perf scripts python: exported-sql-viewer.py: Use new 'has_calls' column
[linux/fpc-iii.git] / drivers / md / dm-integrity.c
blob44e76cda087aa658fbb13195fa5d91f4117902b8
1 /*
2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3 * Copyright (C) 2016-2017 Milan Broz
4 * Copyright (C) 2016-2017 Mikulas Patocka
6 * This file is released under the GPL.
7 */
9 #include <linux/compiler.h>
10 #include <linux/module.h>
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/vmalloc.h>
14 #include <linux/sort.h>
15 #include <linux/rbtree.h>
16 #include <linux/delay.h>
17 #include <linux/random.h>
18 #include <linux/reboot.h>
19 #include <crypto/hash.h>
20 #include <crypto/skcipher.h>
21 #include <linux/async_tx.h>
22 #include <linux/dm-bufio.h>
24 #define DM_MSG_PREFIX "integrity"
26 #define DEFAULT_INTERLEAVE_SECTORS 32768
27 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
28 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
29 #define DEFAULT_BUFFER_SECTORS 128
30 #define DEFAULT_JOURNAL_WATERMARK 50
31 #define DEFAULT_SYNC_MSEC 10000
32 #define DEFAULT_MAX_JOURNAL_SECTORS 131072
33 #define MIN_LOG2_INTERLEAVE_SECTORS 3
34 #define MAX_LOG2_INTERLEAVE_SECTORS 31
35 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
36 #define RECALC_SECTORS 8192
37 #define RECALC_WRITE_SUPER 16
38 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */
39 #define BITMAP_FLUSH_INTERVAL (10 * HZ)
42 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
43 * so it should not be enabled in the official kernel
45 //#define DEBUG_PRINT
46 //#define INTERNAL_VERIFY
49 * On disk structures
52 #define SB_MAGIC "integrt"
53 #define SB_VERSION_1 1
54 #define SB_VERSION_2 2
55 #define SB_VERSION_3 3
56 #define SB_SECTORS 8
57 #define MAX_SECTORS_PER_BLOCK 8
59 struct superblock {
60 __u8 magic[8];
61 __u8 version;
62 __u8 log2_interleave_sectors;
63 __u16 integrity_tag_size;
64 __u32 journal_sections;
65 __u64 provided_data_sectors; /* userspace uses this value */
66 __u32 flags;
67 __u8 log2_sectors_per_block;
68 __u8 log2_blocks_per_bitmap_bit;
69 __u8 pad[2];
70 __u64 recalc_sector;
73 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
74 #define SB_FLAG_RECALCULATING 0x2
75 #define SB_FLAG_DIRTY_BITMAP 0x4
77 #define JOURNAL_ENTRY_ROUNDUP 8
79 typedef __u64 commit_id_t;
80 #define JOURNAL_MAC_PER_SECTOR 8
82 struct journal_entry {
83 union {
84 struct {
85 __u32 sector_lo;
86 __u32 sector_hi;
87 } s;
88 __u64 sector;
89 } u;
90 commit_id_t last_bytes[0];
91 /* __u8 tag[0]; */
94 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
96 #if BITS_PER_LONG == 64
97 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
98 #else
99 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
100 #endif
101 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
102 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
103 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
104 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
105 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
107 #define JOURNAL_BLOCK_SECTORS 8
108 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
109 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
111 struct journal_sector {
112 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
113 __u8 mac[JOURNAL_MAC_PER_SECTOR];
114 commit_id_t commit_id;
117 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
119 #define METADATA_PADDING_SECTORS 8
121 #define N_COMMIT_IDS 4
123 static unsigned char prev_commit_seq(unsigned char seq)
125 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
128 static unsigned char next_commit_seq(unsigned char seq)
130 return (seq + 1) % N_COMMIT_IDS;
134 * In-memory structures
137 struct journal_node {
138 struct rb_node node;
139 sector_t sector;
142 struct alg_spec {
143 char *alg_string;
144 char *key_string;
145 __u8 *key;
146 unsigned key_size;
149 struct dm_integrity_c {
150 struct dm_dev *dev;
151 struct dm_dev *meta_dev;
152 unsigned tag_size;
153 __s8 log2_tag_size;
154 sector_t start;
155 mempool_t journal_io_mempool;
156 struct dm_io_client *io;
157 struct dm_bufio_client *bufio;
158 struct workqueue_struct *metadata_wq;
159 struct superblock *sb;
160 unsigned journal_pages;
161 unsigned n_bitmap_blocks;
163 struct page_list *journal;
164 struct page_list *journal_io;
165 struct page_list *journal_xor;
166 struct page_list *recalc_bitmap;
167 struct page_list *may_write_bitmap;
168 struct bitmap_block_status *bbs;
169 unsigned bitmap_flush_interval;
170 int synchronous_mode;
171 struct bio_list synchronous_bios;
172 struct delayed_work bitmap_flush_work;
174 struct crypto_skcipher *journal_crypt;
175 struct scatterlist **journal_scatterlist;
176 struct scatterlist **journal_io_scatterlist;
177 struct skcipher_request **sk_requests;
179 struct crypto_shash *journal_mac;
181 struct journal_node *journal_tree;
182 struct rb_root journal_tree_root;
184 sector_t provided_data_sectors;
186 unsigned short journal_entry_size;
187 unsigned char journal_entries_per_sector;
188 unsigned char journal_section_entries;
189 unsigned short journal_section_sectors;
190 unsigned journal_sections;
191 unsigned journal_entries;
192 sector_t data_device_sectors;
193 sector_t meta_device_sectors;
194 unsigned initial_sectors;
195 unsigned metadata_run;
196 __s8 log2_metadata_run;
197 __u8 log2_buffer_sectors;
198 __u8 sectors_per_block;
199 __u8 log2_blocks_per_bitmap_bit;
201 unsigned char mode;
202 int suspending;
204 int failed;
206 struct crypto_shash *internal_hash;
208 /* these variables are locked with endio_wait.lock */
209 struct rb_root in_progress;
210 struct list_head wait_list;
211 wait_queue_head_t endio_wait;
212 struct workqueue_struct *wait_wq;
214 unsigned char commit_seq;
215 commit_id_t commit_ids[N_COMMIT_IDS];
217 unsigned committed_section;
218 unsigned n_committed_sections;
220 unsigned uncommitted_section;
221 unsigned n_uncommitted_sections;
223 unsigned free_section;
224 unsigned char free_section_entry;
225 unsigned free_sectors;
227 unsigned free_sectors_threshold;
229 struct workqueue_struct *commit_wq;
230 struct work_struct commit_work;
232 struct workqueue_struct *writer_wq;
233 struct work_struct writer_work;
235 struct workqueue_struct *recalc_wq;
236 struct work_struct recalc_work;
237 u8 *recalc_buffer;
238 u8 *recalc_tags;
240 struct bio_list flush_bio_list;
242 unsigned long autocommit_jiffies;
243 struct timer_list autocommit_timer;
244 unsigned autocommit_msec;
246 wait_queue_head_t copy_to_journal_wait;
248 struct completion crypto_backoff;
250 bool journal_uptodate;
251 bool just_formatted;
252 bool recalculate_flag;
254 struct alg_spec internal_hash_alg;
255 struct alg_spec journal_crypt_alg;
256 struct alg_spec journal_mac_alg;
258 atomic64_t number_of_mismatches;
260 struct notifier_block reboot_notifier;
263 struct dm_integrity_range {
264 sector_t logical_sector;
265 sector_t n_sectors;
266 bool waiting;
267 union {
268 struct rb_node node;
269 struct {
270 struct task_struct *task;
271 struct list_head wait_entry;
276 struct dm_integrity_io {
277 struct work_struct work;
279 struct dm_integrity_c *ic;
280 bool write;
281 bool fua;
283 struct dm_integrity_range range;
285 sector_t metadata_block;
286 unsigned metadata_offset;
288 atomic_t in_flight;
289 blk_status_t bi_status;
291 struct completion *completion;
293 struct gendisk *orig_bi_disk;
294 u8 orig_bi_partno;
295 bio_end_io_t *orig_bi_end_io;
296 struct bio_integrity_payload *orig_bi_integrity;
297 struct bvec_iter orig_bi_iter;
300 struct journal_completion {
301 struct dm_integrity_c *ic;
302 atomic_t in_flight;
303 struct completion comp;
306 struct journal_io {
307 struct dm_integrity_range range;
308 struct journal_completion *comp;
311 struct bitmap_block_status {
312 struct work_struct work;
313 struct dm_integrity_c *ic;
314 unsigned idx;
315 unsigned long *bitmap;
316 struct bio_list bio_queue;
317 spinlock_t bio_queue_lock;
321 static struct kmem_cache *journal_io_cache;
323 #define JOURNAL_IO_MEMPOOL 32
325 #ifdef DEBUG_PRINT
326 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
327 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
329 va_list args;
330 va_start(args, msg);
331 vprintk(msg, args);
332 va_end(args);
333 if (len)
334 pr_cont(":");
335 while (len) {
336 pr_cont(" %02x", *bytes);
337 bytes++;
338 len--;
340 pr_cont("\n");
342 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
343 #else
344 #define DEBUG_print(x, ...) do { } while (0)
345 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
346 #endif
349 * DM Integrity profile, protection is performed layer above (dm-crypt)
351 static const struct blk_integrity_profile dm_integrity_profile = {
352 .name = "DM-DIF-EXT-TAG",
353 .generate_fn = NULL,
354 .verify_fn = NULL,
357 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
358 static void integrity_bio_wait(struct work_struct *w);
359 static void dm_integrity_dtr(struct dm_target *ti);
361 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
363 if (err == -EILSEQ)
364 atomic64_inc(&ic->number_of_mismatches);
365 if (!cmpxchg(&ic->failed, 0, err))
366 DMERR("Error on %s: %d", msg, err);
369 static int dm_integrity_failed(struct dm_integrity_c *ic)
371 return READ_ONCE(ic->failed);
374 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
375 unsigned j, unsigned char seq)
378 * Xor the number with section and sector, so that if a piece of
379 * journal is written at wrong place, it is detected.
381 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
384 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
385 sector_t *area, sector_t *offset)
387 if (!ic->meta_dev) {
388 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
389 *area = data_sector >> log2_interleave_sectors;
390 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
391 } else {
392 *area = 0;
393 *offset = data_sector;
397 #define sector_to_block(ic, n) \
398 do { \
399 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
400 (n) >>= (ic)->sb->log2_sectors_per_block; \
401 } while (0)
403 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
404 sector_t offset, unsigned *metadata_offset)
406 __u64 ms;
407 unsigned mo;
409 ms = area << ic->sb->log2_interleave_sectors;
410 if (likely(ic->log2_metadata_run >= 0))
411 ms += area << ic->log2_metadata_run;
412 else
413 ms += area * ic->metadata_run;
414 ms >>= ic->log2_buffer_sectors;
416 sector_to_block(ic, offset);
418 if (likely(ic->log2_tag_size >= 0)) {
419 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
420 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
421 } else {
422 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
423 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
425 *metadata_offset = mo;
426 return ms;
429 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
431 sector_t result;
433 if (ic->meta_dev)
434 return offset;
436 result = area << ic->sb->log2_interleave_sectors;
437 if (likely(ic->log2_metadata_run >= 0))
438 result += (area + 1) << ic->log2_metadata_run;
439 else
440 result += (area + 1) * ic->metadata_run;
442 result += (sector_t)ic->initial_sectors + offset;
443 result += ic->start;
445 return result;
448 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
450 if (unlikely(*sec_ptr >= ic->journal_sections))
451 *sec_ptr -= ic->journal_sections;
454 static void sb_set_version(struct dm_integrity_c *ic)
456 if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
457 ic->sb->version = SB_VERSION_3;
458 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
459 ic->sb->version = SB_VERSION_2;
460 else
461 ic->sb->version = SB_VERSION_1;
464 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
466 struct dm_io_request io_req;
467 struct dm_io_region io_loc;
469 io_req.bi_op = op;
470 io_req.bi_op_flags = op_flags;
471 io_req.mem.type = DM_IO_KMEM;
472 io_req.mem.ptr.addr = ic->sb;
473 io_req.notify.fn = NULL;
474 io_req.client = ic->io;
475 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
476 io_loc.sector = ic->start;
477 io_loc.count = SB_SECTORS;
479 return dm_io(&io_req, 1, &io_loc, NULL);
482 #define BITMAP_OP_TEST_ALL_SET 0
483 #define BITMAP_OP_TEST_ALL_CLEAR 1
484 #define BITMAP_OP_SET 2
485 #define BITMAP_OP_CLEAR 3
487 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
488 sector_t sector, sector_t n_sectors, int mode)
490 unsigned long bit, end_bit, this_end_bit, page, end_page;
491 unsigned long *data;
493 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
494 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
495 (unsigned long long)sector,
496 (unsigned long long)n_sectors,
497 ic->sb->log2_sectors_per_block,
498 ic->log2_blocks_per_bitmap_bit,
499 mode);
500 BUG();
503 if (unlikely(!n_sectors))
504 return true;
506 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
507 end_bit = (sector + n_sectors - 1) >>
508 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
510 page = bit / (PAGE_SIZE * 8);
511 bit %= PAGE_SIZE * 8;
513 end_page = end_bit / (PAGE_SIZE * 8);
514 end_bit %= PAGE_SIZE * 8;
516 repeat:
517 if (page < end_page) {
518 this_end_bit = PAGE_SIZE * 8 - 1;
519 } else {
520 this_end_bit = end_bit;
523 data = lowmem_page_address(bitmap[page].page);
525 if (mode == BITMAP_OP_TEST_ALL_SET) {
526 while (bit <= this_end_bit) {
527 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
528 do {
529 if (data[bit / BITS_PER_LONG] != -1)
530 return false;
531 bit += BITS_PER_LONG;
532 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
533 continue;
535 if (!test_bit(bit, data))
536 return false;
537 bit++;
539 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
540 while (bit <= this_end_bit) {
541 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
542 do {
543 if (data[bit / BITS_PER_LONG] != 0)
544 return false;
545 bit += BITS_PER_LONG;
546 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
547 continue;
549 if (test_bit(bit, data))
550 return false;
551 bit++;
553 } else if (mode == BITMAP_OP_SET) {
554 while (bit <= this_end_bit) {
555 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
556 do {
557 data[bit / BITS_PER_LONG] = -1;
558 bit += BITS_PER_LONG;
559 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
560 continue;
562 __set_bit(bit, data);
563 bit++;
565 } else if (mode == BITMAP_OP_CLEAR) {
566 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
567 clear_page(data);
568 else while (bit <= this_end_bit) {
569 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
570 do {
571 data[bit / BITS_PER_LONG] = 0;
572 bit += BITS_PER_LONG;
573 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
574 continue;
576 __clear_bit(bit, data);
577 bit++;
579 } else {
580 BUG();
583 if (unlikely(page < end_page)) {
584 bit = 0;
585 page++;
586 goto repeat;
589 return true;
592 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
594 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
595 unsigned i;
597 for (i = 0; i < n_bitmap_pages; i++) {
598 unsigned long *dst_data = lowmem_page_address(dst[i].page);
599 unsigned long *src_data = lowmem_page_address(src[i].page);
600 copy_page(dst_data, src_data);
604 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
606 unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
607 unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
609 BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
610 return &ic->bbs[bitmap_block];
613 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
614 bool e, const char *function)
616 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
617 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
619 if (unlikely(section >= ic->journal_sections) ||
620 unlikely(offset >= limit)) {
621 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
622 function, section, offset, ic->journal_sections, limit);
623 BUG();
625 #endif
628 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
629 unsigned *pl_index, unsigned *pl_offset)
631 unsigned sector;
633 access_journal_check(ic, section, offset, false, "page_list_location");
635 sector = section * ic->journal_section_sectors + offset;
637 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
638 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
641 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
642 unsigned section, unsigned offset, unsigned *n_sectors)
644 unsigned pl_index, pl_offset;
645 char *va;
647 page_list_location(ic, section, offset, &pl_index, &pl_offset);
649 if (n_sectors)
650 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
652 va = lowmem_page_address(pl[pl_index].page);
654 return (struct journal_sector *)(va + pl_offset);
657 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
659 return access_page_list(ic, ic->journal, section, offset, NULL);
662 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
664 unsigned rel_sector, offset;
665 struct journal_sector *js;
667 access_journal_check(ic, section, n, true, "access_journal_entry");
669 rel_sector = n % JOURNAL_BLOCK_SECTORS;
670 offset = n / JOURNAL_BLOCK_SECTORS;
672 js = access_journal(ic, section, rel_sector);
673 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
676 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
678 n <<= ic->sb->log2_sectors_per_block;
680 n += JOURNAL_BLOCK_SECTORS;
682 access_journal_check(ic, section, n, false, "access_journal_data");
684 return access_journal(ic, section, n);
687 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
689 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
690 int r;
691 unsigned j, size;
693 desc->tfm = ic->journal_mac;
695 r = crypto_shash_init(desc);
696 if (unlikely(r)) {
697 dm_integrity_io_error(ic, "crypto_shash_init", r);
698 goto err;
701 for (j = 0; j < ic->journal_section_entries; j++) {
702 struct journal_entry *je = access_journal_entry(ic, section, j);
703 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
704 if (unlikely(r)) {
705 dm_integrity_io_error(ic, "crypto_shash_update", r);
706 goto err;
710 size = crypto_shash_digestsize(ic->journal_mac);
712 if (likely(size <= JOURNAL_MAC_SIZE)) {
713 r = crypto_shash_final(desc, result);
714 if (unlikely(r)) {
715 dm_integrity_io_error(ic, "crypto_shash_final", r);
716 goto err;
718 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
719 } else {
720 __u8 digest[HASH_MAX_DIGESTSIZE];
722 if (WARN_ON(size > sizeof(digest))) {
723 dm_integrity_io_error(ic, "digest_size", -EINVAL);
724 goto err;
726 r = crypto_shash_final(desc, digest);
727 if (unlikely(r)) {
728 dm_integrity_io_error(ic, "crypto_shash_final", r);
729 goto err;
731 memcpy(result, digest, JOURNAL_MAC_SIZE);
734 return;
735 err:
736 memset(result, 0, JOURNAL_MAC_SIZE);
739 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
741 __u8 result[JOURNAL_MAC_SIZE];
742 unsigned j;
744 if (!ic->journal_mac)
745 return;
747 section_mac(ic, section, result);
749 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
750 struct journal_sector *js = access_journal(ic, section, j);
752 if (likely(wr))
753 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
754 else {
755 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
756 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
761 static void complete_journal_op(void *context)
763 struct journal_completion *comp = context;
764 BUG_ON(!atomic_read(&comp->in_flight));
765 if (likely(atomic_dec_and_test(&comp->in_flight)))
766 complete(&comp->comp);
769 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
770 unsigned n_sections, struct journal_completion *comp)
772 struct async_submit_ctl submit;
773 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
774 unsigned pl_index, pl_offset, section_index;
775 struct page_list *source_pl, *target_pl;
777 if (likely(encrypt)) {
778 source_pl = ic->journal;
779 target_pl = ic->journal_io;
780 } else {
781 source_pl = ic->journal_io;
782 target_pl = ic->journal;
785 page_list_location(ic, section, 0, &pl_index, &pl_offset);
787 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
789 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
791 section_index = pl_index;
793 do {
794 size_t this_step;
795 struct page *src_pages[2];
796 struct page *dst_page;
798 while (unlikely(pl_index == section_index)) {
799 unsigned dummy;
800 if (likely(encrypt))
801 rw_section_mac(ic, section, true);
802 section++;
803 n_sections--;
804 if (!n_sections)
805 break;
806 page_list_location(ic, section, 0, &section_index, &dummy);
809 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
810 dst_page = target_pl[pl_index].page;
811 src_pages[0] = source_pl[pl_index].page;
812 src_pages[1] = ic->journal_xor[pl_index].page;
814 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
816 pl_index++;
817 pl_offset = 0;
818 n_bytes -= this_step;
819 } while (n_bytes);
821 BUG_ON(n_sections);
823 async_tx_issue_pending_all();
826 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
828 struct journal_completion *comp = req->data;
829 if (unlikely(err)) {
830 if (likely(err == -EINPROGRESS)) {
831 complete(&comp->ic->crypto_backoff);
832 return;
834 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
836 complete_journal_op(comp);
839 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
841 int r;
842 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
843 complete_journal_encrypt, comp);
844 if (likely(encrypt))
845 r = crypto_skcipher_encrypt(req);
846 else
847 r = crypto_skcipher_decrypt(req);
848 if (likely(!r))
849 return false;
850 if (likely(r == -EINPROGRESS))
851 return true;
852 if (likely(r == -EBUSY)) {
853 wait_for_completion(&comp->ic->crypto_backoff);
854 reinit_completion(&comp->ic->crypto_backoff);
855 return true;
857 dm_integrity_io_error(comp->ic, "encrypt", r);
858 return false;
861 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
862 unsigned n_sections, struct journal_completion *comp)
864 struct scatterlist **source_sg;
865 struct scatterlist **target_sg;
867 atomic_add(2, &comp->in_flight);
869 if (likely(encrypt)) {
870 source_sg = ic->journal_scatterlist;
871 target_sg = ic->journal_io_scatterlist;
872 } else {
873 source_sg = ic->journal_io_scatterlist;
874 target_sg = ic->journal_scatterlist;
877 do {
878 struct skcipher_request *req;
879 unsigned ivsize;
880 char *iv;
882 if (likely(encrypt))
883 rw_section_mac(ic, section, true);
885 req = ic->sk_requests[section];
886 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
887 iv = req->iv;
889 memcpy(iv, iv + ivsize, ivsize);
891 req->src = source_sg[section];
892 req->dst = target_sg[section];
894 if (unlikely(do_crypt(encrypt, req, comp)))
895 atomic_inc(&comp->in_flight);
897 section++;
898 n_sections--;
899 } while (n_sections);
901 atomic_dec(&comp->in_flight);
902 complete_journal_op(comp);
905 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
906 unsigned n_sections, struct journal_completion *comp)
908 if (ic->journal_xor)
909 return xor_journal(ic, encrypt, section, n_sections, comp);
910 else
911 return crypt_journal(ic, encrypt, section, n_sections, comp);
914 static void complete_journal_io(unsigned long error, void *context)
916 struct journal_completion *comp = context;
917 if (unlikely(error != 0))
918 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
919 complete_journal_op(comp);
922 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
923 unsigned sector, unsigned n_sectors, struct journal_completion *comp)
925 struct dm_io_request io_req;
926 struct dm_io_region io_loc;
927 unsigned pl_index, pl_offset;
928 int r;
930 if (unlikely(dm_integrity_failed(ic))) {
931 if (comp)
932 complete_journal_io(-1UL, comp);
933 return;
936 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
937 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
939 io_req.bi_op = op;
940 io_req.bi_op_flags = op_flags;
941 io_req.mem.type = DM_IO_PAGE_LIST;
942 if (ic->journal_io)
943 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
944 else
945 io_req.mem.ptr.pl = &ic->journal[pl_index];
946 io_req.mem.offset = pl_offset;
947 if (likely(comp != NULL)) {
948 io_req.notify.fn = complete_journal_io;
949 io_req.notify.context = comp;
950 } else {
951 io_req.notify.fn = NULL;
953 io_req.client = ic->io;
954 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
955 io_loc.sector = ic->start + SB_SECTORS + sector;
956 io_loc.count = n_sectors;
958 r = dm_io(&io_req, 1, &io_loc, NULL);
959 if (unlikely(r)) {
960 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
961 if (comp) {
962 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
963 complete_journal_io(-1UL, comp);
968 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
969 unsigned n_sections, struct journal_completion *comp)
971 unsigned sector, n_sectors;
973 sector = section * ic->journal_section_sectors;
974 n_sectors = n_sections * ic->journal_section_sectors;
976 rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
979 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
981 struct journal_completion io_comp;
982 struct journal_completion crypt_comp_1;
983 struct journal_completion crypt_comp_2;
984 unsigned i;
986 io_comp.ic = ic;
987 init_completion(&io_comp.comp);
989 if (commit_start + commit_sections <= ic->journal_sections) {
990 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
991 if (ic->journal_io) {
992 crypt_comp_1.ic = ic;
993 init_completion(&crypt_comp_1.comp);
994 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
995 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
996 wait_for_completion_io(&crypt_comp_1.comp);
997 } else {
998 for (i = 0; i < commit_sections; i++)
999 rw_section_mac(ic, commit_start + i, true);
1001 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1002 commit_sections, &io_comp);
1003 } else {
1004 unsigned to_end;
1005 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1006 to_end = ic->journal_sections - commit_start;
1007 if (ic->journal_io) {
1008 crypt_comp_1.ic = ic;
1009 init_completion(&crypt_comp_1.comp);
1010 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1011 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1012 if (try_wait_for_completion(&crypt_comp_1.comp)) {
1013 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1014 reinit_completion(&crypt_comp_1.comp);
1015 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1016 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1017 wait_for_completion_io(&crypt_comp_1.comp);
1018 } else {
1019 crypt_comp_2.ic = ic;
1020 init_completion(&crypt_comp_2.comp);
1021 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1022 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1023 wait_for_completion_io(&crypt_comp_1.comp);
1024 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1025 wait_for_completion_io(&crypt_comp_2.comp);
1027 } else {
1028 for (i = 0; i < to_end; i++)
1029 rw_section_mac(ic, commit_start + i, true);
1030 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1031 for (i = 0; i < commit_sections - to_end; i++)
1032 rw_section_mac(ic, i, true);
1034 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1037 wait_for_completion_io(&io_comp.comp);
1040 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1041 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1043 struct dm_io_request io_req;
1044 struct dm_io_region io_loc;
1045 int r;
1046 unsigned sector, pl_index, pl_offset;
1048 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1050 if (unlikely(dm_integrity_failed(ic))) {
1051 fn(-1UL, data);
1052 return;
1055 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1057 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1058 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1060 io_req.bi_op = REQ_OP_WRITE;
1061 io_req.bi_op_flags = 0;
1062 io_req.mem.type = DM_IO_PAGE_LIST;
1063 io_req.mem.ptr.pl = &ic->journal[pl_index];
1064 io_req.mem.offset = pl_offset;
1065 io_req.notify.fn = fn;
1066 io_req.notify.context = data;
1067 io_req.client = ic->io;
1068 io_loc.bdev = ic->dev->bdev;
1069 io_loc.sector = target;
1070 io_loc.count = n_sectors;
1072 r = dm_io(&io_req, 1, &io_loc, NULL);
1073 if (unlikely(r)) {
1074 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1075 fn(-1UL, data);
1079 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1081 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1082 range1->logical_sector + range1->n_sectors > range2->logical_sector;
1085 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1087 struct rb_node **n = &ic->in_progress.rb_node;
1088 struct rb_node *parent;
1090 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1092 if (likely(check_waiting)) {
1093 struct dm_integrity_range *range;
1094 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1095 if (unlikely(ranges_overlap(range, new_range)))
1096 return false;
1100 parent = NULL;
1102 while (*n) {
1103 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1105 parent = *n;
1106 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1107 n = &range->node.rb_left;
1108 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1109 n = &range->node.rb_right;
1110 } else {
1111 return false;
1115 rb_link_node(&new_range->node, parent, n);
1116 rb_insert_color(&new_range->node, &ic->in_progress);
1118 return true;
1121 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1123 rb_erase(&range->node, &ic->in_progress);
1124 while (unlikely(!list_empty(&ic->wait_list))) {
1125 struct dm_integrity_range *last_range =
1126 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1127 struct task_struct *last_range_task;
1128 last_range_task = last_range->task;
1129 list_del(&last_range->wait_entry);
1130 if (!add_new_range(ic, last_range, false)) {
1131 last_range->task = last_range_task;
1132 list_add(&last_range->wait_entry, &ic->wait_list);
1133 break;
1135 last_range->waiting = false;
1136 wake_up_process(last_range_task);
1140 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1142 unsigned long flags;
1144 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1145 remove_range_unlocked(ic, range);
1146 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1149 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1151 new_range->waiting = true;
1152 list_add_tail(&new_range->wait_entry, &ic->wait_list);
1153 new_range->task = current;
1154 do {
1155 __set_current_state(TASK_UNINTERRUPTIBLE);
1156 spin_unlock_irq(&ic->endio_wait.lock);
1157 io_schedule();
1158 spin_lock_irq(&ic->endio_wait.lock);
1159 } while (unlikely(new_range->waiting));
1162 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1164 if (unlikely(!add_new_range(ic, new_range, true)))
1165 wait_and_add_new_range(ic, new_range);
1168 static void init_journal_node(struct journal_node *node)
1170 RB_CLEAR_NODE(&node->node);
1171 node->sector = (sector_t)-1;
1174 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1176 struct rb_node **link;
1177 struct rb_node *parent;
1179 node->sector = sector;
1180 BUG_ON(!RB_EMPTY_NODE(&node->node));
1182 link = &ic->journal_tree_root.rb_node;
1183 parent = NULL;
1185 while (*link) {
1186 struct journal_node *j;
1187 parent = *link;
1188 j = container_of(parent, struct journal_node, node);
1189 if (sector < j->sector)
1190 link = &j->node.rb_left;
1191 else
1192 link = &j->node.rb_right;
1195 rb_link_node(&node->node, parent, link);
1196 rb_insert_color(&node->node, &ic->journal_tree_root);
1199 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1201 BUG_ON(RB_EMPTY_NODE(&node->node));
1202 rb_erase(&node->node, &ic->journal_tree_root);
1203 init_journal_node(node);
1206 #define NOT_FOUND (-1U)
1208 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1210 struct rb_node *n = ic->journal_tree_root.rb_node;
1211 unsigned found = NOT_FOUND;
1212 *next_sector = (sector_t)-1;
1213 while (n) {
1214 struct journal_node *j = container_of(n, struct journal_node, node);
1215 if (sector == j->sector) {
1216 found = j - ic->journal_tree;
1218 if (sector < j->sector) {
1219 *next_sector = j->sector;
1220 n = j->node.rb_left;
1221 } else {
1222 n = j->node.rb_right;
1226 return found;
1229 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1231 struct journal_node *node, *next_node;
1232 struct rb_node *next;
1234 if (unlikely(pos >= ic->journal_entries))
1235 return false;
1236 node = &ic->journal_tree[pos];
1237 if (unlikely(RB_EMPTY_NODE(&node->node)))
1238 return false;
1239 if (unlikely(node->sector != sector))
1240 return false;
1242 next = rb_next(&node->node);
1243 if (unlikely(!next))
1244 return true;
1246 next_node = container_of(next, struct journal_node, node);
1247 return next_node->sector != sector;
1250 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1252 struct rb_node *next;
1253 struct journal_node *next_node;
1254 unsigned next_section;
1256 BUG_ON(RB_EMPTY_NODE(&node->node));
1258 next = rb_next(&node->node);
1259 if (unlikely(!next))
1260 return false;
1262 next_node = container_of(next, struct journal_node, node);
1264 if (next_node->sector != node->sector)
1265 return false;
1267 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1268 if (next_section >= ic->committed_section &&
1269 next_section < ic->committed_section + ic->n_committed_sections)
1270 return true;
1271 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1272 return true;
1274 return false;
1277 #define TAG_READ 0
1278 #define TAG_WRITE 1
1279 #define TAG_CMP 2
1281 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1282 unsigned *metadata_offset, unsigned total_size, int op)
1284 do {
1285 unsigned char *data, *dp;
1286 struct dm_buffer *b;
1287 unsigned to_copy;
1288 int r;
1290 r = dm_integrity_failed(ic);
1291 if (unlikely(r))
1292 return r;
1294 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1295 if (IS_ERR(data))
1296 return PTR_ERR(data);
1298 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1299 dp = data + *metadata_offset;
1300 if (op == TAG_READ) {
1301 memcpy(tag, dp, to_copy);
1302 } else if (op == TAG_WRITE) {
1303 memcpy(dp, tag, to_copy);
1304 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1305 } else {
1306 /* e.g.: op == TAG_CMP */
1307 if (unlikely(memcmp(dp, tag, to_copy))) {
1308 unsigned i;
1310 for (i = 0; i < to_copy; i++) {
1311 if (dp[i] != tag[i])
1312 break;
1313 total_size--;
1315 dm_bufio_release(b);
1316 return total_size;
1319 dm_bufio_release(b);
1321 tag += to_copy;
1322 *metadata_offset += to_copy;
1323 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1324 (*metadata_block)++;
1325 *metadata_offset = 0;
1327 total_size -= to_copy;
1328 } while (unlikely(total_size));
1330 return 0;
1333 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1335 int r;
1336 r = dm_bufio_write_dirty_buffers(ic->bufio);
1337 if (unlikely(r))
1338 dm_integrity_io_error(ic, "writing tags", r);
1341 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1343 DECLARE_WAITQUEUE(wait, current);
1344 __add_wait_queue(&ic->endio_wait, &wait);
1345 __set_current_state(TASK_UNINTERRUPTIBLE);
1346 spin_unlock_irq(&ic->endio_wait.lock);
1347 io_schedule();
1348 spin_lock_irq(&ic->endio_wait.lock);
1349 __remove_wait_queue(&ic->endio_wait, &wait);
1352 static void autocommit_fn(struct timer_list *t)
1354 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1356 if (likely(!dm_integrity_failed(ic)))
1357 queue_work(ic->commit_wq, &ic->commit_work);
1360 static void schedule_autocommit(struct dm_integrity_c *ic)
1362 if (!timer_pending(&ic->autocommit_timer))
1363 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1366 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1368 struct bio *bio;
1369 unsigned long flags;
1371 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1372 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1373 bio_list_add(&ic->flush_bio_list, bio);
1374 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1376 queue_work(ic->commit_wq, &ic->commit_work);
1379 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1381 int r = dm_integrity_failed(ic);
1382 if (unlikely(r) && !bio->bi_status)
1383 bio->bi_status = errno_to_blk_status(r);
1384 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1385 unsigned long flags;
1386 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1387 bio_list_add(&ic->synchronous_bios, bio);
1388 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1389 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1390 return;
1392 bio_endio(bio);
1395 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1397 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1399 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1400 submit_flush_bio(ic, dio);
1401 else
1402 do_endio(ic, bio);
1405 static void dec_in_flight(struct dm_integrity_io *dio)
1407 if (atomic_dec_and_test(&dio->in_flight)) {
1408 struct dm_integrity_c *ic = dio->ic;
1409 struct bio *bio;
1411 remove_range(ic, &dio->range);
1413 if (unlikely(dio->write))
1414 schedule_autocommit(ic);
1416 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1418 if (unlikely(dio->bi_status) && !bio->bi_status)
1419 bio->bi_status = dio->bi_status;
1420 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1421 dio->range.logical_sector += dio->range.n_sectors;
1422 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1423 INIT_WORK(&dio->work, integrity_bio_wait);
1424 queue_work(ic->wait_wq, &dio->work);
1425 return;
1427 do_endio_flush(ic, dio);
1431 static void integrity_end_io(struct bio *bio)
1433 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1435 bio->bi_iter = dio->orig_bi_iter;
1436 bio->bi_disk = dio->orig_bi_disk;
1437 bio->bi_partno = dio->orig_bi_partno;
1438 if (dio->orig_bi_integrity) {
1439 bio->bi_integrity = dio->orig_bi_integrity;
1440 bio->bi_opf |= REQ_INTEGRITY;
1442 bio->bi_end_io = dio->orig_bi_end_io;
1444 if (dio->completion)
1445 complete(dio->completion);
1447 dec_in_flight(dio);
1450 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1451 const char *data, char *result)
1453 __u64 sector_le = cpu_to_le64(sector);
1454 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1455 int r;
1456 unsigned digest_size;
1458 req->tfm = ic->internal_hash;
1460 r = crypto_shash_init(req);
1461 if (unlikely(r < 0)) {
1462 dm_integrity_io_error(ic, "crypto_shash_init", r);
1463 goto failed;
1466 r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1467 if (unlikely(r < 0)) {
1468 dm_integrity_io_error(ic, "crypto_shash_update", r);
1469 goto failed;
1472 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1473 if (unlikely(r < 0)) {
1474 dm_integrity_io_error(ic, "crypto_shash_update", r);
1475 goto failed;
1478 r = crypto_shash_final(req, result);
1479 if (unlikely(r < 0)) {
1480 dm_integrity_io_error(ic, "crypto_shash_final", r);
1481 goto failed;
1484 digest_size = crypto_shash_digestsize(ic->internal_hash);
1485 if (unlikely(digest_size < ic->tag_size))
1486 memset(result + digest_size, 0, ic->tag_size - digest_size);
1488 return;
1490 failed:
1491 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1492 get_random_bytes(result, ic->tag_size);
1495 static void integrity_metadata(struct work_struct *w)
1497 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1498 struct dm_integrity_c *ic = dio->ic;
1500 int r;
1502 if (ic->internal_hash) {
1503 struct bvec_iter iter;
1504 struct bio_vec bv;
1505 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1506 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1507 char *checksums;
1508 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1509 char checksums_onstack[HASH_MAX_DIGESTSIZE];
1510 unsigned sectors_to_process = dio->range.n_sectors;
1511 sector_t sector = dio->range.logical_sector;
1513 if (unlikely(ic->mode == 'R'))
1514 goto skip_io;
1516 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1517 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1518 if (!checksums) {
1519 checksums = checksums_onstack;
1520 if (WARN_ON(extra_space &&
1521 digest_size > sizeof(checksums_onstack))) {
1522 r = -EINVAL;
1523 goto error;
1527 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
1528 unsigned pos;
1529 char *mem, *checksums_ptr;
1531 again:
1532 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1533 pos = 0;
1534 checksums_ptr = checksums;
1535 do {
1536 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1537 checksums_ptr += ic->tag_size;
1538 sectors_to_process -= ic->sectors_per_block;
1539 pos += ic->sectors_per_block << SECTOR_SHIFT;
1540 sector += ic->sectors_per_block;
1541 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1542 kunmap_atomic(mem);
1544 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1545 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1546 if (unlikely(r)) {
1547 if (r > 0) {
1548 DMERR_LIMIT("Checksum failed at sector 0x%llx",
1549 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1550 r = -EILSEQ;
1551 atomic64_inc(&ic->number_of_mismatches);
1553 if (likely(checksums != checksums_onstack))
1554 kfree(checksums);
1555 goto error;
1558 if (!sectors_to_process)
1559 break;
1561 if (unlikely(pos < bv.bv_len)) {
1562 bv.bv_offset += pos;
1563 bv.bv_len -= pos;
1564 goto again;
1568 if (likely(checksums != checksums_onstack))
1569 kfree(checksums);
1570 } else {
1571 struct bio_integrity_payload *bip = dio->orig_bi_integrity;
1573 if (bip) {
1574 struct bio_vec biv;
1575 struct bvec_iter iter;
1576 unsigned data_to_process = dio->range.n_sectors;
1577 sector_to_block(ic, data_to_process);
1578 data_to_process *= ic->tag_size;
1580 bip_for_each_vec(biv, bip, iter) {
1581 unsigned char *tag;
1582 unsigned this_len;
1584 BUG_ON(PageHighMem(biv.bv_page));
1585 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1586 this_len = min(biv.bv_len, data_to_process);
1587 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1588 this_len, !dio->write ? TAG_READ : TAG_WRITE);
1589 if (unlikely(r))
1590 goto error;
1591 data_to_process -= this_len;
1592 if (!data_to_process)
1593 break;
1597 skip_io:
1598 dec_in_flight(dio);
1599 return;
1600 error:
1601 dio->bi_status = errno_to_blk_status(r);
1602 dec_in_flight(dio);
1605 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1607 struct dm_integrity_c *ic = ti->private;
1608 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1609 struct bio_integrity_payload *bip;
1611 sector_t area, offset;
1613 dio->ic = ic;
1614 dio->bi_status = 0;
1616 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1617 submit_flush_bio(ic, dio);
1618 return DM_MAPIO_SUBMITTED;
1621 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1622 dio->write = bio_op(bio) == REQ_OP_WRITE;
1623 dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1624 if (unlikely(dio->fua)) {
1626 * Don't pass down the FUA flag because we have to flush
1627 * disk cache anyway.
1629 bio->bi_opf &= ~REQ_FUA;
1631 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1632 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1633 (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1634 (unsigned long long)ic->provided_data_sectors);
1635 return DM_MAPIO_KILL;
1637 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1638 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1639 ic->sectors_per_block,
1640 (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1641 return DM_MAPIO_KILL;
1644 if (ic->sectors_per_block > 1) {
1645 struct bvec_iter iter;
1646 struct bio_vec bv;
1647 bio_for_each_segment(bv, bio, iter) {
1648 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1649 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1650 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1651 return DM_MAPIO_KILL;
1656 bip = bio_integrity(bio);
1657 if (!ic->internal_hash) {
1658 if (bip) {
1659 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1660 if (ic->log2_tag_size >= 0)
1661 wanted_tag_size <<= ic->log2_tag_size;
1662 else
1663 wanted_tag_size *= ic->tag_size;
1664 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1665 DMERR("Invalid integrity data size %u, expected %u",
1666 bip->bip_iter.bi_size, wanted_tag_size);
1667 return DM_MAPIO_KILL;
1670 } else {
1671 if (unlikely(bip != NULL)) {
1672 DMERR("Unexpected integrity data when using internal hash");
1673 return DM_MAPIO_KILL;
1677 if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1678 return DM_MAPIO_KILL;
1680 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1681 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1682 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1684 dm_integrity_map_continue(dio, true);
1685 return DM_MAPIO_SUBMITTED;
1688 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1689 unsigned journal_section, unsigned journal_entry)
1691 struct dm_integrity_c *ic = dio->ic;
1692 sector_t logical_sector;
1693 unsigned n_sectors;
1695 logical_sector = dio->range.logical_sector;
1696 n_sectors = dio->range.n_sectors;
1697 do {
1698 struct bio_vec bv = bio_iovec(bio);
1699 char *mem;
1701 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1702 bv.bv_len = n_sectors << SECTOR_SHIFT;
1703 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1704 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1705 retry_kmap:
1706 mem = kmap_atomic(bv.bv_page);
1707 if (likely(dio->write))
1708 flush_dcache_page(bv.bv_page);
1710 do {
1711 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1713 if (unlikely(!dio->write)) {
1714 struct journal_sector *js;
1715 char *mem_ptr;
1716 unsigned s;
1718 if (unlikely(journal_entry_is_inprogress(je))) {
1719 flush_dcache_page(bv.bv_page);
1720 kunmap_atomic(mem);
1722 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1723 goto retry_kmap;
1725 smp_rmb();
1726 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1727 js = access_journal_data(ic, journal_section, journal_entry);
1728 mem_ptr = mem + bv.bv_offset;
1729 s = 0;
1730 do {
1731 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1732 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1733 js++;
1734 mem_ptr += 1 << SECTOR_SHIFT;
1735 } while (++s < ic->sectors_per_block);
1736 #ifdef INTERNAL_VERIFY
1737 if (ic->internal_hash) {
1738 char checksums_onstack[max(HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1740 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1741 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1742 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1743 (unsigned long long)logical_sector);
1746 #endif
1749 if (!ic->internal_hash) {
1750 struct bio_integrity_payload *bip = bio_integrity(bio);
1751 unsigned tag_todo = ic->tag_size;
1752 char *tag_ptr = journal_entry_tag(ic, je);
1754 if (bip) do {
1755 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1756 unsigned tag_now = min(biv.bv_len, tag_todo);
1757 char *tag_addr;
1758 BUG_ON(PageHighMem(biv.bv_page));
1759 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1760 if (likely(dio->write))
1761 memcpy(tag_ptr, tag_addr, tag_now);
1762 else
1763 memcpy(tag_addr, tag_ptr, tag_now);
1764 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1765 tag_ptr += tag_now;
1766 tag_todo -= tag_now;
1767 } while (unlikely(tag_todo)); else {
1768 if (likely(dio->write))
1769 memset(tag_ptr, 0, tag_todo);
1773 if (likely(dio->write)) {
1774 struct journal_sector *js;
1775 unsigned s;
1777 js = access_journal_data(ic, journal_section, journal_entry);
1778 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1780 s = 0;
1781 do {
1782 je->last_bytes[s] = js[s].commit_id;
1783 } while (++s < ic->sectors_per_block);
1785 if (ic->internal_hash) {
1786 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1787 if (unlikely(digest_size > ic->tag_size)) {
1788 char checksums_onstack[HASH_MAX_DIGESTSIZE];
1789 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1790 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1791 } else
1792 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1795 journal_entry_set_sector(je, logical_sector);
1797 logical_sector += ic->sectors_per_block;
1799 journal_entry++;
1800 if (unlikely(journal_entry == ic->journal_section_entries)) {
1801 journal_entry = 0;
1802 journal_section++;
1803 wraparound_section(ic, &journal_section);
1806 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1807 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1809 if (unlikely(!dio->write))
1810 flush_dcache_page(bv.bv_page);
1811 kunmap_atomic(mem);
1812 } while (n_sectors);
1814 if (likely(dio->write)) {
1815 smp_mb();
1816 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1817 wake_up(&ic->copy_to_journal_wait);
1818 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1819 queue_work(ic->commit_wq, &ic->commit_work);
1820 } else {
1821 schedule_autocommit(ic);
1823 } else {
1824 remove_range(ic, &dio->range);
1827 if (unlikely(bio->bi_iter.bi_size)) {
1828 sector_t area, offset;
1830 dio->range.logical_sector = logical_sector;
1831 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1832 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1833 return true;
1836 return false;
1839 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1841 struct dm_integrity_c *ic = dio->ic;
1842 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1843 unsigned journal_section, journal_entry;
1844 unsigned journal_read_pos;
1845 struct completion read_comp;
1846 bool need_sync_io = ic->internal_hash && !dio->write;
1848 if (need_sync_io && from_map) {
1849 INIT_WORK(&dio->work, integrity_bio_wait);
1850 queue_work(ic->metadata_wq, &dio->work);
1851 return;
1854 lock_retry:
1855 spin_lock_irq(&ic->endio_wait.lock);
1856 retry:
1857 if (unlikely(dm_integrity_failed(ic))) {
1858 spin_unlock_irq(&ic->endio_wait.lock);
1859 do_endio(ic, bio);
1860 return;
1862 dio->range.n_sectors = bio_sectors(bio);
1863 journal_read_pos = NOT_FOUND;
1864 if (likely(ic->mode == 'J')) {
1865 if (dio->write) {
1866 unsigned next_entry, i, pos;
1867 unsigned ws, we, range_sectors;
1869 dio->range.n_sectors = min(dio->range.n_sectors,
1870 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
1871 if (unlikely(!dio->range.n_sectors)) {
1872 if (from_map)
1873 goto offload_to_thread;
1874 sleep_on_endio_wait(ic);
1875 goto retry;
1877 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1878 ic->free_sectors -= range_sectors;
1879 journal_section = ic->free_section;
1880 journal_entry = ic->free_section_entry;
1882 next_entry = ic->free_section_entry + range_sectors;
1883 ic->free_section_entry = next_entry % ic->journal_section_entries;
1884 ic->free_section += next_entry / ic->journal_section_entries;
1885 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1886 wraparound_section(ic, &ic->free_section);
1888 pos = journal_section * ic->journal_section_entries + journal_entry;
1889 ws = journal_section;
1890 we = journal_entry;
1891 i = 0;
1892 do {
1893 struct journal_entry *je;
1895 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1896 pos++;
1897 if (unlikely(pos >= ic->journal_entries))
1898 pos = 0;
1900 je = access_journal_entry(ic, ws, we);
1901 BUG_ON(!journal_entry_is_unused(je));
1902 journal_entry_set_inprogress(je);
1903 we++;
1904 if (unlikely(we == ic->journal_section_entries)) {
1905 we = 0;
1906 ws++;
1907 wraparound_section(ic, &ws);
1909 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1911 spin_unlock_irq(&ic->endio_wait.lock);
1912 goto journal_read_write;
1913 } else {
1914 sector_t next_sector;
1915 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1916 if (likely(journal_read_pos == NOT_FOUND)) {
1917 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1918 dio->range.n_sectors = next_sector - dio->range.logical_sector;
1919 } else {
1920 unsigned i;
1921 unsigned jp = journal_read_pos + 1;
1922 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1923 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1924 break;
1926 dio->range.n_sectors = i;
1930 if (unlikely(!add_new_range(ic, &dio->range, true))) {
1932 * We must not sleep in the request routine because it could
1933 * stall bios on current->bio_list.
1934 * So, we offload the bio to a workqueue if we have to sleep.
1936 if (from_map) {
1937 offload_to_thread:
1938 spin_unlock_irq(&ic->endio_wait.lock);
1939 INIT_WORK(&dio->work, integrity_bio_wait);
1940 queue_work(ic->wait_wq, &dio->work);
1941 return;
1943 wait_and_add_new_range(ic, &dio->range);
1945 spin_unlock_irq(&ic->endio_wait.lock);
1947 if (unlikely(journal_read_pos != NOT_FOUND)) {
1948 journal_section = journal_read_pos / ic->journal_section_entries;
1949 journal_entry = journal_read_pos % ic->journal_section_entries;
1950 goto journal_read_write;
1953 if (ic->mode == 'B' && dio->write) {
1954 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
1955 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
1956 struct bitmap_block_status *bbs;
1958 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
1959 spin_lock(&bbs->bio_queue_lock);
1960 bio_list_add(&bbs->bio_queue, bio);
1961 spin_unlock(&bbs->bio_queue_lock);
1962 queue_work(ic->writer_wq, &bbs->work);
1963 return;
1967 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1969 if (need_sync_io) {
1970 init_completion(&read_comp);
1971 dio->completion = &read_comp;
1972 } else
1973 dio->completion = NULL;
1975 dio->orig_bi_iter = bio->bi_iter;
1977 dio->orig_bi_disk = bio->bi_disk;
1978 dio->orig_bi_partno = bio->bi_partno;
1979 bio_set_dev(bio, ic->dev->bdev);
1981 dio->orig_bi_integrity = bio_integrity(bio);
1982 bio->bi_integrity = NULL;
1983 bio->bi_opf &= ~REQ_INTEGRITY;
1985 dio->orig_bi_end_io = bio->bi_end_io;
1986 bio->bi_end_io = integrity_end_io;
1988 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
1989 generic_make_request(bio);
1991 if (need_sync_io) {
1992 wait_for_completion_io(&read_comp);
1993 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
1994 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
1995 goto skip_check;
1996 if (ic->mode == 'B') {
1997 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
1998 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
1999 goto skip_check;
2002 if (likely(!bio->bi_status))
2003 integrity_metadata(&dio->work);
2004 else
2005 skip_check:
2006 dec_in_flight(dio);
2008 } else {
2009 INIT_WORK(&dio->work, integrity_metadata);
2010 queue_work(ic->metadata_wq, &dio->work);
2013 return;
2015 journal_read_write:
2016 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2017 goto lock_retry;
2019 do_endio_flush(ic, dio);
2023 static void integrity_bio_wait(struct work_struct *w)
2025 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2027 dm_integrity_map_continue(dio, false);
2030 static void pad_uncommitted(struct dm_integrity_c *ic)
2032 if (ic->free_section_entry) {
2033 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2034 ic->free_section_entry = 0;
2035 ic->free_section++;
2036 wraparound_section(ic, &ic->free_section);
2037 ic->n_uncommitted_sections++;
2039 if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2040 (ic->n_uncommitted_sections + ic->n_committed_sections) *
2041 ic->journal_section_entries + ic->free_sectors)) {
2042 DMCRIT("journal_sections %u, journal_section_entries %u, "
2043 "n_uncommitted_sections %u, n_committed_sections %u, "
2044 "journal_section_entries %u, free_sectors %u",
2045 ic->journal_sections, ic->journal_section_entries,
2046 ic->n_uncommitted_sections, ic->n_committed_sections,
2047 ic->journal_section_entries, ic->free_sectors);
2051 static void integrity_commit(struct work_struct *w)
2053 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2054 unsigned commit_start, commit_sections;
2055 unsigned i, j, n;
2056 struct bio *flushes;
2058 del_timer(&ic->autocommit_timer);
2060 spin_lock_irq(&ic->endio_wait.lock);
2061 flushes = bio_list_get(&ic->flush_bio_list);
2062 if (unlikely(ic->mode != 'J')) {
2063 spin_unlock_irq(&ic->endio_wait.lock);
2064 dm_integrity_flush_buffers(ic);
2065 goto release_flush_bios;
2068 pad_uncommitted(ic);
2069 commit_start = ic->uncommitted_section;
2070 commit_sections = ic->n_uncommitted_sections;
2071 spin_unlock_irq(&ic->endio_wait.lock);
2073 if (!commit_sections)
2074 goto release_flush_bios;
2076 i = commit_start;
2077 for (n = 0; n < commit_sections; n++) {
2078 for (j = 0; j < ic->journal_section_entries; j++) {
2079 struct journal_entry *je;
2080 je = access_journal_entry(ic, i, j);
2081 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2083 for (j = 0; j < ic->journal_section_sectors; j++) {
2084 struct journal_sector *js;
2085 js = access_journal(ic, i, j);
2086 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2088 i++;
2089 if (unlikely(i >= ic->journal_sections))
2090 ic->commit_seq = next_commit_seq(ic->commit_seq);
2091 wraparound_section(ic, &i);
2093 smp_rmb();
2095 write_journal(ic, commit_start, commit_sections);
2097 spin_lock_irq(&ic->endio_wait.lock);
2098 ic->uncommitted_section += commit_sections;
2099 wraparound_section(ic, &ic->uncommitted_section);
2100 ic->n_uncommitted_sections -= commit_sections;
2101 ic->n_committed_sections += commit_sections;
2102 spin_unlock_irq(&ic->endio_wait.lock);
2104 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2105 queue_work(ic->writer_wq, &ic->writer_work);
2107 release_flush_bios:
2108 while (flushes) {
2109 struct bio *next = flushes->bi_next;
2110 flushes->bi_next = NULL;
2111 do_endio(ic, flushes);
2112 flushes = next;
2116 static void complete_copy_from_journal(unsigned long error, void *context)
2118 struct journal_io *io = context;
2119 struct journal_completion *comp = io->comp;
2120 struct dm_integrity_c *ic = comp->ic;
2121 remove_range(ic, &io->range);
2122 mempool_free(io, &ic->journal_io_mempool);
2123 if (unlikely(error != 0))
2124 dm_integrity_io_error(ic, "copying from journal", -EIO);
2125 complete_journal_op(comp);
2128 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2129 struct journal_entry *je)
2131 unsigned s = 0;
2132 do {
2133 js->commit_id = je->last_bytes[s];
2134 js++;
2135 } while (++s < ic->sectors_per_block);
2138 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2139 unsigned write_sections, bool from_replay)
2141 unsigned i, j, n;
2142 struct journal_completion comp;
2143 struct blk_plug plug;
2145 blk_start_plug(&plug);
2147 comp.ic = ic;
2148 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2149 init_completion(&comp.comp);
2151 i = write_start;
2152 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2153 #ifndef INTERNAL_VERIFY
2154 if (unlikely(from_replay))
2155 #endif
2156 rw_section_mac(ic, i, false);
2157 for (j = 0; j < ic->journal_section_entries; j++) {
2158 struct journal_entry *je = access_journal_entry(ic, i, j);
2159 sector_t sec, area, offset;
2160 unsigned k, l, next_loop;
2161 sector_t metadata_block;
2162 unsigned metadata_offset;
2163 struct journal_io *io;
2165 if (journal_entry_is_unused(je))
2166 continue;
2167 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2168 sec = journal_entry_get_sector(je);
2169 if (unlikely(from_replay)) {
2170 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2171 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2172 sec &= ~(sector_t)(ic->sectors_per_block - 1);
2175 get_area_and_offset(ic, sec, &area, &offset);
2176 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2177 for (k = j + 1; k < ic->journal_section_entries; k++) {
2178 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2179 sector_t sec2, area2, offset2;
2180 if (journal_entry_is_unused(je2))
2181 break;
2182 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2183 sec2 = journal_entry_get_sector(je2);
2184 get_area_and_offset(ic, sec2, &area2, &offset2);
2185 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2186 break;
2187 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2189 next_loop = k - 1;
2191 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2192 io->comp = &comp;
2193 io->range.logical_sector = sec;
2194 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2196 spin_lock_irq(&ic->endio_wait.lock);
2197 add_new_range_and_wait(ic, &io->range);
2199 if (likely(!from_replay)) {
2200 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2202 /* don't write if there is newer committed sector */
2203 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2204 struct journal_entry *je2 = access_journal_entry(ic, i, j);
2206 journal_entry_set_unused(je2);
2207 remove_journal_node(ic, &section_node[j]);
2208 j++;
2209 sec += ic->sectors_per_block;
2210 offset += ic->sectors_per_block;
2212 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2213 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2215 journal_entry_set_unused(je2);
2216 remove_journal_node(ic, &section_node[k - 1]);
2217 k--;
2219 if (j == k) {
2220 remove_range_unlocked(ic, &io->range);
2221 spin_unlock_irq(&ic->endio_wait.lock);
2222 mempool_free(io, &ic->journal_io_mempool);
2223 goto skip_io;
2225 for (l = j; l < k; l++) {
2226 remove_journal_node(ic, &section_node[l]);
2229 spin_unlock_irq(&ic->endio_wait.lock);
2231 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2232 for (l = j; l < k; l++) {
2233 int r;
2234 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2236 if (
2237 #ifndef INTERNAL_VERIFY
2238 unlikely(from_replay) &&
2239 #endif
2240 ic->internal_hash) {
2241 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2243 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2244 (char *)access_journal_data(ic, i, l), test_tag);
2245 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2246 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2249 journal_entry_set_unused(je2);
2250 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2251 ic->tag_size, TAG_WRITE);
2252 if (unlikely(r)) {
2253 dm_integrity_io_error(ic, "reading tags", r);
2257 atomic_inc(&comp.in_flight);
2258 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2259 (k - j) << ic->sb->log2_sectors_per_block,
2260 get_data_sector(ic, area, offset),
2261 complete_copy_from_journal, io);
2262 skip_io:
2263 j = next_loop;
2267 dm_bufio_write_dirty_buffers_async(ic->bufio);
2269 blk_finish_plug(&plug);
2271 complete_journal_op(&comp);
2272 wait_for_completion_io(&comp.comp);
2274 dm_integrity_flush_buffers(ic);
2277 static void integrity_writer(struct work_struct *w)
2279 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2280 unsigned write_start, write_sections;
2282 unsigned prev_free_sectors;
2284 /* the following test is not needed, but it tests the replay code */
2285 if (READ_ONCE(ic->suspending) && !ic->meta_dev)
2286 return;
2288 spin_lock_irq(&ic->endio_wait.lock);
2289 write_start = ic->committed_section;
2290 write_sections = ic->n_committed_sections;
2291 spin_unlock_irq(&ic->endio_wait.lock);
2293 if (!write_sections)
2294 return;
2296 do_journal_write(ic, write_start, write_sections, false);
2298 spin_lock_irq(&ic->endio_wait.lock);
2300 ic->committed_section += write_sections;
2301 wraparound_section(ic, &ic->committed_section);
2302 ic->n_committed_sections -= write_sections;
2304 prev_free_sectors = ic->free_sectors;
2305 ic->free_sectors += write_sections * ic->journal_section_entries;
2306 if (unlikely(!prev_free_sectors))
2307 wake_up_locked(&ic->endio_wait);
2309 spin_unlock_irq(&ic->endio_wait.lock);
2312 static void recalc_write_super(struct dm_integrity_c *ic)
2314 int r;
2316 dm_integrity_flush_buffers(ic);
2317 if (dm_integrity_failed(ic))
2318 return;
2320 sb_set_version(ic);
2321 r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2322 if (unlikely(r))
2323 dm_integrity_io_error(ic, "writing superblock", r);
2326 static void integrity_recalc(struct work_struct *w)
2328 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2329 struct dm_integrity_range range;
2330 struct dm_io_request io_req;
2331 struct dm_io_region io_loc;
2332 sector_t area, offset;
2333 sector_t metadata_block;
2334 unsigned metadata_offset;
2335 sector_t logical_sector, n_sectors;
2336 __u8 *t;
2337 unsigned i;
2338 int r;
2339 unsigned super_counter = 0;
2341 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2343 spin_lock_irq(&ic->endio_wait.lock);
2345 next_chunk:
2347 if (unlikely(READ_ONCE(ic->suspending)))
2348 goto unlock_ret;
2350 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2351 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2352 if (ic->mode == 'B') {
2353 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2354 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2356 goto unlock_ret;
2359 get_area_and_offset(ic, range.logical_sector, &area, &offset);
2360 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2361 if (!ic->meta_dev)
2362 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2364 add_new_range_and_wait(ic, &range);
2365 spin_unlock_irq(&ic->endio_wait.lock);
2366 logical_sector = range.logical_sector;
2367 n_sectors = range.n_sectors;
2369 if (ic->mode == 'B') {
2370 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2371 goto advance_and_next;
2373 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2374 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2375 logical_sector += ic->sectors_per_block;
2376 n_sectors -= ic->sectors_per_block;
2377 cond_resched();
2379 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2380 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2381 n_sectors -= ic->sectors_per_block;
2382 cond_resched();
2384 get_area_and_offset(ic, logical_sector, &area, &offset);
2387 DEBUG_print("recalculating: %lx, %lx\n", logical_sector, n_sectors);
2389 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2390 recalc_write_super(ic);
2391 if (ic->mode == 'B') {
2392 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2394 super_counter = 0;
2397 if (unlikely(dm_integrity_failed(ic)))
2398 goto err;
2400 io_req.bi_op = REQ_OP_READ;
2401 io_req.bi_op_flags = 0;
2402 io_req.mem.type = DM_IO_VMA;
2403 io_req.mem.ptr.addr = ic->recalc_buffer;
2404 io_req.notify.fn = NULL;
2405 io_req.client = ic->io;
2406 io_loc.bdev = ic->dev->bdev;
2407 io_loc.sector = get_data_sector(ic, area, offset);
2408 io_loc.count = n_sectors;
2410 r = dm_io(&io_req, 1, &io_loc, NULL);
2411 if (unlikely(r)) {
2412 dm_integrity_io_error(ic, "reading data", r);
2413 goto err;
2416 t = ic->recalc_tags;
2417 for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2418 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2419 t += ic->tag_size;
2422 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2424 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2425 if (unlikely(r)) {
2426 dm_integrity_io_error(ic, "writing tags", r);
2427 goto err;
2430 advance_and_next:
2431 cond_resched();
2433 spin_lock_irq(&ic->endio_wait.lock);
2434 remove_range_unlocked(ic, &range);
2435 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2436 goto next_chunk;
2438 err:
2439 remove_range(ic, &range);
2440 return;
2442 unlock_ret:
2443 spin_unlock_irq(&ic->endio_wait.lock);
2445 recalc_write_super(ic);
2448 static void bitmap_block_work(struct work_struct *w)
2450 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2451 struct dm_integrity_c *ic = bbs->ic;
2452 struct bio *bio;
2453 struct bio_list bio_queue;
2454 struct bio_list waiting;
2456 bio_list_init(&waiting);
2458 spin_lock(&bbs->bio_queue_lock);
2459 bio_queue = bbs->bio_queue;
2460 bio_list_init(&bbs->bio_queue);
2461 spin_unlock(&bbs->bio_queue_lock);
2463 while ((bio = bio_list_pop(&bio_queue))) {
2464 struct dm_integrity_io *dio;
2466 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2468 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2469 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2470 remove_range(ic, &dio->range);
2471 INIT_WORK(&dio->work, integrity_bio_wait);
2472 queue_work(ic->wait_wq, &dio->work);
2473 } else {
2474 block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2475 dio->range.n_sectors, BITMAP_OP_SET);
2476 bio_list_add(&waiting, bio);
2480 if (bio_list_empty(&waiting))
2481 return;
2483 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2484 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2485 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2487 while ((bio = bio_list_pop(&waiting))) {
2488 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2490 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2491 dio->range.n_sectors, BITMAP_OP_SET);
2493 remove_range(ic, &dio->range);
2494 INIT_WORK(&dio->work, integrity_bio_wait);
2495 queue_work(ic->wait_wq, &dio->work);
2498 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2501 static void bitmap_flush_work(struct work_struct *work)
2503 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2504 struct dm_integrity_range range;
2505 unsigned long limit;
2506 struct bio *bio;
2508 dm_integrity_flush_buffers(ic);
2510 range.logical_sector = 0;
2511 range.n_sectors = ic->provided_data_sectors;
2513 spin_lock_irq(&ic->endio_wait.lock);
2514 add_new_range_and_wait(ic, &range);
2515 spin_unlock_irq(&ic->endio_wait.lock);
2517 dm_integrity_flush_buffers(ic);
2518 if (ic->meta_dev)
2519 blkdev_issue_flush(ic->dev->bdev, GFP_NOIO, NULL);
2521 limit = ic->provided_data_sectors;
2522 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2523 limit = le64_to_cpu(ic->sb->recalc_sector)
2524 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2525 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2527 /*DEBUG_print("zeroing journal\n");*/
2528 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2529 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2531 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2532 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2534 spin_lock_irq(&ic->endio_wait.lock);
2535 remove_range_unlocked(ic, &range);
2536 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2537 bio_endio(bio);
2538 spin_unlock_irq(&ic->endio_wait.lock);
2539 spin_lock_irq(&ic->endio_wait.lock);
2541 spin_unlock_irq(&ic->endio_wait.lock);
2545 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2546 unsigned n_sections, unsigned char commit_seq)
2548 unsigned i, j, n;
2550 if (!n_sections)
2551 return;
2553 for (n = 0; n < n_sections; n++) {
2554 i = start_section + n;
2555 wraparound_section(ic, &i);
2556 for (j = 0; j < ic->journal_section_sectors; j++) {
2557 struct journal_sector *js = access_journal(ic, i, j);
2558 memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2559 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2561 for (j = 0; j < ic->journal_section_entries; j++) {
2562 struct journal_entry *je = access_journal_entry(ic, i, j);
2563 journal_entry_set_unused(je);
2567 write_journal(ic, start_section, n_sections);
2570 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2572 unsigned char k;
2573 for (k = 0; k < N_COMMIT_IDS; k++) {
2574 if (dm_integrity_commit_id(ic, i, j, k) == id)
2575 return k;
2577 dm_integrity_io_error(ic, "journal commit id", -EIO);
2578 return -EIO;
2581 static void replay_journal(struct dm_integrity_c *ic)
2583 unsigned i, j;
2584 bool used_commit_ids[N_COMMIT_IDS];
2585 unsigned max_commit_id_sections[N_COMMIT_IDS];
2586 unsigned write_start, write_sections;
2587 unsigned continue_section;
2588 bool journal_empty;
2589 unsigned char unused, last_used, want_commit_seq;
2591 if (ic->mode == 'R')
2592 return;
2594 if (ic->journal_uptodate)
2595 return;
2597 last_used = 0;
2598 write_start = 0;
2600 if (!ic->just_formatted) {
2601 DEBUG_print("reading journal\n");
2602 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2603 if (ic->journal_io)
2604 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2605 if (ic->journal_io) {
2606 struct journal_completion crypt_comp;
2607 crypt_comp.ic = ic;
2608 init_completion(&crypt_comp.comp);
2609 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2610 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2611 wait_for_completion(&crypt_comp.comp);
2613 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2616 if (dm_integrity_failed(ic))
2617 goto clear_journal;
2619 journal_empty = true;
2620 memset(used_commit_ids, 0, sizeof used_commit_ids);
2621 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2622 for (i = 0; i < ic->journal_sections; i++) {
2623 for (j = 0; j < ic->journal_section_sectors; j++) {
2624 int k;
2625 struct journal_sector *js = access_journal(ic, i, j);
2626 k = find_commit_seq(ic, i, j, js->commit_id);
2627 if (k < 0)
2628 goto clear_journal;
2629 used_commit_ids[k] = true;
2630 max_commit_id_sections[k] = i;
2632 if (journal_empty) {
2633 for (j = 0; j < ic->journal_section_entries; j++) {
2634 struct journal_entry *je = access_journal_entry(ic, i, j);
2635 if (!journal_entry_is_unused(je)) {
2636 journal_empty = false;
2637 break;
2643 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2644 unused = N_COMMIT_IDS - 1;
2645 while (unused && !used_commit_ids[unused - 1])
2646 unused--;
2647 } else {
2648 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2649 if (!used_commit_ids[unused])
2650 break;
2651 if (unused == N_COMMIT_IDS) {
2652 dm_integrity_io_error(ic, "journal commit ids", -EIO);
2653 goto clear_journal;
2656 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2657 unused, used_commit_ids[0], used_commit_ids[1],
2658 used_commit_ids[2], used_commit_ids[3]);
2660 last_used = prev_commit_seq(unused);
2661 want_commit_seq = prev_commit_seq(last_used);
2663 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2664 journal_empty = true;
2666 write_start = max_commit_id_sections[last_used] + 1;
2667 if (unlikely(write_start >= ic->journal_sections))
2668 want_commit_seq = next_commit_seq(want_commit_seq);
2669 wraparound_section(ic, &write_start);
2671 i = write_start;
2672 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2673 for (j = 0; j < ic->journal_section_sectors; j++) {
2674 struct journal_sector *js = access_journal(ic, i, j);
2676 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2678 * This could be caused by crash during writing.
2679 * We won't replay the inconsistent part of the
2680 * journal.
2682 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2683 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2684 goto brk;
2687 i++;
2688 if (unlikely(i >= ic->journal_sections))
2689 want_commit_seq = next_commit_seq(want_commit_seq);
2690 wraparound_section(ic, &i);
2692 brk:
2694 if (!journal_empty) {
2695 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2696 write_sections, write_start, want_commit_seq);
2697 do_journal_write(ic, write_start, write_sections, true);
2700 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2701 continue_section = write_start;
2702 ic->commit_seq = want_commit_seq;
2703 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2704 } else {
2705 unsigned s;
2706 unsigned char erase_seq;
2707 clear_journal:
2708 DEBUG_print("clearing journal\n");
2710 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2711 s = write_start;
2712 init_journal(ic, s, 1, erase_seq);
2713 s++;
2714 wraparound_section(ic, &s);
2715 if (ic->journal_sections >= 2) {
2716 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2717 s += ic->journal_sections - 2;
2718 wraparound_section(ic, &s);
2719 init_journal(ic, s, 1, erase_seq);
2722 continue_section = 0;
2723 ic->commit_seq = next_commit_seq(erase_seq);
2726 ic->committed_section = continue_section;
2727 ic->n_committed_sections = 0;
2729 ic->uncommitted_section = continue_section;
2730 ic->n_uncommitted_sections = 0;
2732 ic->free_section = continue_section;
2733 ic->free_section_entry = 0;
2734 ic->free_sectors = ic->journal_entries;
2736 ic->journal_tree_root = RB_ROOT;
2737 for (i = 0; i < ic->journal_entries; i++)
2738 init_journal_node(&ic->journal_tree[i]);
2741 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
2743 DEBUG_print("dm_integrity_enter_synchronous_mode\n");
2745 if (ic->mode == 'B') {
2746 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
2747 ic->synchronous_mode = 1;
2749 cancel_delayed_work_sync(&ic->bitmap_flush_work);
2750 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2751 flush_workqueue(ic->commit_wq);
2755 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
2757 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
2759 DEBUG_print("dm_integrity_reboot\n");
2761 dm_integrity_enter_synchronous_mode(ic);
2763 return NOTIFY_DONE;
2766 static void dm_integrity_postsuspend(struct dm_target *ti)
2768 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2769 int r;
2771 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
2773 del_timer_sync(&ic->autocommit_timer);
2775 WRITE_ONCE(ic->suspending, 1);
2777 if (ic->recalc_wq)
2778 drain_workqueue(ic->recalc_wq);
2780 if (ic->mode == 'B')
2781 cancel_delayed_work_sync(&ic->bitmap_flush_work);
2783 queue_work(ic->commit_wq, &ic->commit_work);
2784 drain_workqueue(ic->commit_wq);
2786 if (ic->mode == 'J') {
2787 if (ic->meta_dev)
2788 queue_work(ic->writer_wq, &ic->writer_work);
2789 drain_workqueue(ic->writer_wq);
2790 dm_integrity_flush_buffers(ic);
2793 if (ic->mode == 'B') {
2794 dm_integrity_flush_buffers(ic);
2795 #if 1
2796 /* set to 0 to test bitmap replay code */
2797 init_journal(ic, 0, ic->journal_sections, 0);
2798 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2799 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2800 if (unlikely(r))
2801 dm_integrity_io_error(ic, "writing superblock", r);
2802 #endif
2805 WRITE_ONCE(ic->suspending, 0);
2807 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2809 ic->journal_uptodate = true;
2812 static void dm_integrity_resume(struct dm_target *ti)
2814 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2815 int r;
2816 DEBUG_print("resume\n");
2818 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
2819 DEBUG_print("resume dirty_bitmap\n");
2820 rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
2821 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2822 if (ic->mode == 'B') {
2823 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
2824 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
2825 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
2826 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
2827 BITMAP_OP_TEST_ALL_CLEAR)) {
2828 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2829 ic->sb->recalc_sector = cpu_to_le64(0);
2831 } else {
2832 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
2833 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
2834 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
2835 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2836 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2837 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2838 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2839 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2840 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2841 ic->sb->recalc_sector = cpu_to_le64(0);
2843 } else {
2844 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
2845 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) {
2846 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2847 ic->sb->recalc_sector = cpu_to_le64(0);
2849 init_journal(ic, 0, ic->journal_sections, 0);
2850 replay_journal(ic);
2851 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2853 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2854 if (unlikely(r))
2855 dm_integrity_io_error(ic, "writing superblock", r);
2856 } else {
2857 replay_journal(ic);
2858 if (ic->mode == 'B') {
2859 int mode;
2860 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2861 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
2862 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2863 if (unlikely(r))
2864 dm_integrity_io_error(ic, "writing superblock", r);
2866 mode = ic->recalculate_flag ? BITMAP_OP_SET : BITMAP_OP_CLEAR;
2867 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, mode);
2868 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, mode);
2869 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, mode);
2870 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2871 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2875 DEBUG_print("testing recalc: %x\n", ic->sb->flags);
2876 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2877 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
2878 DEBUG_print("recalc pos: %lx / %lx\n", (long)recalc_pos, ic->provided_data_sectors);
2879 if (recalc_pos < ic->provided_data_sectors) {
2880 queue_work(ic->recalc_wq, &ic->recalc_work);
2881 } else if (recalc_pos > ic->provided_data_sectors) {
2882 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
2883 recalc_write_super(ic);
2887 ic->reboot_notifier.notifier_call = dm_integrity_reboot;
2888 ic->reboot_notifier.next = NULL;
2889 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
2890 WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
2892 #if 0
2893 /* set to 1 to stress test synchronous mode */
2894 dm_integrity_enter_synchronous_mode(ic);
2895 #endif
2898 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2899 unsigned status_flags, char *result, unsigned maxlen)
2901 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2902 unsigned arg_count;
2903 size_t sz = 0;
2905 switch (type) {
2906 case STATUSTYPE_INFO:
2907 DMEMIT("%llu %llu",
2908 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
2909 (unsigned long long)ic->provided_data_sectors);
2910 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2911 DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector));
2912 else
2913 DMEMIT(" -");
2914 break;
2916 case STATUSTYPE_TABLE: {
2917 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2918 watermark_percentage += ic->journal_entries / 2;
2919 do_div(watermark_percentage, ic->journal_entries);
2920 arg_count = 3;
2921 arg_count += !!ic->meta_dev;
2922 arg_count += ic->sectors_per_block != 1;
2923 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
2924 arg_count += ic->mode == 'J';
2925 arg_count += ic->mode == 'J';
2926 arg_count += ic->mode == 'B';
2927 arg_count += ic->mode == 'B';
2928 arg_count += !!ic->internal_hash_alg.alg_string;
2929 arg_count += !!ic->journal_crypt_alg.alg_string;
2930 arg_count += !!ic->journal_mac_alg.alg_string;
2931 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2932 ic->tag_size, ic->mode, arg_count);
2933 if (ic->meta_dev)
2934 DMEMIT(" meta_device:%s", ic->meta_dev->name);
2935 if (ic->sectors_per_block != 1)
2936 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2937 if (ic->recalculate_flag)
2938 DMEMIT(" recalculate");
2939 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2940 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2941 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2942 if (ic->mode == 'J') {
2943 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2944 DMEMIT(" commit_time:%u", ic->autocommit_msec);
2946 if (ic->mode == 'B') {
2947 DMEMIT(" sectors_per_bit:%llu", (unsigned long long)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
2948 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
2951 #define EMIT_ALG(a, n) \
2952 do { \
2953 if (ic->a.alg_string) { \
2954 DMEMIT(" %s:%s", n, ic->a.alg_string); \
2955 if (ic->a.key_string) \
2956 DMEMIT(":%s", ic->a.key_string);\
2958 } while (0)
2959 EMIT_ALG(internal_hash_alg, "internal_hash");
2960 EMIT_ALG(journal_crypt_alg, "journal_crypt");
2961 EMIT_ALG(journal_mac_alg, "journal_mac");
2962 break;
2967 static int dm_integrity_iterate_devices(struct dm_target *ti,
2968 iterate_devices_callout_fn fn, void *data)
2970 struct dm_integrity_c *ic = ti->private;
2972 if (!ic->meta_dev)
2973 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
2974 else
2975 return fn(ti, ic->dev, 0, ti->len, data);
2978 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
2980 struct dm_integrity_c *ic = ti->private;
2982 if (ic->sectors_per_block > 1) {
2983 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2984 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2985 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
2989 static void calculate_journal_section_size(struct dm_integrity_c *ic)
2991 unsigned sector_space = JOURNAL_SECTOR_DATA;
2993 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
2994 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
2995 JOURNAL_ENTRY_ROUNDUP);
2997 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
2998 sector_space -= JOURNAL_MAC_PER_SECTOR;
2999 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3000 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3001 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3002 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3005 static int calculate_device_limits(struct dm_integrity_c *ic)
3007 __u64 initial_sectors;
3009 calculate_journal_section_size(ic);
3010 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3011 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3012 return -EINVAL;
3013 ic->initial_sectors = initial_sectors;
3015 if (!ic->meta_dev) {
3016 sector_t last_sector, last_area, last_offset;
3018 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3019 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
3020 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3021 ic->log2_metadata_run = __ffs(ic->metadata_run);
3022 else
3023 ic->log2_metadata_run = -1;
3025 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3026 last_sector = get_data_sector(ic, last_area, last_offset);
3027 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3028 return -EINVAL;
3029 } else {
3030 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3031 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3032 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3033 meta_size <<= ic->log2_buffer_sectors;
3034 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3035 ic->initial_sectors + meta_size > ic->meta_device_sectors)
3036 return -EINVAL;
3037 ic->metadata_run = 1;
3038 ic->log2_metadata_run = 0;
3041 return 0;
3044 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3046 unsigned journal_sections;
3047 int test_bit;
3049 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3050 memcpy(ic->sb->magic, SB_MAGIC, 8);
3051 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3052 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3053 if (ic->journal_mac_alg.alg_string)
3054 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3056 calculate_journal_section_size(ic);
3057 journal_sections = journal_sectors / ic->journal_section_sectors;
3058 if (!journal_sections)
3059 journal_sections = 1;
3061 if (!ic->meta_dev) {
3062 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3063 if (!interleave_sectors)
3064 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3065 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3066 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3067 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3069 ic->provided_data_sectors = 0;
3070 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3071 __u64 prev_data_sectors = ic->provided_data_sectors;
3073 ic->provided_data_sectors |= (sector_t)1 << test_bit;
3074 if (calculate_device_limits(ic))
3075 ic->provided_data_sectors = prev_data_sectors;
3077 if (!ic->provided_data_sectors)
3078 return -EINVAL;
3079 } else {
3080 ic->sb->log2_interleave_sectors = 0;
3081 ic->provided_data_sectors = ic->data_device_sectors;
3082 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3084 try_smaller_buffer:
3085 ic->sb->journal_sections = cpu_to_le32(0);
3086 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3087 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3088 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3089 if (test_journal_sections > journal_sections)
3090 continue;
3091 ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3092 if (calculate_device_limits(ic))
3093 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3096 if (!le32_to_cpu(ic->sb->journal_sections)) {
3097 if (ic->log2_buffer_sectors > 3) {
3098 ic->log2_buffer_sectors--;
3099 goto try_smaller_buffer;
3101 return -EINVAL;
3105 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3107 sb_set_version(ic);
3109 return 0;
3112 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3114 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3115 struct blk_integrity bi;
3117 memset(&bi, 0, sizeof(bi));
3118 bi.profile = &dm_integrity_profile;
3119 bi.tuple_size = ic->tag_size;
3120 bi.tag_size = bi.tuple_size;
3121 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3123 blk_integrity_register(disk, &bi);
3124 blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3127 static void dm_integrity_free_page_list(struct page_list *pl)
3129 unsigned i;
3131 if (!pl)
3132 return;
3133 for (i = 0; pl[i].page; i++)
3134 __free_page(pl[i].page);
3135 kvfree(pl);
3138 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3140 struct page_list *pl;
3141 unsigned i;
3143 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3144 if (!pl)
3145 return NULL;
3147 for (i = 0; i < n_pages; i++) {
3148 pl[i].page = alloc_page(GFP_KERNEL);
3149 if (!pl[i].page) {
3150 dm_integrity_free_page_list(pl);
3151 return NULL;
3153 if (i)
3154 pl[i - 1].next = &pl[i];
3156 pl[i].page = NULL;
3157 pl[i].next = NULL;
3159 return pl;
3162 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3164 unsigned i;
3165 for (i = 0; i < ic->journal_sections; i++)
3166 kvfree(sl[i]);
3167 kvfree(sl);
3170 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3171 struct page_list *pl)
3173 struct scatterlist **sl;
3174 unsigned i;
3176 sl = kvmalloc_array(ic->journal_sections,
3177 sizeof(struct scatterlist *),
3178 GFP_KERNEL | __GFP_ZERO);
3179 if (!sl)
3180 return NULL;
3182 for (i = 0; i < ic->journal_sections; i++) {
3183 struct scatterlist *s;
3184 unsigned start_index, start_offset;
3185 unsigned end_index, end_offset;
3186 unsigned n_pages;
3187 unsigned idx;
3189 page_list_location(ic, i, 0, &start_index, &start_offset);
3190 page_list_location(ic, i, ic->journal_section_sectors - 1,
3191 &end_index, &end_offset);
3193 n_pages = (end_index - start_index + 1);
3195 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3196 GFP_KERNEL);
3197 if (!s) {
3198 dm_integrity_free_journal_scatterlist(ic, sl);
3199 return NULL;
3202 sg_init_table(s, n_pages);
3203 for (idx = start_index; idx <= end_index; idx++) {
3204 char *va = lowmem_page_address(pl[idx].page);
3205 unsigned start = 0, end = PAGE_SIZE;
3206 if (idx == start_index)
3207 start = start_offset;
3208 if (idx == end_index)
3209 end = end_offset + (1 << SECTOR_SHIFT);
3210 sg_set_buf(&s[idx - start_index], va + start, end - start);
3213 sl[i] = s;
3216 return sl;
3219 static void free_alg(struct alg_spec *a)
3221 kzfree(a->alg_string);
3222 kzfree(a->key);
3223 memset(a, 0, sizeof *a);
3226 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3228 char *k;
3230 free_alg(a);
3232 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3233 if (!a->alg_string)
3234 goto nomem;
3236 k = strchr(a->alg_string, ':');
3237 if (k) {
3238 *k = 0;
3239 a->key_string = k + 1;
3240 if (strlen(a->key_string) & 1)
3241 goto inval;
3243 a->key_size = strlen(a->key_string) / 2;
3244 a->key = kmalloc(a->key_size, GFP_KERNEL);
3245 if (!a->key)
3246 goto nomem;
3247 if (hex2bin(a->key, a->key_string, a->key_size))
3248 goto inval;
3251 return 0;
3252 inval:
3253 *error = error_inval;
3254 return -EINVAL;
3255 nomem:
3256 *error = "Out of memory for an argument";
3257 return -ENOMEM;
3260 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3261 char *error_alg, char *error_key)
3263 int r;
3265 if (a->alg_string) {
3266 *hash = crypto_alloc_shash(a->alg_string, 0, 0);
3267 if (IS_ERR(*hash)) {
3268 *error = error_alg;
3269 r = PTR_ERR(*hash);
3270 *hash = NULL;
3271 return r;
3274 if (a->key) {
3275 r = crypto_shash_setkey(*hash, a->key, a->key_size);
3276 if (r) {
3277 *error = error_key;
3278 return r;
3280 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3281 *error = error_key;
3282 return -ENOKEY;
3286 return 0;
3289 static int create_journal(struct dm_integrity_c *ic, char **error)
3291 int r = 0;
3292 unsigned i;
3293 __u64 journal_pages, journal_desc_size, journal_tree_size;
3294 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3295 struct skcipher_request *req = NULL;
3297 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3298 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3299 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3300 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3302 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3303 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3304 journal_desc_size = journal_pages * sizeof(struct page_list);
3305 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3306 *error = "Journal doesn't fit into memory";
3307 r = -ENOMEM;
3308 goto bad;
3310 ic->journal_pages = journal_pages;
3312 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3313 if (!ic->journal) {
3314 *error = "Could not allocate memory for journal";
3315 r = -ENOMEM;
3316 goto bad;
3318 if (ic->journal_crypt_alg.alg_string) {
3319 unsigned ivsize, blocksize;
3320 struct journal_completion comp;
3322 comp.ic = ic;
3323 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
3324 if (IS_ERR(ic->journal_crypt)) {
3325 *error = "Invalid journal cipher";
3326 r = PTR_ERR(ic->journal_crypt);
3327 ic->journal_crypt = NULL;
3328 goto bad;
3330 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3331 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3333 if (ic->journal_crypt_alg.key) {
3334 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3335 ic->journal_crypt_alg.key_size);
3336 if (r) {
3337 *error = "Error setting encryption key";
3338 goto bad;
3341 DEBUG_print("cipher %s, block size %u iv size %u\n",
3342 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3344 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3345 if (!ic->journal_io) {
3346 *error = "Could not allocate memory for journal io";
3347 r = -ENOMEM;
3348 goto bad;
3351 if (blocksize == 1) {
3352 struct scatterlist *sg;
3354 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3355 if (!req) {
3356 *error = "Could not allocate crypt request";
3357 r = -ENOMEM;
3358 goto bad;
3361 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3362 if (!crypt_iv) {
3363 *error = "Could not allocate iv";
3364 r = -ENOMEM;
3365 goto bad;
3368 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3369 if (!ic->journal_xor) {
3370 *error = "Could not allocate memory for journal xor";
3371 r = -ENOMEM;
3372 goto bad;
3375 sg = kvmalloc_array(ic->journal_pages + 1,
3376 sizeof(struct scatterlist),
3377 GFP_KERNEL);
3378 if (!sg) {
3379 *error = "Unable to allocate sg list";
3380 r = -ENOMEM;
3381 goto bad;
3383 sg_init_table(sg, ic->journal_pages + 1);
3384 for (i = 0; i < ic->journal_pages; i++) {
3385 char *va = lowmem_page_address(ic->journal_xor[i].page);
3386 clear_page(va);
3387 sg_set_buf(&sg[i], va, PAGE_SIZE);
3389 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3390 memset(crypt_iv, 0x00, ivsize);
3392 skcipher_request_set_crypt(req, sg, sg,
3393 PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3394 init_completion(&comp.comp);
3395 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3396 if (do_crypt(true, req, &comp))
3397 wait_for_completion(&comp.comp);
3398 kvfree(sg);
3399 r = dm_integrity_failed(ic);
3400 if (r) {
3401 *error = "Unable to encrypt journal";
3402 goto bad;
3404 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3406 crypto_free_skcipher(ic->journal_crypt);
3407 ic->journal_crypt = NULL;
3408 } else {
3409 unsigned crypt_len = roundup(ivsize, blocksize);
3411 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3412 if (!req) {
3413 *error = "Could not allocate crypt request";
3414 r = -ENOMEM;
3415 goto bad;
3418 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3419 if (!crypt_iv) {
3420 *error = "Could not allocate iv";
3421 r = -ENOMEM;
3422 goto bad;
3425 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3426 if (!crypt_data) {
3427 *error = "Unable to allocate crypt data";
3428 r = -ENOMEM;
3429 goto bad;
3432 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3433 if (!ic->journal_scatterlist) {
3434 *error = "Unable to allocate sg list";
3435 r = -ENOMEM;
3436 goto bad;
3438 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3439 if (!ic->journal_io_scatterlist) {
3440 *error = "Unable to allocate sg list";
3441 r = -ENOMEM;
3442 goto bad;
3444 ic->sk_requests = kvmalloc_array(ic->journal_sections,
3445 sizeof(struct skcipher_request *),
3446 GFP_KERNEL | __GFP_ZERO);
3447 if (!ic->sk_requests) {
3448 *error = "Unable to allocate sk requests";
3449 r = -ENOMEM;
3450 goto bad;
3452 for (i = 0; i < ic->journal_sections; i++) {
3453 struct scatterlist sg;
3454 struct skcipher_request *section_req;
3455 __u32 section_le = cpu_to_le32(i);
3457 memset(crypt_iv, 0x00, ivsize);
3458 memset(crypt_data, 0x00, crypt_len);
3459 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3461 sg_init_one(&sg, crypt_data, crypt_len);
3462 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3463 init_completion(&comp.comp);
3464 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3465 if (do_crypt(true, req, &comp))
3466 wait_for_completion(&comp.comp);
3468 r = dm_integrity_failed(ic);
3469 if (r) {
3470 *error = "Unable to generate iv";
3471 goto bad;
3474 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3475 if (!section_req) {
3476 *error = "Unable to allocate crypt request";
3477 r = -ENOMEM;
3478 goto bad;
3480 section_req->iv = kmalloc_array(ivsize, 2,
3481 GFP_KERNEL);
3482 if (!section_req->iv) {
3483 skcipher_request_free(section_req);
3484 *error = "Unable to allocate iv";
3485 r = -ENOMEM;
3486 goto bad;
3488 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3489 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3490 ic->sk_requests[i] = section_req;
3491 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3496 for (i = 0; i < N_COMMIT_IDS; i++) {
3497 unsigned j;
3498 retest_commit_id:
3499 for (j = 0; j < i; j++) {
3500 if (ic->commit_ids[j] == ic->commit_ids[i]) {
3501 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3502 goto retest_commit_id;
3505 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3508 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3509 if (journal_tree_size > ULONG_MAX) {
3510 *error = "Journal doesn't fit into memory";
3511 r = -ENOMEM;
3512 goto bad;
3514 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3515 if (!ic->journal_tree) {
3516 *error = "Could not allocate memory for journal tree";
3517 r = -ENOMEM;
3519 bad:
3520 kfree(crypt_data);
3521 kfree(crypt_iv);
3522 skcipher_request_free(req);
3524 return r;
3528 * Construct a integrity mapping
3530 * Arguments:
3531 * device
3532 * offset from the start of the device
3533 * tag size
3534 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3535 * number of optional arguments
3536 * optional arguments:
3537 * journal_sectors
3538 * interleave_sectors
3539 * buffer_sectors
3540 * journal_watermark
3541 * commit_time
3542 * meta_device
3543 * block_size
3544 * sectors_per_bit
3545 * bitmap_flush_interval
3546 * internal_hash
3547 * journal_crypt
3548 * journal_mac
3549 * recalculate
3551 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3553 struct dm_integrity_c *ic;
3554 char dummy;
3555 int r;
3556 unsigned extra_args;
3557 struct dm_arg_set as;
3558 static const struct dm_arg _args[] = {
3559 {0, 9, "Invalid number of feature args"},
3561 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3562 bool should_write_sb;
3563 __u64 threshold;
3564 unsigned long long start;
3565 __s8 log2_sectors_per_bitmap_bit = -1;
3566 __s8 log2_blocks_per_bitmap_bit;
3567 __u64 bits_in_journal;
3568 __u64 n_bitmap_bits;
3570 #define DIRECT_ARGUMENTS 4
3572 if (argc <= DIRECT_ARGUMENTS) {
3573 ti->error = "Invalid argument count";
3574 return -EINVAL;
3577 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3578 if (!ic) {
3579 ti->error = "Cannot allocate integrity context";
3580 return -ENOMEM;
3582 ti->private = ic;
3583 ti->per_io_data_size = sizeof(struct dm_integrity_io);
3585 ic->in_progress = RB_ROOT;
3586 INIT_LIST_HEAD(&ic->wait_list);
3587 init_waitqueue_head(&ic->endio_wait);
3588 bio_list_init(&ic->flush_bio_list);
3589 init_waitqueue_head(&ic->copy_to_journal_wait);
3590 init_completion(&ic->crypto_backoff);
3591 atomic64_set(&ic->number_of_mismatches, 0);
3592 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3594 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3595 if (r) {
3596 ti->error = "Device lookup failed";
3597 goto bad;
3600 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3601 ti->error = "Invalid starting offset";
3602 r = -EINVAL;
3603 goto bad;
3605 ic->start = start;
3607 if (strcmp(argv[2], "-")) {
3608 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3609 ti->error = "Invalid tag size";
3610 r = -EINVAL;
3611 goto bad;
3615 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3616 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3617 ic->mode = argv[3][0];
3618 } else {
3619 ti->error = "Invalid mode (expecting J, B, D, R)";
3620 r = -EINVAL;
3621 goto bad;
3624 journal_sectors = 0;
3625 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3626 buffer_sectors = DEFAULT_BUFFER_SECTORS;
3627 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3628 sync_msec = DEFAULT_SYNC_MSEC;
3629 ic->sectors_per_block = 1;
3631 as.argc = argc - DIRECT_ARGUMENTS;
3632 as.argv = argv + DIRECT_ARGUMENTS;
3633 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3634 if (r)
3635 goto bad;
3637 while (extra_args--) {
3638 const char *opt_string;
3639 unsigned val;
3640 unsigned long long llval;
3641 opt_string = dm_shift_arg(&as);
3642 if (!opt_string) {
3643 r = -EINVAL;
3644 ti->error = "Not enough feature arguments";
3645 goto bad;
3647 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3648 journal_sectors = val ? val : 1;
3649 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3650 interleave_sectors = val;
3651 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3652 buffer_sectors = val;
3653 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3654 journal_watermark = val;
3655 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3656 sync_msec = val;
3657 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3658 if (ic->meta_dev) {
3659 dm_put_device(ti, ic->meta_dev);
3660 ic->meta_dev = NULL;
3662 r = dm_get_device(ti, strchr(opt_string, ':') + 1,
3663 dm_table_get_mode(ti->table), &ic->meta_dev);
3664 if (r) {
3665 ti->error = "Device lookup failed";
3666 goto bad;
3668 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
3669 if (val < 1 << SECTOR_SHIFT ||
3670 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
3671 (val & (val -1))) {
3672 r = -EINVAL;
3673 ti->error = "Invalid block_size argument";
3674 goto bad;
3676 ic->sectors_per_block = val >> SECTOR_SHIFT;
3677 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
3678 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
3679 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
3680 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
3681 r = -EINVAL;
3682 ti->error = "Invalid bitmap_flush_interval argument";
3684 ic->bitmap_flush_interval = msecs_to_jiffies(val);
3685 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
3686 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
3687 "Invalid internal_hash argument");
3688 if (r)
3689 goto bad;
3690 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
3691 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
3692 "Invalid journal_crypt argument");
3693 if (r)
3694 goto bad;
3695 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
3696 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
3697 "Invalid journal_mac argument");
3698 if (r)
3699 goto bad;
3700 } else if (!strcmp(opt_string, "recalculate")) {
3701 ic->recalculate_flag = true;
3702 } else {
3703 r = -EINVAL;
3704 ti->error = "Invalid argument";
3705 goto bad;
3709 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
3710 if (!ic->meta_dev)
3711 ic->meta_device_sectors = ic->data_device_sectors;
3712 else
3713 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
3715 if (!journal_sectors) {
3716 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
3717 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
3720 if (!buffer_sectors)
3721 buffer_sectors = 1;
3722 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
3724 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
3725 "Invalid internal hash", "Error setting internal hash key");
3726 if (r)
3727 goto bad;
3729 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
3730 "Invalid journal mac", "Error setting journal mac key");
3731 if (r)
3732 goto bad;
3734 if (!ic->tag_size) {
3735 if (!ic->internal_hash) {
3736 ti->error = "Unknown tag size";
3737 r = -EINVAL;
3738 goto bad;
3740 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
3742 if (ic->tag_size > MAX_TAG_SIZE) {
3743 ti->error = "Too big tag size";
3744 r = -EINVAL;
3745 goto bad;
3747 if (!(ic->tag_size & (ic->tag_size - 1)))
3748 ic->log2_tag_size = __ffs(ic->tag_size);
3749 else
3750 ic->log2_tag_size = -1;
3752 if (ic->mode == 'B' && !ic->internal_hash) {
3753 r = -EINVAL;
3754 ti->error = "Bitmap mode can be only used with internal hash";
3755 goto bad;
3758 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
3759 ic->autocommit_msec = sync_msec;
3760 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
3762 ic->io = dm_io_client_create();
3763 if (IS_ERR(ic->io)) {
3764 r = PTR_ERR(ic->io);
3765 ic->io = NULL;
3766 ti->error = "Cannot allocate dm io";
3767 goto bad;
3770 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
3771 if (r) {
3772 ti->error = "Cannot allocate mempool";
3773 goto bad;
3776 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
3777 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
3778 if (!ic->metadata_wq) {
3779 ti->error = "Cannot allocate workqueue";
3780 r = -ENOMEM;
3781 goto bad;
3785 * If this workqueue were percpu, it would cause bio reordering
3786 * and reduced performance.
3788 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3789 if (!ic->wait_wq) {
3790 ti->error = "Cannot allocate workqueue";
3791 r = -ENOMEM;
3792 goto bad;
3795 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
3796 if (!ic->commit_wq) {
3797 ti->error = "Cannot allocate workqueue";
3798 r = -ENOMEM;
3799 goto bad;
3801 INIT_WORK(&ic->commit_work, integrity_commit);
3803 if (ic->mode == 'J' || ic->mode == 'B') {
3804 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
3805 if (!ic->writer_wq) {
3806 ti->error = "Cannot allocate workqueue";
3807 r = -ENOMEM;
3808 goto bad;
3810 INIT_WORK(&ic->writer_work, integrity_writer);
3813 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
3814 if (!ic->sb) {
3815 r = -ENOMEM;
3816 ti->error = "Cannot allocate superblock area";
3817 goto bad;
3820 r = sync_rw_sb(ic, REQ_OP_READ, 0);
3821 if (r) {
3822 ti->error = "Error reading superblock";
3823 goto bad;
3825 should_write_sb = false;
3826 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
3827 if (ic->mode != 'R') {
3828 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
3829 r = -EINVAL;
3830 ti->error = "The device is not initialized";
3831 goto bad;
3835 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
3836 if (r) {
3837 ti->error = "Could not initialize superblock";
3838 goto bad;
3840 if (ic->mode != 'R')
3841 should_write_sb = true;
3844 if (!ic->sb->version || ic->sb->version > SB_VERSION_3) {
3845 r = -EINVAL;
3846 ti->error = "Unknown version";
3847 goto bad;
3849 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3850 r = -EINVAL;
3851 ti->error = "Tag size doesn't match the information in superblock";
3852 goto bad;
3854 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3855 r = -EINVAL;
3856 ti->error = "Block size doesn't match the information in superblock";
3857 goto bad;
3859 if (!le32_to_cpu(ic->sb->journal_sections)) {
3860 r = -EINVAL;
3861 ti->error = "Corrupted superblock, journal_sections is 0";
3862 goto bad;
3864 /* make sure that ti->max_io_len doesn't overflow */
3865 if (!ic->meta_dev) {
3866 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3867 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3868 r = -EINVAL;
3869 ti->error = "Invalid interleave_sectors in the superblock";
3870 goto bad;
3872 } else {
3873 if (ic->sb->log2_interleave_sectors) {
3874 r = -EINVAL;
3875 ti->error = "Invalid interleave_sectors in the superblock";
3876 goto bad;
3879 ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3880 if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3881 /* test for overflow */
3882 r = -EINVAL;
3883 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3884 goto bad;
3886 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3887 r = -EINVAL;
3888 ti->error = "Journal mac mismatch";
3889 goto bad;
3892 try_smaller_buffer:
3893 r = calculate_device_limits(ic);
3894 if (r) {
3895 if (ic->meta_dev) {
3896 if (ic->log2_buffer_sectors > 3) {
3897 ic->log2_buffer_sectors--;
3898 goto try_smaller_buffer;
3901 ti->error = "The device is too small";
3902 goto bad;
3905 if (log2_sectors_per_bitmap_bit < 0)
3906 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
3907 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
3908 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
3910 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
3911 if (bits_in_journal > UINT_MAX)
3912 bits_in_journal = UINT_MAX;
3913 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
3914 log2_sectors_per_bitmap_bit++;
3916 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
3917 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
3918 if (should_write_sb) {
3919 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
3921 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
3922 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
3923 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
3925 if (!ic->meta_dev)
3926 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
3928 if (ti->len > ic->provided_data_sectors) {
3929 r = -EINVAL;
3930 ti->error = "Not enough provided sectors for requested mapping size";
3931 goto bad;
3935 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
3936 threshold += 50;
3937 do_div(threshold, 100);
3938 ic->free_sectors_threshold = threshold;
3940 DEBUG_print("initialized:\n");
3941 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
3942 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
3943 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
3944 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
3945 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
3946 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
3947 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
3948 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
3949 DEBUG_print(" data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
3950 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
3951 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
3952 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
3953 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
3954 (unsigned long long)ic->provided_data_sectors);
3955 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
3956 DEBUG_print(" bits_in_journal %llu\n", (unsigned long long)bits_in_journal);
3958 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
3959 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3960 ic->sb->recalc_sector = cpu_to_le64(0);
3963 if (ic->internal_hash) {
3964 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
3965 if (!ic->recalc_wq ) {
3966 ti->error = "Cannot allocate workqueue";
3967 r = -ENOMEM;
3968 goto bad;
3970 INIT_WORK(&ic->recalc_work, integrity_recalc);
3971 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
3972 if (!ic->recalc_buffer) {
3973 ti->error = "Cannot allocate buffer for recalculating";
3974 r = -ENOMEM;
3975 goto bad;
3977 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
3978 ic->tag_size, GFP_KERNEL);
3979 if (!ic->recalc_tags) {
3980 ti->error = "Cannot allocate tags for recalculating";
3981 r = -ENOMEM;
3982 goto bad;
3986 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
3987 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
3988 if (IS_ERR(ic->bufio)) {
3989 r = PTR_ERR(ic->bufio);
3990 ti->error = "Cannot initialize dm-bufio";
3991 ic->bufio = NULL;
3992 goto bad;
3994 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
3996 if (ic->mode != 'R') {
3997 r = create_journal(ic, &ti->error);
3998 if (r)
3999 goto bad;
4003 if (ic->mode == 'B') {
4004 unsigned i;
4005 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4007 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4008 if (!ic->recalc_bitmap) {
4009 r = -ENOMEM;
4010 goto bad;
4012 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4013 if (!ic->may_write_bitmap) {
4014 r = -ENOMEM;
4015 goto bad;
4017 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4018 if (!ic->bbs) {
4019 r = -ENOMEM;
4020 goto bad;
4022 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4023 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4024 struct bitmap_block_status *bbs = &ic->bbs[i];
4025 unsigned sector, pl_index, pl_offset;
4027 INIT_WORK(&bbs->work, bitmap_block_work);
4028 bbs->ic = ic;
4029 bbs->idx = i;
4030 bio_list_init(&bbs->bio_queue);
4031 spin_lock_init(&bbs->bio_queue_lock);
4033 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4034 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4035 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4037 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4041 if (should_write_sb) {
4042 int r;
4044 init_journal(ic, 0, ic->journal_sections, 0);
4045 r = dm_integrity_failed(ic);
4046 if (unlikely(r)) {
4047 ti->error = "Error initializing journal";
4048 goto bad;
4050 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4051 if (r) {
4052 ti->error = "Error initializing superblock";
4053 goto bad;
4055 ic->just_formatted = true;
4058 if (!ic->meta_dev) {
4059 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4060 if (r)
4061 goto bad;
4063 if (ic->mode == 'B') {
4064 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4065 if (!max_io_len)
4066 max_io_len = 1U << 31;
4067 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4068 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4069 r = dm_set_target_max_io_len(ti, max_io_len);
4070 if (r)
4071 goto bad;
4075 if (!ic->internal_hash)
4076 dm_integrity_set(ti, ic);
4078 ti->num_flush_bios = 1;
4079 ti->flush_supported = true;
4081 return 0;
4083 bad:
4084 dm_integrity_dtr(ti);
4085 return r;
4088 static void dm_integrity_dtr(struct dm_target *ti)
4090 struct dm_integrity_c *ic = ti->private;
4092 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4093 BUG_ON(!list_empty(&ic->wait_list));
4095 if (ic->metadata_wq)
4096 destroy_workqueue(ic->metadata_wq);
4097 if (ic->wait_wq)
4098 destroy_workqueue(ic->wait_wq);
4099 if (ic->commit_wq)
4100 destroy_workqueue(ic->commit_wq);
4101 if (ic->writer_wq)
4102 destroy_workqueue(ic->writer_wq);
4103 if (ic->recalc_wq)
4104 destroy_workqueue(ic->recalc_wq);
4105 vfree(ic->recalc_buffer);
4106 kvfree(ic->recalc_tags);
4107 kvfree(ic->bbs);
4108 if (ic->bufio)
4109 dm_bufio_client_destroy(ic->bufio);
4110 mempool_exit(&ic->journal_io_mempool);
4111 if (ic->io)
4112 dm_io_client_destroy(ic->io);
4113 if (ic->dev)
4114 dm_put_device(ti, ic->dev);
4115 if (ic->meta_dev)
4116 dm_put_device(ti, ic->meta_dev);
4117 dm_integrity_free_page_list(ic->journal);
4118 dm_integrity_free_page_list(ic->journal_io);
4119 dm_integrity_free_page_list(ic->journal_xor);
4120 dm_integrity_free_page_list(ic->recalc_bitmap);
4121 dm_integrity_free_page_list(ic->may_write_bitmap);
4122 if (ic->journal_scatterlist)
4123 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4124 if (ic->journal_io_scatterlist)
4125 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4126 if (ic->sk_requests) {
4127 unsigned i;
4129 for (i = 0; i < ic->journal_sections; i++) {
4130 struct skcipher_request *req = ic->sk_requests[i];
4131 if (req) {
4132 kzfree(req->iv);
4133 skcipher_request_free(req);
4136 kvfree(ic->sk_requests);
4138 kvfree(ic->journal_tree);
4139 if (ic->sb)
4140 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4142 if (ic->internal_hash)
4143 crypto_free_shash(ic->internal_hash);
4144 free_alg(&ic->internal_hash_alg);
4146 if (ic->journal_crypt)
4147 crypto_free_skcipher(ic->journal_crypt);
4148 free_alg(&ic->journal_crypt_alg);
4150 if (ic->journal_mac)
4151 crypto_free_shash(ic->journal_mac);
4152 free_alg(&ic->journal_mac_alg);
4154 kfree(ic);
4157 static struct target_type integrity_target = {
4158 .name = "integrity",
4159 .version = {1, 3, 0},
4160 .module = THIS_MODULE,
4161 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4162 .ctr = dm_integrity_ctr,
4163 .dtr = dm_integrity_dtr,
4164 .map = dm_integrity_map,
4165 .postsuspend = dm_integrity_postsuspend,
4166 .resume = dm_integrity_resume,
4167 .status = dm_integrity_status,
4168 .iterate_devices = dm_integrity_iterate_devices,
4169 .io_hints = dm_integrity_io_hints,
4172 static int __init dm_integrity_init(void)
4174 int r;
4176 journal_io_cache = kmem_cache_create("integrity_journal_io",
4177 sizeof(struct journal_io), 0, 0, NULL);
4178 if (!journal_io_cache) {
4179 DMERR("can't allocate journal io cache");
4180 return -ENOMEM;
4183 r = dm_register_target(&integrity_target);
4185 if (r < 0)
4186 DMERR("register failed %d", r);
4188 return r;
4191 static void __exit dm_integrity_exit(void)
4193 dm_unregister_target(&integrity_target);
4194 kmem_cache_destroy(journal_io_cache);
4197 module_init(dm_integrity_init);
4198 module_exit(dm_integrity_exit);
4200 MODULE_AUTHOR("Milan Broz");
4201 MODULE_AUTHOR("Mikulas Patocka");
4202 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4203 MODULE_LICENSE("GPL");