2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
26 #include <trace/events/block.h>
28 #include <linux/blk-mq.h>
31 #include "blk-mq-tag.h"
33 static DEFINE_MUTEX(all_q_mutex
);
34 static LIST_HEAD(all_q_list
);
36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
);
39 * Check if any of the ctx's have pending work in this hardware queue
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
45 for (i
= 0; i
< hctx
->ctx_map
.size
; i
++)
46 if (hctx
->ctx_map
.map
[i
].word
)
52 static inline struct blk_align_bitmap
*get_bm(struct blk_mq_hw_ctx
*hctx
,
53 struct blk_mq_ctx
*ctx
)
55 return &hctx
->ctx_map
.map
[ctx
->index_hw
/ hctx
->ctx_map
.bits_per_word
];
58 #define CTX_TO_BIT(hctx, ctx) \
59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
62 * Mark this ctx as having pending work in this hardware queue
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
65 struct blk_mq_ctx
*ctx
)
67 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
69 if (!test_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
))
70 set_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
74 struct blk_mq_ctx
*ctx
)
76 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
78 clear_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
81 void blk_mq_freeze_queue_start(struct request_queue
*q
)
85 freeze_depth
= atomic_inc_return(&q
->mq_freeze_depth
);
86 if (freeze_depth
== 1) {
87 percpu_ref_kill(&q
->q_usage_counter
);
88 blk_mq_run_hw_queues(q
, false);
91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start
);
93 static void blk_mq_freeze_queue_wait(struct request_queue
*q
)
95 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
102 void blk_freeze_queue(struct request_queue
*q
)
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
111 blk_mq_freeze_queue_start(q
);
112 blk_mq_freeze_queue_wait(q
);
115 void blk_mq_freeze_queue(struct request_queue
*q
)
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
125 void blk_mq_unfreeze_queue(struct request_queue
*q
)
129 freeze_depth
= atomic_dec_return(&q
->mq_freeze_depth
);
130 WARN_ON_ONCE(freeze_depth
< 0);
132 percpu_ref_reinit(&q
->q_usage_counter
);
133 wake_up_all(&q
->mq_freeze_wq
);
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
138 void blk_mq_wake_waiters(struct request_queue
*q
)
140 struct blk_mq_hw_ctx
*hctx
;
143 queue_for_each_hw_ctx(q
, hctx
, i
)
144 if (blk_mq_hw_queue_mapped(hctx
))
145 blk_mq_tag_wakeup_all(hctx
->tags
, true);
148 * If we are called because the queue has now been marked as
149 * dying, we need to ensure that processes currently waiting on
150 * the queue are notified as well.
152 wake_up_all(&q
->mq_freeze_wq
);
155 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
157 return blk_mq_has_free_tags(hctx
->tags
);
159 EXPORT_SYMBOL(blk_mq_can_queue
);
161 static void blk_mq_rq_ctx_init(struct request_queue
*q
, struct blk_mq_ctx
*ctx
,
162 struct request
*rq
, unsigned int rw_flags
)
164 if (blk_queue_io_stat(q
))
165 rw_flags
|= REQ_IO_STAT
;
167 INIT_LIST_HEAD(&rq
->queuelist
);
168 /* csd/requeue_work/fifo_time is initialized before use */
171 rq
->cmd_flags
|= rw_flags
;
172 /* do not touch atomic flags, it needs atomic ops against the timer */
174 INIT_HLIST_NODE(&rq
->hash
);
175 RB_CLEAR_NODE(&rq
->rb_node
);
178 rq
->start_time
= jiffies
;
179 #ifdef CONFIG_BLK_CGROUP
181 set_start_time_ns(rq
);
182 rq
->io_start_time_ns
= 0;
184 rq
->nr_phys_segments
= 0;
185 #if defined(CONFIG_BLK_DEV_INTEGRITY)
186 rq
->nr_integrity_segments
= 0;
189 /* tag was already set */
199 INIT_LIST_HEAD(&rq
->timeout_list
);
203 rq
->end_io_data
= NULL
;
206 ctx
->rq_dispatched
[rw_is_sync(rw_flags
)]++;
209 static struct request
*
210 __blk_mq_alloc_request(struct blk_mq_alloc_data
*data
, int rw
)
215 tag
= blk_mq_get_tag(data
);
216 if (tag
!= BLK_MQ_TAG_FAIL
) {
217 rq
= data
->hctx
->tags
->rqs
[tag
];
219 if (blk_mq_tag_busy(data
->hctx
)) {
220 rq
->cmd_flags
= REQ_MQ_INFLIGHT
;
221 atomic_inc(&data
->hctx
->nr_active
);
225 blk_mq_rq_ctx_init(data
->q
, data
->ctx
, rq
, rw
);
232 struct request
*blk_mq_alloc_request(struct request_queue
*q
, int rw
,
235 struct blk_mq_ctx
*ctx
;
236 struct blk_mq_hw_ctx
*hctx
;
238 struct blk_mq_alloc_data alloc_data
;
241 ret
= blk_queue_enter(q
, flags
& BLK_MQ_REQ_NOWAIT
);
245 ctx
= blk_mq_get_ctx(q
);
246 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
247 blk_mq_set_alloc_data(&alloc_data
, q
, flags
, ctx
, hctx
);
249 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
250 if (!rq
&& !(flags
& BLK_MQ_REQ_NOWAIT
)) {
251 __blk_mq_run_hw_queue(hctx
);
254 ctx
= blk_mq_get_ctx(q
);
255 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
256 blk_mq_set_alloc_data(&alloc_data
, q
, flags
, ctx
, hctx
);
257 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
258 ctx
= alloc_data
.ctx
;
263 return ERR_PTR(-EWOULDBLOCK
);
267 EXPORT_SYMBOL(blk_mq_alloc_request
);
269 static void __blk_mq_free_request(struct blk_mq_hw_ctx
*hctx
,
270 struct blk_mq_ctx
*ctx
, struct request
*rq
)
272 const int tag
= rq
->tag
;
273 struct request_queue
*q
= rq
->q
;
275 if (rq
->cmd_flags
& REQ_MQ_INFLIGHT
)
276 atomic_dec(&hctx
->nr_active
);
279 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
280 blk_mq_put_tag(hctx
, tag
, &ctx
->last_tag
);
284 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
286 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
288 ctx
->rq_completed
[rq_is_sync(rq
)]++;
289 __blk_mq_free_request(hctx
, ctx
, rq
);
292 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request
);
294 void blk_mq_free_request(struct request
*rq
)
296 struct blk_mq_hw_ctx
*hctx
;
297 struct request_queue
*q
= rq
->q
;
299 hctx
= q
->mq_ops
->map_queue(q
, rq
->mq_ctx
->cpu
);
300 blk_mq_free_hctx_request(hctx
, rq
);
302 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
304 inline void __blk_mq_end_request(struct request
*rq
, int error
)
306 blk_account_io_done(rq
);
309 rq
->end_io(rq
, error
);
311 if (unlikely(blk_bidi_rq(rq
)))
312 blk_mq_free_request(rq
->next_rq
);
313 blk_mq_free_request(rq
);
316 EXPORT_SYMBOL(__blk_mq_end_request
);
318 void blk_mq_end_request(struct request
*rq
, int error
)
320 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
322 __blk_mq_end_request(rq
, error
);
324 EXPORT_SYMBOL(blk_mq_end_request
);
326 static void __blk_mq_complete_request_remote(void *data
)
328 struct request
*rq
= data
;
330 rq
->q
->softirq_done_fn(rq
);
333 static void blk_mq_ipi_complete_request(struct request
*rq
)
335 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
339 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
340 rq
->q
->softirq_done_fn(rq
);
345 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
346 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
348 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
349 rq
->csd
.func
= __blk_mq_complete_request_remote
;
352 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
354 rq
->q
->softirq_done_fn(rq
);
359 static void __blk_mq_complete_request(struct request
*rq
)
361 struct request_queue
*q
= rq
->q
;
363 if (!q
->softirq_done_fn
)
364 blk_mq_end_request(rq
, rq
->errors
);
366 blk_mq_ipi_complete_request(rq
);
370 * blk_mq_complete_request - end I/O on a request
371 * @rq: the request being processed
374 * Ends all I/O on a request. It does not handle partial completions.
375 * The actual completion happens out-of-order, through a IPI handler.
377 void blk_mq_complete_request(struct request
*rq
, int error
)
379 struct request_queue
*q
= rq
->q
;
381 if (unlikely(blk_should_fake_timeout(q
)))
383 if (!blk_mark_rq_complete(rq
)) {
385 __blk_mq_complete_request(rq
);
388 EXPORT_SYMBOL(blk_mq_complete_request
);
390 int blk_mq_request_started(struct request
*rq
)
392 return test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
394 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
396 void blk_mq_start_request(struct request
*rq
)
398 struct request_queue
*q
= rq
->q
;
400 trace_block_rq_issue(q
, rq
);
402 rq
->resid_len
= blk_rq_bytes(rq
);
403 if (unlikely(blk_bidi_rq(rq
)))
404 rq
->next_rq
->resid_len
= blk_rq_bytes(rq
->next_rq
);
409 * Ensure that ->deadline is visible before set the started
410 * flag and clear the completed flag.
412 smp_mb__before_atomic();
415 * Mark us as started and clear complete. Complete might have been
416 * set if requeue raced with timeout, which then marked it as
417 * complete. So be sure to clear complete again when we start
418 * the request, otherwise we'll ignore the completion event.
420 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
421 set_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
422 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
423 clear_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
);
425 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
427 * Make sure space for the drain appears. We know we can do
428 * this because max_hw_segments has been adjusted to be one
429 * fewer than the device can handle.
431 rq
->nr_phys_segments
++;
434 EXPORT_SYMBOL(blk_mq_start_request
);
436 static void __blk_mq_requeue_request(struct request
*rq
)
438 struct request_queue
*q
= rq
->q
;
440 trace_block_rq_requeue(q
, rq
);
442 if (test_and_clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
443 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
444 rq
->nr_phys_segments
--;
448 void blk_mq_requeue_request(struct request
*rq
)
450 __blk_mq_requeue_request(rq
);
452 BUG_ON(blk_queued_rq(rq
));
453 blk_mq_add_to_requeue_list(rq
, true);
455 EXPORT_SYMBOL(blk_mq_requeue_request
);
457 static void blk_mq_requeue_work(struct work_struct
*work
)
459 struct request_queue
*q
=
460 container_of(work
, struct request_queue
, requeue_work
);
462 struct request
*rq
, *next
;
465 spin_lock_irqsave(&q
->requeue_lock
, flags
);
466 list_splice_init(&q
->requeue_list
, &rq_list
);
467 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
469 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
470 if (!(rq
->cmd_flags
& REQ_SOFTBARRIER
))
473 rq
->cmd_flags
&= ~REQ_SOFTBARRIER
;
474 list_del_init(&rq
->queuelist
);
475 blk_mq_insert_request(rq
, true, false, false);
478 while (!list_empty(&rq_list
)) {
479 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
480 list_del_init(&rq
->queuelist
);
481 blk_mq_insert_request(rq
, false, false, false);
485 * Use the start variant of queue running here, so that running
486 * the requeue work will kick stopped queues.
488 blk_mq_start_hw_queues(q
);
491 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
)
493 struct request_queue
*q
= rq
->q
;
497 * We abuse this flag that is otherwise used by the I/O scheduler to
498 * request head insertation from the workqueue.
500 BUG_ON(rq
->cmd_flags
& REQ_SOFTBARRIER
);
502 spin_lock_irqsave(&q
->requeue_lock
, flags
);
504 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
505 list_add(&rq
->queuelist
, &q
->requeue_list
);
507 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
509 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
511 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
513 void blk_mq_cancel_requeue_work(struct request_queue
*q
)
515 cancel_work_sync(&q
->requeue_work
);
517 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work
);
519 void blk_mq_kick_requeue_list(struct request_queue
*q
)
521 kblockd_schedule_work(&q
->requeue_work
);
523 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
525 void blk_mq_abort_requeue_list(struct request_queue
*q
)
530 spin_lock_irqsave(&q
->requeue_lock
, flags
);
531 list_splice_init(&q
->requeue_list
, &rq_list
);
532 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
534 while (!list_empty(&rq_list
)) {
537 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
538 list_del_init(&rq
->queuelist
);
540 blk_mq_end_request(rq
, rq
->errors
);
543 EXPORT_SYMBOL(blk_mq_abort_requeue_list
);
545 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
547 if (tag
< tags
->nr_tags
)
548 return tags
->rqs
[tag
];
552 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
554 struct blk_mq_timeout_data
{
556 unsigned int next_set
;
559 void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
561 struct blk_mq_ops
*ops
= req
->q
->mq_ops
;
562 enum blk_eh_timer_return ret
= BLK_EH_RESET_TIMER
;
565 * We know that complete is set at this point. If STARTED isn't set
566 * anymore, then the request isn't active and the "timeout" should
567 * just be ignored. This can happen due to the bitflag ordering.
568 * Timeout first checks if STARTED is set, and if it is, assumes
569 * the request is active. But if we race with completion, then
570 * we both flags will get cleared. So check here again, and ignore
571 * a timeout event with a request that isn't active.
573 if (!test_bit(REQ_ATOM_STARTED
, &req
->atomic_flags
))
577 ret
= ops
->timeout(req
, reserved
);
581 __blk_mq_complete_request(req
);
583 case BLK_EH_RESET_TIMER
:
585 blk_clear_rq_complete(req
);
587 case BLK_EH_NOT_HANDLED
:
590 printk(KERN_ERR
"block: bad eh return: %d\n", ret
);
595 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
596 struct request
*rq
, void *priv
, bool reserved
)
598 struct blk_mq_timeout_data
*data
= priv
;
600 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
602 * If a request wasn't started before the queue was
603 * marked dying, kill it here or it'll go unnoticed.
605 if (unlikely(blk_queue_dying(rq
->q
))) {
607 blk_mq_end_request(rq
, rq
->errors
);
612 if (time_after_eq(jiffies
, rq
->deadline
)) {
613 if (!blk_mark_rq_complete(rq
))
614 blk_mq_rq_timed_out(rq
, reserved
);
615 } else if (!data
->next_set
|| time_after(data
->next
, rq
->deadline
)) {
616 data
->next
= rq
->deadline
;
621 static void blk_mq_timeout_work(struct work_struct
*work
)
623 struct request_queue
*q
=
624 container_of(work
, struct request_queue
, timeout_work
);
625 struct blk_mq_timeout_data data
= {
631 if (blk_queue_enter(q
, true))
634 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &data
);
637 data
.next
= blk_rq_timeout(round_jiffies_up(data
.next
));
638 mod_timer(&q
->timeout
, data
.next
);
640 struct blk_mq_hw_ctx
*hctx
;
642 queue_for_each_hw_ctx(q
, hctx
, i
) {
643 /* the hctx may be unmapped, so check it here */
644 if (blk_mq_hw_queue_mapped(hctx
))
645 blk_mq_tag_idle(hctx
);
652 * Reverse check our software queue for entries that we could potentially
653 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
654 * too much time checking for merges.
656 static bool blk_mq_attempt_merge(struct request_queue
*q
,
657 struct blk_mq_ctx
*ctx
, struct bio
*bio
)
662 list_for_each_entry_reverse(rq
, &ctx
->rq_list
, queuelist
) {
668 if (!blk_rq_merge_ok(rq
, bio
))
671 el_ret
= blk_try_merge(rq
, bio
);
672 if (el_ret
== ELEVATOR_BACK_MERGE
) {
673 if (bio_attempt_back_merge(q
, rq
, bio
)) {
678 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
679 if (bio_attempt_front_merge(q
, rq
, bio
)) {
691 * Process software queues that have been marked busy, splicing them
692 * to the for-dispatch
694 static void flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
696 struct blk_mq_ctx
*ctx
;
699 for (i
= 0; i
< hctx
->ctx_map
.size
; i
++) {
700 struct blk_align_bitmap
*bm
= &hctx
->ctx_map
.map
[i
];
701 unsigned int off
, bit
;
707 off
= i
* hctx
->ctx_map
.bits_per_word
;
709 bit
= find_next_bit(&bm
->word
, bm
->depth
, bit
);
710 if (bit
>= bm
->depth
)
713 ctx
= hctx
->ctxs
[bit
+ off
];
714 clear_bit(bit
, &bm
->word
);
715 spin_lock(&ctx
->lock
);
716 list_splice_tail_init(&ctx
->rq_list
, list
);
717 spin_unlock(&ctx
->lock
);
725 * Run this hardware queue, pulling any software queues mapped to it in.
726 * Note that this function currently has various problems around ordering
727 * of IO. In particular, we'd like FIFO behaviour on handling existing
728 * items on the hctx->dispatch list. Ignore that for now.
730 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
732 struct request_queue
*q
= hctx
->queue
;
735 LIST_HEAD(driver_list
);
736 struct list_head
*dptr
;
739 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
));
741 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)))
747 * Touch any software queue that has pending entries.
749 flush_busy_ctxs(hctx
, &rq_list
);
752 * If we have previous entries on our dispatch list, grab them
753 * and stuff them at the front for more fair dispatch.
755 if (!list_empty_careful(&hctx
->dispatch
)) {
756 spin_lock(&hctx
->lock
);
757 if (!list_empty(&hctx
->dispatch
))
758 list_splice_init(&hctx
->dispatch
, &rq_list
);
759 spin_unlock(&hctx
->lock
);
763 * Start off with dptr being NULL, so we start the first request
764 * immediately, even if we have more pending.
769 * Now process all the entries, sending them to the driver.
772 while (!list_empty(&rq_list
)) {
773 struct blk_mq_queue_data bd
;
776 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
777 list_del_init(&rq
->queuelist
);
781 bd
.last
= list_empty(&rq_list
);
783 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
785 case BLK_MQ_RQ_QUEUE_OK
:
788 case BLK_MQ_RQ_QUEUE_BUSY
:
789 list_add(&rq
->queuelist
, &rq_list
);
790 __blk_mq_requeue_request(rq
);
793 pr_err("blk-mq: bad return on queue: %d\n", ret
);
794 case BLK_MQ_RQ_QUEUE_ERROR
:
796 blk_mq_end_request(rq
, rq
->errors
);
800 if (ret
== BLK_MQ_RQ_QUEUE_BUSY
)
804 * We've done the first request. If we have more than 1
805 * left in the list, set dptr to defer issue.
807 if (!dptr
&& rq_list
.next
!= rq_list
.prev
)
812 hctx
->dispatched
[0]++;
813 else if (queued
< (1 << (BLK_MQ_MAX_DISPATCH_ORDER
- 1)))
814 hctx
->dispatched
[ilog2(queued
) + 1]++;
817 * Any items that need requeuing? Stuff them into hctx->dispatch,
818 * that is where we will continue on next queue run.
820 if (!list_empty(&rq_list
)) {
821 spin_lock(&hctx
->lock
);
822 list_splice(&rq_list
, &hctx
->dispatch
);
823 spin_unlock(&hctx
->lock
);
825 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
826 * it's possible the queue is stopped and restarted again
827 * before this. Queue restart will dispatch requests. And since
828 * requests in rq_list aren't added into hctx->dispatch yet,
829 * the requests in rq_list might get lost.
831 * blk_mq_run_hw_queue() already checks the STOPPED bit
833 blk_mq_run_hw_queue(hctx
, true);
838 * It'd be great if the workqueue API had a way to pass
839 * in a mask and had some smarts for more clever placement.
840 * For now we just round-robin here, switching for every
841 * BLK_MQ_CPU_WORK_BATCH queued items.
843 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
845 if (hctx
->queue
->nr_hw_queues
== 1)
846 return WORK_CPU_UNBOUND
;
848 if (--hctx
->next_cpu_batch
<= 0) {
849 int cpu
= hctx
->next_cpu
, next_cpu
;
851 next_cpu
= cpumask_next(hctx
->next_cpu
, hctx
->cpumask
);
852 if (next_cpu
>= nr_cpu_ids
)
853 next_cpu
= cpumask_first(hctx
->cpumask
);
855 hctx
->next_cpu
= next_cpu
;
856 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
861 return hctx
->next_cpu
;
864 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
866 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
) ||
867 !blk_mq_hw_queue_mapped(hctx
)))
872 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
873 __blk_mq_run_hw_queue(hctx
);
881 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
885 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
887 struct blk_mq_hw_ctx
*hctx
;
890 queue_for_each_hw_ctx(q
, hctx
, i
) {
891 if ((!blk_mq_hctx_has_pending(hctx
) &&
892 list_empty_careful(&hctx
->dispatch
)) ||
893 test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
896 blk_mq_run_hw_queue(hctx
, async
);
899 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
901 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
903 cancel_delayed_work(&hctx
->run_work
);
904 cancel_delayed_work(&hctx
->delay_work
);
905 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
907 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
909 void blk_mq_stop_hw_queues(struct request_queue
*q
)
911 struct blk_mq_hw_ctx
*hctx
;
914 queue_for_each_hw_ctx(q
, hctx
, i
)
915 blk_mq_stop_hw_queue(hctx
);
917 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
919 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
921 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
923 blk_mq_run_hw_queue(hctx
, false);
925 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
927 void blk_mq_start_hw_queues(struct request_queue
*q
)
929 struct blk_mq_hw_ctx
*hctx
;
932 queue_for_each_hw_ctx(q
, hctx
, i
)
933 blk_mq_start_hw_queue(hctx
);
935 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
937 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
939 struct blk_mq_hw_ctx
*hctx
;
942 queue_for_each_hw_ctx(q
, hctx
, i
) {
943 if (!test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
946 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
947 blk_mq_run_hw_queue(hctx
, async
);
950 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
952 static void blk_mq_run_work_fn(struct work_struct
*work
)
954 struct blk_mq_hw_ctx
*hctx
;
956 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
958 __blk_mq_run_hw_queue(hctx
);
961 static void blk_mq_delay_work_fn(struct work_struct
*work
)
963 struct blk_mq_hw_ctx
*hctx
;
965 hctx
= container_of(work
, struct blk_mq_hw_ctx
, delay_work
.work
);
967 if (test_and_clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
968 __blk_mq_run_hw_queue(hctx
);
971 void blk_mq_delay_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
973 if (unlikely(!blk_mq_hw_queue_mapped(hctx
)))
976 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
977 &hctx
->delay_work
, msecs_to_jiffies(msecs
));
979 EXPORT_SYMBOL(blk_mq_delay_queue
);
981 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx
*hctx
,
982 struct blk_mq_ctx
*ctx
,
986 trace_block_rq_insert(hctx
->queue
, rq
);
989 list_add(&rq
->queuelist
, &ctx
->rq_list
);
991 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
994 static void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
,
995 struct request
*rq
, bool at_head
)
997 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
999 __blk_mq_insert_req_list(hctx
, ctx
, rq
, at_head
);
1000 blk_mq_hctx_mark_pending(hctx
, ctx
);
1003 void blk_mq_insert_request(struct request
*rq
, bool at_head
, bool run_queue
,
1006 struct request_queue
*q
= rq
->q
;
1007 struct blk_mq_hw_ctx
*hctx
;
1008 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
, *current_ctx
;
1010 current_ctx
= blk_mq_get_ctx(q
);
1011 if (!cpu_online(ctx
->cpu
))
1012 rq
->mq_ctx
= ctx
= current_ctx
;
1014 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1016 spin_lock(&ctx
->lock
);
1017 __blk_mq_insert_request(hctx
, rq
, at_head
);
1018 spin_unlock(&ctx
->lock
);
1021 blk_mq_run_hw_queue(hctx
, async
);
1023 blk_mq_put_ctx(current_ctx
);
1026 static void blk_mq_insert_requests(struct request_queue
*q
,
1027 struct blk_mq_ctx
*ctx
,
1028 struct list_head
*list
,
1033 struct blk_mq_hw_ctx
*hctx
;
1034 struct blk_mq_ctx
*current_ctx
;
1036 trace_block_unplug(q
, depth
, !from_schedule
);
1038 current_ctx
= blk_mq_get_ctx(q
);
1040 if (!cpu_online(ctx
->cpu
))
1042 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1045 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1048 spin_lock(&ctx
->lock
);
1049 while (!list_empty(list
)) {
1052 rq
= list_first_entry(list
, struct request
, queuelist
);
1053 list_del_init(&rq
->queuelist
);
1055 __blk_mq_insert_req_list(hctx
, ctx
, rq
, false);
1057 blk_mq_hctx_mark_pending(hctx
, ctx
);
1058 spin_unlock(&ctx
->lock
);
1060 blk_mq_run_hw_queue(hctx
, from_schedule
);
1061 blk_mq_put_ctx(current_ctx
);
1064 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1066 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1067 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1069 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1070 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1071 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1074 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1076 struct blk_mq_ctx
*this_ctx
;
1077 struct request_queue
*this_q
;
1080 LIST_HEAD(ctx_list
);
1083 list_splice_init(&plug
->mq_list
, &list
);
1085 list_sort(NULL
, &list
, plug_ctx_cmp
);
1091 while (!list_empty(&list
)) {
1092 rq
= list_entry_rq(list
.next
);
1093 list_del_init(&rq
->queuelist
);
1095 if (rq
->mq_ctx
!= this_ctx
) {
1097 blk_mq_insert_requests(this_q
, this_ctx
,
1102 this_ctx
= rq
->mq_ctx
;
1108 list_add_tail(&rq
->queuelist
, &ctx_list
);
1112 * If 'this_ctx' is set, we know we have entries to complete
1113 * on 'ctx_list'. Do those.
1116 blk_mq_insert_requests(this_q
, this_ctx
, &ctx_list
, depth
,
1121 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1123 init_request_from_bio(rq
, bio
);
1125 if (blk_do_io_stat(rq
))
1126 blk_account_io_start(rq
, 1);
1129 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx
*hctx
)
1131 return (hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
1132 !blk_queue_nomerges(hctx
->queue
);
1135 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx
*hctx
,
1136 struct blk_mq_ctx
*ctx
,
1137 struct request
*rq
, struct bio
*bio
)
1139 if (!hctx_allow_merges(hctx
) || !bio_mergeable(bio
)) {
1140 blk_mq_bio_to_request(rq
, bio
);
1141 spin_lock(&ctx
->lock
);
1143 __blk_mq_insert_request(hctx
, rq
, false);
1144 spin_unlock(&ctx
->lock
);
1147 struct request_queue
*q
= hctx
->queue
;
1149 spin_lock(&ctx
->lock
);
1150 if (!blk_mq_attempt_merge(q
, ctx
, bio
)) {
1151 blk_mq_bio_to_request(rq
, bio
);
1155 spin_unlock(&ctx
->lock
);
1156 __blk_mq_free_request(hctx
, ctx
, rq
);
1161 struct blk_map_ctx
{
1162 struct blk_mq_hw_ctx
*hctx
;
1163 struct blk_mq_ctx
*ctx
;
1166 static struct request
*blk_mq_map_request(struct request_queue
*q
,
1168 struct blk_map_ctx
*data
)
1170 struct blk_mq_hw_ctx
*hctx
;
1171 struct blk_mq_ctx
*ctx
;
1173 int rw
= bio_data_dir(bio
);
1174 struct blk_mq_alloc_data alloc_data
;
1176 blk_queue_enter_live(q
);
1177 ctx
= blk_mq_get_ctx(q
);
1178 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1180 if (rw_is_sync(bio
->bi_rw
))
1183 trace_block_getrq(q
, bio
, rw
);
1184 blk_mq_set_alloc_data(&alloc_data
, q
, BLK_MQ_REQ_NOWAIT
, ctx
, hctx
);
1185 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
1186 if (unlikely(!rq
)) {
1187 __blk_mq_run_hw_queue(hctx
);
1188 blk_mq_put_ctx(ctx
);
1189 trace_block_sleeprq(q
, bio
, rw
);
1191 ctx
= blk_mq_get_ctx(q
);
1192 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1193 blk_mq_set_alloc_data(&alloc_data
, q
, 0, ctx
, hctx
);
1194 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
1195 ctx
= alloc_data
.ctx
;
1196 hctx
= alloc_data
.hctx
;
1205 static int blk_mq_direct_issue_request(struct request
*rq
, blk_qc_t
*cookie
)
1208 struct request_queue
*q
= rq
->q
;
1209 struct blk_mq_hw_ctx
*hctx
= q
->mq_ops
->map_queue(q
,
1211 struct blk_mq_queue_data bd
= {
1216 blk_qc_t new_cookie
= blk_tag_to_qc_t(rq
->tag
, hctx
->queue_num
);
1219 * For OK queue, we are done. For error, kill it. Any other
1220 * error (busy), just add it to our list as we previously
1223 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1224 if (ret
== BLK_MQ_RQ_QUEUE_OK
) {
1225 *cookie
= new_cookie
;
1229 __blk_mq_requeue_request(rq
);
1231 if (ret
== BLK_MQ_RQ_QUEUE_ERROR
) {
1232 *cookie
= BLK_QC_T_NONE
;
1234 blk_mq_end_request(rq
, rq
->errors
);
1242 * Multiple hardware queue variant. This will not use per-process plugs,
1243 * but will attempt to bypass the hctx queueing if we can go straight to
1244 * hardware for SYNC IO.
1246 static blk_qc_t
blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1248 const int is_sync
= rw_is_sync(bio
->bi_rw
);
1249 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
1250 struct blk_map_ctx data
;
1252 unsigned int request_count
= 0;
1253 struct blk_plug
*plug
;
1254 struct request
*same_queue_rq
= NULL
;
1257 blk_queue_bounce(q
, &bio
);
1259 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1261 return BLK_QC_T_NONE
;
1264 blk_queue_split(q
, &bio
, q
->bio_split
);
1266 if (!is_flush_fua
&& !blk_queue_nomerges(q
)) {
1267 if (blk_attempt_plug_merge(q
, bio
, &request_count
,
1269 return BLK_QC_T_NONE
;
1271 request_count
= blk_plug_queued_count(q
);
1273 rq
= blk_mq_map_request(q
, bio
, &data
);
1275 return BLK_QC_T_NONE
;
1277 cookie
= blk_tag_to_qc_t(rq
->tag
, data
.hctx
->queue_num
);
1279 if (unlikely(is_flush_fua
)) {
1280 blk_mq_bio_to_request(rq
, bio
);
1281 blk_insert_flush(rq
);
1285 plug
= current
->plug
;
1287 * If the driver supports defer issued based on 'last', then
1288 * queue it up like normal since we can potentially save some
1291 if (((plug
&& !blk_queue_nomerges(q
)) || is_sync
) &&
1292 !(data
.hctx
->flags
& BLK_MQ_F_DEFER_ISSUE
)) {
1293 struct request
*old_rq
= NULL
;
1295 blk_mq_bio_to_request(rq
, bio
);
1298 * We do limited pluging. If the bio can be merged, do that.
1299 * Otherwise the existing request in the plug list will be
1300 * issued. So the plug list will have one request at most
1304 * The plug list might get flushed before this. If that
1305 * happens, same_queue_rq is invalid and plug list is
1308 if (same_queue_rq
&& !list_empty(&plug
->mq_list
)) {
1309 old_rq
= same_queue_rq
;
1310 list_del_init(&old_rq
->queuelist
);
1312 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1313 } else /* is_sync */
1315 blk_mq_put_ctx(data
.ctx
);
1318 if (!blk_mq_direct_issue_request(old_rq
, &cookie
))
1320 blk_mq_insert_request(old_rq
, false, true, true);
1324 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1326 * For a SYNC request, send it to the hardware immediately. For
1327 * an ASYNC request, just ensure that we run it later on. The
1328 * latter allows for merging opportunities and more efficient
1332 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1334 blk_mq_put_ctx(data
.ctx
);
1340 * Single hardware queue variant. This will attempt to use any per-process
1341 * plug for merging and IO deferral.
1343 static blk_qc_t
blk_sq_make_request(struct request_queue
*q
, struct bio
*bio
)
1345 const int is_sync
= rw_is_sync(bio
->bi_rw
);
1346 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
1347 struct blk_plug
*plug
;
1348 unsigned int request_count
= 0;
1349 struct blk_map_ctx data
;
1353 blk_queue_bounce(q
, &bio
);
1355 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1357 return BLK_QC_T_NONE
;
1360 blk_queue_split(q
, &bio
, q
->bio_split
);
1362 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1363 blk_attempt_plug_merge(q
, bio
, &request_count
, NULL
))
1364 return BLK_QC_T_NONE
;
1366 rq
= blk_mq_map_request(q
, bio
, &data
);
1368 return BLK_QC_T_NONE
;
1370 cookie
= blk_tag_to_qc_t(rq
->tag
, data
.hctx
->queue_num
);
1372 if (unlikely(is_flush_fua
)) {
1373 blk_mq_bio_to_request(rq
, bio
);
1374 blk_insert_flush(rq
);
1379 * A task plug currently exists. Since this is completely lockless,
1380 * utilize that to temporarily store requests until the task is
1381 * either done or scheduled away.
1383 plug
= current
->plug
;
1385 blk_mq_bio_to_request(rq
, bio
);
1387 trace_block_plug(q
);
1389 blk_mq_put_ctx(data
.ctx
);
1391 if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1392 blk_flush_plug_list(plug
, false);
1393 trace_block_plug(q
);
1396 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1400 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1402 * For a SYNC request, send it to the hardware immediately. For
1403 * an ASYNC request, just ensure that we run it later on. The
1404 * latter allows for merging opportunities and more efficient
1408 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1411 blk_mq_put_ctx(data
.ctx
);
1416 * Default mapping to a software queue, since we use one per CPU.
1418 struct blk_mq_hw_ctx
*blk_mq_map_queue(struct request_queue
*q
, const int cpu
)
1420 return q
->queue_hw_ctx
[q
->mq_map
[cpu
]];
1422 EXPORT_SYMBOL(blk_mq_map_queue
);
1424 static void blk_mq_free_rq_map(struct blk_mq_tag_set
*set
,
1425 struct blk_mq_tags
*tags
, unsigned int hctx_idx
)
1429 if (tags
->rqs
&& set
->ops
->exit_request
) {
1432 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1435 set
->ops
->exit_request(set
->driver_data
, tags
->rqs
[i
],
1437 tags
->rqs
[i
] = NULL
;
1441 while (!list_empty(&tags
->page_list
)) {
1442 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1443 list_del_init(&page
->lru
);
1445 * Remove kmemleak object previously allocated in
1446 * blk_mq_init_rq_map().
1448 kmemleak_free(page_address(page
));
1449 __free_pages(page
, page
->private);
1454 blk_mq_free_tags(tags
);
1457 static size_t order_to_size(unsigned int order
)
1459 return (size_t)PAGE_SIZE
<< order
;
1462 static struct blk_mq_tags
*blk_mq_init_rq_map(struct blk_mq_tag_set
*set
,
1463 unsigned int hctx_idx
)
1465 struct blk_mq_tags
*tags
;
1466 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1467 size_t rq_size
, left
;
1469 tags
= blk_mq_init_tags(set
->queue_depth
, set
->reserved_tags
,
1471 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
1475 INIT_LIST_HEAD(&tags
->page_list
);
1477 tags
->rqs
= kzalloc_node(set
->queue_depth
* sizeof(struct request
*),
1478 GFP_KERNEL
| __GFP_NOWARN
| __GFP_NORETRY
,
1481 blk_mq_free_tags(tags
);
1486 * rq_size is the size of the request plus driver payload, rounded
1487 * to the cacheline size
1489 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
1491 left
= rq_size
* set
->queue_depth
;
1493 for (i
= 0; i
< set
->queue_depth
; ) {
1494 int this_order
= max_order
;
1499 while (left
< order_to_size(this_order
- 1) && this_order
)
1503 page
= alloc_pages_node(set
->numa_node
,
1504 GFP_KERNEL
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
1510 if (order_to_size(this_order
) < rq_size
)
1517 page
->private = this_order
;
1518 list_add_tail(&page
->lru
, &tags
->page_list
);
1520 p
= page_address(page
);
1522 * Allow kmemleak to scan these pages as they contain pointers
1523 * to additional allocations like via ops->init_request().
1525 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_KERNEL
);
1526 entries_per_page
= order_to_size(this_order
) / rq_size
;
1527 to_do
= min(entries_per_page
, set
->queue_depth
- i
);
1528 left
-= to_do
* rq_size
;
1529 for (j
= 0; j
< to_do
; j
++) {
1531 if (set
->ops
->init_request
) {
1532 if (set
->ops
->init_request(set
->driver_data
,
1533 tags
->rqs
[i
], hctx_idx
, i
,
1535 tags
->rqs
[i
] = NULL
;
1547 blk_mq_free_rq_map(set
, tags
, hctx_idx
);
1551 static void blk_mq_free_bitmap(struct blk_mq_ctxmap
*bitmap
)
1556 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap
*bitmap
, int node
)
1558 unsigned int bpw
= 8, total
, num_maps
, i
;
1560 bitmap
->bits_per_word
= bpw
;
1562 num_maps
= ALIGN(nr_cpu_ids
, bpw
) / bpw
;
1563 bitmap
->map
= kzalloc_node(num_maps
* sizeof(struct blk_align_bitmap
),
1569 for (i
= 0; i
< num_maps
; i
++) {
1570 bitmap
->map
[i
].depth
= min(total
, bitmap
->bits_per_word
);
1571 total
-= bitmap
->map
[i
].depth
;
1577 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx
*hctx
, int cpu
)
1579 struct request_queue
*q
= hctx
->queue
;
1580 struct blk_mq_ctx
*ctx
;
1584 * Move ctx entries to new CPU, if this one is going away.
1586 ctx
= __blk_mq_get_ctx(q
, cpu
);
1588 spin_lock(&ctx
->lock
);
1589 if (!list_empty(&ctx
->rq_list
)) {
1590 list_splice_init(&ctx
->rq_list
, &tmp
);
1591 blk_mq_hctx_clear_pending(hctx
, ctx
);
1593 spin_unlock(&ctx
->lock
);
1595 if (list_empty(&tmp
))
1598 ctx
= blk_mq_get_ctx(q
);
1599 spin_lock(&ctx
->lock
);
1601 while (!list_empty(&tmp
)) {
1604 rq
= list_first_entry(&tmp
, struct request
, queuelist
);
1606 list_move_tail(&rq
->queuelist
, &ctx
->rq_list
);
1609 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1610 blk_mq_hctx_mark_pending(hctx
, ctx
);
1612 spin_unlock(&ctx
->lock
);
1614 blk_mq_run_hw_queue(hctx
, true);
1615 blk_mq_put_ctx(ctx
);
1619 static int blk_mq_hctx_notify(void *data
, unsigned long action
,
1622 struct blk_mq_hw_ctx
*hctx
= data
;
1624 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
1625 return blk_mq_hctx_cpu_offline(hctx
, cpu
);
1628 * In case of CPU online, tags may be reallocated
1629 * in blk_mq_map_swqueue() after mapping is updated.
1635 /* hctx->ctxs will be freed in queue's release handler */
1636 static void blk_mq_exit_hctx(struct request_queue
*q
,
1637 struct blk_mq_tag_set
*set
,
1638 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
1640 unsigned flush_start_tag
= set
->queue_depth
;
1642 blk_mq_tag_idle(hctx
);
1644 if (set
->ops
->exit_request
)
1645 set
->ops
->exit_request(set
->driver_data
,
1646 hctx
->fq
->flush_rq
, hctx_idx
,
1647 flush_start_tag
+ hctx_idx
);
1649 if (set
->ops
->exit_hctx
)
1650 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1652 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1653 blk_free_flush_queue(hctx
->fq
);
1654 blk_mq_free_bitmap(&hctx
->ctx_map
);
1657 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
1658 struct blk_mq_tag_set
*set
, int nr_queue
)
1660 struct blk_mq_hw_ctx
*hctx
;
1663 queue_for_each_hw_ctx(q
, hctx
, i
) {
1666 blk_mq_exit_hctx(q
, set
, hctx
, i
);
1670 static void blk_mq_free_hw_queues(struct request_queue
*q
,
1671 struct blk_mq_tag_set
*set
)
1673 struct blk_mq_hw_ctx
*hctx
;
1676 queue_for_each_hw_ctx(q
, hctx
, i
)
1677 free_cpumask_var(hctx
->cpumask
);
1680 static int blk_mq_init_hctx(struct request_queue
*q
,
1681 struct blk_mq_tag_set
*set
,
1682 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
1685 unsigned flush_start_tag
= set
->queue_depth
;
1687 node
= hctx
->numa_node
;
1688 if (node
== NUMA_NO_NODE
)
1689 node
= hctx
->numa_node
= set
->numa_node
;
1691 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
1692 INIT_DELAYED_WORK(&hctx
->delay_work
, blk_mq_delay_work_fn
);
1693 spin_lock_init(&hctx
->lock
);
1694 INIT_LIST_HEAD(&hctx
->dispatch
);
1696 hctx
->queue_num
= hctx_idx
;
1697 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_SHARED
;
1699 blk_mq_init_cpu_notifier(&hctx
->cpu_notifier
,
1700 blk_mq_hctx_notify
, hctx
);
1701 blk_mq_register_cpu_notifier(&hctx
->cpu_notifier
);
1703 hctx
->tags
= set
->tags
[hctx_idx
];
1706 * Allocate space for all possible cpus to avoid allocation at
1709 hctx
->ctxs
= kmalloc_node(nr_cpu_ids
* sizeof(void *),
1712 goto unregister_cpu_notifier
;
1714 if (blk_mq_alloc_bitmap(&hctx
->ctx_map
, node
))
1719 if (set
->ops
->init_hctx
&&
1720 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
1723 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
1727 if (set
->ops
->init_request
&&
1728 set
->ops
->init_request(set
->driver_data
,
1729 hctx
->fq
->flush_rq
, hctx_idx
,
1730 flush_start_tag
+ hctx_idx
, node
))
1738 if (set
->ops
->exit_hctx
)
1739 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1741 blk_mq_free_bitmap(&hctx
->ctx_map
);
1744 unregister_cpu_notifier
:
1745 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1750 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
1751 unsigned int nr_hw_queues
)
1755 for_each_possible_cpu(i
) {
1756 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
1757 struct blk_mq_hw_ctx
*hctx
;
1759 memset(__ctx
, 0, sizeof(*__ctx
));
1761 spin_lock_init(&__ctx
->lock
);
1762 INIT_LIST_HEAD(&__ctx
->rq_list
);
1765 /* If the cpu isn't online, the cpu is mapped to first hctx */
1769 hctx
= q
->mq_ops
->map_queue(q
, i
);
1772 * Set local node, IFF we have more than one hw queue. If
1773 * not, we remain on the home node of the device
1775 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
1776 hctx
->numa_node
= local_memory_node(cpu_to_node(i
));
1780 static void blk_mq_map_swqueue(struct request_queue
*q
,
1781 const struct cpumask
*online_mask
)
1784 struct blk_mq_hw_ctx
*hctx
;
1785 struct blk_mq_ctx
*ctx
;
1786 struct blk_mq_tag_set
*set
= q
->tag_set
;
1789 * Avoid others reading imcomplete hctx->cpumask through sysfs
1791 mutex_lock(&q
->sysfs_lock
);
1793 queue_for_each_hw_ctx(q
, hctx
, i
) {
1794 cpumask_clear(hctx
->cpumask
);
1799 * Map software to hardware queues
1801 for_each_possible_cpu(i
) {
1802 /* If the cpu isn't online, the cpu is mapped to first hctx */
1803 if (!cpumask_test_cpu(i
, online_mask
))
1806 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
1807 hctx
= q
->mq_ops
->map_queue(q
, i
);
1809 cpumask_set_cpu(i
, hctx
->cpumask
);
1810 ctx
->index_hw
= hctx
->nr_ctx
;
1811 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
1814 mutex_unlock(&q
->sysfs_lock
);
1816 queue_for_each_hw_ctx(q
, hctx
, i
) {
1817 struct blk_mq_ctxmap
*map
= &hctx
->ctx_map
;
1820 * If no software queues are mapped to this hardware queue,
1821 * disable it and free the request entries.
1823 if (!hctx
->nr_ctx
) {
1825 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
1826 set
->tags
[i
] = NULL
;
1832 /* unmapped hw queue can be remapped after CPU topo changed */
1834 set
->tags
[i
] = blk_mq_init_rq_map(set
, i
);
1835 hctx
->tags
= set
->tags
[i
];
1836 WARN_ON(!hctx
->tags
);
1838 cpumask_copy(hctx
->tags
->cpumask
, hctx
->cpumask
);
1840 * Set the map size to the number of mapped software queues.
1841 * This is more accurate and more efficient than looping
1842 * over all possibly mapped software queues.
1844 map
->size
= DIV_ROUND_UP(hctx
->nr_ctx
, map
->bits_per_word
);
1847 * Initialize batch roundrobin counts
1849 hctx
->next_cpu
= cpumask_first(hctx
->cpumask
);
1850 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1854 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
1856 struct blk_mq_hw_ctx
*hctx
;
1859 queue_for_each_hw_ctx(q
, hctx
, i
) {
1861 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
1863 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
1867 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
, bool shared
)
1869 struct request_queue
*q
;
1871 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
1872 blk_mq_freeze_queue(q
);
1873 queue_set_hctx_shared(q
, shared
);
1874 blk_mq_unfreeze_queue(q
);
1878 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
1880 struct blk_mq_tag_set
*set
= q
->tag_set
;
1882 mutex_lock(&set
->tag_list_lock
);
1883 list_del_init(&q
->tag_set_list
);
1884 if (list_is_singular(&set
->tag_list
)) {
1885 /* just transitioned to unshared */
1886 set
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
1887 /* update existing queue */
1888 blk_mq_update_tag_set_depth(set
, false);
1890 mutex_unlock(&set
->tag_list_lock
);
1893 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
1894 struct request_queue
*q
)
1898 mutex_lock(&set
->tag_list_lock
);
1900 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1901 if (!list_empty(&set
->tag_list
) && !(set
->flags
& BLK_MQ_F_TAG_SHARED
)) {
1902 set
->flags
|= BLK_MQ_F_TAG_SHARED
;
1903 /* update existing queue */
1904 blk_mq_update_tag_set_depth(set
, true);
1906 if (set
->flags
& BLK_MQ_F_TAG_SHARED
)
1907 queue_set_hctx_shared(q
, true);
1908 list_add_tail(&q
->tag_set_list
, &set
->tag_list
);
1910 mutex_unlock(&set
->tag_list_lock
);
1914 * It is the actual release handler for mq, but we do it from
1915 * request queue's release handler for avoiding use-after-free
1916 * and headache because q->mq_kobj shouldn't have been introduced,
1917 * but we can't group ctx/kctx kobj without it.
1919 void blk_mq_release(struct request_queue
*q
)
1921 struct blk_mq_hw_ctx
*hctx
;
1924 /* hctx kobj stays in hctx */
1925 queue_for_each_hw_ctx(q
, hctx
, i
) {
1935 kfree(q
->queue_hw_ctx
);
1937 /* ctx kobj stays in queue_ctx */
1938 free_percpu(q
->queue_ctx
);
1941 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
1943 struct request_queue
*uninit_q
, *q
;
1945 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
1947 return ERR_PTR(-ENOMEM
);
1949 q
= blk_mq_init_allocated_queue(set
, uninit_q
);
1951 blk_cleanup_queue(uninit_q
);
1955 EXPORT_SYMBOL(blk_mq_init_queue
);
1957 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
1958 struct request_queue
*q
)
1961 struct blk_mq_hw_ctx
**hctxs
= q
->queue_hw_ctx
;
1963 blk_mq_sysfs_unregister(q
);
1964 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
1970 node
= blk_mq_hw_queue_to_node(q
->mq_map
, i
);
1971 hctxs
[i
] = kzalloc_node(sizeof(struct blk_mq_hw_ctx
),
1976 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
1983 atomic_set(&hctxs
[i
]->nr_active
, 0);
1984 hctxs
[i
]->numa_node
= node
;
1985 hctxs
[i
]->queue_num
= i
;
1987 if (blk_mq_init_hctx(q
, set
, hctxs
[i
], i
)) {
1988 free_cpumask_var(hctxs
[i
]->cpumask
);
1993 blk_mq_hctx_kobj_init(hctxs
[i
]);
1995 for (j
= i
; j
< q
->nr_hw_queues
; j
++) {
1996 struct blk_mq_hw_ctx
*hctx
= hctxs
[j
];
2000 blk_mq_free_rq_map(set
, hctx
->tags
, j
);
2001 set
->tags
[j
] = NULL
;
2003 blk_mq_exit_hctx(q
, set
, hctx
, j
);
2004 free_cpumask_var(hctx
->cpumask
);
2005 kobject_put(&hctx
->kobj
);
2012 q
->nr_hw_queues
= i
;
2013 blk_mq_sysfs_register(q
);
2016 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
2017 struct request_queue
*q
)
2019 /* mark the queue as mq asap */
2020 q
->mq_ops
= set
->ops
;
2022 q
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
2024 return ERR_PTR(-ENOMEM
);
2026 q
->queue_hw_ctx
= kzalloc_node(nr_cpu_ids
* sizeof(*(q
->queue_hw_ctx
)),
2027 GFP_KERNEL
, set
->numa_node
);
2028 if (!q
->queue_hw_ctx
)
2031 q
->mq_map
= blk_mq_make_queue_map(set
);
2035 blk_mq_realloc_hw_ctxs(set
, q
);
2036 if (!q
->nr_hw_queues
)
2039 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
2040 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
2042 q
->nr_queues
= nr_cpu_ids
;
2044 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
2046 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
2047 q
->queue_flags
|= 1 << QUEUE_FLAG_NO_SG_MERGE
;
2049 q
->sg_reserved_size
= INT_MAX
;
2051 INIT_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2052 INIT_LIST_HEAD(&q
->requeue_list
);
2053 spin_lock_init(&q
->requeue_lock
);
2055 if (q
->nr_hw_queues
> 1)
2056 blk_queue_make_request(q
, blk_mq_make_request
);
2058 blk_queue_make_request(q
, blk_sq_make_request
);
2061 * Do this after blk_queue_make_request() overrides it...
2063 q
->nr_requests
= set
->queue_depth
;
2065 if (set
->ops
->complete
)
2066 blk_queue_softirq_done(q
, set
->ops
->complete
);
2068 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2071 mutex_lock(&all_q_mutex
);
2073 list_add_tail(&q
->all_q_node
, &all_q_list
);
2074 blk_mq_add_queue_tag_set(set
, q
);
2075 blk_mq_map_swqueue(q
, cpu_online_mask
);
2077 mutex_unlock(&all_q_mutex
);
2085 kfree(q
->queue_hw_ctx
);
2087 free_percpu(q
->queue_ctx
);
2088 return ERR_PTR(-ENOMEM
);
2090 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2092 void blk_mq_free_queue(struct request_queue
*q
)
2094 struct blk_mq_tag_set
*set
= q
->tag_set
;
2096 mutex_lock(&all_q_mutex
);
2097 list_del_init(&q
->all_q_node
);
2098 mutex_unlock(&all_q_mutex
);
2100 blk_mq_del_queue_tag_set(q
);
2102 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2103 blk_mq_free_hw_queues(q
, set
);
2106 /* Basically redo blk_mq_init_queue with queue frozen */
2107 static void blk_mq_queue_reinit(struct request_queue
*q
,
2108 const struct cpumask
*online_mask
)
2110 WARN_ON_ONCE(!atomic_read(&q
->mq_freeze_depth
));
2112 blk_mq_sysfs_unregister(q
);
2114 blk_mq_update_queue_map(q
->mq_map
, q
->nr_hw_queues
, online_mask
);
2117 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2118 * we should change hctx numa_node according to new topology (this
2119 * involves free and re-allocate memory, worthy doing?)
2122 blk_mq_map_swqueue(q
, online_mask
);
2124 blk_mq_sysfs_register(q
);
2127 static int blk_mq_queue_reinit_notify(struct notifier_block
*nb
,
2128 unsigned long action
, void *hcpu
)
2130 struct request_queue
*q
;
2131 int cpu
= (unsigned long)hcpu
;
2133 * New online cpumask which is going to be set in this hotplug event.
2134 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2135 * one-by-one and dynamically allocating this could result in a failure.
2137 static struct cpumask online_new
;
2140 * Before hotadded cpu starts handling requests, new mappings must
2141 * be established. Otherwise, these requests in hw queue might
2142 * never be dispatched.
2144 * For example, there is a single hw queue (hctx) and two CPU queues
2145 * (ctx0 for CPU0, and ctx1 for CPU1).
2147 * Now CPU1 is just onlined and a request is inserted into
2148 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2151 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2152 * set in pending bitmap and tries to retrieve requests in
2153 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2154 * so the request in ctx1->rq_list is ignored.
2156 switch (action
& ~CPU_TASKS_FROZEN
) {
2158 case CPU_UP_CANCELED
:
2159 cpumask_copy(&online_new
, cpu_online_mask
);
2161 case CPU_UP_PREPARE
:
2162 cpumask_copy(&online_new
, cpu_online_mask
);
2163 cpumask_set_cpu(cpu
, &online_new
);
2169 mutex_lock(&all_q_mutex
);
2172 * We need to freeze and reinit all existing queues. Freezing
2173 * involves synchronous wait for an RCU grace period and doing it
2174 * one by one may take a long time. Start freezing all queues in
2175 * one swoop and then wait for the completions so that freezing can
2176 * take place in parallel.
2178 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2179 blk_mq_freeze_queue_start(q
);
2180 list_for_each_entry(q
, &all_q_list
, all_q_node
) {
2181 blk_mq_freeze_queue_wait(q
);
2184 * timeout handler can't touch hw queue during the
2187 del_timer_sync(&q
->timeout
);
2190 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2191 blk_mq_queue_reinit(q
, &online_new
);
2193 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2194 blk_mq_unfreeze_queue(q
);
2196 mutex_unlock(&all_q_mutex
);
2200 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2204 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2205 set
->tags
[i
] = blk_mq_init_rq_map(set
, i
);
2214 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2220 * Allocate the request maps associated with this tag_set. Note that this
2221 * may reduce the depth asked for, if memory is tight. set->queue_depth
2222 * will be updated to reflect the allocated depth.
2224 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2229 depth
= set
->queue_depth
;
2231 err
= __blk_mq_alloc_rq_maps(set
);
2235 set
->queue_depth
>>= 1;
2236 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2240 } while (set
->queue_depth
);
2242 if (!set
->queue_depth
|| err
) {
2243 pr_err("blk-mq: failed to allocate request map\n");
2247 if (depth
!= set
->queue_depth
)
2248 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2249 depth
, set
->queue_depth
);
2254 struct cpumask
*blk_mq_tags_cpumask(struct blk_mq_tags
*tags
)
2256 return tags
->cpumask
;
2258 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask
);
2261 * Alloc a tag set to be associated with one or more request queues.
2262 * May fail with EINVAL for various error conditions. May adjust the
2263 * requested depth down, if if it too large. In that case, the set
2264 * value will be stored in set->queue_depth.
2266 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2268 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2270 if (!set
->nr_hw_queues
)
2272 if (!set
->queue_depth
)
2274 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2277 if (!set
->ops
->queue_rq
|| !set
->ops
->map_queue
)
2280 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2281 pr_info("blk-mq: reduced tag depth to %u\n",
2283 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2287 * If a crashdump is active, then we are potentially in a very
2288 * memory constrained environment. Limit us to 1 queue and
2289 * 64 tags to prevent using too much memory.
2291 if (is_kdump_kernel()) {
2292 set
->nr_hw_queues
= 1;
2293 set
->queue_depth
= min(64U, set
->queue_depth
);
2296 * There is no use for more h/w queues than cpus.
2298 if (set
->nr_hw_queues
> nr_cpu_ids
)
2299 set
->nr_hw_queues
= nr_cpu_ids
;
2301 set
->tags
= kzalloc_node(nr_cpu_ids
* sizeof(struct blk_mq_tags
*),
2302 GFP_KERNEL
, set
->numa_node
);
2306 if (blk_mq_alloc_rq_maps(set
))
2309 mutex_init(&set
->tag_list_lock
);
2310 INIT_LIST_HEAD(&set
->tag_list
);
2318 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2320 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2324 for (i
= 0; i
< nr_cpu_ids
; i
++) {
2326 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2332 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2334 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2336 struct blk_mq_tag_set
*set
= q
->tag_set
;
2337 struct blk_mq_hw_ctx
*hctx
;
2340 if (!set
|| nr
> set
->queue_depth
)
2344 queue_for_each_hw_ctx(q
, hctx
, i
) {
2347 ret
= blk_mq_tag_update_depth(hctx
->tags
, nr
);
2353 q
->nr_requests
= nr
;
2358 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
2360 struct request_queue
*q
;
2362 if (nr_hw_queues
> nr_cpu_ids
)
2363 nr_hw_queues
= nr_cpu_ids
;
2364 if (nr_hw_queues
< 1 || nr_hw_queues
== set
->nr_hw_queues
)
2367 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2368 blk_mq_freeze_queue(q
);
2370 set
->nr_hw_queues
= nr_hw_queues
;
2371 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2372 blk_mq_realloc_hw_ctxs(set
, q
);
2374 if (q
->nr_hw_queues
> 1)
2375 blk_queue_make_request(q
, blk_mq_make_request
);
2377 blk_queue_make_request(q
, blk_sq_make_request
);
2379 blk_mq_queue_reinit(q
, cpu_online_mask
);
2382 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2383 blk_mq_unfreeze_queue(q
);
2385 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
2387 void blk_mq_disable_hotplug(void)
2389 mutex_lock(&all_q_mutex
);
2392 void blk_mq_enable_hotplug(void)
2394 mutex_unlock(&all_q_mutex
);
2397 static int __init
blk_mq_init(void)
2401 hotcpu_notifier(blk_mq_queue_reinit_notify
, 0);
2405 subsys_initcall(blk_mq_init
);