alpha: fix several security issues
[linux/fpc-iii.git] / net / wireless / reg.c
blob1ad0f39fe0913415b47888f74d12651529ee9cc5
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 /**
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/ctype.h>
43 #include <linux/nl80211.h>
44 #include <linux/platform_device.h>
45 #include <net/cfg80211.h>
46 #include "core.h"
47 #include "reg.h"
48 #include "regdb.h"
49 #include "nl80211.h"
51 #ifdef CONFIG_CFG80211_REG_DEBUG
52 #define REG_DBG_PRINT(format, args...) \
53 do { \
54 printk(KERN_DEBUG pr_fmt(format), ##args); \
55 } while (0)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
60 /* Receipt of information from last regulatory request */
61 static struct regulatory_request *last_request;
63 /* To trigger userspace events */
64 static struct platform_device *reg_pdev;
66 static struct device_type reg_device_type = {
67 .uevent = reg_device_uevent,
71 * Central wireless core regulatory domains, we only need two,
72 * the current one and a world regulatory domain in case we have no
73 * information to give us an alpha2
75 const struct ieee80211_regdomain *cfg80211_regdomain;
78 * Protects static reg.c components:
79 * - cfg80211_world_regdom
80 * - cfg80211_regdom
81 * - last_request
83 static DEFINE_MUTEX(reg_mutex);
85 static inline void assert_reg_lock(void)
87 lockdep_assert_held(&reg_mutex);
90 /* Used to queue up regulatory hints */
91 static LIST_HEAD(reg_requests_list);
92 static spinlock_t reg_requests_lock;
94 /* Used to queue up beacon hints for review */
95 static LIST_HEAD(reg_pending_beacons);
96 static spinlock_t reg_pending_beacons_lock;
98 /* Used to keep track of processed beacon hints */
99 static LIST_HEAD(reg_beacon_list);
101 struct reg_beacon {
102 struct list_head list;
103 struct ieee80211_channel chan;
106 static void reg_todo(struct work_struct *work);
107 static DECLARE_WORK(reg_work, reg_todo);
109 static void reg_timeout_work(struct work_struct *work);
110 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
112 /* We keep a static world regulatory domain in case of the absence of CRDA */
113 static const struct ieee80211_regdomain world_regdom = {
114 .n_reg_rules = 5,
115 .alpha2 = "00",
116 .reg_rules = {
117 /* IEEE 802.11b/g, channels 1..11 */
118 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
119 /* IEEE 802.11b/g, channels 12..13. No HT40
120 * channel fits here. */
121 REG_RULE(2467-10, 2472+10, 20, 6, 20,
122 NL80211_RRF_PASSIVE_SCAN |
123 NL80211_RRF_NO_IBSS),
124 /* IEEE 802.11 channel 14 - Only JP enables
125 * this and for 802.11b only */
126 REG_RULE(2484-10, 2484+10, 20, 6, 20,
127 NL80211_RRF_PASSIVE_SCAN |
128 NL80211_RRF_NO_IBSS |
129 NL80211_RRF_NO_OFDM),
130 /* IEEE 802.11a, channel 36..48 */
131 REG_RULE(5180-10, 5240+10, 40, 6, 20,
132 NL80211_RRF_PASSIVE_SCAN |
133 NL80211_RRF_NO_IBSS),
135 /* NB: 5260 MHz - 5700 MHz requies DFS */
137 /* IEEE 802.11a, channel 149..165 */
138 REG_RULE(5745-10, 5825+10, 40, 6, 20,
139 NL80211_RRF_PASSIVE_SCAN |
140 NL80211_RRF_NO_IBSS),
144 static const struct ieee80211_regdomain *cfg80211_world_regdom =
145 &world_regdom;
147 static char *ieee80211_regdom = "00";
148 static char user_alpha2[2];
150 module_param(ieee80211_regdom, charp, 0444);
151 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
153 static void reset_regdomains(void)
155 /* avoid freeing static information or freeing something twice */
156 if (cfg80211_regdomain == cfg80211_world_regdom)
157 cfg80211_regdomain = NULL;
158 if (cfg80211_world_regdom == &world_regdom)
159 cfg80211_world_regdom = NULL;
160 if (cfg80211_regdomain == &world_regdom)
161 cfg80211_regdomain = NULL;
163 kfree(cfg80211_regdomain);
164 kfree(cfg80211_world_regdom);
166 cfg80211_world_regdom = &world_regdom;
167 cfg80211_regdomain = NULL;
171 * Dynamic world regulatory domain requested by the wireless
172 * core upon initialization
174 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
176 BUG_ON(!last_request);
178 reset_regdomains();
180 cfg80211_world_regdom = rd;
181 cfg80211_regdomain = rd;
184 bool is_world_regdom(const char *alpha2)
186 if (!alpha2)
187 return false;
188 if (alpha2[0] == '0' && alpha2[1] == '0')
189 return true;
190 return false;
193 static bool is_alpha2_set(const char *alpha2)
195 if (!alpha2)
196 return false;
197 if (alpha2[0] != 0 && alpha2[1] != 0)
198 return true;
199 return false;
202 static bool is_unknown_alpha2(const char *alpha2)
204 if (!alpha2)
205 return false;
207 * Special case where regulatory domain was built by driver
208 * but a specific alpha2 cannot be determined
210 if (alpha2[0] == '9' && alpha2[1] == '9')
211 return true;
212 return false;
215 static bool is_intersected_alpha2(const char *alpha2)
217 if (!alpha2)
218 return false;
220 * Special case where regulatory domain is the
221 * result of an intersection between two regulatory domain
222 * structures
224 if (alpha2[0] == '9' && alpha2[1] == '8')
225 return true;
226 return false;
229 static bool is_an_alpha2(const char *alpha2)
231 if (!alpha2)
232 return false;
233 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
234 return true;
235 return false;
238 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
240 if (!alpha2_x || !alpha2_y)
241 return false;
242 if (alpha2_x[0] == alpha2_y[0] &&
243 alpha2_x[1] == alpha2_y[1])
244 return true;
245 return false;
248 static bool regdom_changes(const char *alpha2)
250 assert_cfg80211_lock();
252 if (!cfg80211_regdomain)
253 return true;
254 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
255 return false;
256 return true;
260 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
261 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
262 * has ever been issued.
264 static bool is_user_regdom_saved(void)
266 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
267 return false;
269 /* This would indicate a mistake on the design */
270 if (WARN((!is_world_regdom(user_alpha2) &&
271 !is_an_alpha2(user_alpha2)),
272 "Unexpected user alpha2: %c%c\n",
273 user_alpha2[0],
274 user_alpha2[1]))
275 return false;
277 return true;
280 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
281 const struct ieee80211_regdomain *src_regd)
283 struct ieee80211_regdomain *regd;
284 int size_of_regd = 0;
285 unsigned int i;
287 size_of_regd = sizeof(struct ieee80211_regdomain) +
288 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
290 regd = kzalloc(size_of_regd, GFP_KERNEL);
291 if (!regd)
292 return -ENOMEM;
294 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
296 for (i = 0; i < src_regd->n_reg_rules; i++)
297 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
298 sizeof(struct ieee80211_reg_rule));
300 *dst_regd = regd;
301 return 0;
304 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
305 struct reg_regdb_search_request {
306 char alpha2[2];
307 struct list_head list;
310 static LIST_HEAD(reg_regdb_search_list);
311 static DEFINE_MUTEX(reg_regdb_search_mutex);
313 static void reg_regdb_search(struct work_struct *work)
315 struct reg_regdb_search_request *request;
316 const struct ieee80211_regdomain *curdom, *regdom;
317 int i, r;
319 mutex_lock(&reg_regdb_search_mutex);
320 while (!list_empty(&reg_regdb_search_list)) {
321 request = list_first_entry(&reg_regdb_search_list,
322 struct reg_regdb_search_request,
323 list);
324 list_del(&request->list);
326 for (i=0; i<reg_regdb_size; i++) {
327 curdom = reg_regdb[i];
329 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
330 r = reg_copy_regd(&regdom, curdom);
331 if (r)
332 break;
333 mutex_lock(&cfg80211_mutex);
334 set_regdom(regdom);
335 mutex_unlock(&cfg80211_mutex);
336 break;
340 kfree(request);
342 mutex_unlock(&reg_regdb_search_mutex);
345 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
347 static void reg_regdb_query(const char *alpha2)
349 struct reg_regdb_search_request *request;
351 if (!alpha2)
352 return;
354 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
355 if (!request)
356 return;
358 memcpy(request->alpha2, alpha2, 2);
360 mutex_lock(&reg_regdb_search_mutex);
361 list_add_tail(&request->list, &reg_regdb_search_list);
362 mutex_unlock(&reg_regdb_search_mutex);
364 schedule_work(&reg_regdb_work);
366 #else
367 static inline void reg_regdb_query(const char *alpha2) {}
368 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
371 * This lets us keep regulatory code which is updated on a regulatory
372 * basis in userspace. Country information is filled in by
373 * reg_device_uevent
375 static int call_crda(const char *alpha2)
377 if (!is_world_regdom((char *) alpha2))
378 pr_info("Calling CRDA for country: %c%c\n",
379 alpha2[0], alpha2[1]);
380 else
381 pr_info("Calling CRDA to update world regulatory domain\n");
383 /* query internal regulatory database (if it exists) */
384 reg_regdb_query(alpha2);
386 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
389 /* Used by nl80211 before kmalloc'ing our regulatory domain */
390 bool reg_is_valid_request(const char *alpha2)
392 assert_cfg80211_lock();
394 if (!last_request)
395 return false;
397 return alpha2_equal(last_request->alpha2, alpha2);
400 /* Sanity check on a regulatory rule */
401 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
403 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
404 u32 freq_diff;
406 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
407 return false;
409 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
410 return false;
412 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
414 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
415 freq_range->max_bandwidth_khz > freq_diff)
416 return false;
418 return true;
421 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
423 const struct ieee80211_reg_rule *reg_rule = NULL;
424 unsigned int i;
426 if (!rd->n_reg_rules)
427 return false;
429 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
430 return false;
432 for (i = 0; i < rd->n_reg_rules; i++) {
433 reg_rule = &rd->reg_rules[i];
434 if (!is_valid_reg_rule(reg_rule))
435 return false;
438 return true;
441 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
442 u32 center_freq_khz,
443 u32 bw_khz)
445 u32 start_freq_khz, end_freq_khz;
447 start_freq_khz = center_freq_khz - (bw_khz/2);
448 end_freq_khz = center_freq_khz + (bw_khz/2);
450 if (start_freq_khz >= freq_range->start_freq_khz &&
451 end_freq_khz <= freq_range->end_freq_khz)
452 return true;
454 return false;
458 * freq_in_rule_band - tells us if a frequency is in a frequency band
459 * @freq_range: frequency rule we want to query
460 * @freq_khz: frequency we are inquiring about
462 * This lets us know if a specific frequency rule is or is not relevant to
463 * a specific frequency's band. Bands are device specific and artificial
464 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
465 * safe for now to assume that a frequency rule should not be part of a
466 * frequency's band if the start freq or end freq are off by more than 2 GHz.
467 * This resolution can be lowered and should be considered as we add
468 * regulatory rule support for other "bands".
470 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
471 u32 freq_khz)
473 #define ONE_GHZ_IN_KHZ 1000000
474 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
475 return true;
476 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
477 return true;
478 return false;
479 #undef ONE_GHZ_IN_KHZ
483 * Helper for regdom_intersect(), this does the real
484 * mathematical intersection fun
486 static int reg_rules_intersect(
487 const struct ieee80211_reg_rule *rule1,
488 const struct ieee80211_reg_rule *rule2,
489 struct ieee80211_reg_rule *intersected_rule)
491 const struct ieee80211_freq_range *freq_range1, *freq_range2;
492 struct ieee80211_freq_range *freq_range;
493 const struct ieee80211_power_rule *power_rule1, *power_rule2;
494 struct ieee80211_power_rule *power_rule;
495 u32 freq_diff;
497 freq_range1 = &rule1->freq_range;
498 freq_range2 = &rule2->freq_range;
499 freq_range = &intersected_rule->freq_range;
501 power_rule1 = &rule1->power_rule;
502 power_rule2 = &rule2->power_rule;
503 power_rule = &intersected_rule->power_rule;
505 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
506 freq_range2->start_freq_khz);
507 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
508 freq_range2->end_freq_khz);
509 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
510 freq_range2->max_bandwidth_khz);
512 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
513 if (freq_range->max_bandwidth_khz > freq_diff)
514 freq_range->max_bandwidth_khz = freq_diff;
516 power_rule->max_eirp = min(power_rule1->max_eirp,
517 power_rule2->max_eirp);
518 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
519 power_rule2->max_antenna_gain);
521 intersected_rule->flags = (rule1->flags | rule2->flags);
523 if (!is_valid_reg_rule(intersected_rule))
524 return -EINVAL;
526 return 0;
530 * regdom_intersect - do the intersection between two regulatory domains
531 * @rd1: first regulatory domain
532 * @rd2: second regulatory domain
534 * Use this function to get the intersection between two regulatory domains.
535 * Once completed we will mark the alpha2 for the rd as intersected, "98",
536 * as no one single alpha2 can represent this regulatory domain.
538 * Returns a pointer to the regulatory domain structure which will hold the
539 * resulting intersection of rules between rd1 and rd2. We will
540 * kzalloc() this structure for you.
542 static struct ieee80211_regdomain *regdom_intersect(
543 const struct ieee80211_regdomain *rd1,
544 const struct ieee80211_regdomain *rd2)
546 int r, size_of_regd;
547 unsigned int x, y;
548 unsigned int num_rules = 0, rule_idx = 0;
549 const struct ieee80211_reg_rule *rule1, *rule2;
550 struct ieee80211_reg_rule *intersected_rule;
551 struct ieee80211_regdomain *rd;
552 /* This is just a dummy holder to help us count */
553 struct ieee80211_reg_rule irule;
555 /* Uses the stack temporarily for counter arithmetic */
556 intersected_rule = &irule;
558 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
560 if (!rd1 || !rd2)
561 return NULL;
564 * First we get a count of the rules we'll need, then we actually
565 * build them. This is to so we can malloc() and free() a
566 * regdomain once. The reason we use reg_rules_intersect() here
567 * is it will return -EINVAL if the rule computed makes no sense.
568 * All rules that do check out OK are valid.
571 for (x = 0; x < rd1->n_reg_rules; x++) {
572 rule1 = &rd1->reg_rules[x];
573 for (y = 0; y < rd2->n_reg_rules; y++) {
574 rule2 = &rd2->reg_rules[y];
575 if (!reg_rules_intersect(rule1, rule2,
576 intersected_rule))
577 num_rules++;
578 memset(intersected_rule, 0,
579 sizeof(struct ieee80211_reg_rule));
583 if (!num_rules)
584 return NULL;
586 size_of_regd = sizeof(struct ieee80211_regdomain) +
587 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
589 rd = kzalloc(size_of_regd, GFP_KERNEL);
590 if (!rd)
591 return NULL;
593 for (x = 0; x < rd1->n_reg_rules; x++) {
594 rule1 = &rd1->reg_rules[x];
595 for (y = 0; y < rd2->n_reg_rules; y++) {
596 rule2 = &rd2->reg_rules[y];
598 * This time around instead of using the stack lets
599 * write to the target rule directly saving ourselves
600 * a memcpy()
602 intersected_rule = &rd->reg_rules[rule_idx];
603 r = reg_rules_intersect(rule1, rule2,
604 intersected_rule);
606 * No need to memset here the intersected rule here as
607 * we're not using the stack anymore
609 if (r)
610 continue;
611 rule_idx++;
615 if (rule_idx != num_rules) {
616 kfree(rd);
617 return NULL;
620 rd->n_reg_rules = num_rules;
621 rd->alpha2[0] = '9';
622 rd->alpha2[1] = '8';
624 return rd;
628 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
629 * want to just have the channel structure use these
631 static u32 map_regdom_flags(u32 rd_flags)
633 u32 channel_flags = 0;
634 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
635 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
636 if (rd_flags & NL80211_RRF_NO_IBSS)
637 channel_flags |= IEEE80211_CHAN_NO_IBSS;
638 if (rd_flags & NL80211_RRF_DFS)
639 channel_flags |= IEEE80211_CHAN_RADAR;
640 return channel_flags;
643 static int freq_reg_info_regd(struct wiphy *wiphy,
644 u32 center_freq,
645 u32 desired_bw_khz,
646 const struct ieee80211_reg_rule **reg_rule,
647 const struct ieee80211_regdomain *custom_regd)
649 int i;
650 bool band_rule_found = false;
651 const struct ieee80211_regdomain *regd;
652 bool bw_fits = false;
654 if (!desired_bw_khz)
655 desired_bw_khz = MHZ_TO_KHZ(20);
657 regd = custom_regd ? custom_regd : cfg80211_regdomain;
660 * Follow the driver's regulatory domain, if present, unless a country
661 * IE has been processed or a user wants to help complaince further
663 if (!custom_regd &&
664 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
665 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
666 wiphy->regd)
667 regd = wiphy->regd;
669 if (!regd)
670 return -EINVAL;
672 for (i = 0; i < regd->n_reg_rules; i++) {
673 const struct ieee80211_reg_rule *rr;
674 const struct ieee80211_freq_range *fr = NULL;
676 rr = &regd->reg_rules[i];
677 fr = &rr->freq_range;
680 * We only need to know if one frequency rule was
681 * was in center_freq's band, that's enough, so lets
682 * not overwrite it once found
684 if (!band_rule_found)
685 band_rule_found = freq_in_rule_band(fr, center_freq);
687 bw_fits = reg_does_bw_fit(fr,
688 center_freq,
689 desired_bw_khz);
691 if (band_rule_found && bw_fits) {
692 *reg_rule = rr;
693 return 0;
697 if (!band_rule_found)
698 return -ERANGE;
700 return -EINVAL;
703 int freq_reg_info(struct wiphy *wiphy,
704 u32 center_freq,
705 u32 desired_bw_khz,
706 const struct ieee80211_reg_rule **reg_rule)
708 assert_cfg80211_lock();
709 return freq_reg_info_regd(wiphy,
710 center_freq,
711 desired_bw_khz,
712 reg_rule,
713 NULL);
715 EXPORT_SYMBOL(freq_reg_info);
717 #ifdef CONFIG_CFG80211_REG_DEBUG
718 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
720 switch (initiator) {
721 case NL80211_REGDOM_SET_BY_CORE:
722 return "Set by core";
723 case NL80211_REGDOM_SET_BY_USER:
724 return "Set by user";
725 case NL80211_REGDOM_SET_BY_DRIVER:
726 return "Set by driver";
727 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
728 return "Set by country IE";
729 default:
730 WARN_ON(1);
731 return "Set by bug";
735 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
736 u32 desired_bw_khz,
737 const struct ieee80211_reg_rule *reg_rule)
739 const struct ieee80211_power_rule *power_rule;
740 const struct ieee80211_freq_range *freq_range;
741 char max_antenna_gain[32];
743 power_rule = &reg_rule->power_rule;
744 freq_range = &reg_rule->freq_range;
746 if (!power_rule->max_antenna_gain)
747 snprintf(max_antenna_gain, 32, "N/A");
748 else
749 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
751 REG_DBG_PRINT("Updating information on frequency %d MHz "
752 "for a %d MHz width channel with regulatory rule:\n",
753 chan->center_freq,
754 KHZ_TO_MHZ(desired_bw_khz));
756 REG_DBG_PRINT("%d KHz - %d KHz @ KHz), (%s mBi, %d mBm)\n",
757 freq_range->start_freq_khz,
758 freq_range->end_freq_khz,
759 max_antenna_gain,
760 power_rule->max_eirp);
762 #else
763 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
764 u32 desired_bw_khz,
765 const struct ieee80211_reg_rule *reg_rule)
767 return;
769 #endif
772 * Note that right now we assume the desired channel bandwidth
773 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
774 * per channel, the primary and the extension channel). To support
775 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
776 * new ieee80211_channel.target_bw and re run the regulatory check
777 * on the wiphy with the target_bw specified. Then we can simply use
778 * that below for the desired_bw_khz below.
780 static void handle_channel(struct wiphy *wiphy,
781 enum nl80211_reg_initiator initiator,
782 enum ieee80211_band band,
783 unsigned int chan_idx)
785 int r;
786 u32 flags, bw_flags = 0;
787 u32 desired_bw_khz = MHZ_TO_KHZ(20);
788 const struct ieee80211_reg_rule *reg_rule = NULL;
789 const struct ieee80211_power_rule *power_rule = NULL;
790 const struct ieee80211_freq_range *freq_range = NULL;
791 struct ieee80211_supported_band *sband;
792 struct ieee80211_channel *chan;
793 struct wiphy *request_wiphy = NULL;
795 assert_cfg80211_lock();
797 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
799 sband = wiphy->bands[band];
800 BUG_ON(chan_idx >= sband->n_channels);
801 chan = &sband->channels[chan_idx];
803 flags = chan->orig_flags;
805 r = freq_reg_info(wiphy,
806 MHZ_TO_KHZ(chan->center_freq),
807 desired_bw_khz,
808 &reg_rule);
810 if (r) {
812 * We will disable all channels that do not match our
813 * received regulatory rule unless the hint is coming
814 * from a Country IE and the Country IE had no information
815 * about a band. The IEEE 802.11 spec allows for an AP
816 * to send only a subset of the regulatory rules allowed,
817 * so an AP in the US that only supports 2.4 GHz may only send
818 * a country IE with information for the 2.4 GHz band
819 * while 5 GHz is still supported.
821 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
822 r == -ERANGE)
823 return;
825 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
826 chan->flags = IEEE80211_CHAN_DISABLED;
827 return;
830 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
832 power_rule = &reg_rule->power_rule;
833 freq_range = &reg_rule->freq_range;
835 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
836 bw_flags = IEEE80211_CHAN_NO_HT40;
838 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
839 request_wiphy && request_wiphy == wiphy &&
840 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
842 * This guarantees the driver's requested regulatory domain
843 * will always be used as a base for further regulatory
844 * settings
846 chan->flags = chan->orig_flags =
847 map_regdom_flags(reg_rule->flags) | bw_flags;
848 chan->max_antenna_gain = chan->orig_mag =
849 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
850 chan->max_power = chan->orig_mpwr =
851 (int) MBM_TO_DBM(power_rule->max_eirp);
852 return;
855 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
856 chan->max_antenna_gain = min(chan->orig_mag,
857 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
858 if (chan->orig_mpwr)
859 chan->max_power = min(chan->orig_mpwr,
860 (int) MBM_TO_DBM(power_rule->max_eirp));
861 else
862 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
865 static void handle_band(struct wiphy *wiphy,
866 enum ieee80211_band band,
867 enum nl80211_reg_initiator initiator)
869 unsigned int i;
870 struct ieee80211_supported_band *sband;
872 BUG_ON(!wiphy->bands[band]);
873 sband = wiphy->bands[band];
875 for (i = 0; i < sband->n_channels; i++)
876 handle_channel(wiphy, initiator, band, i);
879 static bool ignore_reg_update(struct wiphy *wiphy,
880 enum nl80211_reg_initiator initiator)
882 if (!last_request) {
883 REG_DBG_PRINT("Ignoring regulatory request %s since "
884 "last_request is not set\n",
885 reg_initiator_name(initiator));
886 return true;
889 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
890 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
891 REG_DBG_PRINT("Ignoring regulatory request %s "
892 "since the driver uses its own custom "
893 "regulatory domain ",
894 reg_initiator_name(initiator));
895 return true;
899 * wiphy->regd will be set once the device has its own
900 * desired regulatory domain set
902 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
903 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
904 !is_world_regdom(last_request->alpha2)) {
905 REG_DBG_PRINT("Ignoring regulatory request %s "
906 "since the driver requires its own regulaotry "
907 "domain to be set first",
908 reg_initiator_name(initiator));
909 return true;
912 return false;
915 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
917 struct cfg80211_registered_device *rdev;
919 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
920 wiphy_update_regulatory(&rdev->wiphy, initiator);
923 static void handle_reg_beacon(struct wiphy *wiphy,
924 unsigned int chan_idx,
925 struct reg_beacon *reg_beacon)
927 struct ieee80211_supported_band *sband;
928 struct ieee80211_channel *chan;
929 bool channel_changed = false;
930 struct ieee80211_channel chan_before;
932 assert_cfg80211_lock();
934 sband = wiphy->bands[reg_beacon->chan.band];
935 chan = &sband->channels[chan_idx];
937 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
938 return;
940 if (chan->beacon_found)
941 return;
943 chan->beacon_found = true;
945 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
946 return;
948 chan_before.center_freq = chan->center_freq;
949 chan_before.flags = chan->flags;
951 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
952 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
953 channel_changed = true;
956 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
957 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
958 channel_changed = true;
961 if (channel_changed)
962 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
966 * Called when a scan on a wiphy finds a beacon on
967 * new channel
969 static void wiphy_update_new_beacon(struct wiphy *wiphy,
970 struct reg_beacon *reg_beacon)
972 unsigned int i;
973 struct ieee80211_supported_band *sband;
975 assert_cfg80211_lock();
977 if (!wiphy->bands[reg_beacon->chan.band])
978 return;
980 sband = wiphy->bands[reg_beacon->chan.band];
982 for (i = 0; i < sband->n_channels; i++)
983 handle_reg_beacon(wiphy, i, reg_beacon);
987 * Called upon reg changes or a new wiphy is added
989 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
991 unsigned int i;
992 struct ieee80211_supported_band *sband;
993 struct reg_beacon *reg_beacon;
995 assert_cfg80211_lock();
997 if (list_empty(&reg_beacon_list))
998 return;
1000 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1001 if (!wiphy->bands[reg_beacon->chan.band])
1002 continue;
1003 sband = wiphy->bands[reg_beacon->chan.band];
1004 for (i = 0; i < sband->n_channels; i++)
1005 handle_reg_beacon(wiphy, i, reg_beacon);
1009 static bool reg_is_world_roaming(struct wiphy *wiphy)
1011 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1012 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1013 return true;
1014 if (last_request &&
1015 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1016 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1017 return true;
1018 return false;
1021 /* Reap the advantages of previously found beacons */
1022 static void reg_process_beacons(struct wiphy *wiphy)
1025 * Means we are just firing up cfg80211, so no beacons would
1026 * have been processed yet.
1028 if (!last_request)
1029 return;
1030 if (!reg_is_world_roaming(wiphy))
1031 return;
1032 wiphy_update_beacon_reg(wiphy);
1035 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1037 if (!chan)
1038 return true;
1039 if (chan->flags & IEEE80211_CHAN_DISABLED)
1040 return true;
1041 /* This would happen when regulatory rules disallow HT40 completely */
1042 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1043 return true;
1044 return false;
1047 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1048 enum ieee80211_band band,
1049 unsigned int chan_idx)
1051 struct ieee80211_supported_band *sband;
1052 struct ieee80211_channel *channel;
1053 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1054 unsigned int i;
1056 assert_cfg80211_lock();
1058 sband = wiphy->bands[band];
1059 BUG_ON(chan_idx >= sband->n_channels);
1060 channel = &sband->channels[chan_idx];
1062 if (is_ht40_not_allowed(channel)) {
1063 channel->flags |= IEEE80211_CHAN_NO_HT40;
1064 return;
1068 * We need to ensure the extension channels exist to
1069 * be able to use HT40- or HT40+, this finds them (or not)
1071 for (i = 0; i < sband->n_channels; i++) {
1072 struct ieee80211_channel *c = &sband->channels[i];
1073 if (c->center_freq == (channel->center_freq - 20))
1074 channel_before = c;
1075 if (c->center_freq == (channel->center_freq + 20))
1076 channel_after = c;
1080 * Please note that this assumes target bandwidth is 20 MHz,
1081 * if that ever changes we also need to change the below logic
1082 * to include that as well.
1084 if (is_ht40_not_allowed(channel_before))
1085 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1086 else
1087 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1089 if (is_ht40_not_allowed(channel_after))
1090 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1091 else
1092 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1095 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1096 enum ieee80211_band band)
1098 unsigned int i;
1099 struct ieee80211_supported_band *sband;
1101 BUG_ON(!wiphy->bands[band]);
1102 sband = wiphy->bands[band];
1104 for (i = 0; i < sband->n_channels; i++)
1105 reg_process_ht_flags_channel(wiphy, band, i);
1108 static void reg_process_ht_flags(struct wiphy *wiphy)
1110 enum ieee80211_band band;
1112 if (!wiphy)
1113 return;
1115 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1116 if (wiphy->bands[band])
1117 reg_process_ht_flags_band(wiphy, band);
1122 void wiphy_update_regulatory(struct wiphy *wiphy,
1123 enum nl80211_reg_initiator initiator)
1125 enum ieee80211_band band;
1127 if (ignore_reg_update(wiphy, initiator))
1128 goto out;
1129 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1130 if (wiphy->bands[band])
1131 handle_band(wiphy, band, initiator);
1133 out:
1134 reg_process_beacons(wiphy);
1135 reg_process_ht_flags(wiphy);
1136 if (wiphy->reg_notifier)
1137 wiphy->reg_notifier(wiphy, last_request);
1140 static void handle_channel_custom(struct wiphy *wiphy,
1141 enum ieee80211_band band,
1142 unsigned int chan_idx,
1143 const struct ieee80211_regdomain *regd)
1145 int r;
1146 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1147 u32 bw_flags = 0;
1148 const struct ieee80211_reg_rule *reg_rule = NULL;
1149 const struct ieee80211_power_rule *power_rule = NULL;
1150 const struct ieee80211_freq_range *freq_range = NULL;
1151 struct ieee80211_supported_band *sband;
1152 struct ieee80211_channel *chan;
1154 assert_reg_lock();
1156 sband = wiphy->bands[band];
1157 BUG_ON(chan_idx >= sband->n_channels);
1158 chan = &sband->channels[chan_idx];
1160 r = freq_reg_info_regd(wiphy,
1161 MHZ_TO_KHZ(chan->center_freq),
1162 desired_bw_khz,
1163 &reg_rule,
1164 regd);
1166 if (r) {
1167 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1168 "regd has no rule that fits a %d MHz "
1169 "wide channel\n",
1170 chan->center_freq,
1171 KHZ_TO_MHZ(desired_bw_khz));
1172 chan->flags = IEEE80211_CHAN_DISABLED;
1173 return;
1176 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1178 power_rule = &reg_rule->power_rule;
1179 freq_range = &reg_rule->freq_range;
1181 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1182 bw_flags = IEEE80211_CHAN_NO_HT40;
1184 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1185 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1186 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1189 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1190 const struct ieee80211_regdomain *regd)
1192 unsigned int i;
1193 struct ieee80211_supported_band *sband;
1195 BUG_ON(!wiphy->bands[band]);
1196 sband = wiphy->bands[band];
1198 for (i = 0; i < sband->n_channels; i++)
1199 handle_channel_custom(wiphy, band, i, regd);
1202 /* Used by drivers prior to wiphy registration */
1203 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1204 const struct ieee80211_regdomain *regd)
1206 enum ieee80211_band band;
1207 unsigned int bands_set = 0;
1209 mutex_lock(&reg_mutex);
1210 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1211 if (!wiphy->bands[band])
1212 continue;
1213 handle_band_custom(wiphy, band, regd);
1214 bands_set++;
1216 mutex_unlock(&reg_mutex);
1219 * no point in calling this if it won't have any effect
1220 * on your device's supportd bands.
1222 WARN_ON(!bands_set);
1224 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1227 * Return value which can be used by ignore_request() to indicate
1228 * it has been determined we should intersect two regulatory domains
1230 #define REG_INTERSECT 1
1232 /* This has the logic which determines when a new request
1233 * should be ignored. */
1234 static int ignore_request(struct wiphy *wiphy,
1235 struct regulatory_request *pending_request)
1237 struct wiphy *last_wiphy = NULL;
1239 assert_cfg80211_lock();
1241 /* All initial requests are respected */
1242 if (!last_request)
1243 return 0;
1245 switch (pending_request->initiator) {
1246 case NL80211_REGDOM_SET_BY_CORE:
1247 return 0;
1248 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1250 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1252 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1253 return -EINVAL;
1254 if (last_request->initiator ==
1255 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1256 if (last_wiphy != wiphy) {
1258 * Two cards with two APs claiming different
1259 * Country IE alpha2s. We could
1260 * intersect them, but that seems unlikely
1261 * to be correct. Reject second one for now.
1263 if (regdom_changes(pending_request->alpha2))
1264 return -EOPNOTSUPP;
1265 return -EALREADY;
1268 * Two consecutive Country IE hints on the same wiphy.
1269 * This should be picked up early by the driver/stack
1271 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1272 return 0;
1273 return -EALREADY;
1275 return 0;
1276 case NL80211_REGDOM_SET_BY_DRIVER:
1277 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1278 if (regdom_changes(pending_request->alpha2))
1279 return 0;
1280 return -EALREADY;
1284 * This would happen if you unplug and plug your card
1285 * back in or if you add a new device for which the previously
1286 * loaded card also agrees on the regulatory domain.
1288 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1289 !regdom_changes(pending_request->alpha2))
1290 return -EALREADY;
1292 return REG_INTERSECT;
1293 case NL80211_REGDOM_SET_BY_USER:
1294 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1295 return REG_INTERSECT;
1297 * If the user knows better the user should set the regdom
1298 * to their country before the IE is picked up
1300 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1301 last_request->intersect)
1302 return -EOPNOTSUPP;
1304 * Process user requests only after previous user/driver/core
1305 * requests have been processed
1307 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1308 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1309 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1310 if (regdom_changes(last_request->alpha2))
1311 return -EAGAIN;
1314 if (!regdom_changes(pending_request->alpha2))
1315 return -EALREADY;
1317 return 0;
1320 return -EINVAL;
1323 static void reg_set_request_processed(void)
1325 bool need_more_processing = false;
1327 last_request->processed = true;
1329 spin_lock(&reg_requests_lock);
1330 if (!list_empty(&reg_requests_list))
1331 need_more_processing = true;
1332 spin_unlock(&reg_requests_lock);
1334 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1335 cancel_delayed_work_sync(&reg_timeout);
1337 if (need_more_processing)
1338 schedule_work(&reg_work);
1342 * __regulatory_hint - hint to the wireless core a regulatory domain
1343 * @wiphy: if the hint comes from country information from an AP, this
1344 * is required to be set to the wiphy that received the information
1345 * @pending_request: the regulatory request currently being processed
1347 * The Wireless subsystem can use this function to hint to the wireless core
1348 * what it believes should be the current regulatory domain.
1350 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1351 * already been set or other standard error codes.
1353 * Caller must hold &cfg80211_mutex and &reg_mutex
1355 static int __regulatory_hint(struct wiphy *wiphy,
1356 struct regulatory_request *pending_request)
1358 bool intersect = false;
1359 int r = 0;
1361 assert_cfg80211_lock();
1363 r = ignore_request(wiphy, pending_request);
1365 if (r == REG_INTERSECT) {
1366 if (pending_request->initiator ==
1367 NL80211_REGDOM_SET_BY_DRIVER) {
1368 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1369 if (r) {
1370 kfree(pending_request);
1371 return r;
1374 intersect = true;
1375 } else if (r) {
1377 * If the regulatory domain being requested by the
1378 * driver has already been set just copy it to the
1379 * wiphy
1381 if (r == -EALREADY &&
1382 pending_request->initiator ==
1383 NL80211_REGDOM_SET_BY_DRIVER) {
1384 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1385 if (r) {
1386 kfree(pending_request);
1387 return r;
1389 r = -EALREADY;
1390 goto new_request;
1392 kfree(pending_request);
1393 return r;
1396 new_request:
1397 kfree(last_request);
1399 last_request = pending_request;
1400 last_request->intersect = intersect;
1402 pending_request = NULL;
1404 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1405 user_alpha2[0] = last_request->alpha2[0];
1406 user_alpha2[1] = last_request->alpha2[1];
1409 /* When r == REG_INTERSECT we do need to call CRDA */
1410 if (r < 0) {
1412 * Since CRDA will not be called in this case as we already
1413 * have applied the requested regulatory domain before we just
1414 * inform userspace we have processed the request
1416 if (r == -EALREADY) {
1417 nl80211_send_reg_change_event(last_request);
1418 reg_set_request_processed();
1420 return r;
1423 return call_crda(last_request->alpha2);
1426 /* This processes *all* regulatory hints */
1427 static void reg_process_hint(struct regulatory_request *reg_request)
1429 int r = 0;
1430 struct wiphy *wiphy = NULL;
1431 enum nl80211_reg_initiator initiator = reg_request->initiator;
1433 BUG_ON(!reg_request->alpha2);
1435 if (wiphy_idx_valid(reg_request->wiphy_idx))
1436 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1438 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1439 !wiphy) {
1440 kfree(reg_request);
1441 return;
1444 r = __regulatory_hint(wiphy, reg_request);
1445 /* This is required so that the orig_* parameters are saved */
1446 if (r == -EALREADY && wiphy &&
1447 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1448 wiphy_update_regulatory(wiphy, initiator);
1449 return;
1453 * We only time out user hints, given that they should be the only
1454 * source of bogus requests.
1456 if (r != -EALREADY &&
1457 reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1458 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1462 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1463 * Regulatory hints come on a first come first serve basis and we
1464 * must process each one atomically.
1466 static void reg_process_pending_hints(void)
1468 struct regulatory_request *reg_request;
1470 mutex_lock(&cfg80211_mutex);
1471 mutex_lock(&reg_mutex);
1473 /* When last_request->processed becomes true this will be rescheduled */
1474 if (last_request && !last_request->processed) {
1475 REG_DBG_PRINT("Pending regulatory request, waiting "
1476 "for it to be processed...");
1477 goto out;
1480 spin_lock(&reg_requests_lock);
1482 if (list_empty(&reg_requests_list)) {
1483 spin_unlock(&reg_requests_lock);
1484 goto out;
1487 reg_request = list_first_entry(&reg_requests_list,
1488 struct regulatory_request,
1489 list);
1490 list_del_init(&reg_request->list);
1492 spin_unlock(&reg_requests_lock);
1494 reg_process_hint(reg_request);
1496 out:
1497 mutex_unlock(&reg_mutex);
1498 mutex_unlock(&cfg80211_mutex);
1501 /* Processes beacon hints -- this has nothing to do with country IEs */
1502 static void reg_process_pending_beacon_hints(void)
1504 struct cfg80211_registered_device *rdev;
1505 struct reg_beacon *pending_beacon, *tmp;
1508 * No need to hold the reg_mutex here as we just touch wiphys
1509 * and do not read or access regulatory variables.
1511 mutex_lock(&cfg80211_mutex);
1513 /* This goes through the _pending_ beacon list */
1514 spin_lock_bh(&reg_pending_beacons_lock);
1516 if (list_empty(&reg_pending_beacons)) {
1517 spin_unlock_bh(&reg_pending_beacons_lock);
1518 goto out;
1521 list_for_each_entry_safe(pending_beacon, tmp,
1522 &reg_pending_beacons, list) {
1524 list_del_init(&pending_beacon->list);
1526 /* Applies the beacon hint to current wiphys */
1527 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1528 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1530 /* Remembers the beacon hint for new wiphys or reg changes */
1531 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1534 spin_unlock_bh(&reg_pending_beacons_lock);
1535 out:
1536 mutex_unlock(&cfg80211_mutex);
1539 static void reg_todo(struct work_struct *work)
1541 reg_process_pending_hints();
1542 reg_process_pending_beacon_hints();
1545 static void queue_regulatory_request(struct regulatory_request *request)
1547 if (isalpha(request->alpha2[0]))
1548 request->alpha2[0] = toupper(request->alpha2[0]);
1549 if (isalpha(request->alpha2[1]))
1550 request->alpha2[1] = toupper(request->alpha2[1]);
1552 spin_lock(&reg_requests_lock);
1553 list_add_tail(&request->list, &reg_requests_list);
1554 spin_unlock(&reg_requests_lock);
1556 schedule_work(&reg_work);
1560 * Core regulatory hint -- happens during cfg80211_init()
1561 * and when we restore regulatory settings.
1563 static int regulatory_hint_core(const char *alpha2)
1565 struct regulatory_request *request;
1567 kfree(last_request);
1568 last_request = NULL;
1570 request = kzalloc(sizeof(struct regulatory_request),
1571 GFP_KERNEL);
1572 if (!request)
1573 return -ENOMEM;
1575 request->alpha2[0] = alpha2[0];
1576 request->alpha2[1] = alpha2[1];
1577 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1579 queue_regulatory_request(request);
1581 return 0;
1584 /* User hints */
1585 int regulatory_hint_user(const char *alpha2)
1587 struct regulatory_request *request;
1589 BUG_ON(!alpha2);
1591 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1592 if (!request)
1593 return -ENOMEM;
1595 request->wiphy_idx = WIPHY_IDX_STALE;
1596 request->alpha2[0] = alpha2[0];
1597 request->alpha2[1] = alpha2[1];
1598 request->initiator = NL80211_REGDOM_SET_BY_USER;
1600 queue_regulatory_request(request);
1602 return 0;
1605 /* Driver hints */
1606 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1608 struct regulatory_request *request;
1610 BUG_ON(!alpha2);
1611 BUG_ON(!wiphy);
1613 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1614 if (!request)
1615 return -ENOMEM;
1617 request->wiphy_idx = get_wiphy_idx(wiphy);
1619 /* Must have registered wiphy first */
1620 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1622 request->alpha2[0] = alpha2[0];
1623 request->alpha2[1] = alpha2[1];
1624 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1626 queue_regulatory_request(request);
1628 return 0;
1630 EXPORT_SYMBOL(regulatory_hint);
1633 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1634 * therefore cannot iterate over the rdev list here.
1636 void regulatory_hint_11d(struct wiphy *wiphy,
1637 enum ieee80211_band band,
1638 u8 *country_ie,
1639 u8 country_ie_len)
1641 char alpha2[2];
1642 enum environment_cap env = ENVIRON_ANY;
1643 struct regulatory_request *request;
1645 mutex_lock(&reg_mutex);
1647 if (unlikely(!last_request))
1648 goto out;
1650 /* IE len must be evenly divisible by 2 */
1651 if (country_ie_len & 0x01)
1652 goto out;
1654 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1655 goto out;
1657 alpha2[0] = country_ie[0];
1658 alpha2[1] = country_ie[1];
1660 if (country_ie[2] == 'I')
1661 env = ENVIRON_INDOOR;
1662 else if (country_ie[2] == 'O')
1663 env = ENVIRON_OUTDOOR;
1666 * We will run this only upon a successful connection on cfg80211.
1667 * We leave conflict resolution to the workqueue, where can hold
1668 * cfg80211_mutex.
1670 if (likely(last_request->initiator ==
1671 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1672 wiphy_idx_valid(last_request->wiphy_idx)))
1673 goto out;
1675 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1676 if (!request)
1677 goto out;
1679 request->wiphy_idx = get_wiphy_idx(wiphy);
1680 request->alpha2[0] = alpha2[0];
1681 request->alpha2[1] = alpha2[1];
1682 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1683 request->country_ie_env = env;
1685 mutex_unlock(&reg_mutex);
1687 queue_regulatory_request(request);
1689 return;
1691 out:
1692 mutex_unlock(&reg_mutex);
1695 static void restore_alpha2(char *alpha2, bool reset_user)
1697 /* indicates there is no alpha2 to consider for restoration */
1698 alpha2[0] = '9';
1699 alpha2[1] = '7';
1701 /* The user setting has precedence over the module parameter */
1702 if (is_user_regdom_saved()) {
1703 /* Unless we're asked to ignore it and reset it */
1704 if (reset_user) {
1705 REG_DBG_PRINT("Restoring regulatory settings "
1706 "including user preference\n");
1707 user_alpha2[0] = '9';
1708 user_alpha2[1] = '7';
1711 * If we're ignoring user settings, we still need to
1712 * check the module parameter to ensure we put things
1713 * back as they were for a full restore.
1715 if (!is_world_regdom(ieee80211_regdom)) {
1716 REG_DBG_PRINT("Keeping preference on "
1717 "module parameter ieee80211_regdom: %c%c\n",
1718 ieee80211_regdom[0],
1719 ieee80211_regdom[1]);
1720 alpha2[0] = ieee80211_regdom[0];
1721 alpha2[1] = ieee80211_regdom[1];
1723 } else {
1724 REG_DBG_PRINT("Restoring regulatory settings "
1725 "while preserving user preference for: %c%c\n",
1726 user_alpha2[0],
1727 user_alpha2[1]);
1728 alpha2[0] = user_alpha2[0];
1729 alpha2[1] = user_alpha2[1];
1731 } else if (!is_world_regdom(ieee80211_regdom)) {
1732 REG_DBG_PRINT("Keeping preference on "
1733 "module parameter ieee80211_regdom: %c%c\n",
1734 ieee80211_regdom[0],
1735 ieee80211_regdom[1]);
1736 alpha2[0] = ieee80211_regdom[0];
1737 alpha2[1] = ieee80211_regdom[1];
1738 } else
1739 REG_DBG_PRINT("Restoring regulatory settings\n");
1743 * Restoring regulatory settings involves ingoring any
1744 * possibly stale country IE information and user regulatory
1745 * settings if so desired, this includes any beacon hints
1746 * learned as we could have traveled outside to another country
1747 * after disconnection. To restore regulatory settings we do
1748 * exactly what we did at bootup:
1750 * - send a core regulatory hint
1751 * - send a user regulatory hint if applicable
1753 * Device drivers that send a regulatory hint for a specific country
1754 * keep their own regulatory domain on wiphy->regd so that does does
1755 * not need to be remembered.
1757 static void restore_regulatory_settings(bool reset_user)
1759 char alpha2[2];
1760 struct reg_beacon *reg_beacon, *btmp;
1761 struct regulatory_request *reg_request, *tmp;
1762 LIST_HEAD(tmp_reg_req_list);
1764 mutex_lock(&cfg80211_mutex);
1765 mutex_lock(&reg_mutex);
1767 reset_regdomains();
1768 restore_alpha2(alpha2, reset_user);
1771 * If there's any pending requests we simply
1772 * stash them to a temporary pending queue and
1773 * add then after we've restored regulatory
1774 * settings.
1776 spin_lock(&reg_requests_lock);
1777 if (!list_empty(&reg_requests_list)) {
1778 list_for_each_entry_safe(reg_request, tmp,
1779 &reg_requests_list, list) {
1780 if (reg_request->initiator !=
1781 NL80211_REGDOM_SET_BY_USER)
1782 continue;
1783 list_del(&reg_request->list);
1784 list_add_tail(&reg_request->list, &tmp_reg_req_list);
1787 spin_unlock(&reg_requests_lock);
1789 /* Clear beacon hints */
1790 spin_lock_bh(&reg_pending_beacons_lock);
1791 if (!list_empty(&reg_pending_beacons)) {
1792 list_for_each_entry_safe(reg_beacon, btmp,
1793 &reg_pending_beacons, list) {
1794 list_del(&reg_beacon->list);
1795 kfree(reg_beacon);
1798 spin_unlock_bh(&reg_pending_beacons_lock);
1800 if (!list_empty(&reg_beacon_list)) {
1801 list_for_each_entry_safe(reg_beacon, btmp,
1802 &reg_beacon_list, list) {
1803 list_del(&reg_beacon->list);
1804 kfree(reg_beacon);
1808 /* First restore to the basic regulatory settings */
1809 cfg80211_regdomain = cfg80211_world_regdom;
1811 mutex_unlock(&reg_mutex);
1812 mutex_unlock(&cfg80211_mutex);
1814 regulatory_hint_core(cfg80211_regdomain->alpha2);
1817 * This restores the ieee80211_regdom module parameter
1818 * preference or the last user requested regulatory
1819 * settings, user regulatory settings takes precedence.
1821 if (is_an_alpha2(alpha2))
1822 regulatory_hint_user(user_alpha2);
1824 if (list_empty(&tmp_reg_req_list))
1825 return;
1827 mutex_lock(&cfg80211_mutex);
1828 mutex_lock(&reg_mutex);
1830 spin_lock(&reg_requests_lock);
1831 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1832 REG_DBG_PRINT("Adding request for country %c%c back "
1833 "into the queue\n",
1834 reg_request->alpha2[0],
1835 reg_request->alpha2[1]);
1836 list_del(&reg_request->list);
1837 list_add_tail(&reg_request->list, &reg_requests_list);
1839 spin_unlock(&reg_requests_lock);
1841 mutex_unlock(&reg_mutex);
1842 mutex_unlock(&cfg80211_mutex);
1844 REG_DBG_PRINT("Kicking the queue\n");
1846 schedule_work(&reg_work);
1849 void regulatory_hint_disconnect(void)
1851 REG_DBG_PRINT("All devices are disconnected, going to "
1852 "restore regulatory settings\n");
1853 restore_regulatory_settings(false);
1856 static bool freq_is_chan_12_13_14(u16 freq)
1858 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1859 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1860 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1861 return true;
1862 return false;
1865 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1866 struct ieee80211_channel *beacon_chan,
1867 gfp_t gfp)
1869 struct reg_beacon *reg_beacon;
1871 if (likely((beacon_chan->beacon_found ||
1872 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1873 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1874 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1875 return 0;
1877 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1878 if (!reg_beacon)
1879 return -ENOMEM;
1881 REG_DBG_PRINT("Found new beacon on "
1882 "frequency: %d MHz (Ch %d) on %s\n",
1883 beacon_chan->center_freq,
1884 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1885 wiphy_name(wiphy));
1887 memcpy(&reg_beacon->chan, beacon_chan,
1888 sizeof(struct ieee80211_channel));
1892 * Since we can be called from BH or and non-BH context
1893 * we must use spin_lock_bh()
1895 spin_lock_bh(&reg_pending_beacons_lock);
1896 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1897 spin_unlock_bh(&reg_pending_beacons_lock);
1899 schedule_work(&reg_work);
1901 return 0;
1904 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1906 unsigned int i;
1907 const struct ieee80211_reg_rule *reg_rule = NULL;
1908 const struct ieee80211_freq_range *freq_range = NULL;
1909 const struct ieee80211_power_rule *power_rule = NULL;
1911 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1913 for (i = 0; i < rd->n_reg_rules; i++) {
1914 reg_rule = &rd->reg_rules[i];
1915 freq_range = &reg_rule->freq_range;
1916 power_rule = &reg_rule->power_rule;
1919 * There may not be documentation for max antenna gain
1920 * in certain regions
1922 if (power_rule->max_antenna_gain)
1923 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1924 freq_range->start_freq_khz,
1925 freq_range->end_freq_khz,
1926 freq_range->max_bandwidth_khz,
1927 power_rule->max_antenna_gain,
1928 power_rule->max_eirp);
1929 else
1930 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1931 freq_range->start_freq_khz,
1932 freq_range->end_freq_khz,
1933 freq_range->max_bandwidth_khz,
1934 power_rule->max_eirp);
1938 static void print_regdomain(const struct ieee80211_regdomain *rd)
1941 if (is_intersected_alpha2(rd->alpha2)) {
1943 if (last_request->initiator ==
1944 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1945 struct cfg80211_registered_device *rdev;
1946 rdev = cfg80211_rdev_by_wiphy_idx(
1947 last_request->wiphy_idx);
1948 if (rdev) {
1949 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1950 rdev->country_ie_alpha2[0],
1951 rdev->country_ie_alpha2[1]);
1952 } else
1953 pr_info("Current regulatory domain intersected:\n");
1954 } else
1955 pr_info("Current regulatory domain intersected:\n");
1956 } else if (is_world_regdom(rd->alpha2))
1957 pr_info("World regulatory domain updated:\n");
1958 else {
1959 if (is_unknown_alpha2(rd->alpha2))
1960 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1961 else
1962 pr_info("Regulatory domain changed to country: %c%c\n",
1963 rd->alpha2[0], rd->alpha2[1]);
1965 print_rd_rules(rd);
1968 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1970 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1971 print_rd_rules(rd);
1974 /* Takes ownership of rd only if it doesn't fail */
1975 static int __set_regdom(const struct ieee80211_regdomain *rd)
1977 const struct ieee80211_regdomain *intersected_rd = NULL;
1978 struct cfg80211_registered_device *rdev = NULL;
1979 struct wiphy *request_wiphy;
1980 /* Some basic sanity checks first */
1982 if (is_world_regdom(rd->alpha2)) {
1983 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1984 return -EINVAL;
1985 update_world_regdomain(rd);
1986 return 0;
1989 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1990 !is_unknown_alpha2(rd->alpha2))
1991 return -EINVAL;
1993 if (!last_request)
1994 return -EINVAL;
1997 * Lets only bother proceeding on the same alpha2 if the current
1998 * rd is non static (it means CRDA was present and was used last)
1999 * and the pending request came in from a country IE
2001 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2003 * If someone else asked us to change the rd lets only bother
2004 * checking if the alpha2 changes if CRDA was already called
2006 if (!regdom_changes(rd->alpha2))
2007 return -EINVAL;
2011 * Now lets set the regulatory domain, update all driver channels
2012 * and finally inform them of what we have done, in case they want
2013 * to review or adjust their own settings based on their own
2014 * internal EEPROM data
2017 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2018 return -EINVAL;
2020 if (!is_valid_rd(rd)) {
2021 pr_err("Invalid regulatory domain detected:\n");
2022 print_regdomain_info(rd);
2023 return -EINVAL;
2026 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2028 if (!last_request->intersect) {
2029 int r;
2031 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2032 reset_regdomains();
2033 cfg80211_regdomain = rd;
2034 return 0;
2038 * For a driver hint, lets copy the regulatory domain the
2039 * driver wanted to the wiphy to deal with conflicts
2043 * Userspace could have sent two replies with only
2044 * one kernel request.
2046 if (request_wiphy->regd)
2047 return -EALREADY;
2049 r = reg_copy_regd(&request_wiphy->regd, rd);
2050 if (r)
2051 return r;
2053 reset_regdomains();
2054 cfg80211_regdomain = rd;
2055 return 0;
2058 /* Intersection requires a bit more work */
2060 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2062 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2063 if (!intersected_rd)
2064 return -EINVAL;
2067 * We can trash what CRDA provided now.
2068 * However if a driver requested this specific regulatory
2069 * domain we keep it for its private use
2071 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2072 request_wiphy->regd = rd;
2073 else
2074 kfree(rd);
2076 rd = NULL;
2078 reset_regdomains();
2079 cfg80211_regdomain = intersected_rd;
2081 return 0;
2084 if (!intersected_rd)
2085 return -EINVAL;
2087 rdev = wiphy_to_dev(request_wiphy);
2089 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2090 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2091 rdev->env = last_request->country_ie_env;
2093 BUG_ON(intersected_rd == rd);
2095 kfree(rd);
2096 rd = NULL;
2098 reset_regdomains();
2099 cfg80211_regdomain = intersected_rd;
2101 return 0;
2106 * Use this call to set the current regulatory domain. Conflicts with
2107 * multiple drivers can be ironed out later. Caller must've already
2108 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2110 int set_regdom(const struct ieee80211_regdomain *rd)
2112 int r;
2114 assert_cfg80211_lock();
2116 mutex_lock(&reg_mutex);
2118 /* Note that this doesn't update the wiphys, this is done below */
2119 r = __set_regdom(rd);
2120 if (r) {
2121 kfree(rd);
2122 mutex_unlock(&reg_mutex);
2123 return r;
2126 /* This would make this whole thing pointless */
2127 if (!last_request->intersect)
2128 BUG_ON(rd != cfg80211_regdomain);
2130 /* update all wiphys now with the new established regulatory domain */
2131 update_all_wiphy_regulatory(last_request->initiator);
2133 print_regdomain(cfg80211_regdomain);
2135 nl80211_send_reg_change_event(last_request);
2137 reg_set_request_processed();
2139 mutex_unlock(&reg_mutex);
2141 return r;
2144 #ifdef CONFIG_HOTPLUG
2145 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2147 if (last_request && !last_request->processed) {
2148 if (add_uevent_var(env, "COUNTRY=%c%c",
2149 last_request->alpha2[0],
2150 last_request->alpha2[1]))
2151 return -ENOMEM;
2154 return 0;
2156 #else
2157 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2159 return -ENODEV;
2161 #endif /* CONFIG_HOTPLUG */
2163 /* Caller must hold cfg80211_mutex */
2164 void reg_device_remove(struct wiphy *wiphy)
2166 struct wiphy *request_wiphy = NULL;
2168 assert_cfg80211_lock();
2170 mutex_lock(&reg_mutex);
2172 kfree(wiphy->regd);
2174 if (last_request)
2175 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2177 if (!request_wiphy || request_wiphy != wiphy)
2178 goto out;
2180 last_request->wiphy_idx = WIPHY_IDX_STALE;
2181 last_request->country_ie_env = ENVIRON_ANY;
2182 out:
2183 mutex_unlock(&reg_mutex);
2186 static void reg_timeout_work(struct work_struct *work)
2188 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2189 "restoring regulatory settings");
2190 restore_regulatory_settings(true);
2193 int __init regulatory_init(void)
2195 int err = 0;
2197 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2198 if (IS_ERR(reg_pdev))
2199 return PTR_ERR(reg_pdev);
2201 reg_pdev->dev.type = &reg_device_type;
2203 spin_lock_init(&reg_requests_lock);
2204 spin_lock_init(&reg_pending_beacons_lock);
2206 cfg80211_regdomain = cfg80211_world_regdom;
2208 user_alpha2[0] = '9';
2209 user_alpha2[1] = '7';
2211 /* We always try to get an update for the static regdomain */
2212 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2213 if (err) {
2214 if (err == -ENOMEM)
2215 return err;
2217 * N.B. kobject_uevent_env() can fail mainly for when we're out
2218 * memory which is handled and propagated appropriately above
2219 * but it can also fail during a netlink_broadcast() or during
2220 * early boot for call_usermodehelper(). For now treat these
2221 * errors as non-fatal.
2223 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2224 #ifdef CONFIG_CFG80211_REG_DEBUG
2225 /* We want to find out exactly why when debugging */
2226 WARN_ON(err);
2227 #endif
2231 * Finally, if the user set the module parameter treat it
2232 * as a user hint.
2234 if (!is_world_regdom(ieee80211_regdom))
2235 regulatory_hint_user(ieee80211_regdom);
2237 return 0;
2240 void /* __init_or_exit */ regulatory_exit(void)
2242 struct regulatory_request *reg_request, *tmp;
2243 struct reg_beacon *reg_beacon, *btmp;
2245 cancel_work_sync(&reg_work);
2246 cancel_delayed_work_sync(&reg_timeout);
2248 mutex_lock(&cfg80211_mutex);
2249 mutex_lock(&reg_mutex);
2251 reset_regdomains();
2253 kfree(last_request);
2255 platform_device_unregister(reg_pdev);
2257 spin_lock_bh(&reg_pending_beacons_lock);
2258 if (!list_empty(&reg_pending_beacons)) {
2259 list_for_each_entry_safe(reg_beacon, btmp,
2260 &reg_pending_beacons, list) {
2261 list_del(&reg_beacon->list);
2262 kfree(reg_beacon);
2265 spin_unlock_bh(&reg_pending_beacons_lock);
2267 if (!list_empty(&reg_beacon_list)) {
2268 list_for_each_entry_safe(reg_beacon, btmp,
2269 &reg_beacon_list, list) {
2270 list_del(&reg_beacon->list);
2271 kfree(reg_beacon);
2275 spin_lock(&reg_requests_lock);
2276 if (!list_empty(&reg_requests_list)) {
2277 list_for_each_entry_safe(reg_request, tmp,
2278 &reg_requests_list, list) {
2279 list_del(&reg_request->list);
2280 kfree(reg_request);
2283 spin_unlock(&reg_requests_lock);
2285 mutex_unlock(&reg_mutex);
2286 mutex_unlock(&cfg80211_mutex);