1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MSHYPER_H
3 #define _ASM_X86_MSHYPER_H
5 #include <linux/types.h>
6 #include <linux/atomic.h>
9 #include <asm/hyperv-tlfs.h>
10 #include <asm/nospec-branch.h>
12 #define VP_INVAL U32_MAX
14 struct ms_hyperv_info
{
23 extern struct ms_hyperv_info ms_hyperv
;
26 * Generate the guest ID.
29 static inline __u64
generate_guest_id(__u64 d_info1
, __u64 kernel_version
,
34 guest_id
= (((__u64
)HV_LINUX_VENDOR_ID
) << 48);
35 guest_id
|= (d_info1
<< 48);
36 guest_id
|= (kernel_version
<< 16);
43 /* Free the message slot and signal end-of-message if required */
44 static inline void vmbus_signal_eom(struct hv_message
*msg
, u32 old_msg_type
)
47 * On crash we're reading some other CPU's message page and we need
48 * to be careful: this other CPU may already had cleared the header
49 * and the host may already had delivered some other message there.
50 * In case we blindly write msg->header.message_type we're going
51 * to lose it. We can still lose a message of the same type but
52 * we count on the fact that there can only be one
53 * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages
56 if (cmpxchg(&msg
->header
.message_type
, old_msg_type
,
57 HVMSG_NONE
) != old_msg_type
)
61 * Make sure the write to MessageType (ie set to
62 * HVMSG_NONE) happens before we read the
63 * MessagePending and EOMing. Otherwise, the EOMing
64 * will not deliver any more messages since there is
69 if (msg
->header
.message_flags
.msg_pending
) {
71 * This will cause message queue rescan to
72 * possibly deliver another msg from the
75 wrmsrl(HV_X64_MSR_EOM
, 0);
79 #define hv_init_timer(timer, tick) \
80 wrmsrl(HV_X64_MSR_STIMER0_COUNT + (2*timer), tick)
81 #define hv_init_timer_config(timer, val) \
82 wrmsrl(HV_X64_MSR_STIMER0_CONFIG + (2*timer), val)
84 #define hv_get_simp(val) rdmsrl(HV_X64_MSR_SIMP, val)
85 #define hv_set_simp(val) wrmsrl(HV_X64_MSR_SIMP, val)
87 #define hv_get_siefp(val) rdmsrl(HV_X64_MSR_SIEFP, val)
88 #define hv_set_siefp(val) wrmsrl(HV_X64_MSR_SIEFP, val)
90 #define hv_get_synic_state(val) rdmsrl(HV_X64_MSR_SCONTROL, val)
91 #define hv_set_synic_state(val) wrmsrl(HV_X64_MSR_SCONTROL, val)
93 #define hv_get_vp_index(index) rdmsrl(HV_X64_MSR_VP_INDEX, index)
95 #define hv_get_synint_state(int_num, val) \
96 rdmsrl(HV_X64_MSR_SINT0 + int_num, val)
97 #define hv_set_synint_state(int_num, val) \
98 wrmsrl(HV_X64_MSR_SINT0 + int_num, val)
100 #define hv_get_crash_ctl(val) \
101 rdmsrl(HV_X64_MSR_CRASH_CTL, val)
103 void hyperv_callback_vector(void);
104 void hyperv_reenlightenment_vector(void);
105 #ifdef CONFIG_TRACING
106 #define trace_hyperv_callback_vector hyperv_callback_vector
108 void hyperv_vector_handler(struct pt_regs
*regs
);
109 void hv_setup_vmbus_irq(void (*handler
)(void));
110 void hv_remove_vmbus_irq(void);
112 void hv_setup_kexec_handler(void (*handler
)(void));
113 void hv_remove_kexec_handler(void);
114 void hv_setup_crash_handler(void (*handler
)(struct pt_regs
*regs
));
115 void hv_remove_crash_handler(void);
118 * Routines for stimer0 Direct Mode handling.
119 * On x86/x64, there are no percpu actions to take.
121 void hv_stimer0_vector_handler(struct pt_regs
*regs
);
122 void hv_stimer0_callback_vector(void);
123 int hv_setup_stimer0_irq(int *irq
, int *vector
, void (*handler
)(void));
124 void hv_remove_stimer0_irq(int irq
);
126 static inline void hv_enable_stimer0_percpu_irq(int irq
) {}
127 static inline void hv_disable_stimer0_percpu_irq(int irq
) {}
130 #if IS_ENABLED(CONFIG_HYPERV)
131 extern struct clocksource
*hyperv_cs
;
132 extern void *hv_hypercall_pg
;
133 extern void __percpu
**hyperv_pcpu_input_arg
;
135 static inline u64
hv_do_hypercall(u64 control
, void *input
, void *output
)
137 u64 input_address
= input
? virt_to_phys(input
) : 0;
138 u64 output_address
= output
? virt_to_phys(output
) : 0;
142 if (!hv_hypercall_pg
)
145 __asm__
__volatile__("mov %4, %%r8\n"
147 : "=a" (hv_status
), ASM_CALL_CONSTRAINT
,
148 "+c" (control
), "+d" (input_address
)
149 : "r" (output_address
),
150 THUNK_TARGET(hv_hypercall_pg
)
151 : "cc", "memory", "r8", "r9", "r10", "r11");
153 u32 input_address_hi
= upper_32_bits(input_address
);
154 u32 input_address_lo
= lower_32_bits(input_address
);
155 u32 output_address_hi
= upper_32_bits(output_address
);
156 u32 output_address_lo
= lower_32_bits(output_address
);
158 if (!hv_hypercall_pg
)
161 __asm__
__volatile__(CALL_NOSPEC
163 "+c" (input_address_lo
), ASM_CALL_CONSTRAINT
165 "b" (input_address_hi
),
166 "D"(output_address_hi
), "S"(output_address_lo
),
167 THUNK_TARGET(hv_hypercall_pg
)
173 /* Fast hypercall with 8 bytes of input and no output */
174 static inline u64
hv_do_fast_hypercall8(u16 code
, u64 input1
)
176 u64 hv_status
, control
= (u64
)code
| HV_HYPERCALL_FAST_BIT
;
180 __asm__
__volatile__(CALL_NOSPEC
181 : "=a" (hv_status
), ASM_CALL_CONSTRAINT
,
182 "+c" (control
), "+d" (input1
)
183 : THUNK_TARGET(hv_hypercall_pg
)
184 : "cc", "r8", "r9", "r10", "r11");
188 u32 input1_hi
= upper_32_bits(input1
);
189 u32 input1_lo
= lower_32_bits(input1
);
191 __asm__
__volatile__ (CALL_NOSPEC
197 THUNK_TARGET(hv_hypercall_pg
)
198 : "cc", "edi", "esi");
204 /* Fast hypercall with 16 bytes of input */
205 static inline u64
hv_do_fast_hypercall16(u16 code
, u64 input1
, u64 input2
)
207 u64 hv_status
, control
= (u64
)code
| HV_HYPERCALL_FAST_BIT
;
211 __asm__
__volatile__("mov %4, %%r8\n"
213 : "=a" (hv_status
), ASM_CALL_CONSTRAINT
,
214 "+c" (control
), "+d" (input1
)
216 THUNK_TARGET(hv_hypercall_pg
)
217 : "cc", "r8", "r9", "r10", "r11");
221 u32 input1_hi
= upper_32_bits(input1
);
222 u32 input1_lo
= lower_32_bits(input1
);
223 u32 input2_hi
= upper_32_bits(input2
);
224 u32 input2_lo
= lower_32_bits(input2
);
226 __asm__
__volatile__ (CALL_NOSPEC
228 "+c"(input1_lo
), ASM_CALL_CONSTRAINT
229 : "A" (control
), "b" (input1_hi
),
230 "D"(input2_hi
), "S"(input2_lo
),
231 THUNK_TARGET(hv_hypercall_pg
)
239 * Rep hypercalls. Callers of this functions are supposed to ensure that
240 * rep_count and varhead_size comply with Hyper-V hypercall definition.
242 static inline u64
hv_do_rep_hypercall(u16 code
, u16 rep_count
, u16 varhead_size
,
243 void *input
, void *output
)
249 control
|= (u64
)varhead_size
<< HV_HYPERCALL_VARHEAD_OFFSET
;
250 control
|= (u64
)rep_count
<< HV_HYPERCALL_REP_COMP_OFFSET
;
253 status
= hv_do_hypercall(control
, input
, output
);
254 if ((status
& HV_HYPERCALL_RESULT_MASK
) != HV_STATUS_SUCCESS
)
257 /* Bits 32-43 of status have 'Reps completed' data. */
258 rep_comp
= (status
& HV_HYPERCALL_REP_COMP_MASK
) >>
259 HV_HYPERCALL_REP_COMP_OFFSET
;
261 control
&= ~HV_HYPERCALL_REP_START_MASK
;
262 control
|= (u64
)rep_comp
<< HV_HYPERCALL_REP_START_OFFSET
;
264 touch_nmi_watchdog();
265 } while (rep_comp
< rep_count
);
271 * Hypervisor's notion of virtual processor ID is different from
272 * Linux' notion of CPU ID. This information can only be retrieved
273 * in the context of the calling CPU. Setup a map for easy access
274 * to this information.
276 extern u32
*hv_vp_index
;
277 extern u32 hv_max_vp_index
;
278 extern struct hv_vp_assist_page
**hv_vp_assist_page
;
280 static inline struct hv_vp_assist_page
*hv_get_vp_assist_page(unsigned int cpu
)
282 if (!hv_vp_assist_page
)
285 return hv_vp_assist_page
[cpu
];
289 * hv_cpu_number_to_vp_number() - Map CPU to VP.
290 * @cpu_number: CPU number in Linux terms
292 * This function returns the mapping between the Linux processor
293 * number and the hypervisor's virtual processor number, useful
294 * in making hypercalls and such that talk about specific
297 * Return: Virtual processor number in Hyper-V terms
299 static inline int hv_cpu_number_to_vp_number(int cpu_number
)
301 return hv_vp_index
[cpu_number
];
304 static inline int cpumask_to_vpset(struct hv_vpset
*vpset
,
305 const struct cpumask
*cpus
)
307 int cpu
, vcpu
, vcpu_bank
, vcpu_offset
, nr_bank
= 1;
309 /* valid_bank_mask can represent up to 64 banks */
310 if (hv_max_vp_index
/ 64 >= 64)
314 * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex
315 * structs are not cleared between calls, we risk flushing unneeded
318 for (vcpu_bank
= 0; vcpu_bank
<= hv_max_vp_index
/ 64; vcpu_bank
++)
319 vpset
->bank_contents
[vcpu_bank
] = 0;
322 * Some banks may end up being empty but this is acceptable.
324 for_each_cpu(cpu
, cpus
) {
325 vcpu
= hv_cpu_number_to_vp_number(cpu
);
326 if (vcpu
== VP_INVAL
)
328 vcpu_bank
= vcpu
/ 64;
329 vcpu_offset
= vcpu
% 64;
330 __set_bit(vcpu_offset
, (unsigned long *)
331 &vpset
->bank_contents
[vcpu_bank
]);
332 if (vcpu_bank
>= nr_bank
)
333 nr_bank
= vcpu_bank
+ 1;
335 vpset
->valid_bank_mask
= GENMASK_ULL(nr_bank
- 1, 0);
339 void __init
hyperv_init(void);
340 void hyperv_setup_mmu_ops(void);
341 void hyperv_report_panic(struct pt_regs
*regs
, long err
);
342 void hyperv_report_panic_msg(phys_addr_t pa
, size_t size
);
343 bool hv_is_hyperv_initialized(void);
344 void hyperv_cleanup(void);
346 void hyperv_reenlightenment_intr(struct pt_regs
*regs
);
347 void set_hv_tscchange_cb(void (*cb
)(void));
348 void clear_hv_tscchange_cb(void);
349 void hyperv_stop_tsc_emulation(void);
350 int hyperv_flush_guest_mapping(u64 as
);
353 void hv_apic_init(void);
355 static inline void hv_apic_init(void) {}
358 #else /* CONFIG_HYPERV */
359 static inline void hyperv_init(void) {}
360 static inline bool hv_is_hyperv_initialized(void) { return false; }
361 static inline void hyperv_cleanup(void) {}
362 static inline void hyperv_setup_mmu_ops(void) {}
363 static inline void set_hv_tscchange_cb(void (*cb
)(void)) {}
364 static inline void clear_hv_tscchange_cb(void) {}
365 static inline void hyperv_stop_tsc_emulation(void) {};
366 static inline struct hv_vp_assist_page
*hv_get_vp_assist_page(unsigned int cpu
)
370 static inline int hyperv_flush_guest_mapping(u64 as
) { return -1; }
371 #endif /* CONFIG_HYPERV */
373 #ifdef CONFIG_HYPERV_TSCPAGE
374 struct ms_hyperv_tsc_page
*hv_get_tsc_page(void);
375 static inline u64
hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page
*tsc_pg
,
382 * The protocol for reading Hyper-V TSC page is specified in Hypervisor
383 * Top-Level Functional Specification ver. 3.0 and above. To get the
384 * reference time we must do the following:
385 * - READ ReferenceTscSequence
386 * A special '0' value indicates the time source is unreliable and we
387 * need to use something else. The currently published specification
388 * versions (up to 4.0b) contain a mistake and wrongly claim '-1'
389 * instead of '0' as the special value, see commit c35b82ef0294.
391 * ((RDTSC() * ReferenceTscScale) >> 64) + ReferenceTscOffset
392 * - READ ReferenceTscSequence again. In case its value has changed
393 * since our first reading we need to discard ReferenceTime and repeat
394 * the whole sequence as the hypervisor was updating the page in
398 sequence
= READ_ONCE(tsc_pg
->tsc_sequence
);
402 * Make sure we read sequence before we read other values from
407 scale
= READ_ONCE(tsc_pg
->tsc_scale
);
408 offset
= READ_ONCE(tsc_pg
->tsc_offset
);
409 *cur_tsc
= rdtsc_ordered();
412 * Make sure we read sequence after we read all other values
417 } while (READ_ONCE(tsc_pg
->tsc_sequence
) != sequence
);
419 return mul_u64_u64_shr(*cur_tsc
, scale
, 64) + offset
;
422 static inline u64
hv_read_tsc_page(const struct ms_hyperv_tsc_page
*tsc_pg
)
426 return hv_read_tsc_page_tsc(tsc_pg
, &cur_tsc
);
430 static inline struct ms_hyperv_tsc_page
*hv_get_tsc_page(void)
435 static inline u64
hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page
*tsc_pg
,