1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
51 #include <linux/namei.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
86 /* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
93 /* number of audit rules */
96 /* determines whether we collect data for signals sent */
99 struct audit_aux_data
{
100 struct audit_aux_data
*next
;
104 #define AUDIT_AUX_IPCPERM 0
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS 16
109 struct audit_aux_data_pids
{
110 struct audit_aux_data d
;
111 pid_t target_pid
[AUDIT_AUX_PIDS
];
112 kuid_t target_auid
[AUDIT_AUX_PIDS
];
113 kuid_t target_uid
[AUDIT_AUX_PIDS
];
114 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
115 u32 target_sid
[AUDIT_AUX_PIDS
];
116 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
120 struct audit_aux_data_bprm_fcaps
{
121 struct audit_aux_data d
;
122 struct audit_cap_data fcap
;
123 unsigned int fcap_ver
;
124 struct audit_cap_data old_pcap
;
125 struct audit_cap_data new_pcap
;
128 struct audit_tree_refs
{
129 struct audit_tree_refs
*next
;
130 struct audit_chunk
*c
[31];
133 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
140 switch (audit_classify_syscall(ctx
->arch
, n
)) {
142 if ((mask
& AUDIT_PERM_WRITE
) &&
143 audit_match_class(AUDIT_CLASS_WRITE
, n
))
145 if ((mask
& AUDIT_PERM_READ
) &&
146 audit_match_class(AUDIT_CLASS_READ
, n
))
148 if ((mask
& AUDIT_PERM_ATTR
) &&
149 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
152 case 1: /* 32bit on biarch */
153 if ((mask
& AUDIT_PERM_WRITE
) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
156 if ((mask
& AUDIT_PERM_READ
) &&
157 audit_match_class(AUDIT_CLASS_READ_32
, n
))
159 if ((mask
& AUDIT_PERM_ATTR
) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
164 return mask
& ACC_MODE(ctx
->argv
[1]);
166 return mask
& ACC_MODE(ctx
->argv
[2]);
167 case 4: /* socketcall */
168 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
170 return mask
& AUDIT_PERM_EXEC
;
176 static int audit_match_filetype(struct audit_context
*ctx
, int val
)
178 struct audit_names
*n
;
179 umode_t mode
= (umode_t
)val
;
184 list_for_each_entry(n
, &ctx
->names_list
, list
) {
185 if ((n
->ino
!= AUDIT_INO_UNSET
) &&
186 ((n
->mode
& S_IFMT
) == mode
))
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
203 #ifdef CONFIG_AUDIT_TREE
204 static void audit_set_auditable(struct audit_context
*ctx
)
208 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
212 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
214 struct audit_tree_refs
*p
= ctx
->trees
;
215 int left
= ctx
->tree_count
;
217 p
->c
[--left
] = chunk
;
218 ctx
->tree_count
= left
;
227 ctx
->tree_count
= 30;
233 static int grow_tree_refs(struct audit_context
*ctx
)
235 struct audit_tree_refs
*p
= ctx
->trees
;
236 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
242 p
->next
= ctx
->trees
;
244 ctx
->first_trees
= ctx
->trees
;
245 ctx
->tree_count
= 31;
250 static void unroll_tree_refs(struct audit_context
*ctx
,
251 struct audit_tree_refs
*p
, int count
)
253 #ifdef CONFIG_AUDIT_TREE
254 struct audit_tree_refs
*q
;
257 /* we started with empty chain */
258 p
= ctx
->first_trees
;
260 /* if the very first allocation has failed, nothing to do */
265 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
267 audit_put_chunk(q
->c
[n
]);
271 while (n
-- > ctx
->tree_count
) {
272 audit_put_chunk(q
->c
[n
]);
276 ctx
->tree_count
= count
;
280 static void free_tree_refs(struct audit_context
*ctx
)
282 struct audit_tree_refs
*p
, *q
;
283 for (p
= ctx
->first_trees
; p
; p
= q
) {
289 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
291 #ifdef CONFIG_AUDIT_TREE
292 struct audit_tree_refs
*p
;
297 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
298 for (n
= 0; n
< 31; n
++)
299 if (audit_tree_match(p
->c
[n
], tree
))
304 for (n
= ctx
->tree_count
; n
< 31; n
++)
305 if (audit_tree_match(p
->c
[n
], tree
))
312 static int audit_compare_uid(kuid_t uid
,
313 struct audit_names
*name
,
314 struct audit_field
*f
,
315 struct audit_context
*ctx
)
317 struct audit_names
*n
;
321 rc
= audit_uid_comparator(uid
, f
->op
, name
->uid
);
327 list_for_each_entry(n
, &ctx
->names_list
, list
) {
328 rc
= audit_uid_comparator(uid
, f
->op
, n
->uid
);
336 static int audit_compare_gid(kgid_t gid
,
337 struct audit_names
*name
,
338 struct audit_field
*f
,
339 struct audit_context
*ctx
)
341 struct audit_names
*n
;
345 rc
= audit_gid_comparator(gid
, f
->op
, name
->gid
);
351 list_for_each_entry(n
, &ctx
->names_list
, list
) {
352 rc
= audit_gid_comparator(gid
, f
->op
, n
->gid
);
360 static int audit_field_compare(struct task_struct
*tsk
,
361 const struct cred
*cred
,
362 struct audit_field
*f
,
363 struct audit_context
*ctx
,
364 struct audit_names
*name
)
367 /* process to file object comparisons */
368 case AUDIT_COMPARE_UID_TO_OBJ_UID
:
369 return audit_compare_uid(cred
->uid
, name
, f
, ctx
);
370 case AUDIT_COMPARE_GID_TO_OBJ_GID
:
371 return audit_compare_gid(cred
->gid
, name
, f
, ctx
);
372 case AUDIT_COMPARE_EUID_TO_OBJ_UID
:
373 return audit_compare_uid(cred
->euid
, name
, f
, ctx
);
374 case AUDIT_COMPARE_EGID_TO_OBJ_GID
:
375 return audit_compare_gid(cred
->egid
, name
, f
, ctx
);
376 case AUDIT_COMPARE_AUID_TO_OBJ_UID
:
377 return audit_compare_uid(audit_get_loginuid(tsk
), name
, f
, ctx
);
378 case AUDIT_COMPARE_SUID_TO_OBJ_UID
:
379 return audit_compare_uid(cred
->suid
, name
, f
, ctx
);
380 case AUDIT_COMPARE_SGID_TO_OBJ_GID
:
381 return audit_compare_gid(cred
->sgid
, name
, f
, ctx
);
382 case AUDIT_COMPARE_FSUID_TO_OBJ_UID
:
383 return audit_compare_uid(cred
->fsuid
, name
, f
, ctx
);
384 case AUDIT_COMPARE_FSGID_TO_OBJ_GID
:
385 return audit_compare_gid(cred
->fsgid
, name
, f
, ctx
);
386 /* uid comparisons */
387 case AUDIT_COMPARE_UID_TO_AUID
:
388 return audit_uid_comparator(cred
->uid
, f
->op
,
389 audit_get_loginuid(tsk
));
390 case AUDIT_COMPARE_UID_TO_EUID
:
391 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->euid
);
392 case AUDIT_COMPARE_UID_TO_SUID
:
393 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->suid
);
394 case AUDIT_COMPARE_UID_TO_FSUID
:
395 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->fsuid
);
396 /* auid comparisons */
397 case AUDIT_COMPARE_AUID_TO_EUID
:
398 return audit_uid_comparator(audit_get_loginuid(tsk
), f
->op
,
400 case AUDIT_COMPARE_AUID_TO_SUID
:
401 return audit_uid_comparator(audit_get_loginuid(tsk
), f
->op
,
403 case AUDIT_COMPARE_AUID_TO_FSUID
:
404 return audit_uid_comparator(audit_get_loginuid(tsk
), f
->op
,
406 /* euid comparisons */
407 case AUDIT_COMPARE_EUID_TO_SUID
:
408 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->suid
);
409 case AUDIT_COMPARE_EUID_TO_FSUID
:
410 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->fsuid
);
411 /* suid comparisons */
412 case AUDIT_COMPARE_SUID_TO_FSUID
:
413 return audit_uid_comparator(cred
->suid
, f
->op
, cred
->fsuid
);
414 /* gid comparisons */
415 case AUDIT_COMPARE_GID_TO_EGID
:
416 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->egid
);
417 case AUDIT_COMPARE_GID_TO_SGID
:
418 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->sgid
);
419 case AUDIT_COMPARE_GID_TO_FSGID
:
420 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->fsgid
);
421 /* egid comparisons */
422 case AUDIT_COMPARE_EGID_TO_SGID
:
423 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->sgid
);
424 case AUDIT_COMPARE_EGID_TO_FSGID
:
425 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->fsgid
);
426 /* sgid comparison */
427 case AUDIT_COMPARE_SGID_TO_FSGID
:
428 return audit_gid_comparator(cred
->sgid
, f
->op
, cred
->fsgid
);
430 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
436 /* Determine if any context name data matches a rule's watch data */
437 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
440 * If task_creation is true, this is an explicit indication that we are
441 * filtering a task rule at task creation time. This and tsk == current are
442 * the only situations where tsk->cred may be accessed without an rcu read lock.
444 static int audit_filter_rules(struct task_struct
*tsk
,
445 struct audit_krule
*rule
,
446 struct audit_context
*ctx
,
447 struct audit_names
*name
,
448 enum audit_state
*state
,
451 const struct cred
*cred
;
454 unsigned int sessionid
;
456 cred
= rcu_dereference_check(tsk
->cred
, tsk
== current
|| task_creation
);
458 for (i
= 0; i
< rule
->field_count
; i
++) {
459 struct audit_field
*f
= &rule
->fields
[i
];
460 struct audit_names
*n
;
466 pid
= task_tgid_nr(tsk
);
467 result
= audit_comparator(pid
, f
->op
, f
->val
);
472 ctx
->ppid
= task_ppid_nr(tsk
);
473 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
477 result
= audit_exe_compare(tsk
, rule
->exe
);
478 if (f
->op
== Audit_not_equal
)
482 result
= audit_uid_comparator(cred
->uid
, f
->op
, f
->uid
);
485 result
= audit_uid_comparator(cred
->euid
, f
->op
, f
->uid
);
488 result
= audit_uid_comparator(cred
->suid
, f
->op
, f
->uid
);
491 result
= audit_uid_comparator(cred
->fsuid
, f
->op
, f
->uid
);
494 result
= audit_gid_comparator(cred
->gid
, f
->op
, f
->gid
);
495 if (f
->op
== Audit_equal
) {
497 result
= groups_search(cred
->group_info
, f
->gid
);
498 } else if (f
->op
== Audit_not_equal
) {
500 result
= !groups_search(cred
->group_info
, f
->gid
);
504 result
= audit_gid_comparator(cred
->egid
, f
->op
, f
->gid
);
505 if (f
->op
== Audit_equal
) {
507 result
= groups_search(cred
->group_info
, f
->gid
);
508 } else if (f
->op
== Audit_not_equal
) {
510 result
= !groups_search(cred
->group_info
, f
->gid
);
514 result
= audit_gid_comparator(cred
->sgid
, f
->op
, f
->gid
);
517 result
= audit_gid_comparator(cred
->fsgid
, f
->op
, f
->gid
);
519 case AUDIT_SESSIONID
:
520 sessionid
= audit_get_sessionid(tsk
);
521 result
= audit_comparator(sessionid
, f
->op
, f
->val
);
524 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
528 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
532 if (ctx
&& ctx
->return_valid
)
533 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
536 if (ctx
&& ctx
->return_valid
) {
538 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
540 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
545 if (audit_comparator(MAJOR(name
->dev
), f
->op
, f
->val
) ||
546 audit_comparator(MAJOR(name
->rdev
), f
->op
, f
->val
))
549 list_for_each_entry(n
, &ctx
->names_list
, list
) {
550 if (audit_comparator(MAJOR(n
->dev
), f
->op
, f
->val
) ||
551 audit_comparator(MAJOR(n
->rdev
), f
->op
, f
->val
)) {
560 if (audit_comparator(MINOR(name
->dev
), f
->op
, f
->val
) ||
561 audit_comparator(MINOR(name
->rdev
), f
->op
, f
->val
))
564 list_for_each_entry(n
, &ctx
->names_list
, list
) {
565 if (audit_comparator(MINOR(n
->dev
), f
->op
, f
->val
) ||
566 audit_comparator(MINOR(n
->rdev
), f
->op
, f
->val
)) {
575 result
= audit_comparator(name
->ino
, f
->op
, f
->val
);
577 list_for_each_entry(n
, &ctx
->names_list
, list
) {
578 if (audit_comparator(n
->ino
, f
->op
, f
->val
)) {
587 result
= audit_uid_comparator(name
->uid
, f
->op
, f
->uid
);
589 list_for_each_entry(n
, &ctx
->names_list
, list
) {
590 if (audit_uid_comparator(n
->uid
, f
->op
, f
->uid
)) {
599 result
= audit_gid_comparator(name
->gid
, f
->op
, f
->gid
);
601 list_for_each_entry(n
, &ctx
->names_list
, list
) {
602 if (audit_gid_comparator(n
->gid
, f
->op
, f
->gid
)) {
611 result
= audit_watch_compare(rule
->watch
, name
->ino
, name
->dev
);
615 result
= match_tree_refs(ctx
, rule
->tree
);
618 result
= audit_uid_comparator(audit_get_loginuid(tsk
),
621 case AUDIT_LOGINUID_SET
:
622 result
= audit_comparator(audit_loginuid_set(tsk
), f
->op
, f
->val
);
624 case AUDIT_SUBJ_USER
:
625 case AUDIT_SUBJ_ROLE
:
626 case AUDIT_SUBJ_TYPE
:
629 /* NOTE: this may return negative values indicating
630 a temporary error. We simply treat this as a
631 match for now to avoid losing information that
632 may be wanted. An error message will also be
636 security_task_getsecid(tsk
, &sid
);
639 result
= security_audit_rule_match(sid
, f
->type
,
648 case AUDIT_OBJ_LEV_LOW
:
649 case AUDIT_OBJ_LEV_HIGH
:
650 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
653 /* Find files that match */
655 result
= security_audit_rule_match(
656 name
->osid
, f
->type
, f
->op
,
659 list_for_each_entry(n
, &ctx
->names_list
, list
) {
660 if (security_audit_rule_match(n
->osid
, f
->type
,
668 /* Find ipc objects that match */
669 if (!ctx
|| ctx
->type
!= AUDIT_IPC
)
671 if (security_audit_rule_match(ctx
->ipc
.osid
,
682 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
684 case AUDIT_FILTERKEY
:
685 /* ignore this field for filtering */
689 result
= audit_match_perm(ctx
, f
->val
);
692 result
= audit_match_filetype(ctx
, f
->val
);
694 case AUDIT_FIELD_COMPARE
:
695 result
= audit_field_compare(tsk
, cred
, f
, ctx
, name
);
703 if (rule
->prio
<= ctx
->prio
)
705 if (rule
->filterkey
) {
706 kfree(ctx
->filterkey
);
707 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
709 ctx
->prio
= rule
->prio
;
711 switch (rule
->action
) {
713 *state
= AUDIT_DISABLED
;
716 *state
= AUDIT_RECORD_CONTEXT
;
722 /* At process creation time, we can determine if system-call auditing is
723 * completely disabled for this task. Since we only have the task
724 * structure at this point, we can only check uid and gid.
726 static enum audit_state
audit_filter_task(struct task_struct
*tsk
, char **key
)
728 struct audit_entry
*e
;
729 enum audit_state state
;
732 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
733 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
,
735 if (state
== AUDIT_RECORD_CONTEXT
)
736 *key
= kstrdup(e
->rule
.filterkey
, GFP_ATOMIC
);
742 return AUDIT_BUILD_CONTEXT
;
745 static int audit_in_mask(const struct audit_krule
*rule
, unsigned long val
)
749 if (val
> 0xffffffff)
752 word
= AUDIT_WORD(val
);
753 if (word
>= AUDIT_BITMASK_SIZE
)
756 bit
= AUDIT_BIT(val
);
758 return rule
->mask
[word
] & bit
;
761 /* At syscall entry and exit time, this filter is called if the
762 * audit_state is not low enough that auditing cannot take place, but is
763 * also not high enough that we already know we have to write an audit
764 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
766 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
767 struct audit_context
*ctx
,
768 struct list_head
*list
)
770 struct audit_entry
*e
;
771 enum audit_state state
;
773 if (auditd_test_task(tsk
))
774 return AUDIT_DISABLED
;
777 if (!list_empty(list
)) {
778 list_for_each_entry_rcu(e
, list
, list
) {
779 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
780 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
783 ctx
->current_state
= state
;
789 return AUDIT_BUILD_CONTEXT
;
793 * Given an audit_name check the inode hash table to see if they match.
794 * Called holding the rcu read lock to protect the use of audit_inode_hash
796 static int audit_filter_inode_name(struct task_struct
*tsk
,
797 struct audit_names
*n
,
798 struct audit_context
*ctx
) {
799 int h
= audit_hash_ino((u32
)n
->ino
);
800 struct list_head
*list
= &audit_inode_hash
[h
];
801 struct audit_entry
*e
;
802 enum audit_state state
;
804 if (list_empty(list
))
807 list_for_each_entry_rcu(e
, list
, list
) {
808 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
809 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
, false)) {
810 ctx
->current_state
= state
;
818 /* At syscall exit time, this filter is called if any audit_names have been
819 * collected during syscall processing. We only check rules in sublists at hash
820 * buckets applicable to the inode numbers in audit_names.
821 * Regarding audit_state, same rules apply as for audit_filter_syscall().
823 void audit_filter_inodes(struct task_struct
*tsk
, struct audit_context
*ctx
)
825 struct audit_names
*n
;
827 if (auditd_test_task(tsk
))
832 list_for_each_entry(n
, &ctx
->names_list
, list
) {
833 if (audit_filter_inode_name(tsk
, n
, ctx
))
839 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
840 static inline struct audit_context
*audit_take_context(struct task_struct
*tsk
,
844 struct audit_context
*context
= tsk
->audit_context
;
848 context
->return_valid
= return_valid
;
851 * we need to fix up the return code in the audit logs if the actual
852 * return codes are later going to be fixed up by the arch specific
855 * This is actually a test for:
856 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
857 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
859 * but is faster than a bunch of ||
861 if (unlikely(return_code
<= -ERESTARTSYS
) &&
862 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
863 (return_code
!= -ENOIOCTLCMD
))
864 context
->return_code
= -EINTR
;
866 context
->return_code
= return_code
;
868 if (context
->in_syscall
&& !context
->dummy
) {
869 audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
870 audit_filter_inodes(tsk
, context
);
873 audit_set_context(tsk
, NULL
);
877 static inline void audit_proctitle_free(struct audit_context
*context
)
879 kfree(context
->proctitle
.value
);
880 context
->proctitle
.value
= NULL
;
881 context
->proctitle
.len
= 0;
884 static inline void audit_free_names(struct audit_context
*context
)
886 struct audit_names
*n
, *next
;
888 list_for_each_entry_safe(n
, next
, &context
->names_list
, list
) {
895 context
->name_count
= 0;
896 path_put(&context
->pwd
);
897 context
->pwd
.dentry
= NULL
;
898 context
->pwd
.mnt
= NULL
;
901 static inline void audit_free_aux(struct audit_context
*context
)
903 struct audit_aux_data
*aux
;
905 while ((aux
= context
->aux
)) {
906 context
->aux
= aux
->next
;
909 while ((aux
= context
->aux_pids
)) {
910 context
->aux_pids
= aux
->next
;
915 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
917 struct audit_context
*context
;
919 context
= kzalloc(sizeof(*context
), GFP_KERNEL
);
922 context
->state
= state
;
923 context
->prio
= state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
924 INIT_LIST_HEAD(&context
->killed_trees
);
925 INIT_LIST_HEAD(&context
->names_list
);
930 * audit_alloc - allocate an audit context block for a task
933 * Filter on the task information and allocate a per-task audit context
934 * if necessary. Doing so turns on system call auditing for the
935 * specified task. This is called from copy_process, so no lock is
938 int audit_alloc(struct task_struct
*tsk
)
940 struct audit_context
*context
;
941 enum audit_state state
;
944 if (likely(!audit_ever_enabled
))
945 return 0; /* Return if not auditing. */
947 state
= audit_filter_task(tsk
, &key
);
948 if (state
== AUDIT_DISABLED
) {
949 clear_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
953 if (!(context
= audit_alloc_context(state
))) {
955 audit_log_lost("out of memory in audit_alloc");
958 context
->filterkey
= key
;
960 audit_set_context(tsk
, context
);
961 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
965 static inline void audit_free_context(struct audit_context
*context
)
967 audit_free_names(context
);
968 unroll_tree_refs(context
, NULL
, 0);
969 free_tree_refs(context
);
970 audit_free_aux(context
);
971 kfree(context
->filterkey
);
972 kfree(context
->sockaddr
);
973 audit_proctitle_free(context
);
977 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
978 kuid_t auid
, kuid_t uid
, unsigned int sessionid
,
981 struct audit_buffer
*ab
;
986 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
990 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
,
991 from_kuid(&init_user_ns
, auid
),
992 from_kuid(&init_user_ns
, uid
), sessionid
);
994 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
995 audit_log_format(ab
, " obj=(none)");
998 audit_log_format(ab
, " obj=%s", ctx
);
999 security_release_secctx(ctx
, len
);
1002 audit_log_format(ab
, " ocomm=");
1003 audit_log_untrustedstring(ab
, comm
);
1009 static void audit_log_execve_info(struct audit_context
*context
,
1010 struct audit_buffer
**ab
)
1024 const char __user
*p
= (const char __user
*)current
->mm
->arg_start
;
1026 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1027 * data we put in the audit record for this argument (see the
1028 * code below) ... at this point in time 96 is plenty */
1031 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1032 * current value of 7500 is not as important as the fact that it
1033 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1034 * room if we go over a little bit in the logging below */
1035 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN
> 7500);
1036 len_max
= MAX_EXECVE_AUDIT_LEN
;
1038 /* scratch buffer to hold the userspace args */
1039 buf_head
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1041 audit_panic("out of memory for argv string");
1046 audit_log_format(*ab
, "argc=%d", context
->execve
.argc
);
1051 require_data
= true;
1056 /* NOTE: we don't ever want to trust this value for anything
1057 * serious, but the audit record format insists we
1058 * provide an argument length for really long arguments,
1059 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1060 * to use strncpy_from_user() to obtain this value for
1061 * recording in the log, although we don't use it
1062 * anywhere here to avoid a double-fetch problem */
1064 len_full
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1066 /* read more data from userspace */
1068 /* can we make more room in the buffer? */
1069 if (buf
!= buf_head
) {
1070 memmove(buf_head
, buf
, len_buf
);
1074 /* fetch as much as we can of the argument */
1075 len_tmp
= strncpy_from_user(&buf_head
[len_buf
], p
,
1077 if (len_tmp
== -EFAULT
) {
1078 /* unable to copy from userspace */
1079 send_sig(SIGKILL
, current
, 0);
1081 } else if (len_tmp
== (len_max
- len_buf
)) {
1082 /* buffer is not large enough */
1083 require_data
= true;
1084 /* NOTE: if we are going to span multiple
1085 * buffers force the encoding so we stand
1086 * a chance at a sane len_full value and
1087 * consistent record encoding */
1089 len_full
= len_full
* 2;
1092 require_data
= false;
1094 encode
= audit_string_contains_control(
1096 /* try to use a trusted value for len_full */
1097 if (len_full
< len_max
)
1098 len_full
= (encode
?
1099 len_tmp
* 2 : len_tmp
);
1103 buf_head
[len_buf
] = '\0';
1105 /* length of the buffer in the audit record? */
1106 len_abuf
= (encode
? len_buf
* 2 : len_buf
+ 2);
1109 /* write as much as we can to the audit log */
1111 /* NOTE: some magic numbers here - basically if we
1112 * can't fit a reasonable amount of data into the
1113 * existing audit buffer, flush it and start with
1115 if ((sizeof(abuf
) + 8) > len_rem
) {
1118 *ab
= audit_log_start(context
,
1119 GFP_KERNEL
, AUDIT_EXECVE
);
1124 /* create the non-arg portion of the arg record */
1126 if (require_data
|| (iter
> 0) ||
1127 ((len_abuf
+ sizeof(abuf
)) > len_rem
)) {
1129 len_tmp
+= snprintf(&abuf
[len_tmp
],
1130 sizeof(abuf
) - len_tmp
,
1134 len_tmp
+= snprintf(&abuf
[len_tmp
],
1135 sizeof(abuf
) - len_tmp
,
1136 " a%d[%d]=", arg
, iter
++);
1138 len_tmp
+= snprintf(&abuf
[len_tmp
],
1139 sizeof(abuf
) - len_tmp
,
1141 WARN_ON(len_tmp
>= sizeof(abuf
));
1142 abuf
[sizeof(abuf
) - 1] = '\0';
1144 /* log the arg in the audit record */
1145 audit_log_format(*ab
, "%s", abuf
);
1149 if (len_abuf
> len_rem
)
1150 len_tmp
= len_rem
/ 2; /* encoding */
1151 audit_log_n_hex(*ab
, buf
, len_tmp
);
1152 len_rem
-= len_tmp
* 2;
1153 len_abuf
-= len_tmp
* 2;
1155 if (len_abuf
> len_rem
)
1156 len_tmp
= len_rem
- 2; /* quotes */
1157 audit_log_n_string(*ab
, buf
, len_tmp
);
1158 len_rem
-= len_tmp
+ 2;
1159 /* don't subtract the "2" because we still need
1160 * to add quotes to the remaining string */
1161 len_abuf
-= len_tmp
;
1167 /* ready to move to the next argument? */
1168 if ((len_buf
== 0) && !require_data
) {
1172 require_data
= true;
1175 } while (arg
< context
->execve
.argc
);
1177 /* NOTE: the caller handles the final audit_log_end() call */
1183 static void show_special(struct audit_context
*context
, int *call_panic
)
1185 struct audit_buffer
*ab
;
1188 ab
= audit_log_start(context
, GFP_KERNEL
, context
->type
);
1192 switch (context
->type
) {
1193 case AUDIT_SOCKETCALL
: {
1194 int nargs
= context
->socketcall
.nargs
;
1195 audit_log_format(ab
, "nargs=%d", nargs
);
1196 for (i
= 0; i
< nargs
; i
++)
1197 audit_log_format(ab
, " a%d=%lx", i
,
1198 context
->socketcall
.args
[i
]);
1201 u32 osid
= context
->ipc
.osid
;
1203 audit_log_format(ab
, "ouid=%u ogid=%u mode=%#ho",
1204 from_kuid(&init_user_ns
, context
->ipc
.uid
),
1205 from_kgid(&init_user_ns
, context
->ipc
.gid
),
1210 if (security_secid_to_secctx(osid
, &ctx
, &len
)) {
1211 audit_log_format(ab
, " osid=%u", osid
);
1214 audit_log_format(ab
, " obj=%s", ctx
);
1215 security_release_secctx(ctx
, len
);
1218 if (context
->ipc
.has_perm
) {
1220 ab
= audit_log_start(context
, GFP_KERNEL
,
1221 AUDIT_IPC_SET_PERM
);
1224 audit_log_format(ab
,
1225 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1226 context
->ipc
.qbytes
,
1227 context
->ipc
.perm_uid
,
1228 context
->ipc
.perm_gid
,
1229 context
->ipc
.perm_mode
);
1233 audit_log_format(ab
,
1234 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1235 "mq_msgsize=%ld mq_curmsgs=%ld",
1236 context
->mq_open
.oflag
, context
->mq_open
.mode
,
1237 context
->mq_open
.attr
.mq_flags
,
1238 context
->mq_open
.attr
.mq_maxmsg
,
1239 context
->mq_open
.attr
.mq_msgsize
,
1240 context
->mq_open
.attr
.mq_curmsgs
);
1242 case AUDIT_MQ_SENDRECV
:
1243 audit_log_format(ab
,
1244 "mqdes=%d msg_len=%zd msg_prio=%u "
1245 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1246 context
->mq_sendrecv
.mqdes
,
1247 context
->mq_sendrecv
.msg_len
,
1248 context
->mq_sendrecv
.msg_prio
,
1249 (long long) context
->mq_sendrecv
.abs_timeout
.tv_sec
,
1250 context
->mq_sendrecv
.abs_timeout
.tv_nsec
);
1252 case AUDIT_MQ_NOTIFY
:
1253 audit_log_format(ab
, "mqdes=%d sigev_signo=%d",
1254 context
->mq_notify
.mqdes
,
1255 context
->mq_notify
.sigev_signo
);
1257 case AUDIT_MQ_GETSETATTR
: {
1258 struct mq_attr
*attr
= &context
->mq_getsetattr
.mqstat
;
1259 audit_log_format(ab
,
1260 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1262 context
->mq_getsetattr
.mqdes
,
1263 attr
->mq_flags
, attr
->mq_maxmsg
,
1264 attr
->mq_msgsize
, attr
->mq_curmsgs
);
1267 audit_log_format(ab
, "pid=%d", context
->capset
.pid
);
1268 audit_log_cap(ab
, "cap_pi", &context
->capset
.cap
.inheritable
);
1269 audit_log_cap(ab
, "cap_pp", &context
->capset
.cap
.permitted
);
1270 audit_log_cap(ab
, "cap_pe", &context
->capset
.cap
.effective
);
1271 audit_log_cap(ab
, "cap_pa", &context
->capset
.cap
.ambient
);
1274 audit_log_format(ab
, "fd=%d flags=0x%x", context
->mmap
.fd
,
1275 context
->mmap
.flags
);
1278 audit_log_execve_info(context
, &ab
);
1280 case AUDIT_KERN_MODULE
:
1281 audit_log_format(ab
, "name=");
1282 if (context
->module
.name
) {
1283 audit_log_untrustedstring(ab
, context
->module
.name
);
1284 kfree(context
->module
.name
);
1286 audit_log_format(ab
, "(null)");
1293 static inline int audit_proctitle_rtrim(char *proctitle
, int len
)
1295 char *end
= proctitle
+ len
- 1;
1296 while (end
> proctitle
&& !isprint(*end
))
1299 /* catch the case where proctitle is only 1 non-print character */
1300 len
= end
- proctitle
+ 1;
1301 len
-= isprint(proctitle
[len
-1]) == 0;
1305 static void audit_log_proctitle(struct task_struct
*tsk
,
1306 struct audit_context
*context
)
1310 char *msg
= "(null)";
1311 int len
= strlen(msg
);
1312 struct audit_buffer
*ab
;
1314 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PROCTITLE
);
1316 return; /* audit_panic or being filtered */
1318 audit_log_format(ab
, "proctitle=");
1321 if (!context
->proctitle
.value
) {
1322 buf
= kmalloc(MAX_PROCTITLE_AUDIT_LEN
, GFP_KERNEL
);
1325 /* Historically called this from procfs naming */
1326 res
= get_cmdline(tsk
, buf
, MAX_PROCTITLE_AUDIT_LEN
);
1331 res
= audit_proctitle_rtrim(buf
, res
);
1336 context
->proctitle
.value
= buf
;
1337 context
->proctitle
.len
= res
;
1339 msg
= context
->proctitle
.value
;
1340 len
= context
->proctitle
.len
;
1342 audit_log_n_untrustedstring(ab
, msg
, len
);
1346 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1348 int i
, call_panic
= 0;
1349 struct audit_buffer
*ab
;
1350 struct audit_aux_data
*aux
;
1351 struct audit_names
*n
;
1353 /* tsk == current */
1354 context
->personality
= tsk
->personality
;
1356 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1358 return; /* audit_panic has been called */
1359 audit_log_format(ab
, "arch=%x syscall=%d",
1360 context
->arch
, context
->major
);
1361 if (context
->personality
!= PER_LINUX
)
1362 audit_log_format(ab
, " per=%lx", context
->personality
);
1363 if (context
->return_valid
)
1364 audit_log_format(ab
, " success=%s exit=%ld",
1365 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1366 context
->return_code
);
1368 audit_log_format(ab
,
1369 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1374 context
->name_count
);
1376 audit_log_task_info(ab
, tsk
);
1377 audit_log_key(ab
, context
->filterkey
);
1380 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1382 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1384 continue; /* audit_panic has been called */
1386 switch (aux
->type
) {
1388 case AUDIT_BPRM_FCAPS
: {
1389 struct audit_aux_data_bprm_fcaps
*axs
= (void *)aux
;
1390 audit_log_format(ab
, "fver=%x", axs
->fcap_ver
);
1391 audit_log_cap(ab
, "fp", &axs
->fcap
.permitted
);
1392 audit_log_cap(ab
, "fi", &axs
->fcap
.inheritable
);
1393 audit_log_format(ab
, " fe=%d", axs
->fcap
.fE
);
1394 audit_log_cap(ab
, "old_pp", &axs
->old_pcap
.permitted
);
1395 audit_log_cap(ab
, "old_pi", &axs
->old_pcap
.inheritable
);
1396 audit_log_cap(ab
, "old_pe", &axs
->old_pcap
.effective
);
1397 audit_log_cap(ab
, "old_pa", &axs
->old_pcap
.ambient
);
1398 audit_log_cap(ab
, "pp", &axs
->new_pcap
.permitted
);
1399 audit_log_cap(ab
, "pi", &axs
->new_pcap
.inheritable
);
1400 audit_log_cap(ab
, "pe", &axs
->new_pcap
.effective
);
1401 audit_log_cap(ab
, "pa", &axs
->new_pcap
.ambient
);
1409 show_special(context
, &call_panic
);
1411 if (context
->fds
[0] >= 0) {
1412 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_FD_PAIR
);
1414 audit_log_format(ab
, "fd0=%d fd1=%d",
1415 context
->fds
[0], context
->fds
[1]);
1420 if (context
->sockaddr_len
) {
1421 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SOCKADDR
);
1423 audit_log_format(ab
, "saddr=");
1424 audit_log_n_hex(ab
, (void *)context
->sockaddr
,
1425 context
->sockaddr_len
);
1430 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1431 struct audit_aux_data_pids
*axs
= (void *)aux
;
1433 for (i
= 0; i
< axs
->pid_count
; i
++)
1434 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1435 axs
->target_auid
[i
],
1437 axs
->target_sessionid
[i
],
1439 axs
->target_comm
[i
]))
1443 if (context
->target_pid
&&
1444 audit_log_pid_context(context
, context
->target_pid
,
1445 context
->target_auid
, context
->target_uid
,
1446 context
->target_sessionid
,
1447 context
->target_sid
, context
->target_comm
))
1450 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1451 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1453 audit_log_d_path(ab
, "cwd=", &context
->pwd
);
1459 list_for_each_entry(n
, &context
->names_list
, list
) {
1462 audit_log_name(context
, n
, NULL
, i
++, &call_panic
);
1465 audit_log_proctitle(tsk
, context
);
1467 /* Send end of event record to help user space know we are finished */
1468 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1472 audit_panic("error converting sid to string");
1476 * __audit_free - free a per-task audit context
1477 * @tsk: task whose audit context block to free
1479 * Called from copy_process and do_exit
1481 void __audit_free(struct task_struct
*tsk
)
1483 struct audit_context
*context
;
1485 context
= audit_take_context(tsk
, 0, 0);
1489 /* Check for system calls that do not go through the exit
1490 * function (e.g., exit_group), then free context block.
1491 * We use GFP_ATOMIC here because we might be doing this
1492 * in the context of the idle thread */
1493 /* that can happen only if we are called from do_exit() */
1494 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1495 audit_log_exit(context
, tsk
);
1496 if (!list_empty(&context
->killed_trees
))
1497 audit_kill_trees(&context
->killed_trees
);
1499 audit_free_context(context
);
1503 * __audit_syscall_entry - fill in an audit record at syscall entry
1504 * @major: major syscall type (function)
1505 * @a1: additional syscall register 1
1506 * @a2: additional syscall register 2
1507 * @a3: additional syscall register 3
1508 * @a4: additional syscall register 4
1510 * Fill in audit context at syscall entry. This only happens if the
1511 * audit context was created when the task was created and the state or
1512 * filters demand the audit context be built. If the state from the
1513 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1514 * then the record will be written at syscall exit time (otherwise, it
1515 * will only be written if another part of the kernel requests that it
1518 void __audit_syscall_entry(int major
, unsigned long a1
, unsigned long a2
,
1519 unsigned long a3
, unsigned long a4
)
1521 struct audit_context
*context
= audit_context();
1522 enum audit_state state
;
1524 if (!audit_enabled
|| !context
)
1527 BUG_ON(context
->in_syscall
|| context
->name_count
);
1529 state
= context
->state
;
1530 if (state
== AUDIT_DISABLED
)
1533 context
->dummy
= !audit_n_rules
;
1534 if (!context
->dummy
&& state
== AUDIT_BUILD_CONTEXT
) {
1536 if (auditd_test_task(current
))
1540 context
->arch
= syscall_get_arch();
1541 context
->major
= major
;
1542 context
->argv
[0] = a1
;
1543 context
->argv
[1] = a2
;
1544 context
->argv
[2] = a3
;
1545 context
->argv
[3] = a4
;
1546 context
->serial
= 0;
1547 context
->in_syscall
= 1;
1548 context
->current_state
= state
;
1550 ktime_get_coarse_real_ts64(&context
->ctime
);
1554 * __audit_syscall_exit - deallocate audit context after a system call
1555 * @success: success value of the syscall
1556 * @return_code: return value of the syscall
1558 * Tear down after system call. If the audit context has been marked as
1559 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1560 * filtering, or because some other part of the kernel wrote an audit
1561 * message), then write out the syscall information. In call cases,
1562 * free the names stored from getname().
1564 void __audit_syscall_exit(int success
, long return_code
)
1566 struct audit_context
*context
;
1569 success
= AUDITSC_SUCCESS
;
1571 success
= AUDITSC_FAILURE
;
1573 context
= audit_take_context(current
, success
, return_code
);
1577 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1578 audit_log_exit(context
, current
);
1580 context
->in_syscall
= 0;
1581 context
->prio
= context
->state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1583 if (!list_empty(&context
->killed_trees
))
1584 audit_kill_trees(&context
->killed_trees
);
1586 audit_free_names(context
);
1587 unroll_tree_refs(context
, NULL
, 0);
1588 audit_free_aux(context
);
1589 context
->aux
= NULL
;
1590 context
->aux_pids
= NULL
;
1591 context
->target_pid
= 0;
1592 context
->target_sid
= 0;
1593 context
->sockaddr_len
= 0;
1595 context
->fds
[0] = -1;
1596 if (context
->state
!= AUDIT_RECORD_CONTEXT
) {
1597 kfree(context
->filterkey
);
1598 context
->filterkey
= NULL
;
1600 audit_set_context(current
, context
);
1603 static inline void handle_one(const struct inode
*inode
)
1605 #ifdef CONFIG_AUDIT_TREE
1606 struct audit_context
*context
;
1607 struct audit_tree_refs
*p
;
1608 struct audit_chunk
*chunk
;
1610 if (likely(!inode
->i_fsnotify_marks
))
1612 context
= audit_context();
1614 count
= context
->tree_count
;
1616 chunk
= audit_tree_lookup(inode
);
1620 if (likely(put_tree_ref(context
, chunk
)))
1622 if (unlikely(!grow_tree_refs(context
))) {
1623 pr_warn("out of memory, audit has lost a tree reference\n");
1624 audit_set_auditable(context
);
1625 audit_put_chunk(chunk
);
1626 unroll_tree_refs(context
, p
, count
);
1629 put_tree_ref(context
, chunk
);
1633 static void handle_path(const struct dentry
*dentry
)
1635 #ifdef CONFIG_AUDIT_TREE
1636 struct audit_context
*context
;
1637 struct audit_tree_refs
*p
;
1638 const struct dentry
*d
, *parent
;
1639 struct audit_chunk
*drop
;
1643 context
= audit_context();
1645 count
= context
->tree_count
;
1650 seq
= read_seqbegin(&rename_lock
);
1652 struct inode
*inode
= d_backing_inode(d
);
1653 if (inode
&& unlikely(inode
->i_fsnotify_marks
)) {
1654 struct audit_chunk
*chunk
;
1655 chunk
= audit_tree_lookup(inode
);
1657 if (unlikely(!put_tree_ref(context
, chunk
))) {
1663 parent
= d
->d_parent
;
1668 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1671 /* just a race with rename */
1672 unroll_tree_refs(context
, p
, count
);
1675 audit_put_chunk(drop
);
1676 if (grow_tree_refs(context
)) {
1677 /* OK, got more space */
1678 unroll_tree_refs(context
, p
, count
);
1682 pr_warn("out of memory, audit has lost a tree reference\n");
1683 unroll_tree_refs(context
, p
, count
);
1684 audit_set_auditable(context
);
1691 static struct audit_names
*audit_alloc_name(struct audit_context
*context
,
1694 struct audit_names
*aname
;
1696 if (context
->name_count
< AUDIT_NAMES
) {
1697 aname
= &context
->preallocated_names
[context
->name_count
];
1698 memset(aname
, 0, sizeof(*aname
));
1700 aname
= kzalloc(sizeof(*aname
), GFP_NOFS
);
1703 aname
->should_free
= true;
1706 aname
->ino
= AUDIT_INO_UNSET
;
1708 list_add_tail(&aname
->list
, &context
->names_list
);
1710 context
->name_count
++;
1715 * __audit_reusename - fill out filename with info from existing entry
1716 * @uptr: userland ptr to pathname
1718 * Search the audit_names list for the current audit context. If there is an
1719 * existing entry with a matching "uptr" then return the filename
1720 * associated with that audit_name. If not, return NULL.
1723 __audit_reusename(const __user
char *uptr
)
1725 struct audit_context
*context
= audit_context();
1726 struct audit_names
*n
;
1728 list_for_each_entry(n
, &context
->names_list
, list
) {
1731 if (n
->name
->uptr
== uptr
) {
1740 * __audit_getname - add a name to the list
1741 * @name: name to add
1743 * Add a name to the list of audit names for this context.
1744 * Called from fs/namei.c:getname().
1746 void __audit_getname(struct filename
*name
)
1748 struct audit_context
*context
= audit_context();
1749 struct audit_names
*n
;
1751 if (!context
->in_syscall
)
1754 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
1759 n
->name_len
= AUDIT_NAME_FULL
;
1763 if (!context
->pwd
.dentry
)
1764 get_fs_pwd(current
->fs
, &context
->pwd
);
1768 * __audit_inode - store the inode and device from a lookup
1769 * @name: name being audited
1770 * @dentry: dentry being audited
1771 * @flags: attributes for this particular entry
1773 void __audit_inode(struct filename
*name
, const struct dentry
*dentry
,
1776 struct audit_context
*context
= audit_context();
1777 struct inode
*inode
= d_backing_inode(dentry
);
1778 struct audit_names
*n
;
1779 bool parent
= flags
& AUDIT_INODE_PARENT
;
1781 if (!context
->in_syscall
)
1788 * If we have a pointer to an audit_names entry already, then we can
1789 * just use it directly if the type is correct.
1794 if (n
->type
== AUDIT_TYPE_PARENT
||
1795 n
->type
== AUDIT_TYPE_UNKNOWN
)
1798 if (n
->type
!= AUDIT_TYPE_PARENT
)
1803 list_for_each_entry_reverse(n
, &context
->names_list
, list
) {
1805 /* valid inode number, use that for the comparison */
1806 if (n
->ino
!= inode
->i_ino
||
1807 n
->dev
!= inode
->i_sb
->s_dev
)
1809 } else if (n
->name
) {
1810 /* inode number has not been set, check the name */
1811 if (strcmp(n
->name
->name
, name
->name
))
1814 /* no inode and no name (?!) ... this is odd ... */
1817 /* match the correct record type */
1819 if (n
->type
== AUDIT_TYPE_PARENT
||
1820 n
->type
== AUDIT_TYPE_UNKNOWN
)
1823 if (n
->type
!= AUDIT_TYPE_PARENT
)
1829 /* unable to find an entry with both a matching name and type */
1830 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
1840 n
->name_len
= n
->name
? parent_len(n
->name
->name
) : AUDIT_NAME_FULL
;
1841 n
->type
= AUDIT_TYPE_PARENT
;
1842 if (flags
& AUDIT_INODE_HIDDEN
)
1845 n
->name_len
= AUDIT_NAME_FULL
;
1846 n
->type
= AUDIT_TYPE_NORMAL
;
1848 handle_path(dentry
);
1849 audit_copy_inode(n
, dentry
, inode
);
1852 void __audit_file(const struct file
*file
)
1854 __audit_inode(NULL
, file
->f_path
.dentry
, 0);
1858 * __audit_inode_child - collect inode info for created/removed objects
1859 * @parent: inode of dentry parent
1860 * @dentry: dentry being audited
1861 * @type: AUDIT_TYPE_* value that we're looking for
1863 * For syscalls that create or remove filesystem objects, audit_inode
1864 * can only collect information for the filesystem object's parent.
1865 * This call updates the audit context with the child's information.
1866 * Syscalls that create a new filesystem object must be hooked after
1867 * the object is created. Syscalls that remove a filesystem object
1868 * must be hooked prior, in order to capture the target inode during
1869 * unsuccessful attempts.
1871 void __audit_inode_child(struct inode
*parent
,
1872 const struct dentry
*dentry
,
1873 const unsigned char type
)
1875 struct audit_context
*context
= audit_context();
1876 struct inode
*inode
= d_backing_inode(dentry
);
1877 const char *dname
= dentry
->d_name
.name
;
1878 struct audit_names
*n
, *found_parent
= NULL
, *found_child
= NULL
;
1879 struct audit_entry
*e
;
1880 struct list_head
*list
= &audit_filter_list
[AUDIT_FILTER_FS
];
1883 if (!context
->in_syscall
)
1887 if (!list_empty(list
)) {
1888 list_for_each_entry_rcu(e
, list
, list
) {
1889 for (i
= 0; i
< e
->rule
.field_count
; i
++) {
1890 struct audit_field
*f
= &e
->rule
.fields
[i
];
1892 if (f
->type
== AUDIT_FSTYPE
) {
1893 if (audit_comparator(parent
->i_sb
->s_magic
,
1895 if (e
->rule
.action
== AUDIT_NEVER
) {
1909 /* look for a parent entry first */
1910 list_for_each_entry(n
, &context
->names_list
, list
) {
1912 (n
->type
!= AUDIT_TYPE_PARENT
&&
1913 n
->type
!= AUDIT_TYPE_UNKNOWN
))
1916 if (n
->ino
== parent
->i_ino
&& n
->dev
== parent
->i_sb
->s_dev
&&
1917 !audit_compare_dname_path(dname
,
1918 n
->name
->name
, n
->name_len
)) {
1919 if (n
->type
== AUDIT_TYPE_UNKNOWN
)
1920 n
->type
= AUDIT_TYPE_PARENT
;
1926 /* is there a matching child entry? */
1927 list_for_each_entry(n
, &context
->names_list
, list
) {
1928 /* can only match entries that have a name */
1930 (n
->type
!= type
&& n
->type
!= AUDIT_TYPE_UNKNOWN
))
1933 if (!strcmp(dname
, n
->name
->name
) ||
1934 !audit_compare_dname_path(dname
, n
->name
->name
,
1936 found_parent
->name_len
:
1938 if (n
->type
== AUDIT_TYPE_UNKNOWN
)
1945 if (!found_parent
) {
1946 /* create a new, "anonymous" parent record */
1947 n
= audit_alloc_name(context
, AUDIT_TYPE_PARENT
);
1950 audit_copy_inode(n
, NULL
, parent
);
1954 found_child
= audit_alloc_name(context
, type
);
1958 /* Re-use the name belonging to the slot for a matching parent
1959 * directory. All names for this context are relinquished in
1960 * audit_free_names() */
1962 found_child
->name
= found_parent
->name
;
1963 found_child
->name_len
= AUDIT_NAME_FULL
;
1964 found_child
->name
->refcnt
++;
1969 audit_copy_inode(found_child
, dentry
, inode
);
1971 found_child
->ino
= AUDIT_INO_UNSET
;
1973 EXPORT_SYMBOL_GPL(__audit_inode_child
);
1976 * auditsc_get_stamp - get local copies of audit_context values
1977 * @ctx: audit_context for the task
1978 * @t: timespec64 to store time recorded in the audit_context
1979 * @serial: serial value that is recorded in the audit_context
1981 * Also sets the context as auditable.
1983 int auditsc_get_stamp(struct audit_context
*ctx
,
1984 struct timespec64
*t
, unsigned int *serial
)
1986 if (!ctx
->in_syscall
)
1989 ctx
->serial
= audit_serial();
1990 t
->tv_sec
= ctx
->ctime
.tv_sec
;
1991 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
1992 *serial
= ctx
->serial
;
1995 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
2000 /* global counter which is incremented every time something logs in */
2001 static atomic_t session_id
= ATOMIC_INIT(0);
2003 static int audit_set_loginuid_perm(kuid_t loginuid
)
2005 /* if we are unset, we don't need privs */
2006 if (!audit_loginuid_set(current
))
2008 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2009 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE
))
2011 /* it is set, you need permission */
2012 if (!capable(CAP_AUDIT_CONTROL
))
2014 /* reject if this is not an unset and we don't allow that */
2015 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID
) && uid_valid(loginuid
))
2020 static void audit_log_set_loginuid(kuid_t koldloginuid
, kuid_t kloginuid
,
2021 unsigned int oldsessionid
, unsigned int sessionid
,
2024 struct audit_buffer
*ab
;
2025 uid_t uid
, oldloginuid
, loginuid
;
2026 struct tty_struct
*tty
;
2031 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
2035 uid
= from_kuid(&init_user_ns
, task_uid(current
));
2036 oldloginuid
= from_kuid(&init_user_ns
, koldloginuid
);
2037 loginuid
= from_kuid(&init_user_ns
, kloginuid
),
2038 tty
= audit_get_tty(current
);
2040 audit_log_format(ab
, "pid=%d uid=%u", task_tgid_nr(current
), uid
);
2041 audit_log_task_context(ab
);
2042 audit_log_format(ab
, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2043 oldloginuid
, loginuid
, tty
? tty_name(tty
) : "(none)",
2044 oldsessionid
, sessionid
, !rc
);
2050 * audit_set_loginuid - set current task's audit_context loginuid
2051 * @loginuid: loginuid value
2055 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2057 int audit_set_loginuid(kuid_t loginuid
)
2059 struct task_struct
*task
= current
;
2060 unsigned int oldsessionid
, sessionid
= AUDIT_SID_UNSET
;
2064 oldloginuid
= audit_get_loginuid(current
);
2065 oldsessionid
= audit_get_sessionid(current
);
2067 rc
= audit_set_loginuid_perm(loginuid
);
2071 /* are we setting or clearing? */
2072 if (uid_valid(loginuid
)) {
2073 sessionid
= (unsigned int)atomic_inc_return(&session_id
);
2074 if (unlikely(sessionid
== AUDIT_SID_UNSET
))
2075 sessionid
= (unsigned int)atomic_inc_return(&session_id
);
2078 task
->sessionid
= sessionid
;
2079 task
->loginuid
= loginuid
;
2081 audit_log_set_loginuid(oldloginuid
, loginuid
, oldsessionid
, sessionid
, rc
);
2086 * __audit_mq_open - record audit data for a POSIX MQ open
2089 * @attr: queue attributes
2092 void __audit_mq_open(int oflag
, umode_t mode
, struct mq_attr
*attr
)
2094 struct audit_context
*context
= audit_context();
2097 memcpy(&context
->mq_open
.attr
, attr
, sizeof(struct mq_attr
));
2099 memset(&context
->mq_open
.attr
, 0, sizeof(struct mq_attr
));
2101 context
->mq_open
.oflag
= oflag
;
2102 context
->mq_open
.mode
= mode
;
2104 context
->type
= AUDIT_MQ_OPEN
;
2108 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2109 * @mqdes: MQ descriptor
2110 * @msg_len: Message length
2111 * @msg_prio: Message priority
2112 * @abs_timeout: Message timeout in absolute time
2115 void __audit_mq_sendrecv(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2116 const struct timespec64
*abs_timeout
)
2118 struct audit_context
*context
= audit_context();
2119 struct timespec64
*p
= &context
->mq_sendrecv
.abs_timeout
;
2122 memcpy(p
, abs_timeout
, sizeof(*p
));
2124 memset(p
, 0, sizeof(*p
));
2126 context
->mq_sendrecv
.mqdes
= mqdes
;
2127 context
->mq_sendrecv
.msg_len
= msg_len
;
2128 context
->mq_sendrecv
.msg_prio
= msg_prio
;
2130 context
->type
= AUDIT_MQ_SENDRECV
;
2134 * __audit_mq_notify - record audit data for a POSIX MQ notify
2135 * @mqdes: MQ descriptor
2136 * @notification: Notification event
2140 void __audit_mq_notify(mqd_t mqdes
, const struct sigevent
*notification
)
2142 struct audit_context
*context
= audit_context();
2145 context
->mq_notify
.sigev_signo
= notification
->sigev_signo
;
2147 context
->mq_notify
.sigev_signo
= 0;
2149 context
->mq_notify
.mqdes
= mqdes
;
2150 context
->type
= AUDIT_MQ_NOTIFY
;
2154 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2155 * @mqdes: MQ descriptor
2159 void __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2161 struct audit_context
*context
= audit_context();
2162 context
->mq_getsetattr
.mqdes
= mqdes
;
2163 context
->mq_getsetattr
.mqstat
= *mqstat
;
2164 context
->type
= AUDIT_MQ_GETSETATTR
;
2168 * __audit_ipc_obj - record audit data for ipc object
2169 * @ipcp: ipc permissions
2172 void __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2174 struct audit_context
*context
= audit_context();
2175 context
->ipc
.uid
= ipcp
->uid
;
2176 context
->ipc
.gid
= ipcp
->gid
;
2177 context
->ipc
.mode
= ipcp
->mode
;
2178 context
->ipc
.has_perm
= 0;
2179 security_ipc_getsecid(ipcp
, &context
->ipc
.osid
);
2180 context
->type
= AUDIT_IPC
;
2184 * __audit_ipc_set_perm - record audit data for new ipc permissions
2185 * @qbytes: msgq bytes
2186 * @uid: msgq user id
2187 * @gid: msgq group id
2188 * @mode: msgq mode (permissions)
2190 * Called only after audit_ipc_obj().
2192 void __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, umode_t mode
)
2194 struct audit_context
*context
= audit_context();
2196 context
->ipc
.qbytes
= qbytes
;
2197 context
->ipc
.perm_uid
= uid
;
2198 context
->ipc
.perm_gid
= gid
;
2199 context
->ipc
.perm_mode
= mode
;
2200 context
->ipc
.has_perm
= 1;
2203 void __audit_bprm(struct linux_binprm
*bprm
)
2205 struct audit_context
*context
= audit_context();
2207 context
->type
= AUDIT_EXECVE
;
2208 context
->execve
.argc
= bprm
->argc
;
2213 * __audit_socketcall - record audit data for sys_socketcall
2214 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2218 int __audit_socketcall(int nargs
, unsigned long *args
)
2220 struct audit_context
*context
= audit_context();
2222 if (nargs
<= 0 || nargs
> AUDITSC_ARGS
|| !args
)
2224 context
->type
= AUDIT_SOCKETCALL
;
2225 context
->socketcall
.nargs
= nargs
;
2226 memcpy(context
->socketcall
.args
, args
, nargs
* sizeof(unsigned long));
2231 * __audit_fd_pair - record audit data for pipe and socketpair
2232 * @fd1: the first file descriptor
2233 * @fd2: the second file descriptor
2236 void __audit_fd_pair(int fd1
, int fd2
)
2238 struct audit_context
*context
= audit_context();
2239 context
->fds
[0] = fd1
;
2240 context
->fds
[1] = fd2
;
2244 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2245 * @len: data length in user space
2246 * @a: data address in kernel space
2248 * Returns 0 for success or NULL context or < 0 on error.
2250 int __audit_sockaddr(int len
, void *a
)
2252 struct audit_context
*context
= audit_context();
2254 if (!context
->sockaddr
) {
2255 void *p
= kmalloc(sizeof(struct sockaddr_storage
), GFP_KERNEL
);
2258 context
->sockaddr
= p
;
2261 context
->sockaddr_len
= len
;
2262 memcpy(context
->sockaddr
, a
, len
);
2266 void __audit_ptrace(struct task_struct
*t
)
2268 struct audit_context
*context
= audit_context();
2270 context
->target_pid
= task_tgid_nr(t
);
2271 context
->target_auid
= audit_get_loginuid(t
);
2272 context
->target_uid
= task_uid(t
);
2273 context
->target_sessionid
= audit_get_sessionid(t
);
2274 security_task_getsecid(t
, &context
->target_sid
);
2275 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2279 * audit_signal_info - record signal info for shutting down audit subsystem
2280 * @sig: signal value
2281 * @t: task being signaled
2283 * If the audit subsystem is being terminated, record the task (pid)
2284 * and uid that is doing that.
2286 int audit_signal_info(int sig
, struct task_struct
*t
)
2288 struct audit_aux_data_pids
*axp
;
2289 struct audit_context
*ctx
= audit_context();
2290 kuid_t uid
= current_uid(), auid
, t_uid
= task_uid(t
);
2292 if (auditd_test_task(t
) &&
2293 (sig
== SIGTERM
|| sig
== SIGHUP
||
2294 sig
== SIGUSR1
|| sig
== SIGUSR2
)) {
2295 audit_sig_pid
= task_tgid_nr(current
);
2296 auid
= audit_get_loginuid(current
);
2297 if (uid_valid(auid
))
2298 audit_sig_uid
= auid
;
2300 audit_sig_uid
= uid
;
2301 security_task_getsecid(current
, &audit_sig_sid
);
2304 if (!audit_signals
|| audit_dummy_context())
2307 /* optimize the common case by putting first signal recipient directly
2308 * in audit_context */
2309 if (!ctx
->target_pid
) {
2310 ctx
->target_pid
= task_tgid_nr(t
);
2311 ctx
->target_auid
= audit_get_loginuid(t
);
2312 ctx
->target_uid
= t_uid
;
2313 ctx
->target_sessionid
= audit_get_sessionid(t
);
2314 security_task_getsecid(t
, &ctx
->target_sid
);
2315 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2319 axp
= (void *)ctx
->aux_pids
;
2320 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2321 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2325 axp
->d
.type
= AUDIT_OBJ_PID
;
2326 axp
->d
.next
= ctx
->aux_pids
;
2327 ctx
->aux_pids
= (void *)axp
;
2329 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2331 axp
->target_pid
[axp
->pid_count
] = task_tgid_nr(t
);
2332 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2333 axp
->target_uid
[axp
->pid_count
] = t_uid
;
2334 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2335 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2336 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2343 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2344 * @bprm: pointer to the bprm being processed
2345 * @new: the proposed new credentials
2346 * @old: the old credentials
2348 * Simply check if the proc already has the caps given by the file and if not
2349 * store the priv escalation info for later auditing at the end of the syscall
2353 int __audit_log_bprm_fcaps(struct linux_binprm
*bprm
,
2354 const struct cred
*new, const struct cred
*old
)
2356 struct audit_aux_data_bprm_fcaps
*ax
;
2357 struct audit_context
*context
= audit_context();
2358 struct cpu_vfs_cap_data vcaps
;
2360 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2364 ax
->d
.type
= AUDIT_BPRM_FCAPS
;
2365 ax
->d
.next
= context
->aux
;
2366 context
->aux
= (void *)ax
;
2368 get_vfs_caps_from_disk(bprm
->file
->f_path
.dentry
, &vcaps
);
2370 ax
->fcap
.permitted
= vcaps
.permitted
;
2371 ax
->fcap
.inheritable
= vcaps
.inheritable
;
2372 ax
->fcap
.fE
= !!(vcaps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2373 ax
->fcap_ver
= (vcaps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2375 ax
->old_pcap
.permitted
= old
->cap_permitted
;
2376 ax
->old_pcap
.inheritable
= old
->cap_inheritable
;
2377 ax
->old_pcap
.effective
= old
->cap_effective
;
2378 ax
->old_pcap
.ambient
= old
->cap_ambient
;
2380 ax
->new_pcap
.permitted
= new->cap_permitted
;
2381 ax
->new_pcap
.inheritable
= new->cap_inheritable
;
2382 ax
->new_pcap
.effective
= new->cap_effective
;
2383 ax
->new_pcap
.ambient
= new->cap_ambient
;
2388 * __audit_log_capset - store information about the arguments to the capset syscall
2389 * @new: the new credentials
2390 * @old: the old (current) credentials
2392 * Record the arguments userspace sent to sys_capset for later printing by the
2393 * audit system if applicable
2395 void __audit_log_capset(const struct cred
*new, const struct cred
*old
)
2397 struct audit_context
*context
= audit_context();
2398 context
->capset
.pid
= task_tgid_nr(current
);
2399 context
->capset
.cap
.effective
= new->cap_effective
;
2400 context
->capset
.cap
.inheritable
= new->cap_effective
;
2401 context
->capset
.cap
.permitted
= new->cap_permitted
;
2402 context
->capset
.cap
.ambient
= new->cap_ambient
;
2403 context
->type
= AUDIT_CAPSET
;
2406 void __audit_mmap_fd(int fd
, int flags
)
2408 struct audit_context
*context
= audit_context();
2409 context
->mmap
.fd
= fd
;
2410 context
->mmap
.flags
= flags
;
2411 context
->type
= AUDIT_MMAP
;
2414 void __audit_log_kern_module(char *name
)
2416 struct audit_context
*context
= audit_context();
2418 context
->module
.name
= kstrdup(name
, GFP_KERNEL
);
2419 if (!context
->module
.name
)
2420 audit_log_lost("out of memory in __audit_log_kern_module");
2421 context
->type
= AUDIT_KERN_MODULE
;
2424 void __audit_fanotify(unsigned int response
)
2426 audit_log(audit_context(), GFP_KERNEL
,
2427 AUDIT_FANOTIFY
, "resp=%u", response
);
2430 static void audit_log_task(struct audit_buffer
*ab
)
2434 unsigned int sessionid
;
2435 char comm
[sizeof(current
->comm
)];
2437 auid
= audit_get_loginuid(current
);
2438 sessionid
= audit_get_sessionid(current
);
2439 current_uid_gid(&uid
, &gid
);
2441 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2442 from_kuid(&init_user_ns
, auid
),
2443 from_kuid(&init_user_ns
, uid
),
2444 from_kgid(&init_user_ns
, gid
),
2446 audit_log_task_context(ab
);
2447 audit_log_format(ab
, " pid=%d comm=", task_tgid_nr(current
));
2448 audit_log_untrustedstring(ab
, get_task_comm(comm
, current
));
2449 audit_log_d_path_exe(ab
, current
->mm
);
2453 * audit_core_dumps - record information about processes that end abnormally
2454 * @signr: signal value
2456 * If a process ends with a core dump, something fishy is going on and we
2457 * should record the event for investigation.
2459 void audit_core_dumps(long signr
)
2461 struct audit_buffer
*ab
;
2466 if (signr
== SIGQUIT
) /* don't care for those */
2469 ab
= audit_log_start(audit_context(), GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2473 audit_log_format(ab
, " sig=%ld res=1", signr
);
2478 * audit_seccomp - record information about a seccomp action
2479 * @syscall: syscall number
2480 * @signr: signal value
2481 * @code: the seccomp action
2483 * Record the information associated with a seccomp action. Event filtering for
2484 * seccomp actions that are not to be logged is done in seccomp_log().
2485 * Therefore, this function forces auditing independent of the audit_enabled
2486 * and dummy context state because seccomp actions should be logged even when
2487 * audit is not in use.
2489 void audit_seccomp(unsigned long syscall
, long signr
, int code
)
2491 struct audit_buffer
*ab
;
2493 ab
= audit_log_start(audit_context(), GFP_KERNEL
, AUDIT_SECCOMP
);
2497 audit_log_format(ab
, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2498 signr
, syscall_get_arch(), syscall
,
2499 in_compat_syscall(), KSTK_EIP(current
), code
);
2503 void audit_seccomp_actions_logged(const char *names
, const char *old_names
,
2506 struct audit_buffer
*ab
;
2511 ab
= audit_log_start(audit_context(), GFP_KERNEL
,
2512 AUDIT_CONFIG_CHANGE
);
2516 audit_log_format(ab
, "op=seccomp-logging");
2517 audit_log_format(ab
, " actions=%s", names
);
2518 audit_log_format(ab
, " old-actions=%s", old_names
);
2519 audit_log_format(ab
, " res=%d", res
);
2523 struct list_head
*audit_killed_trees(void)
2525 struct audit_context
*ctx
= audit_context();
2526 if (likely(!ctx
|| !ctx
->in_syscall
))
2528 return &ctx
->killed_trees
;