1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PGTABLE_3LEVEL_H
3 #define _ASM_X86_PGTABLE_3LEVEL_H
5 #include <asm/atomic64_32.h>
8 * Intel Physical Address Extension (PAE) Mode - three-level page
9 * tables on PPro+ CPUs.
11 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
14 #define pte_ERROR(e) \
15 pr_err("%s:%d: bad pte %p(%08lx%08lx)\n", \
16 __FILE__, __LINE__, &(e), (e).pte_high, (e).pte_low)
17 #define pmd_ERROR(e) \
18 pr_err("%s:%d: bad pmd %p(%016Lx)\n", \
19 __FILE__, __LINE__, &(e), pmd_val(e))
20 #define pgd_ERROR(e) \
21 pr_err("%s:%d: bad pgd %p(%016Lx)\n", \
22 __FILE__, __LINE__, &(e), pgd_val(e))
24 /* Rules for using set_pte: the pte being assigned *must* be
25 * either not present or in a state where the hardware will
26 * not attempt to update the pte. In places where this is
27 * not possible, use pte_get_and_clear to obtain the old pte
28 * value and then use set_pte to update it. -ben
30 static inline void native_set_pte(pte_t
*ptep
, pte_t pte
)
32 ptep
->pte_high
= pte
.pte_high
;
34 ptep
->pte_low
= pte
.pte_low
;
37 #define pmd_read_atomic pmd_read_atomic
39 * pte_offset_map_lock on 32bit PAE kernels was reading the pmd_t with
40 * a "*pmdp" dereference done by gcc. Problem is, in certain places
41 * where pte_offset_map_lock is called, concurrent page faults are
42 * allowed, if the mmap_sem is hold for reading. An example is mincore
43 * vs page faults vs MADV_DONTNEED. On the page fault side
44 * pmd_populate rightfully does a set_64bit, but if we're reading the
45 * pmd_t with a "*pmdp" on the mincore side, a SMP race can happen
46 * because gcc will not read the 64bit of the pmd atomically. To fix
47 * this all places running pmd_offset_map_lock() while holding the
48 * mmap_sem in read mode, shall read the pmdp pointer using this
49 * function to know if the pmd is null nor not, and in turn to know if
50 * they can run pmd_offset_map_lock or pmd_trans_huge or other pmd
53 * Without THP if the mmap_sem is hold for reading, the pmd can only
54 * transition from null to not null while pmd_read_atomic runs. So
55 * we can always return atomic pmd values with this function.
57 * With THP if the mmap_sem is hold for reading, the pmd can become
58 * trans_huge or none or point to a pte (and in turn become "stable")
59 * at any time under pmd_read_atomic. We could read it really
60 * atomically here with a atomic64_read for the THP enabled case (and
61 * it would be a whole lot simpler), but to avoid using cmpxchg8b we
62 * only return an atomic pmdval if the low part of the pmdval is later
63 * found stable (i.e. pointing to a pte). And we're returning a none
64 * pmdval if the low part of the pmd is none. In some cases the high
65 * and low part of the pmdval returned may not be consistent if THP is
66 * enabled (the low part may point to previously mapped hugepage,
67 * while the high part may point to a more recently mapped hugepage),
68 * but pmd_none_or_trans_huge_or_clear_bad() only needs the low part
69 * of the pmd to be read atomically to decide if the pmd is unstable
70 * or not, with the only exception of when the low part of the pmd is
71 * zero in which case we return a none pmd.
73 static inline pmd_t
pmd_read_atomic(pmd_t
*pmdp
)
76 u32
*tmp
= (u32
*)pmdp
;
78 ret
= (pmdval_t
) (*tmp
);
81 * If the low part is null, we must not read the high part
82 * or we can end up with a partial pmd.
85 ret
|= ((pmdval_t
)*(tmp
+ 1)) << 32;
88 return (pmd_t
) { ret
};
91 static inline void native_set_pte_atomic(pte_t
*ptep
, pte_t pte
)
93 set_64bit((unsigned long long *)(ptep
), native_pte_val(pte
));
96 static inline void native_set_pmd(pmd_t
*pmdp
, pmd_t pmd
)
98 set_64bit((unsigned long long *)(pmdp
), native_pmd_val(pmd
));
101 static inline void native_set_pud(pud_t
*pudp
, pud_t pud
)
103 #ifdef CONFIG_PAGE_TABLE_ISOLATION
104 pud
.p4d
.pgd
= pti_set_user_pgtbl(&pudp
->p4d
.pgd
, pud
.p4d
.pgd
);
106 set_64bit((unsigned long long *)(pudp
), native_pud_val(pud
));
110 * For PTEs and PDEs, we must clear the P-bit first when clearing a page table
111 * entry, so clear the bottom half first and enforce ordering with a compiler
114 static inline void native_pte_clear(struct mm_struct
*mm
, unsigned long addr
,
122 static inline void native_pmd_clear(pmd_t
*pmd
)
124 u32
*tmp
= (u32
*)pmd
;
130 static inline void native_pud_clear(pud_t
*pudp
)
134 static inline void pud_clear(pud_t
*pudp
)
136 set_pud(pudp
, __pud(0));
139 * According to Intel App note "TLBs, Paging-Structure Caches,
140 * and Their Invalidation", April 2007, document 317080-001,
141 * section 8.1: in PAE mode we explicitly have to flush the
142 * TLB via cr3 if the top-level pgd is changed...
144 * Currently all places where pud_clear() is called either have
145 * flush_tlb_mm() followed or don't need TLB flush (x86_64 code or
146 * pud_clear_bad()), so we don't need TLB flush here.
151 static inline pte_t
native_ptep_get_and_clear(pte_t
*ptep
)
155 res
.pte
= (pteval_t
)arch_atomic64_xchg((atomic64_t
*)ptep
, 0);
160 #define native_ptep_get_and_clear(xp) native_local_ptep_get_and_clear(xp)
172 static inline pmd_t
native_pmdp_get_and_clear(pmd_t
*pmdp
)
174 union split_pmd res
, *orig
= (union split_pmd
*)pmdp
;
176 /* xchg acts as a barrier before setting of the high bits */
177 res
.pmd_low
= xchg(&orig
->pmd_low
, 0);
178 res
.pmd_high
= orig
->pmd_high
;
184 #define native_pmdp_get_and_clear(xp) native_local_pmdp_get_and_clear(xp)
187 #ifndef pmdp_establish
188 #define pmdp_establish pmdp_establish
189 static inline pmd_t
pmdp_establish(struct vm_area_struct
*vma
,
190 unsigned long address
, pmd_t
*pmdp
, pmd_t pmd
)
195 * If pmd has present bit cleared we can get away without expensive
196 * cmpxchg64: we can update pmdp half-by-half without racing with
199 if (!(pmd_val(pmd
) & _PAGE_PRESENT
)) {
200 union split_pmd old
, new, *ptr
;
202 ptr
= (union split_pmd
*)pmdp
;
206 /* xchg acts as a barrier before setting of the high bits */
207 old
.pmd_low
= xchg(&ptr
->pmd_low
, new.pmd_low
);
208 old
.pmd_high
= ptr
->pmd_high
;
209 ptr
->pmd_high
= new.pmd_high
;
215 } while (cmpxchg64(&pmdp
->pmd
, old
.pmd
, pmd
.pmd
) != old
.pmd
);
230 static inline pud_t
native_pudp_get_and_clear(pud_t
*pudp
)
232 union split_pud res
, *orig
= (union split_pud
*)pudp
;
234 #ifdef CONFIG_PAGE_TABLE_ISOLATION
235 pti_set_user_pgtbl(&pudp
->p4d
.pgd
, __pgd(0));
238 /* xchg acts as a barrier before setting of the high bits */
239 res
.pud_low
= xchg(&orig
->pud_low
, 0);
240 res
.pud_high
= orig
->pud_high
;
246 #define native_pudp_get_and_clear(xp) native_local_pudp_get_and_clear(xp)
249 /* Encode and de-code a swap entry */
250 #define SWP_TYPE_BITS 5
252 #define SWP_OFFSET_FIRST_BIT (_PAGE_BIT_PROTNONE + 1)
254 /* We always extract/encode the offset by shifting it all the way up, and then down again */
255 #define SWP_OFFSET_SHIFT (SWP_OFFSET_FIRST_BIT + SWP_TYPE_BITS)
257 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > 5)
258 #define __swp_type(x) (((x).val) & 0x1f)
259 #define __swp_offset(x) ((x).val >> 5)
260 #define __swp_entry(type, offset) ((swp_entry_t){(type) | (offset) << 5})
263 * Normally, __swp_entry() converts from arch-independent swp_entry_t to
264 * arch-dependent swp_entry_t, and __swp_entry_to_pte() just stores the result
265 * to pte. But here we have 32bit swp_entry_t and 64bit pte, and need to use the
266 * whole 64 bits. Thus, we shift the "real" arch-dependent conversion to
267 * __swp_entry_to_pte() through the following helper macro based on 64bit
270 #define __swp_pteval_entry(type, offset) ((pteval_t) { \
271 (~(pteval_t)(offset) << SWP_OFFSET_SHIFT >> SWP_TYPE_BITS) \
272 | ((pteval_t)(type) << (64 - SWP_TYPE_BITS)) })
274 #define __swp_entry_to_pte(x) ((pte_t){ .pte = \
275 __swp_pteval_entry(__swp_type(x), __swp_offset(x)) })
277 * Analogically, __pte_to_swp_entry() doesn't just extract the arch-dependent
278 * swp_entry_t, but also has to convert it from 64bit to the 32bit
279 * intermediate representation, using the following macros based on 64bit
280 * __swp_type() and __swp_offset().
282 #define __pteval_swp_type(x) ((unsigned long)((x).pte >> (64 - SWP_TYPE_BITS)))
283 #define __pteval_swp_offset(x) ((unsigned long)(~((x).pte) << SWP_TYPE_BITS >> SWP_OFFSET_SHIFT))
285 #define __pte_to_swp_entry(pte) (__swp_entry(__pteval_swp_type(pte), \
286 __pteval_swp_offset(pte)))
288 #define gup_get_pte gup_get_pte
290 * WARNING: only to be used in the get_user_pages_fast() implementation.
292 * With get_user_pages_fast(), we walk down the pagetables without taking
293 * any locks. For this we would like to load the pointers atomically,
294 * but that is not possible (without expensive cmpxchg8b) on PAE. What
295 * we do have is the guarantee that a PTE will only either go from not
296 * present to present, or present to not present or both -- it will not
297 * switch to a completely different present page without a TLB flush in
298 * between; something that we are blocking by holding interrupts off.
300 * Setting ptes from not present to present goes:
302 * ptep->pte_high = h;
306 * And present to not present goes:
310 * ptep->pte_high = 0;
312 * We must ensure here that the load of pte_low sees 'l' iff pte_high
313 * sees 'h'. We load pte_high *after* loading pte_low, which ensures we
314 * don't see an older value of pte_high. *Then* we recheck pte_low,
315 * which ensures that we haven't picked up a changed pte high. We might
316 * have gotten rubbish values from pte_low and pte_high, but we are
317 * guaranteed that pte_low will not have the present bit set *unless*
318 * it is 'l'. Because get_user_pages_fast() only operates on present ptes
321 static inline pte_t
gup_get_pte(pte_t
*ptep
)
326 pte
.pte_low
= ptep
->pte_low
;
328 pte
.pte_high
= ptep
->pte_high
;
330 } while (unlikely(pte
.pte_low
!= ptep
->pte_low
));
335 #include <asm/pgtable-invert.h>
337 #endif /* _ASM_X86_PGTABLE_3LEVEL_H */