Linux 4.4.3
[linux/fpc-iii.git] / fs / jbd2 / journal.c
blob81e622681c82273aa050eb85cdb057b1fea0e79e
1 /*
2 * linux/fs/jbd2/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
106 #ifdef CONFIG_JBD2_DEBUG
107 void __jbd2_debug(int level, const char *file, const char *func,
108 unsigned int line, const char *fmt, ...)
110 struct va_format vaf;
111 va_list args;
113 if (level > jbd2_journal_enable_debug)
114 return;
115 va_start(args, fmt);
116 vaf.fmt = fmt;
117 vaf.va = &args;
118 printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
119 va_end(args);
121 EXPORT_SYMBOL(__jbd2_debug);
122 #endif
124 /* Checksumming functions */
125 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
127 if (!jbd2_journal_has_csum_v2or3_feature(j))
128 return 1;
130 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
133 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
135 __u32 csum;
136 __be32 old_csum;
138 old_csum = sb->s_checksum;
139 sb->s_checksum = 0;
140 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
141 sb->s_checksum = old_csum;
143 return cpu_to_be32(csum);
146 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
148 if (!jbd2_journal_has_csum_v2or3(j))
149 return 1;
151 return sb->s_checksum == jbd2_superblock_csum(j, sb);
154 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
156 if (!jbd2_journal_has_csum_v2or3(j))
157 return;
159 sb->s_checksum = jbd2_superblock_csum(j, sb);
163 * Helper function used to manage commit timeouts
166 static void commit_timeout(unsigned long __data)
168 struct task_struct * p = (struct task_struct *) __data;
170 wake_up_process(p);
174 * kjournald2: The main thread function used to manage a logging device
175 * journal.
177 * This kernel thread is responsible for two things:
179 * 1) COMMIT: Every so often we need to commit the current state of the
180 * filesystem to disk. The journal thread is responsible for writing
181 * all of the metadata buffers to disk.
183 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
184 * of the data in that part of the log has been rewritten elsewhere on
185 * the disk. Flushing these old buffers to reclaim space in the log is
186 * known as checkpointing, and this thread is responsible for that job.
189 static int kjournald2(void *arg)
191 journal_t *journal = arg;
192 transaction_t *transaction;
195 * Set up an interval timer which can be used to trigger a commit wakeup
196 * after the commit interval expires
198 setup_timer(&journal->j_commit_timer, commit_timeout,
199 (unsigned long)current);
201 set_freezable();
203 /* Record that the journal thread is running */
204 journal->j_task = current;
205 wake_up(&journal->j_wait_done_commit);
208 * And now, wait forever for commit wakeup events.
210 write_lock(&journal->j_state_lock);
212 loop:
213 if (journal->j_flags & JBD2_UNMOUNT)
214 goto end_loop;
216 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
217 journal->j_commit_sequence, journal->j_commit_request);
219 if (journal->j_commit_sequence != journal->j_commit_request) {
220 jbd_debug(1, "OK, requests differ\n");
221 write_unlock(&journal->j_state_lock);
222 del_timer_sync(&journal->j_commit_timer);
223 jbd2_journal_commit_transaction(journal);
224 write_lock(&journal->j_state_lock);
225 goto loop;
228 wake_up(&journal->j_wait_done_commit);
229 if (freezing(current)) {
231 * The simpler the better. Flushing journal isn't a
232 * good idea, because that depends on threads that may
233 * be already stopped.
235 jbd_debug(1, "Now suspending kjournald2\n");
236 write_unlock(&journal->j_state_lock);
237 try_to_freeze();
238 write_lock(&journal->j_state_lock);
239 } else {
241 * We assume on resume that commits are already there,
242 * so we don't sleep
244 DEFINE_WAIT(wait);
245 int should_sleep = 1;
247 prepare_to_wait(&journal->j_wait_commit, &wait,
248 TASK_INTERRUPTIBLE);
249 if (journal->j_commit_sequence != journal->j_commit_request)
250 should_sleep = 0;
251 transaction = journal->j_running_transaction;
252 if (transaction && time_after_eq(jiffies,
253 transaction->t_expires))
254 should_sleep = 0;
255 if (journal->j_flags & JBD2_UNMOUNT)
256 should_sleep = 0;
257 if (should_sleep) {
258 write_unlock(&journal->j_state_lock);
259 schedule();
260 write_lock(&journal->j_state_lock);
262 finish_wait(&journal->j_wait_commit, &wait);
265 jbd_debug(1, "kjournald2 wakes\n");
268 * Were we woken up by a commit wakeup event?
270 transaction = journal->j_running_transaction;
271 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
272 journal->j_commit_request = transaction->t_tid;
273 jbd_debug(1, "woke because of timeout\n");
275 goto loop;
277 end_loop:
278 write_unlock(&journal->j_state_lock);
279 del_timer_sync(&journal->j_commit_timer);
280 journal->j_task = NULL;
281 wake_up(&journal->j_wait_done_commit);
282 jbd_debug(1, "Journal thread exiting.\n");
283 return 0;
286 static int jbd2_journal_start_thread(journal_t *journal)
288 struct task_struct *t;
290 t = kthread_run(kjournald2, journal, "jbd2/%s",
291 journal->j_devname);
292 if (IS_ERR(t))
293 return PTR_ERR(t);
295 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
296 return 0;
299 static void journal_kill_thread(journal_t *journal)
301 write_lock(&journal->j_state_lock);
302 journal->j_flags |= JBD2_UNMOUNT;
304 while (journal->j_task) {
305 write_unlock(&journal->j_state_lock);
306 wake_up(&journal->j_wait_commit);
307 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
308 write_lock(&journal->j_state_lock);
310 write_unlock(&journal->j_state_lock);
314 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
316 * Writes a metadata buffer to a given disk block. The actual IO is not
317 * performed but a new buffer_head is constructed which labels the data
318 * to be written with the correct destination disk block.
320 * Any magic-number escaping which needs to be done will cause a
321 * copy-out here. If the buffer happens to start with the
322 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
323 * magic number is only written to the log for descripter blocks. In
324 * this case, we copy the data and replace the first word with 0, and we
325 * return a result code which indicates that this buffer needs to be
326 * marked as an escaped buffer in the corresponding log descriptor
327 * block. The missing word can then be restored when the block is read
328 * during recovery.
330 * If the source buffer has already been modified by a new transaction
331 * since we took the last commit snapshot, we use the frozen copy of
332 * that data for IO. If we end up using the existing buffer_head's data
333 * for the write, then we have to make sure nobody modifies it while the
334 * IO is in progress. do_get_write_access() handles this.
336 * The function returns a pointer to the buffer_head to be used for IO.
339 * Return value:
340 * <0: Error
341 * >=0: Finished OK
343 * On success:
344 * Bit 0 set == escape performed on the data
345 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
348 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
349 struct journal_head *jh_in,
350 struct buffer_head **bh_out,
351 sector_t blocknr)
353 int need_copy_out = 0;
354 int done_copy_out = 0;
355 int do_escape = 0;
356 char *mapped_data;
357 struct buffer_head *new_bh;
358 struct page *new_page;
359 unsigned int new_offset;
360 struct buffer_head *bh_in = jh2bh(jh_in);
361 journal_t *journal = transaction->t_journal;
364 * The buffer really shouldn't be locked: only the current committing
365 * transaction is allowed to write it, so nobody else is allowed
366 * to do any IO.
368 * akpm: except if we're journalling data, and write() output is
369 * also part of a shared mapping, and another thread has
370 * decided to launch a writepage() against this buffer.
372 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
374 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
376 /* keep subsequent assertions sane */
377 atomic_set(&new_bh->b_count, 1);
379 jbd_lock_bh_state(bh_in);
380 repeat:
382 * If a new transaction has already done a buffer copy-out, then
383 * we use that version of the data for the commit.
385 if (jh_in->b_frozen_data) {
386 done_copy_out = 1;
387 new_page = virt_to_page(jh_in->b_frozen_data);
388 new_offset = offset_in_page(jh_in->b_frozen_data);
389 } else {
390 new_page = jh2bh(jh_in)->b_page;
391 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
394 mapped_data = kmap_atomic(new_page);
396 * Fire data frozen trigger if data already wasn't frozen. Do this
397 * before checking for escaping, as the trigger may modify the magic
398 * offset. If a copy-out happens afterwards, it will have the correct
399 * data in the buffer.
401 if (!done_copy_out)
402 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
403 jh_in->b_triggers);
406 * Check for escaping
408 if (*((__be32 *)(mapped_data + new_offset)) ==
409 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
410 need_copy_out = 1;
411 do_escape = 1;
413 kunmap_atomic(mapped_data);
416 * Do we need to do a data copy?
418 if (need_copy_out && !done_copy_out) {
419 char *tmp;
421 jbd_unlock_bh_state(bh_in);
422 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
423 if (!tmp) {
424 brelse(new_bh);
425 return -ENOMEM;
427 jbd_lock_bh_state(bh_in);
428 if (jh_in->b_frozen_data) {
429 jbd2_free(tmp, bh_in->b_size);
430 goto repeat;
433 jh_in->b_frozen_data = tmp;
434 mapped_data = kmap_atomic(new_page);
435 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
436 kunmap_atomic(mapped_data);
438 new_page = virt_to_page(tmp);
439 new_offset = offset_in_page(tmp);
440 done_copy_out = 1;
443 * This isn't strictly necessary, as we're using frozen
444 * data for the escaping, but it keeps consistency with
445 * b_frozen_data usage.
447 jh_in->b_frozen_triggers = jh_in->b_triggers;
451 * Did we need to do an escaping? Now we've done all the
452 * copying, we can finally do so.
454 if (do_escape) {
455 mapped_data = kmap_atomic(new_page);
456 *((unsigned int *)(mapped_data + new_offset)) = 0;
457 kunmap_atomic(mapped_data);
460 set_bh_page(new_bh, new_page, new_offset);
461 new_bh->b_size = bh_in->b_size;
462 new_bh->b_bdev = journal->j_dev;
463 new_bh->b_blocknr = blocknr;
464 new_bh->b_private = bh_in;
465 set_buffer_mapped(new_bh);
466 set_buffer_dirty(new_bh);
468 *bh_out = new_bh;
471 * The to-be-written buffer needs to get moved to the io queue,
472 * and the original buffer whose contents we are shadowing or
473 * copying is moved to the transaction's shadow queue.
475 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
476 spin_lock(&journal->j_list_lock);
477 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
478 spin_unlock(&journal->j_list_lock);
479 set_buffer_shadow(bh_in);
480 jbd_unlock_bh_state(bh_in);
482 return do_escape | (done_copy_out << 1);
486 * Allocation code for the journal file. Manage the space left in the
487 * journal, so that we can begin checkpointing when appropriate.
491 * Called with j_state_lock locked for writing.
492 * Returns true if a transaction commit was started.
494 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
496 /* Return if the txn has already requested to be committed */
497 if (journal->j_commit_request == target)
498 return 0;
501 * The only transaction we can possibly wait upon is the
502 * currently running transaction (if it exists). Otherwise,
503 * the target tid must be an old one.
505 if (journal->j_running_transaction &&
506 journal->j_running_transaction->t_tid == target) {
508 * We want a new commit: OK, mark the request and wakeup the
509 * commit thread. We do _not_ do the commit ourselves.
512 journal->j_commit_request = target;
513 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
514 journal->j_commit_request,
515 journal->j_commit_sequence);
516 journal->j_running_transaction->t_requested = jiffies;
517 wake_up(&journal->j_wait_commit);
518 return 1;
519 } else if (!tid_geq(journal->j_commit_request, target))
520 /* This should never happen, but if it does, preserve
521 the evidence before kjournald goes into a loop and
522 increments j_commit_sequence beyond all recognition. */
523 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
524 journal->j_commit_request,
525 journal->j_commit_sequence,
526 target, journal->j_running_transaction ?
527 journal->j_running_transaction->t_tid : 0);
528 return 0;
531 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
533 int ret;
535 write_lock(&journal->j_state_lock);
536 ret = __jbd2_log_start_commit(journal, tid);
537 write_unlock(&journal->j_state_lock);
538 return ret;
542 * Force and wait any uncommitted transactions. We can only force the running
543 * transaction if we don't have an active handle, otherwise, we will deadlock.
544 * Returns: <0 in case of error,
545 * 0 if nothing to commit,
546 * 1 if transaction was successfully committed.
548 static int __jbd2_journal_force_commit(journal_t *journal)
550 transaction_t *transaction = NULL;
551 tid_t tid;
552 int need_to_start = 0, ret = 0;
554 read_lock(&journal->j_state_lock);
555 if (journal->j_running_transaction && !current->journal_info) {
556 transaction = journal->j_running_transaction;
557 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
558 need_to_start = 1;
559 } else if (journal->j_committing_transaction)
560 transaction = journal->j_committing_transaction;
562 if (!transaction) {
563 /* Nothing to commit */
564 read_unlock(&journal->j_state_lock);
565 return 0;
567 tid = transaction->t_tid;
568 read_unlock(&journal->j_state_lock);
569 if (need_to_start)
570 jbd2_log_start_commit(journal, tid);
571 ret = jbd2_log_wait_commit(journal, tid);
572 if (!ret)
573 ret = 1;
575 return ret;
579 * Force and wait upon a commit if the calling process is not within
580 * transaction. This is used for forcing out undo-protected data which contains
581 * bitmaps, when the fs is running out of space.
583 * @journal: journal to force
584 * Returns true if progress was made.
586 int jbd2_journal_force_commit_nested(journal_t *journal)
588 int ret;
590 ret = __jbd2_journal_force_commit(journal);
591 return ret > 0;
595 * int journal_force_commit() - force any uncommitted transactions
596 * @journal: journal to force
598 * Caller want unconditional commit. We can only force the running transaction
599 * if we don't have an active handle, otherwise, we will deadlock.
601 int jbd2_journal_force_commit(journal_t *journal)
603 int ret;
605 J_ASSERT(!current->journal_info);
606 ret = __jbd2_journal_force_commit(journal);
607 if (ret > 0)
608 ret = 0;
609 return ret;
613 * Start a commit of the current running transaction (if any). Returns true
614 * if a transaction is going to be committed (or is currently already
615 * committing), and fills its tid in at *ptid
617 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
619 int ret = 0;
621 write_lock(&journal->j_state_lock);
622 if (journal->j_running_transaction) {
623 tid_t tid = journal->j_running_transaction->t_tid;
625 __jbd2_log_start_commit(journal, tid);
626 /* There's a running transaction and we've just made sure
627 * it's commit has been scheduled. */
628 if (ptid)
629 *ptid = tid;
630 ret = 1;
631 } else if (journal->j_committing_transaction) {
633 * If commit has been started, then we have to wait for
634 * completion of that transaction.
636 if (ptid)
637 *ptid = journal->j_committing_transaction->t_tid;
638 ret = 1;
640 write_unlock(&journal->j_state_lock);
641 return ret;
645 * Return 1 if a given transaction has not yet sent barrier request
646 * connected with a transaction commit. If 0 is returned, transaction
647 * may or may not have sent the barrier. Used to avoid sending barrier
648 * twice in common cases.
650 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
652 int ret = 0;
653 transaction_t *commit_trans;
655 if (!(journal->j_flags & JBD2_BARRIER))
656 return 0;
657 read_lock(&journal->j_state_lock);
658 /* Transaction already committed? */
659 if (tid_geq(journal->j_commit_sequence, tid))
660 goto out;
661 commit_trans = journal->j_committing_transaction;
662 if (!commit_trans || commit_trans->t_tid != tid) {
663 ret = 1;
664 goto out;
667 * Transaction is being committed and we already proceeded to
668 * submitting a flush to fs partition?
670 if (journal->j_fs_dev != journal->j_dev) {
671 if (!commit_trans->t_need_data_flush ||
672 commit_trans->t_state >= T_COMMIT_DFLUSH)
673 goto out;
674 } else {
675 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
676 goto out;
678 ret = 1;
679 out:
680 read_unlock(&journal->j_state_lock);
681 return ret;
683 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
686 * Wait for a specified commit to complete.
687 * The caller may not hold the journal lock.
689 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
691 int err = 0;
693 read_lock(&journal->j_state_lock);
694 #ifdef CONFIG_JBD2_DEBUG
695 if (!tid_geq(journal->j_commit_request, tid)) {
696 printk(KERN_ERR
697 "%s: error: j_commit_request=%d, tid=%d\n",
698 __func__, journal->j_commit_request, tid);
700 #endif
701 while (tid_gt(tid, journal->j_commit_sequence)) {
702 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
703 tid, journal->j_commit_sequence);
704 read_unlock(&journal->j_state_lock);
705 wake_up(&journal->j_wait_commit);
706 wait_event(journal->j_wait_done_commit,
707 !tid_gt(tid, journal->j_commit_sequence));
708 read_lock(&journal->j_state_lock);
710 read_unlock(&journal->j_state_lock);
712 if (unlikely(is_journal_aborted(journal)))
713 err = -EIO;
714 return err;
718 * When this function returns the transaction corresponding to tid
719 * will be completed. If the transaction has currently running, start
720 * committing that transaction before waiting for it to complete. If
721 * the transaction id is stale, it is by definition already completed,
722 * so just return SUCCESS.
724 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
726 int need_to_wait = 1;
728 read_lock(&journal->j_state_lock);
729 if (journal->j_running_transaction &&
730 journal->j_running_transaction->t_tid == tid) {
731 if (journal->j_commit_request != tid) {
732 /* transaction not yet started, so request it */
733 read_unlock(&journal->j_state_lock);
734 jbd2_log_start_commit(journal, tid);
735 goto wait_commit;
737 } else if (!(journal->j_committing_transaction &&
738 journal->j_committing_transaction->t_tid == tid))
739 need_to_wait = 0;
740 read_unlock(&journal->j_state_lock);
741 if (!need_to_wait)
742 return 0;
743 wait_commit:
744 return jbd2_log_wait_commit(journal, tid);
746 EXPORT_SYMBOL(jbd2_complete_transaction);
749 * Log buffer allocation routines:
752 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
754 unsigned long blocknr;
756 write_lock(&journal->j_state_lock);
757 J_ASSERT(journal->j_free > 1);
759 blocknr = journal->j_head;
760 journal->j_head++;
761 journal->j_free--;
762 if (journal->j_head == journal->j_last)
763 journal->j_head = journal->j_first;
764 write_unlock(&journal->j_state_lock);
765 return jbd2_journal_bmap(journal, blocknr, retp);
769 * Conversion of logical to physical block numbers for the journal
771 * On external journals the journal blocks are identity-mapped, so
772 * this is a no-op. If needed, we can use j_blk_offset - everything is
773 * ready.
775 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
776 unsigned long long *retp)
778 int err = 0;
779 unsigned long long ret;
781 if (journal->j_inode) {
782 ret = bmap(journal->j_inode, blocknr);
783 if (ret)
784 *retp = ret;
785 else {
786 printk(KERN_ALERT "%s: journal block not found "
787 "at offset %lu on %s\n",
788 __func__, blocknr, journal->j_devname);
789 err = -EIO;
790 __journal_abort_soft(journal, err);
792 } else {
793 *retp = blocknr; /* +journal->j_blk_offset */
795 return err;
799 * We play buffer_head aliasing tricks to write data/metadata blocks to
800 * the journal without copying their contents, but for journal
801 * descriptor blocks we do need to generate bona fide buffers.
803 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
804 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
805 * But we don't bother doing that, so there will be coherency problems with
806 * mmaps of blockdevs which hold live JBD-controlled filesystems.
808 struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
810 struct buffer_head *bh;
811 unsigned long long blocknr;
812 int err;
814 err = jbd2_journal_next_log_block(journal, &blocknr);
816 if (err)
817 return NULL;
819 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
820 if (!bh)
821 return NULL;
822 lock_buffer(bh);
823 memset(bh->b_data, 0, journal->j_blocksize);
824 set_buffer_uptodate(bh);
825 unlock_buffer(bh);
826 BUFFER_TRACE(bh, "return this buffer");
827 return bh;
831 * Return tid of the oldest transaction in the journal and block in the journal
832 * where the transaction starts.
834 * If the journal is now empty, return which will be the next transaction ID
835 * we will write and where will that transaction start.
837 * The return value is 0 if journal tail cannot be pushed any further, 1 if
838 * it can.
840 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
841 unsigned long *block)
843 transaction_t *transaction;
844 int ret;
846 read_lock(&journal->j_state_lock);
847 spin_lock(&journal->j_list_lock);
848 transaction = journal->j_checkpoint_transactions;
849 if (transaction) {
850 *tid = transaction->t_tid;
851 *block = transaction->t_log_start;
852 } else if ((transaction = journal->j_committing_transaction) != NULL) {
853 *tid = transaction->t_tid;
854 *block = transaction->t_log_start;
855 } else if ((transaction = journal->j_running_transaction) != NULL) {
856 *tid = transaction->t_tid;
857 *block = journal->j_head;
858 } else {
859 *tid = journal->j_transaction_sequence;
860 *block = journal->j_head;
862 ret = tid_gt(*tid, journal->j_tail_sequence);
863 spin_unlock(&journal->j_list_lock);
864 read_unlock(&journal->j_state_lock);
866 return ret;
870 * Update information in journal structure and in on disk journal superblock
871 * about log tail. This function does not check whether information passed in
872 * really pushes log tail further. It's responsibility of the caller to make
873 * sure provided log tail information is valid (e.g. by holding
874 * j_checkpoint_mutex all the time between computing log tail and calling this
875 * function as is the case with jbd2_cleanup_journal_tail()).
877 * Requires j_checkpoint_mutex
879 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
881 unsigned long freed;
882 int ret;
884 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
887 * We cannot afford for write to remain in drive's caches since as
888 * soon as we update j_tail, next transaction can start reusing journal
889 * space and if we lose sb update during power failure we'd replay
890 * old transaction with possibly newly overwritten data.
892 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
893 if (ret)
894 goto out;
896 write_lock(&journal->j_state_lock);
897 freed = block - journal->j_tail;
898 if (block < journal->j_tail)
899 freed += journal->j_last - journal->j_first;
901 trace_jbd2_update_log_tail(journal, tid, block, freed);
902 jbd_debug(1,
903 "Cleaning journal tail from %d to %d (offset %lu), "
904 "freeing %lu\n",
905 journal->j_tail_sequence, tid, block, freed);
907 journal->j_free += freed;
908 journal->j_tail_sequence = tid;
909 journal->j_tail = block;
910 write_unlock(&journal->j_state_lock);
912 out:
913 return ret;
917 * This is a variaon of __jbd2_update_log_tail which checks for validity of
918 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
919 * with other threads updating log tail.
921 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
923 mutex_lock(&journal->j_checkpoint_mutex);
924 if (tid_gt(tid, journal->j_tail_sequence))
925 __jbd2_update_log_tail(journal, tid, block);
926 mutex_unlock(&journal->j_checkpoint_mutex);
929 struct jbd2_stats_proc_session {
930 journal_t *journal;
931 struct transaction_stats_s *stats;
932 int start;
933 int max;
936 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
938 return *pos ? NULL : SEQ_START_TOKEN;
941 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
943 return NULL;
946 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
948 struct jbd2_stats_proc_session *s = seq->private;
950 if (v != SEQ_START_TOKEN)
951 return 0;
952 seq_printf(seq, "%lu transactions (%lu requested), "
953 "each up to %u blocks\n",
954 s->stats->ts_tid, s->stats->ts_requested,
955 s->journal->j_max_transaction_buffers);
956 if (s->stats->ts_tid == 0)
957 return 0;
958 seq_printf(seq, "average: \n %ums waiting for transaction\n",
959 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
960 seq_printf(seq, " %ums request delay\n",
961 (s->stats->ts_requested == 0) ? 0 :
962 jiffies_to_msecs(s->stats->run.rs_request_delay /
963 s->stats->ts_requested));
964 seq_printf(seq, " %ums running transaction\n",
965 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
966 seq_printf(seq, " %ums transaction was being locked\n",
967 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
968 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
969 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
970 seq_printf(seq, " %ums logging transaction\n",
971 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
972 seq_printf(seq, " %lluus average transaction commit time\n",
973 div_u64(s->journal->j_average_commit_time, 1000));
974 seq_printf(seq, " %lu handles per transaction\n",
975 s->stats->run.rs_handle_count / s->stats->ts_tid);
976 seq_printf(seq, " %lu blocks per transaction\n",
977 s->stats->run.rs_blocks / s->stats->ts_tid);
978 seq_printf(seq, " %lu logged blocks per transaction\n",
979 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
980 return 0;
983 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
987 static const struct seq_operations jbd2_seq_info_ops = {
988 .start = jbd2_seq_info_start,
989 .next = jbd2_seq_info_next,
990 .stop = jbd2_seq_info_stop,
991 .show = jbd2_seq_info_show,
994 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
996 journal_t *journal = PDE_DATA(inode);
997 struct jbd2_stats_proc_session *s;
998 int rc, size;
1000 s = kmalloc(sizeof(*s), GFP_KERNEL);
1001 if (s == NULL)
1002 return -ENOMEM;
1003 size = sizeof(struct transaction_stats_s);
1004 s->stats = kmalloc(size, GFP_KERNEL);
1005 if (s->stats == NULL) {
1006 kfree(s);
1007 return -ENOMEM;
1009 spin_lock(&journal->j_history_lock);
1010 memcpy(s->stats, &journal->j_stats, size);
1011 s->journal = journal;
1012 spin_unlock(&journal->j_history_lock);
1014 rc = seq_open(file, &jbd2_seq_info_ops);
1015 if (rc == 0) {
1016 struct seq_file *m = file->private_data;
1017 m->private = s;
1018 } else {
1019 kfree(s->stats);
1020 kfree(s);
1022 return rc;
1026 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1028 struct seq_file *seq = file->private_data;
1029 struct jbd2_stats_proc_session *s = seq->private;
1030 kfree(s->stats);
1031 kfree(s);
1032 return seq_release(inode, file);
1035 static const struct file_operations jbd2_seq_info_fops = {
1036 .owner = THIS_MODULE,
1037 .open = jbd2_seq_info_open,
1038 .read = seq_read,
1039 .llseek = seq_lseek,
1040 .release = jbd2_seq_info_release,
1043 static struct proc_dir_entry *proc_jbd2_stats;
1045 static void jbd2_stats_proc_init(journal_t *journal)
1047 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1048 if (journal->j_proc_entry) {
1049 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1050 &jbd2_seq_info_fops, journal);
1054 static void jbd2_stats_proc_exit(journal_t *journal)
1056 remove_proc_entry("info", journal->j_proc_entry);
1057 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1061 * Management for journal control blocks: functions to create and
1062 * destroy journal_t structures, and to initialise and read existing
1063 * journal blocks from disk. */
1065 /* First: create and setup a journal_t object in memory. We initialise
1066 * very few fields yet: that has to wait until we have created the
1067 * journal structures from from scratch, or loaded them from disk. */
1069 static journal_t * journal_init_common (void)
1071 journal_t *journal;
1072 int err;
1074 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1075 if (!journal)
1076 return NULL;
1078 init_waitqueue_head(&journal->j_wait_transaction_locked);
1079 init_waitqueue_head(&journal->j_wait_done_commit);
1080 init_waitqueue_head(&journal->j_wait_commit);
1081 init_waitqueue_head(&journal->j_wait_updates);
1082 init_waitqueue_head(&journal->j_wait_reserved);
1083 mutex_init(&journal->j_barrier);
1084 mutex_init(&journal->j_checkpoint_mutex);
1085 spin_lock_init(&journal->j_revoke_lock);
1086 spin_lock_init(&journal->j_list_lock);
1087 rwlock_init(&journal->j_state_lock);
1089 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1090 journal->j_min_batch_time = 0;
1091 journal->j_max_batch_time = 15000; /* 15ms */
1092 atomic_set(&journal->j_reserved_credits, 0);
1094 /* The journal is marked for error until we succeed with recovery! */
1095 journal->j_flags = JBD2_ABORT;
1097 /* Set up a default-sized revoke table for the new mount. */
1098 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1099 if (err) {
1100 kfree(journal);
1101 return NULL;
1104 spin_lock_init(&journal->j_history_lock);
1106 return journal;
1109 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1111 * Create a journal structure assigned some fixed set of disk blocks to
1112 * the journal. We don't actually touch those disk blocks yet, but we
1113 * need to set up all of the mapping information to tell the journaling
1114 * system where the journal blocks are.
1119 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1120 * @bdev: Block device on which to create the journal
1121 * @fs_dev: Device which hold journalled filesystem for this journal.
1122 * @start: Block nr Start of journal.
1123 * @len: Length of the journal in blocks.
1124 * @blocksize: blocksize of journalling device
1126 * Returns: a newly created journal_t *
1128 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1129 * range of blocks on an arbitrary block device.
1132 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1133 struct block_device *fs_dev,
1134 unsigned long long start, int len, int blocksize)
1136 journal_t *journal = journal_init_common();
1137 struct buffer_head *bh;
1138 int n;
1140 if (!journal)
1141 return NULL;
1143 /* journal descriptor can store up to n blocks -bzzz */
1144 journal->j_blocksize = blocksize;
1145 journal->j_dev = bdev;
1146 journal->j_fs_dev = fs_dev;
1147 journal->j_blk_offset = start;
1148 journal->j_maxlen = len;
1149 bdevname(journal->j_dev, journal->j_devname);
1150 strreplace(journal->j_devname, '/', '!');
1151 jbd2_stats_proc_init(journal);
1152 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1153 journal->j_wbufsize = n;
1154 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1155 if (!journal->j_wbuf) {
1156 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1157 __func__);
1158 goto out_err;
1161 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1162 if (!bh) {
1163 printk(KERN_ERR
1164 "%s: Cannot get buffer for journal superblock\n",
1165 __func__);
1166 goto out_err;
1168 journal->j_sb_buffer = bh;
1169 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1171 return journal;
1172 out_err:
1173 kfree(journal->j_wbuf);
1174 jbd2_stats_proc_exit(journal);
1175 kfree(journal);
1176 return NULL;
1180 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1181 * @inode: An inode to create the journal in
1183 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1184 * the journal. The inode must exist already, must support bmap() and
1185 * must have all data blocks preallocated.
1187 journal_t * jbd2_journal_init_inode (struct inode *inode)
1189 struct buffer_head *bh;
1190 journal_t *journal = journal_init_common();
1191 char *p;
1192 int err;
1193 int n;
1194 unsigned long long blocknr;
1196 if (!journal)
1197 return NULL;
1199 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1200 journal->j_inode = inode;
1201 bdevname(journal->j_dev, journal->j_devname);
1202 p = strreplace(journal->j_devname, '/', '!');
1203 sprintf(p, "-%lu", journal->j_inode->i_ino);
1204 jbd_debug(1,
1205 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1206 journal, inode->i_sb->s_id, inode->i_ino,
1207 (long long) inode->i_size,
1208 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1210 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1211 journal->j_blocksize = inode->i_sb->s_blocksize;
1212 jbd2_stats_proc_init(journal);
1214 /* journal descriptor can store up to n blocks -bzzz */
1215 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1216 journal->j_wbufsize = n;
1217 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1218 if (!journal->j_wbuf) {
1219 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1220 __func__);
1221 goto out_err;
1224 err = jbd2_journal_bmap(journal, 0, &blocknr);
1225 /* If that failed, give up */
1226 if (err) {
1227 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1228 __func__);
1229 goto out_err;
1232 bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize);
1233 if (!bh) {
1234 printk(KERN_ERR
1235 "%s: Cannot get buffer for journal superblock\n",
1236 __func__);
1237 goto out_err;
1239 journal->j_sb_buffer = bh;
1240 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1242 return journal;
1243 out_err:
1244 kfree(journal->j_wbuf);
1245 jbd2_stats_proc_exit(journal);
1246 kfree(journal);
1247 return NULL;
1251 * If the journal init or create aborts, we need to mark the journal
1252 * superblock as being NULL to prevent the journal destroy from writing
1253 * back a bogus superblock.
1255 static void journal_fail_superblock (journal_t *journal)
1257 struct buffer_head *bh = journal->j_sb_buffer;
1258 brelse(bh);
1259 journal->j_sb_buffer = NULL;
1263 * Given a journal_t structure, initialise the various fields for
1264 * startup of a new journaling session. We use this both when creating
1265 * a journal, and after recovering an old journal to reset it for
1266 * subsequent use.
1269 static int journal_reset(journal_t *journal)
1271 journal_superblock_t *sb = journal->j_superblock;
1272 unsigned long long first, last;
1274 first = be32_to_cpu(sb->s_first);
1275 last = be32_to_cpu(sb->s_maxlen);
1276 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1277 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1278 first, last);
1279 journal_fail_superblock(journal);
1280 return -EINVAL;
1283 journal->j_first = first;
1284 journal->j_last = last;
1286 journal->j_head = first;
1287 journal->j_tail = first;
1288 journal->j_free = last - first;
1290 journal->j_tail_sequence = journal->j_transaction_sequence;
1291 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1292 journal->j_commit_request = journal->j_commit_sequence;
1294 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1297 * As a special case, if the on-disk copy is already marked as needing
1298 * no recovery (s_start == 0), then we can safely defer the superblock
1299 * update until the next commit by setting JBD2_FLUSHED. This avoids
1300 * attempting a write to a potential-readonly device.
1302 if (sb->s_start == 0) {
1303 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1304 "(start %ld, seq %d, errno %d)\n",
1305 journal->j_tail, journal->j_tail_sequence,
1306 journal->j_errno);
1307 journal->j_flags |= JBD2_FLUSHED;
1308 } else {
1309 /* Lock here to make assertions happy... */
1310 mutex_lock(&journal->j_checkpoint_mutex);
1312 * Update log tail information. We use WRITE_FUA since new
1313 * transaction will start reusing journal space and so we
1314 * must make sure information about current log tail is on
1315 * disk before that.
1317 jbd2_journal_update_sb_log_tail(journal,
1318 journal->j_tail_sequence,
1319 journal->j_tail,
1320 WRITE_FUA);
1321 mutex_unlock(&journal->j_checkpoint_mutex);
1323 return jbd2_journal_start_thread(journal);
1326 static int jbd2_write_superblock(journal_t *journal, int write_op)
1328 struct buffer_head *bh = journal->j_sb_buffer;
1329 journal_superblock_t *sb = journal->j_superblock;
1330 int ret;
1332 trace_jbd2_write_superblock(journal, write_op);
1333 if (!(journal->j_flags & JBD2_BARRIER))
1334 write_op &= ~(REQ_FUA | REQ_FLUSH);
1335 lock_buffer(bh);
1336 if (buffer_write_io_error(bh)) {
1338 * Oh, dear. A previous attempt to write the journal
1339 * superblock failed. This could happen because the
1340 * USB device was yanked out. Or it could happen to
1341 * be a transient write error and maybe the block will
1342 * be remapped. Nothing we can do but to retry the
1343 * write and hope for the best.
1345 printk(KERN_ERR "JBD2: previous I/O error detected "
1346 "for journal superblock update for %s.\n",
1347 journal->j_devname);
1348 clear_buffer_write_io_error(bh);
1349 set_buffer_uptodate(bh);
1351 jbd2_superblock_csum_set(journal, sb);
1352 get_bh(bh);
1353 bh->b_end_io = end_buffer_write_sync;
1354 ret = submit_bh(write_op, bh);
1355 wait_on_buffer(bh);
1356 if (buffer_write_io_error(bh)) {
1357 clear_buffer_write_io_error(bh);
1358 set_buffer_uptodate(bh);
1359 ret = -EIO;
1361 if (ret) {
1362 printk(KERN_ERR "JBD2: Error %d detected when updating "
1363 "journal superblock for %s.\n", ret,
1364 journal->j_devname);
1365 jbd2_journal_abort(journal, ret);
1368 return ret;
1372 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1373 * @journal: The journal to update.
1374 * @tail_tid: TID of the new transaction at the tail of the log
1375 * @tail_block: The first block of the transaction at the tail of the log
1376 * @write_op: With which operation should we write the journal sb
1378 * Update a journal's superblock information about log tail and write it to
1379 * disk, waiting for the IO to complete.
1381 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1382 unsigned long tail_block, int write_op)
1384 journal_superblock_t *sb = journal->j_superblock;
1385 int ret;
1387 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1388 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1389 tail_block, tail_tid);
1391 sb->s_sequence = cpu_to_be32(tail_tid);
1392 sb->s_start = cpu_to_be32(tail_block);
1394 ret = jbd2_write_superblock(journal, write_op);
1395 if (ret)
1396 goto out;
1398 /* Log is no longer empty */
1399 write_lock(&journal->j_state_lock);
1400 WARN_ON(!sb->s_sequence);
1401 journal->j_flags &= ~JBD2_FLUSHED;
1402 write_unlock(&journal->j_state_lock);
1404 out:
1405 return ret;
1409 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1410 * @journal: The journal to update.
1412 * Update a journal's dynamic superblock fields to show that journal is empty.
1413 * Write updated superblock to disk waiting for IO to complete.
1415 static void jbd2_mark_journal_empty(journal_t *journal)
1417 journal_superblock_t *sb = journal->j_superblock;
1419 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1420 read_lock(&journal->j_state_lock);
1421 /* Is it already empty? */
1422 if (sb->s_start == 0) {
1423 read_unlock(&journal->j_state_lock);
1424 return;
1426 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1427 journal->j_tail_sequence);
1429 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1430 sb->s_start = cpu_to_be32(0);
1431 read_unlock(&journal->j_state_lock);
1433 jbd2_write_superblock(journal, WRITE_FUA);
1435 /* Log is no longer empty */
1436 write_lock(&journal->j_state_lock);
1437 journal->j_flags |= JBD2_FLUSHED;
1438 write_unlock(&journal->j_state_lock);
1443 * jbd2_journal_update_sb_errno() - Update error in the journal.
1444 * @journal: The journal to update.
1446 * Update a journal's errno. Write updated superblock to disk waiting for IO
1447 * to complete.
1449 void jbd2_journal_update_sb_errno(journal_t *journal)
1451 journal_superblock_t *sb = journal->j_superblock;
1453 read_lock(&journal->j_state_lock);
1454 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1455 journal->j_errno);
1456 sb->s_errno = cpu_to_be32(journal->j_errno);
1457 read_unlock(&journal->j_state_lock);
1459 jbd2_write_superblock(journal, WRITE_FUA);
1461 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1464 * Read the superblock for a given journal, performing initial
1465 * validation of the format.
1467 static int journal_get_superblock(journal_t *journal)
1469 struct buffer_head *bh;
1470 journal_superblock_t *sb;
1471 int err = -EIO;
1473 bh = journal->j_sb_buffer;
1475 J_ASSERT(bh != NULL);
1476 if (!buffer_uptodate(bh)) {
1477 ll_rw_block(READ, 1, &bh);
1478 wait_on_buffer(bh);
1479 if (!buffer_uptodate(bh)) {
1480 printk(KERN_ERR
1481 "JBD2: IO error reading journal superblock\n");
1482 goto out;
1486 if (buffer_verified(bh))
1487 return 0;
1489 sb = journal->j_superblock;
1491 err = -EINVAL;
1493 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1494 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1495 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1496 goto out;
1499 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1500 case JBD2_SUPERBLOCK_V1:
1501 journal->j_format_version = 1;
1502 break;
1503 case JBD2_SUPERBLOCK_V2:
1504 journal->j_format_version = 2;
1505 break;
1506 default:
1507 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1508 goto out;
1511 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1512 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1513 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1514 printk(KERN_WARNING "JBD2: journal file too short\n");
1515 goto out;
1518 if (be32_to_cpu(sb->s_first) == 0 ||
1519 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1520 printk(KERN_WARNING
1521 "JBD2: Invalid start block of journal: %u\n",
1522 be32_to_cpu(sb->s_first));
1523 goto out;
1526 if (jbd2_has_feature_csum2(journal) &&
1527 jbd2_has_feature_csum3(journal)) {
1528 /* Can't have checksum v2 and v3 at the same time! */
1529 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1530 "at the same time!\n");
1531 goto out;
1534 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1535 jbd2_has_feature_checksum(journal)) {
1536 /* Can't have checksum v1 and v2 on at the same time! */
1537 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1538 "at the same time!\n");
1539 goto out;
1542 if (!jbd2_verify_csum_type(journal, sb)) {
1543 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1544 goto out;
1547 /* Load the checksum driver */
1548 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1549 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1550 if (IS_ERR(journal->j_chksum_driver)) {
1551 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1552 err = PTR_ERR(journal->j_chksum_driver);
1553 journal->j_chksum_driver = NULL;
1554 goto out;
1558 /* Check superblock checksum */
1559 if (!jbd2_superblock_csum_verify(journal, sb)) {
1560 printk(KERN_ERR "JBD2: journal checksum error\n");
1561 err = -EFSBADCRC;
1562 goto out;
1565 /* Precompute checksum seed for all metadata */
1566 if (jbd2_journal_has_csum_v2or3(journal))
1567 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1568 sizeof(sb->s_uuid));
1570 set_buffer_verified(bh);
1572 return 0;
1574 out:
1575 journal_fail_superblock(journal);
1576 return err;
1580 * Load the on-disk journal superblock and read the key fields into the
1581 * journal_t.
1584 static int load_superblock(journal_t *journal)
1586 int err;
1587 journal_superblock_t *sb;
1589 err = journal_get_superblock(journal);
1590 if (err)
1591 return err;
1593 sb = journal->j_superblock;
1595 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1596 journal->j_tail = be32_to_cpu(sb->s_start);
1597 journal->j_first = be32_to_cpu(sb->s_first);
1598 journal->j_last = be32_to_cpu(sb->s_maxlen);
1599 journal->j_errno = be32_to_cpu(sb->s_errno);
1601 return 0;
1606 * int jbd2_journal_load() - Read journal from disk.
1607 * @journal: Journal to act on.
1609 * Given a journal_t structure which tells us which disk blocks contain
1610 * a journal, read the journal from disk to initialise the in-memory
1611 * structures.
1613 int jbd2_journal_load(journal_t *journal)
1615 int err;
1616 journal_superblock_t *sb;
1618 err = load_superblock(journal);
1619 if (err)
1620 return err;
1622 sb = journal->j_superblock;
1623 /* If this is a V2 superblock, then we have to check the
1624 * features flags on it. */
1626 if (journal->j_format_version >= 2) {
1627 if ((sb->s_feature_ro_compat &
1628 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1629 (sb->s_feature_incompat &
1630 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1631 printk(KERN_WARNING
1632 "JBD2: Unrecognised features on journal\n");
1633 return -EINVAL;
1638 * Create a slab for this blocksize
1640 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1641 if (err)
1642 return err;
1644 /* Let the recovery code check whether it needs to recover any
1645 * data from the journal. */
1646 if (jbd2_journal_recover(journal))
1647 goto recovery_error;
1649 if (journal->j_failed_commit) {
1650 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1651 "is corrupt.\n", journal->j_failed_commit,
1652 journal->j_devname);
1653 return -EFSCORRUPTED;
1656 /* OK, we've finished with the dynamic journal bits:
1657 * reinitialise the dynamic contents of the superblock in memory
1658 * and reset them on disk. */
1659 if (journal_reset(journal))
1660 goto recovery_error;
1662 journal->j_flags &= ~JBD2_ABORT;
1663 journal->j_flags |= JBD2_LOADED;
1664 return 0;
1666 recovery_error:
1667 printk(KERN_WARNING "JBD2: recovery failed\n");
1668 return -EIO;
1672 * void jbd2_journal_destroy() - Release a journal_t structure.
1673 * @journal: Journal to act on.
1675 * Release a journal_t structure once it is no longer in use by the
1676 * journaled object.
1677 * Return <0 if we couldn't clean up the journal.
1679 int jbd2_journal_destroy(journal_t *journal)
1681 int err = 0;
1683 /* Wait for the commit thread to wake up and die. */
1684 journal_kill_thread(journal);
1686 /* Force a final log commit */
1687 if (journal->j_running_transaction)
1688 jbd2_journal_commit_transaction(journal);
1690 /* Force any old transactions to disk */
1692 /* Totally anal locking here... */
1693 spin_lock(&journal->j_list_lock);
1694 while (journal->j_checkpoint_transactions != NULL) {
1695 spin_unlock(&journal->j_list_lock);
1696 mutex_lock(&journal->j_checkpoint_mutex);
1697 err = jbd2_log_do_checkpoint(journal);
1698 mutex_unlock(&journal->j_checkpoint_mutex);
1700 * If checkpointing failed, just free the buffers to avoid
1701 * looping forever
1703 if (err) {
1704 jbd2_journal_destroy_checkpoint(journal);
1705 spin_lock(&journal->j_list_lock);
1706 break;
1708 spin_lock(&journal->j_list_lock);
1711 J_ASSERT(journal->j_running_transaction == NULL);
1712 J_ASSERT(journal->j_committing_transaction == NULL);
1713 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1714 spin_unlock(&journal->j_list_lock);
1716 if (journal->j_sb_buffer) {
1717 if (!is_journal_aborted(journal)) {
1718 mutex_lock(&journal->j_checkpoint_mutex);
1719 jbd2_mark_journal_empty(journal);
1720 mutex_unlock(&journal->j_checkpoint_mutex);
1721 } else
1722 err = -EIO;
1723 brelse(journal->j_sb_buffer);
1726 if (journal->j_proc_entry)
1727 jbd2_stats_proc_exit(journal);
1728 iput(journal->j_inode);
1729 if (journal->j_revoke)
1730 jbd2_journal_destroy_revoke(journal);
1731 if (journal->j_chksum_driver)
1732 crypto_free_shash(journal->j_chksum_driver);
1733 kfree(journal->j_wbuf);
1734 kfree(journal);
1736 return err;
1741 *int jbd2_journal_check_used_features () - Check if features specified are used.
1742 * @journal: Journal to check.
1743 * @compat: bitmask of compatible features
1744 * @ro: bitmask of features that force read-only mount
1745 * @incompat: bitmask of incompatible features
1747 * Check whether the journal uses all of a given set of
1748 * features. Return true (non-zero) if it does.
1751 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1752 unsigned long ro, unsigned long incompat)
1754 journal_superblock_t *sb;
1756 if (!compat && !ro && !incompat)
1757 return 1;
1758 /* Load journal superblock if it is not loaded yet. */
1759 if (journal->j_format_version == 0 &&
1760 journal_get_superblock(journal) != 0)
1761 return 0;
1762 if (journal->j_format_version == 1)
1763 return 0;
1765 sb = journal->j_superblock;
1767 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1768 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1769 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1770 return 1;
1772 return 0;
1776 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1777 * @journal: Journal to check.
1778 * @compat: bitmask of compatible features
1779 * @ro: bitmask of features that force read-only mount
1780 * @incompat: bitmask of incompatible features
1782 * Check whether the journaling code supports the use of
1783 * all of a given set of features on this journal. Return true
1784 * (non-zero) if it can. */
1786 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1787 unsigned long ro, unsigned long incompat)
1789 if (!compat && !ro && !incompat)
1790 return 1;
1792 /* We can support any known requested features iff the
1793 * superblock is in version 2. Otherwise we fail to support any
1794 * extended sb features. */
1796 if (journal->j_format_version != 2)
1797 return 0;
1799 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1800 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1801 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1802 return 1;
1804 return 0;
1808 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1809 * @journal: Journal to act on.
1810 * @compat: bitmask of compatible features
1811 * @ro: bitmask of features that force read-only mount
1812 * @incompat: bitmask of incompatible features
1814 * Mark a given journal feature as present on the
1815 * superblock. Returns true if the requested features could be set.
1819 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1820 unsigned long ro, unsigned long incompat)
1822 #define INCOMPAT_FEATURE_ON(f) \
1823 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1824 #define COMPAT_FEATURE_ON(f) \
1825 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1826 journal_superblock_t *sb;
1828 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1829 return 1;
1831 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1832 return 0;
1834 /* If enabling v2 checksums, turn on v3 instead */
1835 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1836 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1837 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1840 /* Asking for checksumming v3 and v1? Only give them v3. */
1841 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1842 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1843 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1845 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1846 compat, ro, incompat);
1848 sb = journal->j_superblock;
1850 /* If enabling v3 checksums, update superblock */
1851 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1852 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1853 sb->s_feature_compat &=
1854 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1856 /* Load the checksum driver */
1857 if (journal->j_chksum_driver == NULL) {
1858 journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1859 0, 0);
1860 if (IS_ERR(journal->j_chksum_driver)) {
1861 printk(KERN_ERR "JBD2: Cannot load crc32c "
1862 "driver.\n");
1863 journal->j_chksum_driver = NULL;
1864 return 0;
1867 /* Precompute checksum seed for all metadata */
1868 journal->j_csum_seed = jbd2_chksum(journal, ~0,
1869 sb->s_uuid,
1870 sizeof(sb->s_uuid));
1874 /* If enabling v1 checksums, downgrade superblock */
1875 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1876 sb->s_feature_incompat &=
1877 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1878 JBD2_FEATURE_INCOMPAT_CSUM_V3);
1880 sb->s_feature_compat |= cpu_to_be32(compat);
1881 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1882 sb->s_feature_incompat |= cpu_to_be32(incompat);
1884 return 1;
1885 #undef COMPAT_FEATURE_ON
1886 #undef INCOMPAT_FEATURE_ON
1890 * jbd2_journal_clear_features () - Clear a given journal feature in the
1891 * superblock
1892 * @journal: Journal to act on.
1893 * @compat: bitmask of compatible features
1894 * @ro: bitmask of features that force read-only mount
1895 * @incompat: bitmask of incompatible features
1897 * Clear a given journal feature as present on the
1898 * superblock.
1900 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1901 unsigned long ro, unsigned long incompat)
1903 journal_superblock_t *sb;
1905 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1906 compat, ro, incompat);
1908 sb = journal->j_superblock;
1910 sb->s_feature_compat &= ~cpu_to_be32(compat);
1911 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1912 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1914 EXPORT_SYMBOL(jbd2_journal_clear_features);
1917 * int jbd2_journal_flush () - Flush journal
1918 * @journal: Journal to act on.
1920 * Flush all data for a given journal to disk and empty the journal.
1921 * Filesystems can use this when remounting readonly to ensure that
1922 * recovery does not need to happen on remount.
1925 int jbd2_journal_flush(journal_t *journal)
1927 int err = 0;
1928 transaction_t *transaction = NULL;
1930 write_lock(&journal->j_state_lock);
1932 /* Force everything buffered to the log... */
1933 if (journal->j_running_transaction) {
1934 transaction = journal->j_running_transaction;
1935 __jbd2_log_start_commit(journal, transaction->t_tid);
1936 } else if (journal->j_committing_transaction)
1937 transaction = journal->j_committing_transaction;
1939 /* Wait for the log commit to complete... */
1940 if (transaction) {
1941 tid_t tid = transaction->t_tid;
1943 write_unlock(&journal->j_state_lock);
1944 jbd2_log_wait_commit(journal, tid);
1945 } else {
1946 write_unlock(&journal->j_state_lock);
1949 /* ...and flush everything in the log out to disk. */
1950 spin_lock(&journal->j_list_lock);
1951 while (!err && journal->j_checkpoint_transactions != NULL) {
1952 spin_unlock(&journal->j_list_lock);
1953 mutex_lock(&journal->j_checkpoint_mutex);
1954 err = jbd2_log_do_checkpoint(journal);
1955 mutex_unlock(&journal->j_checkpoint_mutex);
1956 spin_lock(&journal->j_list_lock);
1958 spin_unlock(&journal->j_list_lock);
1960 if (is_journal_aborted(journal))
1961 return -EIO;
1963 mutex_lock(&journal->j_checkpoint_mutex);
1964 if (!err) {
1965 err = jbd2_cleanup_journal_tail(journal);
1966 if (err < 0) {
1967 mutex_unlock(&journal->j_checkpoint_mutex);
1968 goto out;
1970 err = 0;
1973 /* Finally, mark the journal as really needing no recovery.
1974 * This sets s_start==0 in the underlying superblock, which is
1975 * the magic code for a fully-recovered superblock. Any future
1976 * commits of data to the journal will restore the current
1977 * s_start value. */
1978 jbd2_mark_journal_empty(journal);
1979 mutex_unlock(&journal->j_checkpoint_mutex);
1980 write_lock(&journal->j_state_lock);
1981 J_ASSERT(!journal->j_running_transaction);
1982 J_ASSERT(!journal->j_committing_transaction);
1983 J_ASSERT(!journal->j_checkpoint_transactions);
1984 J_ASSERT(journal->j_head == journal->j_tail);
1985 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1986 write_unlock(&journal->j_state_lock);
1987 out:
1988 return err;
1992 * int jbd2_journal_wipe() - Wipe journal contents
1993 * @journal: Journal to act on.
1994 * @write: flag (see below)
1996 * Wipe out all of the contents of a journal, safely. This will produce
1997 * a warning if the journal contains any valid recovery information.
1998 * Must be called between journal_init_*() and jbd2_journal_load().
2000 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2001 * we merely suppress recovery.
2004 int jbd2_journal_wipe(journal_t *journal, int write)
2006 int err = 0;
2008 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2010 err = load_superblock(journal);
2011 if (err)
2012 return err;
2014 if (!journal->j_tail)
2015 goto no_recovery;
2017 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2018 write ? "Clearing" : "Ignoring");
2020 err = jbd2_journal_skip_recovery(journal);
2021 if (write) {
2022 /* Lock to make assertions happy... */
2023 mutex_lock(&journal->j_checkpoint_mutex);
2024 jbd2_mark_journal_empty(journal);
2025 mutex_unlock(&journal->j_checkpoint_mutex);
2028 no_recovery:
2029 return err;
2033 * Journal abort has very specific semantics, which we describe
2034 * for journal abort.
2036 * Two internal functions, which provide abort to the jbd layer
2037 * itself are here.
2041 * Quick version for internal journal use (doesn't lock the journal).
2042 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2043 * and don't attempt to make any other journal updates.
2045 void __jbd2_journal_abort_hard(journal_t *journal)
2047 transaction_t *transaction;
2049 if (journal->j_flags & JBD2_ABORT)
2050 return;
2052 printk(KERN_ERR "Aborting journal on device %s.\n",
2053 journal->j_devname);
2055 write_lock(&journal->j_state_lock);
2056 journal->j_flags |= JBD2_ABORT;
2057 transaction = journal->j_running_transaction;
2058 if (transaction)
2059 __jbd2_log_start_commit(journal, transaction->t_tid);
2060 write_unlock(&journal->j_state_lock);
2063 /* Soft abort: record the abort error status in the journal superblock,
2064 * but don't do any other IO. */
2065 static void __journal_abort_soft (journal_t *journal, int errno)
2067 if (journal->j_flags & JBD2_ABORT)
2068 return;
2070 if (!journal->j_errno)
2071 journal->j_errno = errno;
2073 __jbd2_journal_abort_hard(journal);
2075 if (errno) {
2076 jbd2_journal_update_sb_errno(journal);
2077 write_lock(&journal->j_state_lock);
2078 journal->j_flags |= JBD2_REC_ERR;
2079 write_unlock(&journal->j_state_lock);
2084 * void jbd2_journal_abort () - Shutdown the journal immediately.
2085 * @journal: the journal to shutdown.
2086 * @errno: an error number to record in the journal indicating
2087 * the reason for the shutdown.
2089 * Perform a complete, immediate shutdown of the ENTIRE
2090 * journal (not of a single transaction). This operation cannot be
2091 * undone without closing and reopening the journal.
2093 * The jbd2_journal_abort function is intended to support higher level error
2094 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2095 * mode.
2097 * Journal abort has very specific semantics. Any existing dirty,
2098 * unjournaled buffers in the main filesystem will still be written to
2099 * disk by bdflush, but the journaling mechanism will be suspended
2100 * immediately and no further transaction commits will be honoured.
2102 * Any dirty, journaled buffers will be written back to disk without
2103 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2104 * filesystem, but we _do_ attempt to leave as much data as possible
2105 * behind for fsck to use for cleanup.
2107 * Any attempt to get a new transaction handle on a journal which is in
2108 * ABORT state will just result in an -EROFS error return. A
2109 * jbd2_journal_stop on an existing handle will return -EIO if we have
2110 * entered abort state during the update.
2112 * Recursive transactions are not disturbed by journal abort until the
2113 * final jbd2_journal_stop, which will receive the -EIO error.
2115 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2116 * which will be recorded (if possible) in the journal superblock. This
2117 * allows a client to record failure conditions in the middle of a
2118 * transaction without having to complete the transaction to record the
2119 * failure to disk. ext3_error, for example, now uses this
2120 * functionality.
2122 * Errors which originate from within the journaling layer will NOT
2123 * supply an errno; a null errno implies that absolutely no further
2124 * writes are done to the journal (unless there are any already in
2125 * progress).
2129 void jbd2_journal_abort(journal_t *journal, int errno)
2131 __journal_abort_soft(journal, errno);
2135 * int jbd2_journal_errno () - returns the journal's error state.
2136 * @journal: journal to examine.
2138 * This is the errno number set with jbd2_journal_abort(), the last
2139 * time the journal was mounted - if the journal was stopped
2140 * without calling abort this will be 0.
2142 * If the journal has been aborted on this mount time -EROFS will
2143 * be returned.
2145 int jbd2_journal_errno(journal_t *journal)
2147 int err;
2149 read_lock(&journal->j_state_lock);
2150 if (journal->j_flags & JBD2_ABORT)
2151 err = -EROFS;
2152 else
2153 err = journal->j_errno;
2154 read_unlock(&journal->j_state_lock);
2155 return err;
2159 * int jbd2_journal_clear_err () - clears the journal's error state
2160 * @journal: journal to act on.
2162 * An error must be cleared or acked to take a FS out of readonly
2163 * mode.
2165 int jbd2_journal_clear_err(journal_t *journal)
2167 int err = 0;
2169 write_lock(&journal->j_state_lock);
2170 if (journal->j_flags & JBD2_ABORT)
2171 err = -EROFS;
2172 else
2173 journal->j_errno = 0;
2174 write_unlock(&journal->j_state_lock);
2175 return err;
2179 * void jbd2_journal_ack_err() - Ack journal err.
2180 * @journal: journal to act on.
2182 * An error must be cleared or acked to take a FS out of readonly
2183 * mode.
2185 void jbd2_journal_ack_err(journal_t *journal)
2187 write_lock(&journal->j_state_lock);
2188 if (journal->j_errno)
2189 journal->j_flags |= JBD2_ACK_ERR;
2190 write_unlock(&journal->j_state_lock);
2193 int jbd2_journal_blocks_per_page(struct inode *inode)
2195 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2199 * helper functions to deal with 32 or 64bit block numbers.
2201 size_t journal_tag_bytes(journal_t *journal)
2203 size_t sz;
2205 if (jbd2_has_feature_csum3(journal))
2206 return sizeof(journal_block_tag3_t);
2208 sz = sizeof(journal_block_tag_t);
2210 if (jbd2_has_feature_csum2(journal))
2211 sz += sizeof(__u16);
2213 if (jbd2_has_feature_64bit(journal))
2214 return sz;
2215 else
2216 return sz - sizeof(__u32);
2220 * JBD memory management
2222 * These functions are used to allocate block-sized chunks of memory
2223 * used for making copies of buffer_head data. Very often it will be
2224 * page-sized chunks of data, but sometimes it will be in
2225 * sub-page-size chunks. (For example, 16k pages on Power systems
2226 * with a 4k block file system.) For blocks smaller than a page, we
2227 * use a SLAB allocator. There are slab caches for each block size,
2228 * which are allocated at mount time, if necessary, and we only free
2229 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2230 * this reason we don't need to a mutex to protect access to
2231 * jbd2_slab[] allocating or releasing memory; only in
2232 * jbd2_journal_create_slab().
2234 #define JBD2_MAX_SLABS 8
2235 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2237 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2238 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2239 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2243 static void jbd2_journal_destroy_slabs(void)
2245 int i;
2247 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2248 if (jbd2_slab[i])
2249 kmem_cache_destroy(jbd2_slab[i]);
2250 jbd2_slab[i] = NULL;
2254 static int jbd2_journal_create_slab(size_t size)
2256 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2257 int i = order_base_2(size) - 10;
2258 size_t slab_size;
2260 if (size == PAGE_SIZE)
2261 return 0;
2263 if (i >= JBD2_MAX_SLABS)
2264 return -EINVAL;
2266 if (unlikely(i < 0))
2267 i = 0;
2268 mutex_lock(&jbd2_slab_create_mutex);
2269 if (jbd2_slab[i]) {
2270 mutex_unlock(&jbd2_slab_create_mutex);
2271 return 0; /* Already created */
2274 slab_size = 1 << (i+10);
2275 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2276 slab_size, 0, NULL);
2277 mutex_unlock(&jbd2_slab_create_mutex);
2278 if (!jbd2_slab[i]) {
2279 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2280 return -ENOMEM;
2282 return 0;
2285 static struct kmem_cache *get_slab(size_t size)
2287 int i = order_base_2(size) - 10;
2289 BUG_ON(i >= JBD2_MAX_SLABS);
2290 if (unlikely(i < 0))
2291 i = 0;
2292 BUG_ON(jbd2_slab[i] == NULL);
2293 return jbd2_slab[i];
2296 void *jbd2_alloc(size_t size, gfp_t flags)
2298 void *ptr;
2300 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2302 flags |= __GFP_REPEAT;
2303 if (size == PAGE_SIZE)
2304 ptr = (void *)__get_free_pages(flags, 0);
2305 else if (size > PAGE_SIZE) {
2306 int order = get_order(size);
2308 if (order < 3)
2309 ptr = (void *)__get_free_pages(flags, order);
2310 else
2311 ptr = vmalloc(size);
2312 } else
2313 ptr = kmem_cache_alloc(get_slab(size), flags);
2315 /* Check alignment; SLUB has gotten this wrong in the past,
2316 * and this can lead to user data corruption! */
2317 BUG_ON(((unsigned long) ptr) & (size-1));
2319 return ptr;
2322 void jbd2_free(void *ptr, size_t size)
2324 if (size == PAGE_SIZE) {
2325 free_pages((unsigned long)ptr, 0);
2326 return;
2328 if (size > PAGE_SIZE) {
2329 int order = get_order(size);
2331 if (order < 3)
2332 free_pages((unsigned long)ptr, order);
2333 else
2334 vfree(ptr);
2335 return;
2337 kmem_cache_free(get_slab(size), ptr);
2341 * Journal_head storage management
2343 static struct kmem_cache *jbd2_journal_head_cache;
2344 #ifdef CONFIG_JBD2_DEBUG
2345 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2346 #endif
2348 static int jbd2_journal_init_journal_head_cache(void)
2350 int retval;
2352 J_ASSERT(jbd2_journal_head_cache == NULL);
2353 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2354 sizeof(struct journal_head),
2355 0, /* offset */
2356 SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU,
2357 NULL); /* ctor */
2358 retval = 0;
2359 if (!jbd2_journal_head_cache) {
2360 retval = -ENOMEM;
2361 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2363 return retval;
2366 static void jbd2_journal_destroy_journal_head_cache(void)
2368 if (jbd2_journal_head_cache) {
2369 kmem_cache_destroy(jbd2_journal_head_cache);
2370 jbd2_journal_head_cache = NULL;
2375 * journal_head splicing and dicing
2377 static struct journal_head *journal_alloc_journal_head(void)
2379 struct journal_head *ret;
2381 #ifdef CONFIG_JBD2_DEBUG
2382 atomic_inc(&nr_journal_heads);
2383 #endif
2384 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2385 if (!ret) {
2386 jbd_debug(1, "out of memory for journal_head\n");
2387 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2388 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2389 GFP_NOFS | __GFP_NOFAIL);
2391 return ret;
2394 static void journal_free_journal_head(struct journal_head *jh)
2396 #ifdef CONFIG_JBD2_DEBUG
2397 atomic_dec(&nr_journal_heads);
2398 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2399 #endif
2400 kmem_cache_free(jbd2_journal_head_cache, jh);
2404 * A journal_head is attached to a buffer_head whenever JBD has an
2405 * interest in the buffer.
2407 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2408 * is set. This bit is tested in core kernel code where we need to take
2409 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2410 * there.
2412 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2414 * When a buffer has its BH_JBD bit set it is immune from being released by
2415 * core kernel code, mainly via ->b_count.
2417 * A journal_head is detached from its buffer_head when the journal_head's
2418 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2419 * transaction (b_cp_transaction) hold their references to b_jcount.
2421 * Various places in the kernel want to attach a journal_head to a buffer_head
2422 * _before_ attaching the journal_head to a transaction. To protect the
2423 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2424 * journal_head's b_jcount refcount by one. The caller must call
2425 * jbd2_journal_put_journal_head() to undo this.
2427 * So the typical usage would be:
2429 * (Attach a journal_head if needed. Increments b_jcount)
2430 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2431 * ...
2432 * (Get another reference for transaction)
2433 * jbd2_journal_grab_journal_head(bh);
2434 * jh->b_transaction = xxx;
2435 * (Put original reference)
2436 * jbd2_journal_put_journal_head(jh);
2440 * Give a buffer_head a journal_head.
2442 * May sleep.
2444 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2446 struct journal_head *jh;
2447 struct journal_head *new_jh = NULL;
2449 repeat:
2450 if (!buffer_jbd(bh))
2451 new_jh = journal_alloc_journal_head();
2453 jbd_lock_bh_journal_head(bh);
2454 if (buffer_jbd(bh)) {
2455 jh = bh2jh(bh);
2456 } else {
2457 J_ASSERT_BH(bh,
2458 (atomic_read(&bh->b_count) > 0) ||
2459 (bh->b_page && bh->b_page->mapping));
2461 if (!new_jh) {
2462 jbd_unlock_bh_journal_head(bh);
2463 goto repeat;
2466 jh = new_jh;
2467 new_jh = NULL; /* We consumed it */
2468 set_buffer_jbd(bh);
2469 bh->b_private = jh;
2470 jh->b_bh = bh;
2471 get_bh(bh);
2472 BUFFER_TRACE(bh, "added journal_head");
2474 jh->b_jcount++;
2475 jbd_unlock_bh_journal_head(bh);
2476 if (new_jh)
2477 journal_free_journal_head(new_jh);
2478 return bh->b_private;
2482 * Grab a ref against this buffer_head's journal_head. If it ended up not
2483 * having a journal_head, return NULL
2485 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2487 struct journal_head *jh = NULL;
2489 jbd_lock_bh_journal_head(bh);
2490 if (buffer_jbd(bh)) {
2491 jh = bh2jh(bh);
2492 jh->b_jcount++;
2494 jbd_unlock_bh_journal_head(bh);
2495 return jh;
2498 static void __journal_remove_journal_head(struct buffer_head *bh)
2500 struct journal_head *jh = bh2jh(bh);
2502 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2503 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2504 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2505 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2506 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2507 J_ASSERT_BH(bh, buffer_jbd(bh));
2508 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2509 BUFFER_TRACE(bh, "remove journal_head");
2510 if (jh->b_frozen_data) {
2511 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2512 jbd2_free(jh->b_frozen_data, bh->b_size);
2514 if (jh->b_committed_data) {
2515 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2516 jbd2_free(jh->b_committed_data, bh->b_size);
2518 bh->b_private = NULL;
2519 jh->b_bh = NULL; /* debug, really */
2520 clear_buffer_jbd(bh);
2521 journal_free_journal_head(jh);
2525 * Drop a reference on the passed journal_head. If it fell to zero then
2526 * release the journal_head from the buffer_head.
2528 void jbd2_journal_put_journal_head(struct journal_head *jh)
2530 struct buffer_head *bh = jh2bh(jh);
2532 jbd_lock_bh_journal_head(bh);
2533 J_ASSERT_JH(jh, jh->b_jcount > 0);
2534 --jh->b_jcount;
2535 if (!jh->b_jcount) {
2536 __journal_remove_journal_head(bh);
2537 jbd_unlock_bh_journal_head(bh);
2538 __brelse(bh);
2539 } else
2540 jbd_unlock_bh_journal_head(bh);
2544 * Initialize jbd inode head
2546 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2548 jinode->i_transaction = NULL;
2549 jinode->i_next_transaction = NULL;
2550 jinode->i_vfs_inode = inode;
2551 jinode->i_flags = 0;
2552 INIT_LIST_HEAD(&jinode->i_list);
2556 * Function to be called before we start removing inode from memory (i.e.,
2557 * clear_inode() is a fine place to be called from). It removes inode from
2558 * transaction's lists.
2560 void jbd2_journal_release_jbd_inode(journal_t *journal,
2561 struct jbd2_inode *jinode)
2563 if (!journal)
2564 return;
2565 restart:
2566 spin_lock(&journal->j_list_lock);
2567 /* Is commit writing out inode - we have to wait */
2568 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2569 wait_queue_head_t *wq;
2570 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2571 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2572 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2573 spin_unlock(&journal->j_list_lock);
2574 schedule();
2575 finish_wait(wq, &wait.wait);
2576 goto restart;
2579 if (jinode->i_transaction) {
2580 list_del(&jinode->i_list);
2581 jinode->i_transaction = NULL;
2583 spin_unlock(&journal->j_list_lock);
2587 #ifdef CONFIG_PROC_FS
2589 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2591 static void __init jbd2_create_jbd_stats_proc_entry(void)
2593 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2596 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2598 if (proc_jbd2_stats)
2599 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2602 #else
2604 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2605 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2607 #endif
2609 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2611 static int __init jbd2_journal_init_handle_cache(void)
2613 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2614 if (jbd2_handle_cache == NULL) {
2615 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2616 return -ENOMEM;
2618 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2619 if (jbd2_inode_cache == NULL) {
2620 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2621 kmem_cache_destroy(jbd2_handle_cache);
2622 return -ENOMEM;
2624 return 0;
2627 static void jbd2_journal_destroy_handle_cache(void)
2629 if (jbd2_handle_cache)
2630 kmem_cache_destroy(jbd2_handle_cache);
2631 if (jbd2_inode_cache)
2632 kmem_cache_destroy(jbd2_inode_cache);
2637 * Module startup and shutdown
2640 static int __init journal_init_caches(void)
2642 int ret;
2644 ret = jbd2_journal_init_revoke_caches();
2645 if (ret == 0)
2646 ret = jbd2_journal_init_journal_head_cache();
2647 if (ret == 0)
2648 ret = jbd2_journal_init_handle_cache();
2649 if (ret == 0)
2650 ret = jbd2_journal_init_transaction_cache();
2651 return ret;
2654 static void jbd2_journal_destroy_caches(void)
2656 jbd2_journal_destroy_revoke_caches();
2657 jbd2_journal_destroy_journal_head_cache();
2658 jbd2_journal_destroy_handle_cache();
2659 jbd2_journal_destroy_transaction_cache();
2660 jbd2_journal_destroy_slabs();
2663 static int __init journal_init(void)
2665 int ret;
2667 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2669 ret = journal_init_caches();
2670 if (ret == 0) {
2671 jbd2_create_jbd_stats_proc_entry();
2672 } else {
2673 jbd2_journal_destroy_caches();
2675 return ret;
2678 static void __exit journal_exit(void)
2680 #ifdef CONFIG_JBD2_DEBUG
2681 int n = atomic_read(&nr_journal_heads);
2682 if (n)
2683 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2684 #endif
2685 jbd2_remove_jbd_stats_proc_entry();
2686 jbd2_journal_destroy_caches();
2689 MODULE_LICENSE("GPL");
2690 module_init(journal_init);
2691 module_exit(journal_exit);