1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MMU_CONTEXT_H
3 #define _ASM_X86_MMU_CONTEXT_H
6 #include <linux/atomic.h>
7 #include <linux/mm_types.h>
8 #include <linux/pkeys.h>
10 #include <trace/events/tlb.h>
12 #include <asm/pgalloc.h>
13 #include <asm/tlbflush.h>
14 #include <asm/paravirt.h>
17 extern atomic64_t last_mm_ctx_id
;
19 #ifndef CONFIG_PARAVIRT
20 static inline void paravirt_activate_mm(struct mm_struct
*prev
,
21 struct mm_struct
*next
)
24 #endif /* !CONFIG_PARAVIRT */
26 #ifdef CONFIG_PERF_EVENTS
28 DECLARE_STATIC_KEY_FALSE(rdpmc_always_available_key
);
30 static inline void load_mm_cr4(struct mm_struct
*mm
)
32 if (static_branch_unlikely(&rdpmc_always_available_key
) ||
33 atomic_read(&mm
->context
.perf_rdpmc_allowed
))
34 cr4_set_bits(X86_CR4_PCE
);
36 cr4_clear_bits(X86_CR4_PCE
);
39 static inline void load_mm_cr4(struct mm_struct
*mm
) {}
42 #ifdef CONFIG_MODIFY_LDT_SYSCALL
44 * ldt_structs can be allocated, used, and freed, but they are never
45 * modified while live.
49 * Xen requires page-aligned LDTs with special permissions. This is
50 * needed to prevent us from installing evil descriptors such as
51 * call gates. On native, we could merge the ldt_struct and LDT
52 * allocations, but it's not worth trying to optimize.
54 struct desc_struct
*entries
;
55 unsigned int nr_entries
;
58 * If PTI is in use, then the entries array is not mapped while we're
59 * in user mode. The whole array will be aliased at the addressed
60 * given by ldt_slot_va(slot). We use two slots so that we can allocate
61 * and map, and enable a new LDT without invalidating the mapping
62 * of an older, still-in-use LDT.
64 * slot will be -1 if this LDT doesn't have an alias mapping.
69 /* This is a multiple of PAGE_SIZE. */
70 #define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)
72 static inline void *ldt_slot_va(int slot
)
74 return (void *)(LDT_BASE_ADDR
+ LDT_SLOT_STRIDE
* slot
);
78 * Used for LDT copy/destruction.
80 static inline void init_new_context_ldt(struct mm_struct
*mm
)
82 mm
->context
.ldt
= NULL
;
83 init_rwsem(&mm
->context
.ldt_usr_sem
);
85 int ldt_dup_context(struct mm_struct
*oldmm
, struct mm_struct
*mm
);
86 void destroy_context_ldt(struct mm_struct
*mm
);
87 void ldt_arch_exit_mmap(struct mm_struct
*mm
);
88 #else /* CONFIG_MODIFY_LDT_SYSCALL */
89 static inline void init_new_context_ldt(struct mm_struct
*mm
) { }
90 static inline int ldt_dup_context(struct mm_struct
*oldmm
,
95 static inline void destroy_context_ldt(struct mm_struct
*mm
) { }
96 static inline void ldt_arch_exit_mmap(struct mm_struct
*mm
) { }
99 static inline void load_mm_ldt(struct mm_struct
*mm
)
101 #ifdef CONFIG_MODIFY_LDT_SYSCALL
102 struct ldt_struct
*ldt
;
104 /* READ_ONCE synchronizes with smp_store_release */
105 ldt
= READ_ONCE(mm
->context
.ldt
);
108 * Any change to mm->context.ldt is followed by an IPI to all
109 * CPUs with the mm active. The LDT will not be freed until
110 * after the IPI is handled by all such CPUs. This means that,
111 * if the ldt_struct changes before we return, the values we see
112 * will be safe, and the new values will be loaded before we run
115 * NB: don't try to convert this to use RCU without extreme care.
116 * We would still need IRQs off, because we don't want to change
117 * the local LDT after an IPI loaded a newer value than the one
122 if (static_cpu_has(X86_FEATURE_PTI
)) {
123 if (WARN_ON_ONCE((unsigned long)ldt
->slot
> 1)) {
125 * Whoops -- either the new LDT isn't mapped
126 * (if slot == -1) or is mapped into a bogus
127 * slot (if slot > 1).
134 * If page table isolation is enabled, ldt->entries
135 * will not be mapped in the userspace pagetables.
136 * Tell the CPU to access the LDT through the alias
137 * at ldt_slot_va(ldt->slot).
139 set_ldt(ldt_slot_va(ldt
->slot
), ldt
->nr_entries
);
141 set_ldt(ldt
->entries
, ldt
->nr_entries
);
151 static inline void switch_ldt(struct mm_struct
*prev
, struct mm_struct
*next
)
153 #ifdef CONFIG_MODIFY_LDT_SYSCALL
155 * Load the LDT if either the old or new mm had an LDT.
157 * An mm will never go from having an LDT to not having an LDT. Two
158 * mms never share an LDT, so we don't gain anything by checking to
159 * see whether the LDT changed. There's also no guarantee that
160 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
161 * then prev->context.ldt will also be non-NULL.
163 * If we really cared, we could optimize the case where prev == next
164 * and we're exiting lazy mode. Most of the time, if this happens,
165 * we don't actually need to reload LDTR, but modify_ldt() is mostly
166 * used by legacy code and emulators where we don't need this level of
169 * This uses | instead of || because it generates better code.
171 if (unlikely((unsigned long)prev
->context
.ldt
|
172 (unsigned long)next
->context
.ldt
))
176 DEBUG_LOCKS_WARN_ON(preemptible());
179 void enter_lazy_tlb(struct mm_struct
*mm
, struct task_struct
*tsk
);
181 static inline int init_new_context(struct task_struct
*tsk
,
182 struct mm_struct
*mm
)
184 mutex_init(&mm
->context
.lock
);
186 mm
->context
.ctx_id
= atomic64_inc_return(&last_mm_ctx_id
);
187 atomic64_set(&mm
->context
.tlb_gen
, 0);
189 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
190 if (cpu_feature_enabled(X86_FEATURE_OSPKE
)) {
191 /* pkey 0 is the default and allocated implicitly */
192 mm
->context
.pkey_allocation_map
= 0x1;
193 /* -1 means unallocated or invalid */
194 mm
->context
.execute_only_pkey
= -1;
197 init_new_context_ldt(mm
);
200 static inline void destroy_context(struct mm_struct
*mm
)
202 destroy_context_ldt(mm
);
205 extern void switch_mm(struct mm_struct
*prev
, struct mm_struct
*next
,
206 struct task_struct
*tsk
);
208 extern void switch_mm_irqs_off(struct mm_struct
*prev
, struct mm_struct
*next
,
209 struct task_struct
*tsk
);
210 #define switch_mm_irqs_off switch_mm_irqs_off
212 #define activate_mm(prev, next) \
214 paravirt_activate_mm((prev), (next)); \
215 switch_mm((prev), (next), NULL); \
219 #define deactivate_mm(tsk, mm) \
224 #define deactivate_mm(tsk, mm) \
227 loadsegment(fs, 0); \
231 static inline int arch_dup_mmap(struct mm_struct
*oldmm
, struct mm_struct
*mm
)
233 paravirt_arch_dup_mmap(oldmm
, mm
);
234 return ldt_dup_context(oldmm
, mm
);
237 static inline void arch_exit_mmap(struct mm_struct
*mm
)
239 paravirt_arch_exit_mmap(mm
);
240 ldt_arch_exit_mmap(mm
);
244 static inline bool is_64bit_mm(struct mm_struct
*mm
)
246 return !IS_ENABLED(CONFIG_IA32_EMULATION
) ||
247 !(mm
->context
.ia32_compat
== TIF_IA32
);
250 static inline bool is_64bit_mm(struct mm_struct
*mm
)
256 static inline void arch_bprm_mm_init(struct mm_struct
*mm
,
257 struct vm_area_struct
*vma
)
262 static inline void arch_unmap(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
263 unsigned long start
, unsigned long end
)
266 * mpx_notify_unmap() goes and reads a rarely-hot
267 * cacheline in the mm_struct. That can be expensive
268 * enough to be seen in profiles.
270 * The mpx_notify_unmap() call and its contents have been
271 * observed to affect munmap() performance on hardware
272 * where MPX is not present.
274 * The unlikely() optimizes for the fast case: no MPX
275 * in the CPU, or no MPX use in the process. Even if
276 * we get this wrong (in the unlikely event that MPX
277 * is widely enabled on some system) the overhead of
278 * MPX itself (reading bounds tables) is expected to
279 * overwhelm the overhead of getting this unlikely()
280 * consistently wrong.
282 if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX
)))
283 mpx_notify_unmap(mm
, vma
, start
, end
);
287 * We only want to enforce protection keys on the current process
288 * because we effectively have no access to PKRU for other
289 * processes or any way to tell *which * PKRU in a threaded
290 * process we could use.
292 * So do not enforce things if the VMA is not from the current
293 * mm, or if we are in a kernel thread.
295 static inline bool vma_is_foreign(struct vm_area_struct
*vma
)
300 * Should PKRU be enforced on the access to this VMA? If
301 * the VMA is from another process, then PKRU has no
302 * relevance and should not be enforced.
304 if (current
->mm
!= vma
->vm_mm
)
310 static inline bool arch_vma_access_permitted(struct vm_area_struct
*vma
,
311 bool write
, bool execute
, bool foreign
)
313 /* pkeys never affect instruction fetches */
316 /* allow access if the VMA is not one from this process */
317 if (foreign
|| vma_is_foreign(vma
))
319 return __pkru_allows_pkey(vma_pkey(vma
), write
);
323 * This can be used from process context to figure out what the value of
324 * CR3 is without needing to do a (slow) __read_cr3().
326 * It's intended to be used for code like KVM that sneakily changes CR3
327 * and needs to restore it. It needs to be used very carefully.
329 static inline unsigned long __get_current_cr3_fast(void)
331 unsigned long cr3
= build_cr3(this_cpu_read(cpu_tlbstate
.loaded_mm
)->pgd
,
332 this_cpu_read(cpu_tlbstate
.loaded_mm_asid
));
334 /* For now, be very restrictive about when this can be called. */
335 VM_WARN_ON(in_nmi() || preemptible());
337 VM_BUG_ON(cr3
!= __read_cr3());
341 #endif /* _ASM_X86_MMU_CONTEXT_H */