ACPI / LPSS: Make acpi_lpss_find_device() also find PCI devices
[linux/fpc-iii.git] / arch / x86 / include / asm / pgtable-3level.h
blobf8b1ad2c38280c823c103b5d3f6326a340c1060f
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PGTABLE_3LEVEL_H
3 #define _ASM_X86_PGTABLE_3LEVEL_H
5 #include <asm/atomic64_32.h>
7 /*
8 * Intel Physical Address Extension (PAE) Mode - three-level page
9 * tables on PPro+ CPUs.
11 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
14 #define pte_ERROR(e) \
15 pr_err("%s:%d: bad pte %p(%08lx%08lx)\n", \
16 __FILE__, __LINE__, &(e), (e).pte_high, (e).pte_low)
17 #define pmd_ERROR(e) \
18 pr_err("%s:%d: bad pmd %p(%016Lx)\n", \
19 __FILE__, __LINE__, &(e), pmd_val(e))
20 #define pgd_ERROR(e) \
21 pr_err("%s:%d: bad pgd %p(%016Lx)\n", \
22 __FILE__, __LINE__, &(e), pgd_val(e))
24 /* Rules for using set_pte: the pte being assigned *must* be
25 * either not present or in a state where the hardware will
26 * not attempt to update the pte. In places where this is
27 * not possible, use pte_get_and_clear to obtain the old pte
28 * value and then use set_pte to update it. -ben
30 static inline void native_set_pte(pte_t *ptep, pte_t pte)
32 ptep->pte_high = pte.pte_high;
33 smp_wmb();
34 ptep->pte_low = pte.pte_low;
37 #define pmd_read_atomic pmd_read_atomic
39 * pte_offset_map_lock on 32bit PAE kernels was reading the pmd_t with
40 * a "*pmdp" dereference done by gcc. Problem is, in certain places
41 * where pte_offset_map_lock is called, concurrent page faults are
42 * allowed, if the mmap_sem is hold for reading. An example is mincore
43 * vs page faults vs MADV_DONTNEED. On the page fault side
44 * pmd_populate rightfully does a set_64bit, but if we're reading the
45 * pmd_t with a "*pmdp" on the mincore side, a SMP race can happen
46 * because gcc will not read the 64bit of the pmd atomically. To fix
47 * this all places running pmd_offset_map_lock() while holding the
48 * mmap_sem in read mode, shall read the pmdp pointer using this
49 * function to know if the pmd is null nor not, and in turn to know if
50 * they can run pmd_offset_map_lock or pmd_trans_huge or other pmd
51 * operations.
53 * Without THP if the mmap_sem is hold for reading, the pmd can only
54 * transition from null to not null while pmd_read_atomic runs. So
55 * we can always return atomic pmd values with this function.
57 * With THP if the mmap_sem is hold for reading, the pmd can become
58 * trans_huge or none or point to a pte (and in turn become "stable")
59 * at any time under pmd_read_atomic. We could read it really
60 * atomically here with a atomic64_read for the THP enabled case (and
61 * it would be a whole lot simpler), but to avoid using cmpxchg8b we
62 * only return an atomic pmdval if the low part of the pmdval is later
63 * found stable (i.e. pointing to a pte). And we're returning a none
64 * pmdval if the low part of the pmd is none. In some cases the high
65 * and low part of the pmdval returned may not be consistent if THP is
66 * enabled (the low part may point to previously mapped hugepage,
67 * while the high part may point to a more recently mapped hugepage),
68 * but pmd_none_or_trans_huge_or_clear_bad() only needs the low part
69 * of the pmd to be read atomically to decide if the pmd is unstable
70 * or not, with the only exception of when the low part of the pmd is
71 * zero in which case we return a none pmd.
73 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
75 pmdval_t ret;
76 u32 *tmp = (u32 *)pmdp;
78 ret = (pmdval_t) (*tmp);
79 if (ret) {
81 * If the low part is null, we must not read the high part
82 * or we can end up with a partial pmd.
84 smp_rmb();
85 ret |= ((pmdval_t)*(tmp + 1)) << 32;
88 return (pmd_t) { ret };
91 static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte)
93 set_64bit((unsigned long long *)(ptep), native_pte_val(pte));
96 static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd)
98 set_64bit((unsigned long long *)(pmdp), native_pmd_val(pmd));
101 static inline void native_set_pud(pud_t *pudp, pud_t pud)
103 #ifdef CONFIG_PAGE_TABLE_ISOLATION
104 pud.p4d.pgd = pti_set_user_pgtbl(&pudp->p4d.pgd, pud.p4d.pgd);
105 #endif
106 set_64bit((unsigned long long *)(pudp), native_pud_val(pud));
110 * For PTEs and PDEs, we must clear the P-bit first when clearing a page table
111 * entry, so clear the bottom half first and enforce ordering with a compiler
112 * barrier.
114 static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr,
115 pte_t *ptep)
117 ptep->pte_low = 0;
118 smp_wmb();
119 ptep->pte_high = 0;
122 static inline void native_pmd_clear(pmd_t *pmd)
124 u32 *tmp = (u32 *)pmd;
125 *tmp = 0;
126 smp_wmb();
127 *(tmp + 1) = 0;
130 static inline void native_pud_clear(pud_t *pudp)
134 static inline void pud_clear(pud_t *pudp)
136 set_pud(pudp, __pud(0));
139 * According to Intel App note "TLBs, Paging-Structure Caches,
140 * and Their Invalidation", April 2007, document 317080-001,
141 * section 8.1: in PAE mode we explicitly have to flush the
142 * TLB via cr3 if the top-level pgd is changed...
144 * Currently all places where pud_clear() is called either have
145 * flush_tlb_mm() followed or don't need TLB flush (x86_64 code or
146 * pud_clear_bad()), so we don't need TLB flush here.
150 #ifdef CONFIG_SMP
151 static inline pte_t native_ptep_get_and_clear(pte_t *ptep)
153 pte_t res;
155 res.pte = (pteval_t)arch_atomic64_xchg((atomic64_t *)ptep, 0);
157 return res;
159 #else
160 #define native_ptep_get_and_clear(xp) native_local_ptep_get_and_clear(xp)
161 #endif
163 union split_pmd {
164 struct {
165 u32 pmd_low;
166 u32 pmd_high;
168 pmd_t pmd;
171 #ifdef CONFIG_SMP
172 static inline pmd_t native_pmdp_get_and_clear(pmd_t *pmdp)
174 union split_pmd res, *orig = (union split_pmd *)pmdp;
176 /* xchg acts as a barrier before setting of the high bits */
177 res.pmd_low = xchg(&orig->pmd_low, 0);
178 res.pmd_high = orig->pmd_high;
179 orig->pmd_high = 0;
181 return res.pmd;
183 #else
184 #define native_pmdp_get_and_clear(xp) native_local_pmdp_get_and_clear(xp)
185 #endif
187 #ifndef pmdp_establish
188 #define pmdp_establish pmdp_establish
189 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
190 unsigned long address, pmd_t *pmdp, pmd_t pmd)
192 pmd_t old;
195 * If pmd has present bit cleared we can get away without expensive
196 * cmpxchg64: we can update pmdp half-by-half without racing with
197 * anybody.
199 if (!(pmd_val(pmd) & _PAGE_PRESENT)) {
200 union split_pmd old, new, *ptr;
202 ptr = (union split_pmd *)pmdp;
204 new.pmd = pmd;
206 /* xchg acts as a barrier before setting of the high bits */
207 old.pmd_low = xchg(&ptr->pmd_low, new.pmd_low);
208 old.pmd_high = ptr->pmd_high;
209 ptr->pmd_high = new.pmd_high;
210 return old.pmd;
213 do {
214 old = *pmdp;
215 } while (cmpxchg64(&pmdp->pmd, old.pmd, pmd.pmd) != old.pmd);
217 return old;
219 #endif
221 #ifdef CONFIG_SMP
222 union split_pud {
223 struct {
224 u32 pud_low;
225 u32 pud_high;
227 pud_t pud;
230 static inline pud_t native_pudp_get_and_clear(pud_t *pudp)
232 union split_pud res, *orig = (union split_pud *)pudp;
234 #ifdef CONFIG_PAGE_TABLE_ISOLATION
235 pti_set_user_pgtbl(&pudp->p4d.pgd, __pgd(0));
236 #endif
238 /* xchg acts as a barrier before setting of the high bits */
239 res.pud_low = xchg(&orig->pud_low, 0);
240 res.pud_high = orig->pud_high;
241 orig->pud_high = 0;
243 return res.pud;
245 #else
246 #define native_pudp_get_and_clear(xp) native_local_pudp_get_and_clear(xp)
247 #endif
249 /* Encode and de-code a swap entry */
250 #define SWP_TYPE_BITS 5
252 #define SWP_OFFSET_FIRST_BIT (_PAGE_BIT_PROTNONE + 1)
254 /* We always extract/encode the offset by shifting it all the way up, and then down again */
255 #define SWP_OFFSET_SHIFT (SWP_OFFSET_FIRST_BIT + SWP_TYPE_BITS)
257 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > 5)
258 #define __swp_type(x) (((x).val) & 0x1f)
259 #define __swp_offset(x) ((x).val >> 5)
260 #define __swp_entry(type, offset) ((swp_entry_t){(type) | (offset) << 5})
263 * Normally, __swp_entry() converts from arch-independent swp_entry_t to
264 * arch-dependent swp_entry_t, and __swp_entry_to_pte() just stores the result
265 * to pte. But here we have 32bit swp_entry_t and 64bit pte, and need to use the
266 * whole 64 bits. Thus, we shift the "real" arch-dependent conversion to
267 * __swp_entry_to_pte() through the following helper macro based on 64bit
268 * __swp_entry().
270 #define __swp_pteval_entry(type, offset) ((pteval_t) { \
271 (~(pteval_t)(offset) << SWP_OFFSET_SHIFT >> SWP_TYPE_BITS) \
272 | ((pteval_t)(type) << (64 - SWP_TYPE_BITS)) })
274 #define __swp_entry_to_pte(x) ((pte_t){ .pte = \
275 __swp_pteval_entry(__swp_type(x), __swp_offset(x)) })
277 * Analogically, __pte_to_swp_entry() doesn't just extract the arch-dependent
278 * swp_entry_t, but also has to convert it from 64bit to the 32bit
279 * intermediate representation, using the following macros based on 64bit
280 * __swp_type() and __swp_offset().
282 #define __pteval_swp_type(x) ((unsigned long)((x).pte >> (64 - SWP_TYPE_BITS)))
283 #define __pteval_swp_offset(x) ((unsigned long)(~((x).pte) << SWP_TYPE_BITS >> SWP_OFFSET_SHIFT))
285 #define __pte_to_swp_entry(pte) (__swp_entry(__pteval_swp_type(pte), \
286 __pteval_swp_offset(pte)))
288 #define gup_get_pte gup_get_pte
290 * WARNING: only to be used in the get_user_pages_fast() implementation.
292 * With get_user_pages_fast(), we walk down the pagetables without taking
293 * any locks. For this we would like to load the pointers atomically,
294 * but that is not possible (without expensive cmpxchg8b) on PAE. What
295 * we do have is the guarantee that a PTE will only either go from not
296 * present to present, or present to not present or both -- it will not
297 * switch to a completely different present page without a TLB flush in
298 * between; something that we are blocking by holding interrupts off.
300 * Setting ptes from not present to present goes:
302 * ptep->pte_high = h;
303 * smp_wmb();
304 * ptep->pte_low = l;
306 * And present to not present goes:
308 * ptep->pte_low = 0;
309 * smp_wmb();
310 * ptep->pte_high = 0;
312 * We must ensure here that the load of pte_low sees 'l' iff pte_high
313 * sees 'h'. We load pte_high *after* loading pte_low, which ensures we
314 * don't see an older value of pte_high. *Then* we recheck pte_low,
315 * which ensures that we haven't picked up a changed pte high. We might
316 * have gotten rubbish values from pte_low and pte_high, but we are
317 * guaranteed that pte_low will not have the present bit set *unless*
318 * it is 'l'. Because get_user_pages_fast() only operates on present ptes
319 * we're safe.
321 static inline pte_t gup_get_pte(pte_t *ptep)
323 pte_t pte;
325 do {
326 pte.pte_low = ptep->pte_low;
327 smp_rmb();
328 pte.pte_high = ptep->pte_high;
329 smp_rmb();
330 } while (unlikely(pte.pte_low != ptep->pte_low));
332 return pte;
335 #include <asm/pgtable-invert.h>
337 #endif /* _ASM_X86_PGTABLE_3LEVEL_H */