1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2011 STRATO. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/slab.h>
11 #include <linux/workqueue.h>
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "block-group.h"
22 * This is the implementation for the generic read ahead framework.
24 * To trigger a readahead, btrfs_reada_add must be called. It will start
25 * a read ahead for the given range [start, end) on tree root. The returned
26 * handle can either be used to wait on the readahead to finish
27 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
29 * The read ahead works as follows:
30 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
31 * reada_start_machine will then search for extents to prefetch and trigger
32 * some reads. When a read finishes for a node, all contained node/leaf
33 * pointers that lie in the given range will also be enqueued. The reads will
34 * be triggered in sequential order, thus giving a big win over a naive
35 * enumeration. It will also make use of multi-device layouts. Each disk
36 * will have its on read pointer and all disks will by utilized in parallel.
37 * Also will no two disks read both sides of a mirror simultaneously, as this
38 * would waste seeking capacity. Instead both disks will read different parts
40 * Any number of readaheads can be started in parallel. The read order will be
41 * determined globally, i.e. 2 parallel readaheads will normally finish faster
42 * than the 2 started one after another.
45 #define MAX_IN_FLIGHT 6
48 struct list_head list
;
49 struct reada_control
*rc
;
56 struct list_head extctl
;
59 struct reada_zone
*zones
[BTRFS_MAX_MIRRORS
];
68 struct list_head list
;
71 struct btrfs_device
*device
;
72 struct btrfs_device
*devs
[BTRFS_MAX_MIRRORS
]; /* full list, incl
78 struct reada_machine_work
{
79 struct btrfs_work work
;
80 struct btrfs_fs_info
*fs_info
;
83 static void reada_extent_put(struct btrfs_fs_info
*, struct reada_extent
*);
84 static void reada_control_release(struct kref
*kref
);
85 static void reada_zone_release(struct kref
*kref
);
86 static void reada_start_machine(struct btrfs_fs_info
*fs_info
);
87 static void __reada_start_machine(struct btrfs_fs_info
*fs_info
);
89 static int reada_add_block(struct reada_control
*rc
, u64 logical
,
90 struct btrfs_key
*top
, u64 generation
);
93 /* in case of err, eb might be NULL */
94 static void __readahead_hook(struct btrfs_fs_info
*fs_info
,
95 struct reada_extent
*re
, struct extent_buffer
*eb
,
102 struct list_head list
;
104 spin_lock(&re
->lock
);
106 * just take the full list from the extent. afterwards we
107 * don't need the lock anymore
109 list_replace_init(&re
->extctl
, &list
);
111 spin_unlock(&re
->lock
);
114 * this is the error case, the extent buffer has not been
115 * read correctly. We won't access anything from it and
116 * just cleanup our data structures. Effectively this will
117 * cut the branch below this node from read ahead.
123 * FIXME: currently we just set nritems to 0 if this is a leaf,
124 * effectively ignoring the content. In a next step we could
125 * trigger more readahead depending from the content, e.g.
126 * fetch the checksums for the extents in the leaf.
128 if (!btrfs_header_level(eb
))
131 nritems
= btrfs_header_nritems(eb
);
132 generation
= btrfs_header_generation(eb
);
133 for (i
= 0; i
< nritems
; i
++) {
134 struct reada_extctl
*rec
;
136 struct btrfs_key key
;
137 struct btrfs_key next_key
;
139 btrfs_node_key_to_cpu(eb
, &key
, i
);
141 btrfs_node_key_to_cpu(eb
, &next_key
, i
+ 1);
144 bytenr
= btrfs_node_blockptr(eb
, i
);
145 n_gen
= btrfs_node_ptr_generation(eb
, i
);
147 list_for_each_entry(rec
, &list
, list
) {
148 struct reada_control
*rc
= rec
->rc
;
151 * if the generation doesn't match, just ignore this
152 * extctl. This will probably cut off a branch from
153 * prefetch. Alternatively one could start a new (sub-)
154 * prefetch for this branch, starting again from root.
155 * FIXME: move the generation check out of this loop
158 if (rec
->generation
!= generation
) {
160 "generation mismatch for (%llu,%d,%llu) %llu != %llu",
161 key
.objectid
, key
.type
, key
.offset
,
162 rec
->generation
, generation
);
165 if (rec
->generation
== generation
&&
166 btrfs_comp_cpu_keys(&key
, &rc
->key_end
) < 0 &&
167 btrfs_comp_cpu_keys(&next_key
, &rc
->key_start
) > 0)
168 reada_add_block(rc
, bytenr
, &next_key
, n_gen
);
174 * free extctl records
176 while (!list_empty(&list
)) {
177 struct reada_control
*rc
;
178 struct reada_extctl
*rec
;
180 rec
= list_first_entry(&list
, struct reada_extctl
, list
);
181 list_del(&rec
->list
);
185 kref_get(&rc
->refcnt
);
186 if (atomic_dec_and_test(&rc
->elems
)) {
187 kref_put(&rc
->refcnt
, reada_control_release
);
190 kref_put(&rc
->refcnt
, reada_control_release
);
192 reada_extent_put(fs_info
, re
); /* one ref for each entry */
198 int btree_readahead_hook(struct extent_buffer
*eb
, int err
)
200 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
202 struct reada_extent
*re
;
205 spin_lock(&fs_info
->reada_lock
);
206 re
= radix_tree_lookup(&fs_info
->reada_tree
,
207 eb
->start
>> PAGE_SHIFT
);
210 spin_unlock(&fs_info
->reada_lock
);
216 __readahead_hook(fs_info
, re
, eb
, err
);
217 reada_extent_put(fs_info
, re
); /* our ref */
220 reada_start_machine(fs_info
);
224 static struct reada_zone
*reada_find_zone(struct btrfs_device
*dev
, u64 logical
,
225 struct btrfs_bio
*bbio
)
227 struct btrfs_fs_info
*fs_info
= dev
->fs_info
;
229 struct reada_zone
*zone
;
230 struct btrfs_block_group
*cache
= NULL
;
236 spin_lock(&fs_info
->reada_lock
);
237 ret
= radix_tree_gang_lookup(&dev
->reada_zones
, (void **)&zone
,
238 logical
>> PAGE_SHIFT
, 1);
239 if (ret
== 1 && logical
>= zone
->start
&& logical
<= zone
->end
) {
240 kref_get(&zone
->refcnt
);
241 spin_unlock(&fs_info
->reada_lock
);
245 spin_unlock(&fs_info
->reada_lock
);
247 cache
= btrfs_lookup_block_group(fs_info
, logical
);
251 start
= cache
->start
;
252 end
= start
+ cache
->length
- 1;
253 btrfs_put_block_group(cache
);
255 zone
= kzalloc(sizeof(*zone
), GFP_KERNEL
);
259 ret
= radix_tree_preload(GFP_KERNEL
);
267 INIT_LIST_HEAD(&zone
->list
);
268 spin_lock_init(&zone
->lock
);
270 kref_init(&zone
->refcnt
);
272 zone
->device
= dev
; /* our device always sits at index 0 */
273 for (i
= 0; i
< bbio
->num_stripes
; ++i
) {
274 /* bounds have already been checked */
275 zone
->devs
[i
] = bbio
->stripes
[i
].dev
;
277 zone
->ndevs
= bbio
->num_stripes
;
279 spin_lock(&fs_info
->reada_lock
);
280 ret
= radix_tree_insert(&dev
->reada_zones
,
281 (unsigned long)(zone
->end
>> PAGE_SHIFT
),
284 if (ret
== -EEXIST
) {
286 ret
= radix_tree_gang_lookup(&dev
->reada_zones
, (void **)&zone
,
287 logical
>> PAGE_SHIFT
, 1);
288 if (ret
== 1 && logical
>= zone
->start
&& logical
<= zone
->end
)
289 kref_get(&zone
->refcnt
);
293 spin_unlock(&fs_info
->reada_lock
);
294 radix_tree_preload_end();
299 static struct reada_extent
*reada_find_extent(struct btrfs_fs_info
*fs_info
,
301 struct btrfs_key
*top
)
304 struct reada_extent
*re
= NULL
;
305 struct reada_extent
*re_exist
= NULL
;
306 struct btrfs_bio
*bbio
= NULL
;
307 struct btrfs_device
*dev
;
308 struct btrfs_device
*prev_dev
;
312 unsigned long index
= logical
>> PAGE_SHIFT
;
313 int dev_replace_is_ongoing
;
316 spin_lock(&fs_info
->reada_lock
);
317 re
= radix_tree_lookup(&fs_info
->reada_tree
, index
);
320 spin_unlock(&fs_info
->reada_lock
);
325 re
= kzalloc(sizeof(*re
), GFP_KERNEL
);
329 re
->logical
= logical
;
331 INIT_LIST_HEAD(&re
->extctl
);
332 spin_lock_init(&re
->lock
);
338 length
= fs_info
->nodesize
;
339 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
, logical
,
341 if (ret
|| !bbio
|| length
< fs_info
->nodesize
)
344 if (bbio
->num_stripes
> BTRFS_MAX_MIRRORS
) {
346 "readahead: more than %d copies not supported",
351 real_stripes
= bbio
->num_stripes
- bbio
->num_tgtdevs
;
352 for (nzones
= 0; nzones
< real_stripes
; ++nzones
) {
353 struct reada_zone
*zone
;
355 dev
= bbio
->stripes
[nzones
].dev
;
357 /* cannot read ahead on missing device. */
361 zone
= reada_find_zone(dev
, logical
, bbio
);
365 re
->zones
[re
->nzones
++] = zone
;
366 spin_lock(&zone
->lock
);
368 kref_get(&zone
->refcnt
);
370 spin_unlock(&zone
->lock
);
371 spin_lock(&fs_info
->reada_lock
);
372 kref_put(&zone
->refcnt
, reada_zone_release
);
373 spin_unlock(&fs_info
->reada_lock
);
375 if (re
->nzones
== 0) {
376 /* not a single zone found, error and out */
380 /* Insert extent in reada tree + all per-device trees, all or nothing */
381 down_read(&fs_info
->dev_replace
.rwsem
);
382 ret
= radix_tree_preload(GFP_KERNEL
);
384 up_read(&fs_info
->dev_replace
.rwsem
);
388 spin_lock(&fs_info
->reada_lock
);
389 ret
= radix_tree_insert(&fs_info
->reada_tree
, index
, re
);
390 if (ret
== -EEXIST
) {
391 re_exist
= radix_tree_lookup(&fs_info
->reada_tree
, index
);
393 spin_unlock(&fs_info
->reada_lock
);
394 radix_tree_preload_end();
395 up_read(&fs_info
->dev_replace
.rwsem
);
399 spin_unlock(&fs_info
->reada_lock
);
400 radix_tree_preload_end();
401 up_read(&fs_info
->dev_replace
.rwsem
);
404 radix_tree_preload_end();
406 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(
407 &fs_info
->dev_replace
);
408 for (nzones
= 0; nzones
< re
->nzones
; ++nzones
) {
409 dev
= re
->zones
[nzones
]->device
;
411 if (dev
== prev_dev
) {
413 * in case of DUP, just add the first zone. As both
414 * are on the same device, there's nothing to gain
416 * Also, it wouldn't work, as the tree is per device
417 * and adding would fail with EEXIST
424 if (dev_replace_is_ongoing
&&
425 dev
== fs_info
->dev_replace
.tgtdev
) {
427 * as this device is selected for reading only as
428 * a last resort, skip it for read ahead.
433 ret
= radix_tree_insert(&dev
->reada_extents
, index
, re
);
435 while (--nzones
>= 0) {
436 dev
= re
->zones
[nzones
]->device
;
438 /* ignore whether the entry was inserted */
439 radix_tree_delete(&dev
->reada_extents
, index
);
441 radix_tree_delete(&fs_info
->reada_tree
, index
);
442 spin_unlock(&fs_info
->reada_lock
);
443 up_read(&fs_info
->dev_replace
.rwsem
);
448 spin_unlock(&fs_info
->reada_lock
);
449 up_read(&fs_info
->dev_replace
.rwsem
);
454 btrfs_put_bbio(bbio
);
458 for (nzones
= 0; nzones
< re
->nzones
; ++nzones
) {
459 struct reada_zone
*zone
;
461 zone
= re
->zones
[nzones
];
462 kref_get(&zone
->refcnt
);
463 spin_lock(&zone
->lock
);
465 if (zone
->elems
== 0) {
467 * no fs_info->reada_lock needed, as this can't be
470 kref_put(&zone
->refcnt
, reada_zone_release
);
472 spin_unlock(&zone
->lock
);
474 spin_lock(&fs_info
->reada_lock
);
475 kref_put(&zone
->refcnt
, reada_zone_release
);
476 spin_unlock(&fs_info
->reada_lock
);
478 btrfs_put_bbio(bbio
);
483 static void reada_extent_put(struct btrfs_fs_info
*fs_info
,
484 struct reada_extent
*re
)
487 unsigned long index
= re
->logical
>> PAGE_SHIFT
;
489 spin_lock(&fs_info
->reada_lock
);
491 spin_unlock(&fs_info
->reada_lock
);
495 radix_tree_delete(&fs_info
->reada_tree
, index
);
496 for (i
= 0; i
< re
->nzones
; ++i
) {
497 struct reada_zone
*zone
= re
->zones
[i
];
499 radix_tree_delete(&zone
->device
->reada_extents
, index
);
502 spin_unlock(&fs_info
->reada_lock
);
504 for (i
= 0; i
< re
->nzones
; ++i
) {
505 struct reada_zone
*zone
= re
->zones
[i
];
507 kref_get(&zone
->refcnt
);
508 spin_lock(&zone
->lock
);
510 if (zone
->elems
== 0) {
511 /* no fs_info->reada_lock needed, as this can't be
513 kref_put(&zone
->refcnt
, reada_zone_release
);
515 spin_unlock(&zone
->lock
);
517 spin_lock(&fs_info
->reada_lock
);
518 kref_put(&zone
->refcnt
, reada_zone_release
);
519 spin_unlock(&fs_info
->reada_lock
);
525 static void reada_zone_release(struct kref
*kref
)
527 struct reada_zone
*zone
= container_of(kref
, struct reada_zone
, refcnt
);
529 radix_tree_delete(&zone
->device
->reada_zones
,
530 zone
->end
>> PAGE_SHIFT
);
535 static void reada_control_release(struct kref
*kref
)
537 struct reada_control
*rc
= container_of(kref
, struct reada_control
,
543 static int reada_add_block(struct reada_control
*rc
, u64 logical
,
544 struct btrfs_key
*top
, u64 generation
)
546 struct btrfs_fs_info
*fs_info
= rc
->fs_info
;
547 struct reada_extent
*re
;
548 struct reada_extctl
*rec
;
551 re
= reada_find_extent(fs_info
, logical
, top
);
555 rec
= kzalloc(sizeof(*rec
), GFP_KERNEL
);
557 reada_extent_put(fs_info
, re
);
562 rec
->generation
= generation
;
563 atomic_inc(&rc
->elems
);
565 spin_lock(&re
->lock
);
566 list_add_tail(&rec
->list
, &re
->extctl
);
567 spin_unlock(&re
->lock
);
569 /* leave the ref on the extent */
575 * called with fs_info->reada_lock held
577 static void reada_peer_zones_set_lock(struct reada_zone
*zone
, int lock
)
580 unsigned long index
= zone
->end
>> PAGE_SHIFT
;
582 for (i
= 0; i
< zone
->ndevs
; ++i
) {
583 struct reada_zone
*peer
;
584 peer
= radix_tree_lookup(&zone
->devs
[i
]->reada_zones
, index
);
585 if (peer
&& peer
->device
!= zone
->device
)
591 * called with fs_info->reada_lock held
593 static int reada_pick_zone(struct btrfs_device
*dev
)
595 struct reada_zone
*top_zone
= NULL
;
596 struct reada_zone
*top_locked_zone
= NULL
;
598 u64 top_locked_elems
= 0;
599 unsigned long index
= 0;
602 if (dev
->reada_curr_zone
) {
603 reada_peer_zones_set_lock(dev
->reada_curr_zone
, 0);
604 kref_put(&dev
->reada_curr_zone
->refcnt
, reada_zone_release
);
605 dev
->reada_curr_zone
= NULL
;
607 /* pick the zone with the most elements */
609 struct reada_zone
*zone
;
611 ret
= radix_tree_gang_lookup(&dev
->reada_zones
,
612 (void **)&zone
, index
, 1);
615 index
= (zone
->end
>> PAGE_SHIFT
) + 1;
617 if (zone
->elems
> top_locked_elems
) {
618 top_locked_elems
= zone
->elems
;
619 top_locked_zone
= zone
;
622 if (zone
->elems
> top_elems
) {
623 top_elems
= zone
->elems
;
629 dev
->reada_curr_zone
= top_zone
;
630 else if (top_locked_zone
)
631 dev
->reada_curr_zone
= top_locked_zone
;
635 dev
->reada_next
= dev
->reada_curr_zone
->start
;
636 kref_get(&dev
->reada_curr_zone
->refcnt
);
637 reada_peer_zones_set_lock(dev
->reada_curr_zone
, 1);
642 static int reada_tree_block_flagged(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
643 int mirror_num
, struct extent_buffer
**eb
)
645 struct extent_buffer
*buf
= NULL
;
648 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
652 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
654 ret
= read_extent_buffer_pages(buf
, WAIT_PAGE_LOCK
, mirror_num
);
656 free_extent_buffer_stale(buf
);
660 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
661 free_extent_buffer_stale(buf
);
663 } else if (extent_buffer_uptodate(buf
)) {
666 free_extent_buffer(buf
);
671 static int reada_start_machine_dev(struct btrfs_device
*dev
)
673 struct btrfs_fs_info
*fs_info
= dev
->fs_info
;
674 struct reada_extent
*re
= NULL
;
676 struct extent_buffer
*eb
= NULL
;
681 spin_lock(&fs_info
->reada_lock
);
682 if (dev
->reada_curr_zone
== NULL
) {
683 ret
= reada_pick_zone(dev
);
685 spin_unlock(&fs_info
->reada_lock
);
690 * FIXME currently we issue the reads one extent at a time. If we have
691 * a contiguous block of extents, we could also coagulate them or use
692 * plugging to speed things up
694 ret
= radix_tree_gang_lookup(&dev
->reada_extents
, (void **)&re
,
695 dev
->reada_next
>> PAGE_SHIFT
, 1);
696 if (ret
== 0 || re
->logical
> dev
->reada_curr_zone
->end
) {
697 ret
= reada_pick_zone(dev
);
699 spin_unlock(&fs_info
->reada_lock
);
703 ret
= radix_tree_gang_lookup(&dev
->reada_extents
, (void **)&re
,
704 dev
->reada_next
>> PAGE_SHIFT
, 1);
707 spin_unlock(&fs_info
->reada_lock
);
710 dev
->reada_next
= re
->logical
+ fs_info
->nodesize
;
713 spin_unlock(&fs_info
->reada_lock
);
715 spin_lock(&re
->lock
);
716 if (re
->scheduled
|| list_empty(&re
->extctl
)) {
717 spin_unlock(&re
->lock
);
718 reada_extent_put(fs_info
, re
);
722 spin_unlock(&re
->lock
);
727 for (i
= 0; i
< re
->nzones
; ++i
) {
728 if (re
->zones
[i
]->device
== dev
) {
733 logical
= re
->logical
;
735 atomic_inc(&dev
->reada_in_flight
);
736 ret
= reada_tree_block_flagged(fs_info
, logical
, mirror_num
, &eb
);
738 __readahead_hook(fs_info
, re
, NULL
, ret
);
740 __readahead_hook(fs_info
, re
, eb
, ret
);
743 free_extent_buffer(eb
);
745 atomic_dec(&dev
->reada_in_flight
);
746 reada_extent_put(fs_info
, re
);
752 static void reada_start_machine_worker(struct btrfs_work
*work
)
754 struct reada_machine_work
*rmw
;
757 rmw
= container_of(work
, struct reada_machine_work
, work
);
759 old_ioprio
= IOPRIO_PRIO_VALUE(task_nice_ioclass(current
),
760 task_nice_ioprio(current
));
761 set_task_ioprio(current
, BTRFS_IOPRIO_READA
);
762 __reada_start_machine(rmw
->fs_info
);
763 set_task_ioprio(current
, old_ioprio
);
765 atomic_dec(&rmw
->fs_info
->reada_works_cnt
);
770 static void __reada_start_machine(struct btrfs_fs_info
*fs_info
)
772 struct btrfs_device
*device
;
773 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
781 mutex_lock(&fs_devices
->device_list_mutex
);
782 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
783 if (atomic_read(&device
->reada_in_flight
) <
785 enqueued
+= reada_start_machine_dev(device
);
787 mutex_unlock(&fs_devices
->device_list_mutex
);
789 } while (enqueued
&& total
< 10000);
790 if (fs_devices
->seed
) {
791 fs_devices
= fs_devices
->seed
;
799 * If everything is already in the cache, this is effectively single
800 * threaded. To a) not hold the caller for too long and b) to utilize
801 * more cores, we broke the loop above after 10000 iterations and now
802 * enqueue to workers to finish it. This will distribute the load to
805 for (i
= 0; i
< 2; ++i
) {
806 reada_start_machine(fs_info
);
807 if (atomic_read(&fs_info
->reada_works_cnt
) >
808 BTRFS_MAX_MIRRORS
* 2)
813 static void reada_start_machine(struct btrfs_fs_info
*fs_info
)
815 struct reada_machine_work
*rmw
;
817 rmw
= kzalloc(sizeof(*rmw
), GFP_KERNEL
);
819 /* FIXME we cannot handle this properly right now */
822 btrfs_init_work(&rmw
->work
, reada_start_machine_worker
, NULL
, NULL
);
823 rmw
->fs_info
= fs_info
;
825 btrfs_queue_work(fs_info
->readahead_workers
, &rmw
->work
);
826 atomic_inc(&fs_info
->reada_works_cnt
);
830 static void dump_devs(struct btrfs_fs_info
*fs_info
, int all
)
832 struct btrfs_device
*device
;
833 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
840 spin_lock(&fs_info
->reada_lock
);
841 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
842 btrfs_debug(fs_info
, "dev %lld has %d in flight", device
->devid
,
843 atomic_read(&device
->reada_in_flight
));
846 struct reada_zone
*zone
;
847 ret
= radix_tree_gang_lookup(&device
->reada_zones
,
848 (void **)&zone
, index
, 1);
851 pr_debug(" zone %llu-%llu elems %llu locked %d devs",
852 zone
->start
, zone
->end
, zone
->elems
,
854 for (j
= 0; j
< zone
->ndevs
; ++j
) {
856 zone
->devs
[j
]->devid
);
858 if (device
->reada_curr_zone
== zone
)
859 pr_cont(" curr off %llu",
860 device
->reada_next
- zone
->start
);
862 index
= (zone
->end
>> PAGE_SHIFT
) + 1;
867 struct reada_extent
*re
= NULL
;
869 ret
= radix_tree_gang_lookup(&device
->reada_extents
,
870 (void **)&re
, index
, 1);
873 pr_debug(" re: logical %llu size %u empty %d scheduled %d",
874 re
->logical
, fs_info
->nodesize
,
875 list_empty(&re
->extctl
), re
->scheduled
);
877 for (i
= 0; i
< re
->nzones
; ++i
) {
878 pr_cont(" zone %llu-%llu devs",
881 for (j
= 0; j
< re
->zones
[i
]->ndevs
; ++j
) {
883 re
->zones
[i
]->devs
[j
]->devid
);
887 index
= (re
->logical
>> PAGE_SHIFT
) + 1;
896 struct reada_extent
*re
= NULL
;
898 ret
= radix_tree_gang_lookup(&fs_info
->reada_tree
, (void **)&re
,
902 if (!re
->scheduled
) {
903 index
= (re
->logical
>> PAGE_SHIFT
) + 1;
906 pr_debug("re: logical %llu size %u list empty %d scheduled %d",
907 re
->logical
, fs_info
->nodesize
,
908 list_empty(&re
->extctl
), re
->scheduled
);
909 for (i
= 0; i
< re
->nzones
; ++i
) {
910 pr_cont(" zone %llu-%llu devs",
913 for (j
= 0; j
< re
->zones
[i
]->ndevs
; ++j
) {
915 re
->zones
[i
]->devs
[j
]->devid
);
919 index
= (re
->logical
>> PAGE_SHIFT
) + 1;
921 spin_unlock(&fs_info
->reada_lock
);
928 struct reada_control
*btrfs_reada_add(struct btrfs_root
*root
,
929 struct btrfs_key
*key_start
, struct btrfs_key
*key_end
)
931 struct reada_control
*rc
;
935 struct extent_buffer
*node
;
936 static struct btrfs_key max_key
= {
942 rc
= kzalloc(sizeof(*rc
), GFP_KERNEL
);
944 return ERR_PTR(-ENOMEM
);
946 rc
->fs_info
= root
->fs_info
;
947 rc
->key_start
= *key_start
;
948 rc
->key_end
= *key_end
;
949 atomic_set(&rc
->elems
, 0);
950 init_waitqueue_head(&rc
->wait
);
951 kref_init(&rc
->refcnt
);
952 kref_get(&rc
->refcnt
); /* one ref for having elements */
954 node
= btrfs_root_node(root
);
956 generation
= btrfs_header_generation(node
);
957 free_extent_buffer(node
);
959 ret
= reada_add_block(rc
, start
, &max_key
, generation
);
965 reada_start_machine(root
->fs_info
);
971 int btrfs_reada_wait(void *handle
)
973 struct reada_control
*rc
= handle
;
974 struct btrfs_fs_info
*fs_info
= rc
->fs_info
;
976 while (atomic_read(&rc
->elems
)) {
977 if (!atomic_read(&fs_info
->reada_works_cnt
))
978 reada_start_machine(fs_info
);
979 wait_event_timeout(rc
->wait
, atomic_read(&rc
->elems
) == 0,
981 dump_devs(fs_info
, atomic_read(&rc
->elems
) < 10 ? 1 : 0);
984 dump_devs(fs_info
, atomic_read(&rc
->elems
) < 10 ? 1 : 0);
986 kref_put(&rc
->refcnt
, reada_control_release
);
991 int btrfs_reada_wait(void *handle
)
993 struct reada_control
*rc
= handle
;
994 struct btrfs_fs_info
*fs_info
= rc
->fs_info
;
996 while (atomic_read(&rc
->elems
)) {
997 if (!atomic_read(&fs_info
->reada_works_cnt
))
998 reada_start_machine(fs_info
);
999 wait_event_timeout(rc
->wait
, atomic_read(&rc
->elems
) == 0,
1003 kref_put(&rc
->refcnt
, reada_control_release
);
1009 void btrfs_reada_detach(void *handle
)
1011 struct reada_control
*rc
= handle
;
1013 kref_put(&rc
->refcnt
, reada_control_release
);