2 * random.c -- A strong random number generator
4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
46 * (now, with legal B.S. out of the way.....)
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
101 * Exported interfaces ---- output
102 * ===============================
104 * There are four exported interfaces; two for use within the kernel,
105 * and two or use from userspace.
107 * Exported interfaces ---- userspace output
108 * -----------------------------------------
110 * The userspace interfaces are two character devices /dev/random and
111 * /dev/urandom. /dev/random is suitable for use when very high
112 * quality randomness is desired (for example, for key generation or
113 * one-time pads), as it will only return a maximum of the number of
114 * bits of randomness (as estimated by the random number generator)
115 * contained in the entropy pool.
117 * The /dev/urandom device does not have this limit, and will return
118 * as many bytes as are requested. As more and more random bytes are
119 * requested without giving time for the entropy pool to recharge,
120 * this will result in random numbers that are merely cryptographically
121 * strong. For many applications, however, this is acceptable.
123 * Exported interfaces ---- kernel output
124 * --------------------------------------
126 * The primary kernel interface is
128 * void get_random_bytes(void *buf, int nbytes);
130 * This interface will return the requested number of random bytes,
131 * and place it in the requested buffer. This is equivalent to a
132 * read from /dev/urandom.
134 * For less critical applications, there are the functions:
136 * u32 get_random_u32()
137 * u64 get_random_u64()
138 * unsigned int get_random_int()
139 * unsigned long get_random_long()
141 * These are produced by a cryptographic RNG seeded from get_random_bytes,
142 * and so do not deplete the entropy pool as much. These are recommended
143 * for most in-kernel operations *if the result is going to be stored in
146 * Specifically, the get_random_int() family do not attempt to do
147 * "anti-backtracking". If you capture the state of the kernel (e.g.
148 * by snapshotting the VM), you can figure out previous get_random_int()
149 * return values. But if the value is stored in the kernel anyway,
150 * this is not a problem.
152 * It *is* safe to expose get_random_int() output to attackers (e.g. as
153 * network cookies); given outputs 1..n, it's not feasible to predict
154 * outputs 0 or n+1. The only concern is an attacker who breaks into
155 * the kernel later; the get_random_int() engine is not reseeded as
156 * often as the get_random_bytes() one.
158 * get_random_bytes() is needed for keys that need to stay secret after
159 * they are erased from the kernel. For example, any key that will
160 * be wrapped and stored encrypted. And session encryption keys: we'd
161 * like to know that after the session is closed and the keys erased,
162 * the plaintext is unrecoverable to someone who recorded the ciphertext.
164 * But for network ports/cookies, stack canaries, PRNG seeds, address
165 * space layout randomization, session *authentication* keys, or other
166 * applications where the sensitive data is stored in the kernel in
167 * plaintext for as long as it's sensitive, the get_random_int() family
170 * Consider ASLR. We want to keep the address space secret from an
171 * outside attacker while the process is running, but once the address
172 * space is torn down, it's of no use to an attacker any more. And it's
173 * stored in kernel data structures as long as it's alive, so worrying
174 * about an attacker's ability to extrapolate it from the get_random_int()
177 * Even some cryptographic keys are safe to generate with get_random_int().
178 * In particular, keys for SipHash are generally fine. Here, knowledge
179 * of the key authorizes you to do something to a kernel object (inject
180 * packets to a network connection, or flood a hash table), and the
181 * key is stored with the object being protected. Once it goes away,
182 * we no longer care if anyone knows the key.
187 * For even weaker applications, see the pseudorandom generator
188 * prandom_u32(), prandom_max(), and prandom_bytes(). If the random
189 * numbers aren't security-critical at all, these are *far* cheaper.
190 * Useful for self-tests, random error simulation, randomized backoffs,
191 * and any other application where you trust that nobody is trying to
192 * maliciously mess with you by guessing the "random" numbers.
194 * Exported interfaces ---- input
195 * ==============================
197 * The current exported interfaces for gathering environmental noise
198 * from the devices are:
200 * void add_device_randomness(const void *buf, unsigned int size);
201 * void add_input_randomness(unsigned int type, unsigned int code,
202 * unsigned int value);
203 * void add_interrupt_randomness(int irq, int irq_flags);
204 * void add_disk_randomness(struct gendisk *disk);
206 * add_device_randomness() is for adding data to the random pool that
207 * is likely to differ between two devices (or possibly even per boot).
208 * This would be things like MAC addresses or serial numbers, or the
209 * read-out of the RTC. This does *not* add any actual entropy to the
210 * pool, but it initializes the pool to different values for devices
211 * that might otherwise be identical and have very little entropy
212 * available to them (particularly common in the embedded world).
214 * add_input_randomness() uses the input layer interrupt timing, as well as
215 * the event type information from the hardware.
217 * add_interrupt_randomness() uses the interrupt timing as random
218 * inputs to the entropy pool. Using the cycle counters and the irq source
219 * as inputs, it feeds the randomness roughly once a second.
221 * add_disk_randomness() uses what amounts to the seek time of block
222 * layer request events, on a per-disk_devt basis, as input to the
223 * entropy pool. Note that high-speed solid state drives with very low
224 * seek times do not make for good sources of entropy, as their seek
225 * times are usually fairly consistent.
227 * All of these routines try to estimate how many bits of randomness a
228 * particular randomness source. They do this by keeping track of the
229 * first and second order deltas of the event timings.
231 * Ensuring unpredictability at system startup
232 * ============================================
234 * When any operating system starts up, it will go through a sequence
235 * of actions that are fairly predictable by an adversary, especially
236 * if the start-up does not involve interaction with a human operator.
237 * This reduces the actual number of bits of unpredictability in the
238 * entropy pool below the value in entropy_count. In order to
239 * counteract this effect, it helps to carry information in the
240 * entropy pool across shut-downs and start-ups. To do this, put the
241 * following lines an appropriate script which is run during the boot
244 * echo "Initializing random number generator..."
245 * random_seed=/var/run/random-seed
246 * # Carry a random seed from start-up to start-up
247 * # Load and then save the whole entropy pool
248 * if [ -f $random_seed ]; then
249 * cat $random_seed >/dev/urandom
253 * chmod 600 $random_seed
254 * dd if=/dev/urandom of=$random_seed count=1 bs=512
256 * and the following lines in an appropriate script which is run as
257 * the system is shutdown:
259 * # Carry a random seed from shut-down to start-up
260 * # Save the whole entropy pool
261 * echo "Saving random seed..."
262 * random_seed=/var/run/random-seed
264 * chmod 600 $random_seed
265 * dd if=/dev/urandom of=$random_seed count=1 bs=512
267 * For example, on most modern systems using the System V init
268 * scripts, such code fragments would be found in
269 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
270 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
272 * Effectively, these commands cause the contents of the entropy pool
273 * to be saved at shut-down time and reloaded into the entropy pool at
274 * start-up. (The 'dd' in the addition to the bootup script is to
275 * make sure that /etc/random-seed is different for every start-up,
276 * even if the system crashes without executing rc.0.) Even with
277 * complete knowledge of the start-up activities, predicting the state
278 * of the entropy pool requires knowledge of the previous history of
281 * Configuring the /dev/random driver under Linux
282 * ==============================================
284 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
285 * the /dev/mem major number (#1). So if your system does not have
286 * /dev/random and /dev/urandom created already, they can be created
287 * by using the commands:
289 * mknod /dev/random c 1 8
290 * mknod /dev/urandom c 1 9
295 * Ideas for constructing this random number generator were derived
296 * from Pretty Good Privacy's random number generator, and from private
297 * discussions with Phil Karn. Colin Plumb provided a faster random
298 * number generator, which speed up the mixing function of the entropy
299 * pool, taken from PGPfone. Dale Worley has also contributed many
300 * useful ideas and suggestions to improve this driver.
302 * Any flaws in the design are solely my responsibility, and should
303 * not be attributed to the Phil, Colin, or any of authors of PGP.
305 * Further background information on this topic may be obtained from
306 * RFC 1750, "Randomness Recommendations for Security", by Donald
307 * Eastlake, Steve Crocker, and Jeff Schiller.
310 #include <linux/utsname.h>
311 #include <linux/module.h>
312 #include <linux/kernel.h>
313 #include <linux/major.h>
314 #include <linux/string.h>
315 #include <linux/fcntl.h>
316 #include <linux/slab.h>
317 #include <linux/random.h>
318 #include <linux/poll.h>
319 #include <linux/init.h>
320 #include <linux/fs.h>
321 #include <linux/genhd.h>
322 #include <linux/interrupt.h>
323 #include <linux/mm.h>
324 #include <linux/nodemask.h>
325 #include <linux/spinlock.h>
326 #include <linux/kthread.h>
327 #include <linux/percpu.h>
328 #include <linux/cryptohash.h>
329 #include <linux/fips.h>
330 #include <linux/ptrace.h>
331 #include <linux/workqueue.h>
332 #include <linux/irq.h>
333 #include <linux/ratelimit.h>
334 #include <linux/syscalls.h>
335 #include <linux/completion.h>
336 #include <linux/uuid.h>
337 #include <crypto/chacha.h>
339 #include <asm/processor.h>
340 #include <linux/uaccess.h>
342 #include <asm/irq_regs.h>
345 #define CREATE_TRACE_POINTS
346 #include <trace/events/random.h>
348 /* #define ADD_INTERRUPT_BENCH */
351 * Configuration information
353 #define INPUT_POOL_SHIFT 12
354 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
355 #define OUTPUT_POOL_SHIFT 10
356 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
357 #define SEC_XFER_SIZE 512
358 #define EXTRACT_SIZE 10
361 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
364 * To allow fractional bits to be tracked, the entropy_count field is
365 * denominated in units of 1/8th bits.
367 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
368 * credit_entropy_bits() needs to be 64 bits wide.
370 #define ENTROPY_SHIFT 3
371 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
374 * The minimum number of bits of entropy before we wake up a read on
375 * /dev/random. Should be enough to do a significant reseed.
377 static int random_read_wakeup_bits
= 64;
380 * If the entropy count falls under this number of bits, then we
381 * should wake up processes which are selecting or polling on write
382 * access to /dev/random.
384 static int random_write_wakeup_bits
= 28 * OUTPUT_POOL_WORDS
;
387 * Originally, we used a primitive polynomial of degree .poolwords
388 * over GF(2). The taps for various sizes are defined below. They
389 * were chosen to be evenly spaced except for the last tap, which is 1
390 * to get the twisting happening as fast as possible.
392 * For the purposes of better mixing, we use the CRC-32 polynomial as
393 * well to make a (modified) twisted Generalized Feedback Shift
394 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
395 * generators. ACM Transactions on Modeling and Computer Simulation
396 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
397 * GFSR generators II. ACM Transactions on Modeling and Computer
398 * Simulation 4:254-266)
400 * Thanks to Colin Plumb for suggesting this.
402 * The mixing operation is much less sensitive than the output hash,
403 * where we use SHA-1. All that we want of mixing operation is that
404 * it be a good non-cryptographic hash; i.e. it not produce collisions
405 * when fed "random" data of the sort we expect to see. As long as
406 * the pool state differs for different inputs, we have preserved the
407 * input entropy and done a good job. The fact that an intelligent
408 * attacker can construct inputs that will produce controlled
409 * alterations to the pool's state is not important because we don't
410 * consider such inputs to contribute any randomness. The only
411 * property we need with respect to them is that the attacker can't
412 * increase his/her knowledge of the pool's state. Since all
413 * additions are reversible (knowing the final state and the input,
414 * you can reconstruct the initial state), if an attacker has any
415 * uncertainty about the initial state, he/she can only shuffle that
416 * uncertainty about, but never cause any collisions (which would
417 * decrease the uncertainty).
419 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
420 * Videau in their paper, "The Linux Pseudorandom Number Generator
421 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
422 * paper, they point out that we are not using a true Twisted GFSR,
423 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
424 * is, with only three taps, instead of the six that we are using).
425 * As a result, the resulting polynomial is neither primitive nor
426 * irreducible, and hence does not have a maximal period over
427 * GF(2**32). They suggest a slight change to the generator
428 * polynomial which improves the resulting TGFSR polynomial to be
429 * irreducible, which we have made here.
431 static const struct poolinfo
{
432 int poolbitshift
, poolwords
, poolbytes
, poolfracbits
;
433 #define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
434 int tap1
, tap2
, tap3
, tap4
, tap5
;
435 } poolinfo_table
[] = {
436 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
437 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
438 { S(128), 104, 76, 51, 25, 1 },
439 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
440 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
441 { S(32), 26, 19, 14, 7, 1 },
443 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
444 { S(2048), 1638, 1231, 819, 411, 1 },
446 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
447 { S(1024), 817, 615, 412, 204, 1 },
449 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
450 { S(1024), 819, 616, 410, 207, 2 },
452 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
453 { S(512), 411, 308, 208, 104, 1 },
455 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
456 { S(512), 409, 307, 206, 102, 2 },
457 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
458 { S(512), 409, 309, 205, 103, 2 },
460 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
461 { S(256), 205, 155, 101, 52, 1 },
463 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
464 { S(128), 103, 78, 51, 27, 2 },
466 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
467 { S(64), 52, 39, 26, 14, 1 },
472 * Static global variables
474 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait
);
475 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait
);
476 static struct fasync_struct
*fasync
;
478 static DEFINE_SPINLOCK(random_ready_list_lock
);
479 static LIST_HEAD(random_ready_list
);
483 unsigned long init_time
;
487 static struct crng_state primary_crng
= {
488 .lock
= __SPIN_LOCK_UNLOCKED(primary_crng
.lock
),
492 * crng_init = 0 --> Uninitialized
494 * 2 --> Initialized from input_pool
496 * crng_init is protected by primary_crng->lock, and only increases
497 * its value (from 0->1->2).
499 static int crng_init
= 0;
500 #define crng_ready() (likely(crng_init > 1))
501 static int crng_init_cnt
= 0;
502 static unsigned long crng_global_init_time
= 0;
503 #define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
504 static void _extract_crng(struct crng_state
*crng
, __u8 out
[CHACHA_BLOCK_SIZE
]);
505 static void _crng_backtrack_protect(struct crng_state
*crng
,
506 __u8 tmp
[CHACHA_BLOCK_SIZE
], int used
);
507 static void process_random_ready_list(void);
508 static void _get_random_bytes(void *buf
, int nbytes
);
510 static struct ratelimit_state unseeded_warning
=
511 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ
, 3);
512 static struct ratelimit_state urandom_warning
=
513 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ
, 3);
515 static int ratelimit_disable __read_mostly
;
517 module_param_named(ratelimit_disable
, ratelimit_disable
, int, 0644);
518 MODULE_PARM_DESC(ratelimit_disable
, "Disable random ratelimit suppression");
520 /**********************************************************************
522 * OS independent entropy store. Here are the functions which handle
523 * storing entropy in an entropy pool.
525 **********************************************************************/
527 struct entropy_store
;
528 struct entropy_store
{
529 /* read-only data: */
530 const struct poolinfo
*poolinfo
;
533 struct entropy_store
*pull
;
534 struct work_struct push_work
;
536 /* read-write data: */
537 unsigned long last_pulled
;
539 unsigned short add_ptr
;
540 unsigned short input_rotate
;
542 unsigned int initialized
:1;
543 unsigned int last_data_init
:1;
544 __u8 last_data
[EXTRACT_SIZE
];
547 static ssize_t
extract_entropy(struct entropy_store
*r
, void *buf
,
548 size_t nbytes
, int min
, int rsvd
);
549 static ssize_t
_extract_entropy(struct entropy_store
*r
, void *buf
,
550 size_t nbytes
, int fips
);
552 static void crng_reseed(struct crng_state
*crng
, struct entropy_store
*r
);
553 static void push_to_pool(struct work_struct
*work
);
554 static __u32 input_pool_data
[INPUT_POOL_WORDS
] __latent_entropy
;
555 static __u32 blocking_pool_data
[OUTPUT_POOL_WORDS
] __latent_entropy
;
557 static struct entropy_store input_pool
= {
558 .poolinfo
= &poolinfo_table
[0],
560 .lock
= __SPIN_LOCK_UNLOCKED(input_pool
.lock
),
561 .pool
= input_pool_data
564 static struct entropy_store blocking_pool
= {
565 .poolinfo
= &poolinfo_table
[1],
568 .lock
= __SPIN_LOCK_UNLOCKED(blocking_pool
.lock
),
569 .pool
= blocking_pool_data
,
570 .push_work
= __WORK_INITIALIZER(blocking_pool
.push_work
,
574 static __u32
const twist_table
[8] = {
575 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
576 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
579 * This function adds bytes into the entropy "pool". It does not
580 * update the entropy estimate. The caller should call
581 * credit_entropy_bits if this is appropriate.
583 * The pool is stirred with a primitive polynomial of the appropriate
584 * degree, and then twisted. We twist by three bits at a time because
585 * it's cheap to do so and helps slightly in the expected case where
586 * the entropy is concentrated in the low-order bits.
588 static void _mix_pool_bytes(struct entropy_store
*r
, const void *in
,
591 unsigned long i
, tap1
, tap2
, tap3
, tap4
, tap5
;
593 int wordmask
= r
->poolinfo
->poolwords
- 1;
594 const char *bytes
= in
;
597 tap1
= r
->poolinfo
->tap1
;
598 tap2
= r
->poolinfo
->tap2
;
599 tap3
= r
->poolinfo
->tap3
;
600 tap4
= r
->poolinfo
->tap4
;
601 tap5
= r
->poolinfo
->tap5
;
603 input_rotate
= r
->input_rotate
;
606 /* mix one byte at a time to simplify size handling and churn faster */
608 w
= rol32(*bytes
++, input_rotate
);
609 i
= (i
- 1) & wordmask
;
611 /* XOR in the various taps */
613 w
^= r
->pool
[(i
+ tap1
) & wordmask
];
614 w
^= r
->pool
[(i
+ tap2
) & wordmask
];
615 w
^= r
->pool
[(i
+ tap3
) & wordmask
];
616 w
^= r
->pool
[(i
+ tap4
) & wordmask
];
617 w
^= r
->pool
[(i
+ tap5
) & wordmask
];
619 /* Mix the result back in with a twist */
620 r
->pool
[i
] = (w
>> 3) ^ twist_table
[w
& 7];
623 * Normally, we add 7 bits of rotation to the pool.
624 * At the beginning of the pool, add an extra 7 bits
625 * rotation, so that successive passes spread the
626 * input bits across the pool evenly.
628 input_rotate
= (input_rotate
+ (i
? 7 : 14)) & 31;
631 r
->input_rotate
= input_rotate
;
635 static void __mix_pool_bytes(struct entropy_store
*r
, const void *in
,
638 trace_mix_pool_bytes_nolock(r
->name
, nbytes
, _RET_IP_
);
639 _mix_pool_bytes(r
, in
, nbytes
);
642 static void mix_pool_bytes(struct entropy_store
*r
, const void *in
,
647 trace_mix_pool_bytes(r
->name
, nbytes
, _RET_IP_
);
648 spin_lock_irqsave(&r
->lock
, flags
);
649 _mix_pool_bytes(r
, in
, nbytes
);
650 spin_unlock_irqrestore(&r
->lock
, flags
);
656 unsigned short reg_idx
;
661 * This is a fast mixing routine used by the interrupt randomness
662 * collector. It's hardcoded for an 128 bit pool and assumes that any
663 * locks that might be needed are taken by the caller.
665 static void fast_mix(struct fast_pool
*f
)
667 __u32 a
= f
->pool
[0], b
= f
->pool
[1];
668 __u32 c
= f
->pool
[2], d
= f
->pool
[3];
671 b
= rol32(b
, 6); d
= rol32(d
, 27);
675 b
= rol32(b
, 16); d
= rol32(d
, 14);
679 b
= rol32(b
, 6); d
= rol32(d
, 27);
683 b
= rol32(b
, 16); d
= rol32(d
, 14);
686 f
->pool
[0] = a
; f
->pool
[1] = b
;
687 f
->pool
[2] = c
; f
->pool
[3] = d
;
691 static void process_random_ready_list(void)
694 struct random_ready_callback
*rdy
, *tmp
;
696 spin_lock_irqsave(&random_ready_list_lock
, flags
);
697 list_for_each_entry_safe(rdy
, tmp
, &random_ready_list
, list
) {
698 struct module
*owner
= rdy
->owner
;
700 list_del_init(&rdy
->list
);
704 spin_unlock_irqrestore(&random_ready_list_lock
, flags
);
708 * Credit (or debit) the entropy store with n bits of entropy.
709 * Use credit_entropy_bits_safe() if the value comes from userspace
710 * or otherwise should be checked for extreme values.
712 static void credit_entropy_bits(struct entropy_store
*r
, int nbits
)
714 int entropy_count
, orig
, has_initialized
= 0;
715 const int pool_size
= r
->poolinfo
->poolfracbits
;
716 int nfrac
= nbits
<< ENTROPY_SHIFT
;
722 entropy_count
= orig
= READ_ONCE(r
->entropy_count
);
725 entropy_count
+= nfrac
;
728 * Credit: we have to account for the possibility of
729 * overwriting already present entropy. Even in the
730 * ideal case of pure Shannon entropy, new contributions
731 * approach the full value asymptotically:
733 * entropy <- entropy + (pool_size - entropy) *
734 * (1 - exp(-add_entropy/pool_size))
736 * For add_entropy <= pool_size/2 then
737 * (1 - exp(-add_entropy/pool_size)) >=
738 * (add_entropy/pool_size)*0.7869...
739 * so we can approximate the exponential with
740 * 3/4*add_entropy/pool_size and still be on the
741 * safe side by adding at most pool_size/2 at a time.
743 * The use of pool_size-2 in the while statement is to
744 * prevent rounding artifacts from making the loop
745 * arbitrarily long; this limits the loop to log2(pool_size)*2
746 * turns no matter how large nbits is.
749 const int s
= r
->poolinfo
->poolbitshift
+ ENTROPY_SHIFT
+ 2;
750 /* The +2 corresponds to the /4 in the denominator */
753 unsigned int anfrac
= min(pnfrac
, pool_size
/2);
755 ((pool_size
- entropy_count
)*anfrac
*3) >> s
;
757 entropy_count
+= add
;
759 } while (unlikely(entropy_count
< pool_size
-2 && pnfrac
));
762 if (unlikely(entropy_count
< 0)) {
763 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
764 r
->name
, entropy_count
);
767 } else if (entropy_count
> pool_size
)
768 entropy_count
= pool_size
;
769 if ((r
== &blocking_pool
) && !r
->initialized
&&
770 (entropy_count
>> ENTROPY_SHIFT
) > 128)
772 if (cmpxchg(&r
->entropy_count
, orig
, entropy_count
) != orig
)
775 if (has_initialized
) {
777 wake_up_interruptible(&random_read_wait
);
778 kill_fasync(&fasync
, SIGIO
, POLL_IN
);
781 trace_credit_entropy_bits(r
->name
, nbits
,
782 entropy_count
>> ENTROPY_SHIFT
, _RET_IP_
);
784 if (r
== &input_pool
) {
785 int entropy_bits
= entropy_count
>> ENTROPY_SHIFT
;
786 struct entropy_store
*other
= &blocking_pool
;
789 if (entropy_bits
< 128)
791 crng_reseed(&primary_crng
, r
);
792 entropy_bits
= r
->entropy_count
>> ENTROPY_SHIFT
;
795 /* initialize the blocking pool if necessary */
796 if (entropy_bits
>= random_read_wakeup_bits
&&
797 !other
->initialized
) {
798 schedule_work(&other
->push_work
);
802 /* should we wake readers? */
803 if (entropy_bits
>= random_read_wakeup_bits
&&
804 wq_has_sleeper(&random_read_wait
)) {
805 wake_up_interruptible(&random_read_wait
);
806 kill_fasync(&fasync
, SIGIO
, POLL_IN
);
808 /* If the input pool is getting full, and the blocking
809 * pool has room, send some entropy to the blocking
812 if (!work_pending(&other
->push_work
) &&
813 (ENTROPY_BITS(r
) > 6 * r
->poolinfo
->poolbytes
) &&
814 (ENTROPY_BITS(other
) <= 6 * other
->poolinfo
->poolbytes
))
815 schedule_work(&other
->push_work
);
819 static int credit_entropy_bits_safe(struct entropy_store
*r
, int nbits
)
821 const int nbits_max
= r
->poolinfo
->poolwords
* 32;
826 /* Cap the value to avoid overflows */
827 nbits
= min(nbits
, nbits_max
);
829 credit_entropy_bits(r
, nbits
);
833 /*********************************************************************
835 * CRNG using CHACHA20
837 *********************************************************************/
839 #define CRNG_RESEED_INTERVAL (300*HZ)
841 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait
);
845 * Hack to deal with crazy userspace progams when they are all trying
846 * to access /dev/urandom in parallel. The programs are almost
847 * certainly doing something terribly wrong, but we'll work around
848 * their brain damage.
850 static struct crng_state
**crng_node_pool __read_mostly
;
853 static void invalidate_batched_entropy(void);
854 static void numa_crng_init(void);
856 static bool trust_cpu __ro_after_init
= IS_ENABLED(CONFIG_RANDOM_TRUST_CPU
);
857 static int __init
parse_trust_cpu(char *arg
)
859 return kstrtobool(arg
, &trust_cpu
);
861 early_param("random.trust_cpu", parse_trust_cpu
);
863 static void crng_initialize(struct crng_state
*crng
)
869 memcpy(&crng
->state
[0], "expand 32-byte k", 16);
870 if (crng
== &primary_crng
)
871 _extract_entropy(&input_pool
, &crng
->state
[4],
872 sizeof(__u32
) * 12, 0);
874 _get_random_bytes(&crng
->state
[4], sizeof(__u32
) * 12);
875 for (i
= 4; i
< 16; i
++) {
876 if (!arch_get_random_seed_long(&rv
) &&
877 !arch_get_random_long(&rv
)) {
878 rv
= random_get_entropy();
881 crng
->state
[i
] ^= rv
;
883 if (trust_cpu
&& arch_init
&& crng
== &primary_crng
) {
884 invalidate_batched_entropy();
887 pr_notice("random: crng done (trusting CPU's manufacturer)\n");
889 crng
->init_time
= jiffies
- CRNG_RESEED_INTERVAL
- 1;
893 static void do_numa_crng_init(struct work_struct
*work
)
896 struct crng_state
*crng
;
897 struct crng_state
**pool
;
899 pool
= kcalloc(nr_node_ids
, sizeof(*pool
), GFP_KERNEL
|__GFP_NOFAIL
);
900 for_each_online_node(i
) {
901 crng
= kmalloc_node(sizeof(struct crng_state
),
902 GFP_KERNEL
| __GFP_NOFAIL
, i
);
903 spin_lock_init(&crng
->lock
);
904 crng_initialize(crng
);
908 if (cmpxchg(&crng_node_pool
, NULL
, pool
)) {
915 static DECLARE_WORK(numa_crng_init_work
, do_numa_crng_init
);
917 static void numa_crng_init(void)
919 schedule_work(&numa_crng_init_work
);
922 static void numa_crng_init(void) {}
926 * crng_fast_load() can be called by code in the interrupt service
927 * path. So we can't afford to dilly-dally.
929 static int crng_fast_load(const char *cp
, size_t len
)
934 if (!spin_trylock_irqsave(&primary_crng
.lock
, flags
))
936 if (crng_init
!= 0) {
937 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
940 p
= (unsigned char *) &primary_crng
.state
[4];
941 while (len
> 0 && crng_init_cnt
< CRNG_INIT_CNT_THRESH
) {
942 p
[crng_init_cnt
% CHACHA_KEY_SIZE
] ^= *cp
;
943 cp
++; crng_init_cnt
++; len
--;
945 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
946 if (crng_init_cnt
>= CRNG_INIT_CNT_THRESH
) {
947 invalidate_batched_entropy();
949 wake_up_interruptible(&crng_init_wait
);
950 pr_notice("random: fast init done\n");
956 * crng_slow_load() is called by add_device_randomness, which has two
957 * attributes. (1) We can't trust the buffer passed to it is
958 * guaranteed to be unpredictable (so it might not have any entropy at
959 * all), and (2) it doesn't have the performance constraints of
962 * So we do something more comprehensive which is guaranteed to touch
963 * all of the primary_crng's state, and which uses a LFSR with a
964 * period of 255 as part of the mixing algorithm. Finally, we do
965 * *not* advance crng_init_cnt since buffer we may get may be something
966 * like a fixed DMI table (for example), which might very well be
967 * unique to the machine, but is otherwise unvarying.
969 static int crng_slow_load(const char *cp
, size_t len
)
972 static unsigned char lfsr
= 1;
974 unsigned i
, max
= CHACHA_KEY_SIZE
;
975 const char * src_buf
= cp
;
976 char * dest_buf
= (char *) &primary_crng
.state
[4];
978 if (!spin_trylock_irqsave(&primary_crng
.lock
, flags
))
980 if (crng_init
!= 0) {
981 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
987 for (i
= 0; i
< max
; i
++) {
992 tmp
= dest_buf
[i
% CHACHA_KEY_SIZE
];
993 dest_buf
[i
% CHACHA_KEY_SIZE
] ^= src_buf
[i
% len
] ^ lfsr
;
994 lfsr
+= (tmp
<< 3) | (tmp
>> 5);
996 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
1000 static void crng_reseed(struct crng_state
*crng
, struct entropy_store
*r
)
1002 unsigned long flags
;
1005 __u8 block
[CHACHA_BLOCK_SIZE
];
1010 num
= extract_entropy(r
, &buf
, 32, 16, 0);
1014 _extract_crng(&primary_crng
, buf
.block
);
1015 _crng_backtrack_protect(&primary_crng
, buf
.block
,
1018 spin_lock_irqsave(&crng
->lock
, flags
);
1019 for (i
= 0; i
< 8; i
++) {
1021 if (!arch_get_random_seed_long(&rv
) &&
1022 !arch_get_random_long(&rv
))
1023 rv
= random_get_entropy();
1024 crng
->state
[i
+4] ^= buf
.key
[i
] ^ rv
;
1026 memzero_explicit(&buf
, sizeof(buf
));
1027 crng
->init_time
= jiffies
;
1028 spin_unlock_irqrestore(&crng
->lock
, flags
);
1029 if (crng
== &primary_crng
&& crng_init
< 2) {
1030 invalidate_batched_entropy();
1033 process_random_ready_list();
1034 wake_up_interruptible(&crng_init_wait
);
1035 pr_notice("random: crng init done\n");
1036 if (unseeded_warning
.missed
) {
1037 pr_notice("random: %d get_random_xx warning(s) missed "
1038 "due to ratelimiting\n",
1039 unseeded_warning
.missed
);
1040 unseeded_warning
.missed
= 0;
1042 if (urandom_warning
.missed
) {
1043 pr_notice("random: %d urandom warning(s) missed "
1044 "due to ratelimiting\n",
1045 urandom_warning
.missed
);
1046 urandom_warning
.missed
= 0;
1051 static void _extract_crng(struct crng_state
*crng
,
1052 __u8 out
[CHACHA_BLOCK_SIZE
])
1054 unsigned long v
, flags
;
1057 (time_after(crng_global_init_time
, crng
->init_time
) ||
1058 time_after(jiffies
, crng
->init_time
+ CRNG_RESEED_INTERVAL
)))
1059 crng_reseed(crng
, crng
== &primary_crng
? &input_pool
: NULL
);
1060 spin_lock_irqsave(&crng
->lock
, flags
);
1061 if (arch_get_random_long(&v
))
1062 crng
->state
[14] ^= v
;
1063 chacha20_block(&crng
->state
[0], out
);
1064 if (crng
->state
[12] == 0)
1066 spin_unlock_irqrestore(&crng
->lock
, flags
);
1069 static void extract_crng(__u8 out
[CHACHA_BLOCK_SIZE
])
1071 struct crng_state
*crng
= NULL
;
1075 crng
= crng_node_pool
[numa_node_id()];
1078 crng
= &primary_crng
;
1079 _extract_crng(crng
, out
);
1083 * Use the leftover bytes from the CRNG block output (if there is
1084 * enough) to mutate the CRNG key to provide backtracking protection.
1086 static void _crng_backtrack_protect(struct crng_state
*crng
,
1087 __u8 tmp
[CHACHA_BLOCK_SIZE
], int used
)
1089 unsigned long flags
;
1093 used
= round_up(used
, sizeof(__u32
));
1094 if (used
+ CHACHA_KEY_SIZE
> CHACHA_BLOCK_SIZE
) {
1098 spin_lock_irqsave(&crng
->lock
, flags
);
1099 s
= (__u32
*) &tmp
[used
];
1100 d
= &crng
->state
[4];
1101 for (i
=0; i
< 8; i
++)
1103 spin_unlock_irqrestore(&crng
->lock
, flags
);
1106 static void crng_backtrack_protect(__u8 tmp
[CHACHA_BLOCK_SIZE
], int used
)
1108 struct crng_state
*crng
= NULL
;
1112 crng
= crng_node_pool
[numa_node_id()];
1115 crng
= &primary_crng
;
1116 _crng_backtrack_protect(crng
, tmp
, used
);
1119 static ssize_t
extract_crng_user(void __user
*buf
, size_t nbytes
)
1121 ssize_t ret
= 0, i
= CHACHA_BLOCK_SIZE
;
1122 __u8 tmp
[CHACHA_BLOCK_SIZE
] __aligned(4);
1123 int large_request
= (nbytes
> 256);
1126 if (large_request
&& need_resched()) {
1127 if (signal_pending(current
)) {
1136 i
= min_t(int, nbytes
, CHACHA_BLOCK_SIZE
);
1137 if (copy_to_user(buf
, tmp
, i
)) {
1146 crng_backtrack_protect(tmp
, i
);
1148 /* Wipe data just written to memory */
1149 memzero_explicit(tmp
, sizeof(tmp
));
1155 /*********************************************************************
1157 * Entropy input management
1159 *********************************************************************/
1161 /* There is one of these per entropy source */
1162 struct timer_rand_state
{
1164 long last_delta
, last_delta2
;
1167 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1170 * Add device- or boot-specific data to the input pool to help
1173 * None of this adds any entropy; it is meant to avoid the problem of
1174 * the entropy pool having similar initial state across largely
1175 * identical devices.
1177 void add_device_randomness(const void *buf
, unsigned int size
)
1179 unsigned long time
= random_get_entropy() ^ jiffies
;
1180 unsigned long flags
;
1182 if (!crng_ready() && size
)
1183 crng_slow_load(buf
, size
);
1185 trace_add_device_randomness(size
, _RET_IP_
);
1186 spin_lock_irqsave(&input_pool
.lock
, flags
);
1187 _mix_pool_bytes(&input_pool
, buf
, size
);
1188 _mix_pool_bytes(&input_pool
, &time
, sizeof(time
));
1189 spin_unlock_irqrestore(&input_pool
.lock
, flags
);
1191 EXPORT_SYMBOL(add_device_randomness
);
1193 static struct timer_rand_state input_timer_state
= INIT_TIMER_RAND_STATE
;
1196 * This function adds entropy to the entropy "pool" by using timing
1197 * delays. It uses the timer_rand_state structure to make an estimate
1198 * of how many bits of entropy this call has added to the pool.
1200 * The number "num" is also added to the pool - it should somehow describe
1201 * the type of event which just happened. This is currently 0-255 for
1202 * keyboard scan codes, and 256 upwards for interrupts.
1205 static void add_timer_randomness(struct timer_rand_state
*state
, unsigned num
)
1207 struct entropy_store
*r
;
1213 long delta
, delta2
, delta3
;
1215 sample
.jiffies
= jiffies
;
1216 sample
.cycles
= random_get_entropy();
1219 mix_pool_bytes(r
, &sample
, sizeof(sample
));
1222 * Calculate number of bits of randomness we probably added.
1223 * We take into account the first, second and third-order deltas
1224 * in order to make our estimate.
1226 delta
= sample
.jiffies
- state
->last_time
;
1227 state
->last_time
= sample
.jiffies
;
1229 delta2
= delta
- state
->last_delta
;
1230 state
->last_delta
= delta
;
1232 delta3
= delta2
- state
->last_delta2
;
1233 state
->last_delta2
= delta2
;
1247 * delta is now minimum absolute delta.
1248 * Round down by 1 bit on general principles,
1249 * and limit entropy entimate to 12 bits.
1251 credit_entropy_bits(r
, min_t(int, fls(delta
>>1), 11));
1254 void add_input_randomness(unsigned int type
, unsigned int code
,
1257 static unsigned char last_value
;
1259 /* ignore autorepeat and the like */
1260 if (value
== last_value
)
1264 add_timer_randomness(&input_timer_state
,
1265 (type
<< 4) ^ code
^ (code
>> 4) ^ value
);
1266 trace_add_input_randomness(ENTROPY_BITS(&input_pool
));
1268 EXPORT_SYMBOL_GPL(add_input_randomness
);
1270 static DEFINE_PER_CPU(struct fast_pool
, irq_randomness
);
1272 #ifdef ADD_INTERRUPT_BENCH
1273 static unsigned long avg_cycles
, avg_deviation
;
1275 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1276 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1278 static void add_interrupt_bench(cycles_t start
)
1280 long delta
= random_get_entropy() - start
;
1282 /* Use a weighted moving average */
1283 delta
= delta
- ((avg_cycles
+ FIXED_1_2
) >> AVG_SHIFT
);
1284 avg_cycles
+= delta
;
1285 /* And average deviation */
1286 delta
= abs(delta
) - ((avg_deviation
+ FIXED_1_2
) >> AVG_SHIFT
);
1287 avg_deviation
+= delta
;
1290 #define add_interrupt_bench(x)
1293 static __u32
get_reg(struct fast_pool
*f
, struct pt_regs
*regs
)
1295 __u32
*ptr
= (__u32
*) regs
;
1300 idx
= READ_ONCE(f
->reg_idx
);
1301 if (idx
>= sizeof(struct pt_regs
) / sizeof(__u32
))
1304 WRITE_ONCE(f
->reg_idx
, idx
);
1308 void add_interrupt_randomness(int irq
, int irq_flags
)
1310 struct entropy_store
*r
;
1311 struct fast_pool
*fast_pool
= this_cpu_ptr(&irq_randomness
);
1312 struct pt_regs
*regs
= get_irq_regs();
1313 unsigned long now
= jiffies
;
1314 cycles_t cycles
= random_get_entropy();
1315 __u32 c_high
, j_high
;
1321 cycles
= get_reg(fast_pool
, regs
);
1322 c_high
= (sizeof(cycles
) > 4) ? cycles
>> 32 : 0;
1323 j_high
= (sizeof(now
) > 4) ? now
>> 32 : 0;
1324 fast_pool
->pool
[0] ^= cycles
^ j_high
^ irq
;
1325 fast_pool
->pool
[1] ^= now
^ c_high
;
1326 ip
= regs
? instruction_pointer(regs
) : _RET_IP_
;
1327 fast_pool
->pool
[2] ^= ip
;
1328 fast_pool
->pool
[3] ^= (sizeof(ip
) > 4) ? ip
>> 32 :
1329 get_reg(fast_pool
, regs
);
1331 fast_mix(fast_pool
);
1332 add_interrupt_bench(cycles
);
1334 if (unlikely(crng_init
== 0)) {
1335 if ((fast_pool
->count
>= 64) &&
1336 crng_fast_load((char *) fast_pool
->pool
,
1337 sizeof(fast_pool
->pool
))) {
1338 fast_pool
->count
= 0;
1339 fast_pool
->last
= now
;
1344 if ((fast_pool
->count
< 64) &&
1345 !time_after(now
, fast_pool
->last
+ HZ
))
1349 if (!spin_trylock(&r
->lock
))
1352 fast_pool
->last
= now
;
1353 __mix_pool_bytes(r
, &fast_pool
->pool
, sizeof(fast_pool
->pool
));
1356 * If we have architectural seed generator, produce a seed and
1357 * add it to the pool. For the sake of paranoia don't let the
1358 * architectural seed generator dominate the input from the
1361 if (arch_get_random_seed_long(&seed
)) {
1362 __mix_pool_bytes(r
, &seed
, sizeof(seed
));
1365 spin_unlock(&r
->lock
);
1367 fast_pool
->count
= 0;
1369 /* award one bit for the contents of the fast pool */
1370 credit_entropy_bits(r
, credit
+ 1);
1372 EXPORT_SYMBOL_GPL(add_interrupt_randomness
);
1375 void add_disk_randomness(struct gendisk
*disk
)
1377 if (!disk
|| !disk
->random
)
1379 /* first major is 1, so we get >= 0x200 here */
1380 add_timer_randomness(disk
->random
, 0x100 + disk_devt(disk
));
1381 trace_add_disk_randomness(disk_devt(disk
), ENTROPY_BITS(&input_pool
));
1383 EXPORT_SYMBOL_GPL(add_disk_randomness
);
1386 /*********************************************************************
1388 * Entropy extraction routines
1390 *********************************************************************/
1393 * This utility inline function is responsible for transferring entropy
1394 * from the primary pool to the secondary extraction pool. We make
1395 * sure we pull enough for a 'catastrophic reseed'.
1397 static void _xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
);
1398 static void xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
)
1401 r
->entropy_count
>= (nbytes
<< (ENTROPY_SHIFT
+ 3)) ||
1402 r
->entropy_count
> r
->poolinfo
->poolfracbits
)
1405 _xfer_secondary_pool(r
, nbytes
);
1408 static void _xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
)
1410 __u32 tmp
[OUTPUT_POOL_WORDS
];
1414 /* pull at least as much as a wakeup */
1415 bytes
= max_t(int, bytes
, random_read_wakeup_bits
/ 8);
1416 /* but never more than the buffer size */
1417 bytes
= min_t(int, bytes
, sizeof(tmp
));
1419 trace_xfer_secondary_pool(r
->name
, bytes
* 8, nbytes
* 8,
1420 ENTROPY_BITS(r
), ENTROPY_BITS(r
->pull
));
1421 bytes
= extract_entropy(r
->pull
, tmp
, bytes
,
1422 random_read_wakeup_bits
/ 8, 0);
1423 mix_pool_bytes(r
, tmp
, bytes
);
1424 credit_entropy_bits(r
, bytes
*8);
1428 * Used as a workqueue function so that when the input pool is getting
1429 * full, we can "spill over" some entropy to the output pools. That
1430 * way the output pools can store some of the excess entropy instead
1431 * of letting it go to waste.
1433 static void push_to_pool(struct work_struct
*work
)
1435 struct entropy_store
*r
= container_of(work
, struct entropy_store
,
1438 _xfer_secondary_pool(r
, random_read_wakeup_bits
/8);
1439 trace_push_to_pool(r
->name
, r
->entropy_count
>> ENTROPY_SHIFT
,
1440 r
->pull
->entropy_count
>> ENTROPY_SHIFT
);
1444 * This function decides how many bytes to actually take from the
1445 * given pool, and also debits the entropy count accordingly.
1447 static size_t account(struct entropy_store
*r
, size_t nbytes
, int min
,
1450 int entropy_count
, orig
, have_bytes
;
1451 size_t ibytes
, nfrac
;
1453 BUG_ON(r
->entropy_count
> r
->poolinfo
->poolfracbits
);
1455 /* Can we pull enough? */
1457 entropy_count
= orig
= READ_ONCE(r
->entropy_count
);
1459 /* never pull more than available */
1460 have_bytes
= entropy_count
>> (ENTROPY_SHIFT
+ 3);
1462 if ((have_bytes
-= reserved
) < 0)
1464 ibytes
= min_t(size_t, ibytes
, have_bytes
);
1468 if (unlikely(entropy_count
< 0)) {
1469 pr_warn("random: negative entropy count: pool %s count %d\n",
1470 r
->name
, entropy_count
);
1474 nfrac
= ibytes
<< (ENTROPY_SHIFT
+ 3);
1475 if ((size_t) entropy_count
> nfrac
)
1476 entropy_count
-= nfrac
;
1480 if (cmpxchg(&r
->entropy_count
, orig
, entropy_count
) != orig
)
1483 trace_debit_entropy(r
->name
, 8 * ibytes
);
1485 (r
->entropy_count
>> ENTROPY_SHIFT
) < random_write_wakeup_bits
) {
1486 wake_up_interruptible(&random_write_wait
);
1487 kill_fasync(&fasync
, SIGIO
, POLL_OUT
);
1494 * This function does the actual extraction for extract_entropy and
1495 * extract_entropy_user.
1497 * Note: we assume that .poolwords is a multiple of 16 words.
1499 static void extract_buf(struct entropy_store
*r
, __u8
*out
)
1504 unsigned long l
[LONGS(20)];
1506 __u32 workspace
[SHA_WORKSPACE_WORDS
];
1507 unsigned long flags
;
1510 * If we have an architectural hardware random number
1511 * generator, use it for SHA's initial vector
1514 for (i
= 0; i
< LONGS(20); i
++) {
1516 if (!arch_get_random_long(&v
))
1521 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1522 spin_lock_irqsave(&r
->lock
, flags
);
1523 for (i
= 0; i
< r
->poolinfo
->poolwords
; i
+= 16)
1524 sha_transform(hash
.w
, (__u8
*)(r
->pool
+ i
), workspace
);
1527 * We mix the hash back into the pool to prevent backtracking
1528 * attacks (where the attacker knows the state of the pool
1529 * plus the current outputs, and attempts to find previous
1530 * ouputs), unless the hash function can be inverted. By
1531 * mixing at least a SHA1 worth of hash data back, we make
1532 * brute-forcing the feedback as hard as brute-forcing the
1535 __mix_pool_bytes(r
, hash
.w
, sizeof(hash
.w
));
1536 spin_unlock_irqrestore(&r
->lock
, flags
);
1538 memzero_explicit(workspace
, sizeof(workspace
));
1541 * In case the hash function has some recognizable output
1542 * pattern, we fold it in half. Thus, we always feed back
1543 * twice as much data as we output.
1545 hash
.w
[0] ^= hash
.w
[3];
1546 hash
.w
[1] ^= hash
.w
[4];
1547 hash
.w
[2] ^= rol32(hash
.w
[2], 16);
1549 memcpy(out
, &hash
, EXTRACT_SIZE
);
1550 memzero_explicit(&hash
, sizeof(hash
));
1553 static ssize_t
_extract_entropy(struct entropy_store
*r
, void *buf
,
1554 size_t nbytes
, int fips
)
1557 __u8 tmp
[EXTRACT_SIZE
];
1558 unsigned long flags
;
1561 extract_buf(r
, tmp
);
1564 spin_lock_irqsave(&r
->lock
, flags
);
1565 if (!memcmp(tmp
, r
->last_data
, EXTRACT_SIZE
))
1566 panic("Hardware RNG duplicated output!\n");
1567 memcpy(r
->last_data
, tmp
, EXTRACT_SIZE
);
1568 spin_unlock_irqrestore(&r
->lock
, flags
);
1570 i
= min_t(int, nbytes
, EXTRACT_SIZE
);
1571 memcpy(buf
, tmp
, i
);
1577 /* Wipe data just returned from memory */
1578 memzero_explicit(tmp
, sizeof(tmp
));
1584 * This function extracts randomness from the "entropy pool", and
1585 * returns it in a buffer.
1587 * The min parameter specifies the minimum amount we can pull before
1588 * failing to avoid races that defeat catastrophic reseeding while the
1589 * reserved parameter indicates how much entropy we must leave in the
1590 * pool after each pull to avoid starving other readers.
1592 static ssize_t
extract_entropy(struct entropy_store
*r
, void *buf
,
1593 size_t nbytes
, int min
, int reserved
)
1595 __u8 tmp
[EXTRACT_SIZE
];
1596 unsigned long flags
;
1598 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1600 spin_lock_irqsave(&r
->lock
, flags
);
1601 if (!r
->last_data_init
) {
1602 r
->last_data_init
= 1;
1603 spin_unlock_irqrestore(&r
->lock
, flags
);
1604 trace_extract_entropy(r
->name
, EXTRACT_SIZE
,
1605 ENTROPY_BITS(r
), _RET_IP_
);
1606 xfer_secondary_pool(r
, EXTRACT_SIZE
);
1607 extract_buf(r
, tmp
);
1608 spin_lock_irqsave(&r
->lock
, flags
);
1609 memcpy(r
->last_data
, tmp
, EXTRACT_SIZE
);
1611 spin_unlock_irqrestore(&r
->lock
, flags
);
1614 trace_extract_entropy(r
->name
, nbytes
, ENTROPY_BITS(r
), _RET_IP_
);
1615 xfer_secondary_pool(r
, nbytes
);
1616 nbytes
= account(r
, nbytes
, min
, reserved
);
1618 return _extract_entropy(r
, buf
, nbytes
, fips_enabled
);
1622 * This function extracts randomness from the "entropy pool", and
1623 * returns it in a userspace buffer.
1625 static ssize_t
extract_entropy_user(struct entropy_store
*r
, void __user
*buf
,
1629 __u8 tmp
[EXTRACT_SIZE
];
1630 int large_request
= (nbytes
> 256);
1632 trace_extract_entropy_user(r
->name
, nbytes
, ENTROPY_BITS(r
), _RET_IP_
);
1633 if (!r
->initialized
&& r
->pull
) {
1634 xfer_secondary_pool(r
, ENTROPY_BITS(r
->pull
)/8);
1635 if (!r
->initialized
)
1638 xfer_secondary_pool(r
, nbytes
);
1639 nbytes
= account(r
, nbytes
, 0, 0);
1642 if (large_request
&& need_resched()) {
1643 if (signal_pending(current
)) {
1651 extract_buf(r
, tmp
);
1652 i
= min_t(int, nbytes
, EXTRACT_SIZE
);
1653 if (copy_to_user(buf
, tmp
, i
)) {
1663 /* Wipe data just returned from memory */
1664 memzero_explicit(tmp
, sizeof(tmp
));
1669 #define warn_unseeded_randomness(previous) \
1670 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1672 static void _warn_unseeded_randomness(const char *func_name
, void *caller
,
1675 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1676 const bool print_once
= false;
1678 static bool print_once __read_mostly
;
1683 (previous
&& (caller
== READ_ONCE(*previous
))))
1685 WRITE_ONCE(*previous
, caller
);
1686 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1689 if (__ratelimit(&unseeded_warning
))
1690 pr_notice("random: %s called from %pS with crng_init=%d\n",
1691 func_name
, caller
, crng_init
);
1695 * This function is the exported kernel interface. It returns some
1696 * number of good random numbers, suitable for key generation, seeding
1697 * TCP sequence numbers, etc. It does not rely on the hardware random
1698 * number generator. For random bytes direct from the hardware RNG
1699 * (when available), use get_random_bytes_arch(). In order to ensure
1700 * that the randomness provided by this function is okay, the function
1701 * wait_for_random_bytes() should be called and return 0 at least once
1702 * at any point prior.
1704 static void _get_random_bytes(void *buf
, int nbytes
)
1706 __u8 tmp
[CHACHA_BLOCK_SIZE
] __aligned(4);
1708 trace_get_random_bytes(nbytes
, _RET_IP_
);
1710 while (nbytes
>= CHACHA_BLOCK_SIZE
) {
1712 buf
+= CHACHA_BLOCK_SIZE
;
1713 nbytes
-= CHACHA_BLOCK_SIZE
;
1718 memcpy(buf
, tmp
, nbytes
);
1719 crng_backtrack_protect(tmp
, nbytes
);
1721 crng_backtrack_protect(tmp
, CHACHA_BLOCK_SIZE
);
1722 memzero_explicit(tmp
, sizeof(tmp
));
1725 void get_random_bytes(void *buf
, int nbytes
)
1727 static void *previous
;
1729 warn_unseeded_randomness(&previous
);
1730 _get_random_bytes(buf
, nbytes
);
1732 EXPORT_SYMBOL(get_random_bytes
);
1735 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1736 * cryptographically secure random numbers. This applies to: the /dev/urandom
1737 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1738 * family of functions. Using any of these functions without first calling
1739 * this function forfeits the guarantee of security.
1741 * Returns: 0 if the urandom pool has been seeded.
1742 * -ERESTARTSYS if the function was interrupted by a signal.
1744 int wait_for_random_bytes(void)
1746 if (likely(crng_ready()))
1748 return wait_event_interruptible(crng_init_wait
, crng_ready());
1750 EXPORT_SYMBOL(wait_for_random_bytes
);
1753 * Returns whether or not the urandom pool has been seeded and thus guaranteed
1754 * to supply cryptographically secure random numbers. This applies to: the
1755 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1756 * ,u64,int,long} family of functions.
1758 * Returns: true if the urandom pool has been seeded.
1759 * false if the urandom pool has not been seeded.
1761 bool rng_is_initialized(void)
1763 return crng_ready();
1765 EXPORT_SYMBOL(rng_is_initialized
);
1768 * Add a callback function that will be invoked when the nonblocking
1769 * pool is initialised.
1771 * returns: 0 if callback is successfully added
1772 * -EALREADY if pool is already initialised (callback not called)
1773 * -ENOENT if module for callback is not alive
1775 int add_random_ready_callback(struct random_ready_callback
*rdy
)
1777 struct module
*owner
;
1778 unsigned long flags
;
1779 int err
= -EALREADY
;
1785 if (!try_module_get(owner
))
1788 spin_lock_irqsave(&random_ready_list_lock
, flags
);
1794 list_add(&rdy
->list
, &random_ready_list
);
1798 spin_unlock_irqrestore(&random_ready_list_lock
, flags
);
1804 EXPORT_SYMBOL(add_random_ready_callback
);
1807 * Delete a previously registered readiness callback function.
1809 void del_random_ready_callback(struct random_ready_callback
*rdy
)
1811 unsigned long flags
;
1812 struct module
*owner
= NULL
;
1814 spin_lock_irqsave(&random_ready_list_lock
, flags
);
1815 if (!list_empty(&rdy
->list
)) {
1816 list_del_init(&rdy
->list
);
1819 spin_unlock_irqrestore(&random_ready_list_lock
, flags
);
1823 EXPORT_SYMBOL(del_random_ready_callback
);
1826 * This function will use the architecture-specific hardware random
1827 * number generator if it is available. The arch-specific hw RNG will
1828 * almost certainly be faster than what we can do in software, but it
1829 * is impossible to verify that it is implemented securely (as
1830 * opposed, to, say, the AES encryption of a sequence number using a
1831 * key known by the NSA). So it's useful if we need the speed, but
1832 * only if we're willing to trust the hardware manufacturer not to
1833 * have put in a back door.
1835 * Return number of bytes filled in.
1837 int __must_check
get_random_bytes_arch(void *buf
, int nbytes
)
1842 trace_get_random_bytes_arch(left
, _RET_IP_
);
1845 int chunk
= min_t(int, left
, sizeof(unsigned long));
1847 if (!arch_get_random_long(&v
))
1850 memcpy(p
, &v
, chunk
);
1855 return nbytes
- left
;
1857 EXPORT_SYMBOL(get_random_bytes_arch
);
1860 * init_std_data - initialize pool with system data
1862 * @r: pool to initialize
1864 * This function clears the pool's entropy count and mixes some system
1865 * data into the pool to prepare it for use. The pool is not cleared
1866 * as that can only decrease the entropy in the pool.
1868 static void __init
init_std_data(struct entropy_store
*r
)
1871 ktime_t now
= ktime_get_real();
1874 r
->last_pulled
= jiffies
;
1875 mix_pool_bytes(r
, &now
, sizeof(now
));
1876 for (i
= r
->poolinfo
->poolbytes
; i
> 0; i
-= sizeof(rv
)) {
1877 if (!arch_get_random_seed_long(&rv
) &&
1878 !arch_get_random_long(&rv
))
1879 rv
= random_get_entropy();
1880 mix_pool_bytes(r
, &rv
, sizeof(rv
));
1882 mix_pool_bytes(r
, utsname(), sizeof(*(utsname())));
1886 * Note that setup_arch() may call add_device_randomness()
1887 * long before we get here. This allows seeding of the pools
1888 * with some platform dependent data very early in the boot
1889 * process. But it limits our options here. We must use
1890 * statically allocated structures that already have all
1891 * initializations complete at compile time. We should also
1892 * take care not to overwrite the precious per platform data
1895 int __init
rand_initialize(void)
1897 init_std_data(&input_pool
);
1898 init_std_data(&blocking_pool
);
1899 crng_initialize(&primary_crng
);
1900 crng_global_init_time
= jiffies
;
1901 if (ratelimit_disable
) {
1902 urandom_warning
.interval
= 0;
1903 unseeded_warning
.interval
= 0;
1909 void rand_initialize_disk(struct gendisk
*disk
)
1911 struct timer_rand_state
*state
;
1914 * If kzalloc returns null, we just won't use that entropy
1917 state
= kzalloc(sizeof(struct timer_rand_state
), GFP_KERNEL
);
1919 state
->last_time
= INITIAL_JIFFIES
;
1920 disk
->random
= state
;
1926 _random_read(int nonblock
, char __user
*buf
, size_t nbytes
)
1933 nbytes
= min_t(size_t, nbytes
, SEC_XFER_SIZE
);
1935 n
= extract_entropy_user(&blocking_pool
, buf
, nbytes
);
1938 trace_random_read(n
*8, (nbytes
-n
)*8,
1939 ENTROPY_BITS(&blocking_pool
),
1940 ENTROPY_BITS(&input_pool
));
1944 /* Pool is (near) empty. Maybe wait and retry. */
1948 wait_event_interruptible(random_read_wait
,
1949 blocking_pool
.initialized
&&
1950 (ENTROPY_BITS(&input_pool
) >= random_read_wakeup_bits
));
1951 if (signal_pending(current
))
1952 return -ERESTARTSYS
;
1957 random_read(struct file
*file
, char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
1959 return _random_read(file
->f_flags
& O_NONBLOCK
, buf
, nbytes
);
1963 urandom_read(struct file
*file
, char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
1965 unsigned long flags
;
1966 static int maxwarn
= 10;
1969 if (!crng_ready() && maxwarn
> 0) {
1971 if (__ratelimit(&urandom_warning
))
1972 printk(KERN_NOTICE
"random: %s: uninitialized "
1973 "urandom read (%zd bytes read)\n",
1974 current
->comm
, nbytes
);
1975 spin_lock_irqsave(&primary_crng
.lock
, flags
);
1977 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
1979 nbytes
= min_t(size_t, nbytes
, INT_MAX
>> (ENTROPY_SHIFT
+ 3));
1980 ret
= extract_crng_user(buf
, nbytes
);
1981 trace_urandom_read(8 * nbytes
, 0, ENTROPY_BITS(&input_pool
));
1986 random_poll(struct file
*file
, poll_table
* wait
)
1990 poll_wait(file
, &random_read_wait
, wait
);
1991 poll_wait(file
, &random_write_wait
, wait
);
1993 if (ENTROPY_BITS(&input_pool
) >= random_read_wakeup_bits
)
1994 mask
|= EPOLLIN
| EPOLLRDNORM
;
1995 if (ENTROPY_BITS(&input_pool
) < random_write_wakeup_bits
)
1996 mask
|= EPOLLOUT
| EPOLLWRNORM
;
2001 write_pool(struct entropy_store
*r
, const char __user
*buffer
, size_t count
)
2005 const char __user
*p
= buffer
;
2010 bytes
= min(count
, sizeof(buf
));
2011 if (copy_from_user(&buf
, p
, bytes
))
2014 for (b
= bytes
; b
> 0 ; b
-= sizeof(__u32
), i
++) {
2015 if (!arch_get_random_int(&t
))
2023 mix_pool_bytes(r
, buf
, bytes
);
2030 static ssize_t
random_write(struct file
*file
, const char __user
*buffer
,
2031 size_t count
, loff_t
*ppos
)
2035 ret
= write_pool(&input_pool
, buffer
, count
);
2039 return (ssize_t
)count
;
2042 static long random_ioctl(struct file
*f
, unsigned int cmd
, unsigned long arg
)
2044 int size
, ent_count
;
2045 int __user
*p
= (int __user
*)arg
;
2050 /* inherently racy, no point locking */
2051 ent_count
= ENTROPY_BITS(&input_pool
);
2052 if (put_user(ent_count
, p
))
2055 case RNDADDTOENTCNT
:
2056 if (!capable(CAP_SYS_ADMIN
))
2058 if (get_user(ent_count
, p
))
2060 return credit_entropy_bits_safe(&input_pool
, ent_count
);
2062 if (!capable(CAP_SYS_ADMIN
))
2064 if (get_user(ent_count
, p
++))
2068 if (get_user(size
, p
++))
2070 retval
= write_pool(&input_pool
, (const char __user
*)p
,
2074 return credit_entropy_bits_safe(&input_pool
, ent_count
);
2078 * Clear the entropy pool counters. We no longer clear
2079 * the entropy pool, as that's silly.
2081 if (!capable(CAP_SYS_ADMIN
))
2083 input_pool
.entropy_count
= 0;
2084 blocking_pool
.entropy_count
= 0;
2087 if (!capable(CAP_SYS_ADMIN
))
2091 crng_reseed(&primary_crng
, NULL
);
2092 crng_global_init_time
= jiffies
- 1;
2099 static int random_fasync(int fd
, struct file
*filp
, int on
)
2101 return fasync_helper(fd
, filp
, on
, &fasync
);
2104 const struct file_operations random_fops
= {
2105 .read
= random_read
,
2106 .write
= random_write
,
2107 .poll
= random_poll
,
2108 .unlocked_ioctl
= random_ioctl
,
2109 .fasync
= random_fasync
,
2110 .llseek
= noop_llseek
,
2113 const struct file_operations urandom_fops
= {
2114 .read
= urandom_read
,
2115 .write
= random_write
,
2116 .unlocked_ioctl
= random_ioctl
,
2117 .fasync
= random_fasync
,
2118 .llseek
= noop_llseek
,
2121 SYSCALL_DEFINE3(getrandom
, char __user
*, buf
, size_t, count
,
2122 unsigned int, flags
)
2126 if (flags
& ~(GRND_NONBLOCK
|GRND_RANDOM
))
2129 if (count
> INT_MAX
)
2132 if (flags
& GRND_RANDOM
)
2133 return _random_read(flags
& GRND_NONBLOCK
, buf
, count
);
2135 if (!crng_ready()) {
2136 if (flags
& GRND_NONBLOCK
)
2138 ret
= wait_for_random_bytes();
2142 return urandom_read(NULL
, buf
, count
, NULL
);
2145 /********************************************************************
2149 ********************************************************************/
2151 #ifdef CONFIG_SYSCTL
2153 #include <linux/sysctl.h>
2155 static int min_read_thresh
= 8, min_write_thresh
;
2156 static int max_read_thresh
= OUTPUT_POOL_WORDS
* 32;
2157 static int max_write_thresh
= INPUT_POOL_WORDS
* 32;
2158 static int random_min_urandom_seed
= 60;
2159 static char sysctl_bootid
[16];
2162 * This function is used to return both the bootid UUID, and random
2163 * UUID. The difference is in whether table->data is NULL; if it is,
2164 * then a new UUID is generated and returned to the user.
2166 * If the user accesses this via the proc interface, the UUID will be
2167 * returned as an ASCII string in the standard UUID format; if via the
2168 * sysctl system call, as 16 bytes of binary data.
2170 static int proc_do_uuid(struct ctl_table
*table
, int write
,
2171 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2173 struct ctl_table fake_table
;
2174 unsigned char buf
[64], tmp_uuid
[16], *uuid
;
2179 generate_random_uuid(uuid
);
2181 static DEFINE_SPINLOCK(bootid_spinlock
);
2183 spin_lock(&bootid_spinlock
);
2185 generate_random_uuid(uuid
);
2186 spin_unlock(&bootid_spinlock
);
2189 sprintf(buf
, "%pU", uuid
);
2191 fake_table
.data
= buf
;
2192 fake_table
.maxlen
= sizeof(buf
);
2194 return proc_dostring(&fake_table
, write
, buffer
, lenp
, ppos
);
2198 * Return entropy available scaled to integral bits
2200 static int proc_do_entropy(struct ctl_table
*table
, int write
,
2201 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2203 struct ctl_table fake_table
;
2206 entropy_count
= *(int *)table
->data
>> ENTROPY_SHIFT
;
2208 fake_table
.data
= &entropy_count
;
2209 fake_table
.maxlen
= sizeof(entropy_count
);
2211 return proc_dointvec(&fake_table
, write
, buffer
, lenp
, ppos
);
2214 static int sysctl_poolsize
= INPUT_POOL_WORDS
* 32;
2215 extern struct ctl_table random_table
[];
2216 struct ctl_table random_table
[] = {
2218 .procname
= "poolsize",
2219 .data
= &sysctl_poolsize
,
2220 .maxlen
= sizeof(int),
2222 .proc_handler
= proc_dointvec
,
2225 .procname
= "entropy_avail",
2226 .maxlen
= sizeof(int),
2228 .proc_handler
= proc_do_entropy
,
2229 .data
= &input_pool
.entropy_count
,
2232 .procname
= "read_wakeup_threshold",
2233 .data
= &random_read_wakeup_bits
,
2234 .maxlen
= sizeof(int),
2236 .proc_handler
= proc_dointvec_minmax
,
2237 .extra1
= &min_read_thresh
,
2238 .extra2
= &max_read_thresh
,
2241 .procname
= "write_wakeup_threshold",
2242 .data
= &random_write_wakeup_bits
,
2243 .maxlen
= sizeof(int),
2245 .proc_handler
= proc_dointvec_minmax
,
2246 .extra1
= &min_write_thresh
,
2247 .extra2
= &max_write_thresh
,
2250 .procname
= "urandom_min_reseed_secs",
2251 .data
= &random_min_urandom_seed
,
2252 .maxlen
= sizeof(int),
2254 .proc_handler
= proc_dointvec
,
2257 .procname
= "boot_id",
2258 .data
= &sysctl_bootid
,
2261 .proc_handler
= proc_do_uuid
,
2267 .proc_handler
= proc_do_uuid
,
2269 #ifdef ADD_INTERRUPT_BENCH
2271 .procname
= "add_interrupt_avg_cycles",
2272 .data
= &avg_cycles
,
2273 .maxlen
= sizeof(avg_cycles
),
2275 .proc_handler
= proc_doulongvec_minmax
,
2278 .procname
= "add_interrupt_avg_deviation",
2279 .data
= &avg_deviation
,
2280 .maxlen
= sizeof(avg_deviation
),
2282 .proc_handler
= proc_doulongvec_minmax
,
2287 #endif /* CONFIG_SYSCTL */
2289 struct batched_entropy
{
2291 u64 entropy_u64
[CHACHA_BLOCK_SIZE
/ sizeof(u64
)];
2292 u32 entropy_u32
[CHACHA_BLOCK_SIZE
/ sizeof(u32
)];
2294 unsigned int position
;
2295 spinlock_t batch_lock
;
2299 * Get a random word for internal kernel use only. The quality of the random
2300 * number is either as good as RDRAND or as good as /dev/urandom, with the
2301 * goal of being quite fast and not depleting entropy. In order to ensure
2302 * that the randomness provided by this function is okay, the function
2303 * wait_for_random_bytes() should be called and return 0 at least once
2304 * at any point prior.
2306 static DEFINE_PER_CPU(struct batched_entropy
, batched_entropy_u64
) = {
2307 .batch_lock
= __SPIN_LOCK_UNLOCKED(batched_entropy_u64
.lock
),
2310 u64
get_random_u64(void)
2313 unsigned long flags
;
2314 struct batched_entropy
*batch
;
2315 static void *previous
;
2317 #if BITS_PER_LONG == 64
2318 if (arch_get_random_long((unsigned long *)&ret
))
2321 if (arch_get_random_long((unsigned long *)&ret
) &&
2322 arch_get_random_long((unsigned long *)&ret
+ 1))
2326 warn_unseeded_randomness(&previous
);
2328 batch
= raw_cpu_ptr(&batched_entropy_u64
);
2329 spin_lock_irqsave(&batch
->batch_lock
, flags
);
2330 if (batch
->position
% ARRAY_SIZE(batch
->entropy_u64
) == 0) {
2331 extract_crng((u8
*)batch
->entropy_u64
);
2332 batch
->position
= 0;
2334 ret
= batch
->entropy_u64
[batch
->position
++];
2335 spin_unlock_irqrestore(&batch
->batch_lock
, flags
);
2338 EXPORT_SYMBOL(get_random_u64
);
2340 static DEFINE_PER_CPU(struct batched_entropy
, batched_entropy_u32
) = {
2341 .batch_lock
= __SPIN_LOCK_UNLOCKED(batched_entropy_u32
.lock
),
2343 u32
get_random_u32(void)
2346 unsigned long flags
;
2347 struct batched_entropy
*batch
;
2348 static void *previous
;
2350 if (arch_get_random_int(&ret
))
2353 warn_unseeded_randomness(&previous
);
2355 batch
= raw_cpu_ptr(&batched_entropy_u32
);
2356 spin_lock_irqsave(&batch
->batch_lock
, flags
);
2357 if (batch
->position
% ARRAY_SIZE(batch
->entropy_u32
) == 0) {
2358 extract_crng((u8
*)batch
->entropy_u32
);
2359 batch
->position
= 0;
2361 ret
= batch
->entropy_u32
[batch
->position
++];
2362 spin_unlock_irqrestore(&batch
->batch_lock
, flags
);
2365 EXPORT_SYMBOL(get_random_u32
);
2367 /* It's important to invalidate all potential batched entropy that might
2368 * be stored before the crng is initialized, which we can do lazily by
2369 * simply resetting the counter to zero so that it's re-extracted on the
2371 static void invalidate_batched_entropy(void)
2374 unsigned long flags
;
2376 for_each_possible_cpu (cpu
) {
2377 struct batched_entropy
*batched_entropy
;
2379 batched_entropy
= per_cpu_ptr(&batched_entropy_u32
, cpu
);
2380 spin_lock_irqsave(&batched_entropy
->batch_lock
, flags
);
2381 batched_entropy
->position
= 0;
2382 spin_unlock(&batched_entropy
->batch_lock
);
2384 batched_entropy
= per_cpu_ptr(&batched_entropy_u64
, cpu
);
2385 spin_lock(&batched_entropy
->batch_lock
);
2386 batched_entropy
->position
= 0;
2387 spin_unlock_irqrestore(&batched_entropy
->batch_lock
, flags
);
2392 * randomize_page - Generate a random, page aligned address
2393 * @start: The smallest acceptable address the caller will take.
2394 * @range: The size of the area, starting at @start, within which the
2395 * random address must fall.
2397 * If @start + @range would overflow, @range is capped.
2399 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2400 * @start was already page aligned. We now align it regardless.
2402 * Return: A page aligned address within [start, start + range). On error,
2403 * @start is returned.
2406 randomize_page(unsigned long start
, unsigned long range
)
2408 if (!PAGE_ALIGNED(start
)) {
2409 range
-= PAGE_ALIGN(start
) - start
;
2410 start
= PAGE_ALIGN(start
);
2413 if (start
> ULONG_MAX
- range
)
2414 range
= ULONG_MAX
- start
;
2416 range
>>= PAGE_SHIFT
;
2421 return start
+ (get_random_long() % range
<< PAGE_SHIFT
);
2424 /* Interface for in-kernel drivers of true hardware RNGs.
2425 * Those devices may produce endless random bits and will be throttled
2426 * when our pool is full.
2428 void add_hwgenerator_randomness(const char *buffer
, size_t count
,
2431 struct entropy_store
*poolp
= &input_pool
;
2433 if (unlikely(crng_init
== 0)) {
2434 crng_fast_load(buffer
, count
);
2438 /* Suspend writing if we're above the trickle threshold.
2439 * We'll be woken up again once below random_write_wakeup_thresh,
2440 * or when the calling thread is about to terminate.
2442 wait_event_interruptible(random_write_wait
, kthread_should_stop() ||
2443 ENTROPY_BITS(&input_pool
) <= random_write_wakeup_bits
);
2444 mix_pool_bytes(poolp
, buffer
, count
);
2445 credit_entropy_bits(poolp
, entropy
);
2447 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness
);