4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
15 #define NULL_SEGNO ((unsigned int)(~0))
16 #define NULL_SECNO ((unsigned int)(~0))
18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
19 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
21 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
23 /* L: Logical segment # in volume, R: Relative segment # in main area */
24 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
25 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
27 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
28 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE)
30 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
31 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
32 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
34 #define IS_CURSEG(sbi, seg) \
35 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
36 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
37 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
38 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
39 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
40 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
42 #define IS_CURSEC(sbi, secno) \
43 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
44 (sbi)->segs_per_sec) || \
45 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
46 (sbi)->segs_per_sec) || \
47 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
48 (sbi)->segs_per_sec) || \
49 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
50 (sbi)->segs_per_sec) || \
51 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
52 (sbi)->segs_per_sec) || \
53 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
54 (sbi)->segs_per_sec)) \
56 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
57 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
59 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
60 #define MAIN_SECS(sbi) ((sbi)->total_sections)
62 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
63 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
65 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
66 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
67 (sbi)->log_blocks_per_seg))
69 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
70 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
72 #define NEXT_FREE_BLKADDR(sbi, curseg) \
73 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
75 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
76 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
77 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
78 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
79 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
81 #define GET_SEGNO(sbi, blk_addr) \
82 ((((blk_addr) == NULL_ADDR) || ((blk_addr) == NEW_ADDR)) ? \
83 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
84 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
85 #define BLKS_PER_SEC(sbi) \
86 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
87 #define GET_SEC_FROM_SEG(sbi, segno) \
88 ((segno) / (sbi)->segs_per_sec)
89 #define GET_SEG_FROM_SEC(sbi, secno) \
90 ((secno) * (sbi)->segs_per_sec)
91 #define GET_ZONE_FROM_SEC(sbi, secno) \
92 ((secno) / (sbi)->secs_per_zone)
93 #define GET_ZONE_FROM_SEG(sbi, segno) \
94 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
96 #define GET_SUM_BLOCK(sbi, segno) \
97 ((sbi)->sm_info->ssa_blkaddr + (segno))
99 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
100 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
102 #define SIT_ENTRY_OFFSET(sit_i, segno) \
103 ((segno) % (sit_i)->sents_per_block)
104 #define SIT_BLOCK_OFFSET(segno) \
105 ((segno) / SIT_ENTRY_PER_BLOCK)
106 #define START_SEGNO(segno) \
107 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
108 #define SIT_BLK_CNT(sbi) \
109 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
110 #define f2fs_bitmap_size(nr) \
111 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
113 #define SECTOR_FROM_BLOCK(blk_addr) \
114 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
115 #define SECTOR_TO_BLOCK(sectors) \
116 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
119 * indicate a block allocation direction: RIGHT and LEFT.
120 * RIGHT means allocating new sections towards the end of volume.
121 * LEFT means the opposite direction.
129 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
130 * LFS writes data sequentially with cleaning operations.
131 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
139 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
140 * GC_CB is based on cost-benefit algorithm.
141 * GC_GREEDY is based on greedy algorithm.
152 * BG_GC means the background cleaning job.
153 * FG_GC means the on-demand cleaning job.
154 * FORCE_FG_GC means on-demand cleaning job in background.
162 /* for a function parameter to select a victim segment */
163 struct victim_sel_policy
{
164 int alloc_mode
; /* LFS or SSR */
165 int gc_mode
; /* GC_CB or GC_GREEDY */
166 unsigned long *dirty_segmap
; /* dirty segment bitmap */
167 unsigned int max_search
; /* maximum # of segments to search */
168 unsigned int offset
; /* last scanned bitmap offset */
169 unsigned int ofs_unit
; /* bitmap search unit */
170 unsigned int min_cost
; /* minimum cost */
171 unsigned int min_segno
; /* segment # having min. cost */
175 unsigned int type
:6; /* segment type like CURSEG_XXX_TYPE */
176 unsigned int valid_blocks
:10; /* # of valid blocks */
177 unsigned int ckpt_valid_blocks
:10; /* # of valid blocks last cp */
178 unsigned int padding
:6; /* padding */
179 unsigned char *cur_valid_map
; /* validity bitmap of blocks */
180 #ifdef CONFIG_F2FS_CHECK_FS
181 unsigned char *cur_valid_map_mir
; /* mirror of current valid bitmap */
184 * # of valid blocks and the validity bitmap stored in the the last
185 * checkpoint pack. This information is used by the SSR mode.
187 unsigned char *ckpt_valid_map
; /* validity bitmap of blocks last cp */
188 unsigned char *discard_map
;
189 unsigned long long mtime
; /* modification time of the segment */
193 unsigned int valid_blocks
; /* # of valid blocks in a section */
196 struct segment_allocation
{
197 void (*allocate_segment
)(struct f2fs_sb_info
*, int, bool);
201 * this value is set in page as a private data which indicate that
202 * the page is atomically written, and it is in inmem_pages list.
204 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
205 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
207 #define IS_ATOMIC_WRITTEN_PAGE(page) \
208 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
209 #define IS_DUMMY_WRITTEN_PAGE(page) \
210 (page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
213 struct list_head list
;
215 block_t old_addr
; /* for revoking when fail to commit */
219 const struct segment_allocation
*s_ops
;
221 block_t sit_base_addr
; /* start block address of SIT area */
222 block_t sit_blocks
; /* # of blocks used by SIT area */
223 block_t written_valid_blocks
; /* # of valid blocks in main area */
224 char *sit_bitmap
; /* SIT bitmap pointer */
225 #ifdef CONFIG_F2FS_CHECK_FS
226 char *sit_bitmap_mir
; /* SIT bitmap mirror */
228 unsigned int bitmap_size
; /* SIT bitmap size */
230 unsigned long *tmp_map
; /* bitmap for temporal use */
231 unsigned long *dirty_sentries_bitmap
; /* bitmap for dirty sentries */
232 unsigned int dirty_sentries
; /* # of dirty sentries */
233 unsigned int sents_per_block
; /* # of SIT entries per block */
234 struct mutex sentry_lock
; /* to protect SIT cache */
235 struct seg_entry
*sentries
; /* SIT segment-level cache */
236 struct sec_entry
*sec_entries
; /* SIT section-level cache */
238 /* for cost-benefit algorithm in cleaning procedure */
239 unsigned long long elapsed_time
; /* elapsed time after mount */
240 unsigned long long mounted_time
; /* mount time */
241 unsigned long long min_mtime
; /* min. modification time */
242 unsigned long long max_mtime
; /* max. modification time */
244 unsigned int last_victim
[MAX_GC_POLICY
]; /* last victim segment # */
247 struct free_segmap_info
{
248 unsigned int start_segno
; /* start segment number logically */
249 unsigned int free_segments
; /* # of free segments */
250 unsigned int free_sections
; /* # of free sections */
251 spinlock_t segmap_lock
; /* free segmap lock */
252 unsigned long *free_segmap
; /* free segment bitmap */
253 unsigned long *free_secmap
; /* free section bitmap */
256 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
258 DIRTY_HOT_DATA
, /* dirty segments assigned as hot data logs */
259 DIRTY_WARM_DATA
, /* dirty segments assigned as warm data logs */
260 DIRTY_COLD_DATA
, /* dirty segments assigned as cold data logs */
261 DIRTY_HOT_NODE
, /* dirty segments assigned as hot node logs */
262 DIRTY_WARM_NODE
, /* dirty segments assigned as warm node logs */
263 DIRTY_COLD_NODE
, /* dirty segments assigned as cold node logs */
264 DIRTY
, /* to count # of dirty segments */
265 PRE
, /* to count # of entirely obsolete segments */
269 struct dirty_seglist_info
{
270 const struct victim_selection
*v_ops
; /* victim selction operation */
271 unsigned long *dirty_segmap
[NR_DIRTY_TYPE
];
272 struct mutex seglist_lock
; /* lock for segment bitmaps */
273 int nr_dirty
[NR_DIRTY_TYPE
]; /* # of dirty segments */
274 unsigned long *victim_secmap
; /* background GC victims */
277 /* victim selection function for cleaning and SSR */
278 struct victim_selection
{
279 int (*get_victim
)(struct f2fs_sb_info
*, unsigned int *,
283 /* for active log information */
285 struct mutex curseg_mutex
; /* lock for consistency */
286 struct f2fs_summary_block
*sum_blk
; /* cached summary block */
287 struct rw_semaphore journal_rwsem
; /* protect journal area */
288 struct f2fs_journal
*journal
; /* cached journal info */
289 unsigned char alloc_type
; /* current allocation type */
290 unsigned int segno
; /* current segment number */
291 unsigned short next_blkoff
; /* next block offset to write */
292 unsigned int zone
; /* current zone number */
293 unsigned int next_segno
; /* preallocated segment */
296 struct sit_entry_set
{
297 struct list_head set_list
; /* link with all sit sets */
298 unsigned int start_segno
; /* start segno of sits in set */
299 unsigned int entry_cnt
; /* the # of sit entries in set */
305 static inline struct curseg_info
*CURSEG_I(struct f2fs_sb_info
*sbi
, int type
)
307 return (struct curseg_info
*)(SM_I(sbi
)->curseg_array
+ type
);
310 static inline struct seg_entry
*get_seg_entry(struct f2fs_sb_info
*sbi
,
313 struct sit_info
*sit_i
= SIT_I(sbi
);
314 return &sit_i
->sentries
[segno
];
317 static inline struct sec_entry
*get_sec_entry(struct f2fs_sb_info
*sbi
,
320 struct sit_info
*sit_i
= SIT_I(sbi
);
321 return &sit_i
->sec_entries
[GET_SEC_FROM_SEG(sbi
, segno
)];
324 static inline unsigned int get_valid_blocks(struct f2fs_sb_info
*sbi
,
325 unsigned int segno
, bool use_section
)
328 * In order to get # of valid blocks in a section instantly from many
329 * segments, f2fs manages two counting structures separately.
331 if (use_section
&& sbi
->segs_per_sec
> 1)
332 return get_sec_entry(sbi
, segno
)->valid_blocks
;
334 return get_seg_entry(sbi
, segno
)->valid_blocks
;
337 static inline void seg_info_from_raw_sit(struct seg_entry
*se
,
338 struct f2fs_sit_entry
*rs
)
340 se
->valid_blocks
= GET_SIT_VBLOCKS(rs
);
341 se
->ckpt_valid_blocks
= GET_SIT_VBLOCKS(rs
);
342 memcpy(se
->cur_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
343 memcpy(se
->ckpt_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
344 #ifdef CONFIG_F2FS_CHECK_FS
345 memcpy(se
->cur_valid_map_mir
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
347 se
->type
= GET_SIT_TYPE(rs
);
348 se
->mtime
= le64_to_cpu(rs
->mtime
);
351 static inline void seg_info_to_raw_sit(struct seg_entry
*se
,
352 struct f2fs_sit_entry
*rs
)
354 unsigned short raw_vblocks
= (se
->type
<< SIT_VBLOCKS_SHIFT
) |
356 rs
->vblocks
= cpu_to_le16(raw_vblocks
);
357 memcpy(rs
->valid_map
, se
->cur_valid_map
, SIT_VBLOCK_MAP_SIZE
);
358 memcpy(se
->ckpt_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
359 se
->ckpt_valid_blocks
= se
->valid_blocks
;
360 rs
->mtime
= cpu_to_le64(se
->mtime
);
363 static inline unsigned int find_next_inuse(struct free_segmap_info
*free_i
,
364 unsigned int max
, unsigned int segno
)
367 spin_lock(&free_i
->segmap_lock
);
368 ret
= find_next_bit(free_i
->free_segmap
, max
, segno
);
369 spin_unlock(&free_i
->segmap_lock
);
373 static inline void __set_free(struct f2fs_sb_info
*sbi
, unsigned int segno
)
375 struct free_segmap_info
*free_i
= FREE_I(sbi
);
376 unsigned int secno
= GET_SEC_FROM_SEG(sbi
, segno
);
377 unsigned int start_segno
= GET_SEG_FROM_SEC(sbi
, secno
);
380 spin_lock(&free_i
->segmap_lock
);
381 clear_bit(segno
, free_i
->free_segmap
);
382 free_i
->free_segments
++;
384 next
= find_next_bit(free_i
->free_segmap
,
385 start_segno
+ sbi
->segs_per_sec
, start_segno
);
386 if (next
>= start_segno
+ sbi
->segs_per_sec
) {
387 clear_bit(secno
, free_i
->free_secmap
);
388 free_i
->free_sections
++;
390 spin_unlock(&free_i
->segmap_lock
);
393 static inline void __set_inuse(struct f2fs_sb_info
*sbi
,
396 struct free_segmap_info
*free_i
= FREE_I(sbi
);
397 unsigned int secno
= GET_SEC_FROM_SEG(sbi
, segno
);
399 set_bit(segno
, free_i
->free_segmap
);
400 free_i
->free_segments
--;
401 if (!test_and_set_bit(secno
, free_i
->free_secmap
))
402 free_i
->free_sections
--;
405 static inline void __set_test_and_free(struct f2fs_sb_info
*sbi
,
408 struct free_segmap_info
*free_i
= FREE_I(sbi
);
409 unsigned int secno
= GET_SEC_FROM_SEG(sbi
, segno
);
410 unsigned int start_segno
= GET_SEG_FROM_SEC(sbi
, secno
);
413 spin_lock(&free_i
->segmap_lock
);
414 if (test_and_clear_bit(segno
, free_i
->free_segmap
)) {
415 free_i
->free_segments
++;
417 next
= find_next_bit(free_i
->free_segmap
,
418 start_segno
+ sbi
->segs_per_sec
, start_segno
);
419 if (next
>= start_segno
+ sbi
->segs_per_sec
) {
420 if (test_and_clear_bit(secno
, free_i
->free_secmap
))
421 free_i
->free_sections
++;
424 spin_unlock(&free_i
->segmap_lock
);
427 static inline void __set_test_and_inuse(struct f2fs_sb_info
*sbi
,
430 struct free_segmap_info
*free_i
= FREE_I(sbi
);
431 unsigned int secno
= GET_SEC_FROM_SEG(sbi
, segno
);
433 spin_lock(&free_i
->segmap_lock
);
434 if (!test_and_set_bit(segno
, free_i
->free_segmap
)) {
435 free_i
->free_segments
--;
436 if (!test_and_set_bit(secno
, free_i
->free_secmap
))
437 free_i
->free_sections
--;
439 spin_unlock(&free_i
->segmap_lock
);
442 static inline void get_sit_bitmap(struct f2fs_sb_info
*sbi
,
445 struct sit_info
*sit_i
= SIT_I(sbi
);
447 #ifdef CONFIG_F2FS_CHECK_FS
448 if (memcmp(sit_i
->sit_bitmap
, sit_i
->sit_bitmap_mir
,
452 memcpy(dst_addr
, sit_i
->sit_bitmap
, sit_i
->bitmap_size
);
455 static inline block_t
written_block_count(struct f2fs_sb_info
*sbi
)
457 return SIT_I(sbi
)->written_valid_blocks
;
460 static inline unsigned int free_segments(struct f2fs_sb_info
*sbi
)
462 return FREE_I(sbi
)->free_segments
;
465 static inline int reserved_segments(struct f2fs_sb_info
*sbi
)
467 return SM_I(sbi
)->reserved_segments
;
470 static inline unsigned int free_sections(struct f2fs_sb_info
*sbi
)
472 return FREE_I(sbi
)->free_sections
;
475 static inline unsigned int prefree_segments(struct f2fs_sb_info
*sbi
)
477 return DIRTY_I(sbi
)->nr_dirty
[PRE
];
480 static inline unsigned int dirty_segments(struct f2fs_sb_info
*sbi
)
482 return DIRTY_I(sbi
)->nr_dirty
[DIRTY_HOT_DATA
] +
483 DIRTY_I(sbi
)->nr_dirty
[DIRTY_WARM_DATA
] +
484 DIRTY_I(sbi
)->nr_dirty
[DIRTY_COLD_DATA
] +
485 DIRTY_I(sbi
)->nr_dirty
[DIRTY_HOT_NODE
] +
486 DIRTY_I(sbi
)->nr_dirty
[DIRTY_WARM_NODE
] +
487 DIRTY_I(sbi
)->nr_dirty
[DIRTY_COLD_NODE
];
490 static inline int overprovision_segments(struct f2fs_sb_info
*sbi
)
492 return SM_I(sbi
)->ovp_segments
;
495 static inline int overprovision_sections(struct f2fs_sb_info
*sbi
)
497 return GET_SEC_FROM_SEG(sbi
, (unsigned int)overprovision_segments(sbi
));
500 static inline int reserved_sections(struct f2fs_sb_info
*sbi
)
502 return GET_SEC_FROM_SEG(sbi
, (unsigned int)reserved_segments(sbi
));
505 static inline bool need_SSR(struct f2fs_sb_info
*sbi
)
507 int node_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_NODES
);
508 int dent_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_DENTS
);
509 int imeta_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_IMETA
);
511 if (test_opt(sbi
, LFS
))
514 return free_sections(sbi
) <= (node_secs
+ 2 * dent_secs
+ imeta_secs
+
515 2 * reserved_sections(sbi
));
518 static inline bool has_not_enough_free_secs(struct f2fs_sb_info
*sbi
,
519 int freed
, int needed
)
521 int node_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_NODES
);
522 int dent_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_DENTS
);
523 int imeta_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_IMETA
);
525 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
528 return (free_sections(sbi
) + freed
) <=
529 (node_secs
+ 2 * dent_secs
+ imeta_secs
+
530 reserved_sections(sbi
) + needed
);
533 static inline bool excess_prefree_segs(struct f2fs_sb_info
*sbi
)
535 return prefree_segments(sbi
) > SM_I(sbi
)->rec_prefree_segments
;
538 static inline int utilization(struct f2fs_sb_info
*sbi
)
540 return div_u64((u64
)valid_user_blocks(sbi
) * 100,
541 sbi
->user_block_count
);
545 * Sometimes f2fs may be better to drop out-of-place update policy.
546 * And, users can control the policy through sysfs entries.
547 * There are five policies with triggering conditions as follows.
548 * F2FS_IPU_FORCE - all the time,
549 * F2FS_IPU_SSR - if SSR mode is activated,
550 * F2FS_IPU_UTIL - if FS utilization is over threashold,
551 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
553 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
554 * storages. IPU will be triggered only if the # of dirty
555 * pages over min_fsync_blocks.
556 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
558 #define DEF_MIN_IPU_UTIL 70
559 #define DEF_MIN_FSYNC_BLOCKS 8
560 #define DEF_MIN_HOT_BLOCKS 16
571 static inline bool need_inplace_update_policy(struct inode
*inode
,
572 struct f2fs_io_info
*fio
)
574 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
575 unsigned int policy
= SM_I(sbi
)->ipu_policy
;
577 if (test_opt(sbi
, LFS
))
580 if (policy
& (0x1 << F2FS_IPU_FORCE
))
582 if (policy
& (0x1 << F2FS_IPU_SSR
) && need_SSR(sbi
))
584 if (policy
& (0x1 << F2FS_IPU_UTIL
) &&
585 utilization(sbi
) > SM_I(sbi
)->min_ipu_util
)
587 if (policy
& (0x1 << F2FS_IPU_SSR_UTIL
) && need_SSR(sbi
) &&
588 utilization(sbi
) > SM_I(sbi
)->min_ipu_util
)
592 * IPU for rewrite async pages
594 if (policy
& (0x1 << F2FS_IPU_ASYNC
) &&
595 fio
&& fio
->op
== REQ_OP_WRITE
&&
596 !(fio
->op_flags
& REQ_SYNC
) &&
597 !f2fs_encrypted_inode(inode
))
600 /* this is only set during fdatasync */
601 if (policy
& (0x1 << F2FS_IPU_FSYNC
) &&
602 is_inode_flag_set(inode
, FI_NEED_IPU
))
608 static inline unsigned int curseg_segno(struct f2fs_sb_info
*sbi
,
611 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
612 return curseg
->segno
;
615 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info
*sbi
,
618 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
619 return curseg
->alloc_type
;
622 static inline unsigned short curseg_blkoff(struct f2fs_sb_info
*sbi
, int type
)
624 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
625 return curseg
->next_blkoff
;
628 static inline void check_seg_range(struct f2fs_sb_info
*sbi
, unsigned int segno
)
630 f2fs_bug_on(sbi
, segno
> TOTAL_SEGS(sbi
) - 1);
633 static inline void verify_block_addr(struct f2fs_sb_info
*sbi
, block_t blk_addr
)
635 BUG_ON(blk_addr
< SEG0_BLKADDR(sbi
)
636 || blk_addr
>= MAX_BLKADDR(sbi
));
640 * Summary block is always treated as an invalid block
642 static inline void check_block_count(struct f2fs_sb_info
*sbi
,
643 int segno
, struct f2fs_sit_entry
*raw_sit
)
645 #ifdef CONFIG_F2FS_CHECK_FS
646 bool is_valid
= test_bit_le(0, raw_sit
->valid_map
) ? true : false;
647 int valid_blocks
= 0;
648 int cur_pos
= 0, next_pos
;
650 /* check bitmap with valid block count */
653 next_pos
= find_next_zero_bit_le(&raw_sit
->valid_map
,
656 valid_blocks
+= next_pos
- cur_pos
;
658 next_pos
= find_next_bit_le(&raw_sit
->valid_map
,
662 is_valid
= !is_valid
;
663 } while (cur_pos
< sbi
->blocks_per_seg
);
664 BUG_ON(GET_SIT_VBLOCKS(raw_sit
) != valid_blocks
);
666 /* check segment usage, and check boundary of a given segment number */
667 f2fs_bug_on(sbi
, GET_SIT_VBLOCKS(raw_sit
) > sbi
->blocks_per_seg
668 || segno
> TOTAL_SEGS(sbi
) - 1);
671 static inline pgoff_t
current_sit_addr(struct f2fs_sb_info
*sbi
,
674 struct sit_info
*sit_i
= SIT_I(sbi
);
675 unsigned int offset
= SIT_BLOCK_OFFSET(start
);
676 block_t blk_addr
= sit_i
->sit_base_addr
+ offset
;
678 check_seg_range(sbi
, start
);
680 #ifdef CONFIG_F2FS_CHECK_FS
681 if (f2fs_test_bit(offset
, sit_i
->sit_bitmap
) !=
682 f2fs_test_bit(offset
, sit_i
->sit_bitmap_mir
))
686 /* calculate sit block address */
687 if (f2fs_test_bit(offset
, sit_i
->sit_bitmap
))
688 blk_addr
+= sit_i
->sit_blocks
;
693 static inline pgoff_t
next_sit_addr(struct f2fs_sb_info
*sbi
,
696 struct sit_info
*sit_i
= SIT_I(sbi
);
697 block_addr
-= sit_i
->sit_base_addr
;
698 if (block_addr
< sit_i
->sit_blocks
)
699 block_addr
+= sit_i
->sit_blocks
;
701 block_addr
-= sit_i
->sit_blocks
;
703 return block_addr
+ sit_i
->sit_base_addr
;
706 static inline void set_to_next_sit(struct sit_info
*sit_i
, unsigned int start
)
708 unsigned int block_off
= SIT_BLOCK_OFFSET(start
);
710 f2fs_change_bit(block_off
, sit_i
->sit_bitmap
);
711 #ifdef CONFIG_F2FS_CHECK_FS
712 f2fs_change_bit(block_off
, sit_i
->sit_bitmap_mir
);
716 static inline unsigned long long get_mtime(struct f2fs_sb_info
*sbi
)
718 struct sit_info
*sit_i
= SIT_I(sbi
);
719 time64_t now
= ktime_get_real_seconds();
721 return sit_i
->elapsed_time
+ now
- sit_i
->mounted_time
;
724 static inline void set_summary(struct f2fs_summary
*sum
, nid_t nid
,
725 unsigned int ofs_in_node
, unsigned char version
)
727 sum
->nid
= cpu_to_le32(nid
);
728 sum
->ofs_in_node
= cpu_to_le16(ofs_in_node
);
729 sum
->version
= version
;
732 static inline block_t
start_sum_block(struct f2fs_sb_info
*sbi
)
734 return __start_cp_addr(sbi
) +
735 le32_to_cpu(F2FS_CKPT(sbi
)->cp_pack_start_sum
);
738 static inline block_t
sum_blk_addr(struct f2fs_sb_info
*sbi
, int base
, int type
)
740 return __start_cp_addr(sbi
) +
741 le32_to_cpu(F2FS_CKPT(sbi
)->cp_pack_total_block_count
)
745 static inline bool no_fggc_candidate(struct f2fs_sb_info
*sbi
,
748 if (get_valid_blocks(sbi
, GET_SEG_FROM_SEC(sbi
, secno
), true) >=
754 static inline bool sec_usage_check(struct f2fs_sb_info
*sbi
, unsigned int secno
)
756 if (IS_CURSEC(sbi
, secno
) || (sbi
->cur_victim_sec
== secno
))
762 * It is very important to gather dirty pages and write at once, so that we can
763 * submit a big bio without interfering other data writes.
764 * By default, 512 pages for directory data,
765 * 512 pages (2MB) * 8 for nodes, and
766 * 256 pages * 8 for meta are set.
768 static inline int nr_pages_to_skip(struct f2fs_sb_info
*sbi
, int type
)
770 if (sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
774 return sbi
->blocks_per_seg
;
775 else if (type
== NODE
)
776 return 8 * sbi
->blocks_per_seg
;
777 else if (type
== META
)
778 return 8 * BIO_MAX_PAGES
;
784 * When writing pages, it'd better align nr_to_write for segment size.
786 static inline long nr_pages_to_write(struct f2fs_sb_info
*sbi
, int type
,
787 struct writeback_control
*wbc
)
789 long nr_to_write
, desired
;
791 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
794 nr_to_write
= wbc
->nr_to_write
;
795 desired
= BIO_MAX_PAGES
;
799 wbc
->nr_to_write
= desired
;
800 return desired
- nr_to_write
;