xfs: fix type usage
[linux/fpc-iii.git] / fs / aio.c
blobe6de7715228c92995906c4afa9712d9137161a81
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #define pr_fmt(fmt) "%s: " fmt, __func__
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
23 #include <linux/sched/signal.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
44 #include <asm/kmap_types.h>
45 #include <linux/uaccess.h>
47 #include "internal.h"
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
52 struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
57 unsigned tail;
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
65 struct io_event io_events[0];
66 }; /* 128 bytes + ring size */
68 #define AIO_RING_PAGES 8
70 struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx *table[];
76 struct kioctx_cpu {
77 unsigned reqs_available;
80 struct ctx_rq_wait {
81 struct completion comp;
82 atomic_t count;
85 struct kioctx {
86 struct percpu_ref users;
87 atomic_t dead;
89 struct percpu_ref reqs;
91 unsigned long user_id;
93 struct __percpu kioctx_cpu *cpu;
96 * For percpu reqs_available, number of slots we move to/from global
97 * counter at a time:
99 unsigned req_batch;
101 * This is what userspace passed to io_setup(), it's not used for
102 * anything but counting against the global max_reqs quota.
104 * The real limit is nr_events - 1, which will be larger (see
105 * aio_setup_ring())
107 unsigned max_reqs;
109 /* Size of ringbuffer, in units of struct io_event */
110 unsigned nr_events;
112 unsigned long mmap_base;
113 unsigned long mmap_size;
115 struct page **ring_pages;
116 long nr_pages;
118 struct work_struct free_work;
121 * signals when all in-flight requests are done
123 struct ctx_rq_wait *rq_wait;
125 struct {
127 * This counts the number of available slots in the ringbuffer,
128 * so we avoid overflowing it: it's decremented (if positive)
129 * when allocating a kiocb and incremented when the resulting
130 * io_event is pulled off the ringbuffer.
132 * We batch accesses to it with a percpu version.
134 atomic_t reqs_available;
135 } ____cacheline_aligned_in_smp;
137 struct {
138 spinlock_t ctx_lock;
139 struct list_head active_reqs; /* used for cancellation */
140 } ____cacheline_aligned_in_smp;
142 struct {
143 struct mutex ring_lock;
144 wait_queue_head_t wait;
145 } ____cacheline_aligned_in_smp;
147 struct {
148 unsigned tail;
149 unsigned completed_events;
150 spinlock_t completion_lock;
151 } ____cacheline_aligned_in_smp;
153 struct page *internal_pages[AIO_RING_PAGES];
154 struct file *aio_ring_file;
156 unsigned id;
160 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
161 * cancelled or completed (this makes a certain amount of sense because
162 * successful cancellation - io_cancel() - does deliver the completion to
163 * userspace).
165 * And since most things don't implement kiocb cancellation and we'd really like
166 * kiocb completion to be lockless when possible, we use ki_cancel to
167 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
168 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
170 #define KIOCB_CANCELLED ((void *) (~0ULL))
172 struct aio_kiocb {
173 struct kiocb common;
175 struct kioctx *ki_ctx;
176 kiocb_cancel_fn *ki_cancel;
178 struct iocb __user *ki_user_iocb; /* user's aiocb */
179 __u64 ki_user_data; /* user's data for completion */
181 struct list_head ki_list; /* the aio core uses this
182 * for cancellation */
185 * If the aio_resfd field of the userspace iocb is not zero,
186 * this is the underlying eventfd context to deliver events to.
188 struct eventfd_ctx *ki_eventfd;
191 /*------ sysctl variables----*/
192 static DEFINE_SPINLOCK(aio_nr_lock);
193 unsigned long aio_nr; /* current system wide number of aio requests */
194 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
195 /*----end sysctl variables---*/
197 static struct kmem_cache *kiocb_cachep;
198 static struct kmem_cache *kioctx_cachep;
200 static struct vfsmount *aio_mnt;
202 static const struct file_operations aio_ring_fops;
203 static const struct address_space_operations aio_ctx_aops;
205 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
207 struct qstr this = QSTR_INIT("[aio]", 5);
208 struct file *file;
209 struct path path;
210 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
211 if (IS_ERR(inode))
212 return ERR_CAST(inode);
214 inode->i_mapping->a_ops = &aio_ctx_aops;
215 inode->i_mapping->private_data = ctx;
216 inode->i_size = PAGE_SIZE * nr_pages;
218 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
219 if (!path.dentry) {
220 iput(inode);
221 return ERR_PTR(-ENOMEM);
223 path.mnt = mntget(aio_mnt);
225 d_instantiate(path.dentry, inode);
226 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
227 if (IS_ERR(file)) {
228 path_put(&path);
229 return file;
232 file->f_flags = O_RDWR;
233 return file;
236 static struct dentry *aio_mount(struct file_system_type *fs_type,
237 int flags, const char *dev_name, void *data)
239 static const struct dentry_operations ops = {
240 .d_dname = simple_dname,
242 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
243 AIO_RING_MAGIC);
245 if (!IS_ERR(root))
246 root->d_sb->s_iflags |= SB_I_NOEXEC;
247 return root;
250 /* aio_setup
251 * Creates the slab caches used by the aio routines, panic on
252 * failure as this is done early during the boot sequence.
254 static int __init aio_setup(void)
256 static struct file_system_type aio_fs = {
257 .name = "aio",
258 .mount = aio_mount,
259 .kill_sb = kill_anon_super,
261 aio_mnt = kern_mount(&aio_fs);
262 if (IS_ERR(aio_mnt))
263 panic("Failed to create aio fs mount.");
265 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
266 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
268 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
270 return 0;
272 __initcall(aio_setup);
274 static void put_aio_ring_file(struct kioctx *ctx)
276 struct file *aio_ring_file = ctx->aio_ring_file;
277 struct address_space *i_mapping;
279 if (aio_ring_file) {
280 truncate_setsize(file_inode(aio_ring_file), 0);
282 /* Prevent further access to the kioctx from migratepages */
283 i_mapping = aio_ring_file->f_mapping;
284 spin_lock(&i_mapping->private_lock);
285 i_mapping->private_data = NULL;
286 ctx->aio_ring_file = NULL;
287 spin_unlock(&i_mapping->private_lock);
289 fput(aio_ring_file);
293 static void aio_free_ring(struct kioctx *ctx)
295 int i;
297 /* Disconnect the kiotx from the ring file. This prevents future
298 * accesses to the kioctx from page migration.
300 put_aio_ring_file(ctx);
302 for (i = 0; i < ctx->nr_pages; i++) {
303 struct page *page;
304 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
305 page_count(ctx->ring_pages[i]));
306 page = ctx->ring_pages[i];
307 if (!page)
308 continue;
309 ctx->ring_pages[i] = NULL;
310 put_page(page);
313 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
314 kfree(ctx->ring_pages);
315 ctx->ring_pages = NULL;
319 static int aio_ring_mremap(struct vm_area_struct *vma)
321 struct file *file = vma->vm_file;
322 struct mm_struct *mm = vma->vm_mm;
323 struct kioctx_table *table;
324 int i, res = -EINVAL;
326 spin_lock(&mm->ioctx_lock);
327 rcu_read_lock();
328 table = rcu_dereference(mm->ioctx_table);
329 for (i = 0; i < table->nr; i++) {
330 struct kioctx *ctx;
332 ctx = table->table[i];
333 if (ctx && ctx->aio_ring_file == file) {
334 if (!atomic_read(&ctx->dead)) {
335 ctx->user_id = ctx->mmap_base = vma->vm_start;
336 res = 0;
338 break;
342 rcu_read_unlock();
343 spin_unlock(&mm->ioctx_lock);
344 return res;
347 static const struct vm_operations_struct aio_ring_vm_ops = {
348 .mremap = aio_ring_mremap,
349 #if IS_ENABLED(CONFIG_MMU)
350 .fault = filemap_fault,
351 .map_pages = filemap_map_pages,
352 .page_mkwrite = filemap_page_mkwrite,
353 #endif
356 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
358 vma->vm_flags |= VM_DONTEXPAND;
359 vma->vm_ops = &aio_ring_vm_ops;
360 return 0;
363 static const struct file_operations aio_ring_fops = {
364 .mmap = aio_ring_mmap,
367 #if IS_ENABLED(CONFIG_MIGRATION)
368 static int aio_migratepage(struct address_space *mapping, struct page *new,
369 struct page *old, enum migrate_mode mode)
371 struct kioctx *ctx;
372 unsigned long flags;
373 pgoff_t idx;
374 int rc;
377 * We cannot support the _NO_COPY case here, because copy needs to
378 * happen under the ctx->completion_lock. That does not work with the
379 * migration workflow of MIGRATE_SYNC_NO_COPY.
381 if (mode == MIGRATE_SYNC_NO_COPY)
382 return -EINVAL;
384 rc = 0;
386 /* mapping->private_lock here protects against the kioctx teardown. */
387 spin_lock(&mapping->private_lock);
388 ctx = mapping->private_data;
389 if (!ctx) {
390 rc = -EINVAL;
391 goto out;
394 /* The ring_lock mutex. The prevents aio_read_events() from writing
395 * to the ring's head, and prevents page migration from mucking in
396 * a partially initialized kiotx.
398 if (!mutex_trylock(&ctx->ring_lock)) {
399 rc = -EAGAIN;
400 goto out;
403 idx = old->index;
404 if (idx < (pgoff_t)ctx->nr_pages) {
405 /* Make sure the old page hasn't already been changed */
406 if (ctx->ring_pages[idx] != old)
407 rc = -EAGAIN;
408 } else
409 rc = -EINVAL;
411 if (rc != 0)
412 goto out_unlock;
414 /* Writeback must be complete */
415 BUG_ON(PageWriteback(old));
416 get_page(new);
418 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
419 if (rc != MIGRATEPAGE_SUCCESS) {
420 put_page(new);
421 goto out_unlock;
424 /* Take completion_lock to prevent other writes to the ring buffer
425 * while the old page is copied to the new. This prevents new
426 * events from being lost.
428 spin_lock_irqsave(&ctx->completion_lock, flags);
429 migrate_page_copy(new, old);
430 BUG_ON(ctx->ring_pages[idx] != old);
431 ctx->ring_pages[idx] = new;
432 spin_unlock_irqrestore(&ctx->completion_lock, flags);
434 /* The old page is no longer accessible. */
435 put_page(old);
437 out_unlock:
438 mutex_unlock(&ctx->ring_lock);
439 out:
440 spin_unlock(&mapping->private_lock);
441 return rc;
443 #endif
445 static const struct address_space_operations aio_ctx_aops = {
446 .set_page_dirty = __set_page_dirty_no_writeback,
447 #if IS_ENABLED(CONFIG_MIGRATION)
448 .migratepage = aio_migratepage,
449 #endif
452 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
454 struct aio_ring *ring;
455 struct mm_struct *mm = current->mm;
456 unsigned long size, unused;
457 int nr_pages;
458 int i;
459 struct file *file;
461 /* Compensate for the ring buffer's head/tail overlap entry */
462 nr_events += 2; /* 1 is required, 2 for good luck */
464 size = sizeof(struct aio_ring);
465 size += sizeof(struct io_event) * nr_events;
467 nr_pages = PFN_UP(size);
468 if (nr_pages < 0)
469 return -EINVAL;
471 file = aio_private_file(ctx, nr_pages);
472 if (IS_ERR(file)) {
473 ctx->aio_ring_file = NULL;
474 return -ENOMEM;
477 ctx->aio_ring_file = file;
478 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
479 / sizeof(struct io_event);
481 ctx->ring_pages = ctx->internal_pages;
482 if (nr_pages > AIO_RING_PAGES) {
483 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
484 GFP_KERNEL);
485 if (!ctx->ring_pages) {
486 put_aio_ring_file(ctx);
487 return -ENOMEM;
491 for (i = 0; i < nr_pages; i++) {
492 struct page *page;
493 page = find_or_create_page(file->f_mapping,
494 i, GFP_HIGHUSER | __GFP_ZERO);
495 if (!page)
496 break;
497 pr_debug("pid(%d) page[%d]->count=%d\n",
498 current->pid, i, page_count(page));
499 SetPageUptodate(page);
500 unlock_page(page);
502 ctx->ring_pages[i] = page;
504 ctx->nr_pages = i;
506 if (unlikely(i != nr_pages)) {
507 aio_free_ring(ctx);
508 return -ENOMEM;
511 ctx->mmap_size = nr_pages * PAGE_SIZE;
512 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
514 if (down_write_killable(&mm->mmap_sem)) {
515 ctx->mmap_size = 0;
516 aio_free_ring(ctx);
517 return -EINTR;
520 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
521 PROT_READ | PROT_WRITE,
522 MAP_SHARED, 0, &unused, NULL);
523 up_write(&mm->mmap_sem);
524 if (IS_ERR((void *)ctx->mmap_base)) {
525 ctx->mmap_size = 0;
526 aio_free_ring(ctx);
527 return -ENOMEM;
530 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
532 ctx->user_id = ctx->mmap_base;
533 ctx->nr_events = nr_events; /* trusted copy */
535 ring = kmap_atomic(ctx->ring_pages[0]);
536 ring->nr = nr_events; /* user copy */
537 ring->id = ~0U;
538 ring->head = ring->tail = 0;
539 ring->magic = AIO_RING_MAGIC;
540 ring->compat_features = AIO_RING_COMPAT_FEATURES;
541 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
542 ring->header_length = sizeof(struct aio_ring);
543 kunmap_atomic(ring);
544 flush_dcache_page(ctx->ring_pages[0]);
546 return 0;
549 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
550 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
551 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
553 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
555 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
556 struct kioctx *ctx = req->ki_ctx;
557 unsigned long flags;
559 spin_lock_irqsave(&ctx->ctx_lock, flags);
561 if (!req->ki_list.next)
562 list_add(&req->ki_list, &ctx->active_reqs);
564 req->ki_cancel = cancel;
566 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
568 EXPORT_SYMBOL(kiocb_set_cancel_fn);
570 static int kiocb_cancel(struct aio_kiocb *kiocb)
572 kiocb_cancel_fn *old, *cancel;
575 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
576 * actually has a cancel function, hence the cmpxchg()
579 cancel = READ_ONCE(kiocb->ki_cancel);
580 do {
581 if (!cancel || cancel == KIOCB_CANCELLED)
582 return -EINVAL;
584 old = cancel;
585 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
586 } while (cancel != old);
588 return cancel(&kiocb->common);
591 static void free_ioctx(struct work_struct *work)
593 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
595 pr_debug("freeing %p\n", ctx);
597 aio_free_ring(ctx);
598 free_percpu(ctx->cpu);
599 percpu_ref_exit(&ctx->reqs);
600 percpu_ref_exit(&ctx->users);
601 kmem_cache_free(kioctx_cachep, ctx);
604 static void free_ioctx_reqs(struct percpu_ref *ref)
606 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
608 /* At this point we know that there are no any in-flight requests */
609 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
610 complete(&ctx->rq_wait->comp);
612 INIT_WORK(&ctx->free_work, free_ioctx);
613 schedule_work(&ctx->free_work);
617 * When this function runs, the kioctx has been removed from the "hash table"
618 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
619 * now it's safe to cancel any that need to be.
621 static void free_ioctx_users(struct percpu_ref *ref)
623 struct kioctx *ctx = container_of(ref, struct kioctx, users);
624 struct aio_kiocb *req;
626 spin_lock_irq(&ctx->ctx_lock);
628 while (!list_empty(&ctx->active_reqs)) {
629 req = list_first_entry(&ctx->active_reqs,
630 struct aio_kiocb, ki_list);
632 list_del_init(&req->ki_list);
633 kiocb_cancel(req);
636 spin_unlock_irq(&ctx->ctx_lock);
638 percpu_ref_kill(&ctx->reqs);
639 percpu_ref_put(&ctx->reqs);
642 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
644 unsigned i, new_nr;
645 struct kioctx_table *table, *old;
646 struct aio_ring *ring;
648 spin_lock(&mm->ioctx_lock);
649 table = rcu_dereference_raw(mm->ioctx_table);
651 while (1) {
652 if (table)
653 for (i = 0; i < table->nr; i++)
654 if (!table->table[i]) {
655 ctx->id = i;
656 table->table[i] = ctx;
657 spin_unlock(&mm->ioctx_lock);
659 /* While kioctx setup is in progress,
660 * we are protected from page migration
661 * changes ring_pages by ->ring_lock.
663 ring = kmap_atomic(ctx->ring_pages[0]);
664 ring->id = ctx->id;
665 kunmap_atomic(ring);
666 return 0;
669 new_nr = (table ? table->nr : 1) * 4;
670 spin_unlock(&mm->ioctx_lock);
672 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
673 new_nr, GFP_KERNEL);
674 if (!table)
675 return -ENOMEM;
677 table->nr = new_nr;
679 spin_lock(&mm->ioctx_lock);
680 old = rcu_dereference_raw(mm->ioctx_table);
682 if (!old) {
683 rcu_assign_pointer(mm->ioctx_table, table);
684 } else if (table->nr > old->nr) {
685 memcpy(table->table, old->table,
686 old->nr * sizeof(struct kioctx *));
688 rcu_assign_pointer(mm->ioctx_table, table);
689 kfree_rcu(old, rcu);
690 } else {
691 kfree(table);
692 table = old;
697 static void aio_nr_sub(unsigned nr)
699 spin_lock(&aio_nr_lock);
700 if (WARN_ON(aio_nr - nr > aio_nr))
701 aio_nr = 0;
702 else
703 aio_nr -= nr;
704 spin_unlock(&aio_nr_lock);
707 /* ioctx_alloc
708 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
710 static struct kioctx *ioctx_alloc(unsigned nr_events)
712 struct mm_struct *mm = current->mm;
713 struct kioctx *ctx;
714 int err = -ENOMEM;
717 * Store the original nr_events -- what userspace passed to io_setup(),
718 * for counting against the global limit -- before it changes.
720 unsigned int max_reqs = nr_events;
723 * We keep track of the number of available ringbuffer slots, to prevent
724 * overflow (reqs_available), and we also use percpu counters for this.
726 * So since up to half the slots might be on other cpu's percpu counters
727 * and unavailable, double nr_events so userspace sees what they
728 * expected: additionally, we move req_batch slots to/from percpu
729 * counters at a time, so make sure that isn't 0:
731 nr_events = max(nr_events, num_possible_cpus() * 4);
732 nr_events *= 2;
734 /* Prevent overflows */
735 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
736 pr_debug("ENOMEM: nr_events too high\n");
737 return ERR_PTR(-EINVAL);
740 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
741 return ERR_PTR(-EAGAIN);
743 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
744 if (!ctx)
745 return ERR_PTR(-ENOMEM);
747 ctx->max_reqs = max_reqs;
749 spin_lock_init(&ctx->ctx_lock);
750 spin_lock_init(&ctx->completion_lock);
751 mutex_init(&ctx->ring_lock);
752 /* Protect against page migration throughout kiotx setup by keeping
753 * the ring_lock mutex held until setup is complete. */
754 mutex_lock(&ctx->ring_lock);
755 init_waitqueue_head(&ctx->wait);
757 INIT_LIST_HEAD(&ctx->active_reqs);
759 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
760 goto err;
762 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
763 goto err;
765 ctx->cpu = alloc_percpu(struct kioctx_cpu);
766 if (!ctx->cpu)
767 goto err;
769 err = aio_setup_ring(ctx, nr_events);
770 if (err < 0)
771 goto err;
773 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
774 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
775 if (ctx->req_batch < 1)
776 ctx->req_batch = 1;
778 /* limit the number of system wide aios */
779 spin_lock(&aio_nr_lock);
780 if (aio_nr + ctx->max_reqs > aio_max_nr ||
781 aio_nr + ctx->max_reqs < aio_nr) {
782 spin_unlock(&aio_nr_lock);
783 err = -EAGAIN;
784 goto err_ctx;
786 aio_nr += ctx->max_reqs;
787 spin_unlock(&aio_nr_lock);
789 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
790 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
792 err = ioctx_add_table(ctx, mm);
793 if (err)
794 goto err_cleanup;
796 /* Release the ring_lock mutex now that all setup is complete. */
797 mutex_unlock(&ctx->ring_lock);
799 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
800 ctx, ctx->user_id, mm, ctx->nr_events);
801 return ctx;
803 err_cleanup:
804 aio_nr_sub(ctx->max_reqs);
805 err_ctx:
806 atomic_set(&ctx->dead, 1);
807 if (ctx->mmap_size)
808 vm_munmap(ctx->mmap_base, ctx->mmap_size);
809 aio_free_ring(ctx);
810 err:
811 mutex_unlock(&ctx->ring_lock);
812 free_percpu(ctx->cpu);
813 percpu_ref_exit(&ctx->reqs);
814 percpu_ref_exit(&ctx->users);
815 kmem_cache_free(kioctx_cachep, ctx);
816 pr_debug("error allocating ioctx %d\n", err);
817 return ERR_PTR(err);
820 /* kill_ioctx
821 * Cancels all outstanding aio requests on an aio context. Used
822 * when the processes owning a context have all exited to encourage
823 * the rapid destruction of the kioctx.
825 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
826 struct ctx_rq_wait *wait)
828 struct kioctx_table *table;
830 spin_lock(&mm->ioctx_lock);
831 if (atomic_xchg(&ctx->dead, 1)) {
832 spin_unlock(&mm->ioctx_lock);
833 return -EINVAL;
836 table = rcu_dereference_raw(mm->ioctx_table);
837 WARN_ON(ctx != table->table[ctx->id]);
838 table->table[ctx->id] = NULL;
839 spin_unlock(&mm->ioctx_lock);
841 /* percpu_ref_kill() will do the necessary call_rcu() */
842 wake_up_all(&ctx->wait);
845 * It'd be more correct to do this in free_ioctx(), after all
846 * the outstanding kiocbs have finished - but by then io_destroy
847 * has already returned, so io_setup() could potentially return
848 * -EAGAIN with no ioctxs actually in use (as far as userspace
849 * could tell).
851 aio_nr_sub(ctx->max_reqs);
853 if (ctx->mmap_size)
854 vm_munmap(ctx->mmap_base, ctx->mmap_size);
856 ctx->rq_wait = wait;
857 percpu_ref_kill(&ctx->users);
858 return 0;
862 * exit_aio: called when the last user of mm goes away. At this point, there is
863 * no way for any new requests to be submited or any of the io_* syscalls to be
864 * called on the context.
866 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
867 * them.
869 void exit_aio(struct mm_struct *mm)
871 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
872 struct ctx_rq_wait wait;
873 int i, skipped;
875 if (!table)
876 return;
878 atomic_set(&wait.count, table->nr);
879 init_completion(&wait.comp);
881 skipped = 0;
882 for (i = 0; i < table->nr; ++i) {
883 struct kioctx *ctx = table->table[i];
885 if (!ctx) {
886 skipped++;
887 continue;
891 * We don't need to bother with munmap() here - exit_mmap(mm)
892 * is coming and it'll unmap everything. And we simply can't,
893 * this is not necessarily our ->mm.
894 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
895 * that it needs to unmap the area, just set it to 0.
897 ctx->mmap_size = 0;
898 kill_ioctx(mm, ctx, &wait);
901 if (!atomic_sub_and_test(skipped, &wait.count)) {
902 /* Wait until all IO for the context are done. */
903 wait_for_completion(&wait.comp);
906 RCU_INIT_POINTER(mm->ioctx_table, NULL);
907 kfree(table);
910 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
912 struct kioctx_cpu *kcpu;
913 unsigned long flags;
915 local_irq_save(flags);
916 kcpu = this_cpu_ptr(ctx->cpu);
917 kcpu->reqs_available += nr;
919 while (kcpu->reqs_available >= ctx->req_batch * 2) {
920 kcpu->reqs_available -= ctx->req_batch;
921 atomic_add(ctx->req_batch, &ctx->reqs_available);
924 local_irq_restore(flags);
927 static bool get_reqs_available(struct kioctx *ctx)
929 struct kioctx_cpu *kcpu;
930 bool ret = false;
931 unsigned long flags;
933 local_irq_save(flags);
934 kcpu = this_cpu_ptr(ctx->cpu);
935 if (!kcpu->reqs_available) {
936 int old, avail = atomic_read(&ctx->reqs_available);
938 do {
939 if (avail < ctx->req_batch)
940 goto out;
942 old = avail;
943 avail = atomic_cmpxchg(&ctx->reqs_available,
944 avail, avail - ctx->req_batch);
945 } while (avail != old);
947 kcpu->reqs_available += ctx->req_batch;
950 ret = true;
951 kcpu->reqs_available--;
952 out:
953 local_irq_restore(flags);
954 return ret;
957 /* refill_reqs_available
958 * Updates the reqs_available reference counts used for tracking the
959 * number of free slots in the completion ring. This can be called
960 * from aio_complete() (to optimistically update reqs_available) or
961 * from aio_get_req() (the we're out of events case). It must be
962 * called holding ctx->completion_lock.
964 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
965 unsigned tail)
967 unsigned events_in_ring, completed;
969 /* Clamp head since userland can write to it. */
970 head %= ctx->nr_events;
971 if (head <= tail)
972 events_in_ring = tail - head;
973 else
974 events_in_ring = ctx->nr_events - (head - tail);
976 completed = ctx->completed_events;
977 if (events_in_ring < completed)
978 completed -= events_in_ring;
979 else
980 completed = 0;
982 if (!completed)
983 return;
985 ctx->completed_events -= completed;
986 put_reqs_available(ctx, completed);
989 /* user_refill_reqs_available
990 * Called to refill reqs_available when aio_get_req() encounters an
991 * out of space in the completion ring.
993 static void user_refill_reqs_available(struct kioctx *ctx)
995 spin_lock_irq(&ctx->completion_lock);
996 if (ctx->completed_events) {
997 struct aio_ring *ring;
998 unsigned head;
1000 /* Access of ring->head may race with aio_read_events_ring()
1001 * here, but that's okay since whether we read the old version
1002 * or the new version, and either will be valid. The important
1003 * part is that head cannot pass tail since we prevent
1004 * aio_complete() from updating tail by holding
1005 * ctx->completion_lock. Even if head is invalid, the check
1006 * against ctx->completed_events below will make sure we do the
1007 * safe/right thing.
1009 ring = kmap_atomic(ctx->ring_pages[0]);
1010 head = ring->head;
1011 kunmap_atomic(ring);
1013 refill_reqs_available(ctx, head, ctx->tail);
1016 spin_unlock_irq(&ctx->completion_lock);
1019 /* aio_get_req
1020 * Allocate a slot for an aio request.
1021 * Returns NULL if no requests are free.
1023 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1025 struct aio_kiocb *req;
1027 if (!get_reqs_available(ctx)) {
1028 user_refill_reqs_available(ctx);
1029 if (!get_reqs_available(ctx))
1030 return NULL;
1033 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1034 if (unlikely(!req))
1035 goto out_put;
1037 percpu_ref_get(&ctx->reqs);
1039 req->ki_ctx = ctx;
1040 return req;
1041 out_put:
1042 put_reqs_available(ctx, 1);
1043 return NULL;
1046 static void kiocb_free(struct aio_kiocb *req)
1048 if (req->common.ki_filp)
1049 fput(req->common.ki_filp);
1050 if (req->ki_eventfd != NULL)
1051 eventfd_ctx_put(req->ki_eventfd);
1052 kmem_cache_free(kiocb_cachep, req);
1055 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1057 struct aio_ring __user *ring = (void __user *)ctx_id;
1058 struct mm_struct *mm = current->mm;
1059 struct kioctx *ctx, *ret = NULL;
1060 struct kioctx_table *table;
1061 unsigned id;
1063 if (get_user(id, &ring->id))
1064 return NULL;
1066 rcu_read_lock();
1067 table = rcu_dereference(mm->ioctx_table);
1069 if (!table || id >= table->nr)
1070 goto out;
1072 ctx = table->table[id];
1073 if (ctx && ctx->user_id == ctx_id) {
1074 percpu_ref_get(&ctx->users);
1075 ret = ctx;
1077 out:
1078 rcu_read_unlock();
1079 return ret;
1082 /* aio_complete
1083 * Called when the io request on the given iocb is complete.
1085 static void aio_complete(struct kiocb *kiocb, long res, long res2)
1087 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1088 struct kioctx *ctx = iocb->ki_ctx;
1089 struct aio_ring *ring;
1090 struct io_event *ev_page, *event;
1091 unsigned tail, pos, head;
1092 unsigned long flags;
1094 if (kiocb->ki_flags & IOCB_WRITE) {
1095 struct file *file = kiocb->ki_filp;
1098 * Tell lockdep we inherited freeze protection from submission
1099 * thread.
1101 if (S_ISREG(file_inode(file)->i_mode))
1102 __sb_writers_acquired(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1103 file_end_write(file);
1107 * Special case handling for sync iocbs:
1108 * - events go directly into the iocb for fast handling
1109 * - the sync task with the iocb in its stack holds the single iocb
1110 * ref, no other paths have a way to get another ref
1111 * - the sync task helpfully left a reference to itself in the iocb
1113 BUG_ON(is_sync_kiocb(kiocb));
1115 if (iocb->ki_list.next) {
1116 unsigned long flags;
1118 spin_lock_irqsave(&ctx->ctx_lock, flags);
1119 list_del(&iocb->ki_list);
1120 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1124 * Add a completion event to the ring buffer. Must be done holding
1125 * ctx->completion_lock to prevent other code from messing with the tail
1126 * pointer since we might be called from irq context.
1128 spin_lock_irqsave(&ctx->completion_lock, flags);
1130 tail = ctx->tail;
1131 pos = tail + AIO_EVENTS_OFFSET;
1133 if (++tail >= ctx->nr_events)
1134 tail = 0;
1136 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1137 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1139 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1140 event->data = iocb->ki_user_data;
1141 event->res = res;
1142 event->res2 = res2;
1144 kunmap_atomic(ev_page);
1145 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1147 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1148 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1149 res, res2);
1151 /* after flagging the request as done, we
1152 * must never even look at it again
1154 smp_wmb(); /* make event visible before updating tail */
1156 ctx->tail = tail;
1158 ring = kmap_atomic(ctx->ring_pages[0]);
1159 head = ring->head;
1160 ring->tail = tail;
1161 kunmap_atomic(ring);
1162 flush_dcache_page(ctx->ring_pages[0]);
1164 ctx->completed_events++;
1165 if (ctx->completed_events > 1)
1166 refill_reqs_available(ctx, head, tail);
1167 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1169 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1172 * Check if the user asked us to deliver the result through an
1173 * eventfd. The eventfd_signal() function is safe to be called
1174 * from IRQ context.
1176 if (iocb->ki_eventfd != NULL)
1177 eventfd_signal(iocb->ki_eventfd, 1);
1179 /* everything turned out well, dispose of the aiocb. */
1180 kiocb_free(iocb);
1183 * We have to order our ring_info tail store above and test
1184 * of the wait list below outside the wait lock. This is
1185 * like in wake_up_bit() where clearing a bit has to be
1186 * ordered with the unlocked test.
1188 smp_mb();
1190 if (waitqueue_active(&ctx->wait))
1191 wake_up(&ctx->wait);
1193 percpu_ref_put(&ctx->reqs);
1196 /* aio_read_events_ring
1197 * Pull an event off of the ioctx's event ring. Returns the number of
1198 * events fetched
1200 static long aio_read_events_ring(struct kioctx *ctx,
1201 struct io_event __user *event, long nr)
1203 struct aio_ring *ring;
1204 unsigned head, tail, pos;
1205 long ret = 0;
1206 int copy_ret;
1209 * The mutex can block and wake us up and that will cause
1210 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1211 * and repeat. This should be rare enough that it doesn't cause
1212 * peformance issues. See the comment in read_events() for more detail.
1214 sched_annotate_sleep();
1215 mutex_lock(&ctx->ring_lock);
1217 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1218 ring = kmap_atomic(ctx->ring_pages[0]);
1219 head = ring->head;
1220 tail = ring->tail;
1221 kunmap_atomic(ring);
1224 * Ensure that once we've read the current tail pointer, that
1225 * we also see the events that were stored up to the tail.
1227 smp_rmb();
1229 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1231 if (head == tail)
1232 goto out;
1234 head %= ctx->nr_events;
1235 tail %= ctx->nr_events;
1237 while (ret < nr) {
1238 long avail;
1239 struct io_event *ev;
1240 struct page *page;
1242 avail = (head <= tail ? tail : ctx->nr_events) - head;
1243 if (head == tail)
1244 break;
1246 avail = min(avail, nr - ret);
1247 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1248 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1250 pos = head + AIO_EVENTS_OFFSET;
1251 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1252 pos %= AIO_EVENTS_PER_PAGE;
1254 ev = kmap(page);
1255 copy_ret = copy_to_user(event + ret, ev + pos,
1256 sizeof(*ev) * avail);
1257 kunmap(page);
1259 if (unlikely(copy_ret)) {
1260 ret = -EFAULT;
1261 goto out;
1264 ret += avail;
1265 head += avail;
1266 head %= ctx->nr_events;
1269 ring = kmap_atomic(ctx->ring_pages[0]);
1270 ring->head = head;
1271 kunmap_atomic(ring);
1272 flush_dcache_page(ctx->ring_pages[0]);
1274 pr_debug("%li h%u t%u\n", ret, head, tail);
1275 out:
1276 mutex_unlock(&ctx->ring_lock);
1278 return ret;
1281 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1282 struct io_event __user *event, long *i)
1284 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1286 if (ret > 0)
1287 *i += ret;
1289 if (unlikely(atomic_read(&ctx->dead)))
1290 ret = -EINVAL;
1292 if (!*i)
1293 *i = ret;
1295 return ret < 0 || *i >= min_nr;
1298 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1299 struct io_event __user *event,
1300 struct timespec __user *timeout)
1302 ktime_t until = KTIME_MAX;
1303 long ret = 0;
1305 if (timeout) {
1306 struct timespec ts;
1308 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1309 return -EFAULT;
1311 until = timespec_to_ktime(ts);
1315 * Note that aio_read_events() is being called as the conditional - i.e.
1316 * we're calling it after prepare_to_wait() has set task state to
1317 * TASK_INTERRUPTIBLE.
1319 * But aio_read_events() can block, and if it blocks it's going to flip
1320 * the task state back to TASK_RUNNING.
1322 * This should be ok, provided it doesn't flip the state back to
1323 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1324 * will only happen if the mutex_lock() call blocks, and we then find
1325 * the ringbuffer empty. So in practice we should be ok, but it's
1326 * something to be aware of when touching this code.
1328 if (until == 0)
1329 aio_read_events(ctx, min_nr, nr, event, &ret);
1330 else
1331 wait_event_interruptible_hrtimeout(ctx->wait,
1332 aio_read_events(ctx, min_nr, nr, event, &ret),
1333 until);
1335 if (!ret && signal_pending(current))
1336 ret = -EINTR;
1338 return ret;
1341 /* sys_io_setup:
1342 * Create an aio_context capable of receiving at least nr_events.
1343 * ctxp must not point to an aio_context that already exists, and
1344 * must be initialized to 0 prior to the call. On successful
1345 * creation of the aio_context, *ctxp is filled in with the resulting
1346 * handle. May fail with -EINVAL if *ctxp is not initialized,
1347 * if the specified nr_events exceeds internal limits. May fail
1348 * with -EAGAIN if the specified nr_events exceeds the user's limit
1349 * of available events. May fail with -ENOMEM if insufficient kernel
1350 * resources are available. May fail with -EFAULT if an invalid
1351 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1352 * implemented.
1354 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1356 struct kioctx *ioctx = NULL;
1357 unsigned long ctx;
1358 long ret;
1360 ret = get_user(ctx, ctxp);
1361 if (unlikely(ret))
1362 goto out;
1364 ret = -EINVAL;
1365 if (unlikely(ctx || nr_events == 0)) {
1366 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1367 ctx, nr_events);
1368 goto out;
1371 ioctx = ioctx_alloc(nr_events);
1372 ret = PTR_ERR(ioctx);
1373 if (!IS_ERR(ioctx)) {
1374 ret = put_user(ioctx->user_id, ctxp);
1375 if (ret)
1376 kill_ioctx(current->mm, ioctx, NULL);
1377 percpu_ref_put(&ioctx->users);
1380 out:
1381 return ret;
1384 #ifdef CONFIG_COMPAT
1385 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1387 struct kioctx *ioctx = NULL;
1388 unsigned long ctx;
1389 long ret;
1391 ret = get_user(ctx, ctx32p);
1392 if (unlikely(ret))
1393 goto out;
1395 ret = -EINVAL;
1396 if (unlikely(ctx || nr_events == 0)) {
1397 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1398 ctx, nr_events);
1399 goto out;
1402 ioctx = ioctx_alloc(nr_events);
1403 ret = PTR_ERR(ioctx);
1404 if (!IS_ERR(ioctx)) {
1405 /* truncating is ok because it's a user address */
1406 ret = put_user((u32)ioctx->user_id, ctx32p);
1407 if (ret)
1408 kill_ioctx(current->mm, ioctx, NULL);
1409 percpu_ref_put(&ioctx->users);
1412 out:
1413 return ret;
1415 #endif
1417 /* sys_io_destroy:
1418 * Destroy the aio_context specified. May cancel any outstanding
1419 * AIOs and block on completion. Will fail with -ENOSYS if not
1420 * implemented. May fail with -EINVAL if the context pointed to
1421 * is invalid.
1423 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1425 struct kioctx *ioctx = lookup_ioctx(ctx);
1426 if (likely(NULL != ioctx)) {
1427 struct ctx_rq_wait wait;
1428 int ret;
1430 init_completion(&wait.comp);
1431 atomic_set(&wait.count, 1);
1433 /* Pass requests_done to kill_ioctx() where it can be set
1434 * in a thread-safe way. If we try to set it here then we have
1435 * a race condition if two io_destroy() called simultaneously.
1437 ret = kill_ioctx(current->mm, ioctx, &wait);
1438 percpu_ref_put(&ioctx->users);
1440 /* Wait until all IO for the context are done. Otherwise kernel
1441 * keep using user-space buffers even if user thinks the context
1442 * is destroyed.
1444 if (!ret)
1445 wait_for_completion(&wait.comp);
1447 return ret;
1449 pr_debug("EINVAL: invalid context id\n");
1450 return -EINVAL;
1453 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1454 bool vectored, bool compat, struct iov_iter *iter)
1456 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1457 size_t len = iocb->aio_nbytes;
1459 if (!vectored) {
1460 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1461 *iovec = NULL;
1462 return ret;
1464 #ifdef CONFIG_COMPAT
1465 if (compat)
1466 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1467 iter);
1468 #endif
1469 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1472 static inline ssize_t aio_ret(struct kiocb *req, ssize_t ret)
1474 switch (ret) {
1475 case -EIOCBQUEUED:
1476 return ret;
1477 case -ERESTARTSYS:
1478 case -ERESTARTNOINTR:
1479 case -ERESTARTNOHAND:
1480 case -ERESTART_RESTARTBLOCK:
1482 * There's no easy way to restart the syscall since other AIO's
1483 * may be already running. Just fail this IO with EINTR.
1485 ret = -EINTR;
1486 /*FALLTHRU*/
1487 default:
1488 aio_complete(req, ret, 0);
1489 return 0;
1493 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1494 bool compat)
1496 struct file *file = req->ki_filp;
1497 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1498 struct iov_iter iter;
1499 ssize_t ret;
1501 if (unlikely(!(file->f_mode & FMODE_READ)))
1502 return -EBADF;
1503 if (unlikely(!file->f_op->read_iter))
1504 return -EINVAL;
1506 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1507 if (ret)
1508 return ret;
1509 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1510 if (!ret)
1511 ret = aio_ret(req, call_read_iter(file, req, &iter));
1512 kfree(iovec);
1513 return ret;
1516 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1517 bool compat)
1519 struct file *file = req->ki_filp;
1520 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1521 struct iov_iter iter;
1522 ssize_t ret;
1524 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1525 return -EBADF;
1526 if (unlikely(!file->f_op->write_iter))
1527 return -EINVAL;
1529 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1530 if (ret)
1531 return ret;
1532 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1533 if (!ret) {
1534 req->ki_flags |= IOCB_WRITE;
1535 file_start_write(file);
1536 ret = aio_ret(req, call_write_iter(file, req, &iter));
1538 * We release freeze protection in aio_complete(). Fool lockdep
1539 * by telling it the lock got released so that it doesn't
1540 * complain about held lock when we return to userspace.
1542 if (S_ISREG(file_inode(file)->i_mode))
1543 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1545 kfree(iovec);
1546 return ret;
1549 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1550 struct iocb *iocb, bool compat)
1552 struct aio_kiocb *req;
1553 struct file *file;
1554 ssize_t ret;
1556 /* enforce forwards compatibility on users */
1557 if (unlikely(iocb->aio_reserved2)) {
1558 pr_debug("EINVAL: reserve field set\n");
1559 return -EINVAL;
1562 /* prevent overflows */
1563 if (unlikely(
1564 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1565 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1566 ((ssize_t)iocb->aio_nbytes < 0)
1567 )) {
1568 pr_debug("EINVAL: overflow check\n");
1569 return -EINVAL;
1572 req = aio_get_req(ctx);
1573 if (unlikely(!req))
1574 return -EAGAIN;
1576 req->common.ki_filp = file = fget(iocb->aio_fildes);
1577 if (unlikely(!req->common.ki_filp)) {
1578 ret = -EBADF;
1579 goto out_put_req;
1581 req->common.ki_pos = iocb->aio_offset;
1582 req->common.ki_complete = aio_complete;
1583 req->common.ki_flags = iocb_flags(req->common.ki_filp);
1584 req->common.ki_hint = file_write_hint(file);
1586 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1588 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1589 * instance of the file* now. The file descriptor must be
1590 * an eventfd() fd, and will be signaled for each completed
1591 * event using the eventfd_signal() function.
1593 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1594 if (IS_ERR(req->ki_eventfd)) {
1595 ret = PTR_ERR(req->ki_eventfd);
1596 req->ki_eventfd = NULL;
1597 goto out_put_req;
1600 req->common.ki_flags |= IOCB_EVENTFD;
1603 ret = kiocb_set_rw_flags(&req->common, iocb->aio_rw_flags);
1604 if (unlikely(ret)) {
1605 pr_debug("EINVAL: aio_rw_flags\n");
1606 goto out_put_req;
1609 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1610 if (unlikely(ret)) {
1611 pr_debug("EFAULT: aio_key\n");
1612 goto out_put_req;
1615 req->ki_user_iocb = user_iocb;
1616 req->ki_user_data = iocb->aio_data;
1618 get_file(file);
1619 switch (iocb->aio_lio_opcode) {
1620 case IOCB_CMD_PREAD:
1621 ret = aio_read(&req->common, iocb, false, compat);
1622 break;
1623 case IOCB_CMD_PWRITE:
1624 ret = aio_write(&req->common, iocb, false, compat);
1625 break;
1626 case IOCB_CMD_PREADV:
1627 ret = aio_read(&req->common, iocb, true, compat);
1628 break;
1629 case IOCB_CMD_PWRITEV:
1630 ret = aio_write(&req->common, iocb, true, compat);
1631 break;
1632 default:
1633 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1634 ret = -EINVAL;
1635 break;
1637 fput(file);
1639 if (ret && ret != -EIOCBQUEUED)
1640 goto out_put_req;
1641 return 0;
1642 out_put_req:
1643 put_reqs_available(ctx, 1);
1644 percpu_ref_put(&ctx->reqs);
1645 kiocb_free(req);
1646 return ret;
1649 static long do_io_submit(aio_context_t ctx_id, long nr,
1650 struct iocb __user *__user *iocbpp, bool compat)
1652 struct kioctx *ctx;
1653 long ret = 0;
1654 int i = 0;
1655 struct blk_plug plug;
1657 if (unlikely(nr < 0))
1658 return -EINVAL;
1660 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1661 nr = LONG_MAX/sizeof(*iocbpp);
1663 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1664 return -EFAULT;
1666 ctx = lookup_ioctx(ctx_id);
1667 if (unlikely(!ctx)) {
1668 pr_debug("EINVAL: invalid context id\n");
1669 return -EINVAL;
1672 blk_start_plug(&plug);
1675 * AKPM: should this return a partial result if some of the IOs were
1676 * successfully submitted?
1678 for (i=0; i<nr; i++) {
1679 struct iocb __user *user_iocb;
1680 struct iocb tmp;
1682 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1683 ret = -EFAULT;
1684 break;
1687 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1688 ret = -EFAULT;
1689 break;
1692 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1693 if (ret)
1694 break;
1696 blk_finish_plug(&plug);
1698 percpu_ref_put(&ctx->users);
1699 return i ? i : ret;
1702 /* sys_io_submit:
1703 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1704 * the number of iocbs queued. May return -EINVAL if the aio_context
1705 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1706 * *iocbpp[0] is not properly initialized, if the operation specified
1707 * is invalid for the file descriptor in the iocb. May fail with
1708 * -EFAULT if any of the data structures point to invalid data. May
1709 * fail with -EBADF if the file descriptor specified in the first
1710 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1711 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1712 * fail with -ENOSYS if not implemented.
1714 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1715 struct iocb __user * __user *, iocbpp)
1717 return do_io_submit(ctx_id, nr, iocbpp, 0);
1720 #ifdef CONFIG_COMPAT
1721 static inline long
1722 copy_iocb(long nr, u32 __user *ptr32, struct iocb __user * __user *ptr64)
1724 compat_uptr_t uptr;
1725 int i;
1727 for (i = 0; i < nr; ++i) {
1728 if (get_user(uptr, ptr32 + i))
1729 return -EFAULT;
1730 if (put_user(compat_ptr(uptr), ptr64 + i))
1731 return -EFAULT;
1733 return 0;
1736 #define MAX_AIO_SUBMITS (PAGE_SIZE/sizeof(struct iocb *))
1738 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1739 int, nr, u32 __user *, iocb)
1741 struct iocb __user * __user *iocb64;
1742 long ret;
1744 if (unlikely(nr < 0))
1745 return -EINVAL;
1747 if (nr > MAX_AIO_SUBMITS)
1748 nr = MAX_AIO_SUBMITS;
1750 iocb64 = compat_alloc_user_space(nr * sizeof(*iocb64));
1751 ret = copy_iocb(nr, iocb, iocb64);
1752 if (!ret)
1753 ret = do_io_submit(ctx_id, nr, iocb64, 1);
1754 return ret;
1756 #endif
1758 /* lookup_kiocb
1759 * Finds a given iocb for cancellation.
1761 static struct aio_kiocb *
1762 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1764 struct aio_kiocb *kiocb;
1766 assert_spin_locked(&ctx->ctx_lock);
1768 if (key != KIOCB_KEY)
1769 return NULL;
1771 /* TODO: use a hash or array, this sucks. */
1772 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1773 if (kiocb->ki_user_iocb == iocb)
1774 return kiocb;
1776 return NULL;
1779 /* sys_io_cancel:
1780 * Attempts to cancel an iocb previously passed to io_submit. If
1781 * the operation is successfully cancelled, the resulting event is
1782 * copied into the memory pointed to by result without being placed
1783 * into the completion queue and 0 is returned. May fail with
1784 * -EFAULT if any of the data structures pointed to are invalid.
1785 * May fail with -EINVAL if aio_context specified by ctx_id is
1786 * invalid. May fail with -EAGAIN if the iocb specified was not
1787 * cancelled. Will fail with -ENOSYS if not implemented.
1789 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1790 struct io_event __user *, result)
1792 struct kioctx *ctx;
1793 struct aio_kiocb *kiocb;
1794 u32 key;
1795 int ret;
1797 ret = get_user(key, &iocb->aio_key);
1798 if (unlikely(ret))
1799 return -EFAULT;
1801 ctx = lookup_ioctx(ctx_id);
1802 if (unlikely(!ctx))
1803 return -EINVAL;
1805 spin_lock_irq(&ctx->ctx_lock);
1807 kiocb = lookup_kiocb(ctx, iocb, key);
1808 if (kiocb)
1809 ret = kiocb_cancel(kiocb);
1810 else
1811 ret = -EINVAL;
1813 spin_unlock_irq(&ctx->ctx_lock);
1815 if (!ret) {
1817 * The result argument is no longer used - the io_event is
1818 * always delivered via the ring buffer. -EINPROGRESS indicates
1819 * cancellation is progress:
1821 ret = -EINPROGRESS;
1824 percpu_ref_put(&ctx->users);
1826 return ret;
1829 /* io_getevents:
1830 * Attempts to read at least min_nr events and up to nr events from
1831 * the completion queue for the aio_context specified by ctx_id. If
1832 * it succeeds, the number of read events is returned. May fail with
1833 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1834 * out of range, if timeout is out of range. May fail with -EFAULT
1835 * if any of the memory specified is invalid. May return 0 or
1836 * < min_nr if the timeout specified by timeout has elapsed
1837 * before sufficient events are available, where timeout == NULL
1838 * specifies an infinite timeout. Note that the timeout pointed to by
1839 * timeout is relative. Will fail with -ENOSYS if not implemented.
1841 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1842 long, min_nr,
1843 long, nr,
1844 struct io_event __user *, events,
1845 struct timespec __user *, timeout)
1847 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1848 long ret = -EINVAL;
1850 if (likely(ioctx)) {
1851 if (likely(min_nr <= nr && min_nr >= 0))
1852 ret = read_events(ioctx, min_nr, nr, events, timeout);
1853 percpu_ref_put(&ioctx->users);
1855 return ret;
1858 #ifdef CONFIG_COMPAT
1859 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
1860 compat_long_t, min_nr,
1861 compat_long_t, nr,
1862 struct io_event __user *, events,
1863 struct compat_timespec __user *, timeout)
1865 struct timespec t;
1866 struct timespec __user *ut = NULL;
1868 if (timeout) {
1869 if (compat_get_timespec(&t, timeout))
1870 return -EFAULT;
1872 ut = compat_alloc_user_space(sizeof(*ut));
1873 if (copy_to_user(ut, &t, sizeof(t)))
1874 return -EFAULT;
1876 return sys_io_getevents(ctx_id, min_nr, nr, events, ut);
1878 #endif