4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
7 /* For the CLR_() macros */
11 #include "../builtin.h"
12 #include "../util/util.h"
13 #include <subcmd/parse-options.h>
14 #include "../util/cloexec.h"
29 #include <sys/resource.h>
31 #include <sys/prctl.h>
32 #include <sys/types.h>
33 #include <linux/time64.h>
39 * Regular printout to the terminal, supressed if -q is specified:
41 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
46 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
50 cpu_set_t bind_cpumask
;
56 unsigned int loops_done
;
62 pthread_mutex_t
*process_lock
;
65 /* Parameters set by options: */
68 /* Startup synchronization: */
69 bool serialize_startup
;
75 /* Working set sizes: */
76 const char *mb_global_str
;
77 const char *mb_proc_str
;
78 const char *mb_proc_locked_str
;
79 const char *mb_thread_str
;
83 double mb_proc_locked
;
86 /* Access patterns to the working set: */
90 bool data_zero_memset
;
96 /* Working set initialization: */
108 long bytes_process_locked
;
114 bool show_convergence
;
115 bool measure_convergence
;
121 /* Affinity options -C and -N: */
127 /* Global, read-writable area, accessible to all processes and threads: */
132 pthread_mutex_t startup_mutex
;
133 int nr_tasks_started
;
135 pthread_mutex_t startup_done_mutex
;
137 pthread_mutex_t start_work_mutex
;
138 int nr_tasks_working
;
140 pthread_mutex_t stop_work_mutex
;
143 struct thread_data
*threads
;
145 /* Convergence latency measurement: */
154 static struct global_info
*g
= NULL
;
156 static int parse_cpus_opt(const struct option
*opt
, const char *arg
, int unset
);
157 static int parse_nodes_opt(const struct option
*opt
, const char *arg
, int unset
);
161 static const struct option options
[] = {
162 OPT_INTEGER('p', "nr_proc" , &p0
.nr_proc
, "number of processes"),
163 OPT_INTEGER('t', "nr_threads" , &p0
.nr_threads
, "number of threads per process"),
165 OPT_STRING('G', "mb_global" , &p0
.mb_global_str
, "MB", "global memory (MBs)"),
166 OPT_STRING('P', "mb_proc" , &p0
.mb_proc_str
, "MB", "process memory (MBs)"),
167 OPT_STRING('L', "mb_proc_locked", &p0
.mb_proc_locked_str
,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
168 OPT_STRING('T', "mb_thread" , &p0
.mb_thread_str
, "MB", "thread memory (MBs)"),
170 OPT_UINTEGER('l', "nr_loops" , &p0
.nr_loops
, "max number of loops to run (default: unlimited)"),
171 OPT_UINTEGER('s', "nr_secs" , &p0
.nr_secs
, "max number of seconds to run (default: 5 secs)"),
172 OPT_UINTEGER('u', "usleep" , &p0
.sleep_usecs
, "usecs to sleep per loop iteration"),
174 OPT_BOOLEAN('R', "data_reads" , &p0
.data_reads
, "access the data via writes (can be mixed with -W)"),
175 OPT_BOOLEAN('W', "data_writes" , &p0
.data_writes
, "access the data via writes (can be mixed with -R)"),
176 OPT_BOOLEAN('B', "data_backwards", &p0
.data_backwards
, "access the data backwards as well"),
177 OPT_BOOLEAN('Z', "data_zero_memset", &p0
.data_zero_memset
,"access the data via glibc bzero only"),
178 OPT_BOOLEAN('r', "data_rand_walk", &p0
.data_rand_walk
, "access the data with random (32bit LFSR) walk"),
181 OPT_BOOLEAN('z', "init_zero" , &p0
.init_zero
, "bzero the initial allocations"),
182 OPT_BOOLEAN('I', "init_random" , &p0
.init_random
, "randomize the contents of the initial allocations"),
183 OPT_BOOLEAN('0', "init_cpu0" , &p0
.init_cpu0
, "do the initial allocations on CPU#0"),
184 OPT_INTEGER('x', "perturb_secs", &p0
.perturb_secs
, "perturb thread 0/0 every X secs, to test convergence stability"),
186 OPT_INCR ('d', "show_details" , &p0
.show_details
, "Show details"),
187 OPT_INCR ('a', "all" , &p0
.run_all
, "Run all tests in the suite"),
188 OPT_INTEGER('H', "thp" , &p0
.thp
, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
189 OPT_BOOLEAN('c', "show_convergence", &p0
.show_convergence
, "show convergence details"),
190 OPT_BOOLEAN('m', "measure_convergence", &p0
.measure_convergence
, "measure convergence latency"),
191 OPT_BOOLEAN('q', "quiet" , &p0
.show_quiet
, "quiet mode"),
192 OPT_BOOLEAN('S', "serialize-startup", &p0
.serialize_startup
,"serialize thread startup"),
194 /* Special option string parsing callbacks: */
195 OPT_CALLBACK('C', "cpus", NULL
, "cpu[,cpu2,...cpuN]",
196 "bind the first N tasks to these specific cpus (the rest is unbound)",
198 OPT_CALLBACK('M', "memnodes", NULL
, "node[,node2,...nodeN]",
199 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
204 static const char * const bench_numa_usage
[] = {
205 "perf bench numa <options>",
209 static const char * const numa_usage
[] = {
210 "perf bench numa mem [<options>]",
214 static cpu_set_t
bind_to_cpu(int target_cpu
)
216 cpu_set_t orig_mask
, mask
;
219 ret
= sched_getaffinity(0, sizeof(orig_mask
), &orig_mask
);
224 if (target_cpu
== -1) {
227 for (cpu
= 0; cpu
< g
->p
.nr_cpus
; cpu
++)
230 BUG_ON(target_cpu
< 0 || target_cpu
>= g
->p
.nr_cpus
);
231 CPU_SET(target_cpu
, &mask
);
234 ret
= sched_setaffinity(0, sizeof(mask
), &mask
);
240 static cpu_set_t
bind_to_node(int target_node
)
242 int cpus_per_node
= g
->p
.nr_cpus
/g
->p
.nr_nodes
;
243 cpu_set_t orig_mask
, mask
;
247 BUG_ON(cpus_per_node
*g
->p
.nr_nodes
!= g
->p
.nr_cpus
);
248 BUG_ON(!cpus_per_node
);
250 ret
= sched_getaffinity(0, sizeof(orig_mask
), &orig_mask
);
255 if (target_node
== -1) {
256 for (cpu
= 0; cpu
< g
->p
.nr_cpus
; cpu
++)
259 int cpu_start
= (target_node
+ 0) * cpus_per_node
;
260 int cpu_stop
= (target_node
+ 1) * cpus_per_node
;
262 BUG_ON(cpu_stop
> g
->p
.nr_cpus
);
264 for (cpu
= cpu_start
; cpu
< cpu_stop
; cpu
++)
268 ret
= sched_setaffinity(0, sizeof(mask
), &mask
);
274 static void bind_to_cpumask(cpu_set_t mask
)
278 ret
= sched_setaffinity(0, sizeof(mask
), &mask
);
282 static void mempol_restore(void)
286 ret
= set_mempolicy(MPOL_DEFAULT
, NULL
, g
->p
.nr_nodes
-1);
291 static void bind_to_memnode(int node
)
293 unsigned long nodemask
;
299 BUG_ON(g
->p
.nr_nodes
> (int)sizeof(nodemask
)*8);
300 nodemask
= 1L << node
;
302 ret
= set_mempolicy(MPOL_BIND
, &nodemask
, sizeof(nodemask
)*8);
303 dprintf("binding to node %d, mask: %016lx => %d\n", node
, nodemask
, ret
);
308 #define HPSIZE (2*1024*1024)
310 #define set_taskname(fmt...) \
314 snprintf(name, 20, fmt); \
315 prctl(PR_SET_NAME, name); \
318 static u8
*alloc_data(ssize_t bytes0
, int map_flags
,
319 int init_zero
, int init_cpu0
, int thp
, int init_random
)
329 /* Allocate and initialize all memory on CPU#0: */
331 orig_mask
= bind_to_node(0);
335 bytes
= bytes0
+ HPSIZE
;
337 buf
= (void *)mmap(0, bytes
, PROT_READ
|PROT_WRITE
, MAP_ANON
|map_flags
, -1, 0);
338 BUG_ON(buf
== (void *)-1);
340 if (map_flags
== MAP_PRIVATE
) {
342 ret
= madvise(buf
, bytes
, MADV_HUGEPAGE
);
343 if (ret
&& !g
->print_once
) {
345 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
349 ret
= madvise(buf
, bytes
, MADV_NOHUGEPAGE
);
350 if (ret
&& !g
->print_once
) {
352 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
360 /* Initialize random contents, different in each word: */
362 u64
*wbuf
= (void *)buf
;
366 for (i
= 0; i
< bytes
/8; i
++)
371 /* Align to 2MB boundary: */
372 buf
= (void *)(((unsigned long)buf
+ HPSIZE
-1) & ~(HPSIZE
-1));
374 /* Restore affinity: */
376 bind_to_cpumask(orig_mask
);
383 static void free_data(void *data
, ssize_t bytes
)
390 ret
= munmap(data
, bytes
);
395 * Create a shared memory buffer that can be shared between processes, zeroed:
397 static void * zalloc_shared_data(ssize_t bytes
)
399 return alloc_data(bytes
, MAP_SHARED
, 1, g
->p
.init_cpu0
, g
->p
.thp
, g
->p
.init_random
);
403 * Create a shared memory buffer that can be shared between processes:
405 static void * setup_shared_data(ssize_t bytes
)
407 return alloc_data(bytes
, MAP_SHARED
, 0, g
->p
.init_cpu0
, g
->p
.thp
, g
->p
.init_random
);
411 * Allocate process-local memory - this will either be shared between
412 * threads of this process, or only be accessed by this thread:
414 static void * setup_private_data(ssize_t bytes
)
416 return alloc_data(bytes
, MAP_PRIVATE
, 0, g
->p
.init_cpu0
, g
->p
.thp
, g
->p
.init_random
);
420 * Return a process-shared (global) mutex:
422 static void init_global_mutex(pthread_mutex_t
*mutex
)
424 pthread_mutexattr_t attr
;
426 pthread_mutexattr_init(&attr
);
427 pthread_mutexattr_setpshared(&attr
, PTHREAD_PROCESS_SHARED
);
428 pthread_mutex_init(mutex
, &attr
);
431 static int parse_cpu_list(const char *arg
)
433 p0
.cpu_list_str
= strdup(arg
);
435 dprintf("got CPU list: {%s}\n", p0
.cpu_list_str
);
440 static int parse_setup_cpu_list(void)
442 struct thread_data
*td
;
446 if (!g
->p
.cpu_list_str
)
449 dprintf("g->p.nr_tasks: %d\n", g
->p
.nr_tasks
);
451 str0
= str
= strdup(g
->p
.cpu_list_str
);
456 tprintf("# binding tasks to CPUs:\n");
460 int bind_cpu
, bind_cpu_0
, bind_cpu_1
;
461 char *tok
, *tok_end
, *tok_step
, *tok_len
, *tok_mul
;
466 tok
= strsep(&str
, ",");
470 tok_end
= strstr(tok
, "-");
472 dprintf("\ntoken: {%s}, end: {%s}\n", tok
, tok_end
);
474 /* Single CPU specified: */
475 bind_cpu_0
= bind_cpu_1
= atol(tok
);
477 /* CPU range specified (for example: "5-11"): */
478 bind_cpu_0
= atol(tok
);
479 bind_cpu_1
= atol(tok_end
+ 1);
483 tok_step
= strstr(tok
, "#");
485 step
= atol(tok_step
+ 1);
486 BUG_ON(step
<= 0 || step
>= g
->p
.nr_cpus
);
491 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
492 * where the _4 means the next 4 CPUs are allowed.
495 tok_len
= strstr(tok
, "_");
497 bind_len
= atol(tok_len
+ 1);
498 BUG_ON(bind_len
<= 0 || bind_len
> g
->p
.nr_cpus
);
501 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
503 tok_mul
= strstr(tok
, "x");
505 mul
= atol(tok_mul
+ 1);
509 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0
, bind_len
, bind_cpu_1
, step
, mul
);
511 if (bind_cpu_0
>= g
->p
.nr_cpus
|| bind_cpu_1
>= g
->p
.nr_cpus
) {
512 printf("\nTest not applicable, system has only %d CPUs.\n", g
->p
.nr_cpus
);
516 BUG_ON(bind_cpu_0
< 0 || bind_cpu_1
< 0);
517 BUG_ON(bind_cpu_0
> bind_cpu_1
);
519 for (bind_cpu
= bind_cpu_0
; bind_cpu
<= bind_cpu_1
; bind_cpu
+= step
) {
522 for (i
= 0; i
< mul
; i
++) {
525 if (t
>= g
->p
.nr_tasks
) {
526 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu
);
534 tprintf("%2d/%d", bind_cpu
, bind_len
);
536 tprintf("%2d", bind_cpu
);
539 CPU_ZERO(&td
->bind_cpumask
);
540 for (cpu
= bind_cpu
; cpu
< bind_cpu
+bind_len
; cpu
++) {
541 BUG_ON(cpu
< 0 || cpu
>= g
->p
.nr_cpus
);
542 CPU_SET(cpu
, &td
->bind_cpumask
);
552 if (t
< g
->p
.nr_tasks
)
553 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t
, g
->p
.nr_tasks
- t
);
559 static int parse_cpus_opt(const struct option
*opt __maybe_unused
,
560 const char *arg
, int unset __maybe_unused
)
565 return parse_cpu_list(arg
);
568 static int parse_node_list(const char *arg
)
570 p0
.node_list_str
= strdup(arg
);
572 dprintf("got NODE list: {%s}\n", p0
.node_list_str
);
577 static int parse_setup_node_list(void)
579 struct thread_data
*td
;
583 if (!g
->p
.node_list_str
)
586 dprintf("g->p.nr_tasks: %d\n", g
->p
.nr_tasks
);
588 str0
= str
= strdup(g
->p
.node_list_str
);
593 tprintf("# binding tasks to NODEs:\n");
597 int bind_node
, bind_node_0
, bind_node_1
;
598 char *tok
, *tok_end
, *tok_step
, *tok_mul
;
602 tok
= strsep(&str
, ",");
606 tok_end
= strstr(tok
, "-");
608 dprintf("\ntoken: {%s}, end: {%s}\n", tok
, tok_end
);
610 /* Single NODE specified: */
611 bind_node_0
= bind_node_1
= atol(tok
);
613 /* NODE range specified (for example: "5-11"): */
614 bind_node_0
= atol(tok
);
615 bind_node_1
= atol(tok_end
+ 1);
619 tok_step
= strstr(tok
, "#");
621 step
= atol(tok_step
+ 1);
622 BUG_ON(step
<= 0 || step
>= g
->p
.nr_nodes
);
625 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
627 tok_mul
= strstr(tok
, "x");
629 mul
= atol(tok_mul
+ 1);
633 dprintf("NODEs: %d-%d #%d\n", bind_node_0
, bind_node_1
, step
);
635 if (bind_node_0
>= g
->p
.nr_nodes
|| bind_node_1
>= g
->p
.nr_nodes
) {
636 printf("\nTest not applicable, system has only %d nodes.\n", g
->p
.nr_nodes
);
640 BUG_ON(bind_node_0
< 0 || bind_node_1
< 0);
641 BUG_ON(bind_node_0
> bind_node_1
);
643 for (bind_node
= bind_node_0
; bind_node
<= bind_node_1
; bind_node
+= step
) {
646 for (i
= 0; i
< mul
; i
++) {
647 if (t
>= g
->p
.nr_tasks
) {
648 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node
);
654 tprintf(" %2d", bind_node
);
656 tprintf(",%2d", bind_node
);
658 td
->bind_node
= bind_node
;
667 if (t
< g
->p
.nr_tasks
)
668 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t
, g
->p
.nr_tasks
- t
);
674 static int parse_nodes_opt(const struct option
*opt __maybe_unused
,
675 const char *arg
, int unset __maybe_unused
)
680 return parse_node_list(arg
);
685 #define BIT(x) (1ul << x)
687 static inline uint32_t lfsr_32(uint32_t lfsr
)
689 const uint32_t taps
= BIT(1) | BIT(5) | BIT(6) | BIT(31);
690 return (lfsr
>>1) ^ ((0x0u
- (lfsr
& 0x1u
)) & taps
);
694 * Make sure there's real data dependency to RAM (when read
695 * accesses are enabled), so the compiler, the CPU and the
696 * kernel (KSM, zero page, etc.) cannot optimize away RAM
699 static inline u64
access_data(u64
*data
__attribute__((unused
)), u64 val
)
703 if (g
->p
.data_writes
)
709 * The worker process does two types of work, a forwards going
710 * loop and a backwards going loop.
712 * We do this so that on multiprocessor systems we do not create
713 * a 'train' of processing, with highly synchronized processes,
714 * skewing the whole benchmark.
716 static u64
do_work(u8
*__data
, long bytes
, int nr
, int nr_max
, int loop
, u64 val
)
718 long words
= bytes
/sizeof(u64
);
719 u64
*data
= (void *)__data
;
720 long chunk_0
, chunk_1
;
725 BUG_ON(!data
&& words
);
726 BUG_ON(data
&& !words
);
731 /* Very simple memset() work variant: */
732 if (g
->p
.data_zero_memset
&& !g
->p
.data_rand_walk
) {
737 /* Spread out by PID/TID nr and by loop nr: */
738 chunk_0
= words
/nr_max
;
739 chunk_1
= words
/g
->p
.nr_loops
;
740 off
= nr
*chunk_0
+ loop
*chunk_1
;
745 if (g
->p
.data_rand_walk
) {
746 u32 lfsr
= nr
+ loop
+ val
;
749 for (i
= 0; i
< words
/1024; i
++) {
752 lfsr
= lfsr_32(lfsr
);
754 start
= lfsr
% words
;
755 end
= min(start
+ 1024, words
-1);
757 if (g
->p
.data_zero_memset
) {
758 bzero(data
+ start
, (end
-start
) * sizeof(u64
));
760 for (j
= start
; j
< end
; j
++)
761 val
= access_data(data
+ j
, val
);
764 } else if (!g
->p
.data_backwards
|| (nr
+ loop
) & 1) {
770 /* Process data forwards: */
772 if (unlikely(d
>= d1
))
774 if (unlikely(d
== d0
))
777 val
= access_data(d
, val
);
782 /* Process data backwards: */
788 /* Process data forwards: */
790 if (unlikely(d
< data
))
792 if (unlikely(d
== d0
))
795 val
= access_data(d
, val
);
804 static void update_curr_cpu(int task_nr
, unsigned long bytes_worked
)
808 cpu
= sched_getcpu();
810 g
->threads
[task_nr
].curr_cpu
= cpu
;
811 prctl(0, bytes_worked
);
814 #define MAX_NR_NODES 64
817 * Count the number of nodes a process's threads
820 * A count of 1 means that the process is compressed
821 * to a single node. A count of g->p.nr_nodes means it's
822 * spread out on the whole system.
824 static int count_process_nodes(int process_nr
)
826 char node_present
[MAX_NR_NODES
] = { 0, };
830 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
831 struct thread_data
*td
;
835 task_nr
= process_nr
*g
->p
.nr_threads
+ t
;
836 td
= g
->threads
+ task_nr
;
838 node
= numa_node_of_cpu(td
->curr_cpu
);
839 if (node
< 0) /* curr_cpu was likely still -1 */
842 node_present
[node
] = 1;
847 for (n
= 0; n
< MAX_NR_NODES
; n
++)
848 nodes
+= node_present
[n
];
854 * Count the number of distinct process-threads a node contains.
856 * A count of 1 means that the node contains only a single
857 * process. If all nodes on the system contain at most one
858 * process then we are well-converged.
860 static int count_node_processes(int node
)
865 for (p
= 0; p
< g
->p
.nr_proc
; p
++) {
866 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
867 struct thread_data
*td
;
871 task_nr
= p
*g
->p
.nr_threads
+ t
;
872 td
= g
->threads
+ task_nr
;
874 n
= numa_node_of_cpu(td
->curr_cpu
);
885 static void calc_convergence_compression(int *strong
)
887 unsigned int nodes_min
, nodes_max
;
893 for (p
= 0; p
< g
->p
.nr_proc
; p
++) {
894 unsigned int nodes
= count_process_nodes(p
);
901 nodes_min
= min(nodes
, nodes_min
);
902 nodes_max
= max(nodes
, nodes_max
);
905 /* Strong convergence: all threads compress on a single node: */
906 if (nodes_min
== 1 && nodes_max
== 1) {
910 tprintf(" {%d-%d}", nodes_min
, nodes_max
);
914 static void calc_convergence(double runtime_ns_max
, double *convergence
)
916 unsigned int loops_done_min
, loops_done_max
;
918 int nodes
[MAX_NR_NODES
];
929 if (!g
->p
.show_convergence
&& !g
->p
.measure_convergence
)
932 for (node
= 0; node
< g
->p
.nr_nodes
; node
++)
938 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
939 struct thread_data
*td
= g
->threads
+ t
;
940 unsigned int loops_done
;
944 /* Not all threads have written it yet: */
948 node
= numa_node_of_cpu(cpu
);
952 loops_done
= td
->loops_done
;
953 loops_done_min
= min(loops_done
, loops_done_min
);
954 loops_done_max
= max(loops_done
, loops_done_max
);
958 nr_min
= g
->p
.nr_tasks
;
961 for (node
= 0; node
< g
->p
.nr_nodes
; node
++) {
963 nr_min
= min(nr
, nr_min
);
964 nr_max
= max(nr
, nr_max
);
967 BUG_ON(nr_min
> nr_max
);
969 BUG_ON(sum
> g
->p
.nr_tasks
);
971 if (0 && (sum
< g
->p
.nr_tasks
))
975 * Count the number of distinct process groups present
976 * on nodes - when we are converged this will decrease
981 for (node
= 0; node
< g
->p
.nr_nodes
; node
++) {
982 int processes
= count_node_processes(node
);
985 tprintf(" %2d/%-2d", nr
, processes
);
987 process_groups
+= processes
;
990 distance
= nr_max
- nr_min
;
992 tprintf(" [%2d/%-2d]", distance
, process_groups
);
994 tprintf(" l:%3d-%-3d (%3d)",
995 loops_done_min
, loops_done_max
, loops_done_max
-loops_done_min
);
997 if (loops_done_min
&& loops_done_max
) {
998 double skew
= 1.0 - (double)loops_done_min
/loops_done_max
;
1000 tprintf(" [%4.1f%%]", skew
* 100.0);
1003 calc_convergence_compression(&strong
);
1005 if (strong
&& process_groups
== g
->p
.nr_proc
) {
1006 if (!*convergence
) {
1007 *convergence
= runtime_ns_max
;
1008 tprintf(" (%6.1fs converged)\n", *convergence
/ NSEC_PER_SEC
);
1009 if (g
->p
.measure_convergence
) {
1010 g
->all_converged
= true;
1011 g
->stop_work
= true;
1016 tprintf(" (%6.1fs de-converged)", runtime_ns_max
/ NSEC_PER_SEC
);
1023 static void show_summary(double runtime_ns_max
, int l
, double *convergence
)
1025 tprintf("\r # %5.1f%% [%.1f mins]",
1026 (double)(l
+1)/g
->p
.nr_loops
*100.0, runtime_ns_max
/ NSEC_PER_SEC
/ 60.0);
1028 calc_convergence(runtime_ns_max
, convergence
);
1030 if (g
->p
.show_details
>= 0)
1034 static void *worker_thread(void *__tdata
)
1036 struct thread_data
*td
= __tdata
;
1037 struct timeval start0
, start
, stop
, diff
;
1038 int process_nr
= td
->process_nr
;
1039 int thread_nr
= td
->thread_nr
;
1040 unsigned long last_perturbance
;
1041 int task_nr
= td
->task_nr
;
1042 int details
= g
->p
.show_details
;
1043 int first_task
, last_task
;
1044 double convergence
= 0;
1046 double runtime_ns_max
;
1053 struct rusage rusage
;
1055 bind_to_cpumask(td
->bind_cpumask
);
1056 bind_to_memnode(td
->bind_node
);
1058 set_taskname("thread %d/%d", process_nr
, thread_nr
);
1060 global_data
= g
->data
;
1061 process_data
= td
->process_data
;
1062 thread_data
= setup_private_data(g
->p
.bytes_thread
);
1067 if (process_nr
== g
->p
.nr_proc
-1 && thread_nr
== g
->p
.nr_threads
-1)
1071 if (process_nr
== 0 && thread_nr
== 0)
1075 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1076 process_nr
, thread_nr
, global_data
, process_data
, thread_data
);
1079 if (g
->p
.serialize_startup
) {
1080 pthread_mutex_lock(&g
->startup_mutex
);
1081 g
->nr_tasks_started
++;
1082 pthread_mutex_unlock(&g
->startup_mutex
);
1084 /* Here we will wait for the main process to start us all at once: */
1085 pthread_mutex_lock(&g
->start_work_mutex
);
1086 g
->nr_tasks_working
++;
1088 /* Last one wake the main process: */
1089 if (g
->nr_tasks_working
== g
->p
.nr_tasks
)
1090 pthread_mutex_unlock(&g
->startup_done_mutex
);
1092 pthread_mutex_unlock(&g
->start_work_mutex
);
1095 gettimeofday(&start0
, NULL
);
1097 start
= stop
= start0
;
1098 last_perturbance
= start
.tv_sec
;
1100 for (l
= 0; l
< g
->p
.nr_loops
; l
++) {
1106 val
+= do_work(global_data
, g
->p
.bytes_global
, process_nr
, g
->p
.nr_proc
, l
, val
);
1107 val
+= do_work(process_data
, g
->p
.bytes_process
, thread_nr
, g
->p
.nr_threads
, l
, val
);
1108 val
+= do_work(thread_data
, g
->p
.bytes_thread
, 0, 1, l
, val
);
1110 if (g
->p
.sleep_usecs
) {
1111 pthread_mutex_lock(td
->process_lock
);
1112 usleep(g
->p
.sleep_usecs
);
1113 pthread_mutex_unlock(td
->process_lock
);
1116 * Amount of work to be done under a process-global lock:
1118 if (g
->p
.bytes_process_locked
) {
1119 pthread_mutex_lock(td
->process_lock
);
1120 val
+= do_work(process_data
, g
->p
.bytes_process_locked
, thread_nr
, g
->p
.nr_threads
, l
, val
);
1121 pthread_mutex_unlock(td
->process_lock
);
1124 work_done
= g
->p
.bytes_global
+ g
->p
.bytes_process
+
1125 g
->p
.bytes_process_locked
+ g
->p
.bytes_thread
;
1127 update_curr_cpu(task_nr
, work_done
);
1128 bytes_done
+= work_done
;
1130 if (details
< 0 && !g
->p
.perturb_secs
&& !g
->p
.measure_convergence
&& !g
->p
.nr_secs
)
1135 gettimeofday(&stop
, NULL
);
1137 /* Check whether our max runtime timed out: */
1139 timersub(&stop
, &start0
, &diff
);
1140 if ((u32
)diff
.tv_sec
>= g
->p
.nr_secs
) {
1141 g
->stop_work
= true;
1146 /* Update the summary at most once per second: */
1147 if (start
.tv_sec
== stop
.tv_sec
)
1151 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1152 * by migrating to CPU#0:
1154 if (first_task
&& g
->p
.perturb_secs
&& (int)(stop
.tv_sec
- last_perturbance
) >= g
->p
.perturb_secs
) {
1155 cpu_set_t orig_mask
;
1159 last_perturbance
= stop
.tv_sec
;
1162 * Depending on where we are running, move into
1163 * the other half of the system, to create some
1166 this_cpu
= g
->threads
[task_nr
].curr_cpu
;
1167 if (this_cpu
< g
->p
.nr_cpus
/2)
1168 target_cpu
= g
->p
.nr_cpus
-1;
1172 orig_mask
= bind_to_cpu(target_cpu
);
1174 /* Here we are running on the target CPU already */
1176 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu
);
1178 bind_to_cpumask(orig_mask
);
1182 timersub(&stop
, &start
, &diff
);
1183 runtime_ns_max
= diff
.tv_sec
* NSEC_PER_SEC
;
1184 runtime_ns_max
+= diff
.tv_usec
* NSEC_PER_USEC
;
1187 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64
"]\n",
1188 process_nr
, thread_nr
, runtime_ns_max
/ bytes_done
, val
);
1195 timersub(&stop
, &start0
, &diff
);
1196 runtime_ns_max
= diff
.tv_sec
* NSEC_PER_SEC
;
1197 runtime_ns_max
+= diff
.tv_usec
* NSEC_PER_USEC
;
1199 show_summary(runtime_ns_max
, l
, &convergence
);
1202 gettimeofday(&stop
, NULL
);
1203 timersub(&stop
, &start0
, &diff
);
1204 td
->runtime_ns
= diff
.tv_sec
* NSEC_PER_SEC
;
1205 td
->runtime_ns
+= diff
.tv_usec
* NSEC_PER_USEC
;
1206 td
->speed_gbs
= bytes_done
/ (td
->runtime_ns
/ NSEC_PER_SEC
) / 1e9
;
1208 getrusage(RUSAGE_THREAD
, &rusage
);
1209 td
->system_time_ns
= rusage
.ru_stime
.tv_sec
* NSEC_PER_SEC
;
1210 td
->system_time_ns
+= rusage
.ru_stime
.tv_usec
* NSEC_PER_USEC
;
1211 td
->user_time_ns
= rusage
.ru_utime
.tv_sec
* NSEC_PER_SEC
;
1212 td
->user_time_ns
+= rusage
.ru_utime
.tv_usec
* NSEC_PER_USEC
;
1214 free_data(thread_data
, g
->p
.bytes_thread
);
1216 pthread_mutex_lock(&g
->stop_work_mutex
);
1217 g
->bytes_done
+= bytes_done
;
1218 pthread_mutex_unlock(&g
->stop_work_mutex
);
1224 * A worker process starts a couple of threads:
1226 static void worker_process(int process_nr
)
1228 pthread_mutex_t process_lock
;
1229 struct thread_data
*td
;
1230 pthread_t
*pthreads
;
1236 pthread_mutex_init(&process_lock
, NULL
);
1237 set_taskname("process %d", process_nr
);
1240 * Pick up the memory policy and the CPU binding of our first thread,
1241 * so that we initialize memory accordingly:
1243 task_nr
= process_nr
*g
->p
.nr_threads
;
1244 td
= g
->threads
+ task_nr
;
1246 bind_to_memnode(td
->bind_node
);
1247 bind_to_cpumask(td
->bind_cpumask
);
1249 pthreads
= zalloc(g
->p
.nr_threads
* sizeof(pthread_t
));
1250 process_data
= setup_private_data(g
->p
.bytes_process
);
1252 if (g
->p
.show_details
>= 3) {
1253 printf(" # process %2d global mem: %p, process mem: %p\n",
1254 process_nr
, g
->data
, process_data
);
1257 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
1258 task_nr
= process_nr
*g
->p
.nr_threads
+ t
;
1259 td
= g
->threads
+ task_nr
;
1261 td
->process_data
= process_data
;
1262 td
->process_nr
= process_nr
;
1264 td
->task_nr
= task_nr
;
1267 td
->process_lock
= &process_lock
;
1269 ret
= pthread_create(pthreads
+ t
, NULL
, worker_thread
, td
);
1273 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
1274 ret
= pthread_join(pthreads
[t
], NULL
);
1278 free_data(process_data
, g
->p
.bytes_process
);
1282 static void print_summary(void)
1284 if (g
->p
.show_details
< 0)
1288 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1289 g
->p
.nr_tasks
, g
->p
.nr_tasks
== 1 ? "task" : "tasks", g
->p
.nr_nodes
, g
->p
.nr_cpus
);
1290 printf(" # %5dx %5ldMB global shared mem operations\n",
1291 g
->p
.nr_loops
, g
->p
.bytes_global
/1024/1024);
1292 printf(" # %5dx %5ldMB process shared mem operations\n",
1293 g
->p
.nr_loops
, g
->p
.bytes_process
/1024/1024);
1294 printf(" # %5dx %5ldMB thread local mem operations\n",
1295 g
->p
.nr_loops
, g
->p
.bytes_thread
/1024/1024);
1299 printf("\n ###\n"); fflush(stdout
);
1302 static void init_thread_data(void)
1304 ssize_t size
= sizeof(*g
->threads
)*g
->p
.nr_tasks
;
1307 g
->threads
= zalloc_shared_data(size
);
1309 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
1310 struct thread_data
*td
= g
->threads
+ t
;
1313 /* Allow all nodes by default: */
1316 /* Allow all CPUs by default: */
1317 CPU_ZERO(&td
->bind_cpumask
);
1318 for (cpu
= 0; cpu
< g
->p
.nr_cpus
; cpu
++)
1319 CPU_SET(cpu
, &td
->bind_cpumask
);
1323 static void deinit_thread_data(void)
1325 ssize_t size
= sizeof(*g
->threads
)*g
->p
.nr_tasks
;
1327 free_data(g
->threads
, size
);
1330 static int init(void)
1332 g
= (void *)alloc_data(sizeof(*g
), MAP_SHARED
, 1, 0, 0 /* THP */, 0);
1334 /* Copy over options: */
1337 g
->p
.nr_cpus
= numa_num_configured_cpus();
1339 g
->p
.nr_nodes
= numa_max_node() + 1;
1341 /* char array in count_process_nodes(): */
1342 BUG_ON(g
->p
.nr_nodes
> MAX_NR_NODES
|| g
->p
.nr_nodes
< 0);
1344 if (g
->p
.show_quiet
&& !g
->p
.show_details
)
1345 g
->p
.show_details
= -1;
1347 /* Some memory should be specified: */
1348 if (!g
->p
.mb_global_str
&& !g
->p
.mb_proc_str
&& !g
->p
.mb_thread_str
)
1351 if (g
->p
.mb_global_str
) {
1352 g
->p
.mb_global
= atof(g
->p
.mb_global_str
);
1353 BUG_ON(g
->p
.mb_global
< 0);
1356 if (g
->p
.mb_proc_str
) {
1357 g
->p
.mb_proc
= atof(g
->p
.mb_proc_str
);
1358 BUG_ON(g
->p
.mb_proc
< 0);
1361 if (g
->p
.mb_proc_locked_str
) {
1362 g
->p
.mb_proc_locked
= atof(g
->p
.mb_proc_locked_str
);
1363 BUG_ON(g
->p
.mb_proc_locked
< 0);
1364 BUG_ON(g
->p
.mb_proc_locked
> g
->p
.mb_proc
);
1367 if (g
->p
.mb_thread_str
) {
1368 g
->p
.mb_thread
= atof(g
->p
.mb_thread_str
);
1369 BUG_ON(g
->p
.mb_thread
< 0);
1372 BUG_ON(g
->p
.nr_threads
<= 0);
1373 BUG_ON(g
->p
.nr_proc
<= 0);
1375 g
->p
.nr_tasks
= g
->p
.nr_proc
*g
->p
.nr_threads
;
1377 g
->p
.bytes_global
= g
->p
.mb_global
*1024L*1024L;
1378 g
->p
.bytes_process
= g
->p
.mb_proc
*1024L*1024L;
1379 g
->p
.bytes_process_locked
= g
->p
.mb_proc_locked
*1024L*1024L;
1380 g
->p
.bytes_thread
= g
->p
.mb_thread
*1024L*1024L;
1382 g
->data
= setup_shared_data(g
->p
.bytes_global
);
1384 /* Startup serialization: */
1385 init_global_mutex(&g
->start_work_mutex
);
1386 init_global_mutex(&g
->startup_mutex
);
1387 init_global_mutex(&g
->startup_done_mutex
);
1388 init_global_mutex(&g
->stop_work_mutex
);
1393 if (parse_setup_cpu_list() || parse_setup_node_list())
1402 static void deinit(void)
1404 free_data(g
->data
, g
->p
.bytes_global
);
1407 deinit_thread_data();
1409 free_data(g
, sizeof(*g
));
1414 * Print a short or long result, depending on the verbosity setting:
1416 static void print_res(const char *name
, double val
,
1417 const char *txt_unit
, const char *txt_short
, const char *txt_long
)
1422 if (!g
->p
.show_quiet
)
1423 printf(" %-30s %15.3f, %-15s %s\n", name
, val
, txt_unit
, txt_short
);
1425 printf(" %14.3f %s\n", val
, txt_long
);
1428 static int __bench_numa(const char *name
)
1430 struct timeval start
, stop
, diff
;
1431 u64 runtime_ns_min
, runtime_ns_sum
;
1432 pid_t
*pids
, pid
, wpid
;
1433 double delta_runtime
;
1435 double runtime_sec_max
;
1436 double runtime_sec_min
;
1444 pids
= zalloc(g
->p
.nr_proc
* sizeof(*pids
));
1447 /* All threads try to acquire it, this way we can wait for them to start up: */
1448 pthread_mutex_lock(&g
->start_work_mutex
);
1450 if (g
->p
.serialize_startup
) {
1452 tprintf(" # Startup synchronization: ..."); fflush(stdout
);
1455 gettimeofday(&start
, NULL
);
1457 for (i
= 0; i
< g
->p
.nr_proc
; i
++) {
1459 dprintf(" # process %2d: PID %d\n", i
, pid
);
1463 /* Child process: */
1471 /* Wait for all the threads to start up: */
1472 while (g
->nr_tasks_started
!= g
->p
.nr_tasks
)
1473 usleep(USEC_PER_MSEC
);
1475 BUG_ON(g
->nr_tasks_started
!= g
->p
.nr_tasks
);
1477 if (g
->p
.serialize_startup
) {
1480 pthread_mutex_lock(&g
->startup_done_mutex
);
1482 /* This will start all threads: */
1483 pthread_mutex_unlock(&g
->start_work_mutex
);
1485 /* This mutex is locked - the last started thread will wake us: */
1486 pthread_mutex_lock(&g
->startup_done_mutex
);
1488 gettimeofday(&stop
, NULL
);
1490 timersub(&stop
, &start
, &diff
);
1492 startup_sec
= diff
.tv_sec
* NSEC_PER_SEC
;
1493 startup_sec
+= diff
.tv_usec
* NSEC_PER_USEC
;
1494 startup_sec
/= NSEC_PER_SEC
;
1496 tprintf(" threads initialized in %.6f seconds.\n", startup_sec
);
1500 pthread_mutex_unlock(&g
->startup_done_mutex
);
1502 gettimeofday(&start
, NULL
);
1505 /* Parent process: */
1508 for (i
= 0; i
< g
->p
.nr_proc
; i
++) {
1509 wpid
= waitpid(pids
[i
], &wait_stat
, 0);
1511 BUG_ON(!WIFEXITED(wait_stat
));
1516 runtime_ns_min
= -1LL;
1518 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
1519 u64 thread_runtime_ns
= g
->threads
[t
].runtime_ns
;
1521 runtime_ns_sum
+= thread_runtime_ns
;
1522 runtime_ns_min
= min(thread_runtime_ns
, runtime_ns_min
);
1525 gettimeofday(&stop
, NULL
);
1526 timersub(&stop
, &start
, &diff
);
1528 BUG_ON(bench_format
!= BENCH_FORMAT_DEFAULT
);
1530 tprintf("\n ###\n");
1533 runtime_sec_max
= diff
.tv_sec
* NSEC_PER_SEC
;
1534 runtime_sec_max
+= diff
.tv_usec
* NSEC_PER_USEC
;
1535 runtime_sec_max
/= NSEC_PER_SEC
;
1537 runtime_sec_min
= runtime_ns_min
/ NSEC_PER_SEC
;
1539 bytes
= g
->bytes_done
;
1540 runtime_avg
= (double)runtime_ns_sum
/ g
->p
.nr_tasks
/ NSEC_PER_SEC
;
1542 if (g
->p
.measure_convergence
) {
1543 print_res(name
, runtime_sec_max
,
1544 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1547 print_res(name
, runtime_sec_max
,
1548 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1550 print_res(name
, runtime_sec_min
,
1551 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1553 print_res(name
, runtime_avg
,
1554 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1556 delta_runtime
= (runtime_sec_max
- runtime_sec_min
)/2.0;
1557 print_res(name
, delta_runtime
/ runtime_sec_max
* 100.0,
1558 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1560 print_res(name
, bytes
/ g
->p
.nr_tasks
/ 1e9
,
1561 "GB,", "data/thread", "GB data processed, per thread");
1563 print_res(name
, bytes
/ 1e9
,
1564 "GB,", "data-total", "GB data processed, total");
1566 print_res(name
, runtime_sec_max
* NSEC_PER_SEC
/ (bytes
/ g
->p
.nr_tasks
),
1567 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1569 print_res(name
, bytes
/ g
->p
.nr_tasks
/ 1e9
/ runtime_sec_max
,
1570 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1572 print_res(name
, bytes
/ runtime_sec_max
/ 1e9
,
1573 "GB/sec,", "total-speed", "GB/sec total speed");
1575 if (g
->p
.show_details
>= 2) {
1577 struct thread_data
*td
;
1578 for (p
= 0; p
< g
->p
.nr_proc
; p
++) {
1579 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
1580 memset(tname
, 0, 32);
1581 td
= g
->threads
+ p
*g
->p
.nr_threads
+ t
;
1582 snprintf(tname
, 32, "process%d:thread%d", p
, t
);
1583 print_res(tname
, td
->speed_gbs
,
1584 "GB/sec", "thread-speed", "GB/sec/thread speed");
1585 print_res(tname
, td
->system_time_ns
/ NSEC_PER_SEC
,
1586 "secs", "thread-system-time", "system CPU time/thread");
1587 print_res(tname
, td
->user_time_ns
/ NSEC_PER_SEC
,
1588 "secs", "thread-user-time", "user CPU time/thread");
1602 static int command_size(const char **argv
)
1611 BUG_ON(size
>= MAX_ARGS
);
1616 static void init_params(struct params
*p
, const char *name
, int argc
, const char **argv
)
1620 printf("\n # Running %s \"perf bench numa", name
);
1622 for (i
= 0; i
< argc
; i
++)
1623 printf(" %s", argv
[i
]);
1627 memset(p
, 0, sizeof(*p
));
1629 /* Initialize nonzero defaults: */
1631 p
->serialize_startup
= 1;
1632 p
->data_reads
= true;
1633 p
->data_writes
= true;
1634 p
->data_backwards
= true;
1635 p
->data_rand_walk
= true;
1637 p
->init_random
= true;
1638 p
->mb_global_str
= "1";
1642 p
->run_all
= argc
== 1;
1645 static int run_bench_numa(const char *name
, const char **argv
)
1647 int argc
= command_size(argv
);
1649 init_params(&p0
, name
, argc
, argv
);
1650 argc
= parse_options(argc
, argv
, options
, bench_numa_usage
, 0);
1654 if (__bench_numa(name
))
1663 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1664 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1666 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1667 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1669 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1670 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1673 * The built-in test-suite executed by "perf bench numa -a".
1675 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1677 static const char *tests
[][MAX_ARGS
] = {
1678 /* Basic single-stream NUMA bandwidth measurements: */
1679 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1680 "-C" , "0", "-M", "0", OPT_BW_RAM
},
1681 { "RAM-bw-local-NOTHP,",
1682 "mem", "-p", "1", "-t", "1", "-P", "1024",
1683 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP
},
1684 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1685 "-C" , "0", "-M", "1", OPT_BW_RAM
},
1687 /* 2-stream NUMA bandwidth measurements: */
1688 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1689 "-C", "0,2", "-M", "0x2", OPT_BW_RAM
},
1690 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1691 "-C", "0,2", "-M", "1x2", OPT_BW_RAM
},
1693 /* Cross-stream NUMA bandwidth measurement: */
1694 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1695 "-C", "0,8", "-M", "1,0", OPT_BW_RAM
},
1697 /* Convergence latency measurements: */
1698 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV
},
1699 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV
},
1700 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV
},
1701 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV
},
1702 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV
},
1703 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV
},
1704 { " 4x4-convergence-NOTHP,",
1705 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP
},
1706 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV
},
1707 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV
},
1708 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV
},
1709 { " 8x4-convergence-NOTHP,",
1710 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP
},
1711 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV
},
1712 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV
},
1713 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV
},
1714 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV
},
1715 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV
},
1717 /* Various NUMA process/thread layout bandwidth measurements: */
1718 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW
},
1719 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW
},
1720 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW
},
1721 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW
},
1722 { " 8x1-bw-process-NOTHP,",
1723 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP
},
1724 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW
},
1726 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW
},
1727 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW
},
1728 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW
},
1729 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW
},
1731 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW
},
1732 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW
},
1733 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW
},
1734 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW
},
1735 { " 4x8-bw-thread-NOTHP,",
1736 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP
},
1737 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW
},
1738 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW
},
1740 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW
},
1741 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW
},
1743 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW
},
1744 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP
},
1745 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW
},
1746 { "numa01-bw-thread-NOTHP,",
1747 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP
},
1750 static int bench_all(void)
1752 int nr
= ARRAY_SIZE(tests
);
1756 ret
= system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1759 for (i
= 0; i
< nr
; i
++) {
1760 run_bench_numa(tests
[i
][0], tests
[i
] + 1);
1768 int bench_numa(int argc
, const char **argv
, const char *prefix __maybe_unused
)
1770 init_params(&p0
, "main,", argc
, argv
);
1771 argc
= parse_options(argc
, argv
, options
, bench_numa_usage
, 0);
1778 if (__bench_numa(NULL
))
1784 usage_with_options(numa_usage
, options
);