xfs: remove unused full argument from bmap
[linux/fpc-iii.git] / tools / perf / bench / numa.c
blob8efe904e486bf98b63e24b7904652f10ca5ec7e9
1 /*
2 * numa.c
4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
5 */
7 /* For the CLR_() macros */
8 #include <pthread.h>
10 #include "../perf.h"
11 #include "../builtin.h"
12 #include "../util/util.h"
13 #include <subcmd/parse-options.h>
14 #include "../util/cloexec.h"
16 #include "bench.h"
18 #include <errno.h>
19 #include <sched.h>
20 #include <stdio.h>
21 #include <assert.h>
22 #include <malloc.h>
23 #include <signal.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <unistd.h>
27 #include <sys/mman.h>
28 #include <sys/time.h>
29 #include <sys/resource.h>
30 #include <sys/wait.h>
31 #include <sys/prctl.h>
32 #include <sys/types.h>
33 #include <linux/time64.h>
35 #include <numa.h>
36 #include <numaif.h>
39 * Regular printout to the terminal, supressed if -q is specified:
41 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
44 * Debug printf:
46 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
48 struct thread_data {
49 int curr_cpu;
50 cpu_set_t bind_cpumask;
51 int bind_node;
52 u8 *process_data;
53 int process_nr;
54 int thread_nr;
55 int task_nr;
56 unsigned int loops_done;
57 u64 val;
58 u64 runtime_ns;
59 u64 system_time_ns;
60 u64 user_time_ns;
61 double speed_gbs;
62 pthread_mutex_t *process_lock;
65 /* Parameters set by options: */
67 struct params {
68 /* Startup synchronization: */
69 bool serialize_startup;
71 /* Task hierarchy: */
72 int nr_proc;
73 int nr_threads;
75 /* Working set sizes: */
76 const char *mb_global_str;
77 const char *mb_proc_str;
78 const char *mb_proc_locked_str;
79 const char *mb_thread_str;
81 double mb_global;
82 double mb_proc;
83 double mb_proc_locked;
84 double mb_thread;
86 /* Access patterns to the working set: */
87 bool data_reads;
88 bool data_writes;
89 bool data_backwards;
90 bool data_zero_memset;
91 bool data_rand_walk;
92 u32 nr_loops;
93 u32 nr_secs;
94 u32 sleep_usecs;
96 /* Working set initialization: */
97 bool init_zero;
98 bool init_random;
99 bool init_cpu0;
101 /* Misc options: */
102 int show_details;
103 int run_all;
104 int thp;
106 long bytes_global;
107 long bytes_process;
108 long bytes_process_locked;
109 long bytes_thread;
111 int nr_tasks;
112 bool show_quiet;
114 bool show_convergence;
115 bool measure_convergence;
117 int perturb_secs;
118 int nr_cpus;
119 int nr_nodes;
121 /* Affinity options -C and -N: */
122 char *cpu_list_str;
123 char *node_list_str;
127 /* Global, read-writable area, accessible to all processes and threads: */
129 struct global_info {
130 u8 *data;
132 pthread_mutex_t startup_mutex;
133 int nr_tasks_started;
135 pthread_mutex_t startup_done_mutex;
137 pthread_mutex_t start_work_mutex;
138 int nr_tasks_working;
140 pthread_mutex_t stop_work_mutex;
141 u64 bytes_done;
143 struct thread_data *threads;
145 /* Convergence latency measurement: */
146 bool all_converged;
147 bool stop_work;
149 int print_once;
151 struct params p;
154 static struct global_info *g = NULL;
156 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
157 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
159 struct params p0;
161 static const struct option options[] = {
162 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
163 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
165 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
166 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
167 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
168 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
170 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"),
171 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"),
172 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
174 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"),
175 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
176 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
177 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
178 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
181 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
182 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
183 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
184 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
186 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
187 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
188 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
189 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
190 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
191 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"),
192 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
194 /* Special option string parsing callbacks: */
195 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
196 "bind the first N tasks to these specific cpus (the rest is unbound)",
197 parse_cpus_opt),
198 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
199 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
200 parse_nodes_opt),
201 OPT_END()
204 static const char * const bench_numa_usage[] = {
205 "perf bench numa <options>",
206 NULL
209 static const char * const numa_usage[] = {
210 "perf bench numa mem [<options>]",
211 NULL
214 static cpu_set_t bind_to_cpu(int target_cpu)
216 cpu_set_t orig_mask, mask;
217 int ret;
219 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
220 BUG_ON(ret);
222 CPU_ZERO(&mask);
224 if (target_cpu == -1) {
225 int cpu;
227 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
228 CPU_SET(cpu, &mask);
229 } else {
230 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
231 CPU_SET(target_cpu, &mask);
234 ret = sched_setaffinity(0, sizeof(mask), &mask);
235 BUG_ON(ret);
237 return orig_mask;
240 static cpu_set_t bind_to_node(int target_node)
242 int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
243 cpu_set_t orig_mask, mask;
244 int cpu;
245 int ret;
247 BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
248 BUG_ON(!cpus_per_node);
250 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
251 BUG_ON(ret);
253 CPU_ZERO(&mask);
255 if (target_node == -1) {
256 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
257 CPU_SET(cpu, &mask);
258 } else {
259 int cpu_start = (target_node + 0) * cpus_per_node;
260 int cpu_stop = (target_node + 1) * cpus_per_node;
262 BUG_ON(cpu_stop > g->p.nr_cpus);
264 for (cpu = cpu_start; cpu < cpu_stop; cpu++)
265 CPU_SET(cpu, &mask);
268 ret = sched_setaffinity(0, sizeof(mask), &mask);
269 BUG_ON(ret);
271 return orig_mask;
274 static void bind_to_cpumask(cpu_set_t mask)
276 int ret;
278 ret = sched_setaffinity(0, sizeof(mask), &mask);
279 BUG_ON(ret);
282 static void mempol_restore(void)
284 int ret;
286 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
288 BUG_ON(ret);
291 static void bind_to_memnode(int node)
293 unsigned long nodemask;
294 int ret;
296 if (node == -1)
297 return;
299 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
300 nodemask = 1L << node;
302 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
303 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
305 BUG_ON(ret);
308 #define HPSIZE (2*1024*1024)
310 #define set_taskname(fmt...) \
311 do { \
312 char name[20]; \
314 snprintf(name, 20, fmt); \
315 prctl(PR_SET_NAME, name); \
316 } while (0)
318 static u8 *alloc_data(ssize_t bytes0, int map_flags,
319 int init_zero, int init_cpu0, int thp, int init_random)
321 cpu_set_t orig_mask;
322 ssize_t bytes;
323 u8 *buf;
324 int ret;
326 if (!bytes0)
327 return NULL;
329 /* Allocate and initialize all memory on CPU#0: */
330 if (init_cpu0) {
331 orig_mask = bind_to_node(0);
332 bind_to_memnode(0);
335 bytes = bytes0 + HPSIZE;
337 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
338 BUG_ON(buf == (void *)-1);
340 if (map_flags == MAP_PRIVATE) {
341 if (thp > 0) {
342 ret = madvise(buf, bytes, MADV_HUGEPAGE);
343 if (ret && !g->print_once) {
344 g->print_once = 1;
345 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
348 if (thp < 0) {
349 ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
350 if (ret && !g->print_once) {
351 g->print_once = 1;
352 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
357 if (init_zero) {
358 bzero(buf, bytes);
359 } else {
360 /* Initialize random contents, different in each word: */
361 if (init_random) {
362 u64 *wbuf = (void *)buf;
363 long off = rand();
364 long i;
366 for (i = 0; i < bytes/8; i++)
367 wbuf[i] = i + off;
371 /* Align to 2MB boundary: */
372 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
374 /* Restore affinity: */
375 if (init_cpu0) {
376 bind_to_cpumask(orig_mask);
377 mempol_restore();
380 return buf;
383 static void free_data(void *data, ssize_t bytes)
385 int ret;
387 if (!data)
388 return;
390 ret = munmap(data, bytes);
391 BUG_ON(ret);
395 * Create a shared memory buffer that can be shared between processes, zeroed:
397 static void * zalloc_shared_data(ssize_t bytes)
399 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
403 * Create a shared memory buffer that can be shared between processes:
405 static void * setup_shared_data(ssize_t bytes)
407 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
411 * Allocate process-local memory - this will either be shared between
412 * threads of this process, or only be accessed by this thread:
414 static void * setup_private_data(ssize_t bytes)
416 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
420 * Return a process-shared (global) mutex:
422 static void init_global_mutex(pthread_mutex_t *mutex)
424 pthread_mutexattr_t attr;
426 pthread_mutexattr_init(&attr);
427 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
428 pthread_mutex_init(mutex, &attr);
431 static int parse_cpu_list(const char *arg)
433 p0.cpu_list_str = strdup(arg);
435 dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
437 return 0;
440 static int parse_setup_cpu_list(void)
442 struct thread_data *td;
443 char *str0, *str;
444 int t;
446 if (!g->p.cpu_list_str)
447 return 0;
449 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
451 str0 = str = strdup(g->p.cpu_list_str);
452 t = 0;
454 BUG_ON(!str);
456 tprintf("# binding tasks to CPUs:\n");
457 tprintf("# ");
459 while (true) {
460 int bind_cpu, bind_cpu_0, bind_cpu_1;
461 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
462 int bind_len;
463 int step;
464 int mul;
466 tok = strsep(&str, ",");
467 if (!tok)
468 break;
470 tok_end = strstr(tok, "-");
472 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
473 if (!tok_end) {
474 /* Single CPU specified: */
475 bind_cpu_0 = bind_cpu_1 = atol(tok);
476 } else {
477 /* CPU range specified (for example: "5-11"): */
478 bind_cpu_0 = atol(tok);
479 bind_cpu_1 = atol(tok_end + 1);
482 step = 1;
483 tok_step = strstr(tok, "#");
484 if (tok_step) {
485 step = atol(tok_step + 1);
486 BUG_ON(step <= 0 || step >= g->p.nr_cpus);
490 * Mask length.
491 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
492 * where the _4 means the next 4 CPUs are allowed.
494 bind_len = 1;
495 tok_len = strstr(tok, "_");
496 if (tok_len) {
497 bind_len = atol(tok_len + 1);
498 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
501 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
502 mul = 1;
503 tok_mul = strstr(tok, "x");
504 if (tok_mul) {
505 mul = atol(tok_mul + 1);
506 BUG_ON(mul <= 0);
509 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
511 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
512 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
513 return -1;
516 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
517 BUG_ON(bind_cpu_0 > bind_cpu_1);
519 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
520 int i;
522 for (i = 0; i < mul; i++) {
523 int cpu;
525 if (t >= g->p.nr_tasks) {
526 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
527 goto out;
529 td = g->threads + t;
531 if (t)
532 tprintf(",");
533 if (bind_len > 1) {
534 tprintf("%2d/%d", bind_cpu, bind_len);
535 } else {
536 tprintf("%2d", bind_cpu);
539 CPU_ZERO(&td->bind_cpumask);
540 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
541 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
542 CPU_SET(cpu, &td->bind_cpumask);
544 t++;
548 out:
550 tprintf("\n");
552 if (t < g->p.nr_tasks)
553 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
555 free(str0);
556 return 0;
559 static int parse_cpus_opt(const struct option *opt __maybe_unused,
560 const char *arg, int unset __maybe_unused)
562 if (!arg)
563 return -1;
565 return parse_cpu_list(arg);
568 static int parse_node_list(const char *arg)
570 p0.node_list_str = strdup(arg);
572 dprintf("got NODE list: {%s}\n", p0.node_list_str);
574 return 0;
577 static int parse_setup_node_list(void)
579 struct thread_data *td;
580 char *str0, *str;
581 int t;
583 if (!g->p.node_list_str)
584 return 0;
586 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
588 str0 = str = strdup(g->p.node_list_str);
589 t = 0;
591 BUG_ON(!str);
593 tprintf("# binding tasks to NODEs:\n");
594 tprintf("# ");
596 while (true) {
597 int bind_node, bind_node_0, bind_node_1;
598 char *tok, *tok_end, *tok_step, *tok_mul;
599 int step;
600 int mul;
602 tok = strsep(&str, ",");
603 if (!tok)
604 break;
606 tok_end = strstr(tok, "-");
608 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
609 if (!tok_end) {
610 /* Single NODE specified: */
611 bind_node_0 = bind_node_1 = atol(tok);
612 } else {
613 /* NODE range specified (for example: "5-11"): */
614 bind_node_0 = atol(tok);
615 bind_node_1 = atol(tok_end + 1);
618 step = 1;
619 tok_step = strstr(tok, "#");
620 if (tok_step) {
621 step = atol(tok_step + 1);
622 BUG_ON(step <= 0 || step >= g->p.nr_nodes);
625 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
626 mul = 1;
627 tok_mul = strstr(tok, "x");
628 if (tok_mul) {
629 mul = atol(tok_mul + 1);
630 BUG_ON(mul <= 0);
633 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
635 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
636 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
637 return -1;
640 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
641 BUG_ON(bind_node_0 > bind_node_1);
643 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
644 int i;
646 for (i = 0; i < mul; i++) {
647 if (t >= g->p.nr_tasks) {
648 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
649 goto out;
651 td = g->threads + t;
653 if (!t)
654 tprintf(" %2d", bind_node);
655 else
656 tprintf(",%2d", bind_node);
658 td->bind_node = bind_node;
659 t++;
663 out:
665 tprintf("\n");
667 if (t < g->p.nr_tasks)
668 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
670 free(str0);
671 return 0;
674 static int parse_nodes_opt(const struct option *opt __maybe_unused,
675 const char *arg, int unset __maybe_unused)
677 if (!arg)
678 return -1;
680 return parse_node_list(arg);
682 return 0;
685 #define BIT(x) (1ul << x)
687 static inline uint32_t lfsr_32(uint32_t lfsr)
689 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
690 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
694 * Make sure there's real data dependency to RAM (when read
695 * accesses are enabled), so the compiler, the CPU and the
696 * kernel (KSM, zero page, etc.) cannot optimize away RAM
697 * accesses:
699 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
701 if (g->p.data_reads)
702 val += *data;
703 if (g->p.data_writes)
704 *data = val + 1;
705 return val;
709 * The worker process does two types of work, a forwards going
710 * loop and a backwards going loop.
712 * We do this so that on multiprocessor systems we do not create
713 * a 'train' of processing, with highly synchronized processes,
714 * skewing the whole benchmark.
716 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
718 long words = bytes/sizeof(u64);
719 u64 *data = (void *)__data;
720 long chunk_0, chunk_1;
721 u64 *d0, *d, *d1;
722 long off;
723 long i;
725 BUG_ON(!data && words);
726 BUG_ON(data && !words);
728 if (!data)
729 return val;
731 /* Very simple memset() work variant: */
732 if (g->p.data_zero_memset && !g->p.data_rand_walk) {
733 bzero(data, bytes);
734 return val;
737 /* Spread out by PID/TID nr and by loop nr: */
738 chunk_0 = words/nr_max;
739 chunk_1 = words/g->p.nr_loops;
740 off = nr*chunk_0 + loop*chunk_1;
742 while (off >= words)
743 off -= words;
745 if (g->p.data_rand_walk) {
746 u32 lfsr = nr + loop + val;
747 int j;
749 for (i = 0; i < words/1024; i++) {
750 long start, end;
752 lfsr = lfsr_32(lfsr);
754 start = lfsr % words;
755 end = min(start + 1024, words-1);
757 if (g->p.data_zero_memset) {
758 bzero(data + start, (end-start) * sizeof(u64));
759 } else {
760 for (j = start; j < end; j++)
761 val = access_data(data + j, val);
764 } else if (!g->p.data_backwards || (nr + loop) & 1) {
766 d0 = data + off;
767 d = data + off + 1;
768 d1 = data + words;
770 /* Process data forwards: */
771 for (;;) {
772 if (unlikely(d >= d1))
773 d = data;
774 if (unlikely(d == d0))
775 break;
777 val = access_data(d, val);
779 d++;
781 } else {
782 /* Process data backwards: */
784 d0 = data + off;
785 d = data + off - 1;
786 d1 = data + words;
788 /* Process data forwards: */
789 for (;;) {
790 if (unlikely(d < data))
791 d = data + words-1;
792 if (unlikely(d == d0))
793 break;
795 val = access_data(d, val);
797 d--;
801 return val;
804 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
806 unsigned int cpu;
808 cpu = sched_getcpu();
810 g->threads[task_nr].curr_cpu = cpu;
811 prctl(0, bytes_worked);
814 #define MAX_NR_NODES 64
817 * Count the number of nodes a process's threads
818 * are spread out on.
820 * A count of 1 means that the process is compressed
821 * to a single node. A count of g->p.nr_nodes means it's
822 * spread out on the whole system.
824 static int count_process_nodes(int process_nr)
826 char node_present[MAX_NR_NODES] = { 0, };
827 int nodes;
828 int n, t;
830 for (t = 0; t < g->p.nr_threads; t++) {
831 struct thread_data *td;
832 int task_nr;
833 int node;
835 task_nr = process_nr*g->p.nr_threads + t;
836 td = g->threads + task_nr;
838 node = numa_node_of_cpu(td->curr_cpu);
839 if (node < 0) /* curr_cpu was likely still -1 */
840 return 0;
842 node_present[node] = 1;
845 nodes = 0;
847 for (n = 0; n < MAX_NR_NODES; n++)
848 nodes += node_present[n];
850 return nodes;
854 * Count the number of distinct process-threads a node contains.
856 * A count of 1 means that the node contains only a single
857 * process. If all nodes on the system contain at most one
858 * process then we are well-converged.
860 static int count_node_processes(int node)
862 int processes = 0;
863 int t, p;
865 for (p = 0; p < g->p.nr_proc; p++) {
866 for (t = 0; t < g->p.nr_threads; t++) {
867 struct thread_data *td;
868 int task_nr;
869 int n;
871 task_nr = p*g->p.nr_threads + t;
872 td = g->threads + task_nr;
874 n = numa_node_of_cpu(td->curr_cpu);
875 if (n == node) {
876 processes++;
877 break;
882 return processes;
885 static void calc_convergence_compression(int *strong)
887 unsigned int nodes_min, nodes_max;
888 int p;
890 nodes_min = -1;
891 nodes_max = 0;
893 for (p = 0; p < g->p.nr_proc; p++) {
894 unsigned int nodes = count_process_nodes(p);
896 if (!nodes) {
897 *strong = 0;
898 return;
901 nodes_min = min(nodes, nodes_min);
902 nodes_max = max(nodes, nodes_max);
905 /* Strong convergence: all threads compress on a single node: */
906 if (nodes_min == 1 && nodes_max == 1) {
907 *strong = 1;
908 } else {
909 *strong = 0;
910 tprintf(" {%d-%d}", nodes_min, nodes_max);
914 static void calc_convergence(double runtime_ns_max, double *convergence)
916 unsigned int loops_done_min, loops_done_max;
917 int process_groups;
918 int nodes[MAX_NR_NODES];
919 int distance;
920 int nr_min;
921 int nr_max;
922 int strong;
923 int sum;
924 int nr;
925 int node;
926 int cpu;
927 int t;
929 if (!g->p.show_convergence && !g->p.measure_convergence)
930 return;
932 for (node = 0; node < g->p.nr_nodes; node++)
933 nodes[node] = 0;
935 loops_done_min = -1;
936 loops_done_max = 0;
938 for (t = 0; t < g->p.nr_tasks; t++) {
939 struct thread_data *td = g->threads + t;
940 unsigned int loops_done;
942 cpu = td->curr_cpu;
944 /* Not all threads have written it yet: */
945 if (cpu < 0)
946 continue;
948 node = numa_node_of_cpu(cpu);
950 nodes[node]++;
952 loops_done = td->loops_done;
953 loops_done_min = min(loops_done, loops_done_min);
954 loops_done_max = max(loops_done, loops_done_max);
957 nr_max = 0;
958 nr_min = g->p.nr_tasks;
959 sum = 0;
961 for (node = 0; node < g->p.nr_nodes; node++) {
962 nr = nodes[node];
963 nr_min = min(nr, nr_min);
964 nr_max = max(nr, nr_max);
965 sum += nr;
967 BUG_ON(nr_min > nr_max);
969 BUG_ON(sum > g->p.nr_tasks);
971 if (0 && (sum < g->p.nr_tasks))
972 return;
975 * Count the number of distinct process groups present
976 * on nodes - when we are converged this will decrease
977 * to g->p.nr_proc:
979 process_groups = 0;
981 for (node = 0; node < g->p.nr_nodes; node++) {
982 int processes = count_node_processes(node);
984 nr = nodes[node];
985 tprintf(" %2d/%-2d", nr, processes);
987 process_groups += processes;
990 distance = nr_max - nr_min;
992 tprintf(" [%2d/%-2d]", distance, process_groups);
994 tprintf(" l:%3d-%-3d (%3d)",
995 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
997 if (loops_done_min && loops_done_max) {
998 double skew = 1.0 - (double)loops_done_min/loops_done_max;
1000 tprintf(" [%4.1f%%]", skew * 100.0);
1003 calc_convergence_compression(&strong);
1005 if (strong && process_groups == g->p.nr_proc) {
1006 if (!*convergence) {
1007 *convergence = runtime_ns_max;
1008 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1009 if (g->p.measure_convergence) {
1010 g->all_converged = true;
1011 g->stop_work = true;
1014 } else {
1015 if (*convergence) {
1016 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1017 *convergence = 0;
1019 tprintf("\n");
1023 static void show_summary(double runtime_ns_max, int l, double *convergence)
1025 tprintf("\r # %5.1f%% [%.1f mins]",
1026 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1028 calc_convergence(runtime_ns_max, convergence);
1030 if (g->p.show_details >= 0)
1031 fflush(stdout);
1034 static void *worker_thread(void *__tdata)
1036 struct thread_data *td = __tdata;
1037 struct timeval start0, start, stop, diff;
1038 int process_nr = td->process_nr;
1039 int thread_nr = td->thread_nr;
1040 unsigned long last_perturbance;
1041 int task_nr = td->task_nr;
1042 int details = g->p.show_details;
1043 int first_task, last_task;
1044 double convergence = 0;
1045 u64 val = td->val;
1046 double runtime_ns_max;
1047 u8 *global_data;
1048 u8 *process_data;
1049 u8 *thread_data;
1050 u64 bytes_done;
1051 long work_done;
1052 u32 l;
1053 struct rusage rusage;
1055 bind_to_cpumask(td->bind_cpumask);
1056 bind_to_memnode(td->bind_node);
1058 set_taskname("thread %d/%d", process_nr, thread_nr);
1060 global_data = g->data;
1061 process_data = td->process_data;
1062 thread_data = setup_private_data(g->p.bytes_thread);
1064 bytes_done = 0;
1066 last_task = 0;
1067 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1068 last_task = 1;
1070 first_task = 0;
1071 if (process_nr == 0 && thread_nr == 0)
1072 first_task = 1;
1074 if (details >= 2) {
1075 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1076 process_nr, thread_nr, global_data, process_data, thread_data);
1079 if (g->p.serialize_startup) {
1080 pthread_mutex_lock(&g->startup_mutex);
1081 g->nr_tasks_started++;
1082 pthread_mutex_unlock(&g->startup_mutex);
1084 /* Here we will wait for the main process to start us all at once: */
1085 pthread_mutex_lock(&g->start_work_mutex);
1086 g->nr_tasks_working++;
1088 /* Last one wake the main process: */
1089 if (g->nr_tasks_working == g->p.nr_tasks)
1090 pthread_mutex_unlock(&g->startup_done_mutex);
1092 pthread_mutex_unlock(&g->start_work_mutex);
1095 gettimeofday(&start0, NULL);
1097 start = stop = start0;
1098 last_perturbance = start.tv_sec;
1100 for (l = 0; l < g->p.nr_loops; l++) {
1101 start = stop;
1103 if (g->stop_work)
1104 break;
1106 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
1107 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
1108 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
1110 if (g->p.sleep_usecs) {
1111 pthread_mutex_lock(td->process_lock);
1112 usleep(g->p.sleep_usecs);
1113 pthread_mutex_unlock(td->process_lock);
1116 * Amount of work to be done under a process-global lock:
1118 if (g->p.bytes_process_locked) {
1119 pthread_mutex_lock(td->process_lock);
1120 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
1121 pthread_mutex_unlock(td->process_lock);
1124 work_done = g->p.bytes_global + g->p.bytes_process +
1125 g->p.bytes_process_locked + g->p.bytes_thread;
1127 update_curr_cpu(task_nr, work_done);
1128 bytes_done += work_done;
1130 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1131 continue;
1133 td->loops_done = l;
1135 gettimeofday(&stop, NULL);
1137 /* Check whether our max runtime timed out: */
1138 if (g->p.nr_secs) {
1139 timersub(&stop, &start0, &diff);
1140 if ((u32)diff.tv_sec >= g->p.nr_secs) {
1141 g->stop_work = true;
1142 break;
1146 /* Update the summary at most once per second: */
1147 if (start.tv_sec == stop.tv_sec)
1148 continue;
1151 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1152 * by migrating to CPU#0:
1154 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1155 cpu_set_t orig_mask;
1156 int target_cpu;
1157 int this_cpu;
1159 last_perturbance = stop.tv_sec;
1162 * Depending on where we are running, move into
1163 * the other half of the system, to create some
1164 * real disturbance:
1166 this_cpu = g->threads[task_nr].curr_cpu;
1167 if (this_cpu < g->p.nr_cpus/2)
1168 target_cpu = g->p.nr_cpus-1;
1169 else
1170 target_cpu = 0;
1172 orig_mask = bind_to_cpu(target_cpu);
1174 /* Here we are running on the target CPU already */
1175 if (details >= 1)
1176 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1178 bind_to_cpumask(orig_mask);
1181 if (details >= 3) {
1182 timersub(&stop, &start, &diff);
1183 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1184 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1186 if (details >= 0) {
1187 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1188 process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1190 fflush(stdout);
1192 if (!last_task)
1193 continue;
1195 timersub(&stop, &start0, &diff);
1196 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1197 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1199 show_summary(runtime_ns_max, l, &convergence);
1202 gettimeofday(&stop, NULL);
1203 timersub(&stop, &start0, &diff);
1204 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1205 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1206 td->speed_gbs = bytes_done / (td->runtime_ns / NSEC_PER_SEC) / 1e9;
1208 getrusage(RUSAGE_THREAD, &rusage);
1209 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1210 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1211 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1212 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1214 free_data(thread_data, g->p.bytes_thread);
1216 pthread_mutex_lock(&g->stop_work_mutex);
1217 g->bytes_done += bytes_done;
1218 pthread_mutex_unlock(&g->stop_work_mutex);
1220 return NULL;
1224 * A worker process starts a couple of threads:
1226 static void worker_process(int process_nr)
1228 pthread_mutex_t process_lock;
1229 struct thread_data *td;
1230 pthread_t *pthreads;
1231 u8 *process_data;
1232 int task_nr;
1233 int ret;
1234 int t;
1236 pthread_mutex_init(&process_lock, NULL);
1237 set_taskname("process %d", process_nr);
1240 * Pick up the memory policy and the CPU binding of our first thread,
1241 * so that we initialize memory accordingly:
1243 task_nr = process_nr*g->p.nr_threads;
1244 td = g->threads + task_nr;
1246 bind_to_memnode(td->bind_node);
1247 bind_to_cpumask(td->bind_cpumask);
1249 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1250 process_data = setup_private_data(g->p.bytes_process);
1252 if (g->p.show_details >= 3) {
1253 printf(" # process %2d global mem: %p, process mem: %p\n",
1254 process_nr, g->data, process_data);
1257 for (t = 0; t < g->p.nr_threads; t++) {
1258 task_nr = process_nr*g->p.nr_threads + t;
1259 td = g->threads + task_nr;
1261 td->process_data = process_data;
1262 td->process_nr = process_nr;
1263 td->thread_nr = t;
1264 td->task_nr = task_nr;
1265 td->val = rand();
1266 td->curr_cpu = -1;
1267 td->process_lock = &process_lock;
1269 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1270 BUG_ON(ret);
1273 for (t = 0; t < g->p.nr_threads; t++) {
1274 ret = pthread_join(pthreads[t], NULL);
1275 BUG_ON(ret);
1278 free_data(process_data, g->p.bytes_process);
1279 free(pthreads);
1282 static void print_summary(void)
1284 if (g->p.show_details < 0)
1285 return;
1287 printf("\n ###\n");
1288 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1289 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1290 printf(" # %5dx %5ldMB global shared mem operations\n",
1291 g->p.nr_loops, g->p.bytes_global/1024/1024);
1292 printf(" # %5dx %5ldMB process shared mem operations\n",
1293 g->p.nr_loops, g->p.bytes_process/1024/1024);
1294 printf(" # %5dx %5ldMB thread local mem operations\n",
1295 g->p.nr_loops, g->p.bytes_thread/1024/1024);
1297 printf(" ###\n");
1299 printf("\n ###\n"); fflush(stdout);
1302 static void init_thread_data(void)
1304 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1305 int t;
1307 g->threads = zalloc_shared_data(size);
1309 for (t = 0; t < g->p.nr_tasks; t++) {
1310 struct thread_data *td = g->threads + t;
1311 int cpu;
1313 /* Allow all nodes by default: */
1314 td->bind_node = -1;
1316 /* Allow all CPUs by default: */
1317 CPU_ZERO(&td->bind_cpumask);
1318 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1319 CPU_SET(cpu, &td->bind_cpumask);
1323 static void deinit_thread_data(void)
1325 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1327 free_data(g->threads, size);
1330 static int init(void)
1332 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1334 /* Copy over options: */
1335 g->p = p0;
1337 g->p.nr_cpus = numa_num_configured_cpus();
1339 g->p.nr_nodes = numa_max_node() + 1;
1341 /* char array in count_process_nodes(): */
1342 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1344 if (g->p.show_quiet && !g->p.show_details)
1345 g->p.show_details = -1;
1347 /* Some memory should be specified: */
1348 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1349 return -1;
1351 if (g->p.mb_global_str) {
1352 g->p.mb_global = atof(g->p.mb_global_str);
1353 BUG_ON(g->p.mb_global < 0);
1356 if (g->p.mb_proc_str) {
1357 g->p.mb_proc = atof(g->p.mb_proc_str);
1358 BUG_ON(g->p.mb_proc < 0);
1361 if (g->p.mb_proc_locked_str) {
1362 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1363 BUG_ON(g->p.mb_proc_locked < 0);
1364 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1367 if (g->p.mb_thread_str) {
1368 g->p.mb_thread = atof(g->p.mb_thread_str);
1369 BUG_ON(g->p.mb_thread < 0);
1372 BUG_ON(g->p.nr_threads <= 0);
1373 BUG_ON(g->p.nr_proc <= 0);
1375 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1377 g->p.bytes_global = g->p.mb_global *1024L*1024L;
1378 g->p.bytes_process = g->p.mb_proc *1024L*1024L;
1379 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
1380 g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
1382 g->data = setup_shared_data(g->p.bytes_global);
1384 /* Startup serialization: */
1385 init_global_mutex(&g->start_work_mutex);
1386 init_global_mutex(&g->startup_mutex);
1387 init_global_mutex(&g->startup_done_mutex);
1388 init_global_mutex(&g->stop_work_mutex);
1390 init_thread_data();
1392 tprintf("#\n");
1393 if (parse_setup_cpu_list() || parse_setup_node_list())
1394 return -1;
1395 tprintf("#\n");
1397 print_summary();
1399 return 0;
1402 static void deinit(void)
1404 free_data(g->data, g->p.bytes_global);
1405 g->data = NULL;
1407 deinit_thread_data();
1409 free_data(g, sizeof(*g));
1410 g = NULL;
1414 * Print a short or long result, depending on the verbosity setting:
1416 static void print_res(const char *name, double val,
1417 const char *txt_unit, const char *txt_short, const char *txt_long)
1419 if (!name)
1420 name = "main,";
1422 if (!g->p.show_quiet)
1423 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1424 else
1425 printf(" %14.3f %s\n", val, txt_long);
1428 static int __bench_numa(const char *name)
1430 struct timeval start, stop, diff;
1431 u64 runtime_ns_min, runtime_ns_sum;
1432 pid_t *pids, pid, wpid;
1433 double delta_runtime;
1434 double runtime_avg;
1435 double runtime_sec_max;
1436 double runtime_sec_min;
1437 int wait_stat;
1438 double bytes;
1439 int i, t, p;
1441 if (init())
1442 return -1;
1444 pids = zalloc(g->p.nr_proc * sizeof(*pids));
1445 pid = -1;
1447 /* All threads try to acquire it, this way we can wait for them to start up: */
1448 pthread_mutex_lock(&g->start_work_mutex);
1450 if (g->p.serialize_startup) {
1451 tprintf(" #\n");
1452 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1455 gettimeofday(&start, NULL);
1457 for (i = 0; i < g->p.nr_proc; i++) {
1458 pid = fork();
1459 dprintf(" # process %2d: PID %d\n", i, pid);
1461 BUG_ON(pid < 0);
1462 if (!pid) {
1463 /* Child process: */
1464 worker_process(i);
1466 exit(0);
1468 pids[i] = pid;
1471 /* Wait for all the threads to start up: */
1472 while (g->nr_tasks_started != g->p.nr_tasks)
1473 usleep(USEC_PER_MSEC);
1475 BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1477 if (g->p.serialize_startup) {
1478 double startup_sec;
1480 pthread_mutex_lock(&g->startup_done_mutex);
1482 /* This will start all threads: */
1483 pthread_mutex_unlock(&g->start_work_mutex);
1485 /* This mutex is locked - the last started thread will wake us: */
1486 pthread_mutex_lock(&g->startup_done_mutex);
1488 gettimeofday(&stop, NULL);
1490 timersub(&stop, &start, &diff);
1492 startup_sec = diff.tv_sec * NSEC_PER_SEC;
1493 startup_sec += diff.tv_usec * NSEC_PER_USEC;
1494 startup_sec /= NSEC_PER_SEC;
1496 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1497 tprintf(" #\n");
1499 start = stop;
1500 pthread_mutex_unlock(&g->startup_done_mutex);
1501 } else {
1502 gettimeofday(&start, NULL);
1505 /* Parent process: */
1508 for (i = 0; i < g->p.nr_proc; i++) {
1509 wpid = waitpid(pids[i], &wait_stat, 0);
1510 BUG_ON(wpid < 0);
1511 BUG_ON(!WIFEXITED(wait_stat));
1515 runtime_ns_sum = 0;
1516 runtime_ns_min = -1LL;
1518 for (t = 0; t < g->p.nr_tasks; t++) {
1519 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1521 runtime_ns_sum += thread_runtime_ns;
1522 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1525 gettimeofday(&stop, NULL);
1526 timersub(&stop, &start, &diff);
1528 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1530 tprintf("\n ###\n");
1531 tprintf("\n");
1533 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1534 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1535 runtime_sec_max /= NSEC_PER_SEC;
1537 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1539 bytes = g->bytes_done;
1540 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1542 if (g->p.measure_convergence) {
1543 print_res(name, runtime_sec_max,
1544 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1547 print_res(name, runtime_sec_max,
1548 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1550 print_res(name, runtime_sec_min,
1551 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1553 print_res(name, runtime_avg,
1554 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1556 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1557 print_res(name, delta_runtime / runtime_sec_max * 100.0,
1558 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1560 print_res(name, bytes / g->p.nr_tasks / 1e9,
1561 "GB,", "data/thread", "GB data processed, per thread");
1563 print_res(name, bytes / 1e9,
1564 "GB,", "data-total", "GB data processed, total");
1566 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1567 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1569 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1570 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1572 print_res(name, bytes / runtime_sec_max / 1e9,
1573 "GB/sec,", "total-speed", "GB/sec total speed");
1575 if (g->p.show_details >= 2) {
1576 char tname[32];
1577 struct thread_data *td;
1578 for (p = 0; p < g->p.nr_proc; p++) {
1579 for (t = 0; t < g->p.nr_threads; t++) {
1580 memset(tname, 0, 32);
1581 td = g->threads + p*g->p.nr_threads + t;
1582 snprintf(tname, 32, "process%d:thread%d", p, t);
1583 print_res(tname, td->speed_gbs,
1584 "GB/sec", "thread-speed", "GB/sec/thread speed");
1585 print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1586 "secs", "thread-system-time", "system CPU time/thread");
1587 print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1588 "secs", "thread-user-time", "user CPU time/thread");
1593 free(pids);
1595 deinit();
1597 return 0;
1600 #define MAX_ARGS 50
1602 static int command_size(const char **argv)
1604 int size = 0;
1606 while (*argv) {
1607 size++;
1608 argv++;
1611 BUG_ON(size >= MAX_ARGS);
1613 return size;
1616 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1618 int i;
1620 printf("\n # Running %s \"perf bench numa", name);
1622 for (i = 0; i < argc; i++)
1623 printf(" %s", argv[i]);
1625 printf("\"\n");
1627 memset(p, 0, sizeof(*p));
1629 /* Initialize nonzero defaults: */
1631 p->serialize_startup = 1;
1632 p->data_reads = true;
1633 p->data_writes = true;
1634 p->data_backwards = true;
1635 p->data_rand_walk = true;
1636 p->nr_loops = -1;
1637 p->init_random = true;
1638 p->mb_global_str = "1";
1639 p->nr_proc = 1;
1640 p->nr_threads = 1;
1641 p->nr_secs = 5;
1642 p->run_all = argc == 1;
1645 static int run_bench_numa(const char *name, const char **argv)
1647 int argc = command_size(argv);
1649 init_params(&p0, name, argc, argv);
1650 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1651 if (argc)
1652 goto err;
1654 if (__bench_numa(name))
1655 goto err;
1657 return 0;
1659 err:
1660 return -1;
1663 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1664 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1666 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1667 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1669 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1670 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1673 * The built-in test-suite executed by "perf bench numa -a".
1675 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1677 static const char *tests[][MAX_ARGS] = {
1678 /* Basic single-stream NUMA bandwidth measurements: */
1679 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1680 "-C" , "0", "-M", "0", OPT_BW_RAM },
1681 { "RAM-bw-local-NOTHP,",
1682 "mem", "-p", "1", "-t", "1", "-P", "1024",
1683 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
1684 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1685 "-C" , "0", "-M", "1", OPT_BW_RAM },
1687 /* 2-stream NUMA bandwidth measurements: */
1688 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1689 "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1690 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1691 "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1693 /* Cross-stream NUMA bandwidth measurement: */
1694 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1695 "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1697 /* Convergence latency measurements: */
1698 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
1699 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
1700 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
1701 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1702 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1703 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
1704 { " 4x4-convergence-NOTHP,",
1705 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1706 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
1707 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
1708 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
1709 { " 8x4-convergence-NOTHP,",
1710 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1711 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
1712 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
1713 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
1714 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
1715 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
1717 /* Various NUMA process/thread layout bandwidth measurements: */
1718 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
1719 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
1720 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
1721 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
1722 { " 8x1-bw-process-NOTHP,",
1723 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
1724 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
1726 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
1727 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
1728 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
1729 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
1731 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
1732 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
1733 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
1734 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
1735 { " 4x8-bw-thread-NOTHP,",
1736 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
1737 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
1738 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
1740 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
1741 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
1743 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
1744 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
1745 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
1746 { "numa01-bw-thread-NOTHP,",
1747 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
1750 static int bench_all(void)
1752 int nr = ARRAY_SIZE(tests);
1753 int ret;
1754 int i;
1756 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1757 BUG_ON(ret < 0);
1759 for (i = 0; i < nr; i++) {
1760 run_bench_numa(tests[i][0], tests[i] + 1);
1763 printf("\n");
1765 return 0;
1768 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1770 init_params(&p0, "main,", argc, argv);
1771 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1772 if (argc)
1773 goto err;
1775 if (p0.run_all)
1776 return bench_all();
1778 if (__bench_numa(NULL))
1779 goto err;
1781 return 0;
1783 err:
1784 usage_with_options(numa_usage, options);
1785 return -1;