2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
4 * This code is licenced under the GPL.
6 #include <linux/proc_fs.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/nmi.h>
28 #include <linux/smpboot.h>
29 #include <linux/relay.h>
30 #include <linux/slab.h>
31 #include <linux/percpu-rwsem.h>
33 #include <trace/events/power.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/cpuhp.h>
40 * cpuhp_cpu_state - Per cpu hotplug state storage
41 * @state: The current cpu state
42 * @target: The target state
43 * @thread: Pointer to the hotplug thread
44 * @should_run: Thread should execute
45 * @rollback: Perform a rollback
46 * @single: Single callback invocation
47 * @bringup: Single callback bringup or teardown selector
48 * @cb_state: The state for a single callback (install/uninstall)
49 * @result: Result of the operation
50 * @done_up: Signal completion to the issuer of the task for cpu-up
51 * @done_down: Signal completion to the issuer of the task for cpu-down
53 struct cpuhp_cpu_state
{
54 enum cpuhp_state state
;
55 enum cpuhp_state target
;
56 enum cpuhp_state fail
;
58 struct task_struct
*thread
;
64 struct hlist_node
*node
;
65 struct hlist_node
*last
;
66 enum cpuhp_state cb_state
;
68 struct completion done_up
;
69 struct completion done_down
;
73 static DEFINE_PER_CPU(struct cpuhp_cpu_state
, cpuhp_state
) = {
74 .fail
= CPUHP_INVALID
,
77 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
78 static struct lockdep_map cpuhp_state_up_map
=
79 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map
);
80 static struct lockdep_map cpuhp_state_down_map
=
81 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map
);
84 static inline void cpuhp_lock_acquire(bool bringup
)
86 lock_map_acquire(bringup
? &cpuhp_state_up_map
: &cpuhp_state_down_map
);
89 static inline void cpuhp_lock_release(bool bringup
)
91 lock_map_release(bringup
? &cpuhp_state_up_map
: &cpuhp_state_down_map
);
95 static inline void cpuhp_lock_acquire(bool bringup
) { }
96 static inline void cpuhp_lock_release(bool bringup
) { }
101 * cpuhp_step - Hotplug state machine step
102 * @name: Name of the step
103 * @startup: Startup function of the step
104 * @teardown: Teardown function of the step
105 * @cant_stop: Bringup/teardown can't be stopped at this step
110 int (*single
)(unsigned int cpu
);
111 int (*multi
)(unsigned int cpu
,
112 struct hlist_node
*node
);
115 int (*single
)(unsigned int cpu
);
116 int (*multi
)(unsigned int cpu
,
117 struct hlist_node
*node
);
119 struct hlist_head list
;
124 static DEFINE_MUTEX(cpuhp_state_mutex
);
125 static struct cpuhp_step cpuhp_hp_states
[];
127 static struct cpuhp_step
*cpuhp_get_step(enum cpuhp_state state
)
129 return cpuhp_hp_states
+ state
;
133 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
134 * @cpu: The cpu for which the callback should be invoked
135 * @state: The state to do callbacks for
136 * @bringup: True if the bringup callback should be invoked
137 * @node: For multi-instance, do a single entry callback for install/remove
138 * @lastp: For multi-instance rollback, remember how far we got
140 * Called from cpu hotplug and from the state register machinery.
142 static int cpuhp_invoke_callback(unsigned int cpu
, enum cpuhp_state state
,
143 bool bringup
, struct hlist_node
*node
,
144 struct hlist_node
**lastp
)
146 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
147 struct cpuhp_step
*step
= cpuhp_get_step(state
);
148 int (*cbm
)(unsigned int cpu
, struct hlist_node
*node
);
149 int (*cb
)(unsigned int cpu
);
152 if (st
->fail
== state
) {
153 st
->fail
= CPUHP_INVALID
;
155 if (!(bringup
? step
->startup
.single
: step
->teardown
.single
))
161 if (!step
->multi_instance
) {
162 WARN_ON_ONCE(lastp
&& *lastp
);
163 cb
= bringup
? step
->startup
.single
: step
->teardown
.single
;
166 trace_cpuhp_enter(cpu
, st
->target
, state
, cb
);
168 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
171 cbm
= bringup
? step
->startup
.multi
: step
->teardown
.multi
;
175 /* Single invocation for instance add/remove */
177 WARN_ON_ONCE(lastp
&& *lastp
);
178 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
179 ret
= cbm(cpu
, node
);
180 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
184 /* State transition. Invoke on all instances */
186 hlist_for_each(node
, &step
->list
) {
187 if (lastp
&& node
== *lastp
)
190 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
191 ret
= cbm(cpu
, node
);
192 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
206 /* Rollback the instances if one failed */
207 cbm
= !bringup
? step
->startup
.multi
: step
->teardown
.multi
;
211 hlist_for_each(node
, &step
->list
) {
215 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
216 ret
= cbm(cpu
, node
);
217 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
219 * Rollback must not fail,
227 static bool cpuhp_is_ap_state(enum cpuhp_state state
)
230 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
231 * purposes as that state is handled explicitly in cpu_down.
233 return state
> CPUHP_BRINGUP_CPU
&& state
!= CPUHP_TEARDOWN_CPU
;
236 static inline void wait_for_ap_thread(struct cpuhp_cpu_state
*st
, bool bringup
)
238 struct completion
*done
= bringup
? &st
->done_up
: &st
->done_down
;
239 wait_for_completion(done
);
242 static inline void complete_ap_thread(struct cpuhp_cpu_state
*st
, bool bringup
)
244 struct completion
*done
= bringup
? &st
->done_up
: &st
->done_down
;
249 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
251 static bool cpuhp_is_atomic_state(enum cpuhp_state state
)
253 return CPUHP_AP_IDLE_DEAD
<= state
&& state
< CPUHP_AP_ONLINE
;
256 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
257 static DEFINE_MUTEX(cpu_add_remove_lock
);
258 bool cpuhp_tasks_frozen
;
259 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen
);
262 * The following two APIs (cpu_maps_update_begin/done) must be used when
263 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
265 void cpu_maps_update_begin(void)
267 mutex_lock(&cpu_add_remove_lock
);
270 void cpu_maps_update_done(void)
272 mutex_unlock(&cpu_add_remove_lock
);
276 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
277 * Should always be manipulated under cpu_add_remove_lock
279 static int cpu_hotplug_disabled
;
281 #ifdef CONFIG_HOTPLUG_CPU
283 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock
);
285 void cpus_read_lock(void)
287 percpu_down_read(&cpu_hotplug_lock
);
289 EXPORT_SYMBOL_GPL(cpus_read_lock
);
291 int cpus_read_trylock(void)
293 return percpu_down_read_trylock(&cpu_hotplug_lock
);
295 EXPORT_SYMBOL_GPL(cpus_read_trylock
);
297 void cpus_read_unlock(void)
299 percpu_up_read(&cpu_hotplug_lock
);
301 EXPORT_SYMBOL_GPL(cpus_read_unlock
);
303 void cpus_write_lock(void)
305 percpu_down_write(&cpu_hotplug_lock
);
308 void cpus_write_unlock(void)
310 percpu_up_write(&cpu_hotplug_lock
);
313 void lockdep_assert_cpus_held(void)
315 percpu_rwsem_assert_held(&cpu_hotplug_lock
);
319 * Wait for currently running CPU hotplug operations to complete (if any) and
320 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
321 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
322 * hotplug path before performing hotplug operations. So acquiring that lock
323 * guarantees mutual exclusion from any currently running hotplug operations.
325 void cpu_hotplug_disable(void)
327 cpu_maps_update_begin();
328 cpu_hotplug_disabled
++;
329 cpu_maps_update_done();
331 EXPORT_SYMBOL_GPL(cpu_hotplug_disable
);
333 static void __cpu_hotplug_enable(void)
335 if (WARN_ONCE(!cpu_hotplug_disabled
, "Unbalanced cpu hotplug enable\n"))
337 cpu_hotplug_disabled
--;
340 void cpu_hotplug_enable(void)
342 cpu_maps_update_begin();
343 __cpu_hotplug_enable();
344 cpu_maps_update_done();
346 EXPORT_SYMBOL_GPL(cpu_hotplug_enable
);
347 #endif /* CONFIG_HOTPLUG_CPU */
349 #ifdef CONFIG_HOTPLUG_SMT
350 enum cpuhp_smt_control cpu_smt_control __read_mostly
= CPU_SMT_ENABLED
;
351 EXPORT_SYMBOL_GPL(cpu_smt_control
);
353 static bool cpu_smt_available __read_mostly
;
355 void __init
cpu_smt_disable(bool force
)
357 if (cpu_smt_control
== CPU_SMT_FORCE_DISABLED
||
358 cpu_smt_control
== CPU_SMT_NOT_SUPPORTED
)
362 pr_info("SMT: Force disabled\n");
363 cpu_smt_control
= CPU_SMT_FORCE_DISABLED
;
365 cpu_smt_control
= CPU_SMT_DISABLED
;
370 * The decision whether SMT is supported can only be done after the full
371 * CPU identification. Called from architecture code before non boot CPUs
374 void __init
cpu_smt_check_topology_early(void)
376 if (!topology_smt_supported())
377 cpu_smt_control
= CPU_SMT_NOT_SUPPORTED
;
381 * If SMT was disabled by BIOS, detect it here, after the CPUs have been
382 * brought online. This ensures the smt/l1tf sysfs entries are consistent
383 * with reality. cpu_smt_available is set to true during the bringup of non
384 * boot CPUs when a SMT sibling is detected. Note, this may overwrite
385 * cpu_smt_control's previous setting.
387 void __init
cpu_smt_check_topology(void)
389 if (!cpu_smt_available
)
390 cpu_smt_control
= CPU_SMT_NOT_SUPPORTED
;
393 static int __init
smt_cmdline_disable(char *str
)
395 cpu_smt_disable(str
&& !strcmp(str
, "force"));
398 early_param("nosmt", smt_cmdline_disable
);
400 static inline bool cpu_smt_allowed(unsigned int cpu
)
402 if (topology_is_primary_thread(cpu
))
406 * If the CPU is not a 'primary' thread and the booted_once bit is
407 * set then the processor has SMT support. Store this information
408 * for the late check of SMT support in cpu_smt_check_topology().
410 if (per_cpu(cpuhp_state
, cpu
).booted_once
)
411 cpu_smt_available
= true;
413 if (cpu_smt_control
== CPU_SMT_ENABLED
)
417 * On x86 it's required to boot all logical CPUs at least once so
418 * that the init code can get a chance to set CR4.MCE on each
419 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
420 * core will shutdown the machine.
422 return !per_cpu(cpuhp_state
, cpu
).booted_once
;
425 static inline bool cpu_smt_allowed(unsigned int cpu
) { return true; }
428 static inline enum cpuhp_state
429 cpuhp_set_state(struct cpuhp_cpu_state
*st
, enum cpuhp_state target
)
431 enum cpuhp_state prev_state
= st
->state
;
433 st
->rollback
= false;
438 st
->bringup
= st
->state
< target
;
444 cpuhp_reset_state(struct cpuhp_cpu_state
*st
, enum cpuhp_state prev_state
)
449 * If we have st->last we need to undo partial multi_instance of this
450 * state first. Otherwise start undo at the previous state.
459 st
->target
= prev_state
;
460 st
->bringup
= !st
->bringup
;
463 /* Regular hotplug invocation of the AP hotplug thread */
464 static void __cpuhp_kick_ap(struct cpuhp_cpu_state
*st
)
466 if (!st
->single
&& st
->state
== st
->target
)
471 * Make sure the above stores are visible before should_run becomes
472 * true. Paired with the mb() above in cpuhp_thread_fun()
475 st
->should_run
= true;
476 wake_up_process(st
->thread
);
477 wait_for_ap_thread(st
, st
->bringup
);
480 static int cpuhp_kick_ap(struct cpuhp_cpu_state
*st
, enum cpuhp_state target
)
482 enum cpuhp_state prev_state
;
485 prev_state
= cpuhp_set_state(st
, target
);
487 if ((ret
= st
->result
)) {
488 cpuhp_reset_state(st
, prev_state
);
495 static int bringup_wait_for_ap(unsigned int cpu
)
497 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
499 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
500 wait_for_ap_thread(st
, true);
501 if (WARN_ON_ONCE((!cpu_online(cpu
))))
504 /* Unpark the stopper thread and the hotplug thread of the target cpu */
505 stop_machine_unpark(cpu
);
506 kthread_unpark(st
->thread
);
509 * SMT soft disabling on X86 requires to bring the CPU out of the
510 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
511 * CPU marked itself as booted_once in cpu_notify_starting() so the
512 * cpu_smt_allowed() check will now return false if this is not the
515 if (!cpu_smt_allowed(cpu
))
518 if (st
->target
<= CPUHP_AP_ONLINE_IDLE
)
521 return cpuhp_kick_ap(st
, st
->target
);
524 static int bringup_cpu(unsigned int cpu
)
526 struct task_struct
*idle
= idle_thread_get(cpu
);
530 * Some architectures have to walk the irq descriptors to
531 * setup the vector space for the cpu which comes online.
532 * Prevent irq alloc/free across the bringup.
536 /* Arch-specific enabling code. */
537 ret
= __cpu_up(cpu
, idle
);
541 return bringup_wait_for_ap(cpu
);
545 * Hotplug state machine related functions
548 static void undo_cpu_up(unsigned int cpu
, struct cpuhp_cpu_state
*st
)
550 for (st
->state
--; st
->state
> st
->target
; st
->state
--)
551 cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
, NULL
);
554 static int cpuhp_up_callbacks(unsigned int cpu
, struct cpuhp_cpu_state
*st
,
555 enum cpuhp_state target
)
557 enum cpuhp_state prev_state
= st
->state
;
560 while (st
->state
< target
) {
562 ret
= cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
, NULL
);
564 st
->target
= prev_state
;
565 undo_cpu_up(cpu
, st
);
573 * The cpu hotplug threads manage the bringup and teardown of the cpus
575 static void cpuhp_create(unsigned int cpu
)
577 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
579 init_completion(&st
->done_up
);
580 init_completion(&st
->done_down
);
583 static int cpuhp_should_run(unsigned int cpu
)
585 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
587 return st
->should_run
;
591 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
592 * callbacks when a state gets [un]installed at runtime.
594 * Each invocation of this function by the smpboot thread does a single AP
597 * It has 3 modes of operation:
598 * - single: runs st->cb_state
599 * - up: runs ++st->state, while st->state < st->target
600 * - down: runs st->state--, while st->state > st->target
602 * When complete or on error, should_run is cleared and the completion is fired.
604 static void cpuhp_thread_fun(unsigned int cpu
)
606 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
607 bool bringup
= st
->bringup
;
608 enum cpuhp_state state
;
610 if (WARN_ON_ONCE(!st
->should_run
))
614 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
615 * that if we see ->should_run we also see the rest of the state.
619 cpuhp_lock_acquire(bringup
);
622 state
= st
->cb_state
;
623 st
->should_run
= false;
628 st
->should_run
= (st
->state
< st
->target
);
629 WARN_ON_ONCE(st
->state
> st
->target
);
633 st
->should_run
= (st
->state
> st
->target
);
634 WARN_ON_ONCE(st
->state
< st
->target
);
638 WARN_ON_ONCE(!cpuhp_is_ap_state(state
));
640 if (cpuhp_is_atomic_state(state
)) {
642 st
->result
= cpuhp_invoke_callback(cpu
, state
, bringup
, st
->node
, &st
->last
);
646 * STARTING/DYING must not fail!
648 WARN_ON_ONCE(st
->result
);
650 st
->result
= cpuhp_invoke_callback(cpu
, state
, bringup
, st
->node
, &st
->last
);
655 * If we fail on a rollback, we're up a creek without no
656 * paddle, no way forward, no way back. We loose, thanks for
659 WARN_ON_ONCE(st
->rollback
);
660 st
->should_run
= false;
663 cpuhp_lock_release(bringup
);
666 complete_ap_thread(st
, bringup
);
669 /* Invoke a single callback on a remote cpu */
671 cpuhp_invoke_ap_callback(int cpu
, enum cpuhp_state state
, bool bringup
,
672 struct hlist_node
*node
)
674 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
677 if (!cpu_online(cpu
))
680 cpuhp_lock_acquire(false);
681 cpuhp_lock_release(false);
683 cpuhp_lock_acquire(true);
684 cpuhp_lock_release(true);
687 * If we are up and running, use the hotplug thread. For early calls
688 * we invoke the thread function directly.
691 return cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
693 st
->rollback
= false;
697 st
->bringup
= bringup
;
698 st
->cb_state
= state
;
704 * If we failed and did a partial, do a rollback.
706 if ((ret
= st
->result
) && st
->last
) {
708 st
->bringup
= !bringup
;
714 * Clean up the leftovers so the next hotplug operation wont use stale
717 st
->node
= st
->last
= NULL
;
721 static int cpuhp_kick_ap_work(unsigned int cpu
)
723 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
724 enum cpuhp_state prev_state
= st
->state
;
727 cpuhp_lock_acquire(false);
728 cpuhp_lock_release(false);
730 cpuhp_lock_acquire(true);
731 cpuhp_lock_release(true);
733 trace_cpuhp_enter(cpu
, st
->target
, prev_state
, cpuhp_kick_ap_work
);
734 ret
= cpuhp_kick_ap(st
, st
->target
);
735 trace_cpuhp_exit(cpu
, st
->state
, prev_state
, ret
);
740 static struct smp_hotplug_thread cpuhp_threads
= {
741 .store
= &cpuhp_state
.thread
,
742 .create
= &cpuhp_create
,
743 .thread_should_run
= cpuhp_should_run
,
744 .thread_fn
= cpuhp_thread_fun
,
745 .thread_comm
= "cpuhp/%u",
749 void __init
cpuhp_threads_init(void)
751 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads
));
752 kthread_unpark(this_cpu_read(cpuhp_state
.thread
));
755 #ifdef CONFIG_HOTPLUG_CPU
757 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
760 * This function walks all processes, finds a valid mm struct for each one and
761 * then clears a corresponding bit in mm's cpumask. While this all sounds
762 * trivial, there are various non-obvious corner cases, which this function
763 * tries to solve in a safe manner.
765 * Also note that the function uses a somewhat relaxed locking scheme, so it may
766 * be called only for an already offlined CPU.
768 void clear_tasks_mm_cpumask(int cpu
)
770 struct task_struct
*p
;
773 * This function is called after the cpu is taken down and marked
774 * offline, so its not like new tasks will ever get this cpu set in
775 * their mm mask. -- Peter Zijlstra
776 * Thus, we may use rcu_read_lock() here, instead of grabbing
777 * full-fledged tasklist_lock.
779 WARN_ON(cpu_online(cpu
));
781 for_each_process(p
) {
782 struct task_struct
*t
;
785 * Main thread might exit, but other threads may still have
786 * a valid mm. Find one.
788 t
= find_lock_task_mm(p
);
791 cpumask_clear_cpu(cpu
, mm_cpumask(t
->mm
));
797 /* Take this CPU down. */
798 static int take_cpu_down(void *_param
)
800 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
801 enum cpuhp_state target
= max((int)st
->target
, CPUHP_AP_OFFLINE
);
802 int err
, cpu
= smp_processor_id();
805 /* Ensure this CPU doesn't handle any more interrupts. */
806 err
= __cpu_disable();
811 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
812 * do this step again.
814 WARN_ON(st
->state
!= CPUHP_TEARDOWN_CPU
);
816 /* Invoke the former CPU_DYING callbacks */
817 for (; st
->state
> target
; st
->state
--) {
818 ret
= cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
, NULL
);
820 * DYING must not fail!
825 /* Give up timekeeping duties */
826 tick_handover_do_timer();
827 /* Park the stopper thread */
828 stop_machine_park(cpu
);
832 static int takedown_cpu(unsigned int cpu
)
834 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
837 /* Park the smpboot threads */
838 kthread_park(per_cpu_ptr(&cpuhp_state
, cpu
)->thread
);
841 * Prevent irq alloc/free while the dying cpu reorganizes the
842 * interrupt affinities.
847 * So now all preempt/rcu users must observe !cpu_active().
849 err
= stop_machine_cpuslocked(take_cpu_down
, NULL
, cpumask_of(cpu
));
851 /* CPU refused to die */
853 /* Unpark the hotplug thread so we can rollback there */
854 kthread_unpark(per_cpu_ptr(&cpuhp_state
, cpu
)->thread
);
857 BUG_ON(cpu_online(cpu
));
860 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
861 * all runnable tasks from the CPU, there's only the idle task left now
862 * that the migration thread is done doing the stop_machine thing.
864 * Wait for the stop thread to go away.
866 wait_for_ap_thread(st
, false);
867 BUG_ON(st
->state
!= CPUHP_AP_IDLE_DEAD
);
869 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
872 hotplug_cpu__broadcast_tick_pull(cpu
);
873 /* This actually kills the CPU. */
876 tick_cleanup_dead_cpu(cpu
);
877 rcutree_migrate_callbacks(cpu
);
881 static void cpuhp_complete_idle_dead(void *arg
)
883 struct cpuhp_cpu_state
*st
= arg
;
885 complete_ap_thread(st
, false);
888 void cpuhp_report_idle_dead(void)
890 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
892 BUG_ON(st
->state
!= CPUHP_AP_OFFLINE
);
893 rcu_report_dead(smp_processor_id());
894 st
->state
= CPUHP_AP_IDLE_DEAD
;
896 * We cannot call complete after rcu_report_dead() so we delegate it
899 smp_call_function_single(cpumask_first(cpu_online_mask
),
900 cpuhp_complete_idle_dead
, st
, 0);
903 static void undo_cpu_down(unsigned int cpu
, struct cpuhp_cpu_state
*st
)
905 for (st
->state
++; st
->state
< st
->target
; st
->state
++)
906 cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
, NULL
);
909 static int cpuhp_down_callbacks(unsigned int cpu
, struct cpuhp_cpu_state
*st
,
910 enum cpuhp_state target
)
912 enum cpuhp_state prev_state
= st
->state
;
915 for (; st
->state
> target
; st
->state
--) {
916 ret
= cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
, NULL
);
918 st
->target
= prev_state
;
919 if (st
->state
< prev_state
)
920 undo_cpu_down(cpu
, st
);
927 /* Requires cpu_add_remove_lock to be held */
928 static int __ref
_cpu_down(unsigned int cpu
, int tasks_frozen
,
929 enum cpuhp_state target
)
931 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
932 int prev_state
, ret
= 0;
934 if (num_online_cpus() == 1)
937 if (!cpu_present(cpu
))
942 cpuhp_tasks_frozen
= tasks_frozen
;
944 prev_state
= cpuhp_set_state(st
, target
);
946 * If the current CPU state is in the range of the AP hotplug thread,
947 * then we need to kick the thread.
949 if (st
->state
> CPUHP_TEARDOWN_CPU
) {
950 st
->target
= max((int)target
, CPUHP_TEARDOWN_CPU
);
951 ret
= cpuhp_kick_ap_work(cpu
);
953 * The AP side has done the error rollback already. Just
954 * return the error code..
960 * We might have stopped still in the range of the AP hotplug
961 * thread. Nothing to do anymore.
963 if (st
->state
> CPUHP_TEARDOWN_CPU
)
969 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
970 * to do the further cleanups.
972 ret
= cpuhp_down_callbacks(cpu
, st
, target
);
973 if (ret
&& st
->state
== CPUHP_TEARDOWN_CPU
&& st
->state
< prev_state
) {
974 cpuhp_reset_state(st
, prev_state
);
981 * Do post unplug cleanup. This is still protected against
982 * concurrent CPU hotplug via cpu_add_remove_lock.
984 lockup_detector_cleanup();
988 static int cpu_down_maps_locked(unsigned int cpu
, enum cpuhp_state target
)
990 if (cpu_hotplug_disabled
)
992 return _cpu_down(cpu
, 0, target
);
995 static int do_cpu_down(unsigned int cpu
, enum cpuhp_state target
)
999 cpu_maps_update_begin();
1000 err
= cpu_down_maps_locked(cpu
, target
);
1001 cpu_maps_update_done();
1005 int cpu_down(unsigned int cpu
)
1007 return do_cpu_down(cpu
, CPUHP_OFFLINE
);
1009 EXPORT_SYMBOL(cpu_down
);
1012 #define takedown_cpu NULL
1013 #endif /*CONFIG_HOTPLUG_CPU*/
1016 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1017 * @cpu: cpu that just started
1019 * It must be called by the arch code on the new cpu, before the new cpu
1020 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1022 void notify_cpu_starting(unsigned int cpu
)
1024 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1025 enum cpuhp_state target
= min((int)st
->target
, CPUHP_AP_ONLINE
);
1028 rcu_cpu_starting(cpu
); /* Enables RCU usage on this CPU. */
1029 st
->booted_once
= true;
1030 while (st
->state
< target
) {
1032 ret
= cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
, NULL
);
1034 * STARTING must not fail!
1041 * Called from the idle task. Wake up the controlling task which brings the
1042 * stopper and the hotplug thread of the upcoming CPU up and then delegates
1043 * the rest of the online bringup to the hotplug thread.
1045 void cpuhp_online_idle(enum cpuhp_state state
)
1047 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
1049 /* Happens for the boot cpu */
1050 if (state
!= CPUHP_AP_ONLINE_IDLE
)
1053 st
->state
= CPUHP_AP_ONLINE_IDLE
;
1054 complete_ap_thread(st
, true);
1057 /* Requires cpu_add_remove_lock to be held */
1058 static int _cpu_up(unsigned int cpu
, int tasks_frozen
, enum cpuhp_state target
)
1060 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1061 struct task_struct
*idle
;
1066 if (!cpu_present(cpu
)) {
1072 * The caller of do_cpu_up might have raced with another
1073 * caller. Ignore it for now.
1075 if (st
->state
>= target
)
1078 if (st
->state
== CPUHP_OFFLINE
) {
1079 /* Let it fail before we try to bring the cpu up */
1080 idle
= idle_thread_get(cpu
);
1082 ret
= PTR_ERR(idle
);
1087 cpuhp_tasks_frozen
= tasks_frozen
;
1089 cpuhp_set_state(st
, target
);
1091 * If the current CPU state is in the range of the AP hotplug thread,
1092 * then we need to kick the thread once more.
1094 if (st
->state
> CPUHP_BRINGUP_CPU
) {
1095 ret
= cpuhp_kick_ap_work(cpu
);
1097 * The AP side has done the error rollback already. Just
1098 * return the error code..
1105 * Try to reach the target state. We max out on the BP at
1106 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1107 * responsible for bringing it up to the target state.
1109 target
= min((int)target
, CPUHP_BRINGUP_CPU
);
1110 ret
= cpuhp_up_callbacks(cpu
, st
, target
);
1112 cpus_write_unlock();
1116 static int do_cpu_up(unsigned int cpu
, enum cpuhp_state target
)
1120 if (!cpu_possible(cpu
)) {
1121 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1123 #if defined(CONFIG_IA64)
1124 pr_err("please check additional_cpus= boot parameter\n");
1129 err
= try_online_node(cpu_to_node(cpu
));
1133 cpu_maps_update_begin();
1135 if (cpu_hotplug_disabled
) {
1139 if (!cpu_smt_allowed(cpu
)) {
1144 err
= _cpu_up(cpu
, 0, target
);
1146 cpu_maps_update_done();
1150 int cpu_up(unsigned int cpu
)
1152 return do_cpu_up(cpu
, CPUHP_ONLINE
);
1154 EXPORT_SYMBOL_GPL(cpu_up
);
1156 #ifdef CONFIG_PM_SLEEP_SMP
1157 static cpumask_var_t frozen_cpus
;
1159 int freeze_secondary_cpus(int primary
)
1163 cpu_maps_update_begin();
1164 if (!cpu_online(primary
))
1165 primary
= cpumask_first(cpu_online_mask
);
1167 * We take down all of the non-boot CPUs in one shot to avoid races
1168 * with the userspace trying to use the CPU hotplug at the same time
1170 cpumask_clear(frozen_cpus
);
1172 pr_info("Disabling non-boot CPUs ...\n");
1173 for_each_online_cpu(cpu
) {
1176 trace_suspend_resume(TPS("CPU_OFF"), cpu
, true);
1177 error
= _cpu_down(cpu
, 1, CPUHP_OFFLINE
);
1178 trace_suspend_resume(TPS("CPU_OFF"), cpu
, false);
1180 cpumask_set_cpu(cpu
, frozen_cpus
);
1182 pr_err("Error taking CPU%d down: %d\n", cpu
, error
);
1188 BUG_ON(num_online_cpus() > 1);
1190 pr_err("Non-boot CPUs are not disabled\n");
1193 * Make sure the CPUs won't be enabled by someone else. We need to do
1194 * this even in case of failure as all disable_nonboot_cpus() users are
1195 * supposed to do enable_nonboot_cpus() on the failure path.
1197 cpu_hotplug_disabled
++;
1199 cpu_maps_update_done();
1203 void __weak
arch_enable_nonboot_cpus_begin(void)
1207 void __weak
arch_enable_nonboot_cpus_end(void)
1211 void enable_nonboot_cpus(void)
1215 /* Allow everyone to use the CPU hotplug again */
1216 cpu_maps_update_begin();
1217 __cpu_hotplug_enable();
1218 if (cpumask_empty(frozen_cpus
))
1221 pr_info("Enabling non-boot CPUs ...\n");
1223 arch_enable_nonboot_cpus_begin();
1225 for_each_cpu(cpu
, frozen_cpus
) {
1226 trace_suspend_resume(TPS("CPU_ON"), cpu
, true);
1227 error
= _cpu_up(cpu
, 1, CPUHP_ONLINE
);
1228 trace_suspend_resume(TPS("CPU_ON"), cpu
, false);
1230 pr_info("CPU%d is up\n", cpu
);
1233 pr_warn("Error taking CPU%d up: %d\n", cpu
, error
);
1236 arch_enable_nonboot_cpus_end();
1238 cpumask_clear(frozen_cpus
);
1240 cpu_maps_update_done();
1243 static int __init
alloc_frozen_cpus(void)
1245 if (!alloc_cpumask_var(&frozen_cpus
, GFP_KERNEL
|__GFP_ZERO
))
1249 core_initcall(alloc_frozen_cpus
);
1252 * When callbacks for CPU hotplug notifications are being executed, we must
1253 * ensure that the state of the system with respect to the tasks being frozen
1254 * or not, as reported by the notification, remains unchanged *throughout the
1255 * duration* of the execution of the callbacks.
1256 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1258 * This synchronization is implemented by mutually excluding regular CPU
1259 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1260 * Hibernate notifications.
1263 cpu_hotplug_pm_callback(struct notifier_block
*nb
,
1264 unsigned long action
, void *ptr
)
1268 case PM_SUSPEND_PREPARE
:
1269 case PM_HIBERNATION_PREPARE
:
1270 cpu_hotplug_disable();
1273 case PM_POST_SUSPEND
:
1274 case PM_POST_HIBERNATION
:
1275 cpu_hotplug_enable();
1286 static int __init
cpu_hotplug_pm_sync_init(void)
1289 * cpu_hotplug_pm_callback has higher priority than x86
1290 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1291 * to disable cpu hotplug to avoid cpu hotplug race.
1293 pm_notifier(cpu_hotplug_pm_callback
, 0);
1296 core_initcall(cpu_hotplug_pm_sync_init
);
1298 #endif /* CONFIG_PM_SLEEP_SMP */
1302 #endif /* CONFIG_SMP */
1304 /* Boot processor state steps */
1305 static struct cpuhp_step cpuhp_hp_states
[] = {
1308 .startup
.single
= NULL
,
1309 .teardown
.single
= NULL
,
1312 [CPUHP_CREATE_THREADS
]= {
1313 .name
= "threads:prepare",
1314 .startup
.single
= smpboot_create_threads
,
1315 .teardown
.single
= NULL
,
1318 [CPUHP_PERF_PREPARE
] = {
1319 .name
= "perf:prepare",
1320 .startup
.single
= perf_event_init_cpu
,
1321 .teardown
.single
= perf_event_exit_cpu
,
1323 [CPUHP_WORKQUEUE_PREP
] = {
1324 .name
= "workqueue:prepare",
1325 .startup
.single
= workqueue_prepare_cpu
,
1326 .teardown
.single
= NULL
,
1328 [CPUHP_HRTIMERS_PREPARE
] = {
1329 .name
= "hrtimers:prepare",
1330 .startup
.single
= hrtimers_prepare_cpu
,
1331 .teardown
.single
= hrtimers_dead_cpu
,
1333 [CPUHP_SMPCFD_PREPARE
] = {
1334 .name
= "smpcfd:prepare",
1335 .startup
.single
= smpcfd_prepare_cpu
,
1336 .teardown
.single
= smpcfd_dead_cpu
,
1338 [CPUHP_RELAY_PREPARE
] = {
1339 .name
= "relay:prepare",
1340 .startup
.single
= relay_prepare_cpu
,
1341 .teardown
.single
= NULL
,
1343 [CPUHP_SLAB_PREPARE
] = {
1344 .name
= "slab:prepare",
1345 .startup
.single
= slab_prepare_cpu
,
1346 .teardown
.single
= slab_dead_cpu
,
1348 [CPUHP_RCUTREE_PREP
] = {
1349 .name
= "RCU/tree:prepare",
1350 .startup
.single
= rcutree_prepare_cpu
,
1351 .teardown
.single
= rcutree_dead_cpu
,
1354 * On the tear-down path, timers_dead_cpu() must be invoked
1355 * before blk_mq_queue_reinit_notify() from notify_dead(),
1356 * otherwise a RCU stall occurs.
1358 [CPUHP_TIMERS_PREPARE
] = {
1359 .name
= "timers:prepare",
1360 .startup
.single
= timers_prepare_cpu
,
1361 .teardown
.single
= timers_dead_cpu
,
1363 /* Kicks the plugged cpu into life */
1364 [CPUHP_BRINGUP_CPU
] = {
1365 .name
= "cpu:bringup",
1366 .startup
.single
= bringup_cpu
,
1367 .teardown
.single
= NULL
,
1370 /* Final state before CPU kills itself */
1371 [CPUHP_AP_IDLE_DEAD
] = {
1372 .name
= "idle:dead",
1375 * Last state before CPU enters the idle loop to die. Transient state
1376 * for synchronization.
1378 [CPUHP_AP_OFFLINE
] = {
1379 .name
= "ap:offline",
1382 /* First state is scheduler control. Interrupts are disabled */
1383 [CPUHP_AP_SCHED_STARTING
] = {
1384 .name
= "sched:starting",
1385 .startup
.single
= sched_cpu_starting
,
1386 .teardown
.single
= sched_cpu_dying
,
1388 [CPUHP_AP_RCUTREE_DYING
] = {
1389 .name
= "RCU/tree:dying",
1390 .startup
.single
= NULL
,
1391 .teardown
.single
= rcutree_dying_cpu
,
1393 [CPUHP_AP_SMPCFD_DYING
] = {
1394 .name
= "smpcfd:dying",
1395 .startup
.single
= NULL
,
1396 .teardown
.single
= smpcfd_dying_cpu
,
1398 /* Entry state on starting. Interrupts enabled from here on. Transient
1399 * state for synchronsization */
1400 [CPUHP_AP_ONLINE
] = {
1401 .name
= "ap:online",
1404 * Handled on controll processor until the plugged processor manages
1407 [CPUHP_TEARDOWN_CPU
] = {
1408 .name
= "cpu:teardown",
1409 .startup
.single
= NULL
,
1410 .teardown
.single
= takedown_cpu
,
1413 /* Handle smpboot threads park/unpark */
1414 [CPUHP_AP_SMPBOOT_THREADS
] = {
1415 .name
= "smpboot/threads:online",
1416 .startup
.single
= smpboot_unpark_threads
,
1417 .teardown
.single
= smpboot_park_threads
,
1419 [CPUHP_AP_IRQ_AFFINITY_ONLINE
] = {
1420 .name
= "irq/affinity:online",
1421 .startup
.single
= irq_affinity_online_cpu
,
1422 .teardown
.single
= NULL
,
1424 [CPUHP_AP_PERF_ONLINE
] = {
1425 .name
= "perf:online",
1426 .startup
.single
= perf_event_init_cpu
,
1427 .teardown
.single
= perf_event_exit_cpu
,
1429 [CPUHP_AP_WATCHDOG_ONLINE
] = {
1430 .name
= "lockup_detector:online",
1431 .startup
.single
= lockup_detector_online_cpu
,
1432 .teardown
.single
= lockup_detector_offline_cpu
,
1434 [CPUHP_AP_WORKQUEUE_ONLINE
] = {
1435 .name
= "workqueue:online",
1436 .startup
.single
= workqueue_online_cpu
,
1437 .teardown
.single
= workqueue_offline_cpu
,
1439 [CPUHP_AP_RCUTREE_ONLINE
] = {
1440 .name
= "RCU/tree:online",
1441 .startup
.single
= rcutree_online_cpu
,
1442 .teardown
.single
= rcutree_offline_cpu
,
1446 * The dynamically registered state space is here
1450 /* Last state is scheduler control setting the cpu active */
1451 [CPUHP_AP_ACTIVE
] = {
1452 .name
= "sched:active",
1453 .startup
.single
= sched_cpu_activate
,
1454 .teardown
.single
= sched_cpu_deactivate
,
1458 /* CPU is fully up and running. */
1461 .startup
.single
= NULL
,
1462 .teardown
.single
= NULL
,
1466 /* Sanity check for callbacks */
1467 static int cpuhp_cb_check(enum cpuhp_state state
)
1469 if (state
<= CPUHP_OFFLINE
|| state
>= CPUHP_ONLINE
)
1475 * Returns a free for dynamic slot assignment of the Online state. The states
1476 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1477 * by having no name assigned.
1479 static int cpuhp_reserve_state(enum cpuhp_state state
)
1481 enum cpuhp_state i
, end
;
1482 struct cpuhp_step
*step
;
1485 case CPUHP_AP_ONLINE_DYN
:
1486 step
= cpuhp_hp_states
+ CPUHP_AP_ONLINE_DYN
;
1487 end
= CPUHP_AP_ONLINE_DYN_END
;
1489 case CPUHP_BP_PREPARE_DYN
:
1490 step
= cpuhp_hp_states
+ CPUHP_BP_PREPARE_DYN
;
1491 end
= CPUHP_BP_PREPARE_DYN_END
;
1497 for (i
= state
; i
<= end
; i
++, step
++) {
1501 WARN(1, "No more dynamic states available for CPU hotplug\n");
1505 static int cpuhp_store_callbacks(enum cpuhp_state state
, const char *name
,
1506 int (*startup
)(unsigned int cpu
),
1507 int (*teardown
)(unsigned int cpu
),
1508 bool multi_instance
)
1510 /* (Un)Install the callbacks for further cpu hotplug operations */
1511 struct cpuhp_step
*sp
;
1515 * If name is NULL, then the state gets removed.
1517 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1518 * the first allocation from these dynamic ranges, so the removal
1519 * would trigger a new allocation and clear the wrong (already
1520 * empty) state, leaving the callbacks of the to be cleared state
1521 * dangling, which causes wreckage on the next hotplug operation.
1523 if (name
&& (state
== CPUHP_AP_ONLINE_DYN
||
1524 state
== CPUHP_BP_PREPARE_DYN
)) {
1525 ret
= cpuhp_reserve_state(state
);
1530 sp
= cpuhp_get_step(state
);
1531 if (name
&& sp
->name
)
1534 sp
->startup
.single
= startup
;
1535 sp
->teardown
.single
= teardown
;
1537 sp
->multi_instance
= multi_instance
;
1538 INIT_HLIST_HEAD(&sp
->list
);
1542 static void *cpuhp_get_teardown_cb(enum cpuhp_state state
)
1544 return cpuhp_get_step(state
)->teardown
.single
;
1548 * Call the startup/teardown function for a step either on the AP or
1549 * on the current CPU.
1551 static int cpuhp_issue_call(int cpu
, enum cpuhp_state state
, bool bringup
,
1552 struct hlist_node
*node
)
1554 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1558 * If there's nothing to do, we done.
1559 * Relies on the union for multi_instance.
1561 if ((bringup
&& !sp
->startup
.single
) ||
1562 (!bringup
&& !sp
->teardown
.single
))
1565 * The non AP bound callbacks can fail on bringup. On teardown
1566 * e.g. module removal we crash for now.
1569 if (cpuhp_is_ap_state(state
))
1570 ret
= cpuhp_invoke_ap_callback(cpu
, state
, bringup
, node
);
1572 ret
= cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
1574 ret
= cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
1576 BUG_ON(ret
&& !bringup
);
1581 * Called from __cpuhp_setup_state on a recoverable failure.
1583 * Note: The teardown callbacks for rollback are not allowed to fail!
1585 static void cpuhp_rollback_install(int failedcpu
, enum cpuhp_state state
,
1586 struct hlist_node
*node
)
1590 /* Roll back the already executed steps on the other cpus */
1591 for_each_present_cpu(cpu
) {
1592 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1593 int cpustate
= st
->state
;
1595 if (cpu
>= failedcpu
)
1598 /* Did we invoke the startup call on that cpu ? */
1599 if (cpustate
>= state
)
1600 cpuhp_issue_call(cpu
, state
, false, node
);
1604 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state
,
1605 struct hlist_node
*node
,
1608 struct cpuhp_step
*sp
;
1612 lockdep_assert_cpus_held();
1614 sp
= cpuhp_get_step(state
);
1615 if (sp
->multi_instance
== false)
1618 mutex_lock(&cpuhp_state_mutex
);
1620 if (!invoke
|| !sp
->startup
.multi
)
1624 * Try to call the startup callback for each present cpu
1625 * depending on the hotplug state of the cpu.
1627 for_each_present_cpu(cpu
) {
1628 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1629 int cpustate
= st
->state
;
1631 if (cpustate
< state
)
1634 ret
= cpuhp_issue_call(cpu
, state
, true, node
);
1636 if (sp
->teardown
.multi
)
1637 cpuhp_rollback_install(cpu
, state
, node
);
1643 hlist_add_head(node
, &sp
->list
);
1645 mutex_unlock(&cpuhp_state_mutex
);
1649 int __cpuhp_state_add_instance(enum cpuhp_state state
, struct hlist_node
*node
,
1655 ret
= __cpuhp_state_add_instance_cpuslocked(state
, node
, invoke
);
1659 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance
);
1662 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1663 * @state: The state to setup
1664 * @invoke: If true, the startup function is invoked for cpus where
1665 * cpu state >= @state
1666 * @startup: startup callback function
1667 * @teardown: teardown callback function
1668 * @multi_instance: State is set up for multiple instances which get
1671 * The caller needs to hold cpus read locked while calling this function.
1674 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1675 * 0 for all other states
1676 * On failure: proper (negative) error code
1678 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state
,
1679 const char *name
, bool invoke
,
1680 int (*startup
)(unsigned int cpu
),
1681 int (*teardown
)(unsigned int cpu
),
1682 bool multi_instance
)
1687 lockdep_assert_cpus_held();
1689 if (cpuhp_cb_check(state
) || !name
)
1692 mutex_lock(&cpuhp_state_mutex
);
1694 ret
= cpuhp_store_callbacks(state
, name
, startup
, teardown
,
1697 dynstate
= state
== CPUHP_AP_ONLINE_DYN
;
1698 if (ret
> 0 && dynstate
) {
1703 if (ret
|| !invoke
|| !startup
)
1707 * Try to call the startup callback for each present cpu
1708 * depending on the hotplug state of the cpu.
1710 for_each_present_cpu(cpu
) {
1711 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1712 int cpustate
= st
->state
;
1714 if (cpustate
< state
)
1717 ret
= cpuhp_issue_call(cpu
, state
, true, NULL
);
1720 cpuhp_rollback_install(cpu
, state
, NULL
);
1721 cpuhp_store_callbacks(state
, NULL
, NULL
, NULL
, false);
1726 mutex_unlock(&cpuhp_state_mutex
);
1728 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1729 * dynamically allocated state in case of success.
1731 if (!ret
&& dynstate
)
1735 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked
);
1737 int __cpuhp_setup_state(enum cpuhp_state state
,
1738 const char *name
, bool invoke
,
1739 int (*startup
)(unsigned int cpu
),
1740 int (*teardown
)(unsigned int cpu
),
1741 bool multi_instance
)
1746 ret
= __cpuhp_setup_state_cpuslocked(state
, name
, invoke
, startup
,
1747 teardown
, multi_instance
);
1751 EXPORT_SYMBOL(__cpuhp_setup_state
);
1753 int __cpuhp_state_remove_instance(enum cpuhp_state state
,
1754 struct hlist_node
*node
, bool invoke
)
1756 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1759 BUG_ON(cpuhp_cb_check(state
));
1761 if (!sp
->multi_instance
)
1765 mutex_lock(&cpuhp_state_mutex
);
1767 if (!invoke
|| !cpuhp_get_teardown_cb(state
))
1770 * Call the teardown callback for each present cpu depending
1771 * on the hotplug state of the cpu. This function is not
1772 * allowed to fail currently!
1774 for_each_present_cpu(cpu
) {
1775 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1776 int cpustate
= st
->state
;
1778 if (cpustate
>= state
)
1779 cpuhp_issue_call(cpu
, state
, false, node
);
1784 mutex_unlock(&cpuhp_state_mutex
);
1789 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance
);
1792 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1793 * @state: The state to remove
1794 * @invoke: If true, the teardown function is invoked for cpus where
1795 * cpu state >= @state
1797 * The caller needs to hold cpus read locked while calling this function.
1798 * The teardown callback is currently not allowed to fail. Think
1799 * about module removal!
1801 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state
, bool invoke
)
1803 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1806 BUG_ON(cpuhp_cb_check(state
));
1808 lockdep_assert_cpus_held();
1810 mutex_lock(&cpuhp_state_mutex
);
1811 if (sp
->multi_instance
) {
1812 WARN(!hlist_empty(&sp
->list
),
1813 "Error: Removing state %d which has instances left.\n",
1818 if (!invoke
|| !cpuhp_get_teardown_cb(state
))
1822 * Call the teardown callback for each present cpu depending
1823 * on the hotplug state of the cpu. This function is not
1824 * allowed to fail currently!
1826 for_each_present_cpu(cpu
) {
1827 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1828 int cpustate
= st
->state
;
1830 if (cpustate
>= state
)
1831 cpuhp_issue_call(cpu
, state
, false, NULL
);
1834 cpuhp_store_callbacks(state
, NULL
, NULL
, NULL
, false);
1835 mutex_unlock(&cpuhp_state_mutex
);
1837 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked
);
1839 void __cpuhp_remove_state(enum cpuhp_state state
, bool invoke
)
1842 __cpuhp_remove_state_cpuslocked(state
, invoke
);
1845 EXPORT_SYMBOL(__cpuhp_remove_state
);
1847 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1848 static ssize_t
show_cpuhp_state(struct device
*dev
,
1849 struct device_attribute
*attr
, char *buf
)
1851 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1853 return sprintf(buf
, "%d\n", st
->state
);
1855 static DEVICE_ATTR(state
, 0444, show_cpuhp_state
, NULL
);
1857 static ssize_t
write_cpuhp_target(struct device
*dev
,
1858 struct device_attribute
*attr
,
1859 const char *buf
, size_t count
)
1861 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1862 struct cpuhp_step
*sp
;
1865 ret
= kstrtoint(buf
, 10, &target
);
1869 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1870 if (target
< CPUHP_OFFLINE
|| target
> CPUHP_ONLINE
)
1873 if (target
!= CPUHP_OFFLINE
&& target
!= CPUHP_ONLINE
)
1877 ret
= lock_device_hotplug_sysfs();
1881 mutex_lock(&cpuhp_state_mutex
);
1882 sp
= cpuhp_get_step(target
);
1883 ret
= !sp
->name
|| sp
->cant_stop
? -EINVAL
: 0;
1884 mutex_unlock(&cpuhp_state_mutex
);
1888 if (st
->state
< target
)
1889 ret
= do_cpu_up(dev
->id
, target
);
1891 ret
= do_cpu_down(dev
->id
, target
);
1893 unlock_device_hotplug();
1894 return ret
? ret
: count
;
1897 static ssize_t
show_cpuhp_target(struct device
*dev
,
1898 struct device_attribute
*attr
, char *buf
)
1900 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1902 return sprintf(buf
, "%d\n", st
->target
);
1904 static DEVICE_ATTR(target
, 0644, show_cpuhp_target
, write_cpuhp_target
);
1907 static ssize_t
write_cpuhp_fail(struct device
*dev
,
1908 struct device_attribute
*attr
,
1909 const char *buf
, size_t count
)
1911 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1912 struct cpuhp_step
*sp
;
1915 ret
= kstrtoint(buf
, 10, &fail
);
1920 * Cannot fail STARTING/DYING callbacks.
1922 if (cpuhp_is_atomic_state(fail
))
1926 * Cannot fail anything that doesn't have callbacks.
1928 mutex_lock(&cpuhp_state_mutex
);
1929 sp
= cpuhp_get_step(fail
);
1930 if (!sp
->startup
.single
&& !sp
->teardown
.single
)
1932 mutex_unlock(&cpuhp_state_mutex
);
1941 static ssize_t
show_cpuhp_fail(struct device
*dev
,
1942 struct device_attribute
*attr
, char *buf
)
1944 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1946 return sprintf(buf
, "%d\n", st
->fail
);
1949 static DEVICE_ATTR(fail
, 0644, show_cpuhp_fail
, write_cpuhp_fail
);
1951 static struct attribute
*cpuhp_cpu_attrs
[] = {
1952 &dev_attr_state
.attr
,
1953 &dev_attr_target
.attr
,
1954 &dev_attr_fail
.attr
,
1958 static const struct attribute_group cpuhp_cpu_attr_group
= {
1959 .attrs
= cpuhp_cpu_attrs
,
1964 static ssize_t
show_cpuhp_states(struct device
*dev
,
1965 struct device_attribute
*attr
, char *buf
)
1967 ssize_t cur
, res
= 0;
1970 mutex_lock(&cpuhp_state_mutex
);
1971 for (i
= CPUHP_OFFLINE
; i
<= CPUHP_ONLINE
; i
++) {
1972 struct cpuhp_step
*sp
= cpuhp_get_step(i
);
1975 cur
= sprintf(buf
, "%3d: %s\n", i
, sp
->name
);
1980 mutex_unlock(&cpuhp_state_mutex
);
1983 static DEVICE_ATTR(states
, 0444, show_cpuhp_states
, NULL
);
1985 static struct attribute
*cpuhp_cpu_root_attrs
[] = {
1986 &dev_attr_states
.attr
,
1990 static const struct attribute_group cpuhp_cpu_root_attr_group
= {
1991 .attrs
= cpuhp_cpu_root_attrs
,
1996 #ifdef CONFIG_HOTPLUG_SMT
1998 static const char *smt_states
[] = {
1999 [CPU_SMT_ENABLED
] = "on",
2000 [CPU_SMT_DISABLED
] = "off",
2001 [CPU_SMT_FORCE_DISABLED
] = "forceoff",
2002 [CPU_SMT_NOT_SUPPORTED
] = "notsupported",
2006 show_smt_control(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2008 return snprintf(buf
, PAGE_SIZE
- 2, "%s\n", smt_states
[cpu_smt_control
]);
2011 static void cpuhp_offline_cpu_device(unsigned int cpu
)
2013 struct device
*dev
= get_cpu_device(cpu
);
2015 dev
->offline
= true;
2016 /* Tell user space about the state change */
2017 kobject_uevent(&dev
->kobj
, KOBJ_OFFLINE
);
2020 static void cpuhp_online_cpu_device(unsigned int cpu
)
2022 struct device
*dev
= get_cpu_device(cpu
);
2024 dev
->offline
= false;
2025 /* Tell user space about the state change */
2026 kobject_uevent(&dev
->kobj
, KOBJ_ONLINE
);
2029 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval
)
2033 cpu_maps_update_begin();
2034 for_each_online_cpu(cpu
) {
2035 if (topology_is_primary_thread(cpu
))
2037 ret
= cpu_down_maps_locked(cpu
, CPUHP_OFFLINE
);
2041 * As this needs to hold the cpu maps lock it's impossible
2042 * to call device_offline() because that ends up calling
2043 * cpu_down() which takes cpu maps lock. cpu maps lock
2044 * needs to be held as this might race against in kernel
2045 * abusers of the hotplug machinery (thermal management).
2047 * So nothing would update device:offline state. That would
2048 * leave the sysfs entry stale and prevent onlining after
2049 * smt control has been changed to 'off' again. This is
2050 * called under the sysfs hotplug lock, so it is properly
2051 * serialized against the regular offline usage.
2053 cpuhp_offline_cpu_device(cpu
);
2056 cpu_smt_control
= ctrlval
;
2057 cpu_maps_update_done();
2061 static int cpuhp_smt_enable(void)
2065 cpu_maps_update_begin();
2066 cpu_smt_control
= CPU_SMT_ENABLED
;
2067 for_each_present_cpu(cpu
) {
2068 /* Skip online CPUs and CPUs on offline nodes */
2069 if (cpu_online(cpu
) || !node_online(cpu_to_node(cpu
)))
2071 ret
= _cpu_up(cpu
, 0, CPUHP_ONLINE
);
2074 /* See comment in cpuhp_smt_disable() */
2075 cpuhp_online_cpu_device(cpu
);
2077 cpu_maps_update_done();
2082 store_smt_control(struct device
*dev
, struct device_attribute
*attr
,
2083 const char *buf
, size_t count
)
2087 if (sysfs_streq(buf
, "on"))
2088 ctrlval
= CPU_SMT_ENABLED
;
2089 else if (sysfs_streq(buf
, "off"))
2090 ctrlval
= CPU_SMT_DISABLED
;
2091 else if (sysfs_streq(buf
, "forceoff"))
2092 ctrlval
= CPU_SMT_FORCE_DISABLED
;
2096 if (cpu_smt_control
== CPU_SMT_FORCE_DISABLED
)
2099 if (cpu_smt_control
== CPU_SMT_NOT_SUPPORTED
)
2102 ret
= lock_device_hotplug_sysfs();
2106 if (ctrlval
!= cpu_smt_control
) {
2108 case CPU_SMT_ENABLED
:
2109 ret
= cpuhp_smt_enable();
2111 case CPU_SMT_DISABLED
:
2112 case CPU_SMT_FORCE_DISABLED
:
2113 ret
= cpuhp_smt_disable(ctrlval
);
2118 unlock_device_hotplug();
2119 return ret
? ret
: count
;
2121 static DEVICE_ATTR(control
, 0644, show_smt_control
, store_smt_control
);
2124 show_smt_active(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2126 bool active
= topology_max_smt_threads() > 1;
2128 return snprintf(buf
, PAGE_SIZE
- 2, "%d\n", active
);
2130 static DEVICE_ATTR(active
, 0444, show_smt_active
, NULL
);
2132 static struct attribute
*cpuhp_smt_attrs
[] = {
2133 &dev_attr_control
.attr
,
2134 &dev_attr_active
.attr
,
2138 static const struct attribute_group cpuhp_smt_attr_group
= {
2139 .attrs
= cpuhp_smt_attrs
,
2144 static int __init
cpu_smt_state_init(void)
2146 return sysfs_create_group(&cpu_subsys
.dev_root
->kobj
,
2147 &cpuhp_smt_attr_group
);
2151 static inline int cpu_smt_state_init(void) { return 0; }
2154 static int __init
cpuhp_sysfs_init(void)
2158 ret
= cpu_smt_state_init();
2162 ret
= sysfs_create_group(&cpu_subsys
.dev_root
->kobj
,
2163 &cpuhp_cpu_root_attr_group
);
2167 for_each_possible_cpu(cpu
) {
2168 struct device
*dev
= get_cpu_device(cpu
);
2172 ret
= sysfs_create_group(&dev
->kobj
, &cpuhp_cpu_attr_group
);
2178 device_initcall(cpuhp_sysfs_init
);
2182 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2183 * represents all NR_CPUS bits binary values of 1<<nr.
2185 * It is used by cpumask_of() to get a constant address to a CPU
2186 * mask value that has a single bit set only.
2189 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2190 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2191 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2192 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2193 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2195 const unsigned long cpu_bit_bitmap
[BITS_PER_LONG
+1][BITS_TO_LONGS(NR_CPUS
)] = {
2197 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2198 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2199 #if BITS_PER_LONG > 32
2200 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2201 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2204 EXPORT_SYMBOL_GPL(cpu_bit_bitmap
);
2206 const DECLARE_BITMAP(cpu_all_bits
, NR_CPUS
) = CPU_BITS_ALL
;
2207 EXPORT_SYMBOL(cpu_all_bits
);
2209 #ifdef CONFIG_INIT_ALL_POSSIBLE
2210 struct cpumask __cpu_possible_mask __read_mostly
2213 struct cpumask __cpu_possible_mask __read_mostly
;
2215 EXPORT_SYMBOL(__cpu_possible_mask
);
2217 struct cpumask __cpu_online_mask __read_mostly
;
2218 EXPORT_SYMBOL(__cpu_online_mask
);
2220 struct cpumask __cpu_present_mask __read_mostly
;
2221 EXPORT_SYMBOL(__cpu_present_mask
);
2223 struct cpumask __cpu_active_mask __read_mostly
;
2224 EXPORT_SYMBOL(__cpu_active_mask
);
2226 void init_cpu_present(const struct cpumask
*src
)
2228 cpumask_copy(&__cpu_present_mask
, src
);
2231 void init_cpu_possible(const struct cpumask
*src
)
2233 cpumask_copy(&__cpu_possible_mask
, src
);
2236 void init_cpu_online(const struct cpumask
*src
)
2238 cpumask_copy(&__cpu_online_mask
, src
);
2242 * Activate the first processor.
2244 void __init
boot_cpu_init(void)
2246 int cpu
= smp_processor_id();
2248 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2249 set_cpu_online(cpu
, true);
2250 set_cpu_active(cpu
, true);
2251 set_cpu_present(cpu
, true);
2252 set_cpu_possible(cpu
, true);
2255 __boot_cpu_id
= cpu
;
2260 * Must be called _AFTER_ setting up the per_cpu areas
2262 void __init
boot_cpu_hotplug_init(void)
2265 this_cpu_write(cpuhp_state
.booted_once
, true);
2267 this_cpu_write(cpuhp_state
.state
, CPUHP_ONLINE
);