2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_btree.h"
30 #include "xfs_ialloc.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_errortag.h"
35 #include "xfs_error.h"
37 #include "xfs_cksum.h"
38 #include "xfs_trans.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_icreate_item.h"
41 #include "xfs_icache.h"
42 #include "xfs_trace.h"
48 * Allocation group level functions.
51 xfs_ialloc_cluster_alignment(
54 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
55 mp
->m_sb
.sb_inoalignmt
>= xfs_icluster_size_fsb(mp
))
56 return mp
->m_sb
.sb_inoalignmt
;
61 * Lookup a record by ino in the btree given by cur.
65 struct xfs_btree_cur
*cur
, /* btree cursor */
66 xfs_agino_t ino
, /* starting inode of chunk */
67 xfs_lookup_t dir
, /* <=, >=, == */
68 int *stat
) /* success/failure */
70 cur
->bc_rec
.i
.ir_startino
= ino
;
71 cur
->bc_rec
.i
.ir_holemask
= 0;
72 cur
->bc_rec
.i
.ir_count
= 0;
73 cur
->bc_rec
.i
.ir_freecount
= 0;
74 cur
->bc_rec
.i
.ir_free
= 0;
75 return xfs_btree_lookup(cur
, dir
, stat
);
79 * Update the record referred to by cur to the value given.
80 * This either works (return 0) or gets an EFSCORRUPTED error.
82 STATIC
int /* error */
84 struct xfs_btree_cur
*cur
, /* btree cursor */
85 xfs_inobt_rec_incore_t
*irec
) /* btree record */
87 union xfs_btree_rec rec
;
89 rec
.inobt
.ir_startino
= cpu_to_be32(irec
->ir_startino
);
90 if (xfs_sb_version_hassparseinodes(&cur
->bc_mp
->m_sb
)) {
91 rec
.inobt
.ir_u
.sp
.ir_holemask
= cpu_to_be16(irec
->ir_holemask
);
92 rec
.inobt
.ir_u
.sp
.ir_count
= irec
->ir_count
;
93 rec
.inobt
.ir_u
.sp
.ir_freecount
= irec
->ir_freecount
;
95 /* ir_holemask/ir_count not supported on-disk */
96 rec
.inobt
.ir_u
.f
.ir_freecount
= cpu_to_be32(irec
->ir_freecount
);
98 rec
.inobt
.ir_free
= cpu_to_be64(irec
->ir_free
);
99 return xfs_btree_update(cur
, &rec
);
102 /* Convert on-disk btree record to incore inobt record. */
104 xfs_inobt_btrec_to_irec(
105 struct xfs_mount
*mp
,
106 union xfs_btree_rec
*rec
,
107 struct xfs_inobt_rec_incore
*irec
)
109 irec
->ir_startino
= be32_to_cpu(rec
->inobt
.ir_startino
);
110 if (xfs_sb_version_hassparseinodes(&mp
->m_sb
)) {
111 irec
->ir_holemask
= be16_to_cpu(rec
->inobt
.ir_u
.sp
.ir_holemask
);
112 irec
->ir_count
= rec
->inobt
.ir_u
.sp
.ir_count
;
113 irec
->ir_freecount
= rec
->inobt
.ir_u
.sp
.ir_freecount
;
116 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
117 * values for full inode chunks.
119 irec
->ir_holemask
= XFS_INOBT_HOLEMASK_FULL
;
120 irec
->ir_count
= XFS_INODES_PER_CHUNK
;
122 be32_to_cpu(rec
->inobt
.ir_u
.f
.ir_freecount
);
124 irec
->ir_free
= be64_to_cpu(rec
->inobt
.ir_free
);
128 * Get the data from the pointed-to record.
132 struct xfs_btree_cur
*cur
,
133 struct xfs_inobt_rec_incore
*irec
,
136 union xfs_btree_rec
*rec
;
139 error
= xfs_btree_get_rec(cur
, &rec
, stat
);
140 if (error
|| *stat
== 0)
143 xfs_inobt_btrec_to_irec(cur
->bc_mp
, rec
, irec
);
149 * Insert a single inobt record. Cursor must already point to desired location.
152 xfs_inobt_insert_rec(
153 struct xfs_btree_cur
*cur
,
160 cur
->bc_rec
.i
.ir_holemask
= holemask
;
161 cur
->bc_rec
.i
.ir_count
= count
;
162 cur
->bc_rec
.i
.ir_freecount
= freecount
;
163 cur
->bc_rec
.i
.ir_free
= free
;
164 return xfs_btree_insert(cur
, stat
);
168 * Insert records describing a newly allocated inode chunk into the inobt.
172 struct xfs_mount
*mp
,
173 struct xfs_trans
*tp
,
174 struct xfs_buf
*agbp
,
179 struct xfs_btree_cur
*cur
;
180 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
181 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
186 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, btnum
);
188 for (thisino
= newino
;
189 thisino
< newino
+ newlen
;
190 thisino
+= XFS_INODES_PER_CHUNK
) {
191 error
= xfs_inobt_lookup(cur
, thisino
, XFS_LOOKUP_EQ
, &i
);
193 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
198 error
= xfs_inobt_insert_rec(cur
, XFS_INOBT_HOLEMASK_FULL
,
199 XFS_INODES_PER_CHUNK
,
200 XFS_INODES_PER_CHUNK
,
201 XFS_INOBT_ALL_FREE
, &i
);
203 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
209 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
215 * Verify that the number of free inodes in the AGI is correct.
219 xfs_check_agi_freecount(
220 struct xfs_btree_cur
*cur
,
223 if (cur
->bc_nlevels
== 1) {
224 xfs_inobt_rec_incore_t rec
;
229 error
= xfs_inobt_lookup(cur
, 0, XFS_LOOKUP_GE
, &i
);
234 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
239 freecount
+= rec
.ir_freecount
;
240 error
= xfs_btree_increment(cur
, 0, &i
);
246 if (!XFS_FORCED_SHUTDOWN(cur
->bc_mp
))
247 ASSERT(freecount
== be32_to_cpu(agi
->agi_freecount
));
252 #define xfs_check_agi_freecount(cur, agi) 0
256 * Initialise a new set of inodes. When called without a transaction context
257 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
258 * than logging them (which in a transaction context puts them into the AIL
259 * for writeback rather than the xfsbufd queue).
262 xfs_ialloc_inode_init(
263 struct xfs_mount
*mp
,
264 struct xfs_trans
*tp
,
265 struct list_head
*buffer_list
,
269 xfs_agblock_t length
,
272 struct xfs_buf
*fbuf
;
273 struct xfs_dinode
*free
;
274 int nbufs
, blks_per_cluster
, inodes_per_cluster
;
281 * Loop over the new block(s), filling in the inodes. For small block
282 * sizes, manipulate the inodes in buffers which are multiples of the
285 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
286 inodes_per_cluster
= blks_per_cluster
<< mp
->m_sb
.sb_inopblog
;
287 nbufs
= length
/ blks_per_cluster
;
290 * Figure out what version number to use in the inodes we create. If
291 * the superblock version has caught up to the one that supports the new
292 * inode format, then use the new inode version. Otherwise use the old
293 * version so that old kernels will continue to be able to use the file
296 * For v3 inodes, we also need to write the inode number into the inode,
297 * so calculate the first inode number of the chunk here as
298 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
299 * across multiple filesystem blocks (such as a cluster) and so cannot
300 * be used in the cluster buffer loop below.
302 * Further, because we are writing the inode directly into the buffer
303 * and calculating a CRC on the entire inode, we have ot log the entire
304 * inode so that the entire range the CRC covers is present in the log.
305 * That means for v3 inode we log the entire buffer rather than just the
308 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
310 ino
= XFS_AGINO_TO_INO(mp
, agno
,
311 XFS_OFFBNO_TO_AGINO(mp
, agbno
, 0));
314 * log the initialisation that is about to take place as an
315 * logical operation. This means the transaction does not
316 * need to log the physical changes to the inode buffers as log
317 * recovery will know what initialisation is actually needed.
318 * Hence we only need to log the buffers as "ordered" buffers so
319 * they track in the AIL as if they were physically logged.
322 xfs_icreate_log(tp
, agno
, agbno
, icount
,
323 mp
->m_sb
.sb_inodesize
, length
, gen
);
327 for (j
= 0; j
< nbufs
; j
++) {
331 d
= XFS_AGB_TO_DADDR(mp
, agno
, agbno
+ (j
* blks_per_cluster
));
332 fbuf
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, d
,
333 mp
->m_bsize
* blks_per_cluster
,
338 /* Initialize the inode buffers and log them appropriately. */
339 fbuf
->b_ops
= &xfs_inode_buf_ops
;
340 xfs_buf_zero(fbuf
, 0, BBTOB(fbuf
->b_length
));
341 for (i
= 0; i
< inodes_per_cluster
; i
++) {
342 int ioffset
= i
<< mp
->m_sb
.sb_inodelog
;
343 uint isize
= xfs_dinode_size(version
);
345 free
= xfs_make_iptr(mp
, fbuf
, i
);
346 free
->di_magic
= cpu_to_be16(XFS_DINODE_MAGIC
);
347 free
->di_version
= version
;
348 free
->di_gen
= cpu_to_be32(gen
);
349 free
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
352 free
->di_ino
= cpu_to_be64(ino
);
354 uuid_copy(&free
->di_uuid
,
355 &mp
->m_sb
.sb_meta_uuid
);
356 xfs_dinode_calc_crc(mp
, free
);
358 /* just log the inode core */
359 xfs_trans_log_buf(tp
, fbuf
, ioffset
,
360 ioffset
+ isize
- 1);
366 * Mark the buffer as an inode allocation buffer so it
367 * sticks in AIL at the point of this allocation
368 * transaction. This ensures the they are on disk before
369 * the tail of the log can be moved past this
370 * transaction (i.e. by preventing relogging from moving
371 * it forward in the log).
373 xfs_trans_inode_alloc_buf(tp
, fbuf
);
376 * Mark the buffer as ordered so that they are
377 * not physically logged in the transaction but
378 * still tracked in the AIL as part of the
379 * transaction and pin the log appropriately.
381 xfs_trans_ordered_buf(tp
, fbuf
);
384 fbuf
->b_flags
|= XBF_DONE
;
385 xfs_buf_delwri_queue(fbuf
, buffer_list
);
393 * Align startino and allocmask for a recently allocated sparse chunk such that
394 * they are fit for insertion (or merge) into the on-disk inode btrees.
398 * When enabled, sparse inode support increases the inode alignment from cluster
399 * size to inode chunk size. This means that the minimum range between two
400 * non-adjacent inode records in the inobt is large enough for a full inode
401 * record. This allows for cluster sized, cluster aligned block allocation
402 * without need to worry about whether the resulting inode record overlaps with
403 * another record in the tree. Without this basic rule, we would have to deal
404 * with the consequences of overlap by potentially undoing recent allocations in
405 * the inode allocation codepath.
407 * Because of this alignment rule (which is enforced on mount), there are two
408 * inobt possibilities for newly allocated sparse chunks. One is that the
409 * aligned inode record for the chunk covers a range of inodes not already
410 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
411 * other is that a record already exists at the aligned startino that considers
412 * the newly allocated range as sparse. In the latter case, record content is
413 * merged in hope that sparse inode chunks fill to full chunks over time.
416 xfs_align_sparse_ino(
417 struct xfs_mount
*mp
,
418 xfs_agino_t
*startino
,
425 agbno
= XFS_AGINO_TO_AGBNO(mp
, *startino
);
426 mod
= agbno
% mp
->m_sb
.sb_inoalignmt
;
430 /* calculate the inode offset and align startino */
431 offset
= mod
<< mp
->m_sb
.sb_inopblog
;
435 * Since startino has been aligned down, left shift allocmask such that
436 * it continues to represent the same physical inodes relative to the
439 *allocmask
<<= offset
/ XFS_INODES_PER_HOLEMASK_BIT
;
443 * Determine whether the source inode record can merge into the target. Both
444 * records must be sparse, the inode ranges must match and there must be no
445 * allocation overlap between the records.
448 __xfs_inobt_can_merge(
449 struct xfs_inobt_rec_incore
*trec
, /* tgt record */
450 struct xfs_inobt_rec_incore
*srec
) /* src record */
455 /* records must cover the same inode range */
456 if (trec
->ir_startino
!= srec
->ir_startino
)
459 /* both records must be sparse */
460 if (!xfs_inobt_issparse(trec
->ir_holemask
) ||
461 !xfs_inobt_issparse(srec
->ir_holemask
))
464 /* both records must track some inodes */
465 if (!trec
->ir_count
|| !srec
->ir_count
)
468 /* can't exceed capacity of a full record */
469 if (trec
->ir_count
+ srec
->ir_count
> XFS_INODES_PER_CHUNK
)
472 /* verify there is no allocation overlap */
473 talloc
= xfs_inobt_irec_to_allocmask(trec
);
474 salloc
= xfs_inobt_irec_to_allocmask(srec
);
482 * Merge the source inode record into the target. The caller must call
483 * __xfs_inobt_can_merge() to ensure the merge is valid.
486 __xfs_inobt_rec_merge(
487 struct xfs_inobt_rec_incore
*trec
, /* target */
488 struct xfs_inobt_rec_incore
*srec
) /* src */
490 ASSERT(trec
->ir_startino
== srec
->ir_startino
);
492 /* combine the counts */
493 trec
->ir_count
+= srec
->ir_count
;
494 trec
->ir_freecount
+= srec
->ir_freecount
;
497 * Merge the holemask and free mask. For both fields, 0 bits refer to
498 * allocated inodes. We combine the allocated ranges with bitwise AND.
500 trec
->ir_holemask
&= srec
->ir_holemask
;
501 trec
->ir_free
&= srec
->ir_free
;
505 * Insert a new sparse inode chunk into the associated inode btree. The inode
506 * record for the sparse chunk is pre-aligned to a startino that should match
507 * any pre-existing sparse inode record in the tree. This allows sparse chunks
510 * This function supports two modes of handling preexisting records depending on
511 * the merge flag. If merge is true, the provided record is merged with the
512 * existing record and updated in place. The merged record is returned in nrec.
513 * If merge is false, an existing record is replaced with the provided record.
514 * If no preexisting record exists, the provided record is always inserted.
516 * It is considered corruption if a merge is requested and not possible. Given
517 * the sparse inode alignment constraints, this should never happen.
520 xfs_inobt_insert_sprec(
521 struct xfs_mount
*mp
,
522 struct xfs_trans
*tp
,
523 struct xfs_buf
*agbp
,
525 struct xfs_inobt_rec_incore
*nrec
, /* in/out: new/merged rec. */
526 bool merge
) /* merge or replace */
528 struct xfs_btree_cur
*cur
;
529 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
530 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
533 struct xfs_inobt_rec_incore rec
;
535 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, btnum
);
537 /* the new record is pre-aligned so we know where to look */
538 error
= xfs_inobt_lookup(cur
, nrec
->ir_startino
, XFS_LOOKUP_EQ
, &i
);
541 /* if nothing there, insert a new record and return */
543 error
= xfs_inobt_insert_rec(cur
, nrec
->ir_holemask
,
544 nrec
->ir_count
, nrec
->ir_freecount
,
548 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error
);
554 * A record exists at this startino. Merge or replace the record
555 * depending on what we've been asked to do.
558 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
561 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error
);
562 XFS_WANT_CORRUPTED_GOTO(mp
,
563 rec
.ir_startino
== nrec
->ir_startino
,
567 * This should never fail. If we have coexisting records that
568 * cannot merge, something is seriously wrong.
570 XFS_WANT_CORRUPTED_GOTO(mp
, __xfs_inobt_can_merge(nrec
, &rec
),
573 trace_xfs_irec_merge_pre(mp
, agno
, rec
.ir_startino
,
574 rec
.ir_holemask
, nrec
->ir_startino
,
577 /* merge to nrec to output the updated record */
578 __xfs_inobt_rec_merge(nrec
, &rec
);
580 trace_xfs_irec_merge_post(mp
, agno
, nrec
->ir_startino
,
583 error
= xfs_inobt_rec_check_count(mp
, nrec
);
588 error
= xfs_inobt_update(cur
, nrec
);
593 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
596 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
601 * Allocate new inodes in the allocation group specified by agbp.
602 * Return 0 for success, else error code.
604 STATIC
int /* error code or 0 */
606 xfs_trans_t
*tp
, /* transaction pointer */
607 xfs_buf_t
*agbp
, /* alloc group buffer */
610 xfs_agi_t
*agi
; /* allocation group header */
611 xfs_alloc_arg_t args
; /* allocation argument structure */
614 xfs_agino_t newino
; /* new first inode's number */
615 xfs_agino_t newlen
; /* new number of inodes */
616 int isaligned
= 0; /* inode allocation at stripe unit */
618 uint16_t allocmask
= (uint16_t) -1; /* init. to full chunk */
619 struct xfs_inobt_rec_incore rec
;
620 struct xfs_perag
*pag
;
623 memset(&args
, 0, sizeof(args
));
625 args
.mp
= tp
->t_mountp
;
626 args
.fsbno
= NULLFSBLOCK
;
627 xfs_rmap_ag_owner(&args
.oinfo
, XFS_RMAP_OWN_INODES
);
630 /* randomly do sparse inode allocations */
631 if (xfs_sb_version_hassparseinodes(&tp
->t_mountp
->m_sb
) &&
632 args
.mp
->m_ialloc_min_blks
< args
.mp
->m_ialloc_blks
)
633 do_sparse
= prandom_u32() & 1;
637 * Locking will ensure that we don't have two callers in here
640 newlen
= args
.mp
->m_ialloc_inos
;
641 if (args
.mp
->m_maxicount
&&
642 percpu_counter_read_positive(&args
.mp
->m_icount
) + newlen
>
643 args
.mp
->m_maxicount
)
645 args
.minlen
= args
.maxlen
= args
.mp
->m_ialloc_blks
;
647 * First try to allocate inodes contiguous with the last-allocated
648 * chunk of inodes. If the filesystem is striped, this will fill
649 * an entire stripe unit with inodes.
651 agi
= XFS_BUF_TO_AGI(agbp
);
652 newino
= be32_to_cpu(agi
->agi_newino
);
653 agno
= be32_to_cpu(agi
->agi_seqno
);
654 args
.agbno
= XFS_AGINO_TO_AGBNO(args
.mp
, newino
) +
655 args
.mp
->m_ialloc_blks
;
658 if (likely(newino
!= NULLAGINO
&&
659 (args
.agbno
< be32_to_cpu(agi
->agi_length
)))) {
660 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
661 args
.type
= XFS_ALLOCTYPE_THIS_BNO
;
665 * We need to take into account alignment here to ensure that
666 * we don't modify the free list if we fail to have an exact
667 * block. If we don't have an exact match, and every oher
668 * attempt allocation attempt fails, we'll end up cancelling
669 * a dirty transaction and shutting down.
671 * For an exact allocation, alignment must be 1,
672 * however we need to take cluster alignment into account when
673 * fixing up the freelist. Use the minalignslop field to
674 * indicate that extra blocks might be required for alignment,
675 * but not to use them in the actual exact allocation.
678 args
.minalignslop
= xfs_ialloc_cluster_alignment(args
.mp
) - 1;
680 /* Allow space for the inode btree to split. */
681 args
.minleft
= args
.mp
->m_in_maxlevels
- 1;
682 if ((error
= xfs_alloc_vextent(&args
)))
686 * This request might have dirtied the transaction if the AG can
687 * satisfy the request, but the exact block was not available.
688 * If the allocation did fail, subsequent requests will relax
689 * the exact agbno requirement and increase the alignment
690 * instead. It is critical that the total size of the request
691 * (len + alignment + slop) does not increase from this point
692 * on, so reset minalignslop to ensure it is not included in
693 * subsequent requests.
695 args
.minalignslop
= 0;
698 if (unlikely(args
.fsbno
== NULLFSBLOCK
)) {
700 * Set the alignment for the allocation.
701 * If stripe alignment is turned on then align at stripe unit
703 * If the cluster size is smaller than a filesystem block
704 * then we're doing I/O for inodes in filesystem block size
705 * pieces, so don't need alignment anyway.
708 if (args
.mp
->m_sinoalign
) {
709 ASSERT(!(args
.mp
->m_flags
& XFS_MOUNT_NOALIGN
));
710 args
.alignment
= args
.mp
->m_dalign
;
713 args
.alignment
= xfs_ialloc_cluster_alignment(args
.mp
);
715 * Need to figure out where to allocate the inode blocks.
716 * Ideally they should be spaced out through the a.g.
717 * For now, just allocate blocks up front.
719 args
.agbno
= be32_to_cpu(agi
->agi_root
);
720 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
722 * Allocate a fixed-size extent of inodes.
724 args
.type
= XFS_ALLOCTYPE_NEAR_BNO
;
727 * Allow space for the inode btree to split.
729 args
.minleft
= args
.mp
->m_in_maxlevels
- 1;
730 if ((error
= xfs_alloc_vextent(&args
)))
735 * If stripe alignment is turned on, then try again with cluster
738 if (isaligned
&& args
.fsbno
== NULLFSBLOCK
) {
739 args
.type
= XFS_ALLOCTYPE_NEAR_BNO
;
740 args
.agbno
= be32_to_cpu(agi
->agi_root
);
741 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
742 args
.alignment
= xfs_ialloc_cluster_alignment(args
.mp
);
743 if ((error
= xfs_alloc_vextent(&args
)))
748 * Finally, try a sparse allocation if the filesystem supports it and
749 * the sparse allocation length is smaller than a full chunk.
751 if (xfs_sb_version_hassparseinodes(&args
.mp
->m_sb
) &&
752 args
.mp
->m_ialloc_min_blks
< args
.mp
->m_ialloc_blks
&&
753 args
.fsbno
== NULLFSBLOCK
) {
755 args
.type
= XFS_ALLOCTYPE_NEAR_BNO
;
756 args
.agbno
= be32_to_cpu(agi
->agi_root
);
757 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
758 args
.alignment
= args
.mp
->m_sb
.sb_spino_align
;
761 args
.minlen
= args
.mp
->m_ialloc_min_blks
;
762 args
.maxlen
= args
.minlen
;
765 * The inode record will be aligned to full chunk size. We must
766 * prevent sparse allocation from AG boundaries that result in
767 * invalid inode records, such as records that start at agbno 0
768 * or extend beyond the AG.
770 * Set min agbno to the first aligned, non-zero agbno and max to
771 * the last aligned agbno that is at least one full chunk from
774 args
.min_agbno
= args
.mp
->m_sb
.sb_inoalignmt
;
775 args
.max_agbno
= round_down(args
.mp
->m_sb
.sb_agblocks
,
776 args
.mp
->m_sb
.sb_inoalignmt
) -
777 args
.mp
->m_ialloc_blks
;
779 error
= xfs_alloc_vextent(&args
);
783 newlen
= args
.len
<< args
.mp
->m_sb
.sb_inopblog
;
784 ASSERT(newlen
<= XFS_INODES_PER_CHUNK
);
785 allocmask
= (1 << (newlen
/ XFS_INODES_PER_HOLEMASK_BIT
)) - 1;
788 if (args
.fsbno
== NULLFSBLOCK
) {
792 ASSERT(args
.len
== args
.minlen
);
795 * Stamp and write the inode buffers.
797 * Seed the new inode cluster with a random generation number. This
798 * prevents short-term reuse of generation numbers if a chunk is
799 * freed and then immediately reallocated. We use random numbers
800 * rather than a linear progression to prevent the next generation
801 * number from being easily guessable.
803 error
= xfs_ialloc_inode_init(args
.mp
, tp
, NULL
, newlen
, agno
,
804 args
.agbno
, args
.len
, prandom_u32());
809 * Convert the results.
811 newino
= XFS_OFFBNO_TO_AGINO(args
.mp
, args
.agbno
, 0);
813 if (xfs_inobt_issparse(~allocmask
)) {
815 * We've allocated a sparse chunk. Align the startino and mask.
817 xfs_align_sparse_ino(args
.mp
, &newino
, &allocmask
);
819 rec
.ir_startino
= newino
;
820 rec
.ir_holemask
= ~allocmask
;
821 rec
.ir_count
= newlen
;
822 rec
.ir_freecount
= newlen
;
823 rec
.ir_free
= XFS_INOBT_ALL_FREE
;
826 * Insert the sparse record into the inobt and allow for a merge
827 * if necessary. If a merge does occur, rec is updated to the
830 error
= xfs_inobt_insert_sprec(args
.mp
, tp
, agbp
, XFS_BTNUM_INO
,
832 if (error
== -EFSCORRUPTED
) {
834 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
835 XFS_AGINO_TO_INO(args
.mp
, agno
,
837 rec
.ir_holemask
, rec
.ir_count
);
838 xfs_force_shutdown(args
.mp
, SHUTDOWN_CORRUPT_INCORE
);
844 * We can't merge the part we've just allocated as for the inobt
845 * due to finobt semantics. The original record may or may not
846 * exist independent of whether physical inodes exist in this
849 * We must update the finobt record based on the inobt record.
850 * rec contains the fully merged and up to date inobt record
851 * from the previous call. Set merge false to replace any
852 * existing record with this one.
854 if (xfs_sb_version_hasfinobt(&args
.mp
->m_sb
)) {
855 error
= xfs_inobt_insert_sprec(args
.mp
, tp
, agbp
,
856 XFS_BTNUM_FINO
, &rec
,
862 /* full chunk - insert new records to both btrees */
863 error
= xfs_inobt_insert(args
.mp
, tp
, agbp
, newino
, newlen
,
868 if (xfs_sb_version_hasfinobt(&args
.mp
->m_sb
)) {
869 error
= xfs_inobt_insert(args
.mp
, tp
, agbp
, newino
,
870 newlen
, XFS_BTNUM_FINO
);
877 * Update AGI counts and newino.
879 be32_add_cpu(&agi
->agi_count
, newlen
);
880 be32_add_cpu(&agi
->agi_freecount
, newlen
);
881 pag
= xfs_perag_get(args
.mp
, agno
);
882 pag
->pagi_freecount
+= newlen
;
884 agi
->agi_newino
= cpu_to_be32(newino
);
887 * Log allocation group header fields
889 xfs_ialloc_log_agi(tp
, agbp
,
890 XFS_AGI_COUNT
| XFS_AGI_FREECOUNT
| XFS_AGI_NEWINO
);
892 * Modify/log superblock values for inode count and inode free count.
894 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_ICOUNT
, (long)newlen
);
895 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, (long)newlen
);
900 STATIC xfs_agnumber_t
906 spin_lock(&mp
->m_agirotor_lock
);
907 agno
= mp
->m_agirotor
;
908 if (++mp
->m_agirotor
>= mp
->m_maxagi
)
910 spin_unlock(&mp
->m_agirotor_lock
);
916 * Select an allocation group to look for a free inode in, based on the parent
917 * inode and the mode. Return the allocation group buffer.
919 STATIC xfs_agnumber_t
920 xfs_ialloc_ag_select(
921 xfs_trans_t
*tp
, /* transaction pointer */
922 xfs_ino_t parent
, /* parent directory inode number */
923 umode_t mode
, /* bits set to indicate file type */
924 int okalloc
) /* ok to allocate more space */
926 xfs_agnumber_t agcount
; /* number of ag's in the filesystem */
927 xfs_agnumber_t agno
; /* current ag number */
928 int flags
; /* alloc buffer locking flags */
929 xfs_extlen_t ineed
; /* blocks needed for inode allocation */
930 xfs_extlen_t longest
= 0; /* longest extent available */
931 xfs_mount_t
*mp
; /* mount point structure */
932 int needspace
; /* file mode implies space allocated */
933 xfs_perag_t
*pag
; /* per allocation group data */
934 xfs_agnumber_t pagno
; /* parent (starting) ag number */
938 * Files of these types need at least one block if length > 0
939 * (and they won't fit in the inode, but that's hard to figure out).
941 needspace
= S_ISDIR(mode
) || S_ISREG(mode
) || S_ISLNK(mode
);
943 agcount
= mp
->m_maxagi
;
945 pagno
= xfs_ialloc_next_ag(mp
);
947 pagno
= XFS_INO_TO_AGNO(mp
, parent
);
948 if (pagno
>= agcount
)
952 ASSERT(pagno
< agcount
);
955 * Loop through allocation groups, looking for one with a little
956 * free space in it. Note we don't look for free inodes, exactly.
957 * Instead, we include whether there is a need to allocate inodes
958 * to mean that blocks must be allocated for them,
959 * if none are currently free.
962 flags
= XFS_ALLOC_FLAG_TRYLOCK
;
964 pag
= xfs_perag_get(mp
, agno
);
965 if (!pag
->pagi_inodeok
) {
966 xfs_ialloc_next_ag(mp
);
970 if (!pag
->pagi_init
) {
971 error
= xfs_ialloc_pagi_init(mp
, tp
, agno
);
976 if (pag
->pagi_freecount
) {
984 if (!pag
->pagf_init
) {
985 error
= xfs_alloc_pagf_init(mp
, tp
, agno
, flags
);
991 * Check that there is enough free space for the file plus a
992 * chunk of inodes if we need to allocate some. If this is the
993 * first pass across the AGs, take into account the potential
994 * space needed for alignment of inode chunks when checking the
995 * longest contiguous free space in the AG - this prevents us
996 * from getting ENOSPC because we have free space larger than
997 * m_ialloc_blks but alignment constraints prevent us from using
1000 * If we can't find an AG with space for full alignment slack to
1001 * be taken into account, we must be near ENOSPC in all AGs.
1002 * Hence we don't include alignment for the second pass and so
1003 * if we fail allocation due to alignment issues then it is most
1004 * likely a real ENOSPC condition.
1006 ineed
= mp
->m_ialloc_min_blks
;
1007 if (flags
&& ineed
> 1)
1008 ineed
+= xfs_ialloc_cluster_alignment(mp
);
1009 longest
= pag
->pagf_longest
;
1011 longest
= pag
->pagf_flcount
> 0;
1013 if (pag
->pagf_freeblks
>= needspace
+ ineed
&&
1021 * No point in iterating over the rest, if we're shutting
1024 if (XFS_FORCED_SHUTDOWN(mp
))
1025 return NULLAGNUMBER
;
1027 if (agno
>= agcount
)
1029 if (agno
== pagno
) {
1031 return NULLAGNUMBER
;
1038 * Try to retrieve the next record to the left/right from the current one.
1041 xfs_ialloc_next_rec(
1042 struct xfs_btree_cur
*cur
,
1043 xfs_inobt_rec_incore_t
*rec
,
1051 error
= xfs_btree_decrement(cur
, 0, &i
);
1053 error
= xfs_btree_increment(cur
, 0, &i
);
1059 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1062 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1070 struct xfs_btree_cur
*cur
,
1072 xfs_inobt_rec_incore_t
*rec
,
1078 error
= xfs_inobt_lookup(cur
, agino
, XFS_LOOKUP_EQ
, &i
);
1083 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1086 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1093 * Return the offset of the first free inode in the record. If the inode chunk
1094 * is sparsely allocated, we convert the record holemask to inode granularity
1095 * and mask off the unallocated regions from the inode free mask.
1098 xfs_inobt_first_free_inode(
1099 struct xfs_inobt_rec_incore
*rec
)
1101 xfs_inofree_t realfree
;
1103 /* if there are no holes, return the first available offset */
1104 if (!xfs_inobt_issparse(rec
->ir_holemask
))
1105 return xfs_lowbit64(rec
->ir_free
);
1107 realfree
= xfs_inobt_irec_to_allocmask(rec
);
1108 realfree
&= rec
->ir_free
;
1110 return xfs_lowbit64(realfree
);
1114 * Allocate an inode using the inobt-only algorithm.
1117 xfs_dialloc_ag_inobt(
1118 struct xfs_trans
*tp
,
1119 struct xfs_buf
*agbp
,
1123 struct xfs_mount
*mp
= tp
->t_mountp
;
1124 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
1125 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
1126 xfs_agnumber_t pagno
= XFS_INO_TO_AGNO(mp
, parent
);
1127 xfs_agino_t pagino
= XFS_INO_TO_AGINO(mp
, parent
);
1128 struct xfs_perag
*pag
;
1129 struct xfs_btree_cur
*cur
, *tcur
;
1130 struct xfs_inobt_rec_incore rec
, trec
;
1135 int searchdistance
= 10;
1137 pag
= xfs_perag_get(mp
, agno
);
1139 ASSERT(pag
->pagi_init
);
1140 ASSERT(pag
->pagi_inodeok
);
1141 ASSERT(pag
->pagi_freecount
> 0);
1144 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
1146 * If pagino is 0 (this is the root inode allocation) use newino.
1147 * This must work because we've just allocated some.
1150 pagino
= be32_to_cpu(agi
->agi_newino
);
1152 error
= xfs_check_agi_freecount(cur
, agi
);
1157 * If in the same AG as the parent, try to get near the parent.
1159 if (pagno
== agno
) {
1160 int doneleft
; /* done, to the left */
1161 int doneright
; /* done, to the right */
1163 error
= xfs_inobt_lookup(cur
, pagino
, XFS_LOOKUP_LE
, &i
);
1166 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1168 error
= xfs_inobt_get_rec(cur
, &rec
, &j
);
1171 XFS_WANT_CORRUPTED_GOTO(mp
, j
== 1, error0
);
1173 if (rec
.ir_freecount
> 0) {
1175 * Found a free inode in the same chunk
1176 * as the parent, done.
1183 * In the same AG as parent, but parent's chunk is full.
1186 /* duplicate the cursor, search left & right simultaneously */
1187 error
= xfs_btree_dup_cursor(cur
, &tcur
);
1192 * Skip to last blocks looked up if same parent inode.
1194 if (pagino
!= NULLAGINO
&&
1195 pag
->pagl_pagino
== pagino
&&
1196 pag
->pagl_leftrec
!= NULLAGINO
&&
1197 pag
->pagl_rightrec
!= NULLAGINO
) {
1198 error
= xfs_ialloc_get_rec(tcur
, pag
->pagl_leftrec
,
1203 error
= xfs_ialloc_get_rec(cur
, pag
->pagl_rightrec
,
1208 /* search left with tcur, back up 1 record */
1209 error
= xfs_ialloc_next_rec(tcur
, &trec
, &doneleft
, 1);
1213 /* search right with cur, go forward 1 record. */
1214 error
= xfs_ialloc_next_rec(cur
, &rec
, &doneright
, 0);
1220 * Loop until we find an inode chunk with a free inode.
1222 while (--searchdistance
> 0 && (!doneleft
|| !doneright
)) {
1223 int useleft
; /* using left inode chunk this time */
1225 /* figure out the closer block if both are valid. */
1226 if (!doneleft
&& !doneright
) {
1228 (trec
.ir_startino
+ XFS_INODES_PER_CHUNK
- 1) <
1229 rec
.ir_startino
- pagino
;
1231 useleft
= !doneleft
;
1234 /* free inodes to the left? */
1235 if (useleft
&& trec
.ir_freecount
) {
1236 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1239 pag
->pagl_leftrec
= trec
.ir_startino
;
1240 pag
->pagl_rightrec
= rec
.ir_startino
;
1241 pag
->pagl_pagino
= pagino
;
1246 /* free inodes to the right? */
1247 if (!useleft
&& rec
.ir_freecount
) {
1248 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
1250 pag
->pagl_leftrec
= trec
.ir_startino
;
1251 pag
->pagl_rightrec
= rec
.ir_startino
;
1252 pag
->pagl_pagino
= pagino
;
1256 /* get next record to check */
1258 error
= xfs_ialloc_next_rec(tcur
, &trec
,
1261 error
= xfs_ialloc_next_rec(cur
, &rec
,
1268 if (searchdistance
<= 0) {
1270 * Not in range - save last search
1271 * location and allocate a new inode
1273 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
1274 pag
->pagl_leftrec
= trec
.ir_startino
;
1275 pag
->pagl_rightrec
= rec
.ir_startino
;
1276 pag
->pagl_pagino
= pagino
;
1280 * We've reached the end of the btree. because
1281 * we are only searching a small chunk of the
1282 * btree each search, there is obviously free
1283 * inodes closer to the parent inode than we
1284 * are now. restart the search again.
1286 pag
->pagl_pagino
= NULLAGINO
;
1287 pag
->pagl_leftrec
= NULLAGINO
;
1288 pag
->pagl_rightrec
= NULLAGINO
;
1289 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
1290 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1296 * In a different AG from the parent.
1297 * See if the most recently allocated block has any free.
1299 if (agi
->agi_newino
!= cpu_to_be32(NULLAGINO
)) {
1300 error
= xfs_inobt_lookup(cur
, be32_to_cpu(agi
->agi_newino
),
1306 error
= xfs_inobt_get_rec(cur
, &rec
, &j
);
1310 if (j
== 1 && rec
.ir_freecount
> 0) {
1312 * The last chunk allocated in the group
1313 * still has a free inode.
1321 * None left in the last group, search the whole AG
1323 error
= xfs_inobt_lookup(cur
, 0, XFS_LOOKUP_GE
, &i
);
1326 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1329 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
1332 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1333 if (rec
.ir_freecount
> 0)
1335 error
= xfs_btree_increment(cur
, 0, &i
);
1338 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1342 offset
= xfs_inobt_first_free_inode(&rec
);
1343 ASSERT(offset
>= 0);
1344 ASSERT(offset
< XFS_INODES_PER_CHUNK
);
1345 ASSERT((XFS_AGINO_TO_OFFSET(mp
, rec
.ir_startino
) %
1346 XFS_INODES_PER_CHUNK
) == 0);
1347 ino
= XFS_AGINO_TO_INO(mp
, agno
, rec
.ir_startino
+ offset
);
1348 rec
.ir_free
&= ~XFS_INOBT_MASK(offset
);
1350 error
= xfs_inobt_update(cur
, &rec
);
1353 be32_add_cpu(&agi
->agi_freecount
, -1);
1354 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_FREECOUNT
);
1355 pag
->pagi_freecount
--;
1357 error
= xfs_check_agi_freecount(cur
, agi
);
1361 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1362 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, -1);
1367 xfs_btree_del_cursor(tcur
, XFS_BTREE_ERROR
);
1369 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
1375 * Use the free inode btree to allocate an inode based on distance from the
1376 * parent. Note that the provided cursor may be deleted and replaced.
1379 xfs_dialloc_ag_finobt_near(
1381 struct xfs_btree_cur
**ocur
,
1382 struct xfs_inobt_rec_incore
*rec
)
1384 struct xfs_btree_cur
*lcur
= *ocur
; /* left search cursor */
1385 struct xfs_btree_cur
*rcur
; /* right search cursor */
1386 struct xfs_inobt_rec_incore rrec
;
1390 error
= xfs_inobt_lookup(lcur
, pagino
, XFS_LOOKUP_LE
, &i
);
1395 error
= xfs_inobt_get_rec(lcur
, rec
, &i
);
1398 XFS_WANT_CORRUPTED_RETURN(lcur
->bc_mp
, i
== 1);
1401 * See if we've landed in the parent inode record. The finobt
1402 * only tracks chunks with at least one free inode, so record
1403 * existence is enough.
1405 if (pagino
>= rec
->ir_startino
&&
1406 pagino
< (rec
->ir_startino
+ XFS_INODES_PER_CHUNK
))
1410 error
= xfs_btree_dup_cursor(lcur
, &rcur
);
1414 error
= xfs_inobt_lookup(rcur
, pagino
, XFS_LOOKUP_GE
, &j
);
1418 error
= xfs_inobt_get_rec(rcur
, &rrec
, &j
);
1421 XFS_WANT_CORRUPTED_GOTO(lcur
->bc_mp
, j
== 1, error_rcur
);
1424 XFS_WANT_CORRUPTED_GOTO(lcur
->bc_mp
, i
== 1 || j
== 1, error_rcur
);
1425 if (i
== 1 && j
== 1) {
1427 * Both the left and right records are valid. Choose the closer
1428 * inode chunk to the target.
1430 if ((pagino
- rec
->ir_startino
+ XFS_INODES_PER_CHUNK
- 1) >
1431 (rrec
.ir_startino
- pagino
)) {
1433 xfs_btree_del_cursor(lcur
, XFS_BTREE_NOERROR
);
1436 xfs_btree_del_cursor(rcur
, XFS_BTREE_NOERROR
);
1438 } else if (j
== 1) {
1439 /* only the right record is valid */
1441 xfs_btree_del_cursor(lcur
, XFS_BTREE_NOERROR
);
1443 } else if (i
== 1) {
1444 /* only the left record is valid */
1445 xfs_btree_del_cursor(rcur
, XFS_BTREE_NOERROR
);
1451 xfs_btree_del_cursor(rcur
, XFS_BTREE_ERROR
);
1456 * Use the free inode btree to find a free inode based on a newino hint. If
1457 * the hint is NULL, find the first free inode in the AG.
1460 xfs_dialloc_ag_finobt_newino(
1461 struct xfs_agi
*agi
,
1462 struct xfs_btree_cur
*cur
,
1463 struct xfs_inobt_rec_incore
*rec
)
1468 if (agi
->agi_newino
!= cpu_to_be32(NULLAGINO
)) {
1469 error
= xfs_inobt_lookup(cur
, be32_to_cpu(agi
->agi_newino
),
1474 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1477 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1483 * Find the first inode available in the AG.
1485 error
= xfs_inobt_lookup(cur
, 0, XFS_LOOKUP_GE
, &i
);
1488 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1490 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1493 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1499 * Update the inobt based on a modification made to the finobt. Also ensure that
1500 * the records from both trees are equivalent post-modification.
1503 xfs_dialloc_ag_update_inobt(
1504 struct xfs_btree_cur
*cur
, /* inobt cursor */
1505 struct xfs_inobt_rec_incore
*frec
, /* finobt record */
1506 int offset
) /* inode offset */
1508 struct xfs_inobt_rec_incore rec
;
1512 error
= xfs_inobt_lookup(cur
, frec
->ir_startino
, XFS_LOOKUP_EQ
, &i
);
1515 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1517 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
1520 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1521 ASSERT((XFS_AGINO_TO_OFFSET(cur
->bc_mp
, rec
.ir_startino
) %
1522 XFS_INODES_PER_CHUNK
) == 0);
1524 rec
.ir_free
&= ~XFS_INOBT_MASK(offset
);
1527 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, (rec
.ir_free
== frec
->ir_free
) &&
1528 (rec
.ir_freecount
== frec
->ir_freecount
));
1530 return xfs_inobt_update(cur
, &rec
);
1534 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1535 * back to the inobt search algorithm.
1537 * The caller selected an AG for us, and made sure that free inodes are
1542 struct xfs_trans
*tp
,
1543 struct xfs_buf
*agbp
,
1547 struct xfs_mount
*mp
= tp
->t_mountp
;
1548 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
1549 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
1550 xfs_agnumber_t pagno
= XFS_INO_TO_AGNO(mp
, parent
);
1551 xfs_agino_t pagino
= XFS_INO_TO_AGINO(mp
, parent
);
1552 struct xfs_perag
*pag
;
1553 struct xfs_btree_cur
*cur
; /* finobt cursor */
1554 struct xfs_btree_cur
*icur
; /* inobt cursor */
1555 struct xfs_inobt_rec_incore rec
;
1561 if (!xfs_sb_version_hasfinobt(&mp
->m_sb
))
1562 return xfs_dialloc_ag_inobt(tp
, agbp
, parent
, inop
);
1564 pag
= xfs_perag_get(mp
, agno
);
1567 * If pagino is 0 (this is the root inode allocation) use newino.
1568 * This must work because we've just allocated some.
1571 pagino
= be32_to_cpu(agi
->agi_newino
);
1573 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_FINO
);
1575 error
= xfs_check_agi_freecount(cur
, agi
);
1580 * The search algorithm depends on whether we're in the same AG as the
1581 * parent. If so, find the closest available inode to the parent. If
1582 * not, consider the agi hint or find the first free inode in the AG.
1585 error
= xfs_dialloc_ag_finobt_near(pagino
, &cur
, &rec
);
1587 error
= xfs_dialloc_ag_finobt_newino(agi
, cur
, &rec
);
1591 offset
= xfs_inobt_first_free_inode(&rec
);
1592 ASSERT(offset
>= 0);
1593 ASSERT(offset
< XFS_INODES_PER_CHUNK
);
1594 ASSERT((XFS_AGINO_TO_OFFSET(mp
, rec
.ir_startino
) %
1595 XFS_INODES_PER_CHUNK
) == 0);
1596 ino
= XFS_AGINO_TO_INO(mp
, agno
, rec
.ir_startino
+ offset
);
1599 * Modify or remove the finobt record.
1601 rec
.ir_free
&= ~XFS_INOBT_MASK(offset
);
1603 if (rec
.ir_freecount
)
1604 error
= xfs_inobt_update(cur
, &rec
);
1606 error
= xfs_btree_delete(cur
, &i
);
1611 * The finobt has now been updated appropriately. We haven't updated the
1612 * agi and superblock yet, so we can create an inobt cursor and validate
1613 * the original freecount. If all is well, make the equivalent update to
1614 * the inobt using the finobt record and offset information.
1616 icur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
1618 error
= xfs_check_agi_freecount(icur
, agi
);
1622 error
= xfs_dialloc_ag_update_inobt(icur
, &rec
, offset
);
1627 * Both trees have now been updated. We must update the perag and
1628 * superblock before we can check the freecount for each btree.
1630 be32_add_cpu(&agi
->agi_freecount
, -1);
1631 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_FREECOUNT
);
1632 pag
->pagi_freecount
--;
1634 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, -1);
1636 error
= xfs_check_agi_freecount(icur
, agi
);
1639 error
= xfs_check_agi_freecount(cur
, agi
);
1643 xfs_btree_del_cursor(icur
, XFS_BTREE_NOERROR
);
1644 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1650 xfs_btree_del_cursor(icur
, XFS_BTREE_ERROR
);
1652 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
1658 * Allocate an inode on disk.
1660 * Mode is used to tell whether the new inode will need space, and whether it
1663 * This function is designed to be called twice if it has to do an allocation
1664 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1665 * If an inode is available without having to performn an allocation, an inode
1666 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1667 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1668 * The caller should then commit the current transaction, allocate a
1669 * new transaction, and call xfs_dialloc() again, passing in the previous value
1670 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1671 * buffer is locked across the two calls, the second call is guaranteed to have
1672 * a free inode available.
1674 * Once we successfully pick an inode its number is returned and the on-disk
1675 * data structures are updated. The inode itself is not read in, since doing so
1676 * would break ordering constraints with xfs_reclaim.
1680 struct xfs_trans
*tp
,
1684 struct xfs_buf
**IO_agbp
,
1687 struct xfs_mount
*mp
= tp
->t_mountp
;
1688 struct xfs_buf
*agbp
;
1689 xfs_agnumber_t agno
;
1693 xfs_agnumber_t start_agno
;
1694 struct xfs_perag
*pag
;
1698 * If the caller passes in a pointer to the AGI buffer,
1699 * continue where we left off before. In this case, we
1700 * know that the allocation group has free inodes.
1707 * We do not have an agbp, so select an initial allocation
1708 * group for inode allocation.
1710 start_agno
= xfs_ialloc_ag_select(tp
, parent
, mode
, okalloc
);
1711 if (start_agno
== NULLAGNUMBER
) {
1717 * If we have already hit the ceiling of inode blocks then clear
1718 * okalloc so we scan all available agi structures for a free
1721 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1722 * which will sacrifice the preciseness but improve the performance.
1724 if (mp
->m_maxicount
&&
1725 percpu_counter_read_positive(&mp
->m_icount
) + mp
->m_ialloc_inos
1726 > mp
->m_maxicount
) {
1732 * Loop until we find an allocation group that either has free inodes
1733 * or in which we can allocate some inodes. Iterate through the
1734 * allocation groups upward, wrapping at the end.
1738 pag
= xfs_perag_get(mp
, agno
);
1739 if (!pag
->pagi_inodeok
) {
1740 xfs_ialloc_next_ag(mp
);
1744 if (!pag
->pagi_init
) {
1745 error
= xfs_ialloc_pagi_init(mp
, tp
, agno
);
1751 * Do a first racy fast path check if this AG is usable.
1753 if (!pag
->pagi_freecount
&& !okalloc
)
1757 * Then read in the AGI buffer and recheck with the AGI buffer
1760 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &agbp
);
1764 if (pag
->pagi_freecount
) {
1770 goto nextag_relse_buffer
;
1773 error
= xfs_ialloc_ag_alloc(tp
, agbp
, &ialloced
);
1775 xfs_trans_brelse(tp
, agbp
);
1777 if (error
!= -ENOSPC
)
1787 * We successfully allocated some inodes, return
1788 * the current context to the caller so that it
1789 * can commit the current transaction and call
1790 * us again where we left off.
1792 ASSERT(pag
->pagi_freecount
> 0);
1800 nextag_relse_buffer
:
1801 xfs_trans_brelse(tp
, agbp
);
1804 if (++agno
== mp
->m_sb
.sb_agcount
)
1806 if (agno
== start_agno
) {
1808 return noroom
? -ENOSPC
: 0;
1814 return xfs_dialloc_ag(tp
, agbp
, parent
, inop
);
1821 * Free the blocks of an inode chunk. We must consider that the inode chunk
1822 * might be sparse and only free the regions that are allocated as part of the
1826 xfs_difree_inode_chunk(
1827 struct xfs_mount
*mp
,
1828 xfs_agnumber_t agno
,
1829 struct xfs_inobt_rec_incore
*rec
,
1830 struct xfs_defer_ops
*dfops
)
1832 xfs_agblock_t sagbno
= XFS_AGINO_TO_AGBNO(mp
, rec
->ir_startino
);
1833 int startidx
, endidx
;
1835 xfs_agblock_t agbno
;
1837 struct xfs_owner_info oinfo
;
1838 DECLARE_BITMAP(holemask
, XFS_INOBT_HOLEMASK_BITS
);
1839 xfs_rmap_ag_owner(&oinfo
, XFS_RMAP_OWN_INODES
);
1841 if (!xfs_inobt_issparse(rec
->ir_holemask
)) {
1842 /* not sparse, calculate extent info directly */
1843 xfs_bmap_add_free(mp
, dfops
, XFS_AGB_TO_FSB(mp
, agno
, sagbno
),
1844 mp
->m_ialloc_blks
, &oinfo
);
1848 /* holemask is only 16-bits (fits in an unsigned long) */
1849 ASSERT(sizeof(rec
->ir_holemask
) <= sizeof(holemask
[0]));
1850 holemask
[0] = rec
->ir_holemask
;
1853 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1854 * holemask and convert the start/end index of each range to an extent.
1855 * We start with the start and end index both pointing at the first 0 in
1858 startidx
= endidx
= find_first_zero_bit(holemask
,
1859 XFS_INOBT_HOLEMASK_BITS
);
1860 nextbit
= startidx
+ 1;
1861 while (startidx
< XFS_INOBT_HOLEMASK_BITS
) {
1862 nextbit
= find_next_zero_bit(holemask
, XFS_INOBT_HOLEMASK_BITS
,
1865 * If the next zero bit is contiguous, update the end index of
1866 * the current range and continue.
1868 if (nextbit
!= XFS_INOBT_HOLEMASK_BITS
&&
1869 nextbit
== endidx
+ 1) {
1875 * nextbit is not contiguous with the current end index. Convert
1876 * the current start/end to an extent and add it to the free
1879 agbno
= sagbno
+ (startidx
* XFS_INODES_PER_HOLEMASK_BIT
) /
1880 mp
->m_sb
.sb_inopblock
;
1881 contigblk
= ((endidx
- startidx
+ 1) *
1882 XFS_INODES_PER_HOLEMASK_BIT
) /
1883 mp
->m_sb
.sb_inopblock
;
1885 ASSERT(agbno
% mp
->m_sb
.sb_spino_align
== 0);
1886 ASSERT(contigblk
% mp
->m_sb
.sb_spino_align
== 0);
1887 xfs_bmap_add_free(mp
, dfops
, XFS_AGB_TO_FSB(mp
, agno
, agbno
),
1890 /* reset range to current bit and carry on... */
1891 startidx
= endidx
= nextbit
;
1900 struct xfs_mount
*mp
,
1901 struct xfs_trans
*tp
,
1902 struct xfs_buf
*agbp
,
1904 struct xfs_defer_ops
*dfops
,
1905 struct xfs_icluster
*xic
,
1906 struct xfs_inobt_rec_incore
*orec
)
1908 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
1909 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
1910 struct xfs_perag
*pag
;
1911 struct xfs_btree_cur
*cur
;
1912 struct xfs_inobt_rec_incore rec
;
1918 ASSERT(agi
->agi_magicnum
== cpu_to_be32(XFS_AGI_MAGIC
));
1919 ASSERT(XFS_AGINO_TO_AGBNO(mp
, agino
) < be32_to_cpu(agi
->agi_length
));
1922 * Initialize the cursor.
1924 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
1926 error
= xfs_check_agi_freecount(cur
, agi
);
1931 * Look for the entry describing this inode.
1933 if ((error
= xfs_inobt_lookup(cur
, agino
, XFS_LOOKUP_LE
, &i
))) {
1934 xfs_warn(mp
, "%s: xfs_inobt_lookup() returned error %d.",
1938 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1939 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
1941 xfs_warn(mp
, "%s: xfs_inobt_get_rec() returned error %d.",
1945 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1947 * Get the offset in the inode chunk.
1949 off
= agino
- rec
.ir_startino
;
1950 ASSERT(off
>= 0 && off
< XFS_INODES_PER_CHUNK
);
1951 ASSERT(!(rec
.ir_free
& XFS_INOBT_MASK(off
)));
1953 * Mark the inode free & increment the count.
1955 rec
.ir_free
|= XFS_INOBT_MASK(off
);
1959 * When an inode chunk is free, it becomes eligible for removal. Don't
1960 * remove the chunk if the block size is large enough for multiple inode
1961 * chunks (that might not be free).
1963 if (!(mp
->m_flags
& XFS_MOUNT_IKEEP
) &&
1964 rec
.ir_free
== XFS_INOBT_ALL_FREE
&&
1965 mp
->m_sb
.sb_inopblock
<= XFS_INODES_PER_CHUNK
) {
1966 xic
->deleted
= true;
1967 xic
->first_ino
= XFS_AGINO_TO_INO(mp
, agno
, rec
.ir_startino
);
1968 xic
->alloc
= xfs_inobt_irec_to_allocmask(&rec
);
1971 * Remove the inode cluster from the AGI B+Tree, adjust the
1972 * AGI and Superblock inode counts, and mark the disk space
1973 * to be freed when the transaction is committed.
1975 ilen
= rec
.ir_freecount
;
1976 be32_add_cpu(&agi
->agi_count
, -ilen
);
1977 be32_add_cpu(&agi
->agi_freecount
, -(ilen
- 1));
1978 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_COUNT
| XFS_AGI_FREECOUNT
);
1979 pag
= xfs_perag_get(mp
, agno
);
1980 pag
->pagi_freecount
-= ilen
- 1;
1982 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_ICOUNT
, -ilen
);
1983 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, -(ilen
- 1));
1985 if ((error
= xfs_btree_delete(cur
, &i
))) {
1986 xfs_warn(mp
, "%s: xfs_btree_delete returned error %d.",
1991 xfs_difree_inode_chunk(mp
, agno
, &rec
, dfops
);
1993 xic
->deleted
= false;
1995 error
= xfs_inobt_update(cur
, &rec
);
1997 xfs_warn(mp
, "%s: xfs_inobt_update returned error %d.",
2003 * Change the inode free counts and log the ag/sb changes.
2005 be32_add_cpu(&agi
->agi_freecount
, 1);
2006 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_FREECOUNT
);
2007 pag
= xfs_perag_get(mp
, agno
);
2008 pag
->pagi_freecount
++;
2010 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, 1);
2013 error
= xfs_check_agi_freecount(cur
, agi
);
2018 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
2022 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
2027 * Free an inode in the free inode btree.
2031 struct xfs_mount
*mp
,
2032 struct xfs_trans
*tp
,
2033 struct xfs_buf
*agbp
,
2035 struct xfs_inobt_rec_incore
*ibtrec
) /* inobt record */
2037 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
2038 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
2039 struct xfs_btree_cur
*cur
;
2040 struct xfs_inobt_rec_incore rec
;
2041 int offset
= agino
- ibtrec
->ir_startino
;
2045 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_FINO
);
2047 error
= xfs_inobt_lookup(cur
, ibtrec
->ir_startino
, XFS_LOOKUP_EQ
, &i
);
2052 * If the record does not exist in the finobt, we must have just
2053 * freed an inode in a previously fully allocated chunk. If not,
2054 * something is out of sync.
2056 XFS_WANT_CORRUPTED_GOTO(mp
, ibtrec
->ir_freecount
== 1, error
);
2058 error
= xfs_inobt_insert_rec(cur
, ibtrec
->ir_holemask
,
2060 ibtrec
->ir_freecount
,
2061 ibtrec
->ir_free
, &i
);
2070 * Read and update the existing record. We could just copy the ibtrec
2071 * across here, but that would defeat the purpose of having redundant
2072 * metadata. By making the modifications independently, we can catch
2073 * corruptions that we wouldn't see if we just copied from one record
2076 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
2079 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error
);
2081 rec
.ir_free
|= XFS_INOBT_MASK(offset
);
2084 XFS_WANT_CORRUPTED_GOTO(mp
, (rec
.ir_free
== ibtrec
->ir_free
) &&
2085 (rec
.ir_freecount
== ibtrec
->ir_freecount
),
2089 * The content of inobt records should always match between the inobt
2090 * and finobt. The lifecycle of records in the finobt is different from
2091 * the inobt in that the finobt only tracks records with at least one
2092 * free inode. Hence, if all of the inodes are free and we aren't
2093 * keeping inode chunks permanently on disk, remove the record.
2094 * Otherwise, update the record with the new information.
2096 * Note that we currently can't free chunks when the block size is large
2097 * enough for multiple chunks. Leave the finobt record to remain in sync
2100 if (rec
.ir_free
== XFS_INOBT_ALL_FREE
&&
2101 mp
->m_sb
.sb_inopblock
<= XFS_INODES_PER_CHUNK
&&
2102 !(mp
->m_flags
& XFS_MOUNT_IKEEP
)) {
2103 error
= xfs_btree_delete(cur
, &i
);
2108 error
= xfs_inobt_update(cur
, &rec
);
2114 error
= xfs_check_agi_freecount(cur
, agi
);
2118 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
2122 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
2127 * Free disk inode. Carefully avoids touching the incore inode, all
2128 * manipulations incore are the caller's responsibility.
2129 * The on-disk inode is not changed by this operation, only the
2130 * btree (free inode mask) is changed.
2134 struct xfs_trans
*tp
, /* transaction pointer */
2135 xfs_ino_t inode
, /* inode to be freed */
2136 struct xfs_defer_ops
*dfops
, /* extents to free */
2137 struct xfs_icluster
*xic
) /* cluster info if deleted */
2140 xfs_agblock_t agbno
; /* block number containing inode */
2141 struct xfs_buf
*agbp
; /* buffer for allocation group header */
2142 xfs_agino_t agino
; /* allocation group inode number */
2143 xfs_agnumber_t agno
; /* allocation group number */
2144 int error
; /* error return value */
2145 struct xfs_mount
*mp
; /* mount structure for filesystem */
2146 struct xfs_inobt_rec_incore rec
;/* btree record */
2151 * Break up inode number into its components.
2153 agno
= XFS_INO_TO_AGNO(mp
, inode
);
2154 if (agno
>= mp
->m_sb
.sb_agcount
) {
2155 xfs_warn(mp
, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2156 __func__
, agno
, mp
->m_sb
.sb_agcount
);
2160 agino
= XFS_INO_TO_AGINO(mp
, inode
);
2161 if (inode
!= XFS_AGINO_TO_INO(mp
, agno
, agino
)) {
2162 xfs_warn(mp
, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2163 __func__
, (unsigned long long)inode
,
2164 (unsigned long long)XFS_AGINO_TO_INO(mp
, agno
, agino
));
2168 agbno
= XFS_AGINO_TO_AGBNO(mp
, agino
);
2169 if (agbno
>= mp
->m_sb
.sb_agblocks
) {
2170 xfs_warn(mp
, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2171 __func__
, agbno
, mp
->m_sb
.sb_agblocks
);
2176 * Get the allocation group header.
2178 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &agbp
);
2180 xfs_warn(mp
, "%s: xfs_ialloc_read_agi() returned error %d.",
2186 * Fix up the inode allocation btree.
2188 error
= xfs_difree_inobt(mp
, tp
, agbp
, agino
, dfops
, xic
, &rec
);
2193 * Fix up the free inode btree.
2195 if (xfs_sb_version_hasfinobt(&mp
->m_sb
)) {
2196 error
= xfs_difree_finobt(mp
, tp
, agbp
, agino
, &rec
);
2209 struct xfs_mount
*mp
,
2210 struct xfs_trans
*tp
,
2211 xfs_agnumber_t agno
,
2213 xfs_agblock_t agbno
,
2214 xfs_agblock_t
*chunk_agbno
,
2215 xfs_agblock_t
*offset_agbno
,
2218 struct xfs_inobt_rec_incore rec
;
2219 struct xfs_btree_cur
*cur
;
2220 struct xfs_buf
*agbp
;
2224 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &agbp
);
2227 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2228 __func__
, error
, agno
);
2233 * Lookup the inode record for the given agino. If the record cannot be
2234 * found, then it's an invalid inode number and we should abort. Once
2235 * we have a record, we need to ensure it contains the inode number
2236 * we are looking up.
2238 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
2239 error
= xfs_inobt_lookup(cur
, agino
, XFS_LOOKUP_LE
, &i
);
2242 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
2243 if (!error
&& i
== 0)
2247 xfs_trans_brelse(tp
, agbp
);
2248 xfs_btree_del_cursor(cur
, error
? XFS_BTREE_ERROR
: XFS_BTREE_NOERROR
);
2252 /* check that the returned record contains the required inode */
2253 if (rec
.ir_startino
> agino
||
2254 rec
.ir_startino
+ mp
->m_ialloc_inos
<= agino
)
2257 /* for untrusted inodes check it is allocated first */
2258 if ((flags
& XFS_IGET_UNTRUSTED
) &&
2259 (rec
.ir_free
& XFS_INOBT_MASK(agino
- rec
.ir_startino
)))
2262 *chunk_agbno
= XFS_AGINO_TO_AGBNO(mp
, rec
.ir_startino
);
2263 *offset_agbno
= agbno
- *chunk_agbno
;
2268 * Return the location of the inode in imap, for mapping it into a buffer.
2272 xfs_mount_t
*mp
, /* file system mount structure */
2273 xfs_trans_t
*tp
, /* transaction pointer */
2274 xfs_ino_t ino
, /* inode to locate */
2275 struct xfs_imap
*imap
, /* location map structure */
2276 uint flags
) /* flags for inode btree lookup */
2278 xfs_agblock_t agbno
; /* block number of inode in the alloc group */
2279 xfs_agino_t agino
; /* inode number within alloc group */
2280 xfs_agnumber_t agno
; /* allocation group number */
2281 int blks_per_cluster
; /* num blocks per inode cluster */
2282 xfs_agblock_t chunk_agbno
; /* first block in inode chunk */
2283 xfs_agblock_t cluster_agbno
; /* first block in inode cluster */
2284 int error
; /* error code */
2285 int offset
; /* index of inode in its buffer */
2286 xfs_agblock_t offset_agbno
; /* blks from chunk start to inode */
2288 ASSERT(ino
!= NULLFSINO
);
2291 * Split up the inode number into its parts.
2293 agno
= XFS_INO_TO_AGNO(mp
, ino
);
2294 agino
= XFS_INO_TO_AGINO(mp
, ino
);
2295 agbno
= XFS_AGINO_TO_AGBNO(mp
, agino
);
2296 if (agno
>= mp
->m_sb
.sb_agcount
|| agbno
>= mp
->m_sb
.sb_agblocks
||
2297 ino
!= XFS_AGINO_TO_INO(mp
, agno
, agino
)) {
2300 * Don't output diagnostic information for untrusted inodes
2301 * as they can be invalid without implying corruption.
2303 if (flags
& XFS_IGET_UNTRUSTED
)
2305 if (agno
>= mp
->m_sb
.sb_agcount
) {
2307 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2308 __func__
, agno
, mp
->m_sb
.sb_agcount
);
2310 if (agbno
>= mp
->m_sb
.sb_agblocks
) {
2312 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2313 __func__
, (unsigned long long)agbno
,
2314 (unsigned long)mp
->m_sb
.sb_agblocks
);
2316 if (ino
!= XFS_AGINO_TO_INO(mp
, agno
, agino
)) {
2318 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2320 XFS_AGINO_TO_INO(mp
, agno
, agino
));
2327 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
2330 * For bulkstat and handle lookups, we have an untrusted inode number
2331 * that we have to verify is valid. We cannot do this just by reading
2332 * the inode buffer as it may have been unlinked and removed leaving
2333 * inodes in stale state on disk. Hence we have to do a btree lookup
2334 * in all cases where an untrusted inode number is passed.
2336 if (flags
& XFS_IGET_UNTRUSTED
) {
2337 error
= xfs_imap_lookup(mp
, tp
, agno
, agino
, agbno
,
2338 &chunk_agbno
, &offset_agbno
, flags
);
2345 * If the inode cluster size is the same as the blocksize or
2346 * smaller we get to the buffer by simple arithmetics.
2348 if (blks_per_cluster
== 1) {
2349 offset
= XFS_INO_TO_OFFSET(mp
, ino
);
2350 ASSERT(offset
< mp
->m_sb
.sb_inopblock
);
2352 imap
->im_blkno
= XFS_AGB_TO_DADDR(mp
, agno
, agbno
);
2353 imap
->im_len
= XFS_FSB_TO_BB(mp
, 1);
2354 imap
->im_boffset
= (unsigned short)(offset
<<
2355 mp
->m_sb
.sb_inodelog
);
2360 * If the inode chunks are aligned then use simple maths to
2361 * find the location. Otherwise we have to do a btree
2362 * lookup to find the location.
2364 if (mp
->m_inoalign_mask
) {
2365 offset_agbno
= agbno
& mp
->m_inoalign_mask
;
2366 chunk_agbno
= agbno
- offset_agbno
;
2368 error
= xfs_imap_lookup(mp
, tp
, agno
, agino
, agbno
,
2369 &chunk_agbno
, &offset_agbno
, flags
);
2375 ASSERT(agbno
>= chunk_agbno
);
2376 cluster_agbno
= chunk_agbno
+
2377 ((offset_agbno
/ blks_per_cluster
) * blks_per_cluster
);
2378 offset
= ((agbno
- cluster_agbno
) * mp
->m_sb
.sb_inopblock
) +
2379 XFS_INO_TO_OFFSET(mp
, ino
);
2381 imap
->im_blkno
= XFS_AGB_TO_DADDR(mp
, agno
, cluster_agbno
);
2382 imap
->im_len
= XFS_FSB_TO_BB(mp
, blks_per_cluster
);
2383 imap
->im_boffset
= (unsigned short)(offset
<< mp
->m_sb
.sb_inodelog
);
2386 * If the inode number maps to a block outside the bounds
2387 * of the file system then return NULL rather than calling
2388 * read_buf and panicing when we get an error from the
2391 if ((imap
->im_blkno
+ imap
->im_len
) >
2392 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
2394 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2395 __func__
, (unsigned long long) imap
->im_blkno
,
2396 (unsigned long long) imap
->im_len
,
2397 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
));
2404 * Compute and fill in value of m_in_maxlevels.
2407 xfs_ialloc_compute_maxlevels(
2408 xfs_mount_t
*mp
) /* file system mount structure */
2412 inodes
= (1LL << XFS_INO_AGINO_BITS(mp
)) >> XFS_INODES_PER_CHUNK_LOG
;
2413 mp
->m_in_maxlevels
= xfs_btree_compute_maxlevels(mp
, mp
->m_inobt_mnr
,
2418 * Log specified fields for the ag hdr (inode section). The growth of the agi
2419 * structure over time requires that we interpret the buffer as two logical
2420 * regions delineated by the end of the unlinked list. This is due to the size
2421 * of the hash table and its location in the middle of the agi.
2423 * For example, a request to log a field before agi_unlinked and a field after
2424 * agi_unlinked could cause us to log the entire hash table and use an excessive
2425 * amount of log space. To avoid this behavior, log the region up through
2426 * agi_unlinked in one call and the region after agi_unlinked through the end of
2427 * the structure in another.
2431 xfs_trans_t
*tp
, /* transaction pointer */
2432 xfs_buf_t
*bp
, /* allocation group header buffer */
2433 int fields
) /* bitmask of fields to log */
2435 int first
; /* first byte number */
2436 int last
; /* last byte number */
2437 static const short offsets
[] = { /* field starting offsets */
2438 /* keep in sync with bit definitions */
2439 offsetof(xfs_agi_t
, agi_magicnum
),
2440 offsetof(xfs_agi_t
, agi_versionnum
),
2441 offsetof(xfs_agi_t
, agi_seqno
),
2442 offsetof(xfs_agi_t
, agi_length
),
2443 offsetof(xfs_agi_t
, agi_count
),
2444 offsetof(xfs_agi_t
, agi_root
),
2445 offsetof(xfs_agi_t
, agi_level
),
2446 offsetof(xfs_agi_t
, agi_freecount
),
2447 offsetof(xfs_agi_t
, agi_newino
),
2448 offsetof(xfs_agi_t
, agi_dirino
),
2449 offsetof(xfs_agi_t
, agi_unlinked
),
2450 offsetof(xfs_agi_t
, agi_free_root
),
2451 offsetof(xfs_agi_t
, agi_free_level
),
2455 xfs_agi_t
*agi
; /* allocation group header */
2457 agi
= XFS_BUF_TO_AGI(bp
);
2458 ASSERT(agi
->agi_magicnum
== cpu_to_be32(XFS_AGI_MAGIC
));
2462 * Compute byte offsets for the first and last fields in the first
2463 * region and log the agi buffer. This only logs up through
2466 if (fields
& XFS_AGI_ALL_BITS_R1
) {
2467 xfs_btree_offsets(fields
, offsets
, XFS_AGI_NUM_BITS_R1
,
2469 xfs_trans_log_buf(tp
, bp
, first
, last
);
2473 * Mask off the bits in the first region and calculate the first and
2474 * last field offsets for any bits in the second region.
2476 fields
&= ~XFS_AGI_ALL_BITS_R1
;
2478 xfs_btree_offsets(fields
, offsets
, XFS_AGI_NUM_BITS_R2
,
2480 xfs_trans_log_buf(tp
, bp
, first
, last
);
2486 xfs_check_agi_unlinked(
2487 struct xfs_agi
*agi
)
2491 for (i
= 0; i
< XFS_AGI_UNLINKED_BUCKETS
; i
++)
2492 ASSERT(agi
->agi_unlinked
[i
]);
2495 #define xfs_check_agi_unlinked(agi)
2502 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2503 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(bp
);
2505 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
2506 if (!uuid_equal(&agi
->agi_uuid
, &mp
->m_sb
.sb_meta_uuid
))
2508 if (!xfs_log_check_lsn(mp
,
2509 be64_to_cpu(XFS_BUF_TO_AGI(bp
)->agi_lsn
)))
2514 * Validate the magic number of the agi block.
2516 if (agi
->agi_magicnum
!= cpu_to_be32(XFS_AGI_MAGIC
))
2518 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
)))
2521 if (be32_to_cpu(agi
->agi_level
) < 1 ||
2522 be32_to_cpu(agi
->agi_level
) > XFS_BTREE_MAXLEVELS
)
2525 if (xfs_sb_version_hasfinobt(&mp
->m_sb
) &&
2526 (be32_to_cpu(agi
->agi_free_level
) < 1 ||
2527 be32_to_cpu(agi
->agi_free_level
) > XFS_BTREE_MAXLEVELS
))
2531 * during growfs operations, the perag is not fully initialised,
2532 * so we can't use it for any useful checking. growfs ensures we can't
2533 * use it by using uncached buffers that don't have the perag attached
2534 * so we can detect and avoid this problem.
2536 if (bp
->b_pag
&& be32_to_cpu(agi
->agi_seqno
) != bp
->b_pag
->pag_agno
)
2539 xfs_check_agi_unlinked(agi
);
2544 xfs_agi_read_verify(
2547 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2549 if (xfs_sb_version_hascrc(&mp
->m_sb
) &&
2550 !xfs_buf_verify_cksum(bp
, XFS_AGI_CRC_OFF
))
2551 xfs_buf_ioerror(bp
, -EFSBADCRC
);
2552 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp
), mp
,
2553 XFS_ERRTAG_IALLOC_READ_AGI
))
2554 xfs_buf_ioerror(bp
, -EFSCORRUPTED
);
2557 xfs_verifier_error(bp
);
2561 xfs_agi_write_verify(
2564 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2565 struct xfs_buf_log_item
*bip
= bp
->b_fspriv
;
2567 if (!xfs_agi_verify(bp
)) {
2568 xfs_buf_ioerror(bp
, -EFSCORRUPTED
);
2569 xfs_verifier_error(bp
);
2573 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
2577 XFS_BUF_TO_AGI(bp
)->agi_lsn
= cpu_to_be64(bip
->bli_item
.li_lsn
);
2578 xfs_buf_update_cksum(bp
, XFS_AGI_CRC_OFF
);
2581 const struct xfs_buf_ops xfs_agi_buf_ops
= {
2583 .verify_read
= xfs_agi_read_verify
,
2584 .verify_write
= xfs_agi_write_verify
,
2588 * Read in the allocation group header (inode allocation section)
2592 struct xfs_mount
*mp
, /* file system mount structure */
2593 struct xfs_trans
*tp
, /* transaction pointer */
2594 xfs_agnumber_t agno
, /* allocation group number */
2595 struct xfs_buf
**bpp
) /* allocation group hdr buf */
2599 trace_xfs_read_agi(mp
, agno
);
2601 ASSERT(agno
!= NULLAGNUMBER
);
2602 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
,
2603 XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
)),
2604 XFS_FSS_TO_BB(mp
, 1), 0, bpp
, &xfs_agi_buf_ops
);
2608 xfs_trans_buf_set_type(tp
, *bpp
, XFS_BLFT_AGI_BUF
);
2610 xfs_buf_set_ref(*bpp
, XFS_AGI_REF
);
2615 xfs_ialloc_read_agi(
2616 struct xfs_mount
*mp
, /* file system mount structure */
2617 struct xfs_trans
*tp
, /* transaction pointer */
2618 xfs_agnumber_t agno
, /* allocation group number */
2619 struct xfs_buf
**bpp
) /* allocation group hdr buf */
2621 struct xfs_agi
*agi
; /* allocation group header */
2622 struct xfs_perag
*pag
; /* per allocation group data */
2625 trace_xfs_ialloc_read_agi(mp
, agno
);
2627 error
= xfs_read_agi(mp
, tp
, agno
, bpp
);
2631 agi
= XFS_BUF_TO_AGI(*bpp
);
2632 pag
= xfs_perag_get(mp
, agno
);
2633 if (!pag
->pagi_init
) {
2634 pag
->pagi_freecount
= be32_to_cpu(agi
->agi_freecount
);
2635 pag
->pagi_count
= be32_to_cpu(agi
->agi_count
);
2640 * It's possible for these to be out of sync if
2641 * we are in the middle of a forced shutdown.
2643 ASSERT(pag
->pagi_freecount
== be32_to_cpu(agi
->agi_freecount
) ||
2644 XFS_FORCED_SHUTDOWN(mp
));
2650 * Read in the agi to initialise the per-ag data in the mount structure
2653 xfs_ialloc_pagi_init(
2654 xfs_mount_t
*mp
, /* file system mount structure */
2655 xfs_trans_t
*tp
, /* transaction pointer */
2656 xfs_agnumber_t agno
) /* allocation group number */
2658 xfs_buf_t
*bp
= NULL
;
2661 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &bp
);
2665 xfs_trans_brelse(tp
, bp
);
2669 /* Calculate the first and last possible inode number in an AG. */
2671 xfs_ialloc_agino_range(
2672 struct xfs_mount
*mp
,
2673 xfs_agnumber_t agno
,
2680 eoag
= xfs_ag_block_count(mp
, agno
);
2683 * Calculate the first inode, which will be in the first
2684 * cluster-aligned block after the AGFL.
2686 bno
= round_up(XFS_AGFL_BLOCK(mp
) + 1,
2687 xfs_ialloc_cluster_alignment(mp
));
2688 *first
= XFS_OFFBNO_TO_AGINO(mp
, bno
, 0);
2691 * Calculate the last inode, which will be at the end of the
2692 * last (aligned) cluster that can be allocated in the AG.
2694 bno
= round_down(eoag
, xfs_ialloc_cluster_alignment(mp
));
2695 *last
= XFS_OFFBNO_TO_AGINO(mp
, bno
, 0) - 1;
2699 * Verify that an AG inode number pointer neither points outside the AG
2700 * nor points at static metadata.
2704 struct xfs_mount
*mp
,
2705 xfs_agnumber_t agno
,
2711 xfs_ialloc_agino_range(mp
, agno
, &first
, &last
);
2712 return agino
>= first
&& agino
<= last
;
2716 * Verify that an FS inode number pointer neither points outside the
2717 * filesystem nor points at static AG metadata.
2721 struct xfs_mount
*mp
,
2724 xfs_agnumber_t agno
= XFS_INO_TO_AGNO(mp
, ino
);
2725 xfs_agino_t agino
= XFS_INO_TO_AGINO(mp
, ino
);
2727 if (agno
>= mp
->m_sb
.sb_agcount
)
2729 if (XFS_AGINO_TO_INO(mp
, agno
, agino
) != ino
)
2731 return xfs_verify_agino(mp
, agno
, agino
);
2734 /* Is this an internal inode number? */
2737 struct xfs_mount
*mp
,
2740 return ino
== mp
->m_sb
.sb_rbmino
|| ino
== mp
->m_sb
.sb_rsumino
||
2741 (xfs_sb_version_hasquota(&mp
->m_sb
) &&
2742 xfs_is_quota_inode(&mp
->m_sb
, ino
));
2746 * Verify that a directory entry's inode number doesn't point at an internal
2747 * inode, empty space, or static AG metadata.
2751 struct xfs_mount
*mp
,
2754 if (xfs_internal_inum(mp
, ino
))
2756 return xfs_verify_ino(mp
, ino
);