */
1849 static void svm_handle_mce(struct vcpu_svm
*svm
)
1851 if (is_erratum_383()) {
1853 * Erratum 383 triggered. Guest state is corrupt so kill the
1856 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1858 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, &svm
->vcpu
);
1864 * On an #MC intercept the MCE handler is not called automatically in
1865 * the host. So do it by hand here.
1869 /* not sure if we ever come back to this point */
1874 static int mc_interception(struct vcpu_svm
*svm
)
1879 static int shutdown_interception(struct vcpu_svm
*svm
)
1881 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1884 * VMCB is undefined after a SHUTDOWN intercept
1885 * so reinitialize it.
1887 clear_page(svm
->vmcb
);
1890 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
1894 static int io_interception(struct vcpu_svm
*svm
)
1896 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
1897 u32 io_info
= svm
->vmcb
->control
.exit_info_1
; /* address size bug? */
1898 int size
, in
, string
;
1901 ++svm
->vcpu
.stat
.io_exits
;
1902 string
= (io_info
& SVM_IOIO_STR_MASK
) != 0;
1903 in
= (io_info
& SVM_IOIO_TYPE_MASK
) != 0;
1905 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
1907 port
= io_info
>> 16;
1908 size
= (io_info
& SVM_IOIO_SIZE_MASK
) >> SVM_IOIO_SIZE_SHIFT
;
1909 svm
->next_rip
= svm
->vmcb
->control
.exit_info_2
;
1910 skip_emulated_instruction(&svm
->vcpu
);
1912 return kvm_fast_pio_out(vcpu
, size
, port
);
1915 static int nmi_interception(struct vcpu_svm
*svm
)
1920 static int intr_interception(struct vcpu_svm
*svm
)
1922 ++svm
->vcpu
.stat
.irq_exits
;
1926 static int nop_on_interception(struct vcpu_svm
*svm
)
1931 static int halt_interception(struct vcpu_svm
*svm
)
1933 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 1;
1934 return kvm_emulate_halt(&svm
->vcpu
);
1937 static int vmmcall_interception(struct vcpu_svm
*svm
)
1939 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1940 kvm_emulate_hypercall(&svm
->vcpu
);
1944 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu
*vcpu
)
1946 struct vcpu_svm
*svm
= to_svm(vcpu
);
1948 return svm
->nested
.nested_cr3
;
1951 static u64
nested_svm_get_tdp_pdptr(struct kvm_vcpu
*vcpu
, int index
)
1953 struct vcpu_svm
*svm
= to_svm(vcpu
);
1954 u64 cr3
= svm
->nested
.nested_cr3
;
1958 ret
= kvm_read_guest_page(vcpu
->kvm
, gpa_to_gfn(cr3
), &pdpte
,
1959 offset_in_page(cr3
) + index
* 8, 8);
1965 static void nested_svm_set_tdp_cr3(struct kvm_vcpu
*vcpu
,
1968 struct vcpu_svm
*svm
= to_svm(vcpu
);
1970 svm
->vmcb
->control
.nested_cr3
= root
;
1971 mark_dirty(svm
->vmcb
, VMCB_NPT
);
1972 svm_flush_tlb(vcpu
);
1975 static void nested_svm_inject_npf_exit(struct kvm_vcpu
*vcpu
,
1976 struct x86_exception
*fault
)
1978 struct vcpu_svm
*svm
= to_svm(vcpu
);
1980 if (svm
->vmcb
->control
.exit_code
!= SVM_EXIT_NPF
) {
1982 * TODO: track the cause of the nested page fault, and
1983 * correctly fill in the high bits of exit_info_1.
1985 svm
->vmcb
->control
.exit_code
= SVM_EXIT_NPF
;
1986 svm
->vmcb
->control
.exit_code_hi
= 0;
1987 svm
->vmcb
->control
.exit_info_1
= (1ULL << 32);
1988 svm
->vmcb
->control
.exit_info_2
= fault
->address
;
1991 svm
->vmcb
->control
.exit_info_1
&= ~0xffffffffULL
;
1992 svm
->vmcb
->control
.exit_info_1
|= fault
->error_code
;
1995 * The present bit is always zero for page structure faults on real
1998 if (svm
->vmcb
->control
.exit_info_1
& (2ULL << 32))
1999 svm
->vmcb
->control
.exit_info_1
&= ~1;
2001 nested_svm_vmexit(svm
);
2004 static void nested_svm_init_mmu_context(struct kvm_vcpu
*vcpu
)
2006 WARN_ON(mmu_is_nested(vcpu
));
2007 kvm_init_shadow_mmu(vcpu
);
2008 vcpu
->arch
.mmu
.set_cr3
= nested_svm_set_tdp_cr3
;
2009 vcpu
->arch
.mmu
.get_cr3
= nested_svm_get_tdp_cr3
;
2010 vcpu
->arch
.mmu
.get_pdptr
= nested_svm_get_tdp_pdptr
;
2011 vcpu
->arch
.mmu
.inject_page_fault
= nested_svm_inject_npf_exit
;
2012 vcpu
->arch
.mmu
.shadow_root_level
= get_npt_level();
2013 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.nested_mmu
;
2016 static void nested_svm_uninit_mmu_context(struct kvm_vcpu
*vcpu
)
2018 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
2021 static int nested_svm_check_permissions(struct vcpu_svm
*svm
)
2023 if (!(svm
->vcpu
.arch
.efer
& EFER_SVME
)
2024 || !is_paging(&svm
->vcpu
)) {
2025 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2029 if (svm
->vmcb
->save
.cpl
) {
2030 kvm_inject_gp(&svm
->vcpu
, 0);
2037 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
2038 bool has_error_code
, u32 error_code
)
2042 if (!is_guest_mode(&svm
->vcpu
))
2045 svm
->vmcb
->control
.exit_code
= SVM_EXIT_EXCP_BASE
+ nr
;
2046 svm
->vmcb
->control
.exit_code_hi
= 0;
2047 svm
->vmcb
->control
.exit_info_1
= error_code
;
2048 svm
->vmcb
->control
.exit_info_2
= svm
->vcpu
.arch
.cr2
;
2050 vmexit
= nested_svm_intercept(svm
);
2051 if (vmexit
== NESTED_EXIT_DONE
)
2052 svm
->nested
.exit_required
= true;
2057 /* This function returns true if it is save to enable the irq window */
2058 static inline bool nested_svm_intr(struct vcpu_svm
*svm
)
2060 if (!is_guest_mode(&svm
->vcpu
))
2063 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
2066 if (!(svm
->vcpu
.arch
.hflags
& HF_HIF_MASK
))
2070 * if vmexit was already requested (by intercepted exception
2071 * for instance) do not overwrite it with "external interrupt"
2074 if (svm
->nested
.exit_required
)
2077 svm
->vmcb
->control
.exit_code
= SVM_EXIT_INTR
;
2078 svm
->vmcb
->control
.exit_info_1
= 0;
2079 svm
->vmcb
->control
.exit_info_2
= 0;
2081 if (svm
->nested
.intercept
& 1ULL) {
2083 * The #vmexit can't be emulated here directly because this
2084 * code path runs with irqs and preemption disabled. A
2085 * #vmexit emulation might sleep. Only signal request for
2088 svm
->nested
.exit_required
= true;
2089 trace_kvm_nested_intr_vmexit(svm
->vmcb
->save
.rip
);
2096 /* This function returns true if it is save to enable the nmi window */
2097 static inline bool nested_svm_nmi(struct vcpu_svm
*svm
)
2099 if (!is_guest_mode(&svm
->vcpu
))
2102 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_NMI
)))
2105 svm
->vmcb
->control
.exit_code
= SVM_EXIT_NMI
;
2106 svm
->nested
.exit_required
= true;
2111 static void *nested_svm_map(struct vcpu_svm
*svm
, u64 gpa
, struct page
**_page
)
2117 page
= gfn_to_page(svm
->vcpu
.kvm
, gpa
>> PAGE_SHIFT
);
2118 if (is_error_page(page
))
2126 kvm_inject_gp(&svm
->vcpu
, 0);
2131 static void nested_svm_unmap(struct page
*page
)
2134 kvm_release_page_dirty(page
);
2137 static int nested_svm_intercept_ioio(struct vcpu_svm
*svm
)
2139 unsigned port
, size
, iopm_len
;
2144 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_IOIO_PROT
)))
2145 return NESTED_EXIT_HOST
;
2147 port
= svm
->vmcb
->control
.exit_info_1
>> 16;
2148 size
= (svm
->vmcb
->control
.exit_info_1
& SVM_IOIO_SIZE_MASK
) >>
2149 SVM_IOIO_SIZE_SHIFT
;
2150 gpa
= svm
->nested
.vmcb_iopm
+ (port
/ 8);
2151 start_bit
= port
% 8;
2152 iopm_len
= (start_bit
+ size
> 8) ? 2 : 1;
2153 mask
= (0xf >> (4 - size
)) << start_bit
;
2156 if (kvm_read_guest(svm
->vcpu
.kvm
, gpa
, &val
, iopm_len
))
2157 return NESTED_EXIT_DONE
;
2159 return (val
& mask
) ? NESTED_EXIT_DONE
: NESTED_EXIT_HOST
;
2162 static int nested_svm_exit_handled_msr(struct vcpu_svm
*svm
)
2164 u32 offset
, msr
, value
;
2167 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
2168 return NESTED_EXIT_HOST
;
2170 msr
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
2171 offset
= svm_msrpm_offset(msr
);
2172 write
= svm
->vmcb
->control
.exit_info_1
& 1;
2173 mask
= 1 << ((2 * (msr
& 0xf)) + write
);
2175 if (offset
== MSR_INVALID
)
2176 return NESTED_EXIT_DONE
;
2178 /* Offset is in 32 bit units but need in 8 bit units */
2181 if (kvm_read_guest(svm
->vcpu
.kvm
, svm
->nested
.vmcb_msrpm
+ offset
, &value
, 4))
2182 return NESTED_EXIT_DONE
;
2184 return (value
& mask
) ? NESTED_EXIT_DONE
: NESTED_EXIT_HOST
;
2187 static int nested_svm_exit_special(struct vcpu_svm
*svm
)
2189 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
2191 switch (exit_code
) {
2194 case SVM_EXIT_EXCP_BASE
+ MC_VECTOR
:
2195 return NESTED_EXIT_HOST
;
2197 /* For now we are always handling NPFs when using them */
2199 return NESTED_EXIT_HOST
;
2201 case SVM_EXIT_EXCP_BASE
+ PF_VECTOR
:
2202 /* When we're shadowing, trap PFs, but not async PF */
2203 if (!npt_enabled
&& svm
->apf_reason
== 0)
2204 return NESTED_EXIT_HOST
;
2206 case SVM_EXIT_EXCP_BASE
+ NM_VECTOR
:
2207 nm_interception(svm
);
2213 return NESTED_EXIT_CONTINUE
;
2217 * If this function returns true, this #vmexit was already handled
2219 static int nested_svm_intercept(struct vcpu_svm
*svm
)
2221 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
2222 int vmexit
= NESTED_EXIT_HOST
;
2224 switch (exit_code
) {
2226 vmexit
= nested_svm_exit_handled_msr(svm
);
2229 vmexit
= nested_svm_intercept_ioio(svm
);
2231 case SVM_EXIT_READ_CR0
... SVM_EXIT_WRITE_CR8
: {
2232 u32 bit
= 1U << (exit_code
- SVM_EXIT_READ_CR0
);
2233 if (svm
->nested
.intercept_cr
& bit
)
2234 vmexit
= NESTED_EXIT_DONE
;
2237 case SVM_EXIT_READ_DR0
... SVM_EXIT_WRITE_DR7
: {
2238 u32 bit
= 1U << (exit_code
- SVM_EXIT_READ_DR0
);
2239 if (svm
->nested
.intercept_dr
& bit
)
2240 vmexit
= NESTED_EXIT_DONE
;
2243 case SVM_EXIT_EXCP_BASE
... SVM_EXIT_EXCP_BASE
+ 0x1f: {
2244 u32 excp_bits
= 1 << (exit_code
- SVM_EXIT_EXCP_BASE
);
2245 if (svm
->nested
.intercept_exceptions
& excp_bits
)
2246 vmexit
= NESTED_EXIT_DONE
;
2247 /* async page fault always cause vmexit */
2248 else if ((exit_code
== SVM_EXIT_EXCP_BASE
+ PF_VECTOR
) &&
2249 svm
->apf_reason
!= 0)
2250 vmexit
= NESTED_EXIT_DONE
;
2253 case SVM_EXIT_ERR
: {
2254 vmexit
= NESTED_EXIT_DONE
;
2258 u64 exit_bits
= 1ULL << (exit_code
- SVM_EXIT_INTR
);
2259 if (svm
->nested
.intercept
& exit_bits
)
2260 vmexit
= NESTED_EXIT_DONE
;
2267 static int nested_svm_exit_handled(struct vcpu_svm
*svm
)
2271 vmexit
= nested_svm_intercept(svm
);
2273 if (vmexit
== NESTED_EXIT_DONE
)
2274 nested_svm_vmexit(svm
);
2279 static inline void copy_vmcb_control_area(struct vmcb
*dst_vmcb
, struct vmcb
*from_vmcb
)
2281 struct vmcb_control_area
*dst
= &dst_vmcb
->control
;
2282 struct vmcb_control_area
*from
= &from_vmcb
->control
;
2284 dst
->intercept_cr
= from
->intercept_cr
;
2285 dst
->intercept_dr
= from
->intercept_dr
;
2286 dst
->intercept_exceptions
= from
->intercept_exceptions
;
2287 dst
->intercept
= from
->intercept
;
2288 dst
->iopm_base_pa
= from
->iopm_base_pa
;
2289 dst
->msrpm_base_pa
= from
->msrpm_base_pa
;
2290 dst
->tsc_offset
= from
->tsc_offset
;
2291 dst
->asid
= from
->asid
;
2292 dst
->tlb_ctl
= from
->tlb_ctl
;
2293 dst
->int_ctl
= from
->int_ctl
;
2294 dst
->int_vector
= from
->int_vector
;
2295 dst
->int_state
= from
->int_state
;
2296 dst
->exit_code
= from
->exit_code
;
2297 dst
->exit_code_hi
= from
->exit_code_hi
;
2298 dst
->exit_info_1
= from
->exit_info_1
;
2299 dst
->exit_info_2
= from
->exit_info_2
;
2300 dst
->exit_int_info
= from
->exit_int_info
;
2301 dst
->exit_int_info_err
= from
->exit_int_info_err
;
2302 dst
->nested_ctl
= from
->nested_ctl
;
2303 dst
->event_inj
= from
->event_inj
;
2304 dst
->event_inj_err
= from
->event_inj_err
;
2305 dst
->nested_cr3
= from
->nested_cr3
;
2306 dst
->lbr_ctl
= from
->lbr_ctl
;
2309 static int nested_svm_vmexit(struct vcpu_svm
*svm
)
2311 struct vmcb
*nested_vmcb
;
2312 struct vmcb
*hsave
= svm
->nested
.hsave
;
2313 struct vmcb
*vmcb
= svm
->vmcb
;
2316 trace_kvm_nested_vmexit_inject(vmcb
->control
.exit_code
,
2317 vmcb
->control
.exit_info_1
,
2318 vmcb
->control
.exit_info_2
,
2319 vmcb
->control
.exit_int_info
,
2320 vmcb
->control
.exit_int_info_err
,
2323 nested_vmcb
= nested_svm_map(svm
, svm
->nested
.vmcb
, &page
);
2327 /* Exit Guest-Mode */
2328 leave_guest_mode(&svm
->vcpu
);
2329 svm
->nested
.vmcb
= 0;
2331 /* Give the current vmcb to the guest */
2334 nested_vmcb
->save
.es
= vmcb
->save
.es
;
2335 nested_vmcb
->save
.cs
= vmcb
->save
.cs
;
2336 nested_vmcb
->save
.ss
= vmcb
->save
.ss
;
2337 nested_vmcb
->save
.ds
= vmcb
->save
.ds
;
2338 nested_vmcb
->save
.gdtr
= vmcb
->save
.gdtr
;
2339 nested_vmcb
->save
.idtr
= vmcb
->save
.idtr
;
2340 nested_vmcb
->save
.efer
= svm
->vcpu
.arch
.efer
;
2341 nested_vmcb
->save
.cr0
= kvm_read_cr0(&svm
->vcpu
);
2342 nested_vmcb
->save
.cr3
= kvm_read_cr3(&svm
->vcpu
);
2343 nested_vmcb
->save
.cr2
= vmcb
->save
.cr2
;
2344 nested_vmcb
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
2345 nested_vmcb
->save
.rflags
= kvm_get_rflags(&svm
->vcpu
);
2346 nested_vmcb
->save
.rip
= vmcb
->save
.rip
;
2347 nested_vmcb
->save
.rsp
= vmcb
->save
.rsp
;
2348 nested_vmcb
->save
.rax
= vmcb
->save
.rax
;
2349 nested_vmcb
->save
.dr7
= vmcb
->save
.dr7
;
2350 nested_vmcb
->save
.dr6
= vmcb
->save
.dr6
;
2351 nested_vmcb
->save
.cpl
= vmcb
->save
.cpl
;
2353 nested_vmcb
->control
.int_ctl
= vmcb
->control
.int_ctl
;
2354 nested_vmcb
->control
.int_vector
= vmcb
->control
.int_vector
;
2355 nested_vmcb
->control
.int_state
= vmcb
->control
.int_state
;
2356 nested_vmcb
->control
.exit_code
= vmcb
->control
.exit_code
;
2357 nested_vmcb
->control
.exit_code_hi
= vmcb
->control
.exit_code_hi
;
2358 nested_vmcb
->control
.exit_info_1
= vmcb
->control
.exit_info_1
;
2359 nested_vmcb
->control
.exit_info_2
= vmcb
->control
.exit_info_2
;
2360 nested_vmcb
->control
.exit_int_info
= vmcb
->control
.exit_int_info
;
2361 nested_vmcb
->control
.exit_int_info_err
= vmcb
->control
.exit_int_info_err
;
2362 nested_vmcb
->control
.next_rip
= vmcb
->control
.next_rip
;
2365 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2366 * to make sure that we do not lose injected events. So check event_inj
2367 * here and copy it to exit_int_info if it is valid.
2368 * Exit_int_info and event_inj can't be both valid because the case
2369 * below only happens on a VMRUN instruction intercept which has
2370 * no valid exit_int_info set.
2372 if (vmcb
->control
.event_inj
& SVM_EVTINJ_VALID
) {
2373 struct vmcb_control_area
*nc
= &nested_vmcb
->control
;
2375 nc
->exit_int_info
= vmcb
->control
.event_inj
;
2376 nc
->exit_int_info_err
= vmcb
->control
.event_inj_err
;
2379 nested_vmcb
->control
.tlb_ctl
= 0;
2380 nested_vmcb
->control
.event_inj
= 0;
2381 nested_vmcb
->control
.event_inj_err
= 0;
2383 /* We always set V_INTR_MASKING and remember the old value in hflags */
2384 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
2385 nested_vmcb
->control
.int_ctl
&= ~V_INTR_MASKING_MASK
;
2387 /* Restore the original control entries */
2388 copy_vmcb_control_area(vmcb
, hsave
);
2390 kvm_clear_exception_queue(&svm
->vcpu
);
2391 kvm_clear_interrupt_queue(&svm
->vcpu
);
2393 svm
->nested
.nested_cr3
= 0;
2395 /* Restore selected save entries */
2396 svm
->vmcb
->save
.es
= hsave
->save
.es
;
2397 svm
->vmcb
->save
.cs
= hsave
->save
.cs
;
2398 svm
->vmcb
->save
.ss
= hsave
->save
.ss
;
2399 svm
->vmcb
->save
.ds
= hsave
->save
.ds
;
2400 svm
->vmcb
->save
.gdtr
= hsave
->save
.gdtr
;
2401 svm
->vmcb
->save
.idtr
= hsave
->save
.idtr
;
2402 kvm_set_rflags(&svm
->vcpu
, hsave
->save
.rflags
);
2403 svm_set_efer(&svm
->vcpu
, hsave
->save
.efer
);
2404 svm_set_cr0(&svm
->vcpu
, hsave
->save
.cr0
| X86_CR0_PE
);
2405 svm_set_cr4(&svm
->vcpu
, hsave
->save
.cr4
);
2407 svm
->vmcb
->save
.cr3
= hsave
->save
.cr3
;
2408 svm
->vcpu
.arch
.cr3
= hsave
->save
.cr3
;
2410 (void)kvm_set_cr3(&svm
->vcpu
, hsave
->save
.cr3
);
2412 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, hsave
->save
.rax
);
2413 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, hsave
->save
.rsp
);
2414 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, hsave
->save
.rip
);
2415 svm
->vmcb
->save
.dr7
= 0;
2416 svm
->vmcb
->save
.cpl
= 0;
2417 svm
->vmcb
->control
.exit_int_info
= 0;
2419 mark_all_dirty(svm
->vmcb
);
2421 nested_svm_unmap(page
);
2423 nested_svm_uninit_mmu_context(&svm
->vcpu
);
2424 kvm_mmu_reset_context(&svm
->vcpu
);
2425 kvm_mmu_load(&svm
->vcpu
);
2430 static bool nested_svm_vmrun_msrpm(struct vcpu_svm
*svm
)
2433 * This function merges the msr permission bitmaps of kvm and the
2434 * nested vmcb. It is optimized in that it only merges the parts where
2435 * the kvm msr permission bitmap may contain zero bits
2439 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
2442 for (i
= 0; i
< MSRPM_OFFSETS
; i
++) {
2446 if (msrpm_offsets
[i
] == 0xffffffff)
2449 p
= msrpm_offsets
[i
];
2450 offset
= svm
->nested
.vmcb_msrpm
+ (p
* 4);
2452 if (kvm_read_guest(svm
->vcpu
.kvm
, offset
, &value
, 4))
2455 svm
->nested
.msrpm
[p
] = svm
->msrpm
[p
] | value
;
2458 svm
->vmcb
->control
.msrpm_base_pa
= __pa(svm
->nested
.msrpm
);
2463 static bool nested_vmcb_checks(struct vmcb
*vmcb
)
2465 if ((vmcb
->control
.intercept
& (1ULL << INTERCEPT_VMRUN
)) == 0)
2468 if (vmcb
->control
.asid
== 0)
2471 if (vmcb
->control
.nested_ctl
&& !npt_enabled
)
2477 static bool nested_svm_vmrun(struct vcpu_svm
*svm
)
2479 struct vmcb
*nested_vmcb
;
2480 struct vmcb
*hsave
= svm
->nested
.hsave
;
2481 struct vmcb
*vmcb
= svm
->vmcb
;
2485 vmcb_gpa
= svm
->vmcb
->save
.rax
;
2487 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
2491 if (!nested_vmcb_checks(nested_vmcb
)) {
2492 nested_vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
2493 nested_vmcb
->control
.exit_code_hi
= 0;
2494 nested_vmcb
->control
.exit_info_1
= 0;
2495 nested_vmcb
->control
.exit_info_2
= 0;
2497 nested_svm_unmap(page
);
2502 trace_kvm_nested_vmrun(svm
->vmcb
->save
.rip
, vmcb_gpa
,
2503 nested_vmcb
->save
.rip
,
2504 nested_vmcb
->control
.int_ctl
,
2505 nested_vmcb
->control
.event_inj
,
2506 nested_vmcb
->control
.nested_ctl
);
2508 trace_kvm_nested_intercepts(nested_vmcb
->control
.intercept_cr
& 0xffff,
2509 nested_vmcb
->control
.intercept_cr
>> 16,
2510 nested_vmcb
->control
.intercept_exceptions
,
2511 nested_vmcb
->control
.intercept
);
2513 /* Clear internal status */
2514 kvm_clear_exception_queue(&svm
->vcpu
);
2515 kvm_clear_interrupt_queue(&svm
->vcpu
);
2518 * Save the old vmcb, so we don't need to pick what we save, but can
2519 * restore everything when a VMEXIT occurs
2521 hsave
->save
.es
= vmcb
->save
.es
;
2522 hsave
->save
.cs
= vmcb
->save
.cs
;
2523 hsave
->save
.ss
= vmcb
->save
.ss
;
2524 hsave
->save
.ds
= vmcb
->save
.ds
;
2525 hsave
->save
.gdtr
= vmcb
->save
.gdtr
;
2526 hsave
->save
.idtr
= vmcb
->save
.idtr
;
2527 hsave
->save
.efer
= svm
->vcpu
.arch
.efer
;
2528 hsave
->save
.cr0
= kvm_read_cr0(&svm
->vcpu
);
2529 hsave
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
2530 hsave
->save
.rflags
= kvm_get_rflags(&svm
->vcpu
);
2531 hsave
->save
.rip
= kvm_rip_read(&svm
->vcpu
);
2532 hsave
->save
.rsp
= vmcb
->save
.rsp
;
2533 hsave
->save
.rax
= vmcb
->save
.rax
;
2535 hsave
->save
.cr3
= vmcb
->save
.cr3
;
2537 hsave
->save
.cr3
= kvm_read_cr3(&svm
->vcpu
);
2539 copy_vmcb_control_area(hsave
, vmcb
);
2541 if (kvm_get_rflags(&svm
->vcpu
) & X86_EFLAGS_IF
)
2542 svm
->vcpu
.arch
.hflags
|= HF_HIF_MASK
;
2544 svm
->vcpu
.arch
.hflags
&= ~HF_HIF_MASK
;
2546 if (nested_vmcb
->control
.nested_ctl
) {
2547 kvm_mmu_unload(&svm
->vcpu
);
2548 svm
->nested
.nested_cr3
= nested_vmcb
->control
.nested_cr3
;
2549 nested_svm_init_mmu_context(&svm
->vcpu
);
2552 /* Load the nested guest state */
2553 svm
->vmcb
->save
.es
= nested_vmcb
->save
.es
;
2554 svm
->vmcb
->save
.cs
= nested_vmcb
->save
.cs
;
2555 svm
->vmcb
->save
.ss
= nested_vmcb
->save
.ss
;
2556 svm
->vmcb
->save
.ds
= nested_vmcb
->save
.ds
;
2557 svm
->vmcb
->save
.gdtr
= nested_vmcb
->save
.gdtr
;
2558 svm
->vmcb
->save
.idtr
= nested_vmcb
->save
.idtr
;
2559 kvm_set_rflags(&svm
->vcpu
, nested_vmcb
->save
.rflags
);
2560 svm_set_efer(&svm
->vcpu
, nested_vmcb
->save
.efer
);
2561 svm_set_cr0(&svm
->vcpu
, nested_vmcb
->save
.cr0
);
2562 svm_set_cr4(&svm
->vcpu
, nested_vmcb
->save
.cr4
);
2564 svm
->vmcb
->save
.cr3
= nested_vmcb
->save
.cr3
;
2565 svm
->vcpu
.arch
.cr3
= nested_vmcb
->save
.cr3
;
2567 (void)kvm_set_cr3(&svm
->vcpu
, nested_vmcb
->save
.cr3
);
2569 /* Guest paging mode is active - reset mmu */
2570 kvm_mmu_reset_context(&svm
->vcpu
);
2572 svm
->vmcb
->save
.cr2
= svm
->vcpu
.arch
.cr2
= nested_vmcb
->save
.cr2
;
2573 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, nested_vmcb
->save
.rax
);
2574 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, nested_vmcb
->save
.rsp
);
2575 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, nested_vmcb
->save
.rip
);
2577 /* In case we don't even reach vcpu_run, the fields are not updated */
2578 svm
->vmcb
->save
.rax
= nested_vmcb
->save
.rax
;
2579 svm
->vmcb
->save
.rsp
= nested_vmcb
->save
.rsp
;
2580 svm
->vmcb
->save
.rip
= nested_vmcb
->save
.rip
;
2581 svm
->vmcb
->save
.dr7
= nested_vmcb
->save
.dr7
;
2582 svm
->vmcb
->save
.dr6
= nested_vmcb
->save
.dr6
;
2583 svm
->vmcb
->save
.cpl
= nested_vmcb
->save
.cpl
;
2585 svm
->nested
.vmcb_msrpm
= nested_vmcb
->control
.msrpm_base_pa
& ~0x0fffULL
;
2586 svm
->nested
.vmcb_iopm
= nested_vmcb
->control
.iopm_base_pa
& ~0x0fffULL
;
2588 /* cache intercepts */
2589 svm
->nested
.intercept_cr
= nested_vmcb
->control
.intercept_cr
;
2590 svm
->nested
.intercept_dr
= nested_vmcb
->control
.intercept_dr
;
2591 svm
->nested
.intercept_exceptions
= nested_vmcb
->control
.intercept_exceptions
;
2592 svm
->nested
.intercept
= nested_vmcb
->control
.intercept
;
2594 svm_flush_tlb(&svm
->vcpu
);
2595 svm
->vmcb
->control
.int_ctl
= nested_vmcb
->control
.int_ctl
| V_INTR_MASKING_MASK
;
2596 if (nested_vmcb
->control
.int_ctl
& V_INTR_MASKING_MASK
)
2597 svm
->vcpu
.arch
.hflags
|= HF_VINTR_MASK
;
2599 svm
->vcpu
.arch
.hflags
&= ~HF_VINTR_MASK
;
2601 if (svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
) {
2602 /* We only want the cr8 intercept bits of the guest */
2603 clr_cr_intercept(svm
, INTERCEPT_CR8_READ
);
2604 clr_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
2607 /* We don't want to see VMMCALLs from a nested guest */
2608 clr_intercept(svm
, INTERCEPT_VMMCALL
);
2610 svm
->vmcb
->control
.lbr_ctl
= nested_vmcb
->control
.lbr_ctl
;
2611 svm
->vmcb
->control
.int_vector
= nested_vmcb
->control
.int_vector
;
2612 svm
->vmcb
->control
.int_state
= nested_vmcb
->control
.int_state
;
2613 svm
->vmcb
->control
.tsc_offset
+= nested_vmcb
->control
.tsc_offset
;
2614 svm
->vmcb
->control
.event_inj
= nested_vmcb
->control
.event_inj
;
2615 svm
->vmcb
->control
.event_inj_err
= nested_vmcb
->control
.event_inj_err
;
2617 nested_svm_unmap(page
);
2619 /* Enter Guest-Mode */
2620 enter_guest_mode(&svm
->vcpu
);
2623 * Merge guest and host intercepts - must be called with vcpu in
2624 * guest-mode to take affect here
2626 recalc_intercepts(svm
);
2628 svm
->nested
.vmcb
= vmcb_gpa
;
2632 mark_all_dirty(svm
->vmcb
);
2637 static void nested_svm_vmloadsave(struct vmcb
*from_vmcb
, struct vmcb
*to_vmcb
)
2639 to_vmcb
->save
.fs
= from_vmcb
->save
.fs
;
2640 to_vmcb
->save
.gs
= from_vmcb
->save
.gs
;
2641 to_vmcb
->save
.tr
= from_vmcb
->save
.tr
;
2642 to_vmcb
->save
.ldtr
= from_vmcb
->save
.ldtr
;
2643 to_vmcb
->save
.kernel_gs_base
= from_vmcb
->save
.kernel_gs_base
;
2644 to_vmcb
->save
.star
= from_vmcb
->save
.star
;
2645 to_vmcb
->save
.lstar
= from_vmcb
->save
.lstar
;
2646 to_vmcb
->save
.cstar
= from_vmcb
->save
.cstar
;
2647 to_vmcb
->save
.sfmask
= from_vmcb
->save
.sfmask
;
2648 to_vmcb
->save
.sysenter_cs
= from_vmcb
->save
.sysenter_cs
;
2649 to_vmcb
->save
.sysenter_esp
= from_vmcb
->save
.sysenter_esp
;
2650 to_vmcb
->save
.sysenter_eip
= from_vmcb
->save
.sysenter_eip
;
2653 static int vmload_interception(struct vcpu_svm
*svm
)
2655 struct vmcb
*nested_vmcb
;
2658 if (nested_svm_check_permissions(svm
))
2661 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
2665 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2666 skip_emulated_instruction(&svm
->vcpu
);
2668 nested_svm_vmloadsave(nested_vmcb
, svm
->vmcb
);
2669 nested_svm_unmap(page
);
2674 static int vmsave_interception(struct vcpu_svm
*svm
)
2676 struct vmcb
*nested_vmcb
;
2679 if (nested_svm_check_permissions(svm
))
2682 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
2686 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2687 skip_emulated_instruction(&svm
->vcpu
);
2689 nested_svm_vmloadsave(svm
->vmcb
, nested_vmcb
);
2690 nested_svm_unmap(page
);
2695 static int vmrun_interception(struct vcpu_svm
*svm
)
2697 if (nested_svm_check_permissions(svm
))
2700 /* Save rip after vmrun instruction */
2701 kvm_rip_write(&svm
->vcpu
, kvm_rip_read(&svm
->vcpu
) + 3);
2703 if (!nested_svm_vmrun(svm
))
2706 if (!nested_svm_vmrun_msrpm(svm
))
2713 svm
->vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
2714 svm
->vmcb
->control
.exit_code_hi
= 0;
2715 svm
->vmcb
->control
.exit_info_1
= 0;
2716 svm
->vmcb
->control
.exit_info_2
= 0;
2718 nested_svm_vmexit(svm
);
2723 static int stgi_interception(struct vcpu_svm
*svm
)
2725 if (nested_svm_check_permissions(svm
))
2728 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2729 skip_emulated_instruction(&svm
->vcpu
);
2730 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
2737 static int clgi_interception(struct vcpu_svm
*svm
)
2739 if (nested_svm_check_permissions(svm
))
2742 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2743 skip_emulated_instruction(&svm
->vcpu
);
2747 /* After a CLGI no interrupts should come */
2748 svm_clear_vintr(svm
);
2749 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
2751 mark_dirty(svm
->vmcb
, VMCB_INTR
);
2756 static int invlpga_interception(struct vcpu_svm
*svm
)
2758 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
2760 trace_kvm_invlpga(svm
->vmcb
->save
.rip
, kvm_register_read(&svm
->vcpu
, VCPU_REGS_RCX
),
2761 kvm_register_read(&svm
->vcpu
, VCPU_REGS_RAX
));
2763 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2764 kvm_mmu_invlpg(vcpu
, kvm_register_read(&svm
->vcpu
, VCPU_REGS_RAX
));
2766 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2767 skip_emulated_instruction(&svm
->vcpu
);
2771 static int skinit_interception(struct vcpu_svm
*svm
)
2773 trace_kvm_skinit(svm
->vmcb
->save
.rip
, kvm_register_read(&svm
->vcpu
, VCPU_REGS_RAX
));
2775 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2779 static int wbinvd_interception(struct vcpu_svm
*svm
)
2781 kvm_emulate_wbinvd(&svm
->vcpu
);
2785 static int xsetbv_interception(struct vcpu_svm
*svm
)
2787 u64 new_bv
= kvm_read_edx_eax(&svm
->vcpu
);
2788 u32 index
= kvm_register_read(&svm
->vcpu
, VCPU_REGS_RCX
);
2790 if (kvm_set_xcr(&svm
->vcpu
, index
, new_bv
) == 0) {
2791 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2792 skip_emulated_instruction(&svm
->vcpu
);
2798 static int task_switch_interception(struct vcpu_svm
*svm
)
2802 int int_type
= svm
->vmcb
->control
.exit_int_info
&
2803 SVM_EXITINTINFO_TYPE_MASK
;
2804 int int_vec
= svm
->vmcb
->control
.exit_int_info
& SVM_EVTINJ_VEC_MASK
;
2806 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_TYPE_MASK
;
2808 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_VALID
;
2809 bool has_error_code
= false;
2812 tss_selector
= (u16
)svm
->vmcb
->control
.exit_info_1
;
2814 if (svm
->vmcb
->control
.exit_info_2
&
2815 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET
))
2816 reason
= TASK_SWITCH_IRET
;
2817 else if (svm
->vmcb
->control
.exit_info_2
&
2818 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP
))
2819 reason
= TASK_SWITCH_JMP
;
2821 reason
= TASK_SWITCH_GATE
;
2823 reason
= TASK_SWITCH_CALL
;
2825 if (reason
== TASK_SWITCH_GATE
) {
2827 case SVM_EXITINTINFO_TYPE_NMI
:
2828 svm
->vcpu
.arch
.nmi_injected
= false;
2830 case SVM_EXITINTINFO_TYPE_EXEPT
:
2831 if (svm
->vmcb
->control
.exit_info_2
&
2832 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE
)) {
2833 has_error_code
= true;
2835 (u32
)svm
->vmcb
->control
.exit_info_2
;
2837 kvm_clear_exception_queue(&svm
->vcpu
);
2839 case SVM_EXITINTINFO_TYPE_INTR
:
2840 kvm_clear_interrupt_queue(&svm
->vcpu
);
2847 if (reason
!= TASK_SWITCH_GATE
||
2848 int_type
== SVM_EXITINTINFO_TYPE_SOFT
||
2849 (int_type
== SVM_EXITINTINFO_TYPE_EXEPT
&&
2850 (int_vec
== OF_VECTOR
|| int_vec
== BP_VECTOR
)))
2851 skip_emulated_instruction(&svm
->vcpu
);
2853 if (int_type
!= SVM_EXITINTINFO_TYPE_SOFT
)
2856 if (kvm_task_switch(&svm
->vcpu
, tss_selector
, int_vec
, reason
,
2857 has_error_code
, error_code
) == EMULATE_FAIL
) {
2858 svm
->vcpu
.run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
2859 svm
->vcpu
.run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
2860 svm
->vcpu
.run
->internal
.ndata
= 0;
2866 static int cpuid_interception(struct vcpu_svm
*svm
)
2868 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2869 kvm_emulate_cpuid(&svm
->vcpu
);
2873 static int iret_interception(struct vcpu_svm
*svm
)
2875 ++svm
->vcpu
.stat
.nmi_window_exits
;
2876 clr_intercept(svm
, INTERCEPT_IRET
);
2877 svm
->vcpu
.arch
.hflags
|= HF_IRET_MASK
;
2878 svm
->nmi_iret_rip
= kvm_rip_read(&svm
->vcpu
);
2879 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
2883 static int invlpg_interception(struct vcpu_svm
*svm
)
2885 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS
))
2886 return emulate_instruction(&svm
->vcpu
, 0) == EMULATE_DONE
;
2888 kvm_mmu_invlpg(&svm
->vcpu
, svm
->vmcb
->control
.exit_info_1
);
2889 skip_emulated_instruction(&svm
->vcpu
);
2893 static int emulate_on_interception(struct vcpu_svm
*svm
)
2895 return emulate_instruction(&svm
->vcpu
, 0) == EMULATE_DONE
;
2898 static int rdpmc_interception(struct vcpu_svm
*svm
)
2902 if (!static_cpu_has(X86_FEATURE_NRIPS
))
2903 return emulate_on_interception(svm
);
2905 err
= kvm_rdpmc(&svm
->vcpu
);
2906 kvm_complete_insn_gp(&svm
->vcpu
, err
);
2911 static bool check_selective_cr0_intercepted(struct vcpu_svm
*svm
,
2914 unsigned long cr0
= svm
->vcpu
.arch
.cr0
;
2918 intercept
= svm
->nested
.intercept
;
2920 if (!is_guest_mode(&svm
->vcpu
) ||
2921 (!(intercept
& (1ULL << INTERCEPT_SELECTIVE_CR0
))))
2924 cr0
&= ~SVM_CR0_SELECTIVE_MASK
;
2925 val
&= ~SVM_CR0_SELECTIVE_MASK
;
2928 svm
->vmcb
->control
.exit_code
= SVM_EXIT_CR0_SEL_WRITE
;
2929 ret
= (nested_svm_exit_handled(svm
) == NESTED_EXIT_DONE
);
2935 #define CR_VALID (1ULL << 63)
2937 static int cr_interception(struct vcpu_svm
*svm
)
2943 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS
))
2944 return emulate_on_interception(svm
);
2946 if (unlikely((svm
->vmcb
->control
.exit_info_1
& CR_VALID
) == 0))
2947 return emulate_on_interception(svm
);
2949 reg
= svm
->vmcb
->control
.exit_info_1
& SVM_EXITINFO_REG_MASK
;
2950 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_CR0_SEL_WRITE
)
2951 cr
= SVM_EXIT_WRITE_CR0
- SVM_EXIT_READ_CR0
;
2953 cr
= svm
->vmcb
->control
.exit_code
- SVM_EXIT_READ_CR0
;
2956 if (cr
>= 16) { /* mov to cr */
2958 val
= kvm_register_read(&svm
->vcpu
, reg
);
2961 if (!check_selective_cr0_intercepted(svm
, val
))
2962 err
= kvm_set_cr0(&svm
->vcpu
, val
);
2968 err
= kvm_set_cr3(&svm
->vcpu
, val
);
2971 err
= kvm_set_cr4(&svm
->vcpu
, val
);
2974 err
= kvm_set_cr8(&svm
->vcpu
, val
);
2977 WARN(1, "unhandled write to CR%d", cr
);
2978 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2981 } else { /* mov from cr */
2984 val
= kvm_read_cr0(&svm
->vcpu
);
2987 val
= svm
->vcpu
.arch
.cr2
;
2990 val
= kvm_read_cr3(&svm
->vcpu
);
2993 val
= kvm_read_cr4(&svm
->vcpu
);
2996 val
= kvm_get_cr8(&svm
->vcpu
);
2999 WARN(1, "unhandled read from CR%d", cr
);
3000 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
3003 kvm_register_write(&svm
->vcpu
, reg
, val
);
3005 kvm_complete_insn_gp(&svm
->vcpu
, err
);
3010 static int dr_interception(struct vcpu_svm
*svm
)
3015 if (svm
->vcpu
.guest_debug
== 0) {
3017 * No more DR vmexits; force a reload of the debug registers
3018 * and reenter on this instruction. The next vmexit will
3019 * retrieve the full state of the debug registers.
3021 clr_dr_intercepts(svm
);
3022 svm
->vcpu
.arch
.switch_db_regs
|= KVM_DEBUGREG_WONT_EXIT
;
3026 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS
))
3027 return emulate_on_interception(svm
);
3029 reg
= svm
->vmcb
->control
.exit_info_1
& SVM_EXITINFO_REG_MASK
;
3030 dr
= svm
->vmcb
->control
.exit_code
- SVM_EXIT_READ_DR0
;
3032 if (dr
>= 16) { /* mov to DRn */
3033 if (!kvm_require_dr(&svm
->vcpu
, dr
- 16))
3035 val
= kvm_register_read(&svm
->vcpu
, reg
);
3036 kvm_set_dr(&svm
->vcpu
, dr
- 16, val
);
3038 if (!kvm_require_dr(&svm
->vcpu
, dr
))
3040 kvm_get_dr(&svm
->vcpu
, dr
, &val
);
3041 kvm_register_write(&svm
->vcpu
, reg
, val
);
3044 skip_emulated_instruction(&svm
->vcpu
);
3049 static int cr8_write_interception(struct vcpu_svm
*svm
)
3051 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
3054 u8 cr8_prev
= kvm_get_cr8(&svm
->vcpu
);
3055 /* instruction emulation calls kvm_set_cr8() */
3056 r
= cr_interception(svm
);
3057 if (irqchip_in_kernel(svm
->vcpu
.kvm
))
3059 if (cr8_prev
<= kvm_get_cr8(&svm
->vcpu
))
3061 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
3065 static u64
svm_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
3067 struct vmcb
*vmcb
= get_host_vmcb(to_svm(vcpu
));
3068 return vmcb
->control
.tsc_offset
+
3069 svm_scale_tsc(vcpu
, host_tsc
);
3072 static int svm_get_msr(struct kvm_vcpu
*vcpu
, unsigned ecx
, u64
*data
)
3074 struct vcpu_svm
*svm
= to_svm(vcpu
);
3077 case MSR_IA32_TSC
: {
3078 *data
= svm
->vmcb
->control
.tsc_offset
+
3079 svm_scale_tsc(vcpu
, native_read_tsc());
3084 *data
= svm
->vmcb
->save
.star
;
3086 #ifdef CONFIG_X86_64
3088 *data
= svm
->vmcb
->save
.lstar
;
3091 *data
= svm
->vmcb
->save
.cstar
;
3093 case MSR_KERNEL_GS_BASE
:
3094 *data
= svm
->vmcb
->save
.kernel_gs_base
;
3096 case MSR_SYSCALL_MASK
:
3097 *data
= svm
->vmcb
->save
.sfmask
;
3100 case MSR_IA32_SYSENTER_CS
:
3101 *data
= svm
->vmcb
->save
.sysenter_cs
;
3103 case MSR_IA32_SYSENTER_EIP
:
3104 *data
= svm
->sysenter_eip
;
3106 case MSR_IA32_SYSENTER_ESP
:
3107 *data
= svm
->sysenter_esp
;
3110 * Nobody will change the following 5 values in the VMCB so we can
3111 * safely return them on rdmsr. They will always be 0 until LBRV is
3114 case MSR_IA32_DEBUGCTLMSR
:
3115 *data
= svm
->vmcb
->save
.dbgctl
;
3117 case MSR_IA32_LASTBRANCHFROMIP
:
3118 *data
= svm
->vmcb
->save
.br_from
;
3120 case MSR_IA32_LASTBRANCHTOIP
:
3121 *data
= svm
->vmcb
->save
.br_to
;
3123 case MSR_IA32_LASTINTFROMIP
:
3124 *data
= svm
->vmcb
->save
.last_excp_from
;
3126 case MSR_IA32_LASTINTTOIP
:
3127 *data
= svm
->vmcb
->save
.last_excp_to
;
3129 case MSR_VM_HSAVE_PA
:
3130 *data
= svm
->nested
.hsave_msr
;
3133 *data
= svm
->nested
.vm_cr_msr
;
3135 case MSR_IA32_UCODE_REV
:
3139 return kvm_get_msr_common(vcpu
, ecx
, data
);
3144 static int rdmsr_interception(struct vcpu_svm
*svm
)
3146 u32 ecx
= kvm_register_read(&svm
->vcpu
, VCPU_REGS_RCX
);
3149 if (svm_get_msr(&svm
->vcpu
, ecx
, &data
)) {
3150 trace_kvm_msr_read_ex(ecx
);
3151 kvm_inject_gp(&svm
->vcpu
, 0);
3153 trace_kvm_msr_read(ecx
, data
);
3155 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, data
& 0xffffffff);
3156 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RDX
, data
>> 32);
3157 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
3158 skip_emulated_instruction(&svm
->vcpu
);
3163 static int svm_set_vm_cr(struct kvm_vcpu
*vcpu
, u64 data
)
3165 struct vcpu_svm
*svm
= to_svm(vcpu
);
3166 int svm_dis
, chg_mask
;
3168 if (data
& ~SVM_VM_CR_VALID_MASK
)
3171 chg_mask
= SVM_VM_CR_VALID_MASK
;
3173 if (svm
->nested
.vm_cr_msr
& SVM_VM_CR_SVM_DIS_MASK
)
3174 chg_mask
&= ~(SVM_VM_CR_SVM_LOCK_MASK
| SVM_VM_CR_SVM_DIS_MASK
);
3176 svm
->nested
.vm_cr_msr
&= ~chg_mask
;
3177 svm
->nested
.vm_cr_msr
|= (data
& chg_mask
);
3179 svm_dis
= svm
->nested
.vm_cr_msr
& SVM_VM_CR_SVM_DIS_MASK
;
3181 /* check for svm_disable while efer.svme is set */
3182 if (svm_dis
&& (vcpu
->arch
.efer
& EFER_SVME
))
3188 static int svm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
3190 struct vcpu_svm
*svm
= to_svm(vcpu
);
3192 u32 ecx
= msr
->index
;
3193 u64 data
= msr
->data
;
3196 kvm_write_tsc(vcpu
, msr
);
3199 svm
->vmcb
->save
.star
= data
;
3201 #ifdef CONFIG_X86_64
3203 svm
->vmcb
->save
.lstar
= data
;
3206 svm
->vmcb
->save
.cstar
= data
;
3208 case MSR_KERNEL_GS_BASE
:
3209 svm
->vmcb
->save
.kernel_gs_base
= data
;
3211 case MSR_SYSCALL_MASK
:
3212 svm
->vmcb
->save
.sfmask
= data
;
3215 case MSR_IA32_SYSENTER_CS
:
3216 svm
->vmcb
->save
.sysenter_cs
= data
;
3218 case MSR_IA32_SYSENTER_EIP
:
3219 svm
->sysenter_eip
= data
;
3220 svm
->vmcb
->save
.sysenter_eip
= data
;
3222 case MSR_IA32_SYSENTER_ESP
:
3223 svm
->sysenter_esp
= data
;
3224 svm
->vmcb
->save
.sysenter_esp
= data
;
3226 case MSR_IA32_DEBUGCTLMSR
:
3227 if (!boot_cpu_has(X86_FEATURE_LBRV
)) {
3228 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3232 if (data
& DEBUGCTL_RESERVED_BITS
)
3235 svm
->vmcb
->save
.dbgctl
= data
;
3236 mark_dirty(svm
->vmcb
, VMCB_LBR
);
3237 if (data
& (1ULL<<0))
3238 svm_enable_lbrv(svm
);
3240 svm_disable_lbrv(svm
);
3242 case MSR_VM_HSAVE_PA
:
3243 svm
->nested
.hsave_msr
= data
;
3246 return svm_set_vm_cr(vcpu
, data
);
3248 vcpu_unimpl(vcpu
, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx
, data
);
3251 return kvm_set_msr_common(vcpu
, msr
);
3256 static int wrmsr_interception(struct vcpu_svm
*svm
)
3258 struct msr_data msr
;
3259 u32 ecx
= kvm_register_read(&svm
->vcpu
, VCPU_REGS_RCX
);
3260 u64 data
= kvm_read_edx_eax(&svm
->vcpu
);
3264 msr
.host_initiated
= false;
3266 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
3267 if (kvm_set_msr(&svm
->vcpu
, &msr
)) {
3268 trace_kvm_msr_write_ex(ecx
, data
);
3269 kvm_inject_gp(&svm
->vcpu
, 0);
3271 trace_kvm_msr_write(ecx
, data
);
3272 skip_emulated_instruction(&svm
->vcpu
);
3277 static int msr_interception(struct vcpu_svm
*svm
)
3279 if (svm
->vmcb
->control
.exit_info_1
)
3280 return wrmsr_interception(svm
);
3282 return rdmsr_interception(svm
);
3285 static int interrupt_window_interception(struct vcpu_svm
*svm
)
3287 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
3289 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3290 svm_clear_vintr(svm
);
3291 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
3292 mark_dirty(svm
->vmcb
, VMCB_INTR
);
3293 ++svm
->vcpu
.stat
.irq_window_exits
;
3295 * If the user space waits to inject interrupts, exit as soon as
3298 if (!irqchip_in_kernel(svm
->vcpu
.kvm
) &&
3299 kvm_run
->request_interrupt_window
&&
3300 !kvm_cpu_has_interrupt(&svm
->vcpu
)) {
3301 kvm_run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
3308 static int pause_interception(struct vcpu_svm
*svm
)
3310 kvm_vcpu_on_spin(&(svm
->vcpu
));
3314 static int nop_interception(struct vcpu_svm
*svm
)
3316 skip_emulated_instruction(&(svm
->vcpu
));
3320 static int monitor_interception(struct vcpu_svm
*svm
)
3322 printk_once(KERN_WARNING
"kvm: MONITOR instruction emulated as NOP!\n");
3323 return nop_interception(svm
);
3326 static int mwait_interception(struct vcpu_svm
*svm
)
3328 printk_once(KERN_WARNING
"kvm: MWAIT instruction emulated as NOP!\n");
3329 return nop_interception(svm
);
3332 static int (*const svm_exit_handlers
[])(struct vcpu_svm
*svm
) = {
3333 [SVM_EXIT_READ_CR0
] = cr_interception
,
3334 [SVM_EXIT_READ_CR3
] = cr_interception
,
3335 [SVM_EXIT_READ_CR4
] = cr_interception
,
3336 [SVM_EXIT_READ_CR8
] = cr_interception
,
3337 [SVM_EXIT_CR0_SEL_WRITE
] = cr_interception
,
3338 [SVM_EXIT_WRITE_CR0
] = cr_interception
,
3339 [SVM_EXIT_WRITE_CR3
] = cr_interception
,
3340 [SVM_EXIT_WRITE_CR4
] = cr_interception
,
3341 [SVM_EXIT_WRITE_CR8
] = cr8_write_interception
,
3342 [SVM_EXIT_READ_DR0
] = dr_interception
,
3343 [SVM_EXIT_READ_DR1
] = dr_interception
,
3344 [SVM_EXIT_READ_DR2
] = dr_interception
,
3345 [SVM_EXIT_READ_DR3
] = dr_interception
,
3346 [SVM_EXIT_READ_DR4
] = dr_interception
,
3347 [SVM_EXIT_READ_DR5
] = dr_interception
,
3348 [SVM_EXIT_READ_DR6
] = dr_interception
,
3349 [SVM_EXIT_READ_DR7
] = dr_interception
,
3350 [SVM_EXIT_WRITE_DR0
] = dr_interception
,
3351 [SVM_EXIT_WRITE_DR1
] = dr_interception
,
3352 [SVM_EXIT_WRITE_DR2
] = dr_interception
,
3353 [SVM_EXIT_WRITE_DR3
] = dr_interception
,
3354 [SVM_EXIT_WRITE_DR4
] = dr_interception
,
3355 [SVM_EXIT_WRITE_DR5
] = dr_interception
,
3356 [SVM_EXIT_WRITE_DR6
] = dr_interception
,
3357 [SVM_EXIT_WRITE_DR7
] = dr_interception
,
3358 [SVM_EXIT_EXCP_BASE
+ DB_VECTOR
] = db_interception
,
3359 [SVM_EXIT_EXCP_BASE
+ BP_VECTOR
] = bp_interception
,
3360 [SVM_EXIT_EXCP_BASE
+ UD_VECTOR
] = ud_interception
,
3361 [SVM_EXIT_EXCP_BASE
+ PF_VECTOR
] = pf_interception
,
3362 [SVM_EXIT_EXCP_BASE
+ NM_VECTOR
] = nm_interception
,
3363 [SVM_EXIT_EXCP_BASE
+ MC_VECTOR
] = mc_interception
,
3364 [SVM_EXIT_INTR
] = intr_interception
,
3365 [SVM_EXIT_NMI
] = nmi_interception
,
3366 [SVM_EXIT_SMI
] = nop_on_interception
,
3367 [SVM_EXIT_INIT
] = nop_on_interception
,
3368 [SVM_EXIT_VINTR
] = interrupt_window_interception
,
3369 [SVM_EXIT_RDPMC
] = rdpmc_interception
,
3370 [SVM_EXIT_CPUID
] = cpuid_interception
,
3371 [SVM_EXIT_IRET
] = iret_interception
,
3372 [SVM_EXIT_INVD
] = emulate_on_interception
,
3373 [SVM_EXIT_PAUSE
] = pause_interception
,
3374 [SVM_EXIT_HLT
] = halt_interception
,
3375 [SVM_EXIT_INVLPG
] = invlpg_interception
,
3376 [SVM_EXIT_INVLPGA
] = invlpga_interception
,
3377 [SVM_EXIT_IOIO
] = io_interception
,
3378 [SVM_EXIT_MSR
] = msr_interception
,
3379 [SVM_EXIT_TASK_SWITCH
] = task_switch_interception
,
3380 [SVM_EXIT_SHUTDOWN
] = shutdown_interception
,
3381 [SVM_EXIT_VMRUN
] = vmrun_interception
,
3382 [SVM_EXIT_VMMCALL
] = vmmcall_interception
,
3383 [SVM_EXIT_VMLOAD
] = vmload_interception
,
3384 [SVM_EXIT_VMSAVE
] = vmsave_interception
,
3385 [SVM_EXIT_STGI
] = stgi_interception
,
3386 [SVM_EXIT_CLGI
] = clgi_interception
,
3387 [SVM_EXIT_SKINIT
] = skinit_interception
,
3388 [SVM_EXIT_WBINVD
] = wbinvd_interception
,
3389 [SVM_EXIT_MONITOR
] = monitor_interception
,
3390 [SVM_EXIT_MWAIT
] = mwait_interception
,
3391 [SVM_EXIT_XSETBV
] = xsetbv_interception
,
3392 [SVM_EXIT_NPF
] = pf_interception
,
3395 static void dump_vmcb(struct kvm_vcpu
*vcpu
)
3397 struct vcpu_svm
*svm
= to_svm(vcpu
);
3398 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
3399 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
3401 pr_err("VMCB Control Area:\n");
3402 pr_err("%-20s%04x\n", "cr_read:", control
->intercept_cr
& 0xffff);
3403 pr_err("%-20s%04x\n", "cr_write:", control
->intercept_cr
>> 16);
3404 pr_err("%-20s%04x\n", "dr_read:", control
->intercept_dr
& 0xffff);
3405 pr_err("%-20s%04x\n", "dr_write:", control
->intercept_dr
>> 16);
3406 pr_err("%-20s%08x\n", "exceptions:", control
->intercept_exceptions
);
3407 pr_err("%-20s%016llx\n", "intercepts:", control
->intercept
);
3408 pr_err("%-20s%d\n", "pause filter count:", control
->pause_filter_count
);
3409 pr_err("%-20s%016llx\n", "iopm_base_pa:", control
->iopm_base_pa
);
3410 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control
->msrpm_base_pa
);
3411 pr_err("%-20s%016llx\n", "tsc_offset:", control
->tsc_offset
);
3412 pr_err("%-20s%d\n", "asid:", control
->asid
);
3413 pr_err("%-20s%d\n", "tlb_ctl:", control
->tlb_ctl
);
3414 pr_err("%-20s%08x\n", "int_ctl:", control
->int_ctl
);
3415 pr_err("%-20s%08x\n", "int_vector:", control
->int_vector
);
3416 pr_err("%-20s%08x\n", "int_state:", control
->int_state
);
3417 pr_err("%-20s%08x\n", "exit_code:", control
->exit_code
);
3418 pr_err("%-20s%016llx\n", "exit_info1:", control
->exit_info_1
);
3419 pr_err("%-20s%016llx\n", "exit_info2:", control
->exit_info_2
);
3420 pr_err("%-20s%08x\n", "exit_int_info:", control
->exit_int_info
);
3421 pr_err("%-20s%08x\n", "exit_int_info_err:", control
->exit_int_info_err
);
3422 pr_err("%-20s%lld\n", "nested_ctl:", control
->nested_ctl
);
3423 pr_err("%-20s%016llx\n", "nested_cr3:", control
->nested_cr3
);
3424 pr_err("%-20s%08x\n", "event_inj:", control
->event_inj
);
3425 pr_err("%-20s%08x\n", "event_inj_err:", control
->event_inj_err
);
3426 pr_err("%-20s%lld\n", "lbr_ctl:", control
->lbr_ctl
);
3427 pr_err("%-20s%016llx\n", "next_rip:", control
->next_rip
);
3428 pr_err("VMCB State Save Area:\n");
3429 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3431 save
->es
.selector
, save
->es
.attrib
,
3432 save
->es
.limit
, save
->es
.base
);
3433 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3435 save
->cs
.selector
, save
->cs
.attrib
,
3436 save
->cs
.limit
, save
->cs
.base
);
3437 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3439 save
->ss
.selector
, save
->ss
.attrib
,
3440 save
->ss
.limit
, save
->ss
.base
);
3441 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3443 save
->ds
.selector
, save
->ds
.attrib
,
3444 save
->ds
.limit
, save
->ds
.base
);
3445 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3447 save
->fs
.selector
, save
->fs
.attrib
,
3448 save
->fs
.limit
, save
->fs
.base
);
3449 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3451 save
->gs
.selector
, save
->gs
.attrib
,
3452 save
->gs
.limit
, save
->gs
.base
);
3453 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3455 save
->gdtr
.selector
, save
->gdtr
.attrib
,
3456 save
->gdtr
.limit
, save
->gdtr
.base
);
3457 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3459 save
->ldtr
.selector
, save
->ldtr
.attrib
,
3460 save
->ldtr
.limit
, save
->ldtr
.base
);
3461 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3463 save
->idtr
.selector
, save
->idtr
.attrib
,
3464 save
->idtr
.limit
, save
->idtr
.base
);
3465 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3467 save
->tr
.selector
, save
->tr
.attrib
,
3468 save
->tr
.limit
, save
->tr
.base
);
3469 pr_err("cpl: %d efer: %016llx\n",
3470 save
->cpl
, save
->efer
);
3471 pr_err("%-15s %016llx %-13s %016llx\n",
3472 "cr0:", save
->cr0
, "cr2:", save
->cr2
);
3473 pr_err("%-15s %016llx %-13s %016llx\n",
3474 "cr3:", save
->cr3
, "cr4:", save
->cr4
);
3475 pr_err("%-15s %016llx %-13s %016llx\n",
3476 "dr6:", save
->dr6
, "dr7:", save
->dr7
);
3477 pr_err("%-15s %016llx %-13s %016llx\n",
3478 "rip:", save
->rip
, "rflags:", save
->rflags
);
3479 pr_err("%-15s %016llx %-13s %016llx\n",
3480 "rsp:", save
->rsp
, "rax:", save
->rax
);
3481 pr_err("%-15s %016llx %-13s %016llx\n",
3482 "star:", save
->star
, "lstar:", save
->lstar
);
3483 pr_err("%-15s %016llx %-13s %016llx\n",
3484 "cstar:", save
->cstar
, "sfmask:", save
->sfmask
);
3485 pr_err("%-15s %016llx %-13s %016llx\n",
3486 "kernel_gs_base:", save
->kernel_gs_base
,
3487 "sysenter_cs:", save
->sysenter_cs
);
3488 pr_err("%-15s %016llx %-13s %016llx\n",
3489 "sysenter_esp:", save
->sysenter_esp
,
3490 "sysenter_eip:", save
->sysenter_eip
);
3491 pr_err("%-15s %016llx %-13s %016llx\n",
3492 "gpat:", save
->g_pat
, "dbgctl:", save
->dbgctl
);
3493 pr_err("%-15s %016llx %-13s %016llx\n",
3494 "br_from:", save
->br_from
, "br_to:", save
->br_to
);
3495 pr_err("%-15s %016llx %-13s %016llx\n",
3496 "excp_from:", save
->last_excp_from
,
3497 "excp_to:", save
->last_excp_to
);
3500 static void svm_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
3502 struct vmcb_control_area
*control
= &to_svm(vcpu
)->vmcb
->control
;
3504 *info1
= control
->exit_info_1
;
3505 *info2
= control
->exit_info_2
;
3508 static int handle_exit(struct kvm_vcpu
*vcpu
)
3510 struct vcpu_svm
*svm
= to_svm(vcpu
);
3511 struct kvm_run
*kvm_run
= vcpu
->run
;
3512 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
3514 if (!is_cr_intercept(svm
, INTERCEPT_CR0_WRITE
))
3515 vcpu
->arch
.cr0
= svm
->vmcb
->save
.cr0
;
3517 vcpu
->arch
.cr3
= svm
->vmcb
->save
.cr3
;
3519 if (unlikely(svm
->nested
.exit_required
)) {
3520 nested_svm_vmexit(svm
);
3521 svm
->nested
.exit_required
= false;
3526 if (is_guest_mode(vcpu
)) {
3529 trace_kvm_nested_vmexit(svm
->vmcb
->save
.rip
, exit_code
,
3530 svm
->vmcb
->control
.exit_info_1
,
3531 svm
->vmcb
->control
.exit_info_2
,
3532 svm
->vmcb
->control
.exit_int_info
,
3533 svm
->vmcb
->control
.exit_int_info_err
,
3536 vmexit
= nested_svm_exit_special(svm
);
3538 if (vmexit
== NESTED_EXIT_CONTINUE
)
3539 vmexit
= nested_svm_exit_handled(svm
);
3541 if (vmexit
== NESTED_EXIT_DONE
)
3545 svm_complete_interrupts(svm
);
3547 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_ERR
) {
3548 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
3549 kvm_run
->fail_entry
.hardware_entry_failure_reason
3550 = svm
->vmcb
->control
.exit_code
;
3551 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3556 if (is_external_interrupt(svm
->vmcb
->control
.exit_int_info
) &&
3557 exit_code
!= SVM_EXIT_EXCP_BASE
+ PF_VECTOR
&&
3558 exit_code
!= SVM_EXIT_NPF
&& exit_code
!= SVM_EXIT_TASK_SWITCH
&&
3559 exit_code
!= SVM_EXIT_INTR
&& exit_code
!= SVM_EXIT_NMI
)
3560 printk(KERN_ERR
"%s: unexpected exit_int_info 0x%x "
3562 __func__
, svm
->vmcb
->control
.exit_int_info
,
3565 if (exit_code
>= ARRAY_SIZE(svm_exit_handlers
)
3566 || !svm_exit_handlers
[exit_code
]) {
3567 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code
);
3568 kvm_queue_exception(vcpu
, UD_VECTOR
);
3572 return svm_exit_handlers
[exit_code
](svm
);
3575 static void reload_tss(struct kvm_vcpu
*vcpu
)
3577 int cpu
= raw_smp_processor_id();
3579 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
3580 sd
->tss_desc
->type
= 9; /* available 32/64-bit TSS */
3584 static void pre_svm_run(struct vcpu_svm
*svm
)
3586 int cpu
= raw_smp_processor_id();
3588 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
3590 /* FIXME: handle wraparound of asid_generation */
3591 if (svm
->asid_generation
!= sd
->asid_generation
)
3595 static void svm_inject_nmi(struct kvm_vcpu
*vcpu
)
3597 struct vcpu_svm
*svm
= to_svm(vcpu
);
3599 svm
->vmcb
->control
.event_inj
= SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_NMI
;
3600 vcpu
->arch
.hflags
|= HF_NMI_MASK
;
3601 set_intercept(svm
, INTERCEPT_IRET
);
3602 ++vcpu
->stat
.nmi_injections
;
3605 static inline void svm_inject_irq(struct vcpu_svm
*svm
, int irq
)
3607 struct vmcb_control_area
*control
;
3609 control
= &svm
->vmcb
->control
;
3610 control
->int_vector
= irq
;
3611 control
->int_ctl
&= ~V_INTR_PRIO_MASK
;
3612 control
->int_ctl
|= V_IRQ_MASK
|
3613 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT
);
3614 mark_dirty(svm
->vmcb
, VMCB_INTR
);
3617 static void svm_set_irq(struct kvm_vcpu
*vcpu
)
3619 struct vcpu_svm
*svm
= to_svm(vcpu
);
3621 BUG_ON(!(gif_set(svm
)));
3623 trace_kvm_inj_virq(vcpu
->arch
.interrupt
.nr
);
3624 ++vcpu
->stat
.irq_injections
;
3626 svm
->vmcb
->control
.event_inj
= vcpu
->arch
.interrupt
.nr
|
3627 SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
;
3630 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
3632 struct vcpu_svm
*svm
= to_svm(vcpu
);
3634 if (is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
))
3637 clr_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
3643 set_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
3646 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu
*vcpu
, bool set
)
3651 static int svm_vm_has_apicv(struct kvm
*kvm
)
3656 static void svm_load_eoi_exitmap(struct kvm_vcpu
*vcpu
, u64
*eoi_exit_bitmap
)
3661 static void svm_sync_pir_to_irr(struct kvm_vcpu
*vcpu
)
3666 static int svm_nmi_allowed(struct kvm_vcpu
*vcpu
)
3668 struct vcpu_svm
*svm
= to_svm(vcpu
);
3669 struct vmcb
*vmcb
= svm
->vmcb
;
3671 ret
= !(vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
) &&
3672 !(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
3673 ret
= ret
&& gif_set(svm
) && nested_svm_nmi(svm
);
3678 static bool svm_get_nmi_mask(struct kvm_vcpu
*vcpu
)
3680 struct vcpu_svm
*svm
= to_svm(vcpu
);
3682 return !!(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
3685 static void svm_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
3687 struct vcpu_svm
*svm
= to_svm(vcpu
);
3690 svm
->vcpu
.arch
.hflags
|= HF_NMI_MASK
;
3691 set_intercept(svm
, INTERCEPT_IRET
);
3693 svm
->vcpu
.arch
.hflags
&= ~HF_NMI_MASK
;
3694 clr_intercept(svm
, INTERCEPT_IRET
);
3698 static int svm_interrupt_allowed(struct kvm_vcpu
*vcpu
)
3700 struct vcpu_svm
*svm
= to_svm(vcpu
);
3701 struct vmcb
*vmcb
= svm
->vmcb
;
3704 if (!gif_set(svm
) ||
3705 (vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
))
3708 ret
= !!(kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
);
3710 if (is_guest_mode(vcpu
))
3711 return ret
&& !(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
);
3716 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
3718 struct vcpu_svm
*svm
= to_svm(vcpu
);
3721 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3722 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3723 * get that intercept, this function will be called again though and
3724 * we'll get the vintr intercept.
3726 if (gif_set(svm
) && nested_svm_intr(svm
)) {
3728 svm_inject_irq(svm
, 0x0);
3732 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
3734 struct vcpu_svm
*svm
= to_svm(vcpu
);
3736 if ((svm
->vcpu
.arch
.hflags
& (HF_NMI_MASK
| HF_IRET_MASK
))
3738 return; /* IRET will cause a vm exit */
3741 * Something prevents NMI from been injected. Single step over possible
3742 * problem (IRET or exception injection or interrupt shadow)
3744 svm
->nmi_singlestep
= true;
3745 svm
->vmcb
->save
.rflags
|= (X86_EFLAGS_TF
| X86_EFLAGS_RF
);
3746 update_db_bp_intercept(vcpu
);
3749 static int svm_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
3754 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
)
3756 struct vcpu_svm
*svm
= to_svm(vcpu
);
3758 if (static_cpu_has(X86_FEATURE_FLUSHBYASID
))
3759 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ASID
;
3761 svm
->asid_generation
--;
3764 static void svm_prepare_guest_switch(struct kvm_vcpu
*vcpu
)
3768 static inline void sync_cr8_to_lapic(struct kvm_vcpu
*vcpu
)
3770 struct vcpu_svm
*svm
= to_svm(vcpu
);
3772 if (is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
))
3775 if (!is_cr_intercept(svm
, INTERCEPT_CR8_WRITE
)) {
3776 int cr8
= svm
->vmcb
->control
.int_ctl
& V_TPR_MASK
;
3777 kvm_set_cr8(vcpu
, cr8
);
3781 static inline void sync_lapic_to_cr8(struct kvm_vcpu
*vcpu
)
3783 struct vcpu_svm
*svm
= to_svm(vcpu
);
3786 if (is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
))
3789 cr8
= kvm_get_cr8(vcpu
);
3790 svm
->vmcb
->control
.int_ctl
&= ~V_TPR_MASK
;
3791 svm
->vmcb
->control
.int_ctl
|= cr8
& V_TPR_MASK
;
3794 static void svm_complete_interrupts(struct vcpu_svm
*svm
)
3798 u32 exitintinfo
= svm
->vmcb
->control
.exit_int_info
;
3799 unsigned int3_injected
= svm
->int3_injected
;
3801 svm
->int3_injected
= 0;
3804 * If we've made progress since setting HF_IRET_MASK, we've
3805 * executed an IRET and can allow NMI injection.
3807 if ((svm
->vcpu
.arch
.hflags
& HF_IRET_MASK
)
3808 && kvm_rip_read(&svm
->vcpu
) != svm
->nmi_iret_rip
) {
3809 svm
->vcpu
.arch
.hflags
&= ~(HF_NMI_MASK
| HF_IRET_MASK
);
3810 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3813 svm
->vcpu
.arch
.nmi_injected
= false;
3814 kvm_clear_exception_queue(&svm
->vcpu
);
3815 kvm_clear_interrupt_queue(&svm
->vcpu
);
3817 if (!(exitintinfo
& SVM_EXITINTINFO_VALID
))
3820 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3822 vector
= exitintinfo
& SVM_EXITINTINFO_VEC_MASK
;
3823 type
= exitintinfo
& SVM_EXITINTINFO_TYPE_MASK
;
3826 case SVM_EXITINTINFO_TYPE_NMI
:
3827 svm
->vcpu
.arch
.nmi_injected
= true;
3829 case SVM_EXITINTINFO_TYPE_EXEPT
:
3831 * In case of software exceptions, do not reinject the vector,
3832 * but re-execute the instruction instead. Rewind RIP first
3833 * if we emulated INT3 before.
3835 if (kvm_exception_is_soft(vector
)) {
3836 if (vector
== BP_VECTOR
&& int3_injected
&&
3837 kvm_is_linear_rip(&svm
->vcpu
, svm
->int3_rip
))
3838 kvm_rip_write(&svm
->vcpu
,
3839 kvm_rip_read(&svm
->vcpu
) -
3843 if (exitintinfo
& SVM_EXITINTINFO_VALID_ERR
) {
3844 u32 err
= svm
->vmcb
->control
.exit_int_info_err
;
3845 kvm_requeue_exception_e(&svm
->vcpu
, vector
, err
);
3848 kvm_requeue_exception(&svm
->vcpu
, vector
);
3850 case SVM_EXITINTINFO_TYPE_INTR
:
3851 kvm_queue_interrupt(&svm
->vcpu
, vector
, false);
3858 static void svm_cancel_injection(struct kvm_vcpu
*vcpu
)
3860 struct vcpu_svm
*svm
= to_svm(vcpu
);
3861 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
3863 control
->exit_int_info
= control
->event_inj
;
3864 control
->exit_int_info_err
= control
->event_inj_err
;
3865 control
->event_inj
= 0;
3866 svm_complete_interrupts(svm
);
3869 static void svm_vcpu_run(struct kvm_vcpu
*vcpu
)
3871 struct vcpu_svm
*svm
= to_svm(vcpu
);
3873 svm
->vmcb
->save
.rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
3874 svm
->vmcb
->save
.rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
3875 svm
->vmcb
->save
.rip
= vcpu
->arch
.regs
[VCPU_REGS_RIP
];
3878 * A vmexit emulation is required before the vcpu can be executed
3881 if (unlikely(svm
->nested
.exit_required
))
3886 sync_lapic_to_cr8(vcpu
);
3888 svm
->vmcb
->save
.cr2
= vcpu
->arch
.cr2
;
3895 "push %%" _ASM_BP
"; \n\t"
3896 "mov %c[rbx](%[svm]), %%" _ASM_BX
" \n\t"
3897 "mov %c[rcx](%[svm]), %%" _ASM_CX
" \n\t"
3898 "mov %c[rdx](%[svm]), %%" _ASM_DX
" \n\t"
3899 "mov %c[rsi](%[svm]), %%" _ASM_SI
" \n\t"
3900 "mov %c[rdi](%[svm]), %%" _ASM_DI
" \n\t"
3901 "mov %c[rbp](%[svm]), %%" _ASM_BP
" \n\t"
3902 #ifdef CONFIG_X86_64
3903 "mov %c[r8](%[svm]), %%r8 \n\t"
3904 "mov %c[r9](%[svm]), %%r9 \n\t"
3905 "mov %c[r10](%[svm]), %%r10 \n\t"
3906 "mov %c[r11](%[svm]), %%r11 \n\t"
3907 "mov %c[r12](%[svm]), %%r12 \n\t"
3908 "mov %c[r13](%[svm]), %%r13 \n\t"
3909 "mov %c[r14](%[svm]), %%r14 \n\t"
3910 "mov %c[r15](%[svm]), %%r15 \n\t"
3913 /* Enter guest mode */
3914 "push %%" _ASM_AX
" \n\t"
3915 "mov %c[vmcb](%[svm]), %%" _ASM_AX
" \n\t"
3916 __ex(SVM_VMLOAD
) "\n\t"
3917 __ex(SVM_VMRUN
) "\n\t"
3918 __ex(SVM_VMSAVE
) "\n\t"
3919 "pop %%" _ASM_AX
" \n\t"
3921 /* Save guest registers, load host registers */
3922 "mov %%" _ASM_BX
", %c[rbx](%[svm]) \n\t"
3923 "mov %%" _ASM_CX
", %c[rcx](%[svm]) \n\t"
3924 "mov %%" _ASM_DX
", %c[rdx](%[svm]) \n\t"
3925 "mov %%" _ASM_SI
", %c[rsi](%[svm]) \n\t"
3926 "mov %%" _ASM_DI
", %c[rdi](%[svm]) \n\t"
3927 "mov %%" _ASM_BP
", %c[rbp](%[svm]) \n\t"
3928 #ifdef CONFIG_X86_64
3929 "mov %%r8, %c[r8](%[svm]) \n\t"
3930 "mov %%r9, %c[r9](%[svm]) \n\t"
3931 "mov %%r10, %c[r10](%[svm]) \n\t"
3932 "mov %%r11, %c[r11](%[svm]) \n\t"
3933 "mov %%r12, %c[r12](%[svm]) \n\t"
3934 "mov %%r13, %c[r13](%[svm]) \n\t"
3935 "mov %%r14, %c[r14](%[svm]) \n\t"
3936 "mov %%r15, %c[r15](%[svm]) \n\t"
3941 [vmcb
]"i"(offsetof(struct vcpu_svm
, vmcb_pa
)),
3942 [rbx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
3943 [rcx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
3944 [rdx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
3945 [rsi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
3946 [rdi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
3947 [rbp
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBP
]))
3948 #ifdef CONFIG_X86_64
3949 , [r8
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
3950 [r9
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
3951 [r10
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
3952 [r11
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
3953 [r12
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
3954 [r13
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
3955 [r14
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
3956 [r15
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R15
]))
3959 #ifdef CONFIG_X86_64
3960 , "rbx", "rcx", "rdx", "rsi", "rdi"
3961 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3963 , "ebx", "ecx", "edx", "esi", "edi"
3967 #ifdef CONFIG_X86_64
3968 wrmsrl(MSR_GS_BASE
, svm
->host
.gs_base
);
3970 loadsegment(fs
, svm
->host
.fs
);
3971 #ifndef CONFIG_X86_32_LAZY_GS
3972 loadsegment(gs
, svm
->host
.gs
);
3978 local_irq_disable();
3980 vcpu
->arch
.cr2
= svm
->vmcb
->save
.cr2
;
3981 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = svm
->vmcb
->save
.rax
;
3982 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = svm
->vmcb
->save
.rsp
;
3983 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = svm
->vmcb
->save
.rip
;
3985 trace_kvm_exit(svm
->vmcb
->control
.exit_code
, vcpu
, KVM_ISA_SVM
);
3987 if (unlikely(svm
->vmcb
->control
.exit_code
== SVM_EXIT_NMI
))
3988 kvm_before_handle_nmi(&svm
->vcpu
);
3992 /* Any pending NMI will happen here */
3994 if (unlikely(svm
->vmcb
->control
.exit_code
== SVM_EXIT_NMI
))
3995 kvm_after_handle_nmi(&svm
->vcpu
);
3997 sync_cr8_to_lapic(vcpu
);
4001 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_DO_NOTHING
;
4003 /* if exit due to PF check for async PF */
4004 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_EXCP_BASE
+ PF_VECTOR
)
4005 svm
->apf_reason
= kvm_read_and_reset_pf_reason();
4008 vcpu
->arch
.regs_avail
&= ~(1 << VCPU_EXREG_PDPTR
);
4009 vcpu
->arch
.regs_dirty
&= ~(1 << VCPU_EXREG_PDPTR
);
4013 * We need to handle MC intercepts here before the vcpu has a chance to
4014 * change the physical cpu
4016 if (unlikely(svm
->vmcb
->control
.exit_code
==
4017 SVM_EXIT_EXCP_BASE
+ MC_VECTOR
))
4018 svm_handle_mce(svm
);
4020 mark_all_clean(svm
->vmcb
);
4023 static void svm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
4025 struct vcpu_svm
*svm
= to_svm(vcpu
);
4027 svm
->vmcb
->save
.cr3
= root
;
4028 mark_dirty(svm
->vmcb
, VMCB_CR
);
4029 svm_flush_tlb(vcpu
);
4032 static void set_tdp_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
4034 struct vcpu_svm
*svm
= to_svm(vcpu
);
4036 svm
->vmcb
->control
.nested_cr3
= root
;
4037 mark_dirty(svm
->vmcb
, VMCB_NPT
);
4039 /* Also sync guest cr3 here in case we live migrate */
4040 svm
->vmcb
->save
.cr3
= kvm_read_cr3(vcpu
);
4041 mark_dirty(svm
->vmcb
, VMCB_CR
);
4043 svm_flush_tlb(vcpu
);
4046 static int is_disabled(void)
4050 rdmsrl(MSR_VM_CR
, vm_cr
);
4051 if (vm_cr
& (1 << SVM_VM_CR_SVM_DISABLE
))
4058 svm_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
4061 * Patch in the VMMCALL instruction:
4063 hypercall
[0] = 0x0f;
4064 hypercall
[1] = 0x01;
4065 hypercall
[2] = 0xd9;
4068 static void svm_check_processor_compat(void *rtn
)
4073 static bool svm_cpu_has_accelerated_tpr(void)
4078 static u64
svm_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
4083 static void svm_cpuid_update(struct kvm_vcpu
*vcpu
)
4087 static void svm_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
4092 entry
->ecx
|= (1 << 2); /* Set SVM bit */
4095 entry
->eax
= 1; /* SVM revision 1 */
4096 entry
->ebx
= 8; /* Lets support 8 ASIDs in case we add proper
4097 ASID emulation to nested SVM */
4098 entry
->ecx
= 0; /* Reserved */
4099 entry
->edx
= 0; /* Per default do not support any
4100 additional features */
4102 /* Support next_rip if host supports it */
4103 if (boot_cpu_has(X86_FEATURE_NRIPS
))
4104 entry
->edx
|= SVM_FEATURE_NRIP
;
4106 /* Support NPT for the guest if enabled */
4108 entry
->edx
|= SVM_FEATURE_NPT
;
4114 static int svm_get_lpage_level(void)
4116 return PT_PDPE_LEVEL
;
4119 static bool svm_rdtscp_supported(void)
4124 static bool svm_invpcid_supported(void)
4129 static bool svm_mpx_supported(void)
4134 static bool svm_xsaves_supported(void)
4139 static bool svm_has_wbinvd_exit(void)
4144 static void svm_fpu_deactivate(struct kvm_vcpu
*vcpu
)
4146 struct vcpu_svm
*svm
= to_svm(vcpu
);
4148 set_exception_intercept(svm
, NM_VECTOR
);
4149 update_cr0_intercept(svm
);
4152 #define PRE_EX(exit) { .exit_code = (exit), \
4153 .stage = X86_ICPT_PRE_EXCEPT, }
4154 #define POST_EX(exit) { .exit_code = (exit), \
4155 .stage = X86_ICPT_POST_EXCEPT, }
4156 #define POST_MEM(exit) { .exit_code = (exit), \
4157 .stage = X86_ICPT_POST_MEMACCESS, }
4159 static const struct __x86_intercept
{
4161 enum x86_intercept_stage stage
;
4162 } x86_intercept_map
[] = {
4163 [x86_intercept_cr_read
] = POST_EX(SVM_EXIT_READ_CR0
),
4164 [x86_intercept_cr_write
] = POST_EX(SVM_EXIT_WRITE_CR0
),
4165 [x86_intercept_clts
] = POST_EX(SVM_EXIT_WRITE_CR0
),
4166 [x86_intercept_lmsw
] = POST_EX(SVM_EXIT_WRITE_CR0
),
4167 [x86_intercept_smsw
] = POST_EX(SVM_EXIT_READ_CR0
),
4168 [x86_intercept_dr_read
] = POST_EX(SVM_EXIT_READ_DR0
),
4169 [x86_intercept_dr_write
] = POST_EX(SVM_EXIT_WRITE_DR0
),
4170 [x86_intercept_sldt
] = POST_EX(SVM_EXIT_LDTR_READ
),
4171 [x86_intercept_str
] = POST_EX(SVM_EXIT_TR_READ
),
4172 [x86_intercept_lldt
] = POST_EX(SVM_EXIT_LDTR_WRITE
),
4173 [x86_intercept_ltr
] = POST_EX(SVM_EXIT_TR_WRITE
),
4174 [x86_intercept_sgdt
] = POST_EX(SVM_EXIT_GDTR_READ
),
4175 [x86_intercept_sidt
] = POST_EX(SVM_EXIT_IDTR_READ
),
4176 [x86_intercept_lgdt
] = POST_EX(SVM_EXIT_GDTR_WRITE
),
4177 [x86_intercept_lidt
] = POST_EX(SVM_EXIT_IDTR_WRITE
),
4178 [x86_intercept_vmrun
] = POST_EX(SVM_EXIT_VMRUN
),
4179 [x86_intercept_vmmcall
] = POST_EX(SVM_EXIT_VMMCALL
),
4180 [x86_intercept_vmload
] = POST_EX(SVM_EXIT_VMLOAD
),
4181 [x86_intercept_vmsave
] = POST_EX(SVM_EXIT_VMSAVE
),
4182 [x86_intercept_stgi
] = POST_EX(SVM_EXIT_STGI
),
4183 [x86_intercept_clgi
] = POST_EX(SVM_EXIT_CLGI
),
4184 [x86_intercept_skinit
] = POST_EX(SVM_EXIT_SKINIT
),
4185 [x86_intercept_invlpga
] = POST_EX(SVM_EXIT_INVLPGA
),
4186 [x86_intercept_rdtscp
] = POST_EX(SVM_EXIT_RDTSCP
),
4187 [x86_intercept_monitor
] = POST_MEM(SVM_EXIT_MONITOR
),
4188 [x86_intercept_mwait
] = POST_EX(SVM_EXIT_MWAIT
),
4189 [x86_intercept_invlpg
] = POST_EX(SVM_EXIT_INVLPG
),
4190 [x86_intercept_invd
] = POST_EX(SVM_EXIT_INVD
),
4191 [x86_intercept_wbinvd
] = POST_EX(SVM_EXIT_WBINVD
),
4192 [x86_intercept_wrmsr
] = POST_EX(SVM_EXIT_MSR
),
4193 [x86_intercept_rdtsc
] = POST_EX(SVM_EXIT_RDTSC
),
4194 [x86_intercept_rdmsr
] = POST_EX(SVM_EXIT_MSR
),
4195 [x86_intercept_rdpmc
] = POST_EX(SVM_EXIT_RDPMC
),
4196 [x86_intercept_cpuid
] = PRE_EX(SVM_EXIT_CPUID
),
4197 [x86_intercept_rsm
] = PRE_EX(SVM_EXIT_RSM
),
4198 [x86_intercept_pause
] = PRE_EX(SVM_EXIT_PAUSE
),
4199 [x86_intercept_pushf
] = PRE_EX(SVM_EXIT_PUSHF
),
4200 [x86_intercept_popf
] = PRE_EX(SVM_EXIT_POPF
),
4201 [x86_intercept_intn
] = PRE_EX(SVM_EXIT_SWINT
),
4202 [x86_intercept_iret
] = PRE_EX(SVM_EXIT_IRET
),
4203 [x86_intercept_icebp
] = PRE_EX(SVM_EXIT_ICEBP
),
4204 [x86_intercept_hlt
] = POST_EX(SVM_EXIT_HLT
),
4205 [x86_intercept_in
] = POST_EX(SVM_EXIT_IOIO
),
4206 [x86_intercept_ins
] = POST_EX(SVM_EXIT_IOIO
),
4207 [x86_intercept_out
] = POST_EX(SVM_EXIT_IOIO
),
4208 [x86_intercept_outs
] = POST_EX(SVM_EXIT_IOIO
),
4215 static int svm_check_intercept(struct kvm_vcpu
*vcpu
,
4216 struct x86_instruction_info
*info
,
4217 enum x86_intercept_stage stage
)
4219 struct vcpu_svm
*svm
= to_svm(vcpu
);
4220 int vmexit
, ret
= X86EMUL_CONTINUE
;
4221 struct __x86_intercept icpt_info
;
4222 struct vmcb
*vmcb
= svm
->vmcb
;
4224 if (info
->intercept
>= ARRAY_SIZE(x86_intercept_map
))
4227 icpt_info
= x86_intercept_map
[info
->intercept
];
4229 if (stage
!= icpt_info
.stage
)
4232 switch (icpt_info
.exit_code
) {
4233 case SVM_EXIT_READ_CR0
:
4234 if (info
->intercept
== x86_intercept_cr_read
)
4235 icpt_info
.exit_code
+= info
->modrm_reg
;
4237 case SVM_EXIT_WRITE_CR0
: {
4238 unsigned long cr0
, val
;
4241 if (info
->intercept
== x86_intercept_cr_write
)
4242 icpt_info
.exit_code
+= info
->modrm_reg
;
4244 if (icpt_info
.exit_code
!= SVM_EXIT_WRITE_CR0
||
4245 info
->intercept
== x86_intercept_clts
)
4248 intercept
= svm
->nested
.intercept
;
4250 if (!(intercept
& (1ULL << INTERCEPT_SELECTIVE_CR0
)))
4253 cr0
= vcpu
->arch
.cr0
& ~SVM_CR0_SELECTIVE_MASK
;
4254 val
= info
->src_val
& ~SVM_CR0_SELECTIVE_MASK
;
4256 if (info
->intercept
== x86_intercept_lmsw
) {
4259 /* lmsw can't clear PE - catch this here */
4260 if (cr0
& X86_CR0_PE
)
4265 icpt_info
.exit_code
= SVM_EXIT_CR0_SEL_WRITE
;
4269 case SVM_EXIT_READ_DR0
:
4270 case SVM_EXIT_WRITE_DR0
:
4271 icpt_info
.exit_code
+= info
->modrm_reg
;
4274 if (info
->intercept
== x86_intercept_wrmsr
)
4275 vmcb
->control
.exit_info_1
= 1;
4277 vmcb
->control
.exit_info_1
= 0;
4279 case SVM_EXIT_PAUSE
:
4281 * We get this for NOP only, but pause
4282 * is rep not, check this here
4284 if (info
->rep_prefix
!= REPE_PREFIX
)
4286 case SVM_EXIT_IOIO
: {
4290 if (info
->intercept
== x86_intercept_in
||
4291 info
->intercept
== x86_intercept_ins
) {
4292 exit_info
= ((info
->src_val
& 0xffff) << 16) |
4294 bytes
= info
->dst_bytes
;
4296 exit_info
= (info
->dst_val
& 0xffff) << 16;
4297 bytes
= info
->src_bytes
;
4300 if (info
->intercept
== x86_intercept_outs
||
4301 info
->intercept
== x86_intercept_ins
)
4302 exit_info
|= SVM_IOIO_STR_MASK
;
4304 if (info
->rep_prefix
)
4305 exit_info
|= SVM_IOIO_REP_MASK
;
4307 bytes
= min(bytes
, 4u);
4309 exit_info
|= bytes
<< SVM_IOIO_SIZE_SHIFT
;
4311 exit_info
|= (u32
)info
->ad_bytes
<< (SVM_IOIO_ASIZE_SHIFT
- 1);
4313 vmcb
->control
.exit_info_1
= exit_info
;
4314 vmcb
->control
.exit_info_2
= info
->next_rip
;
4322 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4323 if (static_cpu_has(X86_FEATURE_NRIPS
))
4324 vmcb
->control
.next_rip
= info
->next_rip
;
4325 vmcb
->control
.exit_code
= icpt_info
.exit_code
;
4326 vmexit
= nested_svm_exit_handled(svm
);
4328 ret
= (vmexit
== NESTED_EXIT_DONE
) ? X86EMUL_INTERCEPTED
4335 static void svm_handle_external_intr(struct kvm_vcpu
*vcpu
)
4340 static void svm_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
4344 static struct kvm_x86_ops svm_x86_ops
= {
4345 .cpu_has_kvm_support
= has_svm
,
4346 .disabled_by_bios
= is_disabled
,
4347 .hardware_setup
= svm_hardware_setup
,
4348 .hardware_unsetup
= svm_hardware_unsetup
,
4349 .check_processor_compatibility
= svm_check_processor_compat
,
4350 .hardware_enable
= svm_hardware_enable
,
4351 .hardware_disable
= svm_hardware_disable
,
4352 .cpu_has_accelerated_tpr
= svm_cpu_has_accelerated_tpr
,
4354 .vcpu_create
= svm_create_vcpu
,
4355 .vcpu_free
= svm_free_vcpu
,
4356 .vcpu_reset
= svm_vcpu_reset
,
4358 .prepare_guest_switch
= svm_prepare_guest_switch
,
4359 .vcpu_load
= svm_vcpu_load
,
4360 .vcpu_put
= svm_vcpu_put
,
4362 .update_db_bp_intercept
= update_db_bp_intercept
,
4363 .get_msr
= svm_get_msr
,
4364 .set_msr
= svm_set_msr
,
4365 .get_segment_base
= svm_get_segment_base
,
4366 .get_segment
= svm_get_segment
,
4367 .set_segment
= svm_set_segment
,
4368 .get_cpl
= svm_get_cpl
,
4369 .get_cs_db_l_bits
= kvm_get_cs_db_l_bits
,
4370 .decache_cr0_guest_bits
= svm_decache_cr0_guest_bits
,
4371 .decache_cr3
= svm_decache_cr3
,
4372 .decache_cr4_guest_bits
= svm_decache_cr4_guest_bits
,
4373 .set_cr0
= svm_set_cr0
,
4374 .set_cr3
= svm_set_cr3
,
4375 .set_cr4
= svm_set_cr4
,
4376 .set_efer
= svm_set_efer
,
4377 .get_idt
= svm_get_idt
,
4378 .set_idt
= svm_set_idt
,
4379 .get_gdt
= svm_get_gdt
,
4380 .set_gdt
= svm_set_gdt
,
4381 .get_dr6
= svm_get_dr6
,
4382 .set_dr6
= svm_set_dr6
,
4383 .set_dr7
= svm_set_dr7
,
4384 .sync_dirty_debug_regs
= svm_sync_dirty_debug_regs
,
4385 .cache_reg
= svm_cache_reg
,
4386 .get_rflags
= svm_get_rflags
,
4387 .set_rflags
= svm_set_rflags
,
4388 .fpu_activate
= svm_fpu_activate
,
4389 .fpu_deactivate
= svm_fpu_deactivate
,
4391 .tlb_flush
= svm_flush_tlb
,
4393 .run
= svm_vcpu_run
,
4394 .handle_exit
= handle_exit
,
4395 .skip_emulated_instruction
= skip_emulated_instruction
,
4396 .set_interrupt_shadow
= svm_set_interrupt_shadow
,
4397 .get_interrupt_shadow
= svm_get_interrupt_shadow
,
4398 .patch_hypercall
= svm_patch_hypercall
,
4399 .set_irq
= svm_set_irq
,
4400 .set_nmi
= svm_inject_nmi
,
4401 .queue_exception
= svm_queue_exception
,
4402 .cancel_injection
= svm_cancel_injection
,
4403 .interrupt_allowed
= svm_interrupt_allowed
,
4404 .nmi_allowed
= svm_nmi_allowed
,
4405 .get_nmi_mask
= svm_get_nmi_mask
,
4406 .set_nmi_mask
= svm_set_nmi_mask
,
4407 .enable_nmi_window
= enable_nmi_window
,
4408 .enable_irq_window
= enable_irq_window
,
4409 .update_cr8_intercept
= update_cr8_intercept
,
4410 .set_virtual_x2apic_mode
= svm_set_virtual_x2apic_mode
,
4411 .vm_has_apicv
= svm_vm_has_apicv
,
4412 .load_eoi_exitmap
= svm_load_eoi_exitmap
,
4413 .sync_pir_to_irr
= svm_sync_pir_to_irr
,
4415 .set_tss_addr
= svm_set_tss_addr
,
4416 .get_tdp_level
= get_npt_level
,
4417 .get_mt_mask
= svm_get_mt_mask
,
4419 .get_exit_info
= svm_get_exit_info
,
4421 .get_lpage_level
= svm_get_lpage_level
,
4423 .cpuid_update
= svm_cpuid_update
,
4425 .rdtscp_supported
= svm_rdtscp_supported
,
4426 .invpcid_supported
= svm_invpcid_supported
,
4427 .mpx_supported
= svm_mpx_supported
,
4428 .xsaves_supported
= svm_xsaves_supported
,
4430 .set_supported_cpuid
= svm_set_supported_cpuid
,
4432 .has_wbinvd_exit
= svm_has_wbinvd_exit
,
4434 .set_tsc_khz
= svm_set_tsc_khz
,
4435 .read_tsc_offset
= svm_read_tsc_offset
,
4436 .write_tsc_offset
= svm_write_tsc_offset
,
4437 .adjust_tsc_offset
= svm_adjust_tsc_offset
,
4438 .compute_tsc_offset
= svm_compute_tsc_offset
,
4439 .read_l1_tsc
= svm_read_l1_tsc
,
4441 .set_tdp_cr3
= set_tdp_cr3
,
4443 .check_intercept
= svm_check_intercept
,
4444 .handle_external_intr
= svm_handle_external_intr
,
4446 .sched_in
= svm_sched_in
,
4449 static int __init
svm_init(void)
4451 return kvm_init(&svm_x86_ops
, sizeof(struct vcpu_svm
),
4452 __alignof__(struct vcpu_svm
), THIS_MODULE
);
4455 static void __exit
svm_exit(void)
4460 module_init(svm_init
)
4461 module_exit(svm_exit
)