perf scripts python: exported-sql-viewer.py: Use new 'has_calls' column
[linux/fpc-iii.git] / drivers / md / raid5.c
blobb83bce2beb66d0c68e26adc2ef55d3e97fdb007f
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
14 * BITMAP UNPLUGGING:
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
24 * new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 * batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
53 #include "md.h"
54 #include "raid5.h"
55 #include "raid0.h"
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
64 static bool devices_handle_discard_safely = false;
65 module_param(devices_handle_discard_safely, bool, 0644);
66 MODULE_PARM_DESC(devices_handle_discard_safely,
67 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
68 static struct workqueue_struct *raid5_wq;
70 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
72 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
73 return &conf->stripe_hashtbl[hash];
76 static inline int stripe_hash_locks_hash(sector_t sect)
78 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
81 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
83 spin_lock_irq(conf->hash_locks + hash);
84 spin_lock(&conf->device_lock);
87 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
89 spin_unlock(&conf->device_lock);
90 spin_unlock_irq(conf->hash_locks + hash);
93 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
95 int i;
96 spin_lock_irq(conf->hash_locks);
97 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
98 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
99 spin_lock(&conf->device_lock);
102 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
104 int i;
105 spin_unlock(&conf->device_lock);
106 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
107 spin_unlock(conf->hash_locks + i);
108 spin_unlock_irq(conf->hash_locks);
111 /* Find first data disk in a raid6 stripe */
112 static inline int raid6_d0(struct stripe_head *sh)
114 if (sh->ddf_layout)
115 /* ddf always start from first device */
116 return 0;
117 /* md starts just after Q block */
118 if (sh->qd_idx == sh->disks - 1)
119 return 0;
120 else
121 return sh->qd_idx + 1;
123 static inline int raid6_next_disk(int disk, int raid_disks)
125 disk++;
126 return (disk < raid_disks) ? disk : 0;
129 /* When walking through the disks in a raid5, starting at raid6_d0,
130 * We need to map each disk to a 'slot', where the data disks are slot
131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
132 * is raid_disks-1. This help does that mapping.
134 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
135 int *count, int syndrome_disks)
137 int slot = *count;
139 if (sh->ddf_layout)
140 (*count)++;
141 if (idx == sh->pd_idx)
142 return syndrome_disks;
143 if (idx == sh->qd_idx)
144 return syndrome_disks + 1;
145 if (!sh->ddf_layout)
146 (*count)++;
147 return slot;
150 static void print_raid5_conf (struct r5conf *conf);
152 static int stripe_operations_active(struct stripe_head *sh)
154 return sh->check_state || sh->reconstruct_state ||
155 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
156 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
159 static bool stripe_is_lowprio(struct stripe_head *sh)
161 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
162 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
163 !test_bit(STRIPE_R5C_CACHING, &sh->state);
166 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
168 struct r5conf *conf = sh->raid_conf;
169 struct r5worker_group *group;
170 int thread_cnt;
171 int i, cpu = sh->cpu;
173 if (!cpu_online(cpu)) {
174 cpu = cpumask_any(cpu_online_mask);
175 sh->cpu = cpu;
178 if (list_empty(&sh->lru)) {
179 struct r5worker_group *group;
180 group = conf->worker_groups + cpu_to_group(cpu);
181 if (stripe_is_lowprio(sh))
182 list_add_tail(&sh->lru, &group->loprio_list);
183 else
184 list_add_tail(&sh->lru, &group->handle_list);
185 group->stripes_cnt++;
186 sh->group = group;
189 if (conf->worker_cnt_per_group == 0) {
190 md_wakeup_thread(conf->mddev->thread);
191 return;
194 group = conf->worker_groups + cpu_to_group(sh->cpu);
196 group->workers[0].working = true;
197 /* at least one worker should run to avoid race */
198 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
200 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
201 /* wakeup more workers */
202 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
203 if (group->workers[i].working == false) {
204 group->workers[i].working = true;
205 queue_work_on(sh->cpu, raid5_wq,
206 &group->workers[i].work);
207 thread_cnt--;
212 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
213 struct list_head *temp_inactive_list)
215 int i;
216 int injournal = 0; /* number of date pages with R5_InJournal */
218 BUG_ON(!list_empty(&sh->lru));
219 BUG_ON(atomic_read(&conf->active_stripes)==0);
221 if (r5c_is_writeback(conf->log))
222 for (i = sh->disks; i--; )
223 if (test_bit(R5_InJournal, &sh->dev[i].flags))
224 injournal++;
226 * In the following cases, the stripe cannot be released to cached
227 * lists. Therefore, we make the stripe write out and set
228 * STRIPE_HANDLE:
229 * 1. when quiesce in r5c write back;
230 * 2. when resync is requested fot the stripe.
232 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
233 (conf->quiesce && r5c_is_writeback(conf->log) &&
234 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
235 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
236 r5c_make_stripe_write_out(sh);
237 set_bit(STRIPE_HANDLE, &sh->state);
240 if (test_bit(STRIPE_HANDLE, &sh->state)) {
241 if (test_bit(STRIPE_DELAYED, &sh->state) &&
242 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
243 list_add_tail(&sh->lru, &conf->delayed_list);
244 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
245 sh->bm_seq - conf->seq_write > 0)
246 list_add_tail(&sh->lru, &conf->bitmap_list);
247 else {
248 clear_bit(STRIPE_DELAYED, &sh->state);
249 clear_bit(STRIPE_BIT_DELAY, &sh->state);
250 if (conf->worker_cnt_per_group == 0) {
251 if (stripe_is_lowprio(sh))
252 list_add_tail(&sh->lru,
253 &conf->loprio_list);
254 else
255 list_add_tail(&sh->lru,
256 &conf->handle_list);
257 } else {
258 raid5_wakeup_stripe_thread(sh);
259 return;
262 md_wakeup_thread(conf->mddev->thread);
263 } else {
264 BUG_ON(stripe_operations_active(sh));
265 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
266 if (atomic_dec_return(&conf->preread_active_stripes)
267 < IO_THRESHOLD)
268 md_wakeup_thread(conf->mddev->thread);
269 atomic_dec(&conf->active_stripes);
270 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
271 if (!r5c_is_writeback(conf->log))
272 list_add_tail(&sh->lru, temp_inactive_list);
273 else {
274 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
275 if (injournal == 0)
276 list_add_tail(&sh->lru, temp_inactive_list);
277 else if (injournal == conf->raid_disks - conf->max_degraded) {
278 /* full stripe */
279 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
280 atomic_inc(&conf->r5c_cached_full_stripes);
281 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
282 atomic_dec(&conf->r5c_cached_partial_stripes);
283 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
284 r5c_check_cached_full_stripe(conf);
285 } else
287 * STRIPE_R5C_PARTIAL_STRIPE is set in
288 * r5c_try_caching_write(). No need to
289 * set it again.
291 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
297 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
298 struct list_head *temp_inactive_list)
300 if (atomic_dec_and_test(&sh->count))
301 do_release_stripe(conf, sh, temp_inactive_list);
305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
308 * given time. Adding stripes only takes device lock, while deleting stripes
309 * only takes hash lock.
311 static void release_inactive_stripe_list(struct r5conf *conf,
312 struct list_head *temp_inactive_list,
313 int hash)
315 int size;
316 bool do_wakeup = false;
317 unsigned long flags;
319 if (hash == NR_STRIPE_HASH_LOCKS) {
320 size = NR_STRIPE_HASH_LOCKS;
321 hash = NR_STRIPE_HASH_LOCKS - 1;
322 } else
323 size = 1;
324 while (size) {
325 struct list_head *list = &temp_inactive_list[size - 1];
328 * We don't hold any lock here yet, raid5_get_active_stripe() might
329 * remove stripes from the list
331 if (!list_empty_careful(list)) {
332 spin_lock_irqsave(conf->hash_locks + hash, flags);
333 if (list_empty(conf->inactive_list + hash) &&
334 !list_empty(list))
335 atomic_dec(&conf->empty_inactive_list_nr);
336 list_splice_tail_init(list, conf->inactive_list + hash);
337 do_wakeup = true;
338 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
340 size--;
341 hash--;
344 if (do_wakeup) {
345 wake_up(&conf->wait_for_stripe);
346 if (atomic_read(&conf->active_stripes) == 0)
347 wake_up(&conf->wait_for_quiescent);
348 if (conf->retry_read_aligned)
349 md_wakeup_thread(conf->mddev->thread);
353 /* should hold conf->device_lock already */
354 static int release_stripe_list(struct r5conf *conf,
355 struct list_head *temp_inactive_list)
357 struct stripe_head *sh, *t;
358 int count = 0;
359 struct llist_node *head;
361 head = llist_del_all(&conf->released_stripes);
362 head = llist_reverse_order(head);
363 llist_for_each_entry_safe(sh, t, head, release_list) {
364 int hash;
366 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
367 smp_mb();
368 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
370 * Don't worry the bit is set here, because if the bit is set
371 * again, the count is always > 1. This is true for
372 * STRIPE_ON_UNPLUG_LIST bit too.
374 hash = sh->hash_lock_index;
375 __release_stripe(conf, sh, &temp_inactive_list[hash]);
376 count++;
379 return count;
382 void raid5_release_stripe(struct stripe_head *sh)
384 struct r5conf *conf = sh->raid_conf;
385 unsigned long flags;
386 struct list_head list;
387 int hash;
388 bool wakeup;
390 /* Avoid release_list until the last reference.
392 if (atomic_add_unless(&sh->count, -1, 1))
393 return;
395 if (unlikely(!conf->mddev->thread) ||
396 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
397 goto slow_path;
398 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
399 if (wakeup)
400 md_wakeup_thread(conf->mddev->thread);
401 return;
402 slow_path:
403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
404 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
405 INIT_LIST_HEAD(&list);
406 hash = sh->hash_lock_index;
407 do_release_stripe(conf, sh, &list);
408 spin_unlock_irqrestore(&conf->device_lock, flags);
409 release_inactive_stripe_list(conf, &list, hash);
413 static inline void remove_hash(struct stripe_head *sh)
415 pr_debug("remove_hash(), stripe %llu\n",
416 (unsigned long long)sh->sector);
418 hlist_del_init(&sh->hash);
421 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
423 struct hlist_head *hp = stripe_hash(conf, sh->sector);
425 pr_debug("insert_hash(), stripe %llu\n",
426 (unsigned long long)sh->sector);
428 hlist_add_head(&sh->hash, hp);
431 /* find an idle stripe, make sure it is unhashed, and return it. */
432 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
434 struct stripe_head *sh = NULL;
435 struct list_head *first;
437 if (list_empty(conf->inactive_list + hash))
438 goto out;
439 first = (conf->inactive_list + hash)->next;
440 sh = list_entry(first, struct stripe_head, lru);
441 list_del_init(first);
442 remove_hash(sh);
443 atomic_inc(&conf->active_stripes);
444 BUG_ON(hash != sh->hash_lock_index);
445 if (list_empty(conf->inactive_list + hash))
446 atomic_inc(&conf->empty_inactive_list_nr);
447 out:
448 return sh;
451 static void shrink_buffers(struct stripe_head *sh)
453 struct page *p;
454 int i;
455 int num = sh->raid_conf->pool_size;
457 for (i = 0; i < num ; i++) {
458 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
459 p = sh->dev[i].page;
460 if (!p)
461 continue;
462 sh->dev[i].page = NULL;
463 put_page(p);
467 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
469 int i;
470 int num = sh->raid_conf->pool_size;
472 for (i = 0; i < num; i++) {
473 struct page *page;
475 if (!(page = alloc_page(gfp))) {
476 return 1;
478 sh->dev[i].page = page;
479 sh->dev[i].orig_page = page;
482 return 0;
485 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
486 struct stripe_head *sh);
488 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
490 struct r5conf *conf = sh->raid_conf;
491 int i, seq;
493 BUG_ON(atomic_read(&sh->count) != 0);
494 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
495 BUG_ON(stripe_operations_active(sh));
496 BUG_ON(sh->batch_head);
498 pr_debug("init_stripe called, stripe %llu\n",
499 (unsigned long long)sector);
500 retry:
501 seq = read_seqcount_begin(&conf->gen_lock);
502 sh->generation = conf->generation - previous;
503 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
504 sh->sector = sector;
505 stripe_set_idx(sector, conf, previous, sh);
506 sh->state = 0;
508 for (i = sh->disks; i--; ) {
509 struct r5dev *dev = &sh->dev[i];
511 if (dev->toread || dev->read || dev->towrite || dev->written ||
512 test_bit(R5_LOCKED, &dev->flags)) {
513 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
514 (unsigned long long)sh->sector, i, dev->toread,
515 dev->read, dev->towrite, dev->written,
516 test_bit(R5_LOCKED, &dev->flags));
517 WARN_ON(1);
519 dev->flags = 0;
520 dev->sector = raid5_compute_blocknr(sh, i, previous);
522 if (read_seqcount_retry(&conf->gen_lock, seq))
523 goto retry;
524 sh->overwrite_disks = 0;
525 insert_hash(conf, sh);
526 sh->cpu = smp_processor_id();
527 set_bit(STRIPE_BATCH_READY, &sh->state);
530 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
531 short generation)
533 struct stripe_head *sh;
535 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
536 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
537 if (sh->sector == sector && sh->generation == generation)
538 return sh;
539 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
540 return NULL;
544 * Need to check if array has failed when deciding whether to:
545 * - start an array
546 * - remove non-faulty devices
547 * - add a spare
548 * - allow a reshape
549 * This determination is simple when no reshape is happening.
550 * However if there is a reshape, we need to carefully check
551 * both the before and after sections.
552 * This is because some failed devices may only affect one
553 * of the two sections, and some non-in_sync devices may
554 * be insync in the section most affected by failed devices.
556 int raid5_calc_degraded(struct r5conf *conf)
558 int degraded, degraded2;
559 int i;
561 rcu_read_lock();
562 degraded = 0;
563 for (i = 0; i < conf->previous_raid_disks; i++) {
564 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
565 if (rdev && test_bit(Faulty, &rdev->flags))
566 rdev = rcu_dereference(conf->disks[i].replacement);
567 if (!rdev || test_bit(Faulty, &rdev->flags))
568 degraded++;
569 else if (test_bit(In_sync, &rdev->flags))
571 else
572 /* not in-sync or faulty.
573 * If the reshape increases the number of devices,
574 * this is being recovered by the reshape, so
575 * this 'previous' section is not in_sync.
576 * If the number of devices is being reduced however,
577 * the device can only be part of the array if
578 * we are reverting a reshape, so this section will
579 * be in-sync.
581 if (conf->raid_disks >= conf->previous_raid_disks)
582 degraded++;
584 rcu_read_unlock();
585 if (conf->raid_disks == conf->previous_raid_disks)
586 return degraded;
587 rcu_read_lock();
588 degraded2 = 0;
589 for (i = 0; i < conf->raid_disks; i++) {
590 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
591 if (rdev && test_bit(Faulty, &rdev->flags))
592 rdev = rcu_dereference(conf->disks[i].replacement);
593 if (!rdev || test_bit(Faulty, &rdev->flags))
594 degraded2++;
595 else if (test_bit(In_sync, &rdev->flags))
597 else
598 /* not in-sync or faulty.
599 * If reshape increases the number of devices, this
600 * section has already been recovered, else it
601 * almost certainly hasn't.
603 if (conf->raid_disks <= conf->previous_raid_disks)
604 degraded2++;
606 rcu_read_unlock();
607 if (degraded2 > degraded)
608 return degraded2;
609 return degraded;
612 static int has_failed(struct r5conf *conf)
614 int degraded;
616 if (conf->mddev->reshape_position == MaxSector)
617 return conf->mddev->degraded > conf->max_degraded;
619 degraded = raid5_calc_degraded(conf);
620 if (degraded > conf->max_degraded)
621 return 1;
622 return 0;
625 struct stripe_head *
626 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
627 int previous, int noblock, int noquiesce)
629 struct stripe_head *sh;
630 int hash = stripe_hash_locks_hash(sector);
631 int inc_empty_inactive_list_flag;
633 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
635 spin_lock_irq(conf->hash_locks + hash);
637 do {
638 wait_event_lock_irq(conf->wait_for_quiescent,
639 conf->quiesce == 0 || noquiesce,
640 *(conf->hash_locks + hash));
641 sh = __find_stripe(conf, sector, conf->generation - previous);
642 if (!sh) {
643 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
644 sh = get_free_stripe(conf, hash);
645 if (!sh && !test_bit(R5_DID_ALLOC,
646 &conf->cache_state))
647 set_bit(R5_ALLOC_MORE,
648 &conf->cache_state);
650 if (noblock && sh == NULL)
651 break;
653 r5c_check_stripe_cache_usage(conf);
654 if (!sh) {
655 set_bit(R5_INACTIVE_BLOCKED,
656 &conf->cache_state);
657 r5l_wake_reclaim(conf->log, 0);
658 wait_event_lock_irq(
659 conf->wait_for_stripe,
660 !list_empty(conf->inactive_list + hash) &&
661 (atomic_read(&conf->active_stripes)
662 < (conf->max_nr_stripes * 3 / 4)
663 || !test_bit(R5_INACTIVE_BLOCKED,
664 &conf->cache_state)),
665 *(conf->hash_locks + hash));
666 clear_bit(R5_INACTIVE_BLOCKED,
667 &conf->cache_state);
668 } else {
669 init_stripe(sh, sector, previous);
670 atomic_inc(&sh->count);
672 } else if (!atomic_inc_not_zero(&sh->count)) {
673 spin_lock(&conf->device_lock);
674 if (!atomic_read(&sh->count)) {
675 if (!test_bit(STRIPE_HANDLE, &sh->state))
676 atomic_inc(&conf->active_stripes);
677 BUG_ON(list_empty(&sh->lru) &&
678 !test_bit(STRIPE_EXPANDING, &sh->state));
679 inc_empty_inactive_list_flag = 0;
680 if (!list_empty(conf->inactive_list + hash))
681 inc_empty_inactive_list_flag = 1;
682 list_del_init(&sh->lru);
683 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
684 atomic_inc(&conf->empty_inactive_list_nr);
685 if (sh->group) {
686 sh->group->stripes_cnt--;
687 sh->group = NULL;
690 atomic_inc(&sh->count);
691 spin_unlock(&conf->device_lock);
693 } while (sh == NULL);
695 spin_unlock_irq(conf->hash_locks + hash);
696 return sh;
699 static bool is_full_stripe_write(struct stripe_head *sh)
701 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
702 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
705 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
706 __acquires(&sh1->stripe_lock)
707 __acquires(&sh2->stripe_lock)
709 if (sh1 > sh2) {
710 spin_lock_irq(&sh2->stripe_lock);
711 spin_lock_nested(&sh1->stripe_lock, 1);
712 } else {
713 spin_lock_irq(&sh1->stripe_lock);
714 spin_lock_nested(&sh2->stripe_lock, 1);
718 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
719 __releases(&sh1->stripe_lock)
720 __releases(&sh2->stripe_lock)
722 spin_unlock(&sh1->stripe_lock);
723 spin_unlock_irq(&sh2->stripe_lock);
726 /* Only freshly new full stripe normal write stripe can be added to a batch list */
727 static bool stripe_can_batch(struct stripe_head *sh)
729 struct r5conf *conf = sh->raid_conf;
731 if (raid5_has_log(conf) || raid5_has_ppl(conf))
732 return false;
733 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
734 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
735 is_full_stripe_write(sh);
738 /* we only do back search */
739 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
741 struct stripe_head *head;
742 sector_t head_sector, tmp_sec;
743 int hash;
744 int dd_idx;
745 int inc_empty_inactive_list_flag;
747 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
748 tmp_sec = sh->sector;
749 if (!sector_div(tmp_sec, conf->chunk_sectors))
750 return;
751 head_sector = sh->sector - STRIPE_SECTORS;
753 hash = stripe_hash_locks_hash(head_sector);
754 spin_lock_irq(conf->hash_locks + hash);
755 head = __find_stripe(conf, head_sector, conf->generation);
756 if (head && !atomic_inc_not_zero(&head->count)) {
757 spin_lock(&conf->device_lock);
758 if (!atomic_read(&head->count)) {
759 if (!test_bit(STRIPE_HANDLE, &head->state))
760 atomic_inc(&conf->active_stripes);
761 BUG_ON(list_empty(&head->lru) &&
762 !test_bit(STRIPE_EXPANDING, &head->state));
763 inc_empty_inactive_list_flag = 0;
764 if (!list_empty(conf->inactive_list + hash))
765 inc_empty_inactive_list_flag = 1;
766 list_del_init(&head->lru);
767 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
768 atomic_inc(&conf->empty_inactive_list_nr);
769 if (head->group) {
770 head->group->stripes_cnt--;
771 head->group = NULL;
774 atomic_inc(&head->count);
775 spin_unlock(&conf->device_lock);
777 spin_unlock_irq(conf->hash_locks + hash);
779 if (!head)
780 return;
781 if (!stripe_can_batch(head))
782 goto out;
784 lock_two_stripes(head, sh);
785 /* clear_batch_ready clear the flag */
786 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
787 goto unlock_out;
789 if (sh->batch_head)
790 goto unlock_out;
792 dd_idx = 0;
793 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
794 dd_idx++;
795 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
797 goto unlock_out;
799 if (head->batch_head) {
800 spin_lock(&head->batch_head->batch_lock);
801 /* This batch list is already running */
802 if (!stripe_can_batch(head)) {
803 spin_unlock(&head->batch_head->batch_lock);
804 goto unlock_out;
807 * We must assign batch_head of this stripe within the
808 * batch_lock, otherwise clear_batch_ready of batch head
809 * stripe could clear BATCH_READY bit of this stripe and
810 * this stripe->batch_head doesn't get assigned, which
811 * could confuse clear_batch_ready for this stripe
813 sh->batch_head = head->batch_head;
816 * at this point, head's BATCH_READY could be cleared, but we
817 * can still add the stripe to batch list
819 list_add(&sh->batch_list, &head->batch_list);
820 spin_unlock(&head->batch_head->batch_lock);
821 } else {
822 head->batch_head = head;
823 sh->batch_head = head->batch_head;
824 spin_lock(&head->batch_lock);
825 list_add_tail(&sh->batch_list, &head->batch_list);
826 spin_unlock(&head->batch_lock);
829 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
830 if (atomic_dec_return(&conf->preread_active_stripes)
831 < IO_THRESHOLD)
832 md_wakeup_thread(conf->mddev->thread);
834 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
835 int seq = sh->bm_seq;
836 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
837 sh->batch_head->bm_seq > seq)
838 seq = sh->batch_head->bm_seq;
839 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
840 sh->batch_head->bm_seq = seq;
843 atomic_inc(&sh->count);
844 unlock_out:
845 unlock_two_stripes(head, sh);
846 out:
847 raid5_release_stripe(head);
850 /* Determine if 'data_offset' or 'new_data_offset' should be used
851 * in this stripe_head.
853 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
855 sector_t progress = conf->reshape_progress;
856 /* Need a memory barrier to make sure we see the value
857 * of conf->generation, or ->data_offset that was set before
858 * reshape_progress was updated.
860 smp_rmb();
861 if (progress == MaxSector)
862 return 0;
863 if (sh->generation == conf->generation - 1)
864 return 0;
865 /* We are in a reshape, and this is a new-generation stripe,
866 * so use new_data_offset.
868 return 1;
871 static void dispatch_bio_list(struct bio_list *tmp)
873 struct bio *bio;
875 while ((bio = bio_list_pop(tmp)))
876 generic_make_request(bio);
879 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
881 const struct r5pending_data *da = list_entry(a,
882 struct r5pending_data, sibling);
883 const struct r5pending_data *db = list_entry(b,
884 struct r5pending_data, sibling);
885 if (da->sector > db->sector)
886 return 1;
887 if (da->sector < db->sector)
888 return -1;
889 return 0;
892 static void dispatch_defer_bios(struct r5conf *conf, int target,
893 struct bio_list *list)
895 struct r5pending_data *data;
896 struct list_head *first, *next = NULL;
897 int cnt = 0;
899 if (conf->pending_data_cnt == 0)
900 return;
902 list_sort(NULL, &conf->pending_list, cmp_stripe);
904 first = conf->pending_list.next;
906 /* temporarily move the head */
907 if (conf->next_pending_data)
908 list_move_tail(&conf->pending_list,
909 &conf->next_pending_data->sibling);
911 while (!list_empty(&conf->pending_list)) {
912 data = list_first_entry(&conf->pending_list,
913 struct r5pending_data, sibling);
914 if (&data->sibling == first)
915 first = data->sibling.next;
916 next = data->sibling.next;
918 bio_list_merge(list, &data->bios);
919 list_move(&data->sibling, &conf->free_list);
920 cnt++;
921 if (cnt >= target)
922 break;
924 conf->pending_data_cnt -= cnt;
925 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
927 if (next != &conf->pending_list)
928 conf->next_pending_data = list_entry(next,
929 struct r5pending_data, sibling);
930 else
931 conf->next_pending_data = NULL;
932 /* list isn't empty */
933 if (first != &conf->pending_list)
934 list_move_tail(&conf->pending_list, first);
937 static void flush_deferred_bios(struct r5conf *conf)
939 struct bio_list tmp = BIO_EMPTY_LIST;
941 if (conf->pending_data_cnt == 0)
942 return;
944 spin_lock(&conf->pending_bios_lock);
945 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
946 BUG_ON(conf->pending_data_cnt != 0);
947 spin_unlock(&conf->pending_bios_lock);
949 dispatch_bio_list(&tmp);
952 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
953 struct bio_list *bios)
955 struct bio_list tmp = BIO_EMPTY_LIST;
956 struct r5pending_data *ent;
958 spin_lock(&conf->pending_bios_lock);
959 ent = list_first_entry(&conf->free_list, struct r5pending_data,
960 sibling);
961 list_move_tail(&ent->sibling, &conf->pending_list);
962 ent->sector = sector;
963 bio_list_init(&ent->bios);
964 bio_list_merge(&ent->bios, bios);
965 conf->pending_data_cnt++;
966 if (conf->pending_data_cnt >= PENDING_IO_MAX)
967 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
969 spin_unlock(&conf->pending_bios_lock);
971 dispatch_bio_list(&tmp);
974 static void
975 raid5_end_read_request(struct bio *bi);
976 static void
977 raid5_end_write_request(struct bio *bi);
979 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
981 struct r5conf *conf = sh->raid_conf;
982 int i, disks = sh->disks;
983 struct stripe_head *head_sh = sh;
984 struct bio_list pending_bios = BIO_EMPTY_LIST;
985 bool should_defer;
987 might_sleep();
989 if (log_stripe(sh, s) == 0)
990 return;
992 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
994 for (i = disks; i--; ) {
995 int op, op_flags = 0;
996 int replace_only = 0;
997 struct bio *bi, *rbi;
998 struct md_rdev *rdev, *rrdev = NULL;
1000 sh = head_sh;
1001 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1002 op = REQ_OP_WRITE;
1003 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1004 op_flags = REQ_FUA;
1005 if (test_bit(R5_Discard, &sh->dev[i].flags))
1006 op = REQ_OP_DISCARD;
1007 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1008 op = REQ_OP_READ;
1009 else if (test_and_clear_bit(R5_WantReplace,
1010 &sh->dev[i].flags)) {
1011 op = REQ_OP_WRITE;
1012 replace_only = 1;
1013 } else
1014 continue;
1015 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1016 op_flags |= REQ_SYNC;
1018 again:
1019 bi = &sh->dev[i].req;
1020 rbi = &sh->dev[i].rreq; /* For writing to replacement */
1022 rcu_read_lock();
1023 rrdev = rcu_dereference(conf->disks[i].replacement);
1024 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1025 rdev = rcu_dereference(conf->disks[i].rdev);
1026 if (!rdev) {
1027 rdev = rrdev;
1028 rrdev = NULL;
1030 if (op_is_write(op)) {
1031 if (replace_only)
1032 rdev = NULL;
1033 if (rdev == rrdev)
1034 /* We raced and saw duplicates */
1035 rrdev = NULL;
1036 } else {
1037 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1038 rdev = rrdev;
1039 rrdev = NULL;
1042 if (rdev && test_bit(Faulty, &rdev->flags))
1043 rdev = NULL;
1044 if (rdev)
1045 atomic_inc(&rdev->nr_pending);
1046 if (rrdev && test_bit(Faulty, &rrdev->flags))
1047 rrdev = NULL;
1048 if (rrdev)
1049 atomic_inc(&rrdev->nr_pending);
1050 rcu_read_unlock();
1052 /* We have already checked bad blocks for reads. Now
1053 * need to check for writes. We never accept write errors
1054 * on the replacement, so we don't to check rrdev.
1056 while (op_is_write(op) && rdev &&
1057 test_bit(WriteErrorSeen, &rdev->flags)) {
1058 sector_t first_bad;
1059 int bad_sectors;
1060 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1061 &first_bad, &bad_sectors);
1062 if (!bad)
1063 break;
1065 if (bad < 0) {
1066 set_bit(BlockedBadBlocks, &rdev->flags);
1067 if (!conf->mddev->external &&
1068 conf->mddev->sb_flags) {
1069 /* It is very unlikely, but we might
1070 * still need to write out the
1071 * bad block log - better give it
1072 * a chance*/
1073 md_check_recovery(conf->mddev);
1076 * Because md_wait_for_blocked_rdev
1077 * will dec nr_pending, we must
1078 * increment it first.
1080 atomic_inc(&rdev->nr_pending);
1081 md_wait_for_blocked_rdev(rdev, conf->mddev);
1082 } else {
1083 /* Acknowledged bad block - skip the write */
1084 rdev_dec_pending(rdev, conf->mddev);
1085 rdev = NULL;
1089 if (rdev) {
1090 if (s->syncing || s->expanding || s->expanded
1091 || s->replacing)
1092 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1094 set_bit(STRIPE_IO_STARTED, &sh->state);
1096 bio_set_dev(bi, rdev->bdev);
1097 bio_set_op_attrs(bi, op, op_flags);
1098 bi->bi_end_io = op_is_write(op)
1099 ? raid5_end_write_request
1100 : raid5_end_read_request;
1101 bi->bi_private = sh;
1103 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1104 __func__, (unsigned long long)sh->sector,
1105 bi->bi_opf, i);
1106 atomic_inc(&sh->count);
1107 if (sh != head_sh)
1108 atomic_inc(&head_sh->count);
1109 if (use_new_offset(conf, sh))
1110 bi->bi_iter.bi_sector = (sh->sector
1111 + rdev->new_data_offset);
1112 else
1113 bi->bi_iter.bi_sector = (sh->sector
1114 + rdev->data_offset);
1115 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1116 bi->bi_opf |= REQ_NOMERGE;
1118 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1119 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1121 if (!op_is_write(op) &&
1122 test_bit(R5_InJournal, &sh->dev[i].flags))
1124 * issuing read for a page in journal, this
1125 * must be preparing for prexor in rmw; read
1126 * the data into orig_page
1128 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1129 else
1130 sh->dev[i].vec.bv_page = sh->dev[i].page;
1131 bi->bi_vcnt = 1;
1132 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1133 bi->bi_io_vec[0].bv_offset = 0;
1134 bi->bi_iter.bi_size = STRIPE_SIZE;
1135 bi->bi_write_hint = sh->dev[i].write_hint;
1136 if (!rrdev)
1137 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1139 * If this is discard request, set bi_vcnt 0. We don't
1140 * want to confuse SCSI because SCSI will replace payload
1142 if (op == REQ_OP_DISCARD)
1143 bi->bi_vcnt = 0;
1144 if (rrdev)
1145 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1147 if (conf->mddev->gendisk)
1148 trace_block_bio_remap(bi->bi_disk->queue,
1149 bi, disk_devt(conf->mddev->gendisk),
1150 sh->dev[i].sector);
1151 if (should_defer && op_is_write(op))
1152 bio_list_add(&pending_bios, bi);
1153 else
1154 generic_make_request(bi);
1156 if (rrdev) {
1157 if (s->syncing || s->expanding || s->expanded
1158 || s->replacing)
1159 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1161 set_bit(STRIPE_IO_STARTED, &sh->state);
1163 bio_set_dev(rbi, rrdev->bdev);
1164 bio_set_op_attrs(rbi, op, op_flags);
1165 BUG_ON(!op_is_write(op));
1166 rbi->bi_end_io = raid5_end_write_request;
1167 rbi->bi_private = sh;
1169 pr_debug("%s: for %llu schedule op %d on "
1170 "replacement disc %d\n",
1171 __func__, (unsigned long long)sh->sector,
1172 rbi->bi_opf, i);
1173 atomic_inc(&sh->count);
1174 if (sh != head_sh)
1175 atomic_inc(&head_sh->count);
1176 if (use_new_offset(conf, sh))
1177 rbi->bi_iter.bi_sector = (sh->sector
1178 + rrdev->new_data_offset);
1179 else
1180 rbi->bi_iter.bi_sector = (sh->sector
1181 + rrdev->data_offset);
1182 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1183 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1184 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1185 rbi->bi_vcnt = 1;
1186 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1187 rbi->bi_io_vec[0].bv_offset = 0;
1188 rbi->bi_iter.bi_size = STRIPE_SIZE;
1189 rbi->bi_write_hint = sh->dev[i].write_hint;
1190 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1192 * If this is discard request, set bi_vcnt 0. We don't
1193 * want to confuse SCSI because SCSI will replace payload
1195 if (op == REQ_OP_DISCARD)
1196 rbi->bi_vcnt = 0;
1197 if (conf->mddev->gendisk)
1198 trace_block_bio_remap(rbi->bi_disk->queue,
1199 rbi, disk_devt(conf->mddev->gendisk),
1200 sh->dev[i].sector);
1201 if (should_defer && op_is_write(op))
1202 bio_list_add(&pending_bios, rbi);
1203 else
1204 generic_make_request(rbi);
1206 if (!rdev && !rrdev) {
1207 if (op_is_write(op))
1208 set_bit(STRIPE_DEGRADED, &sh->state);
1209 pr_debug("skip op %d on disc %d for sector %llu\n",
1210 bi->bi_opf, i, (unsigned long long)sh->sector);
1211 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1212 set_bit(STRIPE_HANDLE, &sh->state);
1215 if (!head_sh->batch_head)
1216 continue;
1217 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1218 batch_list);
1219 if (sh != head_sh)
1220 goto again;
1223 if (should_defer && !bio_list_empty(&pending_bios))
1224 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1227 static struct dma_async_tx_descriptor *
1228 async_copy_data(int frombio, struct bio *bio, struct page **page,
1229 sector_t sector, struct dma_async_tx_descriptor *tx,
1230 struct stripe_head *sh, int no_skipcopy)
1232 struct bio_vec bvl;
1233 struct bvec_iter iter;
1234 struct page *bio_page;
1235 int page_offset;
1236 struct async_submit_ctl submit;
1237 enum async_tx_flags flags = 0;
1239 if (bio->bi_iter.bi_sector >= sector)
1240 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1241 else
1242 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1244 if (frombio)
1245 flags |= ASYNC_TX_FENCE;
1246 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1248 bio_for_each_segment(bvl, bio, iter) {
1249 int len = bvl.bv_len;
1250 int clen;
1251 int b_offset = 0;
1253 if (page_offset < 0) {
1254 b_offset = -page_offset;
1255 page_offset += b_offset;
1256 len -= b_offset;
1259 if (len > 0 && page_offset + len > STRIPE_SIZE)
1260 clen = STRIPE_SIZE - page_offset;
1261 else
1262 clen = len;
1264 if (clen > 0) {
1265 b_offset += bvl.bv_offset;
1266 bio_page = bvl.bv_page;
1267 if (frombio) {
1268 if (sh->raid_conf->skip_copy &&
1269 b_offset == 0 && page_offset == 0 &&
1270 clen == STRIPE_SIZE &&
1271 !no_skipcopy)
1272 *page = bio_page;
1273 else
1274 tx = async_memcpy(*page, bio_page, page_offset,
1275 b_offset, clen, &submit);
1276 } else
1277 tx = async_memcpy(bio_page, *page, b_offset,
1278 page_offset, clen, &submit);
1280 /* chain the operations */
1281 submit.depend_tx = tx;
1283 if (clen < len) /* hit end of page */
1284 break;
1285 page_offset += len;
1288 return tx;
1291 static void ops_complete_biofill(void *stripe_head_ref)
1293 struct stripe_head *sh = stripe_head_ref;
1294 int i;
1296 pr_debug("%s: stripe %llu\n", __func__,
1297 (unsigned long long)sh->sector);
1299 /* clear completed biofills */
1300 for (i = sh->disks; i--; ) {
1301 struct r5dev *dev = &sh->dev[i];
1303 /* acknowledge completion of a biofill operation */
1304 /* and check if we need to reply to a read request,
1305 * new R5_Wantfill requests are held off until
1306 * !STRIPE_BIOFILL_RUN
1308 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1309 struct bio *rbi, *rbi2;
1311 BUG_ON(!dev->read);
1312 rbi = dev->read;
1313 dev->read = NULL;
1314 while (rbi && rbi->bi_iter.bi_sector <
1315 dev->sector + STRIPE_SECTORS) {
1316 rbi2 = r5_next_bio(rbi, dev->sector);
1317 bio_endio(rbi);
1318 rbi = rbi2;
1322 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1324 set_bit(STRIPE_HANDLE, &sh->state);
1325 raid5_release_stripe(sh);
1328 static void ops_run_biofill(struct stripe_head *sh)
1330 struct dma_async_tx_descriptor *tx = NULL;
1331 struct async_submit_ctl submit;
1332 int i;
1334 BUG_ON(sh->batch_head);
1335 pr_debug("%s: stripe %llu\n", __func__,
1336 (unsigned long long)sh->sector);
1338 for (i = sh->disks; i--; ) {
1339 struct r5dev *dev = &sh->dev[i];
1340 if (test_bit(R5_Wantfill, &dev->flags)) {
1341 struct bio *rbi;
1342 spin_lock_irq(&sh->stripe_lock);
1343 dev->read = rbi = dev->toread;
1344 dev->toread = NULL;
1345 spin_unlock_irq(&sh->stripe_lock);
1346 while (rbi && rbi->bi_iter.bi_sector <
1347 dev->sector + STRIPE_SECTORS) {
1348 tx = async_copy_data(0, rbi, &dev->page,
1349 dev->sector, tx, sh, 0);
1350 rbi = r5_next_bio(rbi, dev->sector);
1355 atomic_inc(&sh->count);
1356 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1357 async_trigger_callback(&submit);
1360 static void mark_target_uptodate(struct stripe_head *sh, int target)
1362 struct r5dev *tgt;
1364 if (target < 0)
1365 return;
1367 tgt = &sh->dev[target];
1368 set_bit(R5_UPTODATE, &tgt->flags);
1369 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1370 clear_bit(R5_Wantcompute, &tgt->flags);
1373 static void ops_complete_compute(void *stripe_head_ref)
1375 struct stripe_head *sh = stripe_head_ref;
1377 pr_debug("%s: stripe %llu\n", __func__,
1378 (unsigned long long)sh->sector);
1380 /* mark the computed target(s) as uptodate */
1381 mark_target_uptodate(sh, sh->ops.target);
1382 mark_target_uptodate(sh, sh->ops.target2);
1384 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1385 if (sh->check_state == check_state_compute_run)
1386 sh->check_state = check_state_compute_result;
1387 set_bit(STRIPE_HANDLE, &sh->state);
1388 raid5_release_stripe(sh);
1391 /* return a pointer to the address conversion region of the scribble buffer */
1392 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1394 return percpu->scribble + i * percpu->scribble_obj_size;
1397 /* return a pointer to the address conversion region of the scribble buffer */
1398 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1399 struct raid5_percpu *percpu, int i)
1401 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1404 static struct dma_async_tx_descriptor *
1405 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1407 int disks = sh->disks;
1408 struct page **xor_srcs = to_addr_page(percpu, 0);
1409 int target = sh->ops.target;
1410 struct r5dev *tgt = &sh->dev[target];
1411 struct page *xor_dest = tgt->page;
1412 int count = 0;
1413 struct dma_async_tx_descriptor *tx;
1414 struct async_submit_ctl submit;
1415 int i;
1417 BUG_ON(sh->batch_head);
1419 pr_debug("%s: stripe %llu block: %d\n",
1420 __func__, (unsigned long long)sh->sector, target);
1421 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1423 for (i = disks; i--; )
1424 if (i != target)
1425 xor_srcs[count++] = sh->dev[i].page;
1427 atomic_inc(&sh->count);
1429 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1430 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1431 if (unlikely(count == 1))
1432 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1433 else
1434 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1436 return tx;
1439 /* set_syndrome_sources - populate source buffers for gen_syndrome
1440 * @srcs - (struct page *) array of size sh->disks
1441 * @sh - stripe_head to parse
1443 * Populates srcs in proper layout order for the stripe and returns the
1444 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1445 * destination buffer is recorded in srcs[count] and the Q destination
1446 * is recorded in srcs[count+1]].
1448 static int set_syndrome_sources(struct page **srcs,
1449 struct stripe_head *sh,
1450 int srctype)
1452 int disks = sh->disks;
1453 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1454 int d0_idx = raid6_d0(sh);
1455 int count;
1456 int i;
1458 for (i = 0; i < disks; i++)
1459 srcs[i] = NULL;
1461 count = 0;
1462 i = d0_idx;
1463 do {
1464 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1465 struct r5dev *dev = &sh->dev[i];
1467 if (i == sh->qd_idx || i == sh->pd_idx ||
1468 (srctype == SYNDROME_SRC_ALL) ||
1469 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1470 (test_bit(R5_Wantdrain, &dev->flags) ||
1471 test_bit(R5_InJournal, &dev->flags))) ||
1472 (srctype == SYNDROME_SRC_WRITTEN &&
1473 (dev->written ||
1474 test_bit(R5_InJournal, &dev->flags)))) {
1475 if (test_bit(R5_InJournal, &dev->flags))
1476 srcs[slot] = sh->dev[i].orig_page;
1477 else
1478 srcs[slot] = sh->dev[i].page;
1480 i = raid6_next_disk(i, disks);
1481 } while (i != d0_idx);
1483 return syndrome_disks;
1486 static struct dma_async_tx_descriptor *
1487 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1489 int disks = sh->disks;
1490 struct page **blocks = to_addr_page(percpu, 0);
1491 int target;
1492 int qd_idx = sh->qd_idx;
1493 struct dma_async_tx_descriptor *tx;
1494 struct async_submit_ctl submit;
1495 struct r5dev *tgt;
1496 struct page *dest;
1497 int i;
1498 int count;
1500 BUG_ON(sh->batch_head);
1501 if (sh->ops.target < 0)
1502 target = sh->ops.target2;
1503 else if (sh->ops.target2 < 0)
1504 target = sh->ops.target;
1505 else
1506 /* we should only have one valid target */
1507 BUG();
1508 BUG_ON(target < 0);
1509 pr_debug("%s: stripe %llu block: %d\n",
1510 __func__, (unsigned long long)sh->sector, target);
1512 tgt = &sh->dev[target];
1513 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1514 dest = tgt->page;
1516 atomic_inc(&sh->count);
1518 if (target == qd_idx) {
1519 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1520 blocks[count] = NULL; /* regenerating p is not necessary */
1521 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1522 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1523 ops_complete_compute, sh,
1524 to_addr_conv(sh, percpu, 0));
1525 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1526 } else {
1527 /* Compute any data- or p-drive using XOR */
1528 count = 0;
1529 for (i = disks; i-- ; ) {
1530 if (i == target || i == qd_idx)
1531 continue;
1532 blocks[count++] = sh->dev[i].page;
1535 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1536 NULL, ops_complete_compute, sh,
1537 to_addr_conv(sh, percpu, 0));
1538 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1541 return tx;
1544 static struct dma_async_tx_descriptor *
1545 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1547 int i, count, disks = sh->disks;
1548 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1549 int d0_idx = raid6_d0(sh);
1550 int faila = -1, failb = -1;
1551 int target = sh->ops.target;
1552 int target2 = sh->ops.target2;
1553 struct r5dev *tgt = &sh->dev[target];
1554 struct r5dev *tgt2 = &sh->dev[target2];
1555 struct dma_async_tx_descriptor *tx;
1556 struct page **blocks = to_addr_page(percpu, 0);
1557 struct async_submit_ctl submit;
1559 BUG_ON(sh->batch_head);
1560 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1561 __func__, (unsigned long long)sh->sector, target, target2);
1562 BUG_ON(target < 0 || target2 < 0);
1563 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1564 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1566 /* we need to open-code set_syndrome_sources to handle the
1567 * slot number conversion for 'faila' and 'failb'
1569 for (i = 0; i < disks ; i++)
1570 blocks[i] = NULL;
1571 count = 0;
1572 i = d0_idx;
1573 do {
1574 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1576 blocks[slot] = sh->dev[i].page;
1578 if (i == target)
1579 faila = slot;
1580 if (i == target2)
1581 failb = slot;
1582 i = raid6_next_disk(i, disks);
1583 } while (i != d0_idx);
1585 BUG_ON(faila == failb);
1586 if (failb < faila)
1587 swap(faila, failb);
1588 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1589 __func__, (unsigned long long)sh->sector, faila, failb);
1591 atomic_inc(&sh->count);
1593 if (failb == syndrome_disks+1) {
1594 /* Q disk is one of the missing disks */
1595 if (faila == syndrome_disks) {
1596 /* Missing P+Q, just recompute */
1597 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1598 ops_complete_compute, sh,
1599 to_addr_conv(sh, percpu, 0));
1600 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1601 STRIPE_SIZE, &submit);
1602 } else {
1603 struct page *dest;
1604 int data_target;
1605 int qd_idx = sh->qd_idx;
1607 /* Missing D+Q: recompute D from P, then recompute Q */
1608 if (target == qd_idx)
1609 data_target = target2;
1610 else
1611 data_target = target;
1613 count = 0;
1614 for (i = disks; i-- ; ) {
1615 if (i == data_target || i == qd_idx)
1616 continue;
1617 blocks[count++] = sh->dev[i].page;
1619 dest = sh->dev[data_target].page;
1620 init_async_submit(&submit,
1621 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1622 NULL, NULL, NULL,
1623 to_addr_conv(sh, percpu, 0));
1624 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1625 &submit);
1627 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1628 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1629 ops_complete_compute, sh,
1630 to_addr_conv(sh, percpu, 0));
1631 return async_gen_syndrome(blocks, 0, count+2,
1632 STRIPE_SIZE, &submit);
1634 } else {
1635 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1636 ops_complete_compute, sh,
1637 to_addr_conv(sh, percpu, 0));
1638 if (failb == syndrome_disks) {
1639 /* We're missing D+P. */
1640 return async_raid6_datap_recov(syndrome_disks+2,
1641 STRIPE_SIZE, faila,
1642 blocks, &submit);
1643 } else {
1644 /* We're missing D+D. */
1645 return async_raid6_2data_recov(syndrome_disks+2,
1646 STRIPE_SIZE, faila, failb,
1647 blocks, &submit);
1652 static void ops_complete_prexor(void *stripe_head_ref)
1654 struct stripe_head *sh = stripe_head_ref;
1656 pr_debug("%s: stripe %llu\n", __func__,
1657 (unsigned long long)sh->sector);
1659 if (r5c_is_writeback(sh->raid_conf->log))
1661 * raid5-cache write back uses orig_page during prexor.
1662 * After prexor, it is time to free orig_page
1664 r5c_release_extra_page(sh);
1667 static struct dma_async_tx_descriptor *
1668 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1669 struct dma_async_tx_descriptor *tx)
1671 int disks = sh->disks;
1672 struct page **xor_srcs = to_addr_page(percpu, 0);
1673 int count = 0, pd_idx = sh->pd_idx, i;
1674 struct async_submit_ctl submit;
1676 /* existing parity data subtracted */
1677 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1679 BUG_ON(sh->batch_head);
1680 pr_debug("%s: stripe %llu\n", __func__,
1681 (unsigned long long)sh->sector);
1683 for (i = disks; i--; ) {
1684 struct r5dev *dev = &sh->dev[i];
1685 /* Only process blocks that are known to be uptodate */
1686 if (test_bit(R5_InJournal, &dev->flags))
1687 xor_srcs[count++] = dev->orig_page;
1688 else if (test_bit(R5_Wantdrain, &dev->flags))
1689 xor_srcs[count++] = dev->page;
1692 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1693 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1694 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1696 return tx;
1699 static struct dma_async_tx_descriptor *
1700 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1701 struct dma_async_tx_descriptor *tx)
1703 struct page **blocks = to_addr_page(percpu, 0);
1704 int count;
1705 struct async_submit_ctl submit;
1707 pr_debug("%s: stripe %llu\n", __func__,
1708 (unsigned long long)sh->sector);
1710 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1712 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1713 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1714 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1716 return tx;
1719 static struct dma_async_tx_descriptor *
1720 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1722 struct r5conf *conf = sh->raid_conf;
1723 int disks = sh->disks;
1724 int i;
1725 struct stripe_head *head_sh = sh;
1727 pr_debug("%s: stripe %llu\n", __func__,
1728 (unsigned long long)sh->sector);
1730 for (i = disks; i--; ) {
1731 struct r5dev *dev;
1732 struct bio *chosen;
1734 sh = head_sh;
1735 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1736 struct bio *wbi;
1738 again:
1739 dev = &sh->dev[i];
1741 * clear R5_InJournal, so when rewriting a page in
1742 * journal, it is not skipped by r5l_log_stripe()
1744 clear_bit(R5_InJournal, &dev->flags);
1745 spin_lock_irq(&sh->stripe_lock);
1746 chosen = dev->towrite;
1747 dev->towrite = NULL;
1748 sh->overwrite_disks = 0;
1749 BUG_ON(dev->written);
1750 wbi = dev->written = chosen;
1751 spin_unlock_irq(&sh->stripe_lock);
1752 WARN_ON(dev->page != dev->orig_page);
1754 while (wbi && wbi->bi_iter.bi_sector <
1755 dev->sector + STRIPE_SECTORS) {
1756 if (wbi->bi_opf & REQ_FUA)
1757 set_bit(R5_WantFUA, &dev->flags);
1758 if (wbi->bi_opf & REQ_SYNC)
1759 set_bit(R5_SyncIO, &dev->flags);
1760 if (bio_op(wbi) == REQ_OP_DISCARD)
1761 set_bit(R5_Discard, &dev->flags);
1762 else {
1763 tx = async_copy_data(1, wbi, &dev->page,
1764 dev->sector, tx, sh,
1765 r5c_is_writeback(conf->log));
1766 if (dev->page != dev->orig_page &&
1767 !r5c_is_writeback(conf->log)) {
1768 set_bit(R5_SkipCopy, &dev->flags);
1769 clear_bit(R5_UPTODATE, &dev->flags);
1770 clear_bit(R5_OVERWRITE, &dev->flags);
1773 wbi = r5_next_bio(wbi, dev->sector);
1776 if (head_sh->batch_head) {
1777 sh = list_first_entry(&sh->batch_list,
1778 struct stripe_head,
1779 batch_list);
1780 if (sh == head_sh)
1781 continue;
1782 goto again;
1787 return tx;
1790 static void ops_complete_reconstruct(void *stripe_head_ref)
1792 struct stripe_head *sh = stripe_head_ref;
1793 int disks = sh->disks;
1794 int pd_idx = sh->pd_idx;
1795 int qd_idx = sh->qd_idx;
1796 int i;
1797 bool fua = false, sync = false, discard = false;
1799 pr_debug("%s: stripe %llu\n", __func__,
1800 (unsigned long long)sh->sector);
1802 for (i = disks; i--; ) {
1803 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1804 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1805 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1808 for (i = disks; i--; ) {
1809 struct r5dev *dev = &sh->dev[i];
1811 if (dev->written || i == pd_idx || i == qd_idx) {
1812 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1813 set_bit(R5_UPTODATE, &dev->flags);
1814 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1815 set_bit(R5_Expanded, &dev->flags);
1817 if (fua)
1818 set_bit(R5_WantFUA, &dev->flags);
1819 if (sync)
1820 set_bit(R5_SyncIO, &dev->flags);
1824 if (sh->reconstruct_state == reconstruct_state_drain_run)
1825 sh->reconstruct_state = reconstruct_state_drain_result;
1826 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1827 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1828 else {
1829 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1830 sh->reconstruct_state = reconstruct_state_result;
1833 set_bit(STRIPE_HANDLE, &sh->state);
1834 raid5_release_stripe(sh);
1837 static void
1838 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1839 struct dma_async_tx_descriptor *tx)
1841 int disks = sh->disks;
1842 struct page **xor_srcs;
1843 struct async_submit_ctl submit;
1844 int count, pd_idx = sh->pd_idx, i;
1845 struct page *xor_dest;
1846 int prexor = 0;
1847 unsigned long flags;
1848 int j = 0;
1849 struct stripe_head *head_sh = sh;
1850 int last_stripe;
1852 pr_debug("%s: stripe %llu\n", __func__,
1853 (unsigned long long)sh->sector);
1855 for (i = 0; i < sh->disks; i++) {
1856 if (pd_idx == i)
1857 continue;
1858 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1859 break;
1861 if (i >= sh->disks) {
1862 atomic_inc(&sh->count);
1863 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1864 ops_complete_reconstruct(sh);
1865 return;
1867 again:
1868 count = 0;
1869 xor_srcs = to_addr_page(percpu, j);
1870 /* check if prexor is active which means only process blocks
1871 * that are part of a read-modify-write (written)
1873 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1874 prexor = 1;
1875 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1876 for (i = disks; i--; ) {
1877 struct r5dev *dev = &sh->dev[i];
1878 if (head_sh->dev[i].written ||
1879 test_bit(R5_InJournal, &head_sh->dev[i].flags))
1880 xor_srcs[count++] = dev->page;
1882 } else {
1883 xor_dest = sh->dev[pd_idx].page;
1884 for (i = disks; i--; ) {
1885 struct r5dev *dev = &sh->dev[i];
1886 if (i != pd_idx)
1887 xor_srcs[count++] = dev->page;
1891 /* 1/ if we prexor'd then the dest is reused as a source
1892 * 2/ if we did not prexor then we are redoing the parity
1893 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1894 * for the synchronous xor case
1896 last_stripe = !head_sh->batch_head ||
1897 list_first_entry(&sh->batch_list,
1898 struct stripe_head, batch_list) == head_sh;
1899 if (last_stripe) {
1900 flags = ASYNC_TX_ACK |
1901 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1903 atomic_inc(&head_sh->count);
1904 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1905 to_addr_conv(sh, percpu, j));
1906 } else {
1907 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1908 init_async_submit(&submit, flags, tx, NULL, NULL,
1909 to_addr_conv(sh, percpu, j));
1912 if (unlikely(count == 1))
1913 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1914 else
1915 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1916 if (!last_stripe) {
1917 j++;
1918 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1919 batch_list);
1920 goto again;
1924 static void
1925 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1926 struct dma_async_tx_descriptor *tx)
1928 struct async_submit_ctl submit;
1929 struct page **blocks;
1930 int count, i, j = 0;
1931 struct stripe_head *head_sh = sh;
1932 int last_stripe;
1933 int synflags;
1934 unsigned long txflags;
1936 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1938 for (i = 0; i < sh->disks; i++) {
1939 if (sh->pd_idx == i || sh->qd_idx == i)
1940 continue;
1941 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1942 break;
1944 if (i >= sh->disks) {
1945 atomic_inc(&sh->count);
1946 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1947 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1948 ops_complete_reconstruct(sh);
1949 return;
1952 again:
1953 blocks = to_addr_page(percpu, j);
1955 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1956 synflags = SYNDROME_SRC_WRITTEN;
1957 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1958 } else {
1959 synflags = SYNDROME_SRC_ALL;
1960 txflags = ASYNC_TX_ACK;
1963 count = set_syndrome_sources(blocks, sh, synflags);
1964 last_stripe = !head_sh->batch_head ||
1965 list_first_entry(&sh->batch_list,
1966 struct stripe_head, batch_list) == head_sh;
1968 if (last_stripe) {
1969 atomic_inc(&head_sh->count);
1970 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1971 head_sh, to_addr_conv(sh, percpu, j));
1972 } else
1973 init_async_submit(&submit, 0, tx, NULL, NULL,
1974 to_addr_conv(sh, percpu, j));
1975 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1976 if (!last_stripe) {
1977 j++;
1978 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1979 batch_list);
1980 goto again;
1984 static void ops_complete_check(void *stripe_head_ref)
1986 struct stripe_head *sh = stripe_head_ref;
1988 pr_debug("%s: stripe %llu\n", __func__,
1989 (unsigned long long)sh->sector);
1991 sh->check_state = check_state_check_result;
1992 set_bit(STRIPE_HANDLE, &sh->state);
1993 raid5_release_stripe(sh);
1996 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1998 int disks = sh->disks;
1999 int pd_idx = sh->pd_idx;
2000 int qd_idx = sh->qd_idx;
2001 struct page *xor_dest;
2002 struct page **xor_srcs = to_addr_page(percpu, 0);
2003 struct dma_async_tx_descriptor *tx;
2004 struct async_submit_ctl submit;
2005 int count;
2006 int i;
2008 pr_debug("%s: stripe %llu\n", __func__,
2009 (unsigned long long)sh->sector);
2011 BUG_ON(sh->batch_head);
2012 count = 0;
2013 xor_dest = sh->dev[pd_idx].page;
2014 xor_srcs[count++] = xor_dest;
2015 for (i = disks; i--; ) {
2016 if (i == pd_idx || i == qd_idx)
2017 continue;
2018 xor_srcs[count++] = sh->dev[i].page;
2021 init_async_submit(&submit, 0, NULL, NULL, NULL,
2022 to_addr_conv(sh, percpu, 0));
2023 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2024 &sh->ops.zero_sum_result, &submit);
2026 atomic_inc(&sh->count);
2027 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2028 tx = async_trigger_callback(&submit);
2031 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2033 struct page **srcs = to_addr_page(percpu, 0);
2034 struct async_submit_ctl submit;
2035 int count;
2037 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2038 (unsigned long long)sh->sector, checkp);
2040 BUG_ON(sh->batch_head);
2041 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2042 if (!checkp)
2043 srcs[count] = NULL;
2045 atomic_inc(&sh->count);
2046 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2047 sh, to_addr_conv(sh, percpu, 0));
2048 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2049 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2052 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2054 int overlap_clear = 0, i, disks = sh->disks;
2055 struct dma_async_tx_descriptor *tx = NULL;
2056 struct r5conf *conf = sh->raid_conf;
2057 int level = conf->level;
2058 struct raid5_percpu *percpu;
2059 unsigned long cpu;
2061 cpu = get_cpu();
2062 percpu = per_cpu_ptr(conf->percpu, cpu);
2063 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2064 ops_run_biofill(sh);
2065 overlap_clear++;
2068 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2069 if (level < 6)
2070 tx = ops_run_compute5(sh, percpu);
2071 else {
2072 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2073 tx = ops_run_compute6_1(sh, percpu);
2074 else
2075 tx = ops_run_compute6_2(sh, percpu);
2077 /* terminate the chain if reconstruct is not set to be run */
2078 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2079 async_tx_ack(tx);
2082 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2083 if (level < 6)
2084 tx = ops_run_prexor5(sh, percpu, tx);
2085 else
2086 tx = ops_run_prexor6(sh, percpu, tx);
2089 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2090 tx = ops_run_partial_parity(sh, percpu, tx);
2092 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2093 tx = ops_run_biodrain(sh, tx);
2094 overlap_clear++;
2097 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2098 if (level < 6)
2099 ops_run_reconstruct5(sh, percpu, tx);
2100 else
2101 ops_run_reconstruct6(sh, percpu, tx);
2104 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2105 if (sh->check_state == check_state_run)
2106 ops_run_check_p(sh, percpu);
2107 else if (sh->check_state == check_state_run_q)
2108 ops_run_check_pq(sh, percpu, 0);
2109 else if (sh->check_state == check_state_run_pq)
2110 ops_run_check_pq(sh, percpu, 1);
2111 else
2112 BUG();
2115 if (overlap_clear && !sh->batch_head)
2116 for (i = disks; i--; ) {
2117 struct r5dev *dev = &sh->dev[i];
2118 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2119 wake_up(&sh->raid_conf->wait_for_overlap);
2121 put_cpu();
2124 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2126 if (sh->ppl_page)
2127 __free_page(sh->ppl_page);
2128 kmem_cache_free(sc, sh);
2131 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2132 int disks, struct r5conf *conf)
2134 struct stripe_head *sh;
2135 int i;
2137 sh = kmem_cache_zalloc(sc, gfp);
2138 if (sh) {
2139 spin_lock_init(&sh->stripe_lock);
2140 spin_lock_init(&sh->batch_lock);
2141 INIT_LIST_HEAD(&sh->batch_list);
2142 INIT_LIST_HEAD(&sh->lru);
2143 INIT_LIST_HEAD(&sh->r5c);
2144 INIT_LIST_HEAD(&sh->log_list);
2145 atomic_set(&sh->count, 1);
2146 sh->raid_conf = conf;
2147 sh->log_start = MaxSector;
2148 for (i = 0; i < disks; i++) {
2149 struct r5dev *dev = &sh->dev[i];
2151 bio_init(&dev->req, &dev->vec, 1);
2152 bio_init(&dev->rreq, &dev->rvec, 1);
2155 if (raid5_has_ppl(conf)) {
2156 sh->ppl_page = alloc_page(gfp);
2157 if (!sh->ppl_page) {
2158 free_stripe(sc, sh);
2159 sh = NULL;
2163 return sh;
2165 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2167 struct stripe_head *sh;
2169 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2170 if (!sh)
2171 return 0;
2173 if (grow_buffers(sh, gfp)) {
2174 shrink_buffers(sh);
2175 free_stripe(conf->slab_cache, sh);
2176 return 0;
2178 sh->hash_lock_index =
2179 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2180 /* we just created an active stripe so... */
2181 atomic_inc(&conf->active_stripes);
2183 raid5_release_stripe(sh);
2184 conf->max_nr_stripes++;
2185 return 1;
2188 static int grow_stripes(struct r5conf *conf, int num)
2190 struct kmem_cache *sc;
2191 size_t namelen = sizeof(conf->cache_name[0]);
2192 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2194 if (conf->mddev->gendisk)
2195 snprintf(conf->cache_name[0], namelen,
2196 "raid%d-%s", conf->level, mdname(conf->mddev));
2197 else
2198 snprintf(conf->cache_name[0], namelen,
2199 "raid%d-%p", conf->level, conf->mddev);
2200 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2202 conf->active_name = 0;
2203 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2204 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2205 0, 0, NULL);
2206 if (!sc)
2207 return 1;
2208 conf->slab_cache = sc;
2209 conf->pool_size = devs;
2210 while (num--)
2211 if (!grow_one_stripe(conf, GFP_KERNEL))
2212 return 1;
2214 return 0;
2218 * scribble_len - return the required size of the scribble region
2219 * @num - total number of disks in the array
2221 * The size must be enough to contain:
2222 * 1/ a struct page pointer for each device in the array +2
2223 * 2/ room to convert each entry in (1) to its corresponding dma
2224 * (dma_map_page()) or page (page_address()) address.
2226 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2227 * calculate over all devices (not just the data blocks), using zeros in place
2228 * of the P and Q blocks.
2230 static int scribble_alloc(struct raid5_percpu *percpu,
2231 int num, int cnt, gfp_t flags)
2233 size_t obj_size =
2234 sizeof(struct page *) * (num+2) +
2235 sizeof(addr_conv_t) * (num+2);
2236 void *scribble;
2238 scribble = kvmalloc_array(cnt, obj_size, flags);
2239 if (!scribble)
2240 return -ENOMEM;
2242 kvfree(percpu->scribble);
2244 percpu->scribble = scribble;
2245 percpu->scribble_obj_size = obj_size;
2246 return 0;
2249 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2251 unsigned long cpu;
2252 int err = 0;
2255 * Never shrink. And mddev_suspend() could deadlock if this is called
2256 * from raid5d. In that case, scribble_disks and scribble_sectors
2257 * should equal to new_disks and new_sectors
2259 if (conf->scribble_disks >= new_disks &&
2260 conf->scribble_sectors >= new_sectors)
2261 return 0;
2262 mddev_suspend(conf->mddev);
2263 get_online_cpus();
2265 for_each_present_cpu(cpu) {
2266 struct raid5_percpu *percpu;
2268 percpu = per_cpu_ptr(conf->percpu, cpu);
2269 err = scribble_alloc(percpu, new_disks,
2270 new_sectors / STRIPE_SECTORS,
2271 GFP_NOIO);
2272 if (err)
2273 break;
2276 put_online_cpus();
2277 mddev_resume(conf->mddev);
2278 if (!err) {
2279 conf->scribble_disks = new_disks;
2280 conf->scribble_sectors = new_sectors;
2282 return err;
2285 static int resize_stripes(struct r5conf *conf, int newsize)
2287 /* Make all the stripes able to hold 'newsize' devices.
2288 * New slots in each stripe get 'page' set to a new page.
2290 * This happens in stages:
2291 * 1/ create a new kmem_cache and allocate the required number of
2292 * stripe_heads.
2293 * 2/ gather all the old stripe_heads and transfer the pages across
2294 * to the new stripe_heads. This will have the side effect of
2295 * freezing the array as once all stripe_heads have been collected,
2296 * no IO will be possible. Old stripe heads are freed once their
2297 * pages have been transferred over, and the old kmem_cache is
2298 * freed when all stripes are done.
2299 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2300 * we simple return a failure status - no need to clean anything up.
2301 * 4/ allocate new pages for the new slots in the new stripe_heads.
2302 * If this fails, we don't bother trying the shrink the
2303 * stripe_heads down again, we just leave them as they are.
2304 * As each stripe_head is processed the new one is released into
2305 * active service.
2307 * Once step2 is started, we cannot afford to wait for a write,
2308 * so we use GFP_NOIO allocations.
2310 struct stripe_head *osh, *nsh;
2311 LIST_HEAD(newstripes);
2312 struct disk_info *ndisks;
2313 int err = 0;
2314 struct kmem_cache *sc;
2315 int i;
2316 int hash, cnt;
2318 md_allow_write(conf->mddev);
2320 /* Step 1 */
2321 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2322 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2323 0, 0, NULL);
2324 if (!sc)
2325 return -ENOMEM;
2327 /* Need to ensure auto-resizing doesn't interfere */
2328 mutex_lock(&conf->cache_size_mutex);
2330 for (i = conf->max_nr_stripes; i; i--) {
2331 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2332 if (!nsh)
2333 break;
2335 list_add(&nsh->lru, &newstripes);
2337 if (i) {
2338 /* didn't get enough, give up */
2339 while (!list_empty(&newstripes)) {
2340 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2341 list_del(&nsh->lru);
2342 free_stripe(sc, nsh);
2344 kmem_cache_destroy(sc);
2345 mutex_unlock(&conf->cache_size_mutex);
2346 return -ENOMEM;
2348 /* Step 2 - Must use GFP_NOIO now.
2349 * OK, we have enough stripes, start collecting inactive
2350 * stripes and copying them over
2352 hash = 0;
2353 cnt = 0;
2354 list_for_each_entry(nsh, &newstripes, lru) {
2355 lock_device_hash_lock(conf, hash);
2356 wait_event_cmd(conf->wait_for_stripe,
2357 !list_empty(conf->inactive_list + hash),
2358 unlock_device_hash_lock(conf, hash),
2359 lock_device_hash_lock(conf, hash));
2360 osh = get_free_stripe(conf, hash);
2361 unlock_device_hash_lock(conf, hash);
2363 for(i=0; i<conf->pool_size; i++) {
2364 nsh->dev[i].page = osh->dev[i].page;
2365 nsh->dev[i].orig_page = osh->dev[i].page;
2367 nsh->hash_lock_index = hash;
2368 free_stripe(conf->slab_cache, osh);
2369 cnt++;
2370 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2371 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2372 hash++;
2373 cnt = 0;
2376 kmem_cache_destroy(conf->slab_cache);
2378 /* Step 3.
2379 * At this point, we are holding all the stripes so the array
2380 * is completely stalled, so now is a good time to resize
2381 * conf->disks and the scribble region
2383 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2384 if (ndisks) {
2385 for (i = 0; i < conf->pool_size; i++)
2386 ndisks[i] = conf->disks[i];
2388 for (i = conf->pool_size; i < newsize; i++) {
2389 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2390 if (!ndisks[i].extra_page)
2391 err = -ENOMEM;
2394 if (err) {
2395 for (i = conf->pool_size; i < newsize; i++)
2396 if (ndisks[i].extra_page)
2397 put_page(ndisks[i].extra_page);
2398 kfree(ndisks);
2399 } else {
2400 kfree(conf->disks);
2401 conf->disks = ndisks;
2403 } else
2404 err = -ENOMEM;
2406 mutex_unlock(&conf->cache_size_mutex);
2408 conf->slab_cache = sc;
2409 conf->active_name = 1-conf->active_name;
2411 /* Step 4, return new stripes to service */
2412 while(!list_empty(&newstripes)) {
2413 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2414 list_del_init(&nsh->lru);
2416 for (i=conf->raid_disks; i < newsize; i++)
2417 if (nsh->dev[i].page == NULL) {
2418 struct page *p = alloc_page(GFP_NOIO);
2419 nsh->dev[i].page = p;
2420 nsh->dev[i].orig_page = p;
2421 if (!p)
2422 err = -ENOMEM;
2424 raid5_release_stripe(nsh);
2426 /* critical section pass, GFP_NOIO no longer needed */
2428 if (!err)
2429 conf->pool_size = newsize;
2430 return err;
2433 static int drop_one_stripe(struct r5conf *conf)
2435 struct stripe_head *sh;
2436 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2438 spin_lock_irq(conf->hash_locks + hash);
2439 sh = get_free_stripe(conf, hash);
2440 spin_unlock_irq(conf->hash_locks + hash);
2441 if (!sh)
2442 return 0;
2443 BUG_ON(atomic_read(&sh->count));
2444 shrink_buffers(sh);
2445 free_stripe(conf->slab_cache, sh);
2446 atomic_dec(&conf->active_stripes);
2447 conf->max_nr_stripes--;
2448 return 1;
2451 static void shrink_stripes(struct r5conf *conf)
2453 while (conf->max_nr_stripes &&
2454 drop_one_stripe(conf))
2457 kmem_cache_destroy(conf->slab_cache);
2458 conf->slab_cache = NULL;
2461 static void raid5_end_read_request(struct bio * bi)
2463 struct stripe_head *sh = bi->bi_private;
2464 struct r5conf *conf = sh->raid_conf;
2465 int disks = sh->disks, i;
2466 char b[BDEVNAME_SIZE];
2467 struct md_rdev *rdev = NULL;
2468 sector_t s;
2470 for (i=0 ; i<disks; i++)
2471 if (bi == &sh->dev[i].req)
2472 break;
2474 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2475 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2476 bi->bi_status);
2477 if (i == disks) {
2478 bio_reset(bi);
2479 BUG();
2480 return;
2482 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2483 /* If replacement finished while this request was outstanding,
2484 * 'replacement' might be NULL already.
2485 * In that case it moved down to 'rdev'.
2486 * rdev is not removed until all requests are finished.
2488 rdev = conf->disks[i].replacement;
2489 if (!rdev)
2490 rdev = conf->disks[i].rdev;
2492 if (use_new_offset(conf, sh))
2493 s = sh->sector + rdev->new_data_offset;
2494 else
2495 s = sh->sector + rdev->data_offset;
2496 if (!bi->bi_status) {
2497 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2498 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2499 /* Note that this cannot happen on a
2500 * replacement device. We just fail those on
2501 * any error
2503 pr_info_ratelimited(
2504 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2505 mdname(conf->mddev), STRIPE_SECTORS,
2506 (unsigned long long)s,
2507 bdevname(rdev->bdev, b));
2508 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2509 clear_bit(R5_ReadError, &sh->dev[i].flags);
2510 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2511 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2512 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2514 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2516 * end read for a page in journal, this
2517 * must be preparing for prexor in rmw
2519 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2521 if (atomic_read(&rdev->read_errors))
2522 atomic_set(&rdev->read_errors, 0);
2523 } else {
2524 const char *bdn = bdevname(rdev->bdev, b);
2525 int retry = 0;
2526 int set_bad = 0;
2528 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2529 atomic_inc(&rdev->read_errors);
2530 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2531 pr_warn_ratelimited(
2532 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2533 mdname(conf->mddev),
2534 (unsigned long long)s,
2535 bdn);
2536 else if (conf->mddev->degraded >= conf->max_degraded) {
2537 set_bad = 1;
2538 pr_warn_ratelimited(
2539 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2540 mdname(conf->mddev),
2541 (unsigned long long)s,
2542 bdn);
2543 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2544 /* Oh, no!!! */
2545 set_bad = 1;
2546 pr_warn_ratelimited(
2547 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2548 mdname(conf->mddev),
2549 (unsigned long long)s,
2550 bdn);
2551 } else if (atomic_read(&rdev->read_errors)
2552 > conf->max_nr_stripes)
2553 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2554 mdname(conf->mddev), bdn);
2555 else
2556 retry = 1;
2557 if (set_bad && test_bit(In_sync, &rdev->flags)
2558 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2559 retry = 1;
2560 if (retry)
2561 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2562 set_bit(R5_ReadError, &sh->dev[i].flags);
2563 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2564 } else
2565 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2566 else {
2567 clear_bit(R5_ReadError, &sh->dev[i].flags);
2568 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2569 if (!(set_bad
2570 && test_bit(In_sync, &rdev->flags)
2571 && rdev_set_badblocks(
2572 rdev, sh->sector, STRIPE_SECTORS, 0)))
2573 md_error(conf->mddev, rdev);
2576 rdev_dec_pending(rdev, conf->mddev);
2577 bio_reset(bi);
2578 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2579 set_bit(STRIPE_HANDLE, &sh->state);
2580 raid5_release_stripe(sh);
2583 static void raid5_end_write_request(struct bio *bi)
2585 struct stripe_head *sh = bi->bi_private;
2586 struct r5conf *conf = sh->raid_conf;
2587 int disks = sh->disks, i;
2588 struct md_rdev *uninitialized_var(rdev);
2589 sector_t first_bad;
2590 int bad_sectors;
2591 int replacement = 0;
2593 for (i = 0 ; i < disks; i++) {
2594 if (bi == &sh->dev[i].req) {
2595 rdev = conf->disks[i].rdev;
2596 break;
2598 if (bi == &sh->dev[i].rreq) {
2599 rdev = conf->disks[i].replacement;
2600 if (rdev)
2601 replacement = 1;
2602 else
2603 /* rdev was removed and 'replacement'
2604 * replaced it. rdev is not removed
2605 * until all requests are finished.
2607 rdev = conf->disks[i].rdev;
2608 break;
2611 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2612 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2613 bi->bi_status);
2614 if (i == disks) {
2615 bio_reset(bi);
2616 BUG();
2617 return;
2620 if (replacement) {
2621 if (bi->bi_status)
2622 md_error(conf->mddev, rdev);
2623 else if (is_badblock(rdev, sh->sector,
2624 STRIPE_SECTORS,
2625 &first_bad, &bad_sectors))
2626 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2627 } else {
2628 if (bi->bi_status) {
2629 set_bit(STRIPE_DEGRADED, &sh->state);
2630 set_bit(WriteErrorSeen, &rdev->flags);
2631 set_bit(R5_WriteError, &sh->dev[i].flags);
2632 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2633 set_bit(MD_RECOVERY_NEEDED,
2634 &rdev->mddev->recovery);
2635 } else if (is_badblock(rdev, sh->sector,
2636 STRIPE_SECTORS,
2637 &first_bad, &bad_sectors)) {
2638 set_bit(R5_MadeGood, &sh->dev[i].flags);
2639 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2640 /* That was a successful write so make
2641 * sure it looks like we already did
2642 * a re-write.
2644 set_bit(R5_ReWrite, &sh->dev[i].flags);
2647 rdev_dec_pending(rdev, conf->mddev);
2649 if (sh->batch_head && bi->bi_status && !replacement)
2650 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2652 bio_reset(bi);
2653 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2654 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2655 set_bit(STRIPE_HANDLE, &sh->state);
2656 raid5_release_stripe(sh);
2658 if (sh->batch_head && sh != sh->batch_head)
2659 raid5_release_stripe(sh->batch_head);
2662 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2664 char b[BDEVNAME_SIZE];
2665 struct r5conf *conf = mddev->private;
2666 unsigned long flags;
2667 pr_debug("raid456: error called\n");
2669 spin_lock_irqsave(&conf->device_lock, flags);
2671 if (test_bit(In_sync, &rdev->flags) &&
2672 mddev->degraded == conf->max_degraded) {
2674 * Don't allow to achieve failed state
2675 * Don't try to recover this device
2677 conf->recovery_disabled = mddev->recovery_disabled;
2678 spin_unlock_irqrestore(&conf->device_lock, flags);
2679 return;
2682 set_bit(Faulty, &rdev->flags);
2683 clear_bit(In_sync, &rdev->flags);
2684 mddev->degraded = raid5_calc_degraded(conf);
2685 spin_unlock_irqrestore(&conf->device_lock, flags);
2686 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2688 set_bit(Blocked, &rdev->flags);
2689 set_mask_bits(&mddev->sb_flags, 0,
2690 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2691 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2692 "md/raid:%s: Operation continuing on %d devices.\n",
2693 mdname(mddev),
2694 bdevname(rdev->bdev, b),
2695 mdname(mddev),
2696 conf->raid_disks - mddev->degraded);
2697 r5c_update_on_rdev_error(mddev, rdev);
2701 * Input: a 'big' sector number,
2702 * Output: index of the data and parity disk, and the sector # in them.
2704 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2705 int previous, int *dd_idx,
2706 struct stripe_head *sh)
2708 sector_t stripe, stripe2;
2709 sector_t chunk_number;
2710 unsigned int chunk_offset;
2711 int pd_idx, qd_idx;
2712 int ddf_layout = 0;
2713 sector_t new_sector;
2714 int algorithm = previous ? conf->prev_algo
2715 : conf->algorithm;
2716 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2717 : conf->chunk_sectors;
2718 int raid_disks = previous ? conf->previous_raid_disks
2719 : conf->raid_disks;
2720 int data_disks = raid_disks - conf->max_degraded;
2722 /* First compute the information on this sector */
2725 * Compute the chunk number and the sector offset inside the chunk
2727 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2728 chunk_number = r_sector;
2731 * Compute the stripe number
2733 stripe = chunk_number;
2734 *dd_idx = sector_div(stripe, data_disks);
2735 stripe2 = stripe;
2737 * Select the parity disk based on the user selected algorithm.
2739 pd_idx = qd_idx = -1;
2740 switch(conf->level) {
2741 case 4:
2742 pd_idx = data_disks;
2743 break;
2744 case 5:
2745 switch (algorithm) {
2746 case ALGORITHM_LEFT_ASYMMETRIC:
2747 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2748 if (*dd_idx >= pd_idx)
2749 (*dd_idx)++;
2750 break;
2751 case ALGORITHM_RIGHT_ASYMMETRIC:
2752 pd_idx = sector_div(stripe2, raid_disks);
2753 if (*dd_idx >= pd_idx)
2754 (*dd_idx)++;
2755 break;
2756 case ALGORITHM_LEFT_SYMMETRIC:
2757 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2758 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2759 break;
2760 case ALGORITHM_RIGHT_SYMMETRIC:
2761 pd_idx = sector_div(stripe2, raid_disks);
2762 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2763 break;
2764 case ALGORITHM_PARITY_0:
2765 pd_idx = 0;
2766 (*dd_idx)++;
2767 break;
2768 case ALGORITHM_PARITY_N:
2769 pd_idx = data_disks;
2770 break;
2771 default:
2772 BUG();
2774 break;
2775 case 6:
2777 switch (algorithm) {
2778 case ALGORITHM_LEFT_ASYMMETRIC:
2779 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2780 qd_idx = pd_idx + 1;
2781 if (pd_idx == raid_disks-1) {
2782 (*dd_idx)++; /* Q D D D P */
2783 qd_idx = 0;
2784 } else if (*dd_idx >= pd_idx)
2785 (*dd_idx) += 2; /* D D P Q D */
2786 break;
2787 case ALGORITHM_RIGHT_ASYMMETRIC:
2788 pd_idx = sector_div(stripe2, raid_disks);
2789 qd_idx = pd_idx + 1;
2790 if (pd_idx == raid_disks-1) {
2791 (*dd_idx)++; /* Q D D D P */
2792 qd_idx = 0;
2793 } else if (*dd_idx >= pd_idx)
2794 (*dd_idx) += 2; /* D D P Q D */
2795 break;
2796 case ALGORITHM_LEFT_SYMMETRIC:
2797 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2798 qd_idx = (pd_idx + 1) % raid_disks;
2799 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2800 break;
2801 case ALGORITHM_RIGHT_SYMMETRIC:
2802 pd_idx = sector_div(stripe2, raid_disks);
2803 qd_idx = (pd_idx + 1) % raid_disks;
2804 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2805 break;
2807 case ALGORITHM_PARITY_0:
2808 pd_idx = 0;
2809 qd_idx = 1;
2810 (*dd_idx) += 2;
2811 break;
2812 case ALGORITHM_PARITY_N:
2813 pd_idx = data_disks;
2814 qd_idx = data_disks + 1;
2815 break;
2817 case ALGORITHM_ROTATING_ZERO_RESTART:
2818 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2819 * of blocks for computing Q is different.
2821 pd_idx = sector_div(stripe2, raid_disks);
2822 qd_idx = pd_idx + 1;
2823 if (pd_idx == raid_disks-1) {
2824 (*dd_idx)++; /* Q D D D P */
2825 qd_idx = 0;
2826 } else if (*dd_idx >= pd_idx)
2827 (*dd_idx) += 2; /* D D P Q D */
2828 ddf_layout = 1;
2829 break;
2831 case ALGORITHM_ROTATING_N_RESTART:
2832 /* Same a left_asymmetric, by first stripe is
2833 * D D D P Q rather than
2834 * Q D D D P
2836 stripe2 += 1;
2837 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2838 qd_idx = pd_idx + 1;
2839 if (pd_idx == raid_disks-1) {
2840 (*dd_idx)++; /* Q D D D P */
2841 qd_idx = 0;
2842 } else if (*dd_idx >= pd_idx)
2843 (*dd_idx) += 2; /* D D P Q D */
2844 ddf_layout = 1;
2845 break;
2847 case ALGORITHM_ROTATING_N_CONTINUE:
2848 /* Same as left_symmetric but Q is before P */
2849 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2850 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2851 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2852 ddf_layout = 1;
2853 break;
2855 case ALGORITHM_LEFT_ASYMMETRIC_6:
2856 /* RAID5 left_asymmetric, with Q on last device */
2857 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2858 if (*dd_idx >= pd_idx)
2859 (*dd_idx)++;
2860 qd_idx = raid_disks - 1;
2861 break;
2863 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2864 pd_idx = sector_div(stripe2, raid_disks-1);
2865 if (*dd_idx >= pd_idx)
2866 (*dd_idx)++;
2867 qd_idx = raid_disks - 1;
2868 break;
2870 case ALGORITHM_LEFT_SYMMETRIC_6:
2871 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2872 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2873 qd_idx = raid_disks - 1;
2874 break;
2876 case ALGORITHM_RIGHT_SYMMETRIC_6:
2877 pd_idx = sector_div(stripe2, raid_disks-1);
2878 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2879 qd_idx = raid_disks - 1;
2880 break;
2882 case ALGORITHM_PARITY_0_6:
2883 pd_idx = 0;
2884 (*dd_idx)++;
2885 qd_idx = raid_disks - 1;
2886 break;
2888 default:
2889 BUG();
2891 break;
2894 if (sh) {
2895 sh->pd_idx = pd_idx;
2896 sh->qd_idx = qd_idx;
2897 sh->ddf_layout = ddf_layout;
2900 * Finally, compute the new sector number
2902 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2903 return new_sector;
2906 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2908 struct r5conf *conf = sh->raid_conf;
2909 int raid_disks = sh->disks;
2910 int data_disks = raid_disks - conf->max_degraded;
2911 sector_t new_sector = sh->sector, check;
2912 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2913 : conf->chunk_sectors;
2914 int algorithm = previous ? conf->prev_algo
2915 : conf->algorithm;
2916 sector_t stripe;
2917 int chunk_offset;
2918 sector_t chunk_number;
2919 int dummy1, dd_idx = i;
2920 sector_t r_sector;
2921 struct stripe_head sh2;
2923 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2924 stripe = new_sector;
2926 if (i == sh->pd_idx)
2927 return 0;
2928 switch(conf->level) {
2929 case 4: break;
2930 case 5:
2931 switch (algorithm) {
2932 case ALGORITHM_LEFT_ASYMMETRIC:
2933 case ALGORITHM_RIGHT_ASYMMETRIC:
2934 if (i > sh->pd_idx)
2935 i--;
2936 break;
2937 case ALGORITHM_LEFT_SYMMETRIC:
2938 case ALGORITHM_RIGHT_SYMMETRIC:
2939 if (i < sh->pd_idx)
2940 i += raid_disks;
2941 i -= (sh->pd_idx + 1);
2942 break;
2943 case ALGORITHM_PARITY_0:
2944 i -= 1;
2945 break;
2946 case ALGORITHM_PARITY_N:
2947 break;
2948 default:
2949 BUG();
2951 break;
2952 case 6:
2953 if (i == sh->qd_idx)
2954 return 0; /* It is the Q disk */
2955 switch (algorithm) {
2956 case ALGORITHM_LEFT_ASYMMETRIC:
2957 case ALGORITHM_RIGHT_ASYMMETRIC:
2958 case ALGORITHM_ROTATING_ZERO_RESTART:
2959 case ALGORITHM_ROTATING_N_RESTART:
2960 if (sh->pd_idx == raid_disks-1)
2961 i--; /* Q D D D P */
2962 else if (i > sh->pd_idx)
2963 i -= 2; /* D D P Q D */
2964 break;
2965 case ALGORITHM_LEFT_SYMMETRIC:
2966 case ALGORITHM_RIGHT_SYMMETRIC:
2967 if (sh->pd_idx == raid_disks-1)
2968 i--; /* Q D D D P */
2969 else {
2970 /* D D P Q D */
2971 if (i < sh->pd_idx)
2972 i += raid_disks;
2973 i -= (sh->pd_idx + 2);
2975 break;
2976 case ALGORITHM_PARITY_0:
2977 i -= 2;
2978 break;
2979 case ALGORITHM_PARITY_N:
2980 break;
2981 case ALGORITHM_ROTATING_N_CONTINUE:
2982 /* Like left_symmetric, but P is before Q */
2983 if (sh->pd_idx == 0)
2984 i--; /* P D D D Q */
2985 else {
2986 /* D D Q P D */
2987 if (i < sh->pd_idx)
2988 i += raid_disks;
2989 i -= (sh->pd_idx + 1);
2991 break;
2992 case ALGORITHM_LEFT_ASYMMETRIC_6:
2993 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2994 if (i > sh->pd_idx)
2995 i--;
2996 break;
2997 case ALGORITHM_LEFT_SYMMETRIC_6:
2998 case ALGORITHM_RIGHT_SYMMETRIC_6:
2999 if (i < sh->pd_idx)
3000 i += data_disks + 1;
3001 i -= (sh->pd_idx + 1);
3002 break;
3003 case ALGORITHM_PARITY_0_6:
3004 i -= 1;
3005 break;
3006 default:
3007 BUG();
3009 break;
3012 chunk_number = stripe * data_disks + i;
3013 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3015 check = raid5_compute_sector(conf, r_sector,
3016 previous, &dummy1, &sh2);
3017 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3018 || sh2.qd_idx != sh->qd_idx) {
3019 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3020 mdname(conf->mddev));
3021 return 0;
3023 return r_sector;
3027 * There are cases where we want handle_stripe_dirtying() and
3028 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3030 * This function checks whether we want to delay the towrite. Specifically,
3031 * we delay the towrite when:
3033 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3034 * stripe has data in journal (for other devices).
3036 * In this case, when reading data for the non-overwrite dev, it is
3037 * necessary to handle complex rmw of write back cache (prexor with
3038 * orig_page, and xor with page). To keep read path simple, we would
3039 * like to flush data in journal to RAID disks first, so complex rmw
3040 * is handled in the write patch (handle_stripe_dirtying).
3042 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3044 * It is important to be able to flush all stripes in raid5-cache.
3045 * Therefore, we need reserve some space on the journal device for
3046 * these flushes. If flush operation includes pending writes to the
3047 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3048 * for the flush out. If we exclude these pending writes from flush
3049 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3050 * Therefore, excluding pending writes in these cases enables more
3051 * efficient use of the journal device.
3053 * Note: To make sure the stripe makes progress, we only delay
3054 * towrite for stripes with data already in journal (injournal > 0).
3055 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3056 * no_space_stripes list.
3058 * 3. during journal failure
3059 * In journal failure, we try to flush all cached data to raid disks
3060 * based on data in stripe cache. The array is read-only to upper
3061 * layers, so we would skip all pending writes.
3064 static inline bool delay_towrite(struct r5conf *conf,
3065 struct r5dev *dev,
3066 struct stripe_head_state *s)
3068 /* case 1 above */
3069 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3070 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3071 return true;
3072 /* case 2 above */
3073 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3074 s->injournal > 0)
3075 return true;
3076 /* case 3 above */
3077 if (s->log_failed && s->injournal)
3078 return true;
3079 return false;
3082 static void
3083 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3084 int rcw, int expand)
3086 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3087 struct r5conf *conf = sh->raid_conf;
3088 int level = conf->level;
3090 if (rcw) {
3092 * In some cases, handle_stripe_dirtying initially decided to
3093 * run rmw and allocates extra page for prexor. However, rcw is
3094 * cheaper later on. We need to free the extra page now,
3095 * because we won't be able to do that in ops_complete_prexor().
3097 r5c_release_extra_page(sh);
3099 for (i = disks; i--; ) {
3100 struct r5dev *dev = &sh->dev[i];
3102 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3103 set_bit(R5_LOCKED, &dev->flags);
3104 set_bit(R5_Wantdrain, &dev->flags);
3105 if (!expand)
3106 clear_bit(R5_UPTODATE, &dev->flags);
3107 s->locked++;
3108 } else if (test_bit(R5_InJournal, &dev->flags)) {
3109 set_bit(R5_LOCKED, &dev->flags);
3110 s->locked++;
3113 /* if we are not expanding this is a proper write request, and
3114 * there will be bios with new data to be drained into the
3115 * stripe cache
3117 if (!expand) {
3118 if (!s->locked)
3119 /* False alarm, nothing to do */
3120 return;
3121 sh->reconstruct_state = reconstruct_state_drain_run;
3122 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3123 } else
3124 sh->reconstruct_state = reconstruct_state_run;
3126 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3128 if (s->locked + conf->max_degraded == disks)
3129 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3130 atomic_inc(&conf->pending_full_writes);
3131 } else {
3132 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3133 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3134 BUG_ON(level == 6 &&
3135 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3136 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3138 for (i = disks; i--; ) {
3139 struct r5dev *dev = &sh->dev[i];
3140 if (i == pd_idx || i == qd_idx)
3141 continue;
3143 if (dev->towrite &&
3144 (test_bit(R5_UPTODATE, &dev->flags) ||
3145 test_bit(R5_Wantcompute, &dev->flags))) {
3146 set_bit(R5_Wantdrain, &dev->flags);
3147 set_bit(R5_LOCKED, &dev->flags);
3148 clear_bit(R5_UPTODATE, &dev->flags);
3149 s->locked++;
3150 } else if (test_bit(R5_InJournal, &dev->flags)) {
3151 set_bit(R5_LOCKED, &dev->flags);
3152 s->locked++;
3155 if (!s->locked)
3156 /* False alarm - nothing to do */
3157 return;
3158 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3159 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3160 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3161 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3164 /* keep the parity disk(s) locked while asynchronous operations
3165 * are in flight
3167 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3168 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3169 s->locked++;
3171 if (level == 6) {
3172 int qd_idx = sh->qd_idx;
3173 struct r5dev *dev = &sh->dev[qd_idx];
3175 set_bit(R5_LOCKED, &dev->flags);
3176 clear_bit(R5_UPTODATE, &dev->flags);
3177 s->locked++;
3180 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3181 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3182 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3183 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3184 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3186 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3187 __func__, (unsigned long long)sh->sector,
3188 s->locked, s->ops_request);
3192 * Each stripe/dev can have one or more bion attached.
3193 * toread/towrite point to the first in a chain.
3194 * The bi_next chain must be in order.
3196 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3197 int forwrite, int previous)
3199 struct bio **bip;
3200 struct r5conf *conf = sh->raid_conf;
3201 int firstwrite=0;
3203 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3204 (unsigned long long)bi->bi_iter.bi_sector,
3205 (unsigned long long)sh->sector);
3207 spin_lock_irq(&sh->stripe_lock);
3208 sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3209 /* Don't allow new IO added to stripes in batch list */
3210 if (sh->batch_head)
3211 goto overlap;
3212 if (forwrite) {
3213 bip = &sh->dev[dd_idx].towrite;
3214 if (*bip == NULL)
3215 firstwrite = 1;
3216 } else
3217 bip = &sh->dev[dd_idx].toread;
3218 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3219 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3220 goto overlap;
3221 bip = & (*bip)->bi_next;
3223 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3224 goto overlap;
3226 if (forwrite && raid5_has_ppl(conf)) {
3228 * With PPL only writes to consecutive data chunks within a
3229 * stripe are allowed because for a single stripe_head we can
3230 * only have one PPL entry at a time, which describes one data
3231 * range. Not really an overlap, but wait_for_overlap can be
3232 * used to handle this.
3234 sector_t sector;
3235 sector_t first = 0;
3236 sector_t last = 0;
3237 int count = 0;
3238 int i;
3240 for (i = 0; i < sh->disks; i++) {
3241 if (i != sh->pd_idx &&
3242 (i == dd_idx || sh->dev[i].towrite)) {
3243 sector = sh->dev[i].sector;
3244 if (count == 0 || sector < first)
3245 first = sector;
3246 if (sector > last)
3247 last = sector;
3248 count++;
3252 if (first + conf->chunk_sectors * (count - 1) != last)
3253 goto overlap;
3256 if (!forwrite || previous)
3257 clear_bit(STRIPE_BATCH_READY, &sh->state);
3259 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3260 if (*bip)
3261 bi->bi_next = *bip;
3262 *bip = bi;
3263 bio_inc_remaining(bi);
3264 md_write_inc(conf->mddev, bi);
3266 if (forwrite) {
3267 /* check if page is covered */
3268 sector_t sector = sh->dev[dd_idx].sector;
3269 for (bi=sh->dev[dd_idx].towrite;
3270 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3271 bi && bi->bi_iter.bi_sector <= sector;
3272 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3273 if (bio_end_sector(bi) >= sector)
3274 sector = bio_end_sector(bi);
3276 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3277 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3278 sh->overwrite_disks++;
3281 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3282 (unsigned long long)(*bip)->bi_iter.bi_sector,
3283 (unsigned long long)sh->sector, dd_idx);
3285 if (conf->mddev->bitmap && firstwrite) {
3286 /* Cannot hold spinlock over bitmap_startwrite,
3287 * but must ensure this isn't added to a batch until
3288 * we have added to the bitmap and set bm_seq.
3289 * So set STRIPE_BITMAP_PENDING to prevent
3290 * batching.
3291 * If multiple add_stripe_bio() calls race here they
3292 * much all set STRIPE_BITMAP_PENDING. So only the first one
3293 * to complete "bitmap_startwrite" gets to set
3294 * STRIPE_BIT_DELAY. This is important as once a stripe
3295 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3296 * any more.
3298 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3299 spin_unlock_irq(&sh->stripe_lock);
3300 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3301 STRIPE_SECTORS, 0);
3302 spin_lock_irq(&sh->stripe_lock);
3303 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3304 if (!sh->batch_head) {
3305 sh->bm_seq = conf->seq_flush+1;
3306 set_bit(STRIPE_BIT_DELAY, &sh->state);
3309 spin_unlock_irq(&sh->stripe_lock);
3311 if (stripe_can_batch(sh))
3312 stripe_add_to_batch_list(conf, sh);
3313 return 1;
3315 overlap:
3316 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3317 spin_unlock_irq(&sh->stripe_lock);
3318 return 0;
3321 static void end_reshape(struct r5conf *conf);
3323 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3324 struct stripe_head *sh)
3326 int sectors_per_chunk =
3327 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3328 int dd_idx;
3329 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3330 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3332 raid5_compute_sector(conf,
3333 stripe * (disks - conf->max_degraded)
3334 *sectors_per_chunk + chunk_offset,
3335 previous,
3336 &dd_idx, sh);
3339 static void
3340 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3341 struct stripe_head_state *s, int disks)
3343 int i;
3344 BUG_ON(sh->batch_head);
3345 for (i = disks; i--; ) {
3346 struct bio *bi;
3347 int bitmap_end = 0;
3349 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3350 struct md_rdev *rdev;
3351 rcu_read_lock();
3352 rdev = rcu_dereference(conf->disks[i].rdev);
3353 if (rdev && test_bit(In_sync, &rdev->flags) &&
3354 !test_bit(Faulty, &rdev->flags))
3355 atomic_inc(&rdev->nr_pending);
3356 else
3357 rdev = NULL;
3358 rcu_read_unlock();
3359 if (rdev) {
3360 if (!rdev_set_badblocks(
3361 rdev,
3362 sh->sector,
3363 STRIPE_SECTORS, 0))
3364 md_error(conf->mddev, rdev);
3365 rdev_dec_pending(rdev, conf->mddev);
3368 spin_lock_irq(&sh->stripe_lock);
3369 /* fail all writes first */
3370 bi = sh->dev[i].towrite;
3371 sh->dev[i].towrite = NULL;
3372 sh->overwrite_disks = 0;
3373 spin_unlock_irq(&sh->stripe_lock);
3374 if (bi)
3375 bitmap_end = 1;
3377 log_stripe_write_finished(sh);
3379 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3380 wake_up(&conf->wait_for_overlap);
3382 while (bi && bi->bi_iter.bi_sector <
3383 sh->dev[i].sector + STRIPE_SECTORS) {
3384 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3386 md_write_end(conf->mddev);
3387 bio_io_error(bi);
3388 bi = nextbi;
3390 if (bitmap_end)
3391 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3392 STRIPE_SECTORS, 0, 0);
3393 bitmap_end = 0;
3394 /* and fail all 'written' */
3395 bi = sh->dev[i].written;
3396 sh->dev[i].written = NULL;
3397 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3398 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3399 sh->dev[i].page = sh->dev[i].orig_page;
3402 if (bi) bitmap_end = 1;
3403 while (bi && bi->bi_iter.bi_sector <
3404 sh->dev[i].sector + STRIPE_SECTORS) {
3405 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3407 md_write_end(conf->mddev);
3408 bio_io_error(bi);
3409 bi = bi2;
3412 /* fail any reads if this device is non-operational and
3413 * the data has not reached the cache yet.
3415 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3416 s->failed > conf->max_degraded &&
3417 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3418 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3419 spin_lock_irq(&sh->stripe_lock);
3420 bi = sh->dev[i].toread;
3421 sh->dev[i].toread = NULL;
3422 spin_unlock_irq(&sh->stripe_lock);
3423 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3424 wake_up(&conf->wait_for_overlap);
3425 if (bi)
3426 s->to_read--;
3427 while (bi && bi->bi_iter.bi_sector <
3428 sh->dev[i].sector + STRIPE_SECTORS) {
3429 struct bio *nextbi =
3430 r5_next_bio(bi, sh->dev[i].sector);
3432 bio_io_error(bi);
3433 bi = nextbi;
3436 if (bitmap_end)
3437 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3438 STRIPE_SECTORS, 0, 0);
3439 /* If we were in the middle of a write the parity block might
3440 * still be locked - so just clear all R5_LOCKED flags
3442 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3444 s->to_write = 0;
3445 s->written = 0;
3447 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3448 if (atomic_dec_and_test(&conf->pending_full_writes))
3449 md_wakeup_thread(conf->mddev->thread);
3452 static void
3453 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3454 struct stripe_head_state *s)
3456 int abort = 0;
3457 int i;
3459 BUG_ON(sh->batch_head);
3460 clear_bit(STRIPE_SYNCING, &sh->state);
3461 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3462 wake_up(&conf->wait_for_overlap);
3463 s->syncing = 0;
3464 s->replacing = 0;
3465 /* There is nothing more to do for sync/check/repair.
3466 * Don't even need to abort as that is handled elsewhere
3467 * if needed, and not always wanted e.g. if there is a known
3468 * bad block here.
3469 * For recover/replace we need to record a bad block on all
3470 * non-sync devices, or abort the recovery
3472 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3473 /* During recovery devices cannot be removed, so
3474 * locking and refcounting of rdevs is not needed
3476 rcu_read_lock();
3477 for (i = 0; i < conf->raid_disks; i++) {
3478 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3479 if (rdev
3480 && !test_bit(Faulty, &rdev->flags)
3481 && !test_bit(In_sync, &rdev->flags)
3482 && !rdev_set_badblocks(rdev, sh->sector,
3483 STRIPE_SECTORS, 0))
3484 abort = 1;
3485 rdev = rcu_dereference(conf->disks[i].replacement);
3486 if (rdev
3487 && !test_bit(Faulty, &rdev->flags)
3488 && !test_bit(In_sync, &rdev->flags)
3489 && !rdev_set_badblocks(rdev, sh->sector,
3490 STRIPE_SECTORS, 0))
3491 abort = 1;
3493 rcu_read_unlock();
3494 if (abort)
3495 conf->recovery_disabled =
3496 conf->mddev->recovery_disabled;
3498 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3501 static int want_replace(struct stripe_head *sh, int disk_idx)
3503 struct md_rdev *rdev;
3504 int rv = 0;
3506 rcu_read_lock();
3507 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3508 if (rdev
3509 && !test_bit(Faulty, &rdev->flags)
3510 && !test_bit(In_sync, &rdev->flags)
3511 && (rdev->recovery_offset <= sh->sector
3512 || rdev->mddev->recovery_cp <= sh->sector))
3513 rv = 1;
3514 rcu_read_unlock();
3515 return rv;
3518 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3519 int disk_idx, int disks)
3521 struct r5dev *dev = &sh->dev[disk_idx];
3522 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3523 &sh->dev[s->failed_num[1]] };
3524 int i;
3527 if (test_bit(R5_LOCKED, &dev->flags) ||
3528 test_bit(R5_UPTODATE, &dev->flags))
3529 /* No point reading this as we already have it or have
3530 * decided to get it.
3532 return 0;
3534 if (dev->toread ||
3535 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3536 /* We need this block to directly satisfy a request */
3537 return 1;
3539 if (s->syncing || s->expanding ||
3540 (s->replacing && want_replace(sh, disk_idx)))
3541 /* When syncing, or expanding we read everything.
3542 * When replacing, we need the replaced block.
3544 return 1;
3546 if ((s->failed >= 1 && fdev[0]->toread) ||
3547 (s->failed >= 2 && fdev[1]->toread))
3548 /* If we want to read from a failed device, then
3549 * we need to actually read every other device.
3551 return 1;
3553 /* Sometimes neither read-modify-write nor reconstruct-write
3554 * cycles can work. In those cases we read every block we
3555 * can. Then the parity-update is certain to have enough to
3556 * work with.
3557 * This can only be a problem when we need to write something,
3558 * and some device has failed. If either of those tests
3559 * fail we need look no further.
3561 if (!s->failed || !s->to_write)
3562 return 0;
3564 if (test_bit(R5_Insync, &dev->flags) &&
3565 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3566 /* Pre-reads at not permitted until after short delay
3567 * to gather multiple requests. However if this
3568 * device is no Insync, the block could only be computed
3569 * and there is no need to delay that.
3571 return 0;
3573 for (i = 0; i < s->failed && i < 2; i++) {
3574 if (fdev[i]->towrite &&
3575 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3576 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3577 /* If we have a partial write to a failed
3578 * device, then we will need to reconstruct
3579 * the content of that device, so all other
3580 * devices must be read.
3582 return 1;
3585 /* If we are forced to do a reconstruct-write, either because
3586 * the current RAID6 implementation only supports that, or
3587 * because parity cannot be trusted and we are currently
3588 * recovering it, there is extra need to be careful.
3589 * If one of the devices that we would need to read, because
3590 * it is not being overwritten (and maybe not written at all)
3591 * is missing/faulty, then we need to read everything we can.
3593 if (sh->raid_conf->level != 6 &&
3594 sh->sector < sh->raid_conf->mddev->recovery_cp)
3595 /* reconstruct-write isn't being forced */
3596 return 0;
3597 for (i = 0; i < s->failed && i < 2; i++) {
3598 if (s->failed_num[i] != sh->pd_idx &&
3599 s->failed_num[i] != sh->qd_idx &&
3600 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3601 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3602 return 1;
3605 return 0;
3608 /* fetch_block - checks the given member device to see if its data needs
3609 * to be read or computed to satisfy a request.
3611 * Returns 1 when no more member devices need to be checked, otherwise returns
3612 * 0 to tell the loop in handle_stripe_fill to continue
3614 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3615 int disk_idx, int disks)
3617 struct r5dev *dev = &sh->dev[disk_idx];
3619 /* is the data in this block needed, and can we get it? */
3620 if (need_this_block(sh, s, disk_idx, disks)) {
3621 /* we would like to get this block, possibly by computing it,
3622 * otherwise read it if the backing disk is insync
3624 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3625 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3626 BUG_ON(sh->batch_head);
3629 * In the raid6 case if the only non-uptodate disk is P
3630 * then we already trusted P to compute the other failed
3631 * drives. It is safe to compute rather than re-read P.
3632 * In other cases we only compute blocks from failed
3633 * devices, otherwise check/repair might fail to detect
3634 * a real inconsistency.
3637 if ((s->uptodate == disks - 1) &&
3638 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3639 (s->failed && (disk_idx == s->failed_num[0] ||
3640 disk_idx == s->failed_num[1])))) {
3641 /* have disk failed, and we're requested to fetch it;
3642 * do compute it
3644 pr_debug("Computing stripe %llu block %d\n",
3645 (unsigned long long)sh->sector, disk_idx);
3646 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3647 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3648 set_bit(R5_Wantcompute, &dev->flags);
3649 sh->ops.target = disk_idx;
3650 sh->ops.target2 = -1; /* no 2nd target */
3651 s->req_compute = 1;
3652 /* Careful: from this point on 'uptodate' is in the eye
3653 * of raid_run_ops which services 'compute' operations
3654 * before writes. R5_Wantcompute flags a block that will
3655 * be R5_UPTODATE by the time it is needed for a
3656 * subsequent operation.
3658 s->uptodate++;
3659 return 1;
3660 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3661 /* Computing 2-failure is *very* expensive; only
3662 * do it if failed >= 2
3664 int other;
3665 for (other = disks; other--; ) {
3666 if (other == disk_idx)
3667 continue;
3668 if (!test_bit(R5_UPTODATE,
3669 &sh->dev[other].flags))
3670 break;
3672 BUG_ON(other < 0);
3673 pr_debug("Computing stripe %llu blocks %d,%d\n",
3674 (unsigned long long)sh->sector,
3675 disk_idx, other);
3676 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3677 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3678 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3679 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3680 sh->ops.target = disk_idx;
3681 sh->ops.target2 = other;
3682 s->uptodate += 2;
3683 s->req_compute = 1;
3684 return 1;
3685 } else if (test_bit(R5_Insync, &dev->flags)) {
3686 set_bit(R5_LOCKED, &dev->flags);
3687 set_bit(R5_Wantread, &dev->flags);
3688 s->locked++;
3689 pr_debug("Reading block %d (sync=%d)\n",
3690 disk_idx, s->syncing);
3694 return 0;
3698 * handle_stripe_fill - read or compute data to satisfy pending requests.
3700 static void handle_stripe_fill(struct stripe_head *sh,
3701 struct stripe_head_state *s,
3702 int disks)
3704 int i;
3706 /* look for blocks to read/compute, skip this if a compute
3707 * is already in flight, or if the stripe contents are in the
3708 * midst of changing due to a write
3710 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3711 !sh->reconstruct_state) {
3714 * For degraded stripe with data in journal, do not handle
3715 * read requests yet, instead, flush the stripe to raid
3716 * disks first, this avoids handling complex rmw of write
3717 * back cache (prexor with orig_page, and then xor with
3718 * page) in the read path
3720 if (s->injournal && s->failed) {
3721 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3722 r5c_make_stripe_write_out(sh);
3723 goto out;
3726 for (i = disks; i--; )
3727 if (fetch_block(sh, s, i, disks))
3728 break;
3730 out:
3731 set_bit(STRIPE_HANDLE, &sh->state);
3734 static void break_stripe_batch_list(struct stripe_head *head_sh,
3735 unsigned long handle_flags);
3736 /* handle_stripe_clean_event
3737 * any written block on an uptodate or failed drive can be returned.
3738 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3739 * never LOCKED, so we don't need to test 'failed' directly.
3741 static void handle_stripe_clean_event(struct r5conf *conf,
3742 struct stripe_head *sh, int disks)
3744 int i;
3745 struct r5dev *dev;
3746 int discard_pending = 0;
3747 struct stripe_head *head_sh = sh;
3748 bool do_endio = false;
3750 for (i = disks; i--; )
3751 if (sh->dev[i].written) {
3752 dev = &sh->dev[i];
3753 if (!test_bit(R5_LOCKED, &dev->flags) &&
3754 (test_bit(R5_UPTODATE, &dev->flags) ||
3755 test_bit(R5_Discard, &dev->flags) ||
3756 test_bit(R5_SkipCopy, &dev->flags))) {
3757 /* We can return any write requests */
3758 struct bio *wbi, *wbi2;
3759 pr_debug("Return write for disc %d\n", i);
3760 if (test_and_clear_bit(R5_Discard, &dev->flags))
3761 clear_bit(R5_UPTODATE, &dev->flags);
3762 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3763 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3765 do_endio = true;
3767 returnbi:
3768 dev->page = dev->orig_page;
3769 wbi = dev->written;
3770 dev->written = NULL;
3771 while (wbi && wbi->bi_iter.bi_sector <
3772 dev->sector + STRIPE_SECTORS) {
3773 wbi2 = r5_next_bio(wbi, dev->sector);
3774 md_write_end(conf->mddev);
3775 bio_endio(wbi);
3776 wbi = wbi2;
3778 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3779 STRIPE_SECTORS,
3780 !test_bit(STRIPE_DEGRADED, &sh->state),
3782 if (head_sh->batch_head) {
3783 sh = list_first_entry(&sh->batch_list,
3784 struct stripe_head,
3785 batch_list);
3786 if (sh != head_sh) {
3787 dev = &sh->dev[i];
3788 goto returnbi;
3791 sh = head_sh;
3792 dev = &sh->dev[i];
3793 } else if (test_bit(R5_Discard, &dev->flags))
3794 discard_pending = 1;
3797 log_stripe_write_finished(sh);
3799 if (!discard_pending &&
3800 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3801 int hash;
3802 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3803 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3804 if (sh->qd_idx >= 0) {
3805 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3806 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3808 /* now that discard is done we can proceed with any sync */
3809 clear_bit(STRIPE_DISCARD, &sh->state);
3811 * SCSI discard will change some bio fields and the stripe has
3812 * no updated data, so remove it from hash list and the stripe
3813 * will be reinitialized
3815 unhash:
3816 hash = sh->hash_lock_index;
3817 spin_lock_irq(conf->hash_locks + hash);
3818 remove_hash(sh);
3819 spin_unlock_irq(conf->hash_locks + hash);
3820 if (head_sh->batch_head) {
3821 sh = list_first_entry(&sh->batch_list,
3822 struct stripe_head, batch_list);
3823 if (sh != head_sh)
3824 goto unhash;
3826 sh = head_sh;
3828 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3829 set_bit(STRIPE_HANDLE, &sh->state);
3833 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3834 if (atomic_dec_and_test(&conf->pending_full_writes))
3835 md_wakeup_thread(conf->mddev->thread);
3837 if (head_sh->batch_head && do_endio)
3838 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3842 * For RMW in write back cache, we need extra page in prexor to store the
3843 * old data. This page is stored in dev->orig_page.
3845 * This function checks whether we have data for prexor. The exact logic
3846 * is:
3847 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3849 static inline bool uptodate_for_rmw(struct r5dev *dev)
3851 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3852 (!test_bit(R5_InJournal, &dev->flags) ||
3853 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3856 static int handle_stripe_dirtying(struct r5conf *conf,
3857 struct stripe_head *sh,
3858 struct stripe_head_state *s,
3859 int disks)
3861 int rmw = 0, rcw = 0, i;
3862 sector_t recovery_cp = conf->mddev->recovery_cp;
3864 /* Check whether resync is now happening or should start.
3865 * If yes, then the array is dirty (after unclean shutdown or
3866 * initial creation), so parity in some stripes might be inconsistent.
3867 * In this case, we need to always do reconstruct-write, to ensure
3868 * that in case of drive failure or read-error correction, we
3869 * generate correct data from the parity.
3871 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3872 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3873 s->failed == 0)) {
3874 /* Calculate the real rcw later - for now make it
3875 * look like rcw is cheaper
3877 rcw = 1; rmw = 2;
3878 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3879 conf->rmw_level, (unsigned long long)recovery_cp,
3880 (unsigned long long)sh->sector);
3881 } else for (i = disks; i--; ) {
3882 /* would I have to read this buffer for read_modify_write */
3883 struct r5dev *dev = &sh->dev[i];
3884 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3885 i == sh->pd_idx || i == sh->qd_idx ||
3886 test_bit(R5_InJournal, &dev->flags)) &&
3887 !test_bit(R5_LOCKED, &dev->flags) &&
3888 !(uptodate_for_rmw(dev) ||
3889 test_bit(R5_Wantcompute, &dev->flags))) {
3890 if (test_bit(R5_Insync, &dev->flags))
3891 rmw++;
3892 else
3893 rmw += 2*disks; /* cannot read it */
3895 /* Would I have to read this buffer for reconstruct_write */
3896 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3897 i != sh->pd_idx && i != sh->qd_idx &&
3898 !test_bit(R5_LOCKED, &dev->flags) &&
3899 !(test_bit(R5_UPTODATE, &dev->flags) ||
3900 test_bit(R5_Wantcompute, &dev->flags))) {
3901 if (test_bit(R5_Insync, &dev->flags))
3902 rcw++;
3903 else
3904 rcw += 2*disks;
3908 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3909 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3910 set_bit(STRIPE_HANDLE, &sh->state);
3911 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3912 /* prefer read-modify-write, but need to get some data */
3913 if (conf->mddev->queue)
3914 blk_add_trace_msg(conf->mddev->queue,
3915 "raid5 rmw %llu %d",
3916 (unsigned long long)sh->sector, rmw);
3917 for (i = disks; i--; ) {
3918 struct r5dev *dev = &sh->dev[i];
3919 if (test_bit(R5_InJournal, &dev->flags) &&
3920 dev->page == dev->orig_page &&
3921 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3922 /* alloc page for prexor */
3923 struct page *p = alloc_page(GFP_NOIO);
3925 if (p) {
3926 dev->orig_page = p;
3927 continue;
3931 * alloc_page() failed, try use
3932 * disk_info->extra_page
3934 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3935 &conf->cache_state)) {
3936 r5c_use_extra_page(sh);
3937 break;
3940 /* extra_page in use, add to delayed_list */
3941 set_bit(STRIPE_DELAYED, &sh->state);
3942 s->waiting_extra_page = 1;
3943 return -EAGAIN;
3947 for (i = disks; i--; ) {
3948 struct r5dev *dev = &sh->dev[i];
3949 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3950 i == sh->pd_idx || i == sh->qd_idx ||
3951 test_bit(R5_InJournal, &dev->flags)) &&
3952 !test_bit(R5_LOCKED, &dev->flags) &&
3953 !(uptodate_for_rmw(dev) ||
3954 test_bit(R5_Wantcompute, &dev->flags)) &&
3955 test_bit(R5_Insync, &dev->flags)) {
3956 if (test_bit(STRIPE_PREREAD_ACTIVE,
3957 &sh->state)) {
3958 pr_debug("Read_old block %d for r-m-w\n",
3960 set_bit(R5_LOCKED, &dev->flags);
3961 set_bit(R5_Wantread, &dev->flags);
3962 s->locked++;
3963 } else {
3964 set_bit(STRIPE_DELAYED, &sh->state);
3965 set_bit(STRIPE_HANDLE, &sh->state);
3970 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3971 /* want reconstruct write, but need to get some data */
3972 int qread =0;
3973 rcw = 0;
3974 for (i = disks; i--; ) {
3975 struct r5dev *dev = &sh->dev[i];
3976 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3977 i != sh->pd_idx && i != sh->qd_idx &&
3978 !test_bit(R5_LOCKED, &dev->flags) &&
3979 !(test_bit(R5_UPTODATE, &dev->flags) ||
3980 test_bit(R5_Wantcompute, &dev->flags))) {
3981 rcw++;
3982 if (test_bit(R5_Insync, &dev->flags) &&
3983 test_bit(STRIPE_PREREAD_ACTIVE,
3984 &sh->state)) {
3985 pr_debug("Read_old block "
3986 "%d for Reconstruct\n", i);
3987 set_bit(R5_LOCKED, &dev->flags);
3988 set_bit(R5_Wantread, &dev->flags);
3989 s->locked++;
3990 qread++;
3991 } else {
3992 set_bit(STRIPE_DELAYED, &sh->state);
3993 set_bit(STRIPE_HANDLE, &sh->state);
3997 if (rcw && conf->mddev->queue)
3998 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3999 (unsigned long long)sh->sector,
4000 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4003 if (rcw > disks && rmw > disks &&
4004 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4005 set_bit(STRIPE_DELAYED, &sh->state);
4007 /* now if nothing is locked, and if we have enough data,
4008 * we can start a write request
4010 /* since handle_stripe can be called at any time we need to handle the
4011 * case where a compute block operation has been submitted and then a
4012 * subsequent call wants to start a write request. raid_run_ops only
4013 * handles the case where compute block and reconstruct are requested
4014 * simultaneously. If this is not the case then new writes need to be
4015 * held off until the compute completes.
4017 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4018 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4019 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4020 schedule_reconstruction(sh, s, rcw == 0, 0);
4021 return 0;
4024 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4025 struct stripe_head_state *s, int disks)
4027 struct r5dev *dev = NULL;
4029 BUG_ON(sh->batch_head);
4030 set_bit(STRIPE_HANDLE, &sh->state);
4032 switch (sh->check_state) {
4033 case check_state_idle:
4034 /* start a new check operation if there are no failures */
4035 if (s->failed == 0) {
4036 BUG_ON(s->uptodate != disks);
4037 sh->check_state = check_state_run;
4038 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4039 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4040 s->uptodate--;
4041 break;
4043 dev = &sh->dev[s->failed_num[0]];
4044 /* fall through */
4045 case check_state_compute_result:
4046 sh->check_state = check_state_idle;
4047 if (!dev)
4048 dev = &sh->dev[sh->pd_idx];
4050 /* check that a write has not made the stripe insync */
4051 if (test_bit(STRIPE_INSYNC, &sh->state))
4052 break;
4054 /* either failed parity check, or recovery is happening */
4055 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4056 BUG_ON(s->uptodate != disks);
4058 set_bit(R5_LOCKED, &dev->flags);
4059 s->locked++;
4060 set_bit(R5_Wantwrite, &dev->flags);
4062 clear_bit(STRIPE_DEGRADED, &sh->state);
4063 set_bit(STRIPE_INSYNC, &sh->state);
4064 break;
4065 case check_state_run:
4066 break; /* we will be called again upon completion */
4067 case check_state_check_result:
4068 sh->check_state = check_state_idle;
4070 /* if a failure occurred during the check operation, leave
4071 * STRIPE_INSYNC not set and let the stripe be handled again
4073 if (s->failed)
4074 break;
4076 /* handle a successful check operation, if parity is correct
4077 * we are done. Otherwise update the mismatch count and repair
4078 * parity if !MD_RECOVERY_CHECK
4080 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4081 /* parity is correct (on disc,
4082 * not in buffer any more)
4084 set_bit(STRIPE_INSYNC, &sh->state);
4085 else {
4086 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4087 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4088 /* don't try to repair!! */
4089 set_bit(STRIPE_INSYNC, &sh->state);
4090 pr_warn_ratelimited("%s: mismatch sector in range "
4091 "%llu-%llu\n", mdname(conf->mddev),
4092 (unsigned long long) sh->sector,
4093 (unsigned long long) sh->sector +
4094 STRIPE_SECTORS);
4095 } else {
4096 sh->check_state = check_state_compute_run;
4097 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4098 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4099 set_bit(R5_Wantcompute,
4100 &sh->dev[sh->pd_idx].flags);
4101 sh->ops.target = sh->pd_idx;
4102 sh->ops.target2 = -1;
4103 s->uptodate++;
4106 break;
4107 case check_state_compute_run:
4108 break;
4109 default:
4110 pr_err("%s: unknown check_state: %d sector: %llu\n",
4111 __func__, sh->check_state,
4112 (unsigned long long) sh->sector);
4113 BUG();
4117 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4118 struct stripe_head_state *s,
4119 int disks)
4121 int pd_idx = sh->pd_idx;
4122 int qd_idx = sh->qd_idx;
4123 struct r5dev *dev;
4125 BUG_ON(sh->batch_head);
4126 set_bit(STRIPE_HANDLE, &sh->state);
4128 BUG_ON(s->failed > 2);
4130 /* Want to check and possibly repair P and Q.
4131 * However there could be one 'failed' device, in which
4132 * case we can only check one of them, possibly using the
4133 * other to generate missing data
4136 switch (sh->check_state) {
4137 case check_state_idle:
4138 /* start a new check operation if there are < 2 failures */
4139 if (s->failed == s->q_failed) {
4140 /* The only possible failed device holds Q, so it
4141 * makes sense to check P (If anything else were failed,
4142 * we would have used P to recreate it).
4144 sh->check_state = check_state_run;
4146 if (!s->q_failed && s->failed < 2) {
4147 /* Q is not failed, and we didn't use it to generate
4148 * anything, so it makes sense to check it
4150 if (sh->check_state == check_state_run)
4151 sh->check_state = check_state_run_pq;
4152 else
4153 sh->check_state = check_state_run_q;
4156 /* discard potentially stale zero_sum_result */
4157 sh->ops.zero_sum_result = 0;
4159 if (sh->check_state == check_state_run) {
4160 /* async_xor_zero_sum destroys the contents of P */
4161 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4162 s->uptodate--;
4164 if (sh->check_state >= check_state_run &&
4165 sh->check_state <= check_state_run_pq) {
4166 /* async_syndrome_zero_sum preserves P and Q, so
4167 * no need to mark them !uptodate here
4169 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4170 break;
4173 /* we have 2-disk failure */
4174 BUG_ON(s->failed != 2);
4175 /* fall through */
4176 case check_state_compute_result:
4177 sh->check_state = check_state_idle;
4179 /* check that a write has not made the stripe insync */
4180 if (test_bit(STRIPE_INSYNC, &sh->state))
4181 break;
4183 /* now write out any block on a failed drive,
4184 * or P or Q if they were recomputed
4186 dev = NULL;
4187 if (s->failed == 2) {
4188 dev = &sh->dev[s->failed_num[1]];
4189 s->locked++;
4190 set_bit(R5_LOCKED, &dev->flags);
4191 set_bit(R5_Wantwrite, &dev->flags);
4193 if (s->failed >= 1) {
4194 dev = &sh->dev[s->failed_num[0]];
4195 s->locked++;
4196 set_bit(R5_LOCKED, &dev->flags);
4197 set_bit(R5_Wantwrite, &dev->flags);
4199 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4200 dev = &sh->dev[pd_idx];
4201 s->locked++;
4202 set_bit(R5_LOCKED, &dev->flags);
4203 set_bit(R5_Wantwrite, &dev->flags);
4205 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4206 dev = &sh->dev[qd_idx];
4207 s->locked++;
4208 set_bit(R5_LOCKED, &dev->flags);
4209 set_bit(R5_Wantwrite, &dev->flags);
4211 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4212 "%s: disk%td not up to date\n",
4213 mdname(conf->mddev),
4214 dev - (struct r5dev *) &sh->dev)) {
4215 clear_bit(R5_LOCKED, &dev->flags);
4216 clear_bit(R5_Wantwrite, &dev->flags);
4217 s->locked--;
4219 clear_bit(STRIPE_DEGRADED, &sh->state);
4221 set_bit(STRIPE_INSYNC, &sh->state);
4222 break;
4223 case check_state_run:
4224 case check_state_run_q:
4225 case check_state_run_pq:
4226 break; /* we will be called again upon completion */
4227 case check_state_check_result:
4228 sh->check_state = check_state_idle;
4230 /* handle a successful check operation, if parity is correct
4231 * we are done. Otherwise update the mismatch count and repair
4232 * parity if !MD_RECOVERY_CHECK
4234 if (sh->ops.zero_sum_result == 0) {
4235 /* both parities are correct */
4236 if (!s->failed)
4237 set_bit(STRIPE_INSYNC, &sh->state);
4238 else {
4239 /* in contrast to the raid5 case we can validate
4240 * parity, but still have a failure to write
4241 * back
4243 sh->check_state = check_state_compute_result;
4244 /* Returning at this point means that we may go
4245 * off and bring p and/or q uptodate again so
4246 * we make sure to check zero_sum_result again
4247 * to verify if p or q need writeback
4250 } else {
4251 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4252 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4253 /* don't try to repair!! */
4254 set_bit(STRIPE_INSYNC, &sh->state);
4255 pr_warn_ratelimited("%s: mismatch sector in range "
4256 "%llu-%llu\n", mdname(conf->mddev),
4257 (unsigned long long) sh->sector,
4258 (unsigned long long) sh->sector +
4259 STRIPE_SECTORS);
4260 } else {
4261 int *target = &sh->ops.target;
4263 sh->ops.target = -1;
4264 sh->ops.target2 = -1;
4265 sh->check_state = check_state_compute_run;
4266 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4267 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4268 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4269 set_bit(R5_Wantcompute,
4270 &sh->dev[pd_idx].flags);
4271 *target = pd_idx;
4272 target = &sh->ops.target2;
4273 s->uptodate++;
4275 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4276 set_bit(R5_Wantcompute,
4277 &sh->dev[qd_idx].flags);
4278 *target = qd_idx;
4279 s->uptodate++;
4283 break;
4284 case check_state_compute_run:
4285 break;
4286 default:
4287 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4288 __func__, sh->check_state,
4289 (unsigned long long) sh->sector);
4290 BUG();
4294 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4296 int i;
4298 /* We have read all the blocks in this stripe and now we need to
4299 * copy some of them into a target stripe for expand.
4301 struct dma_async_tx_descriptor *tx = NULL;
4302 BUG_ON(sh->batch_head);
4303 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4304 for (i = 0; i < sh->disks; i++)
4305 if (i != sh->pd_idx && i != sh->qd_idx) {
4306 int dd_idx, j;
4307 struct stripe_head *sh2;
4308 struct async_submit_ctl submit;
4310 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4311 sector_t s = raid5_compute_sector(conf, bn, 0,
4312 &dd_idx, NULL);
4313 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4314 if (sh2 == NULL)
4315 /* so far only the early blocks of this stripe
4316 * have been requested. When later blocks
4317 * get requested, we will try again
4319 continue;
4320 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4321 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4322 /* must have already done this block */
4323 raid5_release_stripe(sh2);
4324 continue;
4327 /* place all the copies on one channel */
4328 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4329 tx = async_memcpy(sh2->dev[dd_idx].page,
4330 sh->dev[i].page, 0, 0, STRIPE_SIZE,
4331 &submit);
4333 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4334 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4335 for (j = 0; j < conf->raid_disks; j++)
4336 if (j != sh2->pd_idx &&
4337 j != sh2->qd_idx &&
4338 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4339 break;
4340 if (j == conf->raid_disks) {
4341 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4342 set_bit(STRIPE_HANDLE, &sh2->state);
4344 raid5_release_stripe(sh2);
4347 /* done submitting copies, wait for them to complete */
4348 async_tx_quiesce(&tx);
4352 * handle_stripe - do things to a stripe.
4354 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4355 * state of various bits to see what needs to be done.
4356 * Possible results:
4357 * return some read requests which now have data
4358 * return some write requests which are safely on storage
4359 * schedule a read on some buffers
4360 * schedule a write of some buffers
4361 * return confirmation of parity correctness
4365 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4367 struct r5conf *conf = sh->raid_conf;
4368 int disks = sh->disks;
4369 struct r5dev *dev;
4370 int i;
4371 int do_recovery = 0;
4373 memset(s, 0, sizeof(*s));
4375 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4376 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4377 s->failed_num[0] = -1;
4378 s->failed_num[1] = -1;
4379 s->log_failed = r5l_log_disk_error(conf);
4381 /* Now to look around and see what can be done */
4382 rcu_read_lock();
4383 for (i=disks; i--; ) {
4384 struct md_rdev *rdev;
4385 sector_t first_bad;
4386 int bad_sectors;
4387 int is_bad = 0;
4389 dev = &sh->dev[i];
4391 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4392 i, dev->flags,
4393 dev->toread, dev->towrite, dev->written);
4394 /* maybe we can reply to a read
4396 * new wantfill requests are only permitted while
4397 * ops_complete_biofill is guaranteed to be inactive
4399 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4400 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4401 set_bit(R5_Wantfill, &dev->flags);
4403 /* now count some things */
4404 if (test_bit(R5_LOCKED, &dev->flags))
4405 s->locked++;
4406 if (test_bit(R5_UPTODATE, &dev->flags))
4407 s->uptodate++;
4408 if (test_bit(R5_Wantcompute, &dev->flags)) {
4409 s->compute++;
4410 BUG_ON(s->compute > 2);
4413 if (test_bit(R5_Wantfill, &dev->flags))
4414 s->to_fill++;
4415 else if (dev->toread)
4416 s->to_read++;
4417 if (dev->towrite) {
4418 s->to_write++;
4419 if (!test_bit(R5_OVERWRITE, &dev->flags))
4420 s->non_overwrite++;
4422 if (dev->written)
4423 s->written++;
4424 /* Prefer to use the replacement for reads, but only
4425 * if it is recovered enough and has no bad blocks.
4427 rdev = rcu_dereference(conf->disks[i].replacement);
4428 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4429 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4430 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4431 &first_bad, &bad_sectors))
4432 set_bit(R5_ReadRepl, &dev->flags);
4433 else {
4434 if (rdev && !test_bit(Faulty, &rdev->flags))
4435 set_bit(R5_NeedReplace, &dev->flags);
4436 else
4437 clear_bit(R5_NeedReplace, &dev->flags);
4438 rdev = rcu_dereference(conf->disks[i].rdev);
4439 clear_bit(R5_ReadRepl, &dev->flags);
4441 if (rdev && test_bit(Faulty, &rdev->flags))
4442 rdev = NULL;
4443 if (rdev) {
4444 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4445 &first_bad, &bad_sectors);
4446 if (s->blocked_rdev == NULL
4447 && (test_bit(Blocked, &rdev->flags)
4448 || is_bad < 0)) {
4449 if (is_bad < 0)
4450 set_bit(BlockedBadBlocks,
4451 &rdev->flags);
4452 s->blocked_rdev = rdev;
4453 atomic_inc(&rdev->nr_pending);
4456 clear_bit(R5_Insync, &dev->flags);
4457 if (!rdev)
4458 /* Not in-sync */;
4459 else if (is_bad) {
4460 /* also not in-sync */
4461 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4462 test_bit(R5_UPTODATE, &dev->flags)) {
4463 /* treat as in-sync, but with a read error
4464 * which we can now try to correct
4466 set_bit(R5_Insync, &dev->flags);
4467 set_bit(R5_ReadError, &dev->flags);
4469 } else if (test_bit(In_sync, &rdev->flags))
4470 set_bit(R5_Insync, &dev->flags);
4471 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4472 /* in sync if before recovery_offset */
4473 set_bit(R5_Insync, &dev->flags);
4474 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4475 test_bit(R5_Expanded, &dev->flags))
4476 /* If we've reshaped into here, we assume it is Insync.
4477 * We will shortly update recovery_offset to make
4478 * it official.
4480 set_bit(R5_Insync, &dev->flags);
4482 if (test_bit(R5_WriteError, &dev->flags)) {
4483 /* This flag does not apply to '.replacement'
4484 * only to .rdev, so make sure to check that*/
4485 struct md_rdev *rdev2 = rcu_dereference(
4486 conf->disks[i].rdev);
4487 if (rdev2 == rdev)
4488 clear_bit(R5_Insync, &dev->flags);
4489 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4490 s->handle_bad_blocks = 1;
4491 atomic_inc(&rdev2->nr_pending);
4492 } else
4493 clear_bit(R5_WriteError, &dev->flags);
4495 if (test_bit(R5_MadeGood, &dev->flags)) {
4496 /* This flag does not apply to '.replacement'
4497 * only to .rdev, so make sure to check that*/
4498 struct md_rdev *rdev2 = rcu_dereference(
4499 conf->disks[i].rdev);
4500 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4501 s->handle_bad_blocks = 1;
4502 atomic_inc(&rdev2->nr_pending);
4503 } else
4504 clear_bit(R5_MadeGood, &dev->flags);
4506 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4507 struct md_rdev *rdev2 = rcu_dereference(
4508 conf->disks[i].replacement);
4509 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4510 s->handle_bad_blocks = 1;
4511 atomic_inc(&rdev2->nr_pending);
4512 } else
4513 clear_bit(R5_MadeGoodRepl, &dev->flags);
4515 if (!test_bit(R5_Insync, &dev->flags)) {
4516 /* The ReadError flag will just be confusing now */
4517 clear_bit(R5_ReadError, &dev->flags);
4518 clear_bit(R5_ReWrite, &dev->flags);
4520 if (test_bit(R5_ReadError, &dev->flags))
4521 clear_bit(R5_Insync, &dev->flags);
4522 if (!test_bit(R5_Insync, &dev->flags)) {
4523 if (s->failed < 2)
4524 s->failed_num[s->failed] = i;
4525 s->failed++;
4526 if (rdev && !test_bit(Faulty, &rdev->flags))
4527 do_recovery = 1;
4528 else if (!rdev) {
4529 rdev = rcu_dereference(
4530 conf->disks[i].replacement);
4531 if (rdev && !test_bit(Faulty, &rdev->flags))
4532 do_recovery = 1;
4536 if (test_bit(R5_InJournal, &dev->flags))
4537 s->injournal++;
4538 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4539 s->just_cached++;
4541 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4542 /* If there is a failed device being replaced,
4543 * we must be recovering.
4544 * else if we are after recovery_cp, we must be syncing
4545 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4546 * else we can only be replacing
4547 * sync and recovery both need to read all devices, and so
4548 * use the same flag.
4550 if (do_recovery ||
4551 sh->sector >= conf->mddev->recovery_cp ||
4552 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4553 s->syncing = 1;
4554 else
4555 s->replacing = 1;
4557 rcu_read_unlock();
4560 static int clear_batch_ready(struct stripe_head *sh)
4562 /* Return '1' if this is a member of batch, or
4563 * '0' if it is a lone stripe or a head which can now be
4564 * handled.
4566 struct stripe_head *tmp;
4567 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4568 return (sh->batch_head && sh->batch_head != sh);
4569 spin_lock(&sh->stripe_lock);
4570 if (!sh->batch_head) {
4571 spin_unlock(&sh->stripe_lock);
4572 return 0;
4576 * this stripe could be added to a batch list before we check
4577 * BATCH_READY, skips it
4579 if (sh->batch_head != sh) {
4580 spin_unlock(&sh->stripe_lock);
4581 return 1;
4583 spin_lock(&sh->batch_lock);
4584 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4585 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4586 spin_unlock(&sh->batch_lock);
4587 spin_unlock(&sh->stripe_lock);
4590 * BATCH_READY is cleared, no new stripes can be added.
4591 * batch_list can be accessed without lock
4593 return 0;
4596 static void break_stripe_batch_list(struct stripe_head *head_sh,
4597 unsigned long handle_flags)
4599 struct stripe_head *sh, *next;
4600 int i;
4601 int do_wakeup = 0;
4603 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4605 list_del_init(&sh->batch_list);
4607 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4608 (1 << STRIPE_SYNCING) |
4609 (1 << STRIPE_REPLACED) |
4610 (1 << STRIPE_DELAYED) |
4611 (1 << STRIPE_BIT_DELAY) |
4612 (1 << STRIPE_FULL_WRITE) |
4613 (1 << STRIPE_BIOFILL_RUN) |
4614 (1 << STRIPE_COMPUTE_RUN) |
4615 (1 << STRIPE_OPS_REQ_PENDING) |
4616 (1 << STRIPE_DISCARD) |
4617 (1 << STRIPE_BATCH_READY) |
4618 (1 << STRIPE_BATCH_ERR) |
4619 (1 << STRIPE_BITMAP_PENDING)),
4620 "stripe state: %lx\n", sh->state);
4621 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4622 (1 << STRIPE_REPLACED)),
4623 "head stripe state: %lx\n", head_sh->state);
4625 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4626 (1 << STRIPE_PREREAD_ACTIVE) |
4627 (1 << STRIPE_DEGRADED) |
4628 (1 << STRIPE_ON_UNPLUG_LIST)),
4629 head_sh->state & (1 << STRIPE_INSYNC));
4631 sh->check_state = head_sh->check_state;
4632 sh->reconstruct_state = head_sh->reconstruct_state;
4633 spin_lock_irq(&sh->stripe_lock);
4634 sh->batch_head = NULL;
4635 spin_unlock_irq(&sh->stripe_lock);
4636 for (i = 0; i < sh->disks; i++) {
4637 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4638 do_wakeup = 1;
4639 sh->dev[i].flags = head_sh->dev[i].flags &
4640 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4642 if (handle_flags == 0 ||
4643 sh->state & handle_flags)
4644 set_bit(STRIPE_HANDLE, &sh->state);
4645 raid5_release_stripe(sh);
4647 spin_lock_irq(&head_sh->stripe_lock);
4648 head_sh->batch_head = NULL;
4649 spin_unlock_irq(&head_sh->stripe_lock);
4650 for (i = 0; i < head_sh->disks; i++)
4651 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4652 do_wakeup = 1;
4653 if (head_sh->state & handle_flags)
4654 set_bit(STRIPE_HANDLE, &head_sh->state);
4656 if (do_wakeup)
4657 wake_up(&head_sh->raid_conf->wait_for_overlap);
4660 static void handle_stripe(struct stripe_head *sh)
4662 struct stripe_head_state s;
4663 struct r5conf *conf = sh->raid_conf;
4664 int i;
4665 int prexor;
4666 int disks = sh->disks;
4667 struct r5dev *pdev, *qdev;
4669 clear_bit(STRIPE_HANDLE, &sh->state);
4670 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4671 /* already being handled, ensure it gets handled
4672 * again when current action finishes */
4673 set_bit(STRIPE_HANDLE, &sh->state);
4674 return;
4677 if (clear_batch_ready(sh) ) {
4678 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4679 return;
4682 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4683 break_stripe_batch_list(sh, 0);
4685 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4686 spin_lock(&sh->stripe_lock);
4688 * Cannot process 'sync' concurrently with 'discard'.
4689 * Flush data in r5cache before 'sync'.
4691 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4692 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4693 !test_bit(STRIPE_DISCARD, &sh->state) &&
4694 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4695 set_bit(STRIPE_SYNCING, &sh->state);
4696 clear_bit(STRIPE_INSYNC, &sh->state);
4697 clear_bit(STRIPE_REPLACED, &sh->state);
4699 spin_unlock(&sh->stripe_lock);
4701 clear_bit(STRIPE_DELAYED, &sh->state);
4703 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4704 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4705 (unsigned long long)sh->sector, sh->state,
4706 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4707 sh->check_state, sh->reconstruct_state);
4709 analyse_stripe(sh, &s);
4711 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4712 goto finish;
4714 if (s.handle_bad_blocks ||
4715 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4716 set_bit(STRIPE_HANDLE, &sh->state);
4717 goto finish;
4720 if (unlikely(s.blocked_rdev)) {
4721 if (s.syncing || s.expanding || s.expanded ||
4722 s.replacing || s.to_write || s.written) {
4723 set_bit(STRIPE_HANDLE, &sh->state);
4724 goto finish;
4726 /* There is nothing for the blocked_rdev to block */
4727 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4728 s.blocked_rdev = NULL;
4731 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4732 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4733 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4736 pr_debug("locked=%d uptodate=%d to_read=%d"
4737 " to_write=%d failed=%d failed_num=%d,%d\n",
4738 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4739 s.failed_num[0], s.failed_num[1]);
4741 * check if the array has lost more than max_degraded devices and,
4742 * if so, some requests might need to be failed.
4744 * When journal device failed (log_failed), we will only process
4745 * the stripe if there is data need write to raid disks
4747 if (s.failed > conf->max_degraded ||
4748 (s.log_failed && s.injournal == 0)) {
4749 sh->check_state = 0;
4750 sh->reconstruct_state = 0;
4751 break_stripe_batch_list(sh, 0);
4752 if (s.to_read+s.to_write+s.written)
4753 handle_failed_stripe(conf, sh, &s, disks);
4754 if (s.syncing + s.replacing)
4755 handle_failed_sync(conf, sh, &s);
4758 /* Now we check to see if any write operations have recently
4759 * completed
4761 prexor = 0;
4762 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4763 prexor = 1;
4764 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4765 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4766 sh->reconstruct_state = reconstruct_state_idle;
4768 /* All the 'written' buffers and the parity block are ready to
4769 * be written back to disk
4771 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4772 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4773 BUG_ON(sh->qd_idx >= 0 &&
4774 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4775 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4776 for (i = disks; i--; ) {
4777 struct r5dev *dev = &sh->dev[i];
4778 if (test_bit(R5_LOCKED, &dev->flags) &&
4779 (i == sh->pd_idx || i == sh->qd_idx ||
4780 dev->written || test_bit(R5_InJournal,
4781 &dev->flags))) {
4782 pr_debug("Writing block %d\n", i);
4783 set_bit(R5_Wantwrite, &dev->flags);
4784 if (prexor)
4785 continue;
4786 if (s.failed > 1)
4787 continue;
4788 if (!test_bit(R5_Insync, &dev->flags) ||
4789 ((i == sh->pd_idx || i == sh->qd_idx) &&
4790 s.failed == 0))
4791 set_bit(STRIPE_INSYNC, &sh->state);
4794 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4795 s.dec_preread_active = 1;
4799 * might be able to return some write requests if the parity blocks
4800 * are safe, or on a failed drive
4802 pdev = &sh->dev[sh->pd_idx];
4803 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4804 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4805 qdev = &sh->dev[sh->qd_idx];
4806 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4807 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4808 || conf->level < 6;
4810 if (s.written &&
4811 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4812 && !test_bit(R5_LOCKED, &pdev->flags)
4813 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4814 test_bit(R5_Discard, &pdev->flags))))) &&
4815 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4816 && !test_bit(R5_LOCKED, &qdev->flags)
4817 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4818 test_bit(R5_Discard, &qdev->flags))))))
4819 handle_stripe_clean_event(conf, sh, disks);
4821 if (s.just_cached)
4822 r5c_handle_cached_data_endio(conf, sh, disks);
4823 log_stripe_write_finished(sh);
4825 /* Now we might consider reading some blocks, either to check/generate
4826 * parity, or to satisfy requests
4827 * or to load a block that is being partially written.
4829 if (s.to_read || s.non_overwrite
4830 || (conf->level == 6 && s.to_write && s.failed)
4831 || (s.syncing && (s.uptodate + s.compute < disks))
4832 || s.replacing
4833 || s.expanding)
4834 handle_stripe_fill(sh, &s, disks);
4837 * When the stripe finishes full journal write cycle (write to journal
4838 * and raid disk), this is the clean up procedure so it is ready for
4839 * next operation.
4841 r5c_finish_stripe_write_out(conf, sh, &s);
4844 * Now to consider new write requests, cache write back and what else,
4845 * if anything should be read. We do not handle new writes when:
4846 * 1/ A 'write' operation (copy+xor) is already in flight.
4847 * 2/ A 'check' operation is in flight, as it may clobber the parity
4848 * block.
4849 * 3/ A r5c cache log write is in flight.
4852 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4853 if (!r5c_is_writeback(conf->log)) {
4854 if (s.to_write)
4855 handle_stripe_dirtying(conf, sh, &s, disks);
4856 } else { /* write back cache */
4857 int ret = 0;
4859 /* First, try handle writes in caching phase */
4860 if (s.to_write)
4861 ret = r5c_try_caching_write(conf, sh, &s,
4862 disks);
4864 * If caching phase failed: ret == -EAGAIN
4865 * OR
4866 * stripe under reclaim: !caching && injournal
4868 * fall back to handle_stripe_dirtying()
4870 if (ret == -EAGAIN ||
4871 /* stripe under reclaim: !caching && injournal */
4872 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4873 s.injournal > 0)) {
4874 ret = handle_stripe_dirtying(conf, sh, &s,
4875 disks);
4876 if (ret == -EAGAIN)
4877 goto finish;
4882 /* maybe we need to check and possibly fix the parity for this stripe
4883 * Any reads will already have been scheduled, so we just see if enough
4884 * data is available. The parity check is held off while parity
4885 * dependent operations are in flight.
4887 if (sh->check_state ||
4888 (s.syncing && s.locked == 0 &&
4889 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4890 !test_bit(STRIPE_INSYNC, &sh->state))) {
4891 if (conf->level == 6)
4892 handle_parity_checks6(conf, sh, &s, disks);
4893 else
4894 handle_parity_checks5(conf, sh, &s, disks);
4897 if ((s.replacing || s.syncing) && s.locked == 0
4898 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4899 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4900 /* Write out to replacement devices where possible */
4901 for (i = 0; i < conf->raid_disks; i++)
4902 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4903 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4904 set_bit(R5_WantReplace, &sh->dev[i].flags);
4905 set_bit(R5_LOCKED, &sh->dev[i].flags);
4906 s.locked++;
4908 if (s.replacing)
4909 set_bit(STRIPE_INSYNC, &sh->state);
4910 set_bit(STRIPE_REPLACED, &sh->state);
4912 if ((s.syncing || s.replacing) && s.locked == 0 &&
4913 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4914 test_bit(STRIPE_INSYNC, &sh->state)) {
4915 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4916 clear_bit(STRIPE_SYNCING, &sh->state);
4917 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4918 wake_up(&conf->wait_for_overlap);
4921 /* If the failed drives are just a ReadError, then we might need
4922 * to progress the repair/check process
4924 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4925 for (i = 0; i < s.failed; i++) {
4926 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4927 if (test_bit(R5_ReadError, &dev->flags)
4928 && !test_bit(R5_LOCKED, &dev->flags)
4929 && test_bit(R5_UPTODATE, &dev->flags)
4931 if (!test_bit(R5_ReWrite, &dev->flags)) {
4932 set_bit(R5_Wantwrite, &dev->flags);
4933 set_bit(R5_ReWrite, &dev->flags);
4934 set_bit(R5_LOCKED, &dev->flags);
4935 s.locked++;
4936 } else {
4937 /* let's read it back */
4938 set_bit(R5_Wantread, &dev->flags);
4939 set_bit(R5_LOCKED, &dev->flags);
4940 s.locked++;
4945 /* Finish reconstruct operations initiated by the expansion process */
4946 if (sh->reconstruct_state == reconstruct_state_result) {
4947 struct stripe_head *sh_src
4948 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4949 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4950 /* sh cannot be written until sh_src has been read.
4951 * so arrange for sh to be delayed a little
4953 set_bit(STRIPE_DELAYED, &sh->state);
4954 set_bit(STRIPE_HANDLE, &sh->state);
4955 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4956 &sh_src->state))
4957 atomic_inc(&conf->preread_active_stripes);
4958 raid5_release_stripe(sh_src);
4959 goto finish;
4961 if (sh_src)
4962 raid5_release_stripe(sh_src);
4964 sh->reconstruct_state = reconstruct_state_idle;
4965 clear_bit(STRIPE_EXPANDING, &sh->state);
4966 for (i = conf->raid_disks; i--; ) {
4967 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4968 set_bit(R5_LOCKED, &sh->dev[i].flags);
4969 s.locked++;
4973 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4974 !sh->reconstruct_state) {
4975 /* Need to write out all blocks after computing parity */
4976 sh->disks = conf->raid_disks;
4977 stripe_set_idx(sh->sector, conf, 0, sh);
4978 schedule_reconstruction(sh, &s, 1, 1);
4979 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4980 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4981 atomic_dec(&conf->reshape_stripes);
4982 wake_up(&conf->wait_for_overlap);
4983 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4986 if (s.expanding && s.locked == 0 &&
4987 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4988 handle_stripe_expansion(conf, sh);
4990 finish:
4991 /* wait for this device to become unblocked */
4992 if (unlikely(s.blocked_rdev)) {
4993 if (conf->mddev->external)
4994 md_wait_for_blocked_rdev(s.blocked_rdev,
4995 conf->mddev);
4996 else
4997 /* Internal metadata will immediately
4998 * be written by raid5d, so we don't
4999 * need to wait here.
5001 rdev_dec_pending(s.blocked_rdev,
5002 conf->mddev);
5005 if (s.handle_bad_blocks)
5006 for (i = disks; i--; ) {
5007 struct md_rdev *rdev;
5008 struct r5dev *dev = &sh->dev[i];
5009 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5010 /* We own a safe reference to the rdev */
5011 rdev = conf->disks[i].rdev;
5012 if (!rdev_set_badblocks(rdev, sh->sector,
5013 STRIPE_SECTORS, 0))
5014 md_error(conf->mddev, rdev);
5015 rdev_dec_pending(rdev, conf->mddev);
5017 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5018 rdev = conf->disks[i].rdev;
5019 rdev_clear_badblocks(rdev, sh->sector,
5020 STRIPE_SECTORS, 0);
5021 rdev_dec_pending(rdev, conf->mddev);
5023 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5024 rdev = conf->disks[i].replacement;
5025 if (!rdev)
5026 /* rdev have been moved down */
5027 rdev = conf->disks[i].rdev;
5028 rdev_clear_badblocks(rdev, sh->sector,
5029 STRIPE_SECTORS, 0);
5030 rdev_dec_pending(rdev, conf->mddev);
5034 if (s.ops_request)
5035 raid_run_ops(sh, s.ops_request);
5037 ops_run_io(sh, &s);
5039 if (s.dec_preread_active) {
5040 /* We delay this until after ops_run_io so that if make_request
5041 * is waiting on a flush, it won't continue until the writes
5042 * have actually been submitted.
5044 atomic_dec(&conf->preread_active_stripes);
5045 if (atomic_read(&conf->preread_active_stripes) <
5046 IO_THRESHOLD)
5047 md_wakeup_thread(conf->mddev->thread);
5050 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5053 static void raid5_activate_delayed(struct r5conf *conf)
5055 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5056 while (!list_empty(&conf->delayed_list)) {
5057 struct list_head *l = conf->delayed_list.next;
5058 struct stripe_head *sh;
5059 sh = list_entry(l, struct stripe_head, lru);
5060 list_del_init(l);
5061 clear_bit(STRIPE_DELAYED, &sh->state);
5062 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5063 atomic_inc(&conf->preread_active_stripes);
5064 list_add_tail(&sh->lru, &conf->hold_list);
5065 raid5_wakeup_stripe_thread(sh);
5070 static void activate_bit_delay(struct r5conf *conf,
5071 struct list_head *temp_inactive_list)
5073 /* device_lock is held */
5074 struct list_head head;
5075 list_add(&head, &conf->bitmap_list);
5076 list_del_init(&conf->bitmap_list);
5077 while (!list_empty(&head)) {
5078 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5079 int hash;
5080 list_del_init(&sh->lru);
5081 atomic_inc(&sh->count);
5082 hash = sh->hash_lock_index;
5083 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5087 static int raid5_congested(struct mddev *mddev, int bits)
5089 struct r5conf *conf = mddev->private;
5091 /* No difference between reads and writes. Just check
5092 * how busy the stripe_cache is
5095 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5096 return 1;
5098 /* Also checks whether there is pressure on r5cache log space */
5099 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5100 return 1;
5101 if (conf->quiesce)
5102 return 1;
5103 if (atomic_read(&conf->empty_inactive_list_nr))
5104 return 1;
5106 return 0;
5109 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5111 struct r5conf *conf = mddev->private;
5112 sector_t sector = bio->bi_iter.bi_sector;
5113 unsigned int chunk_sectors;
5114 unsigned int bio_sectors = bio_sectors(bio);
5116 WARN_ON_ONCE(bio->bi_partno);
5118 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5119 return chunk_sectors >=
5120 ((sector & (chunk_sectors - 1)) + bio_sectors);
5124 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5125 * later sampled by raid5d.
5127 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5129 unsigned long flags;
5131 spin_lock_irqsave(&conf->device_lock, flags);
5133 bi->bi_next = conf->retry_read_aligned_list;
5134 conf->retry_read_aligned_list = bi;
5136 spin_unlock_irqrestore(&conf->device_lock, flags);
5137 md_wakeup_thread(conf->mddev->thread);
5140 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5141 unsigned int *offset)
5143 struct bio *bi;
5145 bi = conf->retry_read_aligned;
5146 if (bi) {
5147 *offset = conf->retry_read_offset;
5148 conf->retry_read_aligned = NULL;
5149 return bi;
5151 bi = conf->retry_read_aligned_list;
5152 if(bi) {
5153 conf->retry_read_aligned_list = bi->bi_next;
5154 bi->bi_next = NULL;
5155 *offset = 0;
5158 return bi;
5162 * The "raid5_align_endio" should check if the read succeeded and if it
5163 * did, call bio_endio on the original bio (having bio_put the new bio
5164 * first).
5165 * If the read failed..
5167 static void raid5_align_endio(struct bio *bi)
5169 struct bio* raid_bi = bi->bi_private;
5170 struct mddev *mddev;
5171 struct r5conf *conf;
5172 struct md_rdev *rdev;
5173 blk_status_t error = bi->bi_status;
5175 bio_put(bi);
5177 rdev = (void*)raid_bi->bi_next;
5178 raid_bi->bi_next = NULL;
5179 mddev = rdev->mddev;
5180 conf = mddev->private;
5182 rdev_dec_pending(rdev, conf->mddev);
5184 if (!error) {
5185 bio_endio(raid_bi);
5186 if (atomic_dec_and_test(&conf->active_aligned_reads))
5187 wake_up(&conf->wait_for_quiescent);
5188 return;
5191 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5193 add_bio_to_retry(raid_bi, conf);
5196 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5198 struct r5conf *conf = mddev->private;
5199 int dd_idx;
5200 struct bio* align_bi;
5201 struct md_rdev *rdev;
5202 sector_t end_sector;
5204 if (!in_chunk_boundary(mddev, raid_bio)) {
5205 pr_debug("%s: non aligned\n", __func__);
5206 return 0;
5209 * use bio_clone_fast to make a copy of the bio
5211 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5212 if (!align_bi)
5213 return 0;
5215 * set bi_end_io to a new function, and set bi_private to the
5216 * original bio.
5218 align_bi->bi_end_io = raid5_align_endio;
5219 align_bi->bi_private = raid_bio;
5221 * compute position
5223 align_bi->bi_iter.bi_sector =
5224 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5225 0, &dd_idx, NULL);
5227 end_sector = bio_end_sector(align_bi);
5228 rcu_read_lock();
5229 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5230 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5231 rdev->recovery_offset < end_sector) {
5232 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5233 if (rdev &&
5234 (test_bit(Faulty, &rdev->flags) ||
5235 !(test_bit(In_sync, &rdev->flags) ||
5236 rdev->recovery_offset >= end_sector)))
5237 rdev = NULL;
5240 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5241 rcu_read_unlock();
5242 bio_put(align_bi);
5243 return 0;
5246 if (rdev) {
5247 sector_t first_bad;
5248 int bad_sectors;
5250 atomic_inc(&rdev->nr_pending);
5251 rcu_read_unlock();
5252 raid_bio->bi_next = (void*)rdev;
5253 bio_set_dev(align_bi, rdev->bdev);
5254 bio_clear_flag(align_bi, BIO_SEG_VALID);
5256 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5257 bio_sectors(align_bi),
5258 &first_bad, &bad_sectors)) {
5259 bio_put(align_bi);
5260 rdev_dec_pending(rdev, mddev);
5261 return 0;
5264 /* No reshape active, so we can trust rdev->data_offset */
5265 align_bi->bi_iter.bi_sector += rdev->data_offset;
5267 spin_lock_irq(&conf->device_lock);
5268 wait_event_lock_irq(conf->wait_for_quiescent,
5269 conf->quiesce == 0,
5270 conf->device_lock);
5271 atomic_inc(&conf->active_aligned_reads);
5272 spin_unlock_irq(&conf->device_lock);
5274 if (mddev->gendisk)
5275 trace_block_bio_remap(align_bi->bi_disk->queue,
5276 align_bi, disk_devt(mddev->gendisk),
5277 raid_bio->bi_iter.bi_sector);
5278 generic_make_request(align_bi);
5279 return 1;
5280 } else {
5281 rcu_read_unlock();
5282 bio_put(align_bi);
5283 return 0;
5287 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5289 struct bio *split;
5290 sector_t sector = raid_bio->bi_iter.bi_sector;
5291 unsigned chunk_sects = mddev->chunk_sectors;
5292 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5294 if (sectors < bio_sectors(raid_bio)) {
5295 struct r5conf *conf = mddev->private;
5296 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5297 bio_chain(split, raid_bio);
5298 generic_make_request(raid_bio);
5299 raid_bio = split;
5302 if (!raid5_read_one_chunk(mddev, raid_bio))
5303 return raid_bio;
5305 return NULL;
5308 /* __get_priority_stripe - get the next stripe to process
5310 * Full stripe writes are allowed to pass preread active stripes up until
5311 * the bypass_threshold is exceeded. In general the bypass_count
5312 * increments when the handle_list is handled before the hold_list; however, it
5313 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5314 * stripe with in flight i/o. The bypass_count will be reset when the
5315 * head of the hold_list has changed, i.e. the head was promoted to the
5316 * handle_list.
5318 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5320 struct stripe_head *sh, *tmp;
5321 struct list_head *handle_list = NULL;
5322 struct r5worker_group *wg;
5323 bool second_try = !r5c_is_writeback(conf->log) &&
5324 !r5l_log_disk_error(conf);
5325 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5326 r5l_log_disk_error(conf);
5328 again:
5329 wg = NULL;
5330 sh = NULL;
5331 if (conf->worker_cnt_per_group == 0) {
5332 handle_list = try_loprio ? &conf->loprio_list :
5333 &conf->handle_list;
5334 } else if (group != ANY_GROUP) {
5335 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5336 &conf->worker_groups[group].handle_list;
5337 wg = &conf->worker_groups[group];
5338 } else {
5339 int i;
5340 for (i = 0; i < conf->group_cnt; i++) {
5341 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5342 &conf->worker_groups[i].handle_list;
5343 wg = &conf->worker_groups[i];
5344 if (!list_empty(handle_list))
5345 break;
5349 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5350 __func__,
5351 list_empty(handle_list) ? "empty" : "busy",
5352 list_empty(&conf->hold_list) ? "empty" : "busy",
5353 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5355 if (!list_empty(handle_list)) {
5356 sh = list_entry(handle_list->next, typeof(*sh), lru);
5358 if (list_empty(&conf->hold_list))
5359 conf->bypass_count = 0;
5360 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5361 if (conf->hold_list.next == conf->last_hold)
5362 conf->bypass_count++;
5363 else {
5364 conf->last_hold = conf->hold_list.next;
5365 conf->bypass_count -= conf->bypass_threshold;
5366 if (conf->bypass_count < 0)
5367 conf->bypass_count = 0;
5370 } else if (!list_empty(&conf->hold_list) &&
5371 ((conf->bypass_threshold &&
5372 conf->bypass_count > conf->bypass_threshold) ||
5373 atomic_read(&conf->pending_full_writes) == 0)) {
5375 list_for_each_entry(tmp, &conf->hold_list, lru) {
5376 if (conf->worker_cnt_per_group == 0 ||
5377 group == ANY_GROUP ||
5378 !cpu_online(tmp->cpu) ||
5379 cpu_to_group(tmp->cpu) == group) {
5380 sh = tmp;
5381 break;
5385 if (sh) {
5386 conf->bypass_count -= conf->bypass_threshold;
5387 if (conf->bypass_count < 0)
5388 conf->bypass_count = 0;
5390 wg = NULL;
5393 if (!sh) {
5394 if (second_try)
5395 return NULL;
5396 second_try = true;
5397 try_loprio = !try_loprio;
5398 goto again;
5401 if (wg) {
5402 wg->stripes_cnt--;
5403 sh->group = NULL;
5405 list_del_init(&sh->lru);
5406 BUG_ON(atomic_inc_return(&sh->count) != 1);
5407 return sh;
5410 struct raid5_plug_cb {
5411 struct blk_plug_cb cb;
5412 struct list_head list;
5413 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5416 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5418 struct raid5_plug_cb *cb = container_of(
5419 blk_cb, struct raid5_plug_cb, cb);
5420 struct stripe_head *sh;
5421 struct mddev *mddev = cb->cb.data;
5422 struct r5conf *conf = mddev->private;
5423 int cnt = 0;
5424 int hash;
5426 if (cb->list.next && !list_empty(&cb->list)) {
5427 spin_lock_irq(&conf->device_lock);
5428 while (!list_empty(&cb->list)) {
5429 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5430 list_del_init(&sh->lru);
5432 * avoid race release_stripe_plug() sees
5433 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5434 * is still in our list
5436 smp_mb__before_atomic();
5437 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5439 * STRIPE_ON_RELEASE_LIST could be set here. In that
5440 * case, the count is always > 1 here
5442 hash = sh->hash_lock_index;
5443 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5444 cnt++;
5446 spin_unlock_irq(&conf->device_lock);
5448 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5449 NR_STRIPE_HASH_LOCKS);
5450 if (mddev->queue)
5451 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5452 kfree(cb);
5455 static void release_stripe_plug(struct mddev *mddev,
5456 struct stripe_head *sh)
5458 struct blk_plug_cb *blk_cb = blk_check_plugged(
5459 raid5_unplug, mddev,
5460 sizeof(struct raid5_plug_cb));
5461 struct raid5_plug_cb *cb;
5463 if (!blk_cb) {
5464 raid5_release_stripe(sh);
5465 return;
5468 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5470 if (cb->list.next == NULL) {
5471 int i;
5472 INIT_LIST_HEAD(&cb->list);
5473 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5474 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5477 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5478 list_add_tail(&sh->lru, &cb->list);
5479 else
5480 raid5_release_stripe(sh);
5483 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5485 struct r5conf *conf = mddev->private;
5486 sector_t logical_sector, last_sector;
5487 struct stripe_head *sh;
5488 int stripe_sectors;
5490 if (mddev->reshape_position != MaxSector)
5491 /* Skip discard while reshape is happening */
5492 return;
5494 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5495 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5497 bi->bi_next = NULL;
5499 stripe_sectors = conf->chunk_sectors *
5500 (conf->raid_disks - conf->max_degraded);
5501 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5502 stripe_sectors);
5503 sector_div(last_sector, stripe_sectors);
5505 logical_sector *= conf->chunk_sectors;
5506 last_sector *= conf->chunk_sectors;
5508 for (; logical_sector < last_sector;
5509 logical_sector += STRIPE_SECTORS) {
5510 DEFINE_WAIT(w);
5511 int d;
5512 again:
5513 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5514 prepare_to_wait(&conf->wait_for_overlap, &w,
5515 TASK_UNINTERRUPTIBLE);
5516 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5517 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5518 raid5_release_stripe(sh);
5519 schedule();
5520 goto again;
5522 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5523 spin_lock_irq(&sh->stripe_lock);
5524 for (d = 0; d < conf->raid_disks; d++) {
5525 if (d == sh->pd_idx || d == sh->qd_idx)
5526 continue;
5527 if (sh->dev[d].towrite || sh->dev[d].toread) {
5528 set_bit(R5_Overlap, &sh->dev[d].flags);
5529 spin_unlock_irq(&sh->stripe_lock);
5530 raid5_release_stripe(sh);
5531 schedule();
5532 goto again;
5535 set_bit(STRIPE_DISCARD, &sh->state);
5536 finish_wait(&conf->wait_for_overlap, &w);
5537 sh->overwrite_disks = 0;
5538 for (d = 0; d < conf->raid_disks; d++) {
5539 if (d == sh->pd_idx || d == sh->qd_idx)
5540 continue;
5541 sh->dev[d].towrite = bi;
5542 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5543 bio_inc_remaining(bi);
5544 md_write_inc(mddev, bi);
5545 sh->overwrite_disks++;
5547 spin_unlock_irq(&sh->stripe_lock);
5548 if (conf->mddev->bitmap) {
5549 for (d = 0;
5550 d < conf->raid_disks - conf->max_degraded;
5551 d++)
5552 md_bitmap_startwrite(mddev->bitmap,
5553 sh->sector,
5554 STRIPE_SECTORS,
5556 sh->bm_seq = conf->seq_flush + 1;
5557 set_bit(STRIPE_BIT_DELAY, &sh->state);
5560 set_bit(STRIPE_HANDLE, &sh->state);
5561 clear_bit(STRIPE_DELAYED, &sh->state);
5562 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5563 atomic_inc(&conf->preread_active_stripes);
5564 release_stripe_plug(mddev, sh);
5567 bio_endio(bi);
5570 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5572 struct r5conf *conf = mddev->private;
5573 int dd_idx;
5574 sector_t new_sector;
5575 sector_t logical_sector, last_sector;
5576 struct stripe_head *sh;
5577 const int rw = bio_data_dir(bi);
5578 DEFINE_WAIT(w);
5579 bool do_prepare;
5580 bool do_flush = false;
5582 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5583 int ret = log_handle_flush_request(conf, bi);
5585 if (ret == 0)
5586 return true;
5587 if (ret == -ENODEV) {
5588 md_flush_request(mddev, bi);
5589 return true;
5591 /* ret == -EAGAIN, fallback */
5593 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5594 * we need to flush journal device
5596 do_flush = bi->bi_opf & REQ_PREFLUSH;
5599 if (!md_write_start(mddev, bi))
5600 return false;
5602 * If array is degraded, better not do chunk aligned read because
5603 * later we might have to read it again in order to reconstruct
5604 * data on failed drives.
5606 if (rw == READ && mddev->degraded == 0 &&
5607 mddev->reshape_position == MaxSector) {
5608 bi = chunk_aligned_read(mddev, bi);
5609 if (!bi)
5610 return true;
5613 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5614 make_discard_request(mddev, bi);
5615 md_write_end(mddev);
5616 return true;
5619 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5620 last_sector = bio_end_sector(bi);
5621 bi->bi_next = NULL;
5623 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5624 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5625 int previous;
5626 int seq;
5628 do_prepare = false;
5629 retry:
5630 seq = read_seqcount_begin(&conf->gen_lock);
5631 previous = 0;
5632 if (do_prepare)
5633 prepare_to_wait(&conf->wait_for_overlap, &w,
5634 TASK_UNINTERRUPTIBLE);
5635 if (unlikely(conf->reshape_progress != MaxSector)) {
5636 /* spinlock is needed as reshape_progress may be
5637 * 64bit on a 32bit platform, and so it might be
5638 * possible to see a half-updated value
5639 * Of course reshape_progress could change after
5640 * the lock is dropped, so once we get a reference
5641 * to the stripe that we think it is, we will have
5642 * to check again.
5644 spin_lock_irq(&conf->device_lock);
5645 if (mddev->reshape_backwards
5646 ? logical_sector < conf->reshape_progress
5647 : logical_sector >= conf->reshape_progress) {
5648 previous = 1;
5649 } else {
5650 if (mddev->reshape_backwards
5651 ? logical_sector < conf->reshape_safe
5652 : logical_sector >= conf->reshape_safe) {
5653 spin_unlock_irq(&conf->device_lock);
5654 schedule();
5655 do_prepare = true;
5656 goto retry;
5659 spin_unlock_irq(&conf->device_lock);
5662 new_sector = raid5_compute_sector(conf, logical_sector,
5663 previous,
5664 &dd_idx, NULL);
5665 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5666 (unsigned long long)new_sector,
5667 (unsigned long long)logical_sector);
5669 sh = raid5_get_active_stripe(conf, new_sector, previous,
5670 (bi->bi_opf & REQ_RAHEAD), 0);
5671 if (sh) {
5672 if (unlikely(previous)) {
5673 /* expansion might have moved on while waiting for a
5674 * stripe, so we must do the range check again.
5675 * Expansion could still move past after this
5676 * test, but as we are holding a reference to
5677 * 'sh', we know that if that happens,
5678 * STRIPE_EXPANDING will get set and the expansion
5679 * won't proceed until we finish with the stripe.
5681 int must_retry = 0;
5682 spin_lock_irq(&conf->device_lock);
5683 if (mddev->reshape_backwards
5684 ? logical_sector >= conf->reshape_progress
5685 : logical_sector < conf->reshape_progress)
5686 /* mismatch, need to try again */
5687 must_retry = 1;
5688 spin_unlock_irq(&conf->device_lock);
5689 if (must_retry) {
5690 raid5_release_stripe(sh);
5691 schedule();
5692 do_prepare = true;
5693 goto retry;
5696 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5697 /* Might have got the wrong stripe_head
5698 * by accident
5700 raid5_release_stripe(sh);
5701 goto retry;
5704 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5705 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5706 /* Stripe is busy expanding or
5707 * add failed due to overlap. Flush everything
5708 * and wait a while
5710 md_wakeup_thread(mddev->thread);
5711 raid5_release_stripe(sh);
5712 schedule();
5713 do_prepare = true;
5714 goto retry;
5716 if (do_flush) {
5717 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5718 /* we only need flush for one stripe */
5719 do_flush = false;
5722 set_bit(STRIPE_HANDLE, &sh->state);
5723 clear_bit(STRIPE_DELAYED, &sh->state);
5724 if ((!sh->batch_head || sh == sh->batch_head) &&
5725 (bi->bi_opf & REQ_SYNC) &&
5726 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5727 atomic_inc(&conf->preread_active_stripes);
5728 release_stripe_plug(mddev, sh);
5729 } else {
5730 /* cannot get stripe for read-ahead, just give-up */
5731 bi->bi_status = BLK_STS_IOERR;
5732 break;
5735 finish_wait(&conf->wait_for_overlap, &w);
5737 if (rw == WRITE)
5738 md_write_end(mddev);
5739 bio_endio(bi);
5740 return true;
5743 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5745 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5747 /* reshaping is quite different to recovery/resync so it is
5748 * handled quite separately ... here.
5750 * On each call to sync_request, we gather one chunk worth of
5751 * destination stripes and flag them as expanding.
5752 * Then we find all the source stripes and request reads.
5753 * As the reads complete, handle_stripe will copy the data
5754 * into the destination stripe and release that stripe.
5756 struct r5conf *conf = mddev->private;
5757 struct stripe_head *sh;
5758 struct md_rdev *rdev;
5759 sector_t first_sector, last_sector;
5760 int raid_disks = conf->previous_raid_disks;
5761 int data_disks = raid_disks - conf->max_degraded;
5762 int new_data_disks = conf->raid_disks - conf->max_degraded;
5763 int i;
5764 int dd_idx;
5765 sector_t writepos, readpos, safepos;
5766 sector_t stripe_addr;
5767 int reshape_sectors;
5768 struct list_head stripes;
5769 sector_t retn;
5771 if (sector_nr == 0) {
5772 /* If restarting in the middle, skip the initial sectors */
5773 if (mddev->reshape_backwards &&
5774 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5775 sector_nr = raid5_size(mddev, 0, 0)
5776 - conf->reshape_progress;
5777 } else if (mddev->reshape_backwards &&
5778 conf->reshape_progress == MaxSector) {
5779 /* shouldn't happen, but just in case, finish up.*/
5780 sector_nr = MaxSector;
5781 } else if (!mddev->reshape_backwards &&
5782 conf->reshape_progress > 0)
5783 sector_nr = conf->reshape_progress;
5784 sector_div(sector_nr, new_data_disks);
5785 if (sector_nr) {
5786 mddev->curr_resync_completed = sector_nr;
5787 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5788 *skipped = 1;
5789 retn = sector_nr;
5790 goto finish;
5794 /* We need to process a full chunk at a time.
5795 * If old and new chunk sizes differ, we need to process the
5796 * largest of these
5799 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5801 /* We update the metadata at least every 10 seconds, or when
5802 * the data about to be copied would over-write the source of
5803 * the data at the front of the range. i.e. one new_stripe
5804 * along from reshape_progress new_maps to after where
5805 * reshape_safe old_maps to
5807 writepos = conf->reshape_progress;
5808 sector_div(writepos, new_data_disks);
5809 readpos = conf->reshape_progress;
5810 sector_div(readpos, data_disks);
5811 safepos = conf->reshape_safe;
5812 sector_div(safepos, data_disks);
5813 if (mddev->reshape_backwards) {
5814 BUG_ON(writepos < reshape_sectors);
5815 writepos -= reshape_sectors;
5816 readpos += reshape_sectors;
5817 safepos += reshape_sectors;
5818 } else {
5819 writepos += reshape_sectors;
5820 /* readpos and safepos are worst-case calculations.
5821 * A negative number is overly pessimistic, and causes
5822 * obvious problems for unsigned storage. So clip to 0.
5824 readpos -= min_t(sector_t, reshape_sectors, readpos);
5825 safepos -= min_t(sector_t, reshape_sectors, safepos);
5828 /* Having calculated the 'writepos' possibly use it
5829 * to set 'stripe_addr' which is where we will write to.
5831 if (mddev->reshape_backwards) {
5832 BUG_ON(conf->reshape_progress == 0);
5833 stripe_addr = writepos;
5834 BUG_ON((mddev->dev_sectors &
5835 ~((sector_t)reshape_sectors - 1))
5836 - reshape_sectors - stripe_addr
5837 != sector_nr);
5838 } else {
5839 BUG_ON(writepos != sector_nr + reshape_sectors);
5840 stripe_addr = sector_nr;
5843 /* 'writepos' is the most advanced device address we might write.
5844 * 'readpos' is the least advanced device address we might read.
5845 * 'safepos' is the least address recorded in the metadata as having
5846 * been reshaped.
5847 * If there is a min_offset_diff, these are adjusted either by
5848 * increasing the safepos/readpos if diff is negative, or
5849 * increasing writepos if diff is positive.
5850 * If 'readpos' is then behind 'writepos', there is no way that we can
5851 * ensure safety in the face of a crash - that must be done by userspace
5852 * making a backup of the data. So in that case there is no particular
5853 * rush to update metadata.
5854 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5855 * update the metadata to advance 'safepos' to match 'readpos' so that
5856 * we can be safe in the event of a crash.
5857 * So we insist on updating metadata if safepos is behind writepos and
5858 * readpos is beyond writepos.
5859 * In any case, update the metadata every 10 seconds.
5860 * Maybe that number should be configurable, but I'm not sure it is
5861 * worth it.... maybe it could be a multiple of safemode_delay???
5863 if (conf->min_offset_diff < 0) {
5864 safepos += -conf->min_offset_diff;
5865 readpos += -conf->min_offset_diff;
5866 } else
5867 writepos += conf->min_offset_diff;
5869 if ((mddev->reshape_backwards
5870 ? (safepos > writepos && readpos < writepos)
5871 : (safepos < writepos && readpos > writepos)) ||
5872 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5873 /* Cannot proceed until we've updated the superblock... */
5874 wait_event(conf->wait_for_overlap,
5875 atomic_read(&conf->reshape_stripes)==0
5876 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5877 if (atomic_read(&conf->reshape_stripes) != 0)
5878 return 0;
5879 mddev->reshape_position = conf->reshape_progress;
5880 mddev->curr_resync_completed = sector_nr;
5881 if (!mddev->reshape_backwards)
5882 /* Can update recovery_offset */
5883 rdev_for_each(rdev, mddev)
5884 if (rdev->raid_disk >= 0 &&
5885 !test_bit(Journal, &rdev->flags) &&
5886 !test_bit(In_sync, &rdev->flags) &&
5887 rdev->recovery_offset < sector_nr)
5888 rdev->recovery_offset = sector_nr;
5890 conf->reshape_checkpoint = jiffies;
5891 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5892 md_wakeup_thread(mddev->thread);
5893 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5894 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5895 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5896 return 0;
5897 spin_lock_irq(&conf->device_lock);
5898 conf->reshape_safe = mddev->reshape_position;
5899 spin_unlock_irq(&conf->device_lock);
5900 wake_up(&conf->wait_for_overlap);
5901 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5904 INIT_LIST_HEAD(&stripes);
5905 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5906 int j;
5907 int skipped_disk = 0;
5908 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5909 set_bit(STRIPE_EXPANDING, &sh->state);
5910 atomic_inc(&conf->reshape_stripes);
5911 /* If any of this stripe is beyond the end of the old
5912 * array, then we need to zero those blocks
5914 for (j=sh->disks; j--;) {
5915 sector_t s;
5916 if (j == sh->pd_idx)
5917 continue;
5918 if (conf->level == 6 &&
5919 j == sh->qd_idx)
5920 continue;
5921 s = raid5_compute_blocknr(sh, j, 0);
5922 if (s < raid5_size(mddev, 0, 0)) {
5923 skipped_disk = 1;
5924 continue;
5926 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5927 set_bit(R5_Expanded, &sh->dev[j].flags);
5928 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5930 if (!skipped_disk) {
5931 set_bit(STRIPE_EXPAND_READY, &sh->state);
5932 set_bit(STRIPE_HANDLE, &sh->state);
5934 list_add(&sh->lru, &stripes);
5936 spin_lock_irq(&conf->device_lock);
5937 if (mddev->reshape_backwards)
5938 conf->reshape_progress -= reshape_sectors * new_data_disks;
5939 else
5940 conf->reshape_progress += reshape_sectors * new_data_disks;
5941 spin_unlock_irq(&conf->device_lock);
5942 /* Ok, those stripe are ready. We can start scheduling
5943 * reads on the source stripes.
5944 * The source stripes are determined by mapping the first and last
5945 * block on the destination stripes.
5947 first_sector =
5948 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5949 1, &dd_idx, NULL);
5950 last_sector =
5951 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5952 * new_data_disks - 1),
5953 1, &dd_idx, NULL);
5954 if (last_sector >= mddev->dev_sectors)
5955 last_sector = mddev->dev_sectors - 1;
5956 while (first_sector <= last_sector) {
5957 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5958 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5959 set_bit(STRIPE_HANDLE, &sh->state);
5960 raid5_release_stripe(sh);
5961 first_sector += STRIPE_SECTORS;
5963 /* Now that the sources are clearly marked, we can release
5964 * the destination stripes
5966 while (!list_empty(&stripes)) {
5967 sh = list_entry(stripes.next, struct stripe_head, lru);
5968 list_del_init(&sh->lru);
5969 raid5_release_stripe(sh);
5971 /* If this takes us to the resync_max point where we have to pause,
5972 * then we need to write out the superblock.
5974 sector_nr += reshape_sectors;
5975 retn = reshape_sectors;
5976 finish:
5977 if (mddev->curr_resync_completed > mddev->resync_max ||
5978 (sector_nr - mddev->curr_resync_completed) * 2
5979 >= mddev->resync_max - mddev->curr_resync_completed) {
5980 /* Cannot proceed until we've updated the superblock... */
5981 wait_event(conf->wait_for_overlap,
5982 atomic_read(&conf->reshape_stripes) == 0
5983 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5984 if (atomic_read(&conf->reshape_stripes) != 0)
5985 goto ret;
5986 mddev->reshape_position = conf->reshape_progress;
5987 mddev->curr_resync_completed = sector_nr;
5988 if (!mddev->reshape_backwards)
5989 /* Can update recovery_offset */
5990 rdev_for_each(rdev, mddev)
5991 if (rdev->raid_disk >= 0 &&
5992 !test_bit(Journal, &rdev->flags) &&
5993 !test_bit(In_sync, &rdev->flags) &&
5994 rdev->recovery_offset < sector_nr)
5995 rdev->recovery_offset = sector_nr;
5996 conf->reshape_checkpoint = jiffies;
5997 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5998 md_wakeup_thread(mddev->thread);
5999 wait_event(mddev->sb_wait,
6000 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6001 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6002 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6003 goto ret;
6004 spin_lock_irq(&conf->device_lock);
6005 conf->reshape_safe = mddev->reshape_position;
6006 spin_unlock_irq(&conf->device_lock);
6007 wake_up(&conf->wait_for_overlap);
6008 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6010 ret:
6011 return retn;
6014 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6015 int *skipped)
6017 struct r5conf *conf = mddev->private;
6018 struct stripe_head *sh;
6019 sector_t max_sector = mddev->dev_sectors;
6020 sector_t sync_blocks;
6021 int still_degraded = 0;
6022 int i;
6024 if (sector_nr >= max_sector) {
6025 /* just being told to finish up .. nothing much to do */
6027 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6028 end_reshape(conf);
6029 return 0;
6032 if (mddev->curr_resync < max_sector) /* aborted */
6033 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6034 &sync_blocks, 1);
6035 else /* completed sync */
6036 conf->fullsync = 0;
6037 md_bitmap_close_sync(mddev->bitmap);
6039 return 0;
6042 /* Allow raid5_quiesce to complete */
6043 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6045 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6046 return reshape_request(mddev, sector_nr, skipped);
6048 /* No need to check resync_max as we never do more than one
6049 * stripe, and as resync_max will always be on a chunk boundary,
6050 * if the check in md_do_sync didn't fire, there is no chance
6051 * of overstepping resync_max here
6054 /* if there is too many failed drives and we are trying
6055 * to resync, then assert that we are finished, because there is
6056 * nothing we can do.
6058 if (mddev->degraded >= conf->max_degraded &&
6059 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6060 sector_t rv = mddev->dev_sectors - sector_nr;
6061 *skipped = 1;
6062 return rv;
6064 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6065 !conf->fullsync &&
6066 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6067 sync_blocks >= STRIPE_SECTORS) {
6068 /* we can skip this block, and probably more */
6069 sync_blocks /= STRIPE_SECTORS;
6070 *skipped = 1;
6071 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6074 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6076 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6077 if (sh == NULL) {
6078 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6079 /* make sure we don't swamp the stripe cache if someone else
6080 * is trying to get access
6082 schedule_timeout_uninterruptible(1);
6084 /* Need to check if array will still be degraded after recovery/resync
6085 * Note in case of > 1 drive failures it's possible we're rebuilding
6086 * one drive while leaving another faulty drive in array.
6088 rcu_read_lock();
6089 for (i = 0; i < conf->raid_disks; i++) {
6090 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6092 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6093 still_degraded = 1;
6095 rcu_read_unlock();
6097 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6099 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6100 set_bit(STRIPE_HANDLE, &sh->state);
6102 raid5_release_stripe(sh);
6104 return STRIPE_SECTORS;
6107 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6108 unsigned int offset)
6110 /* We may not be able to submit a whole bio at once as there
6111 * may not be enough stripe_heads available.
6112 * We cannot pre-allocate enough stripe_heads as we may need
6113 * more than exist in the cache (if we allow ever large chunks).
6114 * So we do one stripe head at a time and record in
6115 * ->bi_hw_segments how many have been done.
6117 * We *know* that this entire raid_bio is in one chunk, so
6118 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6120 struct stripe_head *sh;
6121 int dd_idx;
6122 sector_t sector, logical_sector, last_sector;
6123 int scnt = 0;
6124 int handled = 0;
6126 logical_sector = raid_bio->bi_iter.bi_sector &
6127 ~((sector_t)STRIPE_SECTORS-1);
6128 sector = raid5_compute_sector(conf, logical_sector,
6129 0, &dd_idx, NULL);
6130 last_sector = bio_end_sector(raid_bio);
6132 for (; logical_sector < last_sector;
6133 logical_sector += STRIPE_SECTORS,
6134 sector += STRIPE_SECTORS,
6135 scnt++) {
6137 if (scnt < offset)
6138 /* already done this stripe */
6139 continue;
6141 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6143 if (!sh) {
6144 /* failed to get a stripe - must wait */
6145 conf->retry_read_aligned = raid_bio;
6146 conf->retry_read_offset = scnt;
6147 return handled;
6150 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6151 raid5_release_stripe(sh);
6152 conf->retry_read_aligned = raid_bio;
6153 conf->retry_read_offset = scnt;
6154 return handled;
6157 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6158 handle_stripe(sh);
6159 raid5_release_stripe(sh);
6160 handled++;
6163 bio_endio(raid_bio);
6165 if (atomic_dec_and_test(&conf->active_aligned_reads))
6166 wake_up(&conf->wait_for_quiescent);
6167 return handled;
6170 static int handle_active_stripes(struct r5conf *conf, int group,
6171 struct r5worker *worker,
6172 struct list_head *temp_inactive_list)
6173 __releases(&conf->device_lock)
6174 __acquires(&conf->device_lock)
6176 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6177 int i, batch_size = 0, hash;
6178 bool release_inactive = false;
6180 while (batch_size < MAX_STRIPE_BATCH &&
6181 (sh = __get_priority_stripe(conf, group)) != NULL)
6182 batch[batch_size++] = sh;
6184 if (batch_size == 0) {
6185 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6186 if (!list_empty(temp_inactive_list + i))
6187 break;
6188 if (i == NR_STRIPE_HASH_LOCKS) {
6189 spin_unlock_irq(&conf->device_lock);
6190 log_flush_stripe_to_raid(conf);
6191 spin_lock_irq(&conf->device_lock);
6192 return batch_size;
6194 release_inactive = true;
6196 spin_unlock_irq(&conf->device_lock);
6198 release_inactive_stripe_list(conf, temp_inactive_list,
6199 NR_STRIPE_HASH_LOCKS);
6201 r5l_flush_stripe_to_raid(conf->log);
6202 if (release_inactive) {
6203 spin_lock_irq(&conf->device_lock);
6204 return 0;
6207 for (i = 0; i < batch_size; i++)
6208 handle_stripe(batch[i]);
6209 log_write_stripe_run(conf);
6211 cond_resched();
6213 spin_lock_irq(&conf->device_lock);
6214 for (i = 0; i < batch_size; i++) {
6215 hash = batch[i]->hash_lock_index;
6216 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6218 return batch_size;
6221 static void raid5_do_work(struct work_struct *work)
6223 struct r5worker *worker = container_of(work, struct r5worker, work);
6224 struct r5worker_group *group = worker->group;
6225 struct r5conf *conf = group->conf;
6226 struct mddev *mddev = conf->mddev;
6227 int group_id = group - conf->worker_groups;
6228 int handled;
6229 struct blk_plug plug;
6231 pr_debug("+++ raid5worker active\n");
6233 blk_start_plug(&plug);
6234 handled = 0;
6235 spin_lock_irq(&conf->device_lock);
6236 while (1) {
6237 int batch_size, released;
6239 released = release_stripe_list(conf, worker->temp_inactive_list);
6241 batch_size = handle_active_stripes(conf, group_id, worker,
6242 worker->temp_inactive_list);
6243 worker->working = false;
6244 if (!batch_size && !released)
6245 break;
6246 handled += batch_size;
6247 wait_event_lock_irq(mddev->sb_wait,
6248 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6249 conf->device_lock);
6251 pr_debug("%d stripes handled\n", handled);
6253 spin_unlock_irq(&conf->device_lock);
6255 flush_deferred_bios(conf);
6257 r5l_flush_stripe_to_raid(conf->log);
6259 async_tx_issue_pending_all();
6260 blk_finish_plug(&plug);
6262 pr_debug("--- raid5worker inactive\n");
6266 * This is our raid5 kernel thread.
6268 * We scan the hash table for stripes which can be handled now.
6269 * During the scan, completed stripes are saved for us by the interrupt
6270 * handler, so that they will not have to wait for our next wakeup.
6272 static void raid5d(struct md_thread *thread)
6274 struct mddev *mddev = thread->mddev;
6275 struct r5conf *conf = mddev->private;
6276 int handled;
6277 struct blk_plug plug;
6279 pr_debug("+++ raid5d active\n");
6281 md_check_recovery(mddev);
6283 blk_start_plug(&plug);
6284 handled = 0;
6285 spin_lock_irq(&conf->device_lock);
6286 while (1) {
6287 struct bio *bio;
6288 int batch_size, released;
6289 unsigned int offset;
6291 released = release_stripe_list(conf, conf->temp_inactive_list);
6292 if (released)
6293 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6295 if (
6296 !list_empty(&conf->bitmap_list)) {
6297 /* Now is a good time to flush some bitmap updates */
6298 conf->seq_flush++;
6299 spin_unlock_irq(&conf->device_lock);
6300 md_bitmap_unplug(mddev->bitmap);
6301 spin_lock_irq(&conf->device_lock);
6302 conf->seq_write = conf->seq_flush;
6303 activate_bit_delay(conf, conf->temp_inactive_list);
6305 raid5_activate_delayed(conf);
6307 while ((bio = remove_bio_from_retry(conf, &offset))) {
6308 int ok;
6309 spin_unlock_irq(&conf->device_lock);
6310 ok = retry_aligned_read(conf, bio, offset);
6311 spin_lock_irq(&conf->device_lock);
6312 if (!ok)
6313 break;
6314 handled++;
6317 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6318 conf->temp_inactive_list);
6319 if (!batch_size && !released)
6320 break;
6321 handled += batch_size;
6323 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6324 spin_unlock_irq(&conf->device_lock);
6325 md_check_recovery(mddev);
6326 spin_lock_irq(&conf->device_lock);
6329 pr_debug("%d stripes handled\n", handled);
6331 spin_unlock_irq(&conf->device_lock);
6332 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6333 mutex_trylock(&conf->cache_size_mutex)) {
6334 grow_one_stripe(conf, __GFP_NOWARN);
6335 /* Set flag even if allocation failed. This helps
6336 * slow down allocation requests when mem is short
6338 set_bit(R5_DID_ALLOC, &conf->cache_state);
6339 mutex_unlock(&conf->cache_size_mutex);
6342 flush_deferred_bios(conf);
6344 r5l_flush_stripe_to_raid(conf->log);
6346 async_tx_issue_pending_all();
6347 blk_finish_plug(&plug);
6349 pr_debug("--- raid5d inactive\n");
6352 static ssize_t
6353 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6355 struct r5conf *conf;
6356 int ret = 0;
6357 spin_lock(&mddev->lock);
6358 conf = mddev->private;
6359 if (conf)
6360 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6361 spin_unlock(&mddev->lock);
6362 return ret;
6366 raid5_set_cache_size(struct mddev *mddev, int size)
6368 int result = 0;
6369 struct r5conf *conf = mddev->private;
6371 if (size <= 16 || size > 32768)
6372 return -EINVAL;
6374 conf->min_nr_stripes = size;
6375 mutex_lock(&conf->cache_size_mutex);
6376 while (size < conf->max_nr_stripes &&
6377 drop_one_stripe(conf))
6379 mutex_unlock(&conf->cache_size_mutex);
6381 md_allow_write(mddev);
6383 mutex_lock(&conf->cache_size_mutex);
6384 while (size > conf->max_nr_stripes)
6385 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6386 conf->min_nr_stripes = conf->max_nr_stripes;
6387 result = -ENOMEM;
6388 break;
6390 mutex_unlock(&conf->cache_size_mutex);
6392 return result;
6394 EXPORT_SYMBOL(raid5_set_cache_size);
6396 static ssize_t
6397 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6399 struct r5conf *conf;
6400 unsigned long new;
6401 int err;
6403 if (len >= PAGE_SIZE)
6404 return -EINVAL;
6405 if (kstrtoul(page, 10, &new))
6406 return -EINVAL;
6407 err = mddev_lock(mddev);
6408 if (err)
6409 return err;
6410 conf = mddev->private;
6411 if (!conf)
6412 err = -ENODEV;
6413 else
6414 err = raid5_set_cache_size(mddev, new);
6415 mddev_unlock(mddev);
6417 return err ?: len;
6420 static struct md_sysfs_entry
6421 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6422 raid5_show_stripe_cache_size,
6423 raid5_store_stripe_cache_size);
6425 static ssize_t
6426 raid5_show_rmw_level(struct mddev *mddev, char *page)
6428 struct r5conf *conf = mddev->private;
6429 if (conf)
6430 return sprintf(page, "%d\n", conf->rmw_level);
6431 else
6432 return 0;
6435 static ssize_t
6436 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6438 struct r5conf *conf = mddev->private;
6439 unsigned long new;
6441 if (!conf)
6442 return -ENODEV;
6444 if (len >= PAGE_SIZE)
6445 return -EINVAL;
6447 if (kstrtoul(page, 10, &new))
6448 return -EINVAL;
6450 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6451 return -EINVAL;
6453 if (new != PARITY_DISABLE_RMW &&
6454 new != PARITY_ENABLE_RMW &&
6455 new != PARITY_PREFER_RMW)
6456 return -EINVAL;
6458 conf->rmw_level = new;
6459 return len;
6462 static struct md_sysfs_entry
6463 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6464 raid5_show_rmw_level,
6465 raid5_store_rmw_level);
6468 static ssize_t
6469 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6471 struct r5conf *conf;
6472 int ret = 0;
6473 spin_lock(&mddev->lock);
6474 conf = mddev->private;
6475 if (conf)
6476 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6477 spin_unlock(&mddev->lock);
6478 return ret;
6481 static ssize_t
6482 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6484 struct r5conf *conf;
6485 unsigned long new;
6486 int err;
6488 if (len >= PAGE_SIZE)
6489 return -EINVAL;
6490 if (kstrtoul(page, 10, &new))
6491 return -EINVAL;
6493 err = mddev_lock(mddev);
6494 if (err)
6495 return err;
6496 conf = mddev->private;
6497 if (!conf)
6498 err = -ENODEV;
6499 else if (new > conf->min_nr_stripes)
6500 err = -EINVAL;
6501 else
6502 conf->bypass_threshold = new;
6503 mddev_unlock(mddev);
6504 return err ?: len;
6507 static struct md_sysfs_entry
6508 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6509 S_IRUGO | S_IWUSR,
6510 raid5_show_preread_threshold,
6511 raid5_store_preread_threshold);
6513 static ssize_t
6514 raid5_show_skip_copy(struct mddev *mddev, char *page)
6516 struct r5conf *conf;
6517 int ret = 0;
6518 spin_lock(&mddev->lock);
6519 conf = mddev->private;
6520 if (conf)
6521 ret = sprintf(page, "%d\n", conf->skip_copy);
6522 spin_unlock(&mddev->lock);
6523 return ret;
6526 static ssize_t
6527 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6529 struct r5conf *conf;
6530 unsigned long new;
6531 int err;
6533 if (len >= PAGE_SIZE)
6534 return -EINVAL;
6535 if (kstrtoul(page, 10, &new))
6536 return -EINVAL;
6537 new = !!new;
6539 err = mddev_lock(mddev);
6540 if (err)
6541 return err;
6542 conf = mddev->private;
6543 if (!conf)
6544 err = -ENODEV;
6545 else if (new != conf->skip_copy) {
6546 mddev_suspend(mddev);
6547 conf->skip_copy = new;
6548 if (new)
6549 mddev->queue->backing_dev_info->capabilities |=
6550 BDI_CAP_STABLE_WRITES;
6551 else
6552 mddev->queue->backing_dev_info->capabilities &=
6553 ~BDI_CAP_STABLE_WRITES;
6554 mddev_resume(mddev);
6556 mddev_unlock(mddev);
6557 return err ?: len;
6560 static struct md_sysfs_entry
6561 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6562 raid5_show_skip_copy,
6563 raid5_store_skip_copy);
6565 static ssize_t
6566 stripe_cache_active_show(struct mddev *mddev, char *page)
6568 struct r5conf *conf = mddev->private;
6569 if (conf)
6570 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6571 else
6572 return 0;
6575 static struct md_sysfs_entry
6576 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6578 static ssize_t
6579 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6581 struct r5conf *conf;
6582 int ret = 0;
6583 spin_lock(&mddev->lock);
6584 conf = mddev->private;
6585 if (conf)
6586 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6587 spin_unlock(&mddev->lock);
6588 return ret;
6591 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6592 int *group_cnt,
6593 int *worker_cnt_per_group,
6594 struct r5worker_group **worker_groups);
6595 static ssize_t
6596 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6598 struct r5conf *conf;
6599 unsigned int new;
6600 int err;
6601 struct r5worker_group *new_groups, *old_groups;
6602 int group_cnt, worker_cnt_per_group;
6604 if (len >= PAGE_SIZE)
6605 return -EINVAL;
6606 if (kstrtouint(page, 10, &new))
6607 return -EINVAL;
6608 /* 8192 should be big enough */
6609 if (new > 8192)
6610 return -EINVAL;
6612 err = mddev_lock(mddev);
6613 if (err)
6614 return err;
6615 conf = mddev->private;
6616 if (!conf)
6617 err = -ENODEV;
6618 else if (new != conf->worker_cnt_per_group) {
6619 mddev_suspend(mddev);
6621 old_groups = conf->worker_groups;
6622 if (old_groups)
6623 flush_workqueue(raid5_wq);
6625 err = alloc_thread_groups(conf, new,
6626 &group_cnt, &worker_cnt_per_group,
6627 &new_groups);
6628 if (!err) {
6629 spin_lock_irq(&conf->device_lock);
6630 conf->group_cnt = group_cnt;
6631 conf->worker_cnt_per_group = worker_cnt_per_group;
6632 conf->worker_groups = new_groups;
6633 spin_unlock_irq(&conf->device_lock);
6635 if (old_groups)
6636 kfree(old_groups[0].workers);
6637 kfree(old_groups);
6639 mddev_resume(mddev);
6641 mddev_unlock(mddev);
6643 return err ?: len;
6646 static struct md_sysfs_entry
6647 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6648 raid5_show_group_thread_cnt,
6649 raid5_store_group_thread_cnt);
6651 static struct attribute *raid5_attrs[] = {
6652 &raid5_stripecache_size.attr,
6653 &raid5_stripecache_active.attr,
6654 &raid5_preread_bypass_threshold.attr,
6655 &raid5_group_thread_cnt.attr,
6656 &raid5_skip_copy.attr,
6657 &raid5_rmw_level.attr,
6658 &r5c_journal_mode.attr,
6659 &ppl_write_hint.attr,
6660 NULL,
6662 static struct attribute_group raid5_attrs_group = {
6663 .name = NULL,
6664 .attrs = raid5_attrs,
6667 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6668 int *group_cnt,
6669 int *worker_cnt_per_group,
6670 struct r5worker_group **worker_groups)
6672 int i, j, k;
6673 ssize_t size;
6674 struct r5worker *workers;
6676 *worker_cnt_per_group = cnt;
6677 if (cnt == 0) {
6678 *group_cnt = 0;
6679 *worker_groups = NULL;
6680 return 0;
6682 *group_cnt = num_possible_nodes();
6683 size = sizeof(struct r5worker) * cnt;
6684 workers = kcalloc(size, *group_cnt, GFP_NOIO);
6685 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6686 GFP_NOIO);
6687 if (!*worker_groups || !workers) {
6688 kfree(workers);
6689 kfree(*worker_groups);
6690 return -ENOMEM;
6693 for (i = 0; i < *group_cnt; i++) {
6694 struct r5worker_group *group;
6696 group = &(*worker_groups)[i];
6697 INIT_LIST_HEAD(&group->handle_list);
6698 INIT_LIST_HEAD(&group->loprio_list);
6699 group->conf = conf;
6700 group->workers = workers + i * cnt;
6702 for (j = 0; j < cnt; j++) {
6703 struct r5worker *worker = group->workers + j;
6704 worker->group = group;
6705 INIT_WORK(&worker->work, raid5_do_work);
6707 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6708 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6712 return 0;
6715 static void free_thread_groups(struct r5conf *conf)
6717 if (conf->worker_groups)
6718 kfree(conf->worker_groups[0].workers);
6719 kfree(conf->worker_groups);
6720 conf->worker_groups = NULL;
6723 static sector_t
6724 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6726 struct r5conf *conf = mddev->private;
6728 if (!sectors)
6729 sectors = mddev->dev_sectors;
6730 if (!raid_disks)
6731 /* size is defined by the smallest of previous and new size */
6732 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6734 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6735 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6736 return sectors * (raid_disks - conf->max_degraded);
6739 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6741 safe_put_page(percpu->spare_page);
6742 percpu->spare_page = NULL;
6743 kvfree(percpu->scribble);
6744 percpu->scribble = NULL;
6747 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6749 if (conf->level == 6 && !percpu->spare_page) {
6750 percpu->spare_page = alloc_page(GFP_KERNEL);
6751 if (!percpu->spare_page)
6752 return -ENOMEM;
6755 if (scribble_alloc(percpu,
6756 max(conf->raid_disks,
6757 conf->previous_raid_disks),
6758 max(conf->chunk_sectors,
6759 conf->prev_chunk_sectors)
6760 / STRIPE_SECTORS,
6761 GFP_KERNEL)) {
6762 free_scratch_buffer(conf, percpu);
6763 return -ENOMEM;
6766 return 0;
6769 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6771 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6773 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6774 return 0;
6777 static void raid5_free_percpu(struct r5conf *conf)
6779 if (!conf->percpu)
6780 return;
6782 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6783 free_percpu(conf->percpu);
6786 static void free_conf(struct r5conf *conf)
6788 int i;
6790 log_exit(conf);
6792 unregister_shrinker(&conf->shrinker);
6793 free_thread_groups(conf);
6794 shrink_stripes(conf);
6795 raid5_free_percpu(conf);
6796 for (i = 0; i < conf->pool_size; i++)
6797 if (conf->disks[i].extra_page)
6798 put_page(conf->disks[i].extra_page);
6799 kfree(conf->disks);
6800 bioset_exit(&conf->bio_split);
6801 kfree(conf->stripe_hashtbl);
6802 kfree(conf->pending_data);
6803 kfree(conf);
6806 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6808 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6809 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6811 if (alloc_scratch_buffer(conf, percpu)) {
6812 pr_warn("%s: failed memory allocation for cpu%u\n",
6813 __func__, cpu);
6814 return -ENOMEM;
6816 return 0;
6819 static int raid5_alloc_percpu(struct r5conf *conf)
6821 int err = 0;
6823 conf->percpu = alloc_percpu(struct raid5_percpu);
6824 if (!conf->percpu)
6825 return -ENOMEM;
6827 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6828 if (!err) {
6829 conf->scribble_disks = max(conf->raid_disks,
6830 conf->previous_raid_disks);
6831 conf->scribble_sectors = max(conf->chunk_sectors,
6832 conf->prev_chunk_sectors);
6834 return err;
6837 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6838 struct shrink_control *sc)
6840 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6841 unsigned long ret = SHRINK_STOP;
6843 if (mutex_trylock(&conf->cache_size_mutex)) {
6844 ret= 0;
6845 while (ret < sc->nr_to_scan &&
6846 conf->max_nr_stripes > conf->min_nr_stripes) {
6847 if (drop_one_stripe(conf) == 0) {
6848 ret = SHRINK_STOP;
6849 break;
6851 ret++;
6853 mutex_unlock(&conf->cache_size_mutex);
6855 return ret;
6858 static unsigned long raid5_cache_count(struct shrinker *shrink,
6859 struct shrink_control *sc)
6861 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6863 if (conf->max_nr_stripes < conf->min_nr_stripes)
6864 /* unlikely, but not impossible */
6865 return 0;
6866 return conf->max_nr_stripes - conf->min_nr_stripes;
6869 static struct r5conf *setup_conf(struct mddev *mddev)
6871 struct r5conf *conf;
6872 int raid_disk, memory, max_disks;
6873 struct md_rdev *rdev;
6874 struct disk_info *disk;
6875 char pers_name[6];
6876 int i;
6877 int group_cnt, worker_cnt_per_group;
6878 struct r5worker_group *new_group;
6879 int ret;
6881 if (mddev->new_level != 5
6882 && mddev->new_level != 4
6883 && mddev->new_level != 6) {
6884 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6885 mdname(mddev), mddev->new_level);
6886 return ERR_PTR(-EIO);
6888 if ((mddev->new_level == 5
6889 && !algorithm_valid_raid5(mddev->new_layout)) ||
6890 (mddev->new_level == 6
6891 && !algorithm_valid_raid6(mddev->new_layout))) {
6892 pr_warn("md/raid:%s: layout %d not supported\n",
6893 mdname(mddev), mddev->new_layout);
6894 return ERR_PTR(-EIO);
6896 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6897 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6898 mdname(mddev), mddev->raid_disks);
6899 return ERR_PTR(-EINVAL);
6902 if (!mddev->new_chunk_sectors ||
6903 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6904 !is_power_of_2(mddev->new_chunk_sectors)) {
6905 pr_warn("md/raid:%s: invalid chunk size %d\n",
6906 mdname(mddev), mddev->new_chunk_sectors << 9);
6907 return ERR_PTR(-EINVAL);
6910 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6911 if (conf == NULL)
6912 goto abort;
6913 INIT_LIST_HEAD(&conf->free_list);
6914 INIT_LIST_HEAD(&conf->pending_list);
6915 conf->pending_data = kcalloc(PENDING_IO_MAX,
6916 sizeof(struct r5pending_data),
6917 GFP_KERNEL);
6918 if (!conf->pending_data)
6919 goto abort;
6920 for (i = 0; i < PENDING_IO_MAX; i++)
6921 list_add(&conf->pending_data[i].sibling, &conf->free_list);
6922 /* Don't enable multi-threading by default*/
6923 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6924 &new_group)) {
6925 conf->group_cnt = group_cnt;
6926 conf->worker_cnt_per_group = worker_cnt_per_group;
6927 conf->worker_groups = new_group;
6928 } else
6929 goto abort;
6930 spin_lock_init(&conf->device_lock);
6931 seqcount_init(&conf->gen_lock);
6932 mutex_init(&conf->cache_size_mutex);
6933 init_waitqueue_head(&conf->wait_for_quiescent);
6934 init_waitqueue_head(&conf->wait_for_stripe);
6935 init_waitqueue_head(&conf->wait_for_overlap);
6936 INIT_LIST_HEAD(&conf->handle_list);
6937 INIT_LIST_HEAD(&conf->loprio_list);
6938 INIT_LIST_HEAD(&conf->hold_list);
6939 INIT_LIST_HEAD(&conf->delayed_list);
6940 INIT_LIST_HEAD(&conf->bitmap_list);
6941 init_llist_head(&conf->released_stripes);
6942 atomic_set(&conf->active_stripes, 0);
6943 atomic_set(&conf->preread_active_stripes, 0);
6944 atomic_set(&conf->active_aligned_reads, 0);
6945 spin_lock_init(&conf->pending_bios_lock);
6946 conf->batch_bio_dispatch = true;
6947 rdev_for_each(rdev, mddev) {
6948 if (test_bit(Journal, &rdev->flags))
6949 continue;
6950 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6951 conf->batch_bio_dispatch = false;
6952 break;
6956 conf->bypass_threshold = BYPASS_THRESHOLD;
6957 conf->recovery_disabled = mddev->recovery_disabled - 1;
6959 conf->raid_disks = mddev->raid_disks;
6960 if (mddev->reshape_position == MaxSector)
6961 conf->previous_raid_disks = mddev->raid_disks;
6962 else
6963 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6964 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6966 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
6967 GFP_KERNEL);
6969 if (!conf->disks)
6970 goto abort;
6972 for (i = 0; i < max_disks; i++) {
6973 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6974 if (!conf->disks[i].extra_page)
6975 goto abort;
6978 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
6979 if (ret)
6980 goto abort;
6981 conf->mddev = mddev;
6983 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6984 goto abort;
6986 /* We init hash_locks[0] separately to that it can be used
6987 * as the reference lock in the spin_lock_nest_lock() call
6988 * in lock_all_device_hash_locks_irq in order to convince
6989 * lockdep that we know what we are doing.
6991 spin_lock_init(conf->hash_locks);
6992 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6993 spin_lock_init(conf->hash_locks + i);
6995 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6996 INIT_LIST_HEAD(conf->inactive_list + i);
6998 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6999 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7001 atomic_set(&conf->r5c_cached_full_stripes, 0);
7002 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7003 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7004 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7005 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7006 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7008 conf->level = mddev->new_level;
7009 conf->chunk_sectors = mddev->new_chunk_sectors;
7010 if (raid5_alloc_percpu(conf) != 0)
7011 goto abort;
7013 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7015 rdev_for_each(rdev, mddev) {
7016 raid_disk = rdev->raid_disk;
7017 if (raid_disk >= max_disks
7018 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7019 continue;
7020 disk = conf->disks + raid_disk;
7022 if (test_bit(Replacement, &rdev->flags)) {
7023 if (disk->replacement)
7024 goto abort;
7025 disk->replacement = rdev;
7026 } else {
7027 if (disk->rdev)
7028 goto abort;
7029 disk->rdev = rdev;
7032 if (test_bit(In_sync, &rdev->flags)) {
7033 char b[BDEVNAME_SIZE];
7034 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7035 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7036 } else if (rdev->saved_raid_disk != raid_disk)
7037 /* Cannot rely on bitmap to complete recovery */
7038 conf->fullsync = 1;
7041 conf->level = mddev->new_level;
7042 if (conf->level == 6) {
7043 conf->max_degraded = 2;
7044 if (raid6_call.xor_syndrome)
7045 conf->rmw_level = PARITY_ENABLE_RMW;
7046 else
7047 conf->rmw_level = PARITY_DISABLE_RMW;
7048 } else {
7049 conf->max_degraded = 1;
7050 conf->rmw_level = PARITY_ENABLE_RMW;
7052 conf->algorithm = mddev->new_layout;
7053 conf->reshape_progress = mddev->reshape_position;
7054 if (conf->reshape_progress != MaxSector) {
7055 conf->prev_chunk_sectors = mddev->chunk_sectors;
7056 conf->prev_algo = mddev->layout;
7057 } else {
7058 conf->prev_chunk_sectors = conf->chunk_sectors;
7059 conf->prev_algo = conf->algorithm;
7062 conf->min_nr_stripes = NR_STRIPES;
7063 if (mddev->reshape_position != MaxSector) {
7064 int stripes = max_t(int,
7065 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7066 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7067 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7068 if (conf->min_nr_stripes != NR_STRIPES)
7069 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7070 mdname(mddev), conf->min_nr_stripes);
7072 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7073 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7074 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7075 if (grow_stripes(conf, conf->min_nr_stripes)) {
7076 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7077 mdname(mddev), memory);
7078 goto abort;
7079 } else
7080 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7082 * Losing a stripe head costs more than the time to refill it,
7083 * it reduces the queue depth and so can hurt throughput.
7084 * So set it rather large, scaled by number of devices.
7086 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7087 conf->shrinker.scan_objects = raid5_cache_scan;
7088 conf->shrinker.count_objects = raid5_cache_count;
7089 conf->shrinker.batch = 128;
7090 conf->shrinker.flags = 0;
7091 if (register_shrinker(&conf->shrinker)) {
7092 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7093 mdname(mddev));
7094 goto abort;
7097 sprintf(pers_name, "raid%d", mddev->new_level);
7098 conf->thread = md_register_thread(raid5d, mddev, pers_name);
7099 if (!conf->thread) {
7100 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7101 mdname(mddev));
7102 goto abort;
7105 return conf;
7107 abort:
7108 if (conf) {
7109 free_conf(conf);
7110 return ERR_PTR(-EIO);
7111 } else
7112 return ERR_PTR(-ENOMEM);
7115 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7117 switch (algo) {
7118 case ALGORITHM_PARITY_0:
7119 if (raid_disk < max_degraded)
7120 return 1;
7121 break;
7122 case ALGORITHM_PARITY_N:
7123 if (raid_disk >= raid_disks - max_degraded)
7124 return 1;
7125 break;
7126 case ALGORITHM_PARITY_0_6:
7127 if (raid_disk == 0 ||
7128 raid_disk == raid_disks - 1)
7129 return 1;
7130 break;
7131 case ALGORITHM_LEFT_ASYMMETRIC_6:
7132 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7133 case ALGORITHM_LEFT_SYMMETRIC_6:
7134 case ALGORITHM_RIGHT_SYMMETRIC_6:
7135 if (raid_disk == raid_disks - 1)
7136 return 1;
7138 return 0;
7141 static int raid5_run(struct mddev *mddev)
7143 struct r5conf *conf;
7144 int working_disks = 0;
7145 int dirty_parity_disks = 0;
7146 struct md_rdev *rdev;
7147 struct md_rdev *journal_dev = NULL;
7148 sector_t reshape_offset = 0;
7149 int i;
7150 long long min_offset_diff = 0;
7151 int first = 1;
7153 if (mddev_init_writes_pending(mddev) < 0)
7154 return -ENOMEM;
7156 if (mddev->recovery_cp != MaxSector)
7157 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7158 mdname(mddev));
7160 rdev_for_each(rdev, mddev) {
7161 long long diff;
7163 if (test_bit(Journal, &rdev->flags)) {
7164 journal_dev = rdev;
7165 continue;
7167 if (rdev->raid_disk < 0)
7168 continue;
7169 diff = (rdev->new_data_offset - rdev->data_offset);
7170 if (first) {
7171 min_offset_diff = diff;
7172 first = 0;
7173 } else if (mddev->reshape_backwards &&
7174 diff < min_offset_diff)
7175 min_offset_diff = diff;
7176 else if (!mddev->reshape_backwards &&
7177 diff > min_offset_diff)
7178 min_offset_diff = diff;
7181 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7182 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7183 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7184 mdname(mddev));
7185 return -EINVAL;
7188 if (mddev->reshape_position != MaxSector) {
7189 /* Check that we can continue the reshape.
7190 * Difficulties arise if the stripe we would write to
7191 * next is at or after the stripe we would read from next.
7192 * For a reshape that changes the number of devices, this
7193 * is only possible for a very short time, and mdadm makes
7194 * sure that time appears to have past before assembling
7195 * the array. So we fail if that time hasn't passed.
7196 * For a reshape that keeps the number of devices the same
7197 * mdadm must be monitoring the reshape can keeping the
7198 * critical areas read-only and backed up. It will start
7199 * the array in read-only mode, so we check for that.
7201 sector_t here_new, here_old;
7202 int old_disks;
7203 int max_degraded = (mddev->level == 6 ? 2 : 1);
7204 int chunk_sectors;
7205 int new_data_disks;
7207 if (journal_dev) {
7208 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7209 mdname(mddev));
7210 return -EINVAL;
7213 if (mddev->new_level != mddev->level) {
7214 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7215 mdname(mddev));
7216 return -EINVAL;
7218 old_disks = mddev->raid_disks - mddev->delta_disks;
7219 /* reshape_position must be on a new-stripe boundary, and one
7220 * further up in new geometry must map after here in old
7221 * geometry.
7222 * If the chunk sizes are different, then as we perform reshape
7223 * in units of the largest of the two, reshape_position needs
7224 * be a multiple of the largest chunk size times new data disks.
7226 here_new = mddev->reshape_position;
7227 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7228 new_data_disks = mddev->raid_disks - max_degraded;
7229 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7230 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7231 mdname(mddev));
7232 return -EINVAL;
7234 reshape_offset = here_new * chunk_sectors;
7235 /* here_new is the stripe we will write to */
7236 here_old = mddev->reshape_position;
7237 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7238 /* here_old is the first stripe that we might need to read
7239 * from */
7240 if (mddev->delta_disks == 0) {
7241 /* We cannot be sure it is safe to start an in-place
7242 * reshape. It is only safe if user-space is monitoring
7243 * and taking constant backups.
7244 * mdadm always starts a situation like this in
7245 * readonly mode so it can take control before
7246 * allowing any writes. So just check for that.
7248 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7249 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7250 /* not really in-place - so OK */;
7251 else if (mddev->ro == 0) {
7252 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7253 mdname(mddev));
7254 return -EINVAL;
7256 } else if (mddev->reshape_backwards
7257 ? (here_new * chunk_sectors + min_offset_diff <=
7258 here_old * chunk_sectors)
7259 : (here_new * chunk_sectors >=
7260 here_old * chunk_sectors + (-min_offset_diff))) {
7261 /* Reading from the same stripe as writing to - bad */
7262 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7263 mdname(mddev));
7264 return -EINVAL;
7266 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7267 /* OK, we should be able to continue; */
7268 } else {
7269 BUG_ON(mddev->level != mddev->new_level);
7270 BUG_ON(mddev->layout != mddev->new_layout);
7271 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7272 BUG_ON(mddev->delta_disks != 0);
7275 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7276 test_bit(MD_HAS_PPL, &mddev->flags)) {
7277 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7278 mdname(mddev));
7279 clear_bit(MD_HAS_PPL, &mddev->flags);
7280 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7283 if (mddev->private == NULL)
7284 conf = setup_conf(mddev);
7285 else
7286 conf = mddev->private;
7288 if (IS_ERR(conf))
7289 return PTR_ERR(conf);
7291 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7292 if (!journal_dev) {
7293 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7294 mdname(mddev));
7295 mddev->ro = 1;
7296 set_disk_ro(mddev->gendisk, 1);
7297 } else if (mddev->recovery_cp == MaxSector)
7298 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7301 conf->min_offset_diff = min_offset_diff;
7302 mddev->thread = conf->thread;
7303 conf->thread = NULL;
7304 mddev->private = conf;
7306 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7307 i++) {
7308 rdev = conf->disks[i].rdev;
7309 if (!rdev && conf->disks[i].replacement) {
7310 /* The replacement is all we have yet */
7311 rdev = conf->disks[i].replacement;
7312 conf->disks[i].replacement = NULL;
7313 clear_bit(Replacement, &rdev->flags);
7314 conf->disks[i].rdev = rdev;
7316 if (!rdev)
7317 continue;
7318 if (conf->disks[i].replacement &&
7319 conf->reshape_progress != MaxSector) {
7320 /* replacements and reshape simply do not mix. */
7321 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7322 goto abort;
7324 if (test_bit(In_sync, &rdev->flags)) {
7325 working_disks++;
7326 continue;
7328 /* This disc is not fully in-sync. However if it
7329 * just stored parity (beyond the recovery_offset),
7330 * when we don't need to be concerned about the
7331 * array being dirty.
7332 * When reshape goes 'backwards', we never have
7333 * partially completed devices, so we only need
7334 * to worry about reshape going forwards.
7336 /* Hack because v0.91 doesn't store recovery_offset properly. */
7337 if (mddev->major_version == 0 &&
7338 mddev->minor_version > 90)
7339 rdev->recovery_offset = reshape_offset;
7341 if (rdev->recovery_offset < reshape_offset) {
7342 /* We need to check old and new layout */
7343 if (!only_parity(rdev->raid_disk,
7344 conf->algorithm,
7345 conf->raid_disks,
7346 conf->max_degraded))
7347 continue;
7349 if (!only_parity(rdev->raid_disk,
7350 conf->prev_algo,
7351 conf->previous_raid_disks,
7352 conf->max_degraded))
7353 continue;
7354 dirty_parity_disks++;
7358 * 0 for a fully functional array, 1 or 2 for a degraded array.
7360 mddev->degraded = raid5_calc_degraded(conf);
7362 if (has_failed(conf)) {
7363 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7364 mdname(mddev), mddev->degraded, conf->raid_disks);
7365 goto abort;
7368 /* device size must be a multiple of chunk size */
7369 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7370 mddev->resync_max_sectors = mddev->dev_sectors;
7372 if (mddev->degraded > dirty_parity_disks &&
7373 mddev->recovery_cp != MaxSector) {
7374 if (test_bit(MD_HAS_PPL, &mddev->flags))
7375 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7376 mdname(mddev));
7377 else if (mddev->ok_start_degraded)
7378 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7379 mdname(mddev));
7380 else {
7381 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7382 mdname(mddev));
7383 goto abort;
7387 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7388 mdname(mddev), conf->level,
7389 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7390 mddev->new_layout);
7392 print_raid5_conf(conf);
7394 if (conf->reshape_progress != MaxSector) {
7395 conf->reshape_safe = conf->reshape_progress;
7396 atomic_set(&conf->reshape_stripes, 0);
7397 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7398 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7399 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7400 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7401 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7402 "reshape");
7403 if (!mddev->sync_thread)
7404 goto abort;
7407 /* Ok, everything is just fine now */
7408 if (mddev->to_remove == &raid5_attrs_group)
7409 mddev->to_remove = NULL;
7410 else if (mddev->kobj.sd &&
7411 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7412 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7413 mdname(mddev));
7414 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7416 if (mddev->queue) {
7417 int chunk_size;
7418 /* read-ahead size must cover two whole stripes, which
7419 * is 2 * (datadisks) * chunksize where 'n' is the
7420 * number of raid devices
7422 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7423 int stripe = data_disks *
7424 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7425 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7426 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7428 chunk_size = mddev->chunk_sectors << 9;
7429 blk_queue_io_min(mddev->queue, chunk_size);
7430 blk_queue_io_opt(mddev->queue, chunk_size *
7431 (conf->raid_disks - conf->max_degraded));
7432 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7434 * We can only discard a whole stripe. It doesn't make sense to
7435 * discard data disk but write parity disk
7437 stripe = stripe * PAGE_SIZE;
7438 /* Round up to power of 2, as discard handling
7439 * currently assumes that */
7440 while ((stripe-1) & stripe)
7441 stripe = (stripe | (stripe-1)) + 1;
7442 mddev->queue->limits.discard_alignment = stripe;
7443 mddev->queue->limits.discard_granularity = stripe;
7445 blk_queue_max_write_same_sectors(mddev->queue, 0);
7446 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7448 rdev_for_each(rdev, mddev) {
7449 disk_stack_limits(mddev->gendisk, rdev->bdev,
7450 rdev->data_offset << 9);
7451 disk_stack_limits(mddev->gendisk, rdev->bdev,
7452 rdev->new_data_offset << 9);
7456 * zeroing is required, otherwise data
7457 * could be lost. Consider a scenario: discard a stripe
7458 * (the stripe could be inconsistent if
7459 * discard_zeroes_data is 0); write one disk of the
7460 * stripe (the stripe could be inconsistent again
7461 * depending on which disks are used to calculate
7462 * parity); the disk is broken; The stripe data of this
7463 * disk is lost.
7465 * We only allow DISCARD if the sysadmin has confirmed that
7466 * only safe devices are in use by setting a module parameter.
7467 * A better idea might be to turn DISCARD into WRITE_ZEROES
7468 * requests, as that is required to be safe.
7470 if (devices_handle_discard_safely &&
7471 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7472 mddev->queue->limits.discard_granularity >= stripe)
7473 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7474 mddev->queue);
7475 else
7476 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7477 mddev->queue);
7479 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7482 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7483 goto abort;
7485 return 0;
7486 abort:
7487 md_unregister_thread(&mddev->thread);
7488 print_raid5_conf(conf);
7489 free_conf(conf);
7490 mddev->private = NULL;
7491 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7492 return -EIO;
7495 static void raid5_free(struct mddev *mddev, void *priv)
7497 struct r5conf *conf = priv;
7499 free_conf(conf);
7500 mddev->to_remove = &raid5_attrs_group;
7503 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7505 struct r5conf *conf = mddev->private;
7506 int i;
7508 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7509 conf->chunk_sectors / 2, mddev->layout);
7510 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7511 rcu_read_lock();
7512 for (i = 0; i < conf->raid_disks; i++) {
7513 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7514 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7516 rcu_read_unlock();
7517 seq_printf (seq, "]");
7520 static void print_raid5_conf (struct r5conf *conf)
7522 int i;
7523 struct disk_info *tmp;
7525 pr_debug("RAID conf printout:\n");
7526 if (!conf) {
7527 pr_debug("(conf==NULL)\n");
7528 return;
7530 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7531 conf->raid_disks,
7532 conf->raid_disks - conf->mddev->degraded);
7534 for (i = 0; i < conf->raid_disks; i++) {
7535 char b[BDEVNAME_SIZE];
7536 tmp = conf->disks + i;
7537 if (tmp->rdev)
7538 pr_debug(" disk %d, o:%d, dev:%s\n",
7539 i, !test_bit(Faulty, &tmp->rdev->flags),
7540 bdevname(tmp->rdev->bdev, b));
7544 static int raid5_spare_active(struct mddev *mddev)
7546 int i;
7547 struct r5conf *conf = mddev->private;
7548 struct disk_info *tmp;
7549 int count = 0;
7550 unsigned long flags;
7552 for (i = 0; i < conf->raid_disks; i++) {
7553 tmp = conf->disks + i;
7554 if (tmp->replacement
7555 && tmp->replacement->recovery_offset == MaxSector
7556 && !test_bit(Faulty, &tmp->replacement->flags)
7557 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7558 /* Replacement has just become active. */
7559 if (!tmp->rdev
7560 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7561 count++;
7562 if (tmp->rdev) {
7563 /* Replaced device not technically faulty,
7564 * but we need to be sure it gets removed
7565 * and never re-added.
7567 set_bit(Faulty, &tmp->rdev->flags);
7568 sysfs_notify_dirent_safe(
7569 tmp->rdev->sysfs_state);
7571 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7572 } else if (tmp->rdev
7573 && tmp->rdev->recovery_offset == MaxSector
7574 && !test_bit(Faulty, &tmp->rdev->flags)
7575 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7576 count++;
7577 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7580 spin_lock_irqsave(&conf->device_lock, flags);
7581 mddev->degraded = raid5_calc_degraded(conf);
7582 spin_unlock_irqrestore(&conf->device_lock, flags);
7583 print_raid5_conf(conf);
7584 return count;
7587 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7589 struct r5conf *conf = mddev->private;
7590 int err = 0;
7591 int number = rdev->raid_disk;
7592 struct md_rdev **rdevp;
7593 struct disk_info *p = conf->disks + number;
7595 print_raid5_conf(conf);
7596 if (test_bit(Journal, &rdev->flags) && conf->log) {
7598 * we can't wait pending write here, as this is called in
7599 * raid5d, wait will deadlock.
7600 * neilb: there is no locking about new writes here,
7601 * so this cannot be safe.
7603 if (atomic_read(&conf->active_stripes) ||
7604 atomic_read(&conf->r5c_cached_full_stripes) ||
7605 atomic_read(&conf->r5c_cached_partial_stripes)) {
7606 return -EBUSY;
7608 log_exit(conf);
7609 return 0;
7611 if (rdev == p->rdev)
7612 rdevp = &p->rdev;
7613 else if (rdev == p->replacement)
7614 rdevp = &p->replacement;
7615 else
7616 return 0;
7618 if (number >= conf->raid_disks &&
7619 conf->reshape_progress == MaxSector)
7620 clear_bit(In_sync, &rdev->flags);
7622 if (test_bit(In_sync, &rdev->flags) ||
7623 atomic_read(&rdev->nr_pending)) {
7624 err = -EBUSY;
7625 goto abort;
7627 /* Only remove non-faulty devices if recovery
7628 * isn't possible.
7630 if (!test_bit(Faulty, &rdev->flags) &&
7631 mddev->recovery_disabled != conf->recovery_disabled &&
7632 !has_failed(conf) &&
7633 (!p->replacement || p->replacement == rdev) &&
7634 number < conf->raid_disks) {
7635 err = -EBUSY;
7636 goto abort;
7638 *rdevp = NULL;
7639 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7640 synchronize_rcu();
7641 if (atomic_read(&rdev->nr_pending)) {
7642 /* lost the race, try later */
7643 err = -EBUSY;
7644 *rdevp = rdev;
7647 if (!err) {
7648 err = log_modify(conf, rdev, false);
7649 if (err)
7650 goto abort;
7652 if (p->replacement) {
7653 /* We must have just cleared 'rdev' */
7654 p->rdev = p->replacement;
7655 clear_bit(Replacement, &p->replacement->flags);
7656 smp_mb(); /* Make sure other CPUs may see both as identical
7657 * but will never see neither - if they are careful
7659 p->replacement = NULL;
7661 if (!err)
7662 err = log_modify(conf, p->rdev, true);
7665 clear_bit(WantReplacement, &rdev->flags);
7666 abort:
7668 print_raid5_conf(conf);
7669 return err;
7672 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7674 struct r5conf *conf = mddev->private;
7675 int err = -EEXIST;
7676 int disk;
7677 struct disk_info *p;
7678 int first = 0;
7679 int last = conf->raid_disks - 1;
7681 if (test_bit(Journal, &rdev->flags)) {
7682 if (conf->log)
7683 return -EBUSY;
7685 rdev->raid_disk = 0;
7687 * The array is in readonly mode if journal is missing, so no
7688 * write requests running. We should be safe
7690 log_init(conf, rdev, false);
7691 return 0;
7693 if (mddev->recovery_disabled == conf->recovery_disabled)
7694 return -EBUSY;
7696 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7697 /* no point adding a device */
7698 return -EINVAL;
7700 if (rdev->raid_disk >= 0)
7701 first = last = rdev->raid_disk;
7704 * find the disk ... but prefer rdev->saved_raid_disk
7705 * if possible.
7707 if (rdev->saved_raid_disk >= 0 &&
7708 rdev->saved_raid_disk >= first &&
7709 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7710 first = rdev->saved_raid_disk;
7712 for (disk = first; disk <= last; disk++) {
7713 p = conf->disks + disk;
7714 if (p->rdev == NULL) {
7715 clear_bit(In_sync, &rdev->flags);
7716 rdev->raid_disk = disk;
7717 if (rdev->saved_raid_disk != disk)
7718 conf->fullsync = 1;
7719 rcu_assign_pointer(p->rdev, rdev);
7721 err = log_modify(conf, rdev, true);
7723 goto out;
7726 for (disk = first; disk <= last; disk++) {
7727 p = conf->disks + disk;
7728 if (test_bit(WantReplacement, &p->rdev->flags) &&
7729 p->replacement == NULL) {
7730 clear_bit(In_sync, &rdev->flags);
7731 set_bit(Replacement, &rdev->flags);
7732 rdev->raid_disk = disk;
7733 err = 0;
7734 conf->fullsync = 1;
7735 rcu_assign_pointer(p->replacement, rdev);
7736 break;
7739 out:
7740 print_raid5_conf(conf);
7741 return err;
7744 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7746 /* no resync is happening, and there is enough space
7747 * on all devices, so we can resize.
7748 * We need to make sure resync covers any new space.
7749 * If the array is shrinking we should possibly wait until
7750 * any io in the removed space completes, but it hardly seems
7751 * worth it.
7753 sector_t newsize;
7754 struct r5conf *conf = mddev->private;
7756 if (raid5_has_log(conf) || raid5_has_ppl(conf))
7757 return -EINVAL;
7758 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7759 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7760 if (mddev->external_size &&
7761 mddev->array_sectors > newsize)
7762 return -EINVAL;
7763 if (mddev->bitmap) {
7764 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
7765 if (ret)
7766 return ret;
7768 md_set_array_sectors(mddev, newsize);
7769 if (sectors > mddev->dev_sectors &&
7770 mddev->recovery_cp > mddev->dev_sectors) {
7771 mddev->recovery_cp = mddev->dev_sectors;
7772 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7774 mddev->dev_sectors = sectors;
7775 mddev->resync_max_sectors = sectors;
7776 return 0;
7779 static int check_stripe_cache(struct mddev *mddev)
7781 /* Can only proceed if there are plenty of stripe_heads.
7782 * We need a minimum of one full stripe,, and for sensible progress
7783 * it is best to have about 4 times that.
7784 * If we require 4 times, then the default 256 4K stripe_heads will
7785 * allow for chunk sizes up to 256K, which is probably OK.
7786 * If the chunk size is greater, user-space should request more
7787 * stripe_heads first.
7789 struct r5conf *conf = mddev->private;
7790 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7791 > conf->min_nr_stripes ||
7792 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7793 > conf->min_nr_stripes) {
7794 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7795 mdname(mddev),
7796 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7797 / STRIPE_SIZE)*4);
7798 return 0;
7800 return 1;
7803 static int check_reshape(struct mddev *mddev)
7805 struct r5conf *conf = mddev->private;
7807 if (raid5_has_log(conf) || raid5_has_ppl(conf))
7808 return -EINVAL;
7809 if (mddev->delta_disks == 0 &&
7810 mddev->new_layout == mddev->layout &&
7811 mddev->new_chunk_sectors == mddev->chunk_sectors)
7812 return 0; /* nothing to do */
7813 if (has_failed(conf))
7814 return -EINVAL;
7815 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7816 /* We might be able to shrink, but the devices must
7817 * be made bigger first.
7818 * For raid6, 4 is the minimum size.
7819 * Otherwise 2 is the minimum
7821 int min = 2;
7822 if (mddev->level == 6)
7823 min = 4;
7824 if (mddev->raid_disks + mddev->delta_disks < min)
7825 return -EINVAL;
7828 if (!check_stripe_cache(mddev))
7829 return -ENOSPC;
7831 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7832 mddev->delta_disks > 0)
7833 if (resize_chunks(conf,
7834 conf->previous_raid_disks
7835 + max(0, mddev->delta_disks),
7836 max(mddev->new_chunk_sectors,
7837 mddev->chunk_sectors)
7838 ) < 0)
7839 return -ENOMEM;
7841 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7842 return 0; /* never bother to shrink */
7843 return resize_stripes(conf, (conf->previous_raid_disks
7844 + mddev->delta_disks));
7847 static int raid5_start_reshape(struct mddev *mddev)
7849 struct r5conf *conf = mddev->private;
7850 struct md_rdev *rdev;
7851 int spares = 0;
7852 unsigned long flags;
7854 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7855 return -EBUSY;
7857 if (!check_stripe_cache(mddev))
7858 return -ENOSPC;
7860 if (has_failed(conf))
7861 return -EINVAL;
7863 rdev_for_each(rdev, mddev) {
7864 if (!test_bit(In_sync, &rdev->flags)
7865 && !test_bit(Faulty, &rdev->flags))
7866 spares++;
7869 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7870 /* Not enough devices even to make a degraded array
7871 * of that size
7873 return -EINVAL;
7875 /* Refuse to reduce size of the array. Any reductions in
7876 * array size must be through explicit setting of array_size
7877 * attribute.
7879 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7880 < mddev->array_sectors) {
7881 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7882 mdname(mddev));
7883 return -EINVAL;
7886 atomic_set(&conf->reshape_stripes, 0);
7887 spin_lock_irq(&conf->device_lock);
7888 write_seqcount_begin(&conf->gen_lock);
7889 conf->previous_raid_disks = conf->raid_disks;
7890 conf->raid_disks += mddev->delta_disks;
7891 conf->prev_chunk_sectors = conf->chunk_sectors;
7892 conf->chunk_sectors = mddev->new_chunk_sectors;
7893 conf->prev_algo = conf->algorithm;
7894 conf->algorithm = mddev->new_layout;
7895 conf->generation++;
7896 /* Code that selects data_offset needs to see the generation update
7897 * if reshape_progress has been set - so a memory barrier needed.
7899 smp_mb();
7900 if (mddev->reshape_backwards)
7901 conf->reshape_progress = raid5_size(mddev, 0, 0);
7902 else
7903 conf->reshape_progress = 0;
7904 conf->reshape_safe = conf->reshape_progress;
7905 write_seqcount_end(&conf->gen_lock);
7906 spin_unlock_irq(&conf->device_lock);
7908 /* Now make sure any requests that proceeded on the assumption
7909 * the reshape wasn't running - like Discard or Read - have
7910 * completed.
7912 mddev_suspend(mddev);
7913 mddev_resume(mddev);
7915 /* Add some new drives, as many as will fit.
7916 * We know there are enough to make the newly sized array work.
7917 * Don't add devices if we are reducing the number of
7918 * devices in the array. This is because it is not possible
7919 * to correctly record the "partially reconstructed" state of
7920 * such devices during the reshape and confusion could result.
7922 if (mddev->delta_disks >= 0) {
7923 rdev_for_each(rdev, mddev)
7924 if (rdev->raid_disk < 0 &&
7925 !test_bit(Faulty, &rdev->flags)) {
7926 if (raid5_add_disk(mddev, rdev) == 0) {
7927 if (rdev->raid_disk
7928 >= conf->previous_raid_disks)
7929 set_bit(In_sync, &rdev->flags);
7930 else
7931 rdev->recovery_offset = 0;
7933 if (sysfs_link_rdev(mddev, rdev))
7934 /* Failure here is OK */;
7936 } else if (rdev->raid_disk >= conf->previous_raid_disks
7937 && !test_bit(Faulty, &rdev->flags)) {
7938 /* This is a spare that was manually added */
7939 set_bit(In_sync, &rdev->flags);
7942 /* When a reshape changes the number of devices,
7943 * ->degraded is measured against the larger of the
7944 * pre and post number of devices.
7946 spin_lock_irqsave(&conf->device_lock, flags);
7947 mddev->degraded = raid5_calc_degraded(conf);
7948 spin_unlock_irqrestore(&conf->device_lock, flags);
7950 mddev->raid_disks = conf->raid_disks;
7951 mddev->reshape_position = conf->reshape_progress;
7952 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7954 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7955 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7956 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7957 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7958 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7959 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7960 "reshape");
7961 if (!mddev->sync_thread) {
7962 mddev->recovery = 0;
7963 spin_lock_irq(&conf->device_lock);
7964 write_seqcount_begin(&conf->gen_lock);
7965 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7966 mddev->new_chunk_sectors =
7967 conf->chunk_sectors = conf->prev_chunk_sectors;
7968 mddev->new_layout = conf->algorithm = conf->prev_algo;
7969 rdev_for_each(rdev, mddev)
7970 rdev->new_data_offset = rdev->data_offset;
7971 smp_wmb();
7972 conf->generation --;
7973 conf->reshape_progress = MaxSector;
7974 mddev->reshape_position = MaxSector;
7975 write_seqcount_end(&conf->gen_lock);
7976 spin_unlock_irq(&conf->device_lock);
7977 return -EAGAIN;
7979 conf->reshape_checkpoint = jiffies;
7980 md_wakeup_thread(mddev->sync_thread);
7981 md_new_event(mddev);
7982 return 0;
7985 /* This is called from the reshape thread and should make any
7986 * changes needed in 'conf'
7988 static void end_reshape(struct r5conf *conf)
7991 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7992 struct md_rdev *rdev;
7994 spin_lock_irq(&conf->device_lock);
7995 conf->previous_raid_disks = conf->raid_disks;
7996 md_finish_reshape(conf->mddev);
7997 smp_wmb();
7998 conf->reshape_progress = MaxSector;
7999 conf->mddev->reshape_position = MaxSector;
8000 rdev_for_each(rdev, conf->mddev)
8001 if (rdev->raid_disk >= 0 &&
8002 !test_bit(Journal, &rdev->flags) &&
8003 !test_bit(In_sync, &rdev->flags))
8004 rdev->recovery_offset = MaxSector;
8005 spin_unlock_irq(&conf->device_lock);
8006 wake_up(&conf->wait_for_overlap);
8008 /* read-ahead size must cover two whole stripes, which is
8009 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8011 if (conf->mddev->queue) {
8012 int data_disks = conf->raid_disks - conf->max_degraded;
8013 int stripe = data_disks * ((conf->chunk_sectors << 9)
8014 / PAGE_SIZE);
8015 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8016 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
8021 /* This is called from the raid5d thread with mddev_lock held.
8022 * It makes config changes to the device.
8024 static void raid5_finish_reshape(struct mddev *mddev)
8026 struct r5conf *conf = mddev->private;
8028 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8030 if (mddev->delta_disks <= 0) {
8031 int d;
8032 spin_lock_irq(&conf->device_lock);
8033 mddev->degraded = raid5_calc_degraded(conf);
8034 spin_unlock_irq(&conf->device_lock);
8035 for (d = conf->raid_disks ;
8036 d < conf->raid_disks - mddev->delta_disks;
8037 d++) {
8038 struct md_rdev *rdev = conf->disks[d].rdev;
8039 if (rdev)
8040 clear_bit(In_sync, &rdev->flags);
8041 rdev = conf->disks[d].replacement;
8042 if (rdev)
8043 clear_bit(In_sync, &rdev->flags);
8046 mddev->layout = conf->algorithm;
8047 mddev->chunk_sectors = conf->chunk_sectors;
8048 mddev->reshape_position = MaxSector;
8049 mddev->delta_disks = 0;
8050 mddev->reshape_backwards = 0;
8054 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8056 struct r5conf *conf = mddev->private;
8058 if (quiesce) {
8059 /* stop all writes */
8060 lock_all_device_hash_locks_irq(conf);
8061 /* '2' tells resync/reshape to pause so that all
8062 * active stripes can drain
8064 r5c_flush_cache(conf, INT_MAX);
8065 conf->quiesce = 2;
8066 wait_event_cmd(conf->wait_for_quiescent,
8067 atomic_read(&conf->active_stripes) == 0 &&
8068 atomic_read(&conf->active_aligned_reads) == 0,
8069 unlock_all_device_hash_locks_irq(conf),
8070 lock_all_device_hash_locks_irq(conf));
8071 conf->quiesce = 1;
8072 unlock_all_device_hash_locks_irq(conf);
8073 /* allow reshape to continue */
8074 wake_up(&conf->wait_for_overlap);
8075 } else {
8076 /* re-enable writes */
8077 lock_all_device_hash_locks_irq(conf);
8078 conf->quiesce = 0;
8079 wake_up(&conf->wait_for_quiescent);
8080 wake_up(&conf->wait_for_overlap);
8081 unlock_all_device_hash_locks_irq(conf);
8083 log_quiesce(conf, quiesce);
8086 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8088 struct r0conf *raid0_conf = mddev->private;
8089 sector_t sectors;
8091 /* for raid0 takeover only one zone is supported */
8092 if (raid0_conf->nr_strip_zones > 1) {
8093 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8094 mdname(mddev));
8095 return ERR_PTR(-EINVAL);
8098 sectors = raid0_conf->strip_zone[0].zone_end;
8099 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8100 mddev->dev_sectors = sectors;
8101 mddev->new_level = level;
8102 mddev->new_layout = ALGORITHM_PARITY_N;
8103 mddev->new_chunk_sectors = mddev->chunk_sectors;
8104 mddev->raid_disks += 1;
8105 mddev->delta_disks = 1;
8106 /* make sure it will be not marked as dirty */
8107 mddev->recovery_cp = MaxSector;
8109 return setup_conf(mddev);
8112 static void *raid5_takeover_raid1(struct mddev *mddev)
8114 int chunksect;
8115 void *ret;
8117 if (mddev->raid_disks != 2 ||
8118 mddev->degraded > 1)
8119 return ERR_PTR(-EINVAL);
8121 /* Should check if there are write-behind devices? */
8123 chunksect = 64*2; /* 64K by default */
8125 /* The array must be an exact multiple of chunksize */
8126 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8127 chunksect >>= 1;
8129 if ((chunksect<<9) < STRIPE_SIZE)
8130 /* array size does not allow a suitable chunk size */
8131 return ERR_PTR(-EINVAL);
8133 mddev->new_level = 5;
8134 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8135 mddev->new_chunk_sectors = chunksect;
8137 ret = setup_conf(mddev);
8138 if (!IS_ERR(ret))
8139 mddev_clear_unsupported_flags(mddev,
8140 UNSUPPORTED_MDDEV_FLAGS);
8141 return ret;
8144 static void *raid5_takeover_raid6(struct mddev *mddev)
8146 int new_layout;
8148 switch (mddev->layout) {
8149 case ALGORITHM_LEFT_ASYMMETRIC_6:
8150 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8151 break;
8152 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8153 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8154 break;
8155 case ALGORITHM_LEFT_SYMMETRIC_6:
8156 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8157 break;
8158 case ALGORITHM_RIGHT_SYMMETRIC_6:
8159 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8160 break;
8161 case ALGORITHM_PARITY_0_6:
8162 new_layout = ALGORITHM_PARITY_0;
8163 break;
8164 case ALGORITHM_PARITY_N:
8165 new_layout = ALGORITHM_PARITY_N;
8166 break;
8167 default:
8168 return ERR_PTR(-EINVAL);
8170 mddev->new_level = 5;
8171 mddev->new_layout = new_layout;
8172 mddev->delta_disks = -1;
8173 mddev->raid_disks -= 1;
8174 return setup_conf(mddev);
8177 static int raid5_check_reshape(struct mddev *mddev)
8179 /* For a 2-drive array, the layout and chunk size can be changed
8180 * immediately as not restriping is needed.
8181 * For larger arrays we record the new value - after validation
8182 * to be used by a reshape pass.
8184 struct r5conf *conf = mddev->private;
8185 int new_chunk = mddev->new_chunk_sectors;
8187 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8188 return -EINVAL;
8189 if (new_chunk > 0) {
8190 if (!is_power_of_2(new_chunk))
8191 return -EINVAL;
8192 if (new_chunk < (PAGE_SIZE>>9))
8193 return -EINVAL;
8194 if (mddev->array_sectors & (new_chunk-1))
8195 /* not factor of array size */
8196 return -EINVAL;
8199 /* They look valid */
8201 if (mddev->raid_disks == 2) {
8202 /* can make the change immediately */
8203 if (mddev->new_layout >= 0) {
8204 conf->algorithm = mddev->new_layout;
8205 mddev->layout = mddev->new_layout;
8207 if (new_chunk > 0) {
8208 conf->chunk_sectors = new_chunk ;
8209 mddev->chunk_sectors = new_chunk;
8211 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8212 md_wakeup_thread(mddev->thread);
8214 return check_reshape(mddev);
8217 static int raid6_check_reshape(struct mddev *mddev)
8219 int new_chunk = mddev->new_chunk_sectors;
8221 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8222 return -EINVAL;
8223 if (new_chunk > 0) {
8224 if (!is_power_of_2(new_chunk))
8225 return -EINVAL;
8226 if (new_chunk < (PAGE_SIZE >> 9))
8227 return -EINVAL;
8228 if (mddev->array_sectors & (new_chunk-1))
8229 /* not factor of array size */
8230 return -EINVAL;
8233 /* They look valid */
8234 return check_reshape(mddev);
8237 static void *raid5_takeover(struct mddev *mddev)
8239 /* raid5 can take over:
8240 * raid0 - if there is only one strip zone - make it a raid4 layout
8241 * raid1 - if there are two drives. We need to know the chunk size
8242 * raid4 - trivial - just use a raid4 layout.
8243 * raid6 - Providing it is a *_6 layout
8245 if (mddev->level == 0)
8246 return raid45_takeover_raid0(mddev, 5);
8247 if (mddev->level == 1)
8248 return raid5_takeover_raid1(mddev);
8249 if (mddev->level == 4) {
8250 mddev->new_layout = ALGORITHM_PARITY_N;
8251 mddev->new_level = 5;
8252 return setup_conf(mddev);
8254 if (mddev->level == 6)
8255 return raid5_takeover_raid6(mddev);
8257 return ERR_PTR(-EINVAL);
8260 static void *raid4_takeover(struct mddev *mddev)
8262 /* raid4 can take over:
8263 * raid0 - if there is only one strip zone
8264 * raid5 - if layout is right
8266 if (mddev->level == 0)
8267 return raid45_takeover_raid0(mddev, 4);
8268 if (mddev->level == 5 &&
8269 mddev->layout == ALGORITHM_PARITY_N) {
8270 mddev->new_layout = 0;
8271 mddev->new_level = 4;
8272 return setup_conf(mddev);
8274 return ERR_PTR(-EINVAL);
8277 static struct md_personality raid5_personality;
8279 static void *raid6_takeover(struct mddev *mddev)
8281 /* Currently can only take over a raid5. We map the
8282 * personality to an equivalent raid6 personality
8283 * with the Q block at the end.
8285 int new_layout;
8287 if (mddev->pers != &raid5_personality)
8288 return ERR_PTR(-EINVAL);
8289 if (mddev->degraded > 1)
8290 return ERR_PTR(-EINVAL);
8291 if (mddev->raid_disks > 253)
8292 return ERR_PTR(-EINVAL);
8293 if (mddev->raid_disks < 3)
8294 return ERR_PTR(-EINVAL);
8296 switch (mddev->layout) {
8297 case ALGORITHM_LEFT_ASYMMETRIC:
8298 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8299 break;
8300 case ALGORITHM_RIGHT_ASYMMETRIC:
8301 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8302 break;
8303 case ALGORITHM_LEFT_SYMMETRIC:
8304 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8305 break;
8306 case ALGORITHM_RIGHT_SYMMETRIC:
8307 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8308 break;
8309 case ALGORITHM_PARITY_0:
8310 new_layout = ALGORITHM_PARITY_0_6;
8311 break;
8312 case ALGORITHM_PARITY_N:
8313 new_layout = ALGORITHM_PARITY_N;
8314 break;
8315 default:
8316 return ERR_PTR(-EINVAL);
8318 mddev->new_level = 6;
8319 mddev->new_layout = new_layout;
8320 mddev->delta_disks = 1;
8321 mddev->raid_disks += 1;
8322 return setup_conf(mddev);
8325 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8327 struct r5conf *conf;
8328 int err;
8330 err = mddev_lock(mddev);
8331 if (err)
8332 return err;
8333 conf = mddev->private;
8334 if (!conf) {
8335 mddev_unlock(mddev);
8336 return -ENODEV;
8339 if (strncmp(buf, "ppl", 3) == 0) {
8340 /* ppl only works with RAID 5 */
8341 if (!raid5_has_ppl(conf) && conf->level == 5) {
8342 err = log_init(conf, NULL, true);
8343 if (!err) {
8344 err = resize_stripes(conf, conf->pool_size);
8345 if (err)
8346 log_exit(conf);
8348 } else
8349 err = -EINVAL;
8350 } else if (strncmp(buf, "resync", 6) == 0) {
8351 if (raid5_has_ppl(conf)) {
8352 mddev_suspend(mddev);
8353 log_exit(conf);
8354 mddev_resume(mddev);
8355 err = resize_stripes(conf, conf->pool_size);
8356 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8357 r5l_log_disk_error(conf)) {
8358 bool journal_dev_exists = false;
8359 struct md_rdev *rdev;
8361 rdev_for_each(rdev, mddev)
8362 if (test_bit(Journal, &rdev->flags)) {
8363 journal_dev_exists = true;
8364 break;
8367 if (!journal_dev_exists) {
8368 mddev_suspend(mddev);
8369 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8370 mddev_resume(mddev);
8371 } else /* need remove journal device first */
8372 err = -EBUSY;
8373 } else
8374 err = -EINVAL;
8375 } else {
8376 err = -EINVAL;
8379 if (!err)
8380 md_update_sb(mddev, 1);
8382 mddev_unlock(mddev);
8384 return err;
8387 static int raid5_start(struct mddev *mddev)
8389 struct r5conf *conf = mddev->private;
8391 return r5l_start(conf->log);
8394 static struct md_personality raid6_personality =
8396 .name = "raid6",
8397 .level = 6,
8398 .owner = THIS_MODULE,
8399 .make_request = raid5_make_request,
8400 .run = raid5_run,
8401 .start = raid5_start,
8402 .free = raid5_free,
8403 .status = raid5_status,
8404 .error_handler = raid5_error,
8405 .hot_add_disk = raid5_add_disk,
8406 .hot_remove_disk= raid5_remove_disk,
8407 .spare_active = raid5_spare_active,
8408 .sync_request = raid5_sync_request,
8409 .resize = raid5_resize,
8410 .size = raid5_size,
8411 .check_reshape = raid6_check_reshape,
8412 .start_reshape = raid5_start_reshape,
8413 .finish_reshape = raid5_finish_reshape,
8414 .quiesce = raid5_quiesce,
8415 .takeover = raid6_takeover,
8416 .congested = raid5_congested,
8417 .change_consistency_policy = raid5_change_consistency_policy,
8419 static struct md_personality raid5_personality =
8421 .name = "raid5",
8422 .level = 5,
8423 .owner = THIS_MODULE,
8424 .make_request = raid5_make_request,
8425 .run = raid5_run,
8426 .start = raid5_start,
8427 .free = raid5_free,
8428 .status = raid5_status,
8429 .error_handler = raid5_error,
8430 .hot_add_disk = raid5_add_disk,
8431 .hot_remove_disk= raid5_remove_disk,
8432 .spare_active = raid5_spare_active,
8433 .sync_request = raid5_sync_request,
8434 .resize = raid5_resize,
8435 .size = raid5_size,
8436 .check_reshape = raid5_check_reshape,
8437 .start_reshape = raid5_start_reshape,
8438 .finish_reshape = raid5_finish_reshape,
8439 .quiesce = raid5_quiesce,
8440 .takeover = raid5_takeover,
8441 .congested = raid5_congested,
8442 .change_consistency_policy = raid5_change_consistency_policy,
8445 static struct md_personality raid4_personality =
8447 .name = "raid4",
8448 .level = 4,
8449 .owner = THIS_MODULE,
8450 .make_request = raid5_make_request,
8451 .run = raid5_run,
8452 .start = raid5_start,
8453 .free = raid5_free,
8454 .status = raid5_status,
8455 .error_handler = raid5_error,
8456 .hot_add_disk = raid5_add_disk,
8457 .hot_remove_disk= raid5_remove_disk,
8458 .spare_active = raid5_spare_active,
8459 .sync_request = raid5_sync_request,
8460 .resize = raid5_resize,
8461 .size = raid5_size,
8462 .check_reshape = raid5_check_reshape,
8463 .start_reshape = raid5_start_reshape,
8464 .finish_reshape = raid5_finish_reshape,
8465 .quiesce = raid5_quiesce,
8466 .takeover = raid4_takeover,
8467 .congested = raid5_congested,
8468 .change_consistency_policy = raid5_change_consistency_policy,
8471 static int __init raid5_init(void)
8473 int ret;
8475 raid5_wq = alloc_workqueue("raid5wq",
8476 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8477 if (!raid5_wq)
8478 return -ENOMEM;
8480 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8481 "md/raid5:prepare",
8482 raid456_cpu_up_prepare,
8483 raid456_cpu_dead);
8484 if (ret) {
8485 destroy_workqueue(raid5_wq);
8486 return ret;
8488 register_md_personality(&raid6_personality);
8489 register_md_personality(&raid5_personality);
8490 register_md_personality(&raid4_personality);
8491 return 0;
8494 static void raid5_exit(void)
8496 unregister_md_personality(&raid6_personality);
8497 unregister_md_personality(&raid5_personality);
8498 unregister_md_personality(&raid4_personality);
8499 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8500 destroy_workqueue(raid5_wq);
8503 module_init(raid5_init);
8504 module_exit(raid5_exit);
8505 MODULE_LICENSE("GPL");
8506 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8507 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8508 MODULE_ALIAS("md-raid5");
8509 MODULE_ALIAS("md-raid4");
8510 MODULE_ALIAS("md-level-5");
8511 MODULE_ALIAS("md-level-4");
8512 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8513 MODULE_ALIAS("md-raid6");
8514 MODULE_ALIAS("md-level-6");
8516 /* This used to be two separate modules, they were: */
8517 MODULE_ALIAS("raid5");
8518 MODULE_ALIAS("raid6");