fs: ocfs2: fix a possible null-pointer dereference in ocfs2_info_scan_inode_alloc()
[linux/fpc-iii.git] / mm / vmalloc.c
blobd118e59a2bef55914ad115e3864ff2b17f7db663
1 /*
2 * linux/mm/vmalloc.c
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <linux/compiler.h>
31 #include <linux/llist.h>
32 #include <linux/bitops.h>
34 #include <asm/uaccess.h>
35 #include <asm/tlbflush.h>
36 #include <asm/shmparam.h>
38 #include "internal.h"
40 struct vfree_deferred {
41 struct llist_head list;
42 struct work_struct wq;
44 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46 static void __vunmap(const void *, int);
48 static void free_work(struct work_struct *w)
50 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
51 struct llist_node *llnode = llist_del_all(&p->list);
52 while (llnode) {
53 void *p = llnode;
54 llnode = llist_next(llnode);
55 __vunmap(p, 1);
59 /*** Page table manipulation functions ***/
61 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
63 pte_t *pte;
65 pte = pte_offset_kernel(pmd, addr);
66 do {
67 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
68 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
69 } while (pte++, addr += PAGE_SIZE, addr != end);
72 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
74 pmd_t *pmd;
75 unsigned long next;
77 pmd = pmd_offset(pud, addr);
78 do {
79 next = pmd_addr_end(addr, end);
80 if (pmd_clear_huge(pmd))
81 continue;
82 if (pmd_none_or_clear_bad(pmd))
83 continue;
84 vunmap_pte_range(pmd, addr, next);
85 } while (pmd++, addr = next, addr != end);
88 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
90 pud_t *pud;
91 unsigned long next;
93 pud = pud_offset(pgd, addr);
94 do {
95 next = pud_addr_end(addr, end);
96 if (pud_clear_huge(pud))
97 continue;
98 if (pud_none_or_clear_bad(pud))
99 continue;
100 vunmap_pmd_range(pud, addr, next);
101 } while (pud++, addr = next, addr != end);
104 static void vunmap_page_range(unsigned long addr, unsigned long end)
106 pgd_t *pgd;
107 unsigned long next;
109 BUG_ON(addr >= end);
110 pgd = pgd_offset_k(addr);
111 do {
112 next = pgd_addr_end(addr, end);
113 if (pgd_none_or_clear_bad(pgd))
114 continue;
115 vunmap_pud_range(pgd, addr, next);
116 } while (pgd++, addr = next, addr != end);
119 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
120 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
122 pte_t *pte;
125 * nr is a running index into the array which helps higher level
126 * callers keep track of where we're up to.
129 pte = pte_alloc_kernel(pmd, addr);
130 if (!pte)
131 return -ENOMEM;
132 do {
133 struct page *page = pages[*nr];
135 if (WARN_ON(!pte_none(*pte)))
136 return -EBUSY;
137 if (WARN_ON(!page))
138 return -ENOMEM;
139 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
140 (*nr)++;
141 } while (pte++, addr += PAGE_SIZE, addr != end);
142 return 0;
145 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
146 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
148 pmd_t *pmd;
149 unsigned long next;
151 pmd = pmd_alloc(&init_mm, pud, addr);
152 if (!pmd)
153 return -ENOMEM;
154 do {
155 next = pmd_addr_end(addr, end);
156 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
157 return -ENOMEM;
158 } while (pmd++, addr = next, addr != end);
159 return 0;
162 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
163 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
165 pud_t *pud;
166 unsigned long next;
168 pud = pud_alloc(&init_mm, pgd, addr);
169 if (!pud)
170 return -ENOMEM;
171 do {
172 next = pud_addr_end(addr, end);
173 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
174 return -ENOMEM;
175 } while (pud++, addr = next, addr != end);
176 return 0;
180 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
181 * will have pfns corresponding to the "pages" array.
183 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
185 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
186 pgprot_t prot, struct page **pages)
188 pgd_t *pgd;
189 unsigned long next;
190 unsigned long addr = start;
191 int err = 0;
192 int nr = 0;
194 BUG_ON(addr >= end);
195 pgd = pgd_offset_k(addr);
196 do {
197 next = pgd_addr_end(addr, end);
198 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
199 if (err)
200 return err;
201 } while (pgd++, addr = next, addr != end);
203 return nr;
206 static int vmap_page_range(unsigned long start, unsigned long end,
207 pgprot_t prot, struct page **pages)
209 int ret;
211 ret = vmap_page_range_noflush(start, end, prot, pages);
212 flush_cache_vmap(start, end);
213 return ret;
216 int is_vmalloc_or_module_addr(const void *x)
219 * ARM, x86-64 and sparc64 put modules in a special place,
220 * and fall back on vmalloc() if that fails. Others
221 * just put it in the vmalloc space.
223 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
224 unsigned long addr = (unsigned long)x;
225 if (addr >= MODULES_VADDR && addr < MODULES_END)
226 return 1;
227 #endif
228 return is_vmalloc_addr(x);
232 * Walk a vmap address to the struct page it maps.
234 struct page *vmalloc_to_page(const void *vmalloc_addr)
236 unsigned long addr = (unsigned long) vmalloc_addr;
237 struct page *page = NULL;
238 pgd_t *pgd = pgd_offset_k(addr);
241 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
242 * architectures that do not vmalloc module space
244 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
246 if (!pgd_none(*pgd)) {
247 pud_t *pud = pud_offset(pgd, addr);
248 if (!pud_none(*pud)) {
249 pmd_t *pmd = pmd_offset(pud, addr);
250 if (!pmd_none(*pmd)) {
251 pte_t *ptep, pte;
253 ptep = pte_offset_map(pmd, addr);
254 pte = *ptep;
255 if (pte_present(pte))
256 page = pte_page(pte);
257 pte_unmap(ptep);
261 return page;
263 EXPORT_SYMBOL(vmalloc_to_page);
266 * Map a vmalloc()-space virtual address to the physical page frame number.
268 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
270 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
272 EXPORT_SYMBOL(vmalloc_to_pfn);
275 /*** Global kva allocator ***/
277 #define VM_LAZY_FREE 0x01
278 #define VM_LAZY_FREEING 0x02
279 #define VM_VM_AREA 0x04
281 static DEFINE_SPINLOCK(vmap_area_lock);
282 /* Export for kexec only */
283 LIST_HEAD(vmap_area_list);
284 static struct rb_root vmap_area_root = RB_ROOT;
286 /* The vmap cache globals are protected by vmap_area_lock */
287 static struct rb_node *free_vmap_cache;
288 static unsigned long cached_hole_size;
289 static unsigned long cached_vstart;
290 static unsigned long cached_align;
292 static unsigned long vmap_area_pcpu_hole;
294 static struct vmap_area *__find_vmap_area(unsigned long addr)
296 struct rb_node *n = vmap_area_root.rb_node;
298 while (n) {
299 struct vmap_area *va;
301 va = rb_entry(n, struct vmap_area, rb_node);
302 if (addr < va->va_start)
303 n = n->rb_left;
304 else if (addr >= va->va_end)
305 n = n->rb_right;
306 else
307 return va;
310 return NULL;
313 static void __insert_vmap_area(struct vmap_area *va)
315 struct rb_node **p = &vmap_area_root.rb_node;
316 struct rb_node *parent = NULL;
317 struct rb_node *tmp;
319 while (*p) {
320 struct vmap_area *tmp_va;
322 parent = *p;
323 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
324 if (va->va_start < tmp_va->va_end)
325 p = &(*p)->rb_left;
326 else if (va->va_end > tmp_va->va_start)
327 p = &(*p)->rb_right;
328 else
329 BUG();
332 rb_link_node(&va->rb_node, parent, p);
333 rb_insert_color(&va->rb_node, &vmap_area_root);
335 /* address-sort this list */
336 tmp = rb_prev(&va->rb_node);
337 if (tmp) {
338 struct vmap_area *prev;
339 prev = rb_entry(tmp, struct vmap_area, rb_node);
340 list_add_rcu(&va->list, &prev->list);
341 } else
342 list_add_rcu(&va->list, &vmap_area_list);
345 static void purge_vmap_area_lazy(void);
348 * Allocate a region of KVA of the specified size and alignment, within the
349 * vstart and vend.
351 static struct vmap_area *alloc_vmap_area(unsigned long size,
352 unsigned long align,
353 unsigned long vstart, unsigned long vend,
354 int node, gfp_t gfp_mask)
356 struct vmap_area *va;
357 struct rb_node *n;
358 unsigned long addr;
359 int purged = 0;
360 struct vmap_area *first;
362 BUG_ON(!size);
363 BUG_ON(offset_in_page(size));
364 BUG_ON(!is_power_of_2(align));
366 va = kmalloc_node(sizeof(struct vmap_area),
367 gfp_mask & GFP_RECLAIM_MASK, node);
368 if (unlikely(!va))
369 return ERR_PTR(-ENOMEM);
372 * Only scan the relevant parts containing pointers to other objects
373 * to avoid false negatives.
375 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
377 retry:
378 spin_lock(&vmap_area_lock);
380 * Invalidate cache if we have more permissive parameters.
381 * cached_hole_size notes the largest hole noticed _below_
382 * the vmap_area cached in free_vmap_cache: if size fits
383 * into that hole, we want to scan from vstart to reuse
384 * the hole instead of allocating above free_vmap_cache.
385 * Note that __free_vmap_area may update free_vmap_cache
386 * without updating cached_hole_size or cached_align.
388 if (!free_vmap_cache ||
389 size < cached_hole_size ||
390 vstart < cached_vstart ||
391 align < cached_align) {
392 nocache:
393 cached_hole_size = 0;
394 free_vmap_cache = NULL;
396 /* record if we encounter less permissive parameters */
397 cached_vstart = vstart;
398 cached_align = align;
400 /* find starting point for our search */
401 if (free_vmap_cache) {
402 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
403 addr = ALIGN(first->va_end, align);
404 if (addr < vstart)
405 goto nocache;
406 if (addr + size < addr)
407 goto overflow;
409 } else {
410 addr = ALIGN(vstart, align);
411 if (addr + size < addr)
412 goto overflow;
414 n = vmap_area_root.rb_node;
415 first = NULL;
417 while (n) {
418 struct vmap_area *tmp;
419 tmp = rb_entry(n, struct vmap_area, rb_node);
420 if (tmp->va_end >= addr) {
421 first = tmp;
422 if (tmp->va_start <= addr)
423 break;
424 n = n->rb_left;
425 } else
426 n = n->rb_right;
429 if (!first)
430 goto found;
433 /* from the starting point, walk areas until a suitable hole is found */
434 while (addr + size > first->va_start && addr + size <= vend) {
435 if (addr + cached_hole_size < first->va_start)
436 cached_hole_size = first->va_start - addr;
437 addr = ALIGN(first->va_end, align);
438 if (addr + size < addr)
439 goto overflow;
441 if (list_is_last(&first->list, &vmap_area_list))
442 goto found;
444 first = list_entry(first->list.next,
445 struct vmap_area, list);
448 found:
450 * Check also calculated address against the vstart,
451 * because it can be 0 because of big align request.
453 if (addr + size > vend || addr < vstart)
454 goto overflow;
456 va->va_start = addr;
457 va->va_end = addr + size;
458 va->flags = 0;
459 __insert_vmap_area(va);
460 free_vmap_cache = &va->rb_node;
461 spin_unlock(&vmap_area_lock);
463 BUG_ON(va->va_start & (align-1));
464 BUG_ON(va->va_start < vstart);
465 BUG_ON(va->va_end > vend);
467 return va;
469 overflow:
470 spin_unlock(&vmap_area_lock);
471 if (!purged) {
472 purge_vmap_area_lazy();
473 purged = 1;
474 goto retry;
476 if (printk_ratelimit())
477 pr_warn("vmap allocation for size %lu failed: "
478 "use vmalloc=<size> to increase size.\n", size);
479 kfree(va);
480 return ERR_PTR(-EBUSY);
483 static void __free_vmap_area(struct vmap_area *va)
485 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
487 if (free_vmap_cache) {
488 if (va->va_end < cached_vstart) {
489 free_vmap_cache = NULL;
490 } else {
491 struct vmap_area *cache;
492 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
493 if (va->va_start <= cache->va_start) {
494 free_vmap_cache = rb_prev(&va->rb_node);
496 * We don't try to update cached_hole_size or
497 * cached_align, but it won't go very wrong.
502 rb_erase(&va->rb_node, &vmap_area_root);
503 RB_CLEAR_NODE(&va->rb_node);
504 list_del_rcu(&va->list);
507 * Track the highest possible candidate for pcpu area
508 * allocation. Areas outside of vmalloc area can be returned
509 * here too, consider only end addresses which fall inside
510 * vmalloc area proper.
512 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
513 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
515 kfree_rcu(va, rcu_head);
519 * Free a region of KVA allocated by alloc_vmap_area
521 static void free_vmap_area(struct vmap_area *va)
523 spin_lock(&vmap_area_lock);
524 __free_vmap_area(va);
525 spin_unlock(&vmap_area_lock);
529 * Clear the pagetable entries of a given vmap_area
531 static void unmap_vmap_area(struct vmap_area *va)
533 vunmap_page_range(va->va_start, va->va_end);
536 static void vmap_debug_free_range(unsigned long start, unsigned long end)
539 * Unmap page tables and force a TLB flush immediately if
540 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
541 * bugs similarly to those in linear kernel virtual address
542 * space after a page has been freed.
544 * All the lazy freeing logic is still retained, in order to
545 * minimise intrusiveness of this debugging feature.
547 * This is going to be *slow* (linear kernel virtual address
548 * debugging doesn't do a broadcast TLB flush so it is a lot
549 * faster).
551 #ifdef CONFIG_DEBUG_PAGEALLOC
552 vunmap_page_range(start, end);
553 flush_tlb_kernel_range(start, end);
554 #endif
558 * lazy_max_pages is the maximum amount of virtual address space we gather up
559 * before attempting to purge with a TLB flush.
561 * There is a tradeoff here: a larger number will cover more kernel page tables
562 * and take slightly longer to purge, but it will linearly reduce the number of
563 * global TLB flushes that must be performed. It would seem natural to scale
564 * this number up linearly with the number of CPUs (because vmapping activity
565 * could also scale linearly with the number of CPUs), however it is likely
566 * that in practice, workloads might be constrained in other ways that mean
567 * vmap activity will not scale linearly with CPUs. Also, I want to be
568 * conservative and not introduce a big latency on huge systems, so go with
569 * a less aggressive log scale. It will still be an improvement over the old
570 * code, and it will be simple to change the scale factor if we find that it
571 * becomes a problem on bigger systems.
573 static unsigned long lazy_max_pages(void)
575 unsigned int log;
577 log = fls(num_online_cpus());
579 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
582 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
584 /* for per-CPU blocks */
585 static void purge_fragmented_blocks_allcpus(void);
588 * called before a call to iounmap() if the caller wants vm_area_struct's
589 * immediately freed.
591 void set_iounmap_nonlazy(void)
593 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
597 * Purges all lazily-freed vmap areas.
599 * If sync is 0 then don't purge if there is already a purge in progress.
600 * If force_flush is 1, then flush kernel TLBs between *start and *end even
601 * if we found no lazy vmap areas to unmap (callers can use this to optimise
602 * their own TLB flushing).
603 * Returns with *start = min(*start, lowest purged address)
604 * *end = max(*end, highest purged address)
606 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
607 int sync, int force_flush)
609 static DEFINE_SPINLOCK(purge_lock);
610 LIST_HEAD(valist);
611 struct vmap_area *va;
612 struct vmap_area *n_va;
613 int nr = 0;
616 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
617 * should not expect such behaviour. This just simplifies locking for
618 * the case that isn't actually used at the moment anyway.
620 if (!sync && !force_flush) {
621 if (!spin_trylock(&purge_lock))
622 return;
623 } else
624 spin_lock(&purge_lock);
626 if (sync)
627 purge_fragmented_blocks_allcpus();
629 rcu_read_lock();
630 list_for_each_entry_rcu(va, &vmap_area_list, list) {
631 if (va->flags & VM_LAZY_FREE) {
632 if (va->va_start < *start)
633 *start = va->va_start;
634 if (va->va_end > *end)
635 *end = va->va_end;
636 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
637 list_add_tail(&va->purge_list, &valist);
638 va->flags |= VM_LAZY_FREEING;
639 va->flags &= ~VM_LAZY_FREE;
642 rcu_read_unlock();
644 if (nr)
645 atomic_sub(nr, &vmap_lazy_nr);
647 if (nr || force_flush)
648 flush_tlb_kernel_range(*start, *end);
650 if (nr) {
651 spin_lock(&vmap_area_lock);
652 list_for_each_entry_safe(va, n_va, &valist, purge_list)
653 __free_vmap_area(va);
654 spin_unlock(&vmap_area_lock);
656 spin_unlock(&purge_lock);
660 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
661 * is already purging.
663 static void try_purge_vmap_area_lazy(void)
665 unsigned long start = ULONG_MAX, end = 0;
667 __purge_vmap_area_lazy(&start, &end, 0, 0);
671 * Kick off a purge of the outstanding lazy areas.
673 static void purge_vmap_area_lazy(void)
675 unsigned long start = ULONG_MAX, end = 0;
677 __purge_vmap_area_lazy(&start, &end, 1, 0);
681 * Free a vmap area, caller ensuring that the area has been unmapped
682 * and flush_cache_vunmap had been called for the correct range
683 * previously.
685 static void free_vmap_area_noflush(struct vmap_area *va)
687 va->flags |= VM_LAZY_FREE;
688 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
689 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
690 try_purge_vmap_area_lazy();
694 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
695 * called for the correct range previously.
697 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
699 unmap_vmap_area(va);
700 free_vmap_area_noflush(va);
704 * Free and unmap a vmap area
706 static void free_unmap_vmap_area(struct vmap_area *va)
708 flush_cache_vunmap(va->va_start, va->va_end);
709 free_unmap_vmap_area_noflush(va);
712 static struct vmap_area *find_vmap_area(unsigned long addr)
714 struct vmap_area *va;
716 spin_lock(&vmap_area_lock);
717 va = __find_vmap_area(addr);
718 spin_unlock(&vmap_area_lock);
720 return va;
723 static void free_unmap_vmap_area_addr(unsigned long addr)
725 struct vmap_area *va;
727 va = find_vmap_area(addr);
728 BUG_ON(!va);
729 free_unmap_vmap_area(va);
733 /*** Per cpu kva allocator ***/
736 * vmap space is limited especially on 32 bit architectures. Ensure there is
737 * room for at least 16 percpu vmap blocks per CPU.
740 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
741 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
742 * instead (we just need a rough idea)
744 #if BITS_PER_LONG == 32
745 #define VMALLOC_SPACE (128UL*1024*1024)
746 #else
747 #define VMALLOC_SPACE (128UL*1024*1024*1024)
748 #endif
750 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
751 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
752 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
753 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
754 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
755 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
756 #define VMAP_BBMAP_BITS \
757 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
758 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
759 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
761 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
763 static bool vmap_initialized __read_mostly = false;
765 struct vmap_block_queue {
766 spinlock_t lock;
767 struct list_head free;
770 struct vmap_block {
771 spinlock_t lock;
772 struct vmap_area *va;
773 unsigned long free, dirty;
774 unsigned long dirty_min, dirty_max; /*< dirty range */
775 struct list_head free_list;
776 struct rcu_head rcu_head;
777 struct list_head purge;
780 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
781 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
784 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
785 * in the free path. Could get rid of this if we change the API to return a
786 * "cookie" from alloc, to be passed to free. But no big deal yet.
788 static DEFINE_SPINLOCK(vmap_block_tree_lock);
789 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
792 * We should probably have a fallback mechanism to allocate virtual memory
793 * out of partially filled vmap blocks. However vmap block sizing should be
794 * fairly reasonable according to the vmalloc size, so it shouldn't be a
795 * big problem.
798 static unsigned long addr_to_vb_idx(unsigned long addr)
800 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
801 addr /= VMAP_BLOCK_SIZE;
802 return addr;
805 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
807 unsigned long addr;
809 addr = va_start + (pages_off << PAGE_SHIFT);
810 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
811 return (void *)addr;
815 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
816 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
817 * @order: how many 2^order pages should be occupied in newly allocated block
818 * @gfp_mask: flags for the page level allocator
820 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
822 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
824 struct vmap_block_queue *vbq;
825 struct vmap_block *vb;
826 struct vmap_area *va;
827 unsigned long vb_idx;
828 int node, err;
829 void *vaddr;
831 node = numa_node_id();
833 vb = kmalloc_node(sizeof(struct vmap_block),
834 gfp_mask & GFP_RECLAIM_MASK, node);
835 if (unlikely(!vb))
836 return ERR_PTR(-ENOMEM);
838 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
839 VMALLOC_START, VMALLOC_END,
840 node, gfp_mask);
841 if (IS_ERR(va)) {
842 kfree(vb);
843 return ERR_CAST(va);
846 err = radix_tree_preload(gfp_mask);
847 if (unlikely(err)) {
848 kfree(vb);
849 free_vmap_area(va);
850 return ERR_PTR(err);
853 vaddr = vmap_block_vaddr(va->va_start, 0);
854 spin_lock_init(&vb->lock);
855 vb->va = va;
856 /* At least something should be left free */
857 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
858 vb->free = VMAP_BBMAP_BITS - (1UL << order);
859 vb->dirty = 0;
860 vb->dirty_min = VMAP_BBMAP_BITS;
861 vb->dirty_max = 0;
862 INIT_LIST_HEAD(&vb->free_list);
864 vb_idx = addr_to_vb_idx(va->va_start);
865 spin_lock(&vmap_block_tree_lock);
866 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
867 spin_unlock(&vmap_block_tree_lock);
868 BUG_ON(err);
869 radix_tree_preload_end();
871 vbq = &get_cpu_var(vmap_block_queue);
872 spin_lock(&vbq->lock);
873 list_add_tail_rcu(&vb->free_list, &vbq->free);
874 spin_unlock(&vbq->lock);
875 put_cpu_var(vmap_block_queue);
877 return vaddr;
880 static void free_vmap_block(struct vmap_block *vb)
882 struct vmap_block *tmp;
883 unsigned long vb_idx;
885 vb_idx = addr_to_vb_idx(vb->va->va_start);
886 spin_lock(&vmap_block_tree_lock);
887 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
888 spin_unlock(&vmap_block_tree_lock);
889 BUG_ON(tmp != vb);
891 free_vmap_area_noflush(vb->va);
892 kfree_rcu(vb, rcu_head);
895 static void purge_fragmented_blocks(int cpu)
897 LIST_HEAD(purge);
898 struct vmap_block *vb;
899 struct vmap_block *n_vb;
900 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
902 rcu_read_lock();
903 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
905 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
906 continue;
908 spin_lock(&vb->lock);
909 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
910 vb->free = 0; /* prevent further allocs after releasing lock */
911 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
912 vb->dirty_min = 0;
913 vb->dirty_max = VMAP_BBMAP_BITS;
914 spin_lock(&vbq->lock);
915 list_del_rcu(&vb->free_list);
916 spin_unlock(&vbq->lock);
917 spin_unlock(&vb->lock);
918 list_add_tail(&vb->purge, &purge);
919 } else
920 spin_unlock(&vb->lock);
922 rcu_read_unlock();
924 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
925 list_del(&vb->purge);
926 free_vmap_block(vb);
930 static void purge_fragmented_blocks_allcpus(void)
932 int cpu;
934 for_each_possible_cpu(cpu)
935 purge_fragmented_blocks(cpu);
938 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
940 struct vmap_block_queue *vbq;
941 struct vmap_block *vb;
942 void *vaddr = NULL;
943 unsigned int order;
945 BUG_ON(offset_in_page(size));
946 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
947 if (WARN_ON(size == 0)) {
949 * Allocating 0 bytes isn't what caller wants since
950 * get_order(0) returns funny result. Just warn and terminate
951 * early.
953 return NULL;
955 order = get_order(size);
957 rcu_read_lock();
958 vbq = &get_cpu_var(vmap_block_queue);
959 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
960 unsigned long pages_off;
962 spin_lock(&vb->lock);
963 if (vb->free < (1UL << order)) {
964 spin_unlock(&vb->lock);
965 continue;
968 pages_off = VMAP_BBMAP_BITS - vb->free;
969 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
970 vb->free -= 1UL << order;
971 if (vb->free == 0) {
972 spin_lock(&vbq->lock);
973 list_del_rcu(&vb->free_list);
974 spin_unlock(&vbq->lock);
977 spin_unlock(&vb->lock);
978 break;
981 put_cpu_var(vmap_block_queue);
982 rcu_read_unlock();
984 /* Allocate new block if nothing was found */
985 if (!vaddr)
986 vaddr = new_vmap_block(order, gfp_mask);
988 return vaddr;
991 static void vb_free(const void *addr, unsigned long size)
993 unsigned long offset;
994 unsigned long vb_idx;
995 unsigned int order;
996 struct vmap_block *vb;
998 BUG_ON(offset_in_page(size));
999 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1001 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1003 order = get_order(size);
1005 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1006 offset >>= PAGE_SHIFT;
1008 vb_idx = addr_to_vb_idx((unsigned long)addr);
1009 rcu_read_lock();
1010 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1011 rcu_read_unlock();
1012 BUG_ON(!vb);
1014 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1016 spin_lock(&vb->lock);
1018 /* Expand dirty range */
1019 vb->dirty_min = min(vb->dirty_min, offset);
1020 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1022 vb->dirty += 1UL << order;
1023 if (vb->dirty == VMAP_BBMAP_BITS) {
1024 BUG_ON(vb->free);
1025 spin_unlock(&vb->lock);
1026 free_vmap_block(vb);
1027 } else
1028 spin_unlock(&vb->lock);
1032 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1034 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1035 * to amortize TLB flushing overheads. What this means is that any page you
1036 * have now, may, in a former life, have been mapped into kernel virtual
1037 * address by the vmap layer and so there might be some CPUs with TLB entries
1038 * still referencing that page (additional to the regular 1:1 kernel mapping).
1040 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1041 * be sure that none of the pages we have control over will have any aliases
1042 * from the vmap layer.
1044 void vm_unmap_aliases(void)
1046 unsigned long start = ULONG_MAX, end = 0;
1047 int cpu;
1048 int flush = 0;
1050 if (unlikely(!vmap_initialized))
1051 return;
1053 for_each_possible_cpu(cpu) {
1054 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1055 struct vmap_block *vb;
1057 rcu_read_lock();
1058 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1059 spin_lock(&vb->lock);
1060 if (vb->dirty) {
1061 unsigned long va_start = vb->va->va_start;
1062 unsigned long s, e;
1064 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1065 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1067 start = min(s, start);
1068 end = max(e, end);
1070 flush = 1;
1072 spin_unlock(&vb->lock);
1074 rcu_read_unlock();
1077 __purge_vmap_area_lazy(&start, &end, 1, flush);
1079 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1082 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1083 * @mem: the pointer returned by vm_map_ram
1084 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1086 void vm_unmap_ram(const void *mem, unsigned int count)
1088 unsigned long size = count << PAGE_SHIFT;
1089 unsigned long addr = (unsigned long)mem;
1091 BUG_ON(!addr);
1092 BUG_ON(addr < VMALLOC_START);
1093 BUG_ON(addr > VMALLOC_END);
1094 BUG_ON(addr & (PAGE_SIZE-1));
1096 debug_check_no_locks_freed(mem, size);
1097 vmap_debug_free_range(addr, addr+size);
1099 if (likely(count <= VMAP_MAX_ALLOC))
1100 vb_free(mem, size);
1101 else
1102 free_unmap_vmap_area_addr(addr);
1104 EXPORT_SYMBOL(vm_unmap_ram);
1107 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1108 * @pages: an array of pointers to the pages to be mapped
1109 * @count: number of pages
1110 * @node: prefer to allocate data structures on this node
1111 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1113 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1114 * faster than vmap so it's good. But if you mix long-life and short-life
1115 * objects with vm_map_ram(), it could consume lots of address space through
1116 * fragmentation (especially on a 32bit machine). You could see failures in
1117 * the end. Please use this function for short-lived objects.
1119 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1121 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1123 unsigned long size = count << PAGE_SHIFT;
1124 unsigned long addr;
1125 void *mem;
1127 if (likely(count <= VMAP_MAX_ALLOC)) {
1128 mem = vb_alloc(size, GFP_KERNEL);
1129 if (IS_ERR(mem))
1130 return NULL;
1131 addr = (unsigned long)mem;
1132 } else {
1133 struct vmap_area *va;
1134 va = alloc_vmap_area(size, PAGE_SIZE,
1135 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1136 if (IS_ERR(va))
1137 return NULL;
1139 addr = va->va_start;
1140 mem = (void *)addr;
1142 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1143 vm_unmap_ram(mem, count);
1144 return NULL;
1146 return mem;
1148 EXPORT_SYMBOL(vm_map_ram);
1150 static struct vm_struct *vmlist __initdata;
1152 * vm_area_add_early - add vmap area early during boot
1153 * @vm: vm_struct to add
1155 * This function is used to add fixed kernel vm area to vmlist before
1156 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1157 * should contain proper values and the other fields should be zero.
1159 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1161 void __init vm_area_add_early(struct vm_struct *vm)
1163 struct vm_struct *tmp, **p;
1165 BUG_ON(vmap_initialized);
1166 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1167 if (tmp->addr >= vm->addr) {
1168 BUG_ON(tmp->addr < vm->addr + vm->size);
1169 break;
1170 } else
1171 BUG_ON(tmp->addr + tmp->size > vm->addr);
1173 vm->next = *p;
1174 *p = vm;
1178 * vm_area_register_early - register vmap area early during boot
1179 * @vm: vm_struct to register
1180 * @align: requested alignment
1182 * This function is used to register kernel vm area before
1183 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1184 * proper values on entry and other fields should be zero. On return,
1185 * vm->addr contains the allocated address.
1187 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1189 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1191 static size_t vm_init_off __initdata;
1192 unsigned long addr;
1194 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1195 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1197 vm->addr = (void *)addr;
1199 vm_area_add_early(vm);
1202 void __init vmalloc_init(void)
1204 struct vmap_area *va;
1205 struct vm_struct *tmp;
1206 int i;
1208 for_each_possible_cpu(i) {
1209 struct vmap_block_queue *vbq;
1210 struct vfree_deferred *p;
1212 vbq = &per_cpu(vmap_block_queue, i);
1213 spin_lock_init(&vbq->lock);
1214 INIT_LIST_HEAD(&vbq->free);
1215 p = &per_cpu(vfree_deferred, i);
1216 init_llist_head(&p->list);
1217 INIT_WORK(&p->wq, free_work);
1220 /* Import existing vmlist entries. */
1221 for (tmp = vmlist; tmp; tmp = tmp->next) {
1222 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1223 va->flags = VM_VM_AREA;
1224 va->va_start = (unsigned long)tmp->addr;
1225 va->va_end = va->va_start + tmp->size;
1226 va->vm = tmp;
1227 __insert_vmap_area(va);
1230 vmap_area_pcpu_hole = VMALLOC_END;
1232 vmap_initialized = true;
1236 * map_kernel_range_noflush - map kernel VM area with the specified pages
1237 * @addr: start of the VM area to map
1238 * @size: size of the VM area to map
1239 * @prot: page protection flags to use
1240 * @pages: pages to map
1242 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1243 * specify should have been allocated using get_vm_area() and its
1244 * friends.
1246 * NOTE:
1247 * This function does NOT do any cache flushing. The caller is
1248 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1249 * before calling this function.
1251 * RETURNS:
1252 * The number of pages mapped on success, -errno on failure.
1254 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1255 pgprot_t prot, struct page **pages)
1257 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1261 * unmap_kernel_range_noflush - unmap kernel VM area
1262 * @addr: start of the VM area to unmap
1263 * @size: size of the VM area to unmap
1265 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1266 * specify should have been allocated using get_vm_area() and its
1267 * friends.
1269 * NOTE:
1270 * This function does NOT do any cache flushing. The caller is
1271 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1272 * before calling this function and flush_tlb_kernel_range() after.
1274 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1276 vunmap_page_range(addr, addr + size);
1278 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1281 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1282 * @addr: start of the VM area to unmap
1283 * @size: size of the VM area to unmap
1285 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1286 * the unmapping and tlb after.
1288 void unmap_kernel_range(unsigned long addr, unsigned long size)
1290 unsigned long end = addr + size;
1292 flush_cache_vunmap(addr, end);
1293 vunmap_page_range(addr, end);
1294 flush_tlb_kernel_range(addr, end);
1296 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1298 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1300 unsigned long addr = (unsigned long)area->addr;
1301 unsigned long end = addr + get_vm_area_size(area);
1302 int err;
1304 err = vmap_page_range(addr, end, prot, pages);
1306 return err > 0 ? 0 : err;
1308 EXPORT_SYMBOL_GPL(map_vm_area);
1310 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1311 unsigned long flags, const void *caller)
1313 spin_lock(&vmap_area_lock);
1314 vm->flags = flags;
1315 vm->addr = (void *)va->va_start;
1316 vm->size = va->va_end - va->va_start;
1317 vm->caller = caller;
1318 va->vm = vm;
1319 va->flags |= VM_VM_AREA;
1320 spin_unlock(&vmap_area_lock);
1323 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1326 * Before removing VM_UNINITIALIZED,
1327 * we should make sure that vm has proper values.
1328 * Pair with smp_rmb() in show_numa_info().
1330 smp_wmb();
1331 vm->flags &= ~VM_UNINITIALIZED;
1334 static struct vm_struct *__get_vm_area_node(unsigned long size,
1335 unsigned long align, unsigned long flags, unsigned long start,
1336 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1338 struct vmap_area *va;
1339 struct vm_struct *area;
1341 BUG_ON(in_interrupt());
1342 if (flags & VM_IOREMAP)
1343 align = 1ul << clamp_t(int, fls_long(size),
1344 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1346 size = PAGE_ALIGN(size);
1347 if (unlikely(!size))
1348 return NULL;
1350 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1351 if (unlikely(!area))
1352 return NULL;
1354 if (!(flags & VM_NO_GUARD))
1355 size += PAGE_SIZE;
1357 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1358 if (IS_ERR(va)) {
1359 kfree(area);
1360 return NULL;
1363 setup_vmalloc_vm(area, va, flags, caller);
1365 return area;
1368 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1369 unsigned long start, unsigned long end)
1371 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1372 GFP_KERNEL, __builtin_return_address(0));
1374 EXPORT_SYMBOL_GPL(__get_vm_area);
1376 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1377 unsigned long start, unsigned long end,
1378 const void *caller)
1380 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1381 GFP_KERNEL, caller);
1385 * get_vm_area - reserve a contiguous kernel virtual area
1386 * @size: size of the area
1387 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1389 * Search an area of @size in the kernel virtual mapping area,
1390 * and reserved it for out purposes. Returns the area descriptor
1391 * on success or %NULL on failure.
1393 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1395 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1396 NUMA_NO_NODE, GFP_KERNEL,
1397 __builtin_return_address(0));
1400 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1401 const void *caller)
1403 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1404 NUMA_NO_NODE, GFP_KERNEL, caller);
1408 * find_vm_area - find a continuous kernel virtual area
1409 * @addr: base address
1411 * Search for the kernel VM area starting at @addr, and return it.
1412 * It is up to the caller to do all required locking to keep the returned
1413 * pointer valid.
1415 struct vm_struct *find_vm_area(const void *addr)
1417 struct vmap_area *va;
1419 va = find_vmap_area((unsigned long)addr);
1420 if (va && va->flags & VM_VM_AREA)
1421 return va->vm;
1423 return NULL;
1427 * remove_vm_area - find and remove a continuous kernel virtual area
1428 * @addr: base address
1430 * Search for the kernel VM area starting at @addr, and remove it.
1431 * This function returns the found VM area, but using it is NOT safe
1432 * on SMP machines, except for its size or flags.
1434 struct vm_struct *remove_vm_area(const void *addr)
1436 struct vmap_area *va;
1438 va = find_vmap_area((unsigned long)addr);
1439 if (va && va->flags & VM_VM_AREA) {
1440 struct vm_struct *vm = va->vm;
1442 spin_lock(&vmap_area_lock);
1443 va->vm = NULL;
1444 va->flags &= ~VM_VM_AREA;
1445 spin_unlock(&vmap_area_lock);
1447 vmap_debug_free_range(va->va_start, va->va_end);
1448 kasan_free_shadow(vm);
1449 free_unmap_vmap_area(va);
1451 return vm;
1453 return NULL;
1456 static void __vunmap(const void *addr, int deallocate_pages)
1458 struct vm_struct *area;
1460 if (!addr)
1461 return;
1463 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1464 addr))
1465 return;
1467 area = find_vmap_area((unsigned long)addr)->vm;
1468 if (unlikely(!area)) {
1469 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1470 addr);
1471 return;
1474 debug_check_no_locks_freed(addr, get_vm_area_size(area));
1475 debug_check_no_obj_freed(addr, get_vm_area_size(area));
1477 remove_vm_area(addr);
1478 if (deallocate_pages) {
1479 int i;
1481 for (i = 0; i < area->nr_pages; i++) {
1482 struct page *page = area->pages[i];
1484 BUG_ON(!page);
1485 __free_page(page);
1488 if (area->flags & VM_VPAGES)
1489 vfree(area->pages);
1490 else
1491 kfree(area->pages);
1494 kfree(area);
1495 return;
1499 * vfree - release memory allocated by vmalloc()
1500 * @addr: memory base address
1502 * Free the virtually continuous memory area starting at @addr, as
1503 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1504 * NULL, no operation is performed.
1506 * Must not be called in NMI context (strictly speaking, only if we don't
1507 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1508 * conventions for vfree() arch-depenedent would be a really bad idea)
1510 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1512 void vfree(const void *addr)
1514 BUG_ON(in_nmi());
1516 kmemleak_free(addr);
1518 if (!addr)
1519 return;
1520 if (unlikely(in_interrupt())) {
1521 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1522 if (llist_add((struct llist_node *)addr, &p->list))
1523 schedule_work(&p->wq);
1524 } else
1525 __vunmap(addr, 1);
1527 EXPORT_SYMBOL(vfree);
1530 * vunmap - release virtual mapping obtained by vmap()
1531 * @addr: memory base address
1533 * Free the virtually contiguous memory area starting at @addr,
1534 * which was created from the page array passed to vmap().
1536 * Must not be called in interrupt context.
1538 void vunmap(const void *addr)
1540 BUG_ON(in_interrupt());
1541 might_sleep();
1542 if (addr)
1543 __vunmap(addr, 0);
1545 EXPORT_SYMBOL(vunmap);
1548 * vmap - map an array of pages into virtually contiguous space
1549 * @pages: array of page pointers
1550 * @count: number of pages to map
1551 * @flags: vm_area->flags
1552 * @prot: page protection for the mapping
1554 * Maps @count pages from @pages into contiguous kernel virtual
1555 * space.
1557 void *vmap(struct page **pages, unsigned int count,
1558 unsigned long flags, pgprot_t prot)
1560 struct vm_struct *area;
1562 might_sleep();
1564 if (count > totalram_pages)
1565 return NULL;
1567 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1568 __builtin_return_address(0));
1569 if (!area)
1570 return NULL;
1572 if (map_vm_area(area, prot, pages)) {
1573 vunmap(area->addr);
1574 return NULL;
1577 return area->addr;
1579 EXPORT_SYMBOL(vmap);
1581 static void *__vmalloc_node(unsigned long size, unsigned long align,
1582 gfp_t gfp_mask, pgprot_t prot,
1583 int node, const void *caller);
1584 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1585 pgprot_t prot, int node)
1587 const int order = 0;
1588 struct page **pages;
1589 unsigned int nr_pages, array_size, i;
1590 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1591 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1593 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1594 array_size = (nr_pages * sizeof(struct page *));
1596 area->nr_pages = nr_pages;
1597 /* Please note that the recursion is strictly bounded. */
1598 if (array_size > PAGE_SIZE) {
1599 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1600 PAGE_KERNEL, node, area->caller);
1601 area->flags |= VM_VPAGES;
1602 } else {
1603 pages = kmalloc_node(array_size, nested_gfp, node);
1605 area->pages = pages;
1606 if (!area->pages) {
1607 remove_vm_area(area->addr);
1608 kfree(area);
1609 return NULL;
1612 for (i = 0; i < area->nr_pages; i++) {
1613 struct page *page;
1615 if (node == NUMA_NO_NODE)
1616 page = alloc_page(alloc_mask);
1617 else
1618 page = alloc_pages_node(node, alloc_mask, order);
1620 if (unlikely(!page)) {
1621 /* Successfully allocated i pages, free them in __vunmap() */
1622 area->nr_pages = i;
1623 goto fail;
1625 area->pages[i] = page;
1626 if (gfpflags_allow_blocking(gfp_mask))
1627 cond_resched();
1630 if (map_vm_area(area, prot, pages))
1631 goto fail;
1632 return area->addr;
1634 fail:
1635 warn_alloc_failed(gfp_mask, order,
1636 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1637 (area->nr_pages*PAGE_SIZE), area->size);
1638 vfree(area->addr);
1639 return NULL;
1643 * __vmalloc_node_range - allocate virtually contiguous memory
1644 * @size: allocation size
1645 * @align: desired alignment
1646 * @start: vm area range start
1647 * @end: vm area range end
1648 * @gfp_mask: flags for the page level allocator
1649 * @prot: protection mask for the allocated pages
1650 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1651 * @node: node to use for allocation or NUMA_NO_NODE
1652 * @caller: caller's return address
1654 * Allocate enough pages to cover @size from the page level
1655 * allocator with @gfp_mask flags. Map them into contiguous
1656 * kernel virtual space, using a pagetable protection of @prot.
1658 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1659 unsigned long start, unsigned long end, gfp_t gfp_mask,
1660 pgprot_t prot, unsigned long vm_flags, int node,
1661 const void *caller)
1663 struct vm_struct *area;
1664 void *addr;
1665 unsigned long real_size = size;
1667 size = PAGE_ALIGN(size);
1668 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1669 goto fail;
1671 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1672 vm_flags, start, end, node, gfp_mask, caller);
1673 if (!area)
1674 goto fail;
1676 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1677 if (!addr)
1678 return NULL;
1681 * First make sure the mappings are removed from all page-tables
1682 * before they are freed.
1684 vmalloc_sync_all();
1687 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1688 * flag. It means that vm_struct is not fully initialized.
1689 * Now, it is fully initialized, so remove this flag here.
1691 clear_vm_uninitialized_flag(area);
1694 * A ref_count = 2 is needed because vm_struct allocated in
1695 * __get_vm_area_node() contains a reference to the virtual address of
1696 * the vmalloc'ed block.
1698 kmemleak_alloc(addr, real_size, 2, gfp_mask);
1700 return addr;
1702 fail:
1703 warn_alloc_failed(gfp_mask, 0,
1704 "vmalloc: allocation failure: %lu bytes\n",
1705 real_size);
1706 return NULL;
1710 * __vmalloc_node - allocate virtually contiguous memory
1711 * @size: allocation size
1712 * @align: desired alignment
1713 * @gfp_mask: flags for the page level allocator
1714 * @prot: protection mask for the allocated pages
1715 * @node: node to use for allocation or NUMA_NO_NODE
1716 * @caller: caller's return address
1718 * Allocate enough pages to cover @size from the page level
1719 * allocator with @gfp_mask flags. Map them into contiguous
1720 * kernel virtual space, using a pagetable protection of @prot.
1722 static void *__vmalloc_node(unsigned long size, unsigned long align,
1723 gfp_t gfp_mask, pgprot_t prot,
1724 int node, const void *caller)
1726 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1727 gfp_mask, prot, 0, node, caller);
1730 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1732 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1733 __builtin_return_address(0));
1735 EXPORT_SYMBOL(__vmalloc);
1737 static inline void *__vmalloc_node_flags(unsigned long size,
1738 int node, gfp_t flags)
1740 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1741 node, __builtin_return_address(0));
1745 * vmalloc - allocate virtually contiguous memory
1746 * @size: allocation size
1747 * Allocate enough pages to cover @size from the page level
1748 * allocator and map them into contiguous kernel virtual space.
1750 * For tight control over page level allocator and protection flags
1751 * use __vmalloc() instead.
1753 void *vmalloc(unsigned long size)
1755 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1756 GFP_KERNEL | __GFP_HIGHMEM);
1758 EXPORT_SYMBOL(vmalloc);
1761 * vzalloc - allocate virtually contiguous memory with zero fill
1762 * @size: allocation size
1763 * Allocate enough pages to cover @size from the page level
1764 * allocator and map them into contiguous kernel virtual space.
1765 * The memory allocated is set to zero.
1767 * For tight control over page level allocator and protection flags
1768 * use __vmalloc() instead.
1770 void *vzalloc(unsigned long size)
1772 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1773 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1775 EXPORT_SYMBOL(vzalloc);
1778 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1779 * @size: allocation size
1781 * The resulting memory area is zeroed so it can be mapped to userspace
1782 * without leaking data.
1784 void *vmalloc_user(unsigned long size)
1786 struct vm_struct *area;
1787 void *ret;
1789 ret = __vmalloc_node(size, SHMLBA,
1790 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1791 PAGE_KERNEL, NUMA_NO_NODE,
1792 __builtin_return_address(0));
1793 if (ret) {
1794 area = find_vm_area(ret);
1795 area->flags |= VM_USERMAP;
1797 return ret;
1799 EXPORT_SYMBOL(vmalloc_user);
1802 * vmalloc_node - allocate memory on a specific node
1803 * @size: allocation size
1804 * @node: numa node
1806 * Allocate enough pages to cover @size from the page level
1807 * allocator and map them into contiguous kernel virtual space.
1809 * For tight control over page level allocator and protection flags
1810 * use __vmalloc() instead.
1812 void *vmalloc_node(unsigned long size, int node)
1814 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1815 node, __builtin_return_address(0));
1817 EXPORT_SYMBOL(vmalloc_node);
1820 * vzalloc_node - allocate memory on a specific node with zero fill
1821 * @size: allocation size
1822 * @node: numa node
1824 * Allocate enough pages to cover @size from the page level
1825 * allocator and map them into contiguous kernel virtual space.
1826 * The memory allocated is set to zero.
1828 * For tight control over page level allocator and protection flags
1829 * use __vmalloc_node() instead.
1831 void *vzalloc_node(unsigned long size, int node)
1833 return __vmalloc_node_flags(size, node,
1834 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1836 EXPORT_SYMBOL(vzalloc_node);
1838 #ifndef PAGE_KERNEL_EXEC
1839 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1840 #endif
1843 * vmalloc_exec - allocate virtually contiguous, executable memory
1844 * @size: allocation size
1846 * Kernel-internal function to allocate enough pages to cover @size
1847 * the page level allocator and map them into contiguous and
1848 * executable kernel virtual space.
1850 * For tight control over page level allocator and protection flags
1851 * use __vmalloc() instead.
1854 void *vmalloc_exec(unsigned long size)
1856 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1857 NUMA_NO_NODE, __builtin_return_address(0));
1860 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1861 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1862 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1863 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1864 #else
1865 #define GFP_VMALLOC32 GFP_KERNEL
1866 #endif
1869 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1870 * @size: allocation size
1872 * Allocate enough 32bit PA addressable pages to cover @size from the
1873 * page level allocator and map them into contiguous kernel virtual space.
1875 void *vmalloc_32(unsigned long size)
1877 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1878 NUMA_NO_NODE, __builtin_return_address(0));
1880 EXPORT_SYMBOL(vmalloc_32);
1883 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1884 * @size: allocation size
1886 * The resulting memory area is 32bit addressable and zeroed so it can be
1887 * mapped to userspace without leaking data.
1889 void *vmalloc_32_user(unsigned long size)
1891 struct vm_struct *area;
1892 void *ret;
1894 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1895 NUMA_NO_NODE, __builtin_return_address(0));
1896 if (ret) {
1897 area = find_vm_area(ret);
1898 area->flags |= VM_USERMAP;
1900 return ret;
1902 EXPORT_SYMBOL(vmalloc_32_user);
1905 * small helper routine , copy contents to buf from addr.
1906 * If the page is not present, fill zero.
1909 static int aligned_vread(char *buf, char *addr, unsigned long count)
1911 struct page *p;
1912 int copied = 0;
1914 while (count) {
1915 unsigned long offset, length;
1917 offset = offset_in_page(addr);
1918 length = PAGE_SIZE - offset;
1919 if (length > count)
1920 length = count;
1921 p = vmalloc_to_page(addr);
1923 * To do safe access to this _mapped_ area, we need
1924 * lock. But adding lock here means that we need to add
1925 * overhead of vmalloc()/vfree() calles for this _debug_
1926 * interface, rarely used. Instead of that, we'll use
1927 * kmap() and get small overhead in this access function.
1929 if (p) {
1931 * we can expect USER0 is not used (see vread/vwrite's
1932 * function description)
1934 void *map = kmap_atomic(p);
1935 memcpy(buf, map + offset, length);
1936 kunmap_atomic(map);
1937 } else
1938 memset(buf, 0, length);
1940 addr += length;
1941 buf += length;
1942 copied += length;
1943 count -= length;
1945 return copied;
1948 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1950 struct page *p;
1951 int copied = 0;
1953 while (count) {
1954 unsigned long offset, length;
1956 offset = offset_in_page(addr);
1957 length = PAGE_SIZE - offset;
1958 if (length > count)
1959 length = count;
1960 p = vmalloc_to_page(addr);
1962 * To do safe access to this _mapped_ area, we need
1963 * lock. But adding lock here means that we need to add
1964 * overhead of vmalloc()/vfree() calles for this _debug_
1965 * interface, rarely used. Instead of that, we'll use
1966 * kmap() and get small overhead in this access function.
1968 if (p) {
1970 * we can expect USER0 is not used (see vread/vwrite's
1971 * function description)
1973 void *map = kmap_atomic(p);
1974 memcpy(map + offset, buf, length);
1975 kunmap_atomic(map);
1977 addr += length;
1978 buf += length;
1979 copied += length;
1980 count -= length;
1982 return copied;
1986 * vread() - read vmalloc area in a safe way.
1987 * @buf: buffer for reading data
1988 * @addr: vm address.
1989 * @count: number of bytes to be read.
1991 * Returns # of bytes which addr and buf should be increased.
1992 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1993 * includes any intersect with alive vmalloc area.
1995 * This function checks that addr is a valid vmalloc'ed area, and
1996 * copy data from that area to a given buffer. If the given memory range
1997 * of [addr...addr+count) includes some valid address, data is copied to
1998 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1999 * IOREMAP area is treated as memory hole and no copy is done.
2001 * If [addr...addr+count) doesn't includes any intersects with alive
2002 * vm_struct area, returns 0. @buf should be kernel's buffer.
2004 * Note: In usual ops, vread() is never necessary because the caller
2005 * should know vmalloc() area is valid and can use memcpy().
2006 * This is for routines which have to access vmalloc area without
2007 * any informaion, as /dev/kmem.
2011 long vread(char *buf, char *addr, unsigned long count)
2013 struct vmap_area *va;
2014 struct vm_struct *vm;
2015 char *vaddr, *buf_start = buf;
2016 unsigned long buflen = count;
2017 unsigned long n;
2019 /* Don't allow overflow */
2020 if ((unsigned long) addr + count < count)
2021 count = -(unsigned long) addr;
2023 spin_lock(&vmap_area_lock);
2024 list_for_each_entry(va, &vmap_area_list, list) {
2025 if (!count)
2026 break;
2028 if (!(va->flags & VM_VM_AREA))
2029 continue;
2031 vm = va->vm;
2032 vaddr = (char *) vm->addr;
2033 if (addr >= vaddr + get_vm_area_size(vm))
2034 continue;
2035 while (addr < vaddr) {
2036 if (count == 0)
2037 goto finished;
2038 *buf = '\0';
2039 buf++;
2040 addr++;
2041 count--;
2043 n = vaddr + get_vm_area_size(vm) - addr;
2044 if (n > count)
2045 n = count;
2046 if (!(vm->flags & VM_IOREMAP))
2047 aligned_vread(buf, addr, n);
2048 else /* IOREMAP area is treated as memory hole */
2049 memset(buf, 0, n);
2050 buf += n;
2051 addr += n;
2052 count -= n;
2054 finished:
2055 spin_unlock(&vmap_area_lock);
2057 if (buf == buf_start)
2058 return 0;
2059 /* zero-fill memory holes */
2060 if (buf != buf_start + buflen)
2061 memset(buf, 0, buflen - (buf - buf_start));
2063 return buflen;
2067 * vwrite() - write vmalloc area in a safe way.
2068 * @buf: buffer for source data
2069 * @addr: vm address.
2070 * @count: number of bytes to be read.
2072 * Returns # of bytes which addr and buf should be incresed.
2073 * (same number to @count).
2074 * If [addr...addr+count) doesn't includes any intersect with valid
2075 * vmalloc area, returns 0.
2077 * This function checks that addr is a valid vmalloc'ed area, and
2078 * copy data from a buffer to the given addr. If specified range of
2079 * [addr...addr+count) includes some valid address, data is copied from
2080 * proper area of @buf. If there are memory holes, no copy to hole.
2081 * IOREMAP area is treated as memory hole and no copy is done.
2083 * If [addr...addr+count) doesn't includes any intersects with alive
2084 * vm_struct area, returns 0. @buf should be kernel's buffer.
2086 * Note: In usual ops, vwrite() is never necessary because the caller
2087 * should know vmalloc() area is valid and can use memcpy().
2088 * This is for routines which have to access vmalloc area without
2089 * any informaion, as /dev/kmem.
2092 long vwrite(char *buf, char *addr, unsigned long count)
2094 struct vmap_area *va;
2095 struct vm_struct *vm;
2096 char *vaddr;
2097 unsigned long n, buflen;
2098 int copied = 0;
2100 /* Don't allow overflow */
2101 if ((unsigned long) addr + count < count)
2102 count = -(unsigned long) addr;
2103 buflen = count;
2105 spin_lock(&vmap_area_lock);
2106 list_for_each_entry(va, &vmap_area_list, list) {
2107 if (!count)
2108 break;
2110 if (!(va->flags & VM_VM_AREA))
2111 continue;
2113 vm = va->vm;
2114 vaddr = (char *) vm->addr;
2115 if (addr >= vaddr + get_vm_area_size(vm))
2116 continue;
2117 while (addr < vaddr) {
2118 if (count == 0)
2119 goto finished;
2120 buf++;
2121 addr++;
2122 count--;
2124 n = vaddr + get_vm_area_size(vm) - addr;
2125 if (n > count)
2126 n = count;
2127 if (!(vm->flags & VM_IOREMAP)) {
2128 aligned_vwrite(buf, addr, n);
2129 copied++;
2131 buf += n;
2132 addr += n;
2133 count -= n;
2135 finished:
2136 spin_unlock(&vmap_area_lock);
2137 if (!copied)
2138 return 0;
2139 return buflen;
2143 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2144 * @vma: vma to cover
2145 * @uaddr: target user address to start at
2146 * @kaddr: virtual address of vmalloc kernel memory
2147 * @size: size of map area
2149 * Returns: 0 for success, -Exxx on failure
2151 * This function checks that @kaddr is a valid vmalloc'ed area,
2152 * and that it is big enough to cover the range starting at
2153 * @uaddr in @vma. Will return failure if that criteria isn't
2154 * met.
2156 * Similar to remap_pfn_range() (see mm/memory.c)
2158 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2159 void *kaddr, unsigned long size)
2161 struct vm_struct *area;
2163 size = PAGE_ALIGN(size);
2165 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2166 return -EINVAL;
2168 area = find_vm_area(kaddr);
2169 if (!area)
2170 return -EINVAL;
2172 if (!(area->flags & VM_USERMAP))
2173 return -EINVAL;
2175 if (kaddr + size > area->addr + get_vm_area_size(area))
2176 return -EINVAL;
2178 do {
2179 struct page *page = vmalloc_to_page(kaddr);
2180 int ret;
2182 ret = vm_insert_page(vma, uaddr, page);
2183 if (ret)
2184 return ret;
2186 uaddr += PAGE_SIZE;
2187 kaddr += PAGE_SIZE;
2188 size -= PAGE_SIZE;
2189 } while (size > 0);
2191 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2193 return 0;
2195 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2198 * remap_vmalloc_range - map vmalloc pages to userspace
2199 * @vma: vma to cover (map full range of vma)
2200 * @addr: vmalloc memory
2201 * @pgoff: number of pages into addr before first page to map
2203 * Returns: 0 for success, -Exxx on failure
2205 * This function checks that addr is a valid vmalloc'ed area, and
2206 * that it is big enough to cover the vma. Will return failure if
2207 * that criteria isn't met.
2209 * Similar to remap_pfn_range() (see mm/memory.c)
2211 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2212 unsigned long pgoff)
2214 return remap_vmalloc_range_partial(vma, vma->vm_start,
2215 addr + (pgoff << PAGE_SHIFT),
2216 vma->vm_end - vma->vm_start);
2218 EXPORT_SYMBOL(remap_vmalloc_range);
2221 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2222 * have one.
2224 * The purpose of this function is to make sure the vmalloc area
2225 * mappings are identical in all page-tables in the system.
2227 void __weak vmalloc_sync_all(void)
2232 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2234 pte_t ***p = data;
2236 if (p) {
2237 *(*p) = pte;
2238 (*p)++;
2240 return 0;
2244 * alloc_vm_area - allocate a range of kernel address space
2245 * @size: size of the area
2246 * @ptes: returns the PTEs for the address space
2248 * Returns: NULL on failure, vm_struct on success
2250 * This function reserves a range of kernel address space, and
2251 * allocates pagetables to map that range. No actual mappings
2252 * are created.
2254 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2255 * allocated for the VM area are returned.
2257 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2259 struct vm_struct *area;
2261 area = get_vm_area_caller(size, VM_IOREMAP,
2262 __builtin_return_address(0));
2263 if (area == NULL)
2264 return NULL;
2267 * This ensures that page tables are constructed for this region
2268 * of kernel virtual address space and mapped into init_mm.
2270 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2271 size, f, ptes ? &ptes : NULL)) {
2272 free_vm_area(area);
2273 return NULL;
2276 return area;
2278 EXPORT_SYMBOL_GPL(alloc_vm_area);
2280 void free_vm_area(struct vm_struct *area)
2282 struct vm_struct *ret;
2283 ret = remove_vm_area(area->addr);
2284 BUG_ON(ret != area);
2285 kfree(area);
2287 EXPORT_SYMBOL_GPL(free_vm_area);
2289 #ifdef CONFIG_SMP
2290 static struct vmap_area *node_to_va(struct rb_node *n)
2292 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2296 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2297 * @end: target address
2298 * @pnext: out arg for the next vmap_area
2299 * @pprev: out arg for the previous vmap_area
2301 * Returns: %true if either or both of next and prev are found,
2302 * %false if no vmap_area exists
2304 * Find vmap_areas end addresses of which enclose @end. ie. if not
2305 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2307 static bool pvm_find_next_prev(unsigned long end,
2308 struct vmap_area **pnext,
2309 struct vmap_area **pprev)
2311 struct rb_node *n = vmap_area_root.rb_node;
2312 struct vmap_area *va = NULL;
2314 while (n) {
2315 va = rb_entry(n, struct vmap_area, rb_node);
2316 if (end < va->va_end)
2317 n = n->rb_left;
2318 else if (end > va->va_end)
2319 n = n->rb_right;
2320 else
2321 break;
2324 if (!va)
2325 return false;
2327 if (va->va_end > end) {
2328 *pnext = va;
2329 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2330 } else {
2331 *pprev = va;
2332 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2334 return true;
2338 * pvm_determine_end - find the highest aligned address between two vmap_areas
2339 * @pnext: in/out arg for the next vmap_area
2340 * @pprev: in/out arg for the previous vmap_area
2341 * @align: alignment
2343 * Returns: determined end address
2345 * Find the highest aligned address between *@pnext and *@pprev below
2346 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2347 * down address is between the end addresses of the two vmap_areas.
2349 * Please note that the address returned by this function may fall
2350 * inside *@pnext vmap_area. The caller is responsible for checking
2351 * that.
2353 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2354 struct vmap_area **pprev,
2355 unsigned long align)
2357 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2358 unsigned long addr;
2360 if (*pnext)
2361 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2362 else
2363 addr = vmalloc_end;
2365 while (*pprev && (*pprev)->va_end > addr) {
2366 *pnext = *pprev;
2367 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2370 return addr;
2374 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2375 * @offsets: array containing offset of each area
2376 * @sizes: array containing size of each area
2377 * @nr_vms: the number of areas to allocate
2378 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2380 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2381 * vm_structs on success, %NULL on failure
2383 * Percpu allocator wants to use congruent vm areas so that it can
2384 * maintain the offsets among percpu areas. This function allocates
2385 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2386 * be scattered pretty far, distance between two areas easily going up
2387 * to gigabytes. To avoid interacting with regular vmallocs, these
2388 * areas are allocated from top.
2390 * Despite its complicated look, this allocator is rather simple. It
2391 * does everything top-down and scans areas from the end looking for
2392 * matching slot. While scanning, if any of the areas overlaps with
2393 * existing vmap_area, the base address is pulled down to fit the
2394 * area. Scanning is repeated till all the areas fit and then all
2395 * necessary data structres are inserted and the result is returned.
2397 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2398 const size_t *sizes, int nr_vms,
2399 size_t align)
2401 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2402 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2403 struct vmap_area **vas, *prev, *next;
2404 struct vm_struct **vms;
2405 int area, area2, last_area, term_area;
2406 unsigned long base, start, end, last_end;
2407 bool purged = false;
2409 /* verify parameters and allocate data structures */
2410 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2411 for (last_area = 0, area = 0; area < nr_vms; area++) {
2412 start = offsets[area];
2413 end = start + sizes[area];
2415 /* is everything aligned properly? */
2416 BUG_ON(!IS_ALIGNED(offsets[area], align));
2417 BUG_ON(!IS_ALIGNED(sizes[area], align));
2419 /* detect the area with the highest address */
2420 if (start > offsets[last_area])
2421 last_area = area;
2423 for (area2 = 0; area2 < nr_vms; area2++) {
2424 unsigned long start2 = offsets[area2];
2425 unsigned long end2 = start2 + sizes[area2];
2427 if (area2 == area)
2428 continue;
2430 BUG_ON(start2 >= start && start2 < end);
2431 BUG_ON(end2 <= end && end2 > start);
2434 last_end = offsets[last_area] + sizes[last_area];
2436 if (vmalloc_end - vmalloc_start < last_end) {
2437 WARN_ON(true);
2438 return NULL;
2441 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2442 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2443 if (!vas || !vms)
2444 goto err_free2;
2446 for (area = 0; area < nr_vms; area++) {
2447 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2448 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2449 if (!vas[area] || !vms[area])
2450 goto err_free;
2452 retry:
2453 spin_lock(&vmap_area_lock);
2455 /* start scanning - we scan from the top, begin with the last area */
2456 area = term_area = last_area;
2457 start = offsets[area];
2458 end = start + sizes[area];
2460 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2461 base = vmalloc_end - last_end;
2462 goto found;
2464 base = pvm_determine_end(&next, &prev, align) - end;
2466 while (true) {
2467 BUG_ON(next && next->va_end <= base + end);
2468 BUG_ON(prev && prev->va_end > base + end);
2471 * base might have underflowed, add last_end before
2472 * comparing.
2474 if (base + last_end < vmalloc_start + last_end) {
2475 spin_unlock(&vmap_area_lock);
2476 if (!purged) {
2477 purge_vmap_area_lazy();
2478 purged = true;
2479 goto retry;
2481 goto err_free;
2485 * If next overlaps, move base downwards so that it's
2486 * right below next and then recheck.
2488 if (next && next->va_start < base + end) {
2489 base = pvm_determine_end(&next, &prev, align) - end;
2490 term_area = area;
2491 continue;
2495 * If prev overlaps, shift down next and prev and move
2496 * base so that it's right below new next and then
2497 * recheck.
2499 if (prev && prev->va_end > base + start) {
2500 next = prev;
2501 prev = node_to_va(rb_prev(&next->rb_node));
2502 base = pvm_determine_end(&next, &prev, align) - end;
2503 term_area = area;
2504 continue;
2508 * This area fits, move on to the previous one. If
2509 * the previous one is the terminal one, we're done.
2511 area = (area + nr_vms - 1) % nr_vms;
2512 if (area == term_area)
2513 break;
2514 start = offsets[area];
2515 end = start + sizes[area];
2516 pvm_find_next_prev(base + end, &next, &prev);
2518 found:
2519 /* we've found a fitting base, insert all va's */
2520 for (area = 0; area < nr_vms; area++) {
2521 struct vmap_area *va = vas[area];
2523 va->va_start = base + offsets[area];
2524 va->va_end = va->va_start + sizes[area];
2525 __insert_vmap_area(va);
2528 vmap_area_pcpu_hole = base + offsets[last_area];
2530 spin_unlock(&vmap_area_lock);
2532 /* insert all vm's */
2533 for (area = 0; area < nr_vms; area++)
2534 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2535 pcpu_get_vm_areas);
2537 kfree(vas);
2538 return vms;
2540 err_free:
2541 for (area = 0; area < nr_vms; area++) {
2542 kfree(vas[area]);
2543 kfree(vms[area]);
2545 err_free2:
2546 kfree(vas);
2547 kfree(vms);
2548 return NULL;
2552 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2553 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2554 * @nr_vms: the number of allocated areas
2556 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2558 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2560 int i;
2562 for (i = 0; i < nr_vms; i++)
2563 free_vm_area(vms[i]);
2564 kfree(vms);
2566 #endif /* CONFIG_SMP */
2568 #ifdef CONFIG_PROC_FS
2569 static void *s_start(struct seq_file *m, loff_t *pos)
2570 __acquires(&vmap_area_lock)
2572 loff_t n = *pos;
2573 struct vmap_area *va;
2575 spin_lock(&vmap_area_lock);
2576 va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2577 while (n > 0 && &va->list != &vmap_area_list) {
2578 n--;
2579 va = list_entry(va->list.next, typeof(*va), list);
2581 if (!n && &va->list != &vmap_area_list)
2582 return va;
2584 return NULL;
2588 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2590 struct vmap_area *va = p, *next;
2592 ++*pos;
2593 next = list_entry(va->list.next, typeof(*va), list);
2594 if (&next->list != &vmap_area_list)
2595 return next;
2597 return NULL;
2600 static void s_stop(struct seq_file *m, void *p)
2601 __releases(&vmap_area_lock)
2603 spin_unlock(&vmap_area_lock);
2606 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2608 if (IS_ENABLED(CONFIG_NUMA)) {
2609 unsigned int nr, *counters = m->private;
2611 if (!counters)
2612 return;
2614 if (v->flags & VM_UNINITIALIZED)
2615 return;
2616 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2617 smp_rmb();
2619 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2621 for (nr = 0; nr < v->nr_pages; nr++)
2622 counters[page_to_nid(v->pages[nr])]++;
2624 for_each_node_state(nr, N_HIGH_MEMORY)
2625 if (counters[nr])
2626 seq_printf(m, " N%u=%u", nr, counters[nr]);
2630 static int s_show(struct seq_file *m, void *p)
2632 struct vmap_area *va = p;
2633 struct vm_struct *v;
2636 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2637 * behalf of vmap area is being tear down or vm_map_ram allocation.
2639 if (!(va->flags & VM_VM_AREA))
2640 return 0;
2642 v = va->vm;
2644 seq_printf(m, "0x%pK-0x%pK %7ld",
2645 v->addr, v->addr + v->size, v->size);
2647 if (v->caller)
2648 seq_printf(m, " %pS", v->caller);
2650 if (v->nr_pages)
2651 seq_printf(m, " pages=%d", v->nr_pages);
2653 if (v->phys_addr)
2654 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2656 if (v->flags & VM_IOREMAP)
2657 seq_puts(m, " ioremap");
2659 if (v->flags & VM_ALLOC)
2660 seq_puts(m, " vmalloc");
2662 if (v->flags & VM_MAP)
2663 seq_puts(m, " vmap");
2665 if (v->flags & VM_USERMAP)
2666 seq_puts(m, " user");
2668 if (v->flags & VM_VPAGES)
2669 seq_puts(m, " vpages");
2671 show_numa_info(m, v);
2672 seq_putc(m, '\n');
2673 return 0;
2676 static const struct seq_operations vmalloc_op = {
2677 .start = s_start,
2678 .next = s_next,
2679 .stop = s_stop,
2680 .show = s_show,
2683 static int vmalloc_open(struct inode *inode, struct file *file)
2685 if (IS_ENABLED(CONFIG_NUMA))
2686 return seq_open_private(file, &vmalloc_op,
2687 nr_node_ids * sizeof(unsigned int));
2688 else
2689 return seq_open(file, &vmalloc_op);
2692 static const struct file_operations proc_vmalloc_operations = {
2693 .open = vmalloc_open,
2694 .read = seq_read,
2695 .llseek = seq_lseek,
2696 .release = seq_release_private,
2699 static int __init proc_vmalloc_init(void)
2701 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2702 return 0;
2704 module_init(proc_vmalloc_init);
2706 #endif