2 * X86 specific Hyper-V initialization code.
4 * Copyright (C) 2016, Microsoft, Inc.
6 * Author : K. Y. Srinivasan <kys@microsoft.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published
10 * by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15 * NON INFRINGEMENT. See the GNU General Public License for more
20 #include <linux/efi.h>
21 #include <linux/types.h>
24 #include <asm/hypervisor.h>
25 #include <asm/hyperv-tlfs.h>
26 #include <asm/mshyperv.h>
27 #include <linux/version.h>
28 #include <linux/vmalloc.h>
30 #include <linux/clockchips.h>
31 #include <linux/hyperv.h>
32 #include <linux/slab.h>
33 #include <linux/cpuhotplug.h>
35 #ifdef CONFIG_HYPERV_TSCPAGE
37 static struct ms_hyperv_tsc_page
*tsc_pg
;
39 struct ms_hyperv_tsc_page
*hv_get_tsc_page(void)
43 EXPORT_SYMBOL_GPL(hv_get_tsc_page
);
45 static u64
read_hv_clock_tsc(struct clocksource
*arg
)
47 u64 current_tick
= hv_read_tsc_page(tsc_pg
);
49 if (current_tick
== U64_MAX
)
50 rdmsrl(HV_X64_MSR_TIME_REF_COUNT
, current_tick
);
55 static struct clocksource hyperv_cs_tsc
= {
56 .name
= "hyperv_clocksource_tsc_page",
58 .read
= read_hv_clock_tsc
,
59 .mask
= CLOCKSOURCE_MASK(64),
60 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
64 static u64
read_hv_clock_msr(struct clocksource
*arg
)
68 * Read the partition counter to get the current tick count. This count
69 * is set to 0 when the partition is created and is incremented in
70 * 100 nanosecond units.
72 rdmsrl(HV_X64_MSR_TIME_REF_COUNT
, current_tick
);
76 static struct clocksource hyperv_cs_msr
= {
77 .name
= "hyperv_clocksource_msr",
79 .read
= read_hv_clock_msr
,
80 .mask
= CLOCKSOURCE_MASK(64),
81 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
84 void *hv_hypercall_pg
;
85 EXPORT_SYMBOL_GPL(hv_hypercall_pg
);
86 struct clocksource
*hyperv_cs
;
87 EXPORT_SYMBOL_GPL(hyperv_cs
);
90 EXPORT_SYMBOL_GPL(hv_vp_index
);
92 struct hv_vp_assist_page
**hv_vp_assist_page
;
93 EXPORT_SYMBOL_GPL(hv_vp_assist_page
);
95 void __percpu
**hyperv_pcpu_input_arg
;
96 EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg
);
100 static int hv_cpu_init(unsigned int cpu
)
103 struct hv_vp_assist_page
**hvp
= &hv_vp_assist_page
[smp_processor_id()];
106 input_arg
= (void **)this_cpu_ptr(hyperv_pcpu_input_arg
);
107 *input_arg
= page_address(alloc_page(GFP_KERNEL
));
109 hv_get_vp_index(msr_vp_index
);
111 hv_vp_index
[smp_processor_id()] = msr_vp_index
;
113 if (msr_vp_index
> hv_max_vp_index
)
114 hv_max_vp_index
= msr_vp_index
;
116 if (!hv_vp_assist_page
)
120 *hvp
= __vmalloc(PAGE_SIZE
, GFP_KERNEL
, PAGE_KERNEL
);
125 val
= vmalloc_to_pfn(*hvp
);
126 val
= (val
<< HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT
) |
127 HV_X64_MSR_VP_ASSIST_PAGE_ENABLE
;
129 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE
, val
);
135 static void (*hv_reenlightenment_cb
)(void);
137 static void hv_reenlightenment_notify(struct work_struct
*dummy
)
139 struct hv_tsc_emulation_status emu_status
;
141 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS
, *(u64
*)&emu_status
);
143 /* Don't issue the callback if TSC accesses are not emulated */
144 if (hv_reenlightenment_cb
&& emu_status
.inprogress
)
145 hv_reenlightenment_cb();
147 static DECLARE_DELAYED_WORK(hv_reenlightenment_work
, hv_reenlightenment_notify
);
149 void hyperv_stop_tsc_emulation(void)
152 struct hv_tsc_emulation_status emu_status
;
154 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS
, *(u64
*)&emu_status
);
155 emu_status
.inprogress
= 0;
156 wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS
, *(u64
*)&emu_status
);
158 rdmsrl(HV_X64_MSR_TSC_FREQUENCY
, freq
);
159 tsc_khz
= div64_u64(freq
, 1000);
161 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation
);
163 static inline bool hv_reenlightenment_available(void)
166 * Check for required features and priviliges to make TSC frequency
167 * change notifications work.
169 return ms_hyperv
.features
& HV_X64_ACCESS_FREQUENCY_MSRS
&&
170 ms_hyperv
.misc_features
& HV_FEATURE_FREQUENCY_MSRS_AVAILABLE
&&
171 ms_hyperv
.features
& HV_X64_ACCESS_REENLIGHTENMENT
;
174 __visible
void __irq_entry
hyperv_reenlightenment_intr(struct pt_regs
*regs
)
178 inc_irq_stat(irq_hv_reenlightenment_count
);
180 schedule_delayed_work(&hv_reenlightenment_work
, HZ
/10);
185 void set_hv_tscchange_cb(void (*cb
)(void))
187 struct hv_reenlightenment_control re_ctrl
= {
188 .vector
= HYPERV_REENLIGHTENMENT_VECTOR
,
190 .target_vp
= hv_vp_index
[smp_processor_id()]
192 struct hv_tsc_emulation_control emu_ctrl
= {.enabled
= 1};
194 if (!hv_reenlightenment_available()) {
195 pr_warn("Hyper-V: reenlightenment support is unavailable\n");
199 hv_reenlightenment_cb
= cb
;
201 /* Make sure callback is registered before we write to MSRs */
204 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL
, *((u64
*)&re_ctrl
));
205 wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL
, *((u64
*)&emu_ctrl
));
207 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb
);
209 void clear_hv_tscchange_cb(void)
211 struct hv_reenlightenment_control re_ctrl
;
213 if (!hv_reenlightenment_available())
216 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL
, *(u64
*)&re_ctrl
);
218 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL
, *(u64
*)&re_ctrl
);
220 hv_reenlightenment_cb
= NULL
;
222 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb
);
224 static int hv_cpu_die(unsigned int cpu
)
226 struct hv_reenlightenment_control re_ctrl
;
227 unsigned int new_cpu
;
230 void *input_pg
= NULL
;
232 local_irq_save(flags
);
233 input_arg
= (void **)this_cpu_ptr(hyperv_pcpu_input_arg
);
234 input_pg
= *input_arg
;
236 local_irq_restore(flags
);
237 free_page((unsigned long)input_pg
);
239 if (hv_vp_assist_page
&& hv_vp_assist_page
[cpu
])
240 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE
, 0);
242 if (hv_reenlightenment_cb
== NULL
)
245 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL
, *((u64
*)&re_ctrl
));
246 if (re_ctrl
.target_vp
== hv_vp_index
[cpu
]) {
247 /* Reassign to some other online CPU */
248 new_cpu
= cpumask_any_but(cpu_online_mask
, cpu
);
250 re_ctrl
.target_vp
= hv_vp_index
[new_cpu
];
251 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL
, *((u64
*)&re_ctrl
));
257 static int __init
hv_pci_init(void)
259 int gen2vm
= efi_enabled(EFI_BOOT
);
262 * For Generation-2 VM, we exit from pci_arch_init() by returning 0.
263 * The purpose is to suppress the harmless warning:
264 * "PCI: Fatal: No config space access function found"
269 /* For Generation-1 VM, we'll proceed in pci_arch_init(). */
274 * This function is to be invoked early in the boot sequence after the
275 * hypervisor has been detected.
277 * 1. Setup the hypercall page.
278 * 2. Register Hyper-V specific clocksource.
279 * 3. Setup Hyper-V specific APIC entry points.
281 void __init
hyperv_init(void)
283 u64 guest_id
, required_msrs
;
284 union hv_x64_msr_hypercall_contents hypercall_msr
;
287 if (x86_hyper_type
!= X86_HYPER_MS_HYPERV
)
290 /* Absolutely required MSRs */
291 required_msrs
= HV_X64_MSR_HYPERCALL_AVAILABLE
|
292 HV_X64_MSR_VP_INDEX_AVAILABLE
;
294 if ((ms_hyperv
.features
& required_msrs
) != required_msrs
)
298 * Allocate the per-CPU state for the hypercall input arg.
299 * If this allocation fails, we will not be able to setup
300 * (per-CPU) hypercall input page and thus this failure is
303 hyperv_pcpu_input_arg
= alloc_percpu(void *);
305 BUG_ON(hyperv_pcpu_input_arg
== NULL
);
307 /* Allocate percpu VP index */
308 hv_vp_index
= kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index
),
313 for (i
= 0; i
< num_possible_cpus(); i
++)
314 hv_vp_index
[i
] = VP_INVAL
;
316 hv_vp_assist_page
= kcalloc(num_possible_cpus(),
317 sizeof(*hv_vp_assist_page
), GFP_KERNEL
);
318 if (!hv_vp_assist_page
) {
319 ms_hyperv
.hints
&= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED
;
323 cpuhp
= cpuhp_setup_state(CPUHP_AP_ONLINE_DYN
, "x86/hyperv_init:online",
324 hv_cpu_init
, hv_cpu_die
);
326 goto free_vp_assist_page
;
329 * Setup the hypercall page and enable hypercalls.
330 * 1. Register the guest ID
331 * 2. Enable the hypercall and register the hypercall page
333 guest_id
= generate_guest_id(0, LINUX_VERSION_CODE
, 0);
334 wrmsrl(HV_X64_MSR_GUEST_OS_ID
, guest_id
);
336 hv_hypercall_pg
= __vmalloc(PAGE_SIZE
, GFP_KERNEL
, PAGE_KERNEL_RX
);
337 if (hv_hypercall_pg
== NULL
) {
338 wrmsrl(HV_X64_MSR_GUEST_OS_ID
, 0);
339 goto remove_cpuhp_state
;
342 rdmsrl(HV_X64_MSR_HYPERCALL
, hypercall_msr
.as_uint64
);
343 hypercall_msr
.enable
= 1;
344 hypercall_msr
.guest_physical_address
= vmalloc_to_pfn(hv_hypercall_pg
);
345 wrmsrl(HV_X64_MSR_HYPERCALL
, hypercall_msr
.as_uint64
);
349 x86_init
.pci
.arch_init
= hv_pci_init
;
352 * Register Hyper-V specific clocksource.
354 #ifdef CONFIG_HYPERV_TSCPAGE
355 if (ms_hyperv
.features
& HV_MSR_REFERENCE_TSC_AVAILABLE
) {
356 union hv_x64_msr_hypercall_contents tsc_msr
;
358 tsc_pg
= __vmalloc(PAGE_SIZE
, GFP_KERNEL
, PAGE_KERNEL
);
360 goto register_msr_cs
;
362 hyperv_cs
= &hyperv_cs_tsc
;
364 rdmsrl(HV_X64_MSR_REFERENCE_TSC
, tsc_msr
.as_uint64
);
367 tsc_msr
.guest_physical_address
= vmalloc_to_pfn(tsc_pg
);
369 wrmsrl(HV_X64_MSR_REFERENCE_TSC
, tsc_msr
.as_uint64
);
371 hyperv_cs_tsc
.archdata
.vclock_mode
= VCLOCK_HVCLOCK
;
373 clocksource_register_hz(&hyperv_cs_tsc
, NSEC_PER_SEC
/100);
379 * For 32 bit guests just use the MSR based mechanism for reading
380 * the partition counter.
383 hyperv_cs
= &hyperv_cs_msr
;
384 if (ms_hyperv
.features
& HV_MSR_TIME_REF_COUNT_AVAILABLE
)
385 clocksource_register_hz(&hyperv_cs_msr
, NSEC_PER_SEC
/100);
390 cpuhp_remove_state(cpuhp
);
392 kfree(hv_vp_assist_page
);
393 hv_vp_assist_page
= NULL
;
400 * This routine is called before kexec/kdump, it does the required cleanup.
402 void hyperv_cleanup(void)
404 union hv_x64_msr_hypercall_contents hypercall_msr
;
406 /* Reset our OS id */
407 wrmsrl(HV_X64_MSR_GUEST_OS_ID
, 0);
409 /* Reset the hypercall page */
410 hypercall_msr
.as_uint64
= 0;
411 wrmsrl(HV_X64_MSR_HYPERCALL
, hypercall_msr
.as_uint64
);
413 /* Reset the TSC page */
414 hypercall_msr
.as_uint64
= 0;
415 wrmsrl(HV_X64_MSR_REFERENCE_TSC
, hypercall_msr
.as_uint64
);
417 EXPORT_SYMBOL_GPL(hyperv_cleanup
);
419 void hyperv_report_panic(struct pt_regs
*regs
, long err
)
421 static bool panic_reported
;
425 * We prefer to report panic on 'die' chain as we have proper
426 * registers to report, but if we miss it (e.g. on BUG()) we need
427 * to report it on 'panic'.
431 panic_reported
= true;
433 rdmsrl(HV_X64_MSR_GUEST_OS_ID
, guest_id
);
435 wrmsrl(HV_X64_MSR_CRASH_P0
, err
);
436 wrmsrl(HV_X64_MSR_CRASH_P1
, guest_id
);
437 wrmsrl(HV_X64_MSR_CRASH_P2
, regs
->ip
);
438 wrmsrl(HV_X64_MSR_CRASH_P3
, regs
->ax
);
439 wrmsrl(HV_X64_MSR_CRASH_P4
, regs
->sp
);
442 * Let Hyper-V know there is crash data available
444 wrmsrl(HV_X64_MSR_CRASH_CTL
, HV_CRASH_CTL_CRASH_NOTIFY
);
446 EXPORT_SYMBOL_GPL(hyperv_report_panic
);
449 * hyperv_report_panic_msg - report panic message to Hyper-V
450 * @pa: physical address of the panic page containing the message
451 * @size: size of the message in the page
453 void hyperv_report_panic_msg(phys_addr_t pa
, size_t size
)
456 * P3 to contain the physical address of the panic page & P4 to
457 * contain the size of the panic data in that page. Rest of the
458 * registers are no-op when the NOTIFY_MSG flag is set.
460 wrmsrl(HV_X64_MSR_CRASH_P0
, 0);
461 wrmsrl(HV_X64_MSR_CRASH_P1
, 0);
462 wrmsrl(HV_X64_MSR_CRASH_P2
, 0);
463 wrmsrl(HV_X64_MSR_CRASH_P3
, pa
);
464 wrmsrl(HV_X64_MSR_CRASH_P4
, size
);
467 * Let Hyper-V know there is crash data available along with
470 wrmsrl(HV_X64_MSR_CRASH_CTL
,
471 (HV_CRASH_CTL_CRASH_NOTIFY
| HV_CRASH_CTL_CRASH_NOTIFY_MSG
));
473 EXPORT_SYMBOL_GPL(hyperv_report_panic_msg
);
475 bool hv_is_hyperv_initialized(void)
477 union hv_x64_msr_hypercall_contents hypercall_msr
;
480 * Ensure that we're really on Hyper-V, and not a KVM or Xen
481 * emulation of Hyper-V
483 if (x86_hyper_type
!= X86_HYPER_MS_HYPERV
)
487 * Verify that earlier initialization succeeded by checking
488 * that the hypercall page is setup
490 hypercall_msr
.as_uint64
= 0;
491 rdmsrl(HV_X64_MSR_HYPERCALL
, hypercall_msr
.as_uint64
);
493 return hypercall_msr
.enable
;
495 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized
);