powerpc/perf: Fix book3s kernel to userspace backtraces
[linux/fpc-iii.git] / fs / namespace.c
blob13b0f7bfc0961f2e293713478bb586c076d69bda
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
35 static __initdata unsigned long mhash_entries;
36 static int __init set_mhash_entries(char *str)
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
43 __setup("mhash_entries=", set_mhash_entries);
45 static __initdata unsigned long mphash_entries;
46 static int __init set_mphash_entries(char *str)
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
53 __setup("mphash_entries=", set_mphash_entries);
55 static u64 event;
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
67 /* /sys/fs */
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
100 static int mnt_alloc_id(struct mount *mnt)
102 int res;
104 retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 spin_lock(&mnt_id_lock);
107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 if (!res)
109 mnt_id_start = mnt->mnt_id + 1;
110 spin_unlock(&mnt_id_lock);
111 if (res == -EAGAIN)
112 goto retry;
114 return res;
117 static void mnt_free_id(struct mount *mnt)
119 int id = mnt->mnt_id;
120 spin_lock(&mnt_id_lock);
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
124 spin_unlock(&mnt_id_lock);
128 * Allocate a new peer group ID
130 * mnt_group_ida is protected by namespace_sem
132 static int mnt_alloc_group_id(struct mount *mnt)
134 int res;
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
141 &mnt->mnt_group_id);
142 if (!res)
143 mnt_group_start = mnt->mnt_group_id + 1;
145 return res;
149 * Release a peer group ID
151 void mnt_release_group_id(struct mount *mnt)
153 int id = mnt->mnt_group_id;
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
157 mnt->mnt_group_id = 0;
161 * vfsmount lock must be held for read
163 static inline void mnt_add_count(struct mount *mnt, int n)
165 #ifdef CONFIG_SMP
166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 preempt_disable();
169 mnt->mnt_count += n;
170 preempt_enable();
171 #endif
175 * vfsmount lock must be held for write
177 unsigned int mnt_get_count(struct mount *mnt)
179 #ifdef CONFIG_SMP
180 unsigned int count = 0;
181 int cpu;
183 for_each_possible_cpu(cpu) {
184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 return count;
188 #else
189 return mnt->mnt_count;
190 #endif
193 static void drop_mountpoint(struct fs_pin *p)
195 struct mount *m = container_of(p, struct mount, mnt_umount);
196 dput(m->mnt_ex_mountpoint);
197 pin_remove(p);
198 mntput(&m->mnt);
201 static struct mount *alloc_vfsmnt(const char *name)
203 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
204 if (mnt) {
205 int err;
207 err = mnt_alloc_id(mnt);
208 if (err)
209 goto out_free_cache;
211 if (name) {
212 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
213 if (!mnt->mnt_devname)
214 goto out_free_id;
217 #ifdef CONFIG_SMP
218 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
219 if (!mnt->mnt_pcp)
220 goto out_free_devname;
222 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
223 #else
224 mnt->mnt_count = 1;
225 mnt->mnt_writers = 0;
226 #endif
228 INIT_HLIST_NODE(&mnt->mnt_hash);
229 INIT_LIST_HEAD(&mnt->mnt_child);
230 INIT_LIST_HEAD(&mnt->mnt_mounts);
231 INIT_LIST_HEAD(&mnt->mnt_list);
232 INIT_LIST_HEAD(&mnt->mnt_expire);
233 INIT_LIST_HEAD(&mnt->mnt_share);
234 INIT_LIST_HEAD(&mnt->mnt_slave_list);
235 INIT_LIST_HEAD(&mnt->mnt_slave);
236 INIT_HLIST_NODE(&mnt->mnt_mp_list);
237 #ifdef CONFIG_FSNOTIFY
238 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
239 #endif
240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
242 return mnt;
244 #ifdef CONFIG_SMP
245 out_free_devname:
246 kfree_const(mnt->mnt_devname);
247 #endif
248 out_free_id:
249 mnt_free_id(mnt);
250 out_free_cache:
251 kmem_cache_free(mnt_cache, mnt);
252 return NULL;
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
274 int __mnt_is_readonly(struct vfsmount *mnt)
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 return 1;
280 return 0;
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
284 static inline void mnt_inc_writers(struct mount *mnt)
286 #ifdef CONFIG_SMP
287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288 #else
289 mnt->mnt_writers++;
290 #endif
293 static inline void mnt_dec_writers(struct mount *mnt)
295 #ifdef CONFIG_SMP
296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297 #else
298 mnt->mnt_writers--;
299 #endif
302 static unsigned int mnt_get_writers(struct mount *mnt)
304 #ifdef CONFIG_SMP
305 unsigned int count = 0;
306 int cpu;
308 for_each_possible_cpu(cpu) {
309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
312 return count;
313 #else
314 return mnt->mnt_writers;
315 #endif
318 static int mnt_is_readonly(struct vfsmount *mnt)
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
343 int __mnt_want_write(struct vfsmount *m)
345 struct mount *mnt = real_mount(m);
346 int ret = 0;
348 preempt_disable();
349 mnt_inc_writers(mnt);
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
355 smp_mb();
356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 cpu_relax();
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
363 smp_rmb();
364 if (mnt_is_readonly(m)) {
365 mnt_dec_writers(mnt);
366 ret = -EROFS;
368 preempt_enable();
370 return ret;
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
382 int mnt_want_write(struct vfsmount *m)
384 int ret;
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
390 return ret;
392 EXPORT_SYMBOL_GPL(mnt_want_write);
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
406 int mnt_clone_write(struct vfsmount *mnt)
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
412 mnt_inc_writers(real_mount(mnt));
413 preempt_enable();
414 return 0;
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
425 int __mnt_want_write_file(struct file *file)
427 if (!(file->f_mode & FMODE_WRITER))
428 return __mnt_want_write(file->f_path.mnt);
429 else
430 return mnt_clone_write(file->f_path.mnt);
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
440 int mnt_want_write_file(struct file *file)
442 int ret;
444 sb_start_write(file->f_path.mnt->mnt_sb);
445 ret = __mnt_want_write_file(file);
446 if (ret)
447 sb_end_write(file->f_path.mnt->mnt_sb);
448 return ret;
450 EXPORT_SYMBOL_GPL(mnt_want_write_file);
453 * __mnt_drop_write - give up write access to a mount
454 * @mnt: the mount on which to give up write access
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
458 * __mnt_want_write() call above.
460 void __mnt_drop_write(struct vfsmount *mnt)
462 preempt_disable();
463 mnt_dec_writers(real_mount(mnt));
464 preempt_enable();
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
475 void mnt_drop_write(struct vfsmount *mnt)
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
480 EXPORT_SYMBOL_GPL(mnt_drop_write);
482 void __mnt_drop_write_file(struct file *file)
484 __mnt_drop_write(file->f_path.mnt);
487 void mnt_drop_write_file(struct file *file)
489 mnt_drop_write(file->f_path.mnt);
491 EXPORT_SYMBOL(mnt_drop_write_file);
493 static int mnt_make_readonly(struct mount *mnt)
495 int ret = 0;
497 lock_mount_hash();
498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
503 smp_mb();
506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
521 if (mnt_get_writers(mnt) > 0)
522 ret = -EBUSY;
523 else
524 mnt->mnt.mnt_flags |= MNT_READONLY;
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
529 smp_wmb();
530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
531 unlock_mount_hash();
532 return ret;
535 static void __mnt_unmake_readonly(struct mount *mnt)
537 lock_mount_hash();
538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
539 unlock_mount_hash();
542 int sb_prepare_remount_readonly(struct super_block *sb)
544 struct mount *mnt;
545 int err = 0;
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
549 return -EBUSY;
551 lock_mount_hash();
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 smp_mb();
556 if (mnt_get_writers(mnt) > 0) {
557 err = -EBUSY;
558 break;
562 if (!err && atomic_long_read(&sb->s_remove_count))
563 err = -EBUSY;
565 if (!err) {
566 sb->s_readonly_remount = 1;
567 smp_wmb();
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
573 unlock_mount_hash();
575 return err;
578 static void free_vfsmnt(struct mount *mnt)
580 kfree_const(mnt->mnt_devname);
581 #ifdef CONFIG_SMP
582 free_percpu(mnt->mnt_pcp);
583 #endif
584 kmem_cache_free(mnt_cache, mnt);
587 static void delayed_free_vfsmnt(struct rcu_head *head)
589 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
592 /* call under rcu_read_lock */
593 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
595 struct mount *mnt;
596 if (read_seqretry(&mount_lock, seq))
597 return false;
598 if (bastard == NULL)
599 return true;
600 mnt = real_mount(bastard);
601 mnt_add_count(mnt, 1);
602 if (likely(!read_seqretry(&mount_lock, seq)))
603 return true;
604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 mnt_add_count(mnt, -1);
606 return false;
608 rcu_read_unlock();
609 mntput(bastard);
610 rcu_read_lock();
611 return false;
615 * find the first mount at @dentry on vfsmount @mnt.
616 * call under rcu_read_lock()
618 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
620 struct hlist_head *head = m_hash(mnt, dentry);
621 struct mount *p;
623 hlist_for_each_entry_rcu(p, head, mnt_hash)
624 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
625 return p;
626 return NULL;
630 * find the last mount at @dentry on vfsmount @mnt.
631 * mount_lock must be held.
633 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
635 struct mount *p, *res = NULL;
636 p = __lookup_mnt(mnt, dentry);
637 if (!p)
638 goto out;
639 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
640 res = p;
641 hlist_for_each_entry_continue(p, mnt_hash) {
642 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
643 break;
644 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
645 res = p;
647 out:
648 return res;
652 * lookup_mnt - Return the first child mount mounted at path
654 * "First" means first mounted chronologically. If you create the
655 * following mounts:
657 * mount /dev/sda1 /mnt
658 * mount /dev/sda2 /mnt
659 * mount /dev/sda3 /mnt
661 * Then lookup_mnt() on the base /mnt dentry in the root mount will
662 * return successively the root dentry and vfsmount of /dev/sda1, then
663 * /dev/sda2, then /dev/sda3, then NULL.
665 * lookup_mnt takes a reference to the found vfsmount.
667 struct vfsmount *lookup_mnt(struct path *path)
669 struct mount *child_mnt;
670 struct vfsmount *m;
671 unsigned seq;
673 rcu_read_lock();
674 do {
675 seq = read_seqbegin(&mount_lock);
676 child_mnt = __lookup_mnt(path->mnt, path->dentry);
677 m = child_mnt ? &child_mnt->mnt : NULL;
678 } while (!legitimize_mnt(m, seq));
679 rcu_read_unlock();
680 return m;
684 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
685 * current mount namespace.
687 * The common case is dentries are not mountpoints at all and that
688 * test is handled inline. For the slow case when we are actually
689 * dealing with a mountpoint of some kind, walk through all of the
690 * mounts in the current mount namespace and test to see if the dentry
691 * is a mountpoint.
693 * The mount_hashtable is not usable in the context because we
694 * need to identify all mounts that may be in the current mount
695 * namespace not just a mount that happens to have some specified
696 * parent mount.
698 bool __is_local_mountpoint(struct dentry *dentry)
700 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
701 struct mount *mnt;
702 bool is_covered = false;
704 if (!d_mountpoint(dentry))
705 goto out;
707 down_read(&namespace_sem);
708 list_for_each_entry(mnt, &ns->list, mnt_list) {
709 is_covered = (mnt->mnt_mountpoint == dentry);
710 if (is_covered)
711 break;
713 up_read(&namespace_sem);
714 out:
715 return is_covered;
718 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
720 struct hlist_head *chain = mp_hash(dentry);
721 struct mountpoint *mp;
723 hlist_for_each_entry(mp, chain, m_hash) {
724 if (mp->m_dentry == dentry) {
725 /* might be worth a WARN_ON() */
726 if (d_unlinked(dentry))
727 return ERR_PTR(-ENOENT);
728 mp->m_count++;
729 return mp;
732 return NULL;
735 static struct mountpoint *new_mountpoint(struct dentry *dentry)
737 struct hlist_head *chain = mp_hash(dentry);
738 struct mountpoint *mp;
739 int ret;
741 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
742 if (!mp)
743 return ERR_PTR(-ENOMEM);
745 ret = d_set_mounted(dentry);
746 if (ret) {
747 kfree(mp);
748 return ERR_PTR(ret);
751 mp->m_dentry = dentry;
752 mp->m_count = 1;
753 hlist_add_head(&mp->m_hash, chain);
754 INIT_HLIST_HEAD(&mp->m_list);
755 return mp;
758 static void put_mountpoint(struct mountpoint *mp)
760 if (!--mp->m_count) {
761 struct dentry *dentry = mp->m_dentry;
762 BUG_ON(!hlist_empty(&mp->m_list));
763 spin_lock(&dentry->d_lock);
764 dentry->d_flags &= ~DCACHE_MOUNTED;
765 spin_unlock(&dentry->d_lock);
766 hlist_del(&mp->m_hash);
767 kfree(mp);
771 static inline int check_mnt(struct mount *mnt)
773 return mnt->mnt_ns == current->nsproxy->mnt_ns;
777 * vfsmount lock must be held for write
779 static void touch_mnt_namespace(struct mnt_namespace *ns)
781 if (ns) {
782 ns->event = ++event;
783 wake_up_interruptible(&ns->poll);
788 * vfsmount lock must be held for write
790 static void __touch_mnt_namespace(struct mnt_namespace *ns)
792 if (ns && ns->event != event) {
793 ns->event = event;
794 wake_up_interruptible(&ns->poll);
799 * vfsmount lock must be held for write
801 static void unhash_mnt(struct mount *mnt)
803 mnt->mnt_parent = mnt;
804 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
805 list_del_init(&mnt->mnt_child);
806 hlist_del_init_rcu(&mnt->mnt_hash);
807 hlist_del_init(&mnt->mnt_mp_list);
808 put_mountpoint(mnt->mnt_mp);
809 mnt->mnt_mp = NULL;
813 * vfsmount lock must be held for write
815 static void detach_mnt(struct mount *mnt, struct path *old_path)
817 old_path->dentry = mnt->mnt_mountpoint;
818 old_path->mnt = &mnt->mnt_parent->mnt;
819 unhash_mnt(mnt);
823 * vfsmount lock must be held for write
825 static void umount_mnt(struct mount *mnt)
827 /* old mountpoint will be dropped when we can do that */
828 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
829 unhash_mnt(mnt);
833 * vfsmount lock must be held for write
835 void mnt_set_mountpoint(struct mount *mnt,
836 struct mountpoint *mp,
837 struct mount *child_mnt)
839 mp->m_count++;
840 mnt_add_count(mnt, 1); /* essentially, that's mntget */
841 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
842 child_mnt->mnt_parent = mnt;
843 child_mnt->mnt_mp = mp;
844 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
848 * vfsmount lock must be held for write
850 static void attach_mnt(struct mount *mnt,
851 struct mount *parent,
852 struct mountpoint *mp)
854 mnt_set_mountpoint(parent, mp, mnt);
855 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
856 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
859 static void attach_shadowed(struct mount *mnt,
860 struct mount *parent,
861 struct mount *shadows)
863 if (shadows) {
864 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
865 list_add(&mnt->mnt_child, &shadows->mnt_child);
866 } else {
867 hlist_add_head_rcu(&mnt->mnt_hash,
868 m_hash(&parent->mnt, mnt->mnt_mountpoint));
869 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
874 * vfsmount lock must be held for write
876 static void commit_tree(struct mount *mnt, struct mount *shadows)
878 struct mount *parent = mnt->mnt_parent;
879 struct mount *m;
880 LIST_HEAD(head);
881 struct mnt_namespace *n = parent->mnt_ns;
883 BUG_ON(parent == mnt);
885 list_add_tail(&head, &mnt->mnt_list);
886 list_for_each_entry(m, &head, mnt_list)
887 m->mnt_ns = n;
889 list_splice(&head, n->list.prev);
891 attach_shadowed(mnt, parent, shadows);
892 touch_mnt_namespace(n);
895 static struct mount *next_mnt(struct mount *p, struct mount *root)
897 struct list_head *next = p->mnt_mounts.next;
898 if (next == &p->mnt_mounts) {
899 while (1) {
900 if (p == root)
901 return NULL;
902 next = p->mnt_child.next;
903 if (next != &p->mnt_parent->mnt_mounts)
904 break;
905 p = p->mnt_parent;
908 return list_entry(next, struct mount, mnt_child);
911 static struct mount *skip_mnt_tree(struct mount *p)
913 struct list_head *prev = p->mnt_mounts.prev;
914 while (prev != &p->mnt_mounts) {
915 p = list_entry(prev, struct mount, mnt_child);
916 prev = p->mnt_mounts.prev;
918 return p;
921 struct vfsmount *
922 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
924 struct mount *mnt;
925 struct dentry *root;
927 if (!type)
928 return ERR_PTR(-ENODEV);
930 mnt = alloc_vfsmnt(name);
931 if (!mnt)
932 return ERR_PTR(-ENOMEM);
934 if (flags & MS_KERNMOUNT)
935 mnt->mnt.mnt_flags = MNT_INTERNAL;
937 root = mount_fs(type, flags, name, data);
938 if (IS_ERR(root)) {
939 mnt_free_id(mnt);
940 free_vfsmnt(mnt);
941 return ERR_CAST(root);
944 mnt->mnt.mnt_root = root;
945 mnt->mnt.mnt_sb = root->d_sb;
946 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
947 mnt->mnt_parent = mnt;
948 lock_mount_hash();
949 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
950 unlock_mount_hash();
951 return &mnt->mnt;
953 EXPORT_SYMBOL_GPL(vfs_kern_mount);
955 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
956 int flag)
958 struct super_block *sb = old->mnt.mnt_sb;
959 struct mount *mnt;
960 int err;
962 mnt = alloc_vfsmnt(old->mnt_devname);
963 if (!mnt)
964 return ERR_PTR(-ENOMEM);
966 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
967 mnt->mnt_group_id = 0; /* not a peer of original */
968 else
969 mnt->mnt_group_id = old->mnt_group_id;
971 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
972 err = mnt_alloc_group_id(mnt);
973 if (err)
974 goto out_free;
977 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
978 /* Don't allow unprivileged users to change mount flags */
979 if (flag & CL_UNPRIVILEGED) {
980 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
982 if (mnt->mnt.mnt_flags & MNT_READONLY)
983 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
985 if (mnt->mnt.mnt_flags & MNT_NODEV)
986 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
988 if (mnt->mnt.mnt_flags & MNT_NOSUID)
989 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
991 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
992 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
995 /* Don't allow unprivileged users to reveal what is under a mount */
996 if ((flag & CL_UNPRIVILEGED) &&
997 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
998 mnt->mnt.mnt_flags |= MNT_LOCKED;
1000 atomic_inc(&sb->s_active);
1001 mnt->mnt.mnt_sb = sb;
1002 mnt->mnt.mnt_root = dget(root);
1003 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1004 mnt->mnt_parent = mnt;
1005 lock_mount_hash();
1006 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1007 unlock_mount_hash();
1009 if ((flag & CL_SLAVE) ||
1010 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1011 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1012 mnt->mnt_master = old;
1013 CLEAR_MNT_SHARED(mnt);
1014 } else if (!(flag & CL_PRIVATE)) {
1015 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1016 list_add(&mnt->mnt_share, &old->mnt_share);
1017 if (IS_MNT_SLAVE(old))
1018 list_add(&mnt->mnt_slave, &old->mnt_slave);
1019 mnt->mnt_master = old->mnt_master;
1021 if (flag & CL_MAKE_SHARED)
1022 set_mnt_shared(mnt);
1024 /* stick the duplicate mount on the same expiry list
1025 * as the original if that was on one */
1026 if (flag & CL_EXPIRE) {
1027 if (!list_empty(&old->mnt_expire))
1028 list_add(&mnt->mnt_expire, &old->mnt_expire);
1031 return mnt;
1033 out_free:
1034 mnt_free_id(mnt);
1035 free_vfsmnt(mnt);
1036 return ERR_PTR(err);
1039 static void cleanup_mnt(struct mount *mnt)
1042 * This probably indicates that somebody messed
1043 * up a mnt_want/drop_write() pair. If this
1044 * happens, the filesystem was probably unable
1045 * to make r/w->r/o transitions.
1048 * The locking used to deal with mnt_count decrement provides barriers,
1049 * so mnt_get_writers() below is safe.
1051 WARN_ON(mnt_get_writers(mnt));
1052 if (unlikely(mnt->mnt_pins.first))
1053 mnt_pin_kill(mnt);
1054 fsnotify_vfsmount_delete(&mnt->mnt);
1055 dput(mnt->mnt.mnt_root);
1056 deactivate_super(mnt->mnt.mnt_sb);
1057 mnt_free_id(mnt);
1058 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1061 static void __cleanup_mnt(struct rcu_head *head)
1063 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1066 static LLIST_HEAD(delayed_mntput_list);
1067 static void delayed_mntput(struct work_struct *unused)
1069 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1070 struct llist_node *next;
1072 for (; node; node = next) {
1073 next = llist_next(node);
1074 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1077 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1079 static void mntput_no_expire(struct mount *mnt)
1081 rcu_read_lock();
1082 mnt_add_count(mnt, -1);
1083 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1084 rcu_read_unlock();
1085 return;
1087 lock_mount_hash();
1088 if (mnt_get_count(mnt)) {
1089 rcu_read_unlock();
1090 unlock_mount_hash();
1091 return;
1093 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1094 rcu_read_unlock();
1095 unlock_mount_hash();
1096 return;
1098 mnt->mnt.mnt_flags |= MNT_DOOMED;
1099 rcu_read_unlock();
1101 list_del(&mnt->mnt_instance);
1103 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1104 struct mount *p, *tmp;
1105 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1106 umount_mnt(p);
1109 unlock_mount_hash();
1111 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1112 struct task_struct *task = current;
1113 if (likely(!(task->flags & PF_KTHREAD))) {
1114 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1115 if (!task_work_add(task, &mnt->mnt_rcu, true))
1116 return;
1118 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1119 schedule_delayed_work(&delayed_mntput_work, 1);
1120 return;
1122 cleanup_mnt(mnt);
1125 void mntput(struct vfsmount *mnt)
1127 if (mnt) {
1128 struct mount *m = real_mount(mnt);
1129 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1130 if (unlikely(m->mnt_expiry_mark))
1131 m->mnt_expiry_mark = 0;
1132 mntput_no_expire(m);
1135 EXPORT_SYMBOL(mntput);
1137 struct vfsmount *mntget(struct vfsmount *mnt)
1139 if (mnt)
1140 mnt_add_count(real_mount(mnt), 1);
1141 return mnt;
1143 EXPORT_SYMBOL(mntget);
1145 struct vfsmount *mnt_clone_internal(struct path *path)
1147 struct mount *p;
1148 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1149 if (IS_ERR(p))
1150 return ERR_CAST(p);
1151 p->mnt.mnt_flags |= MNT_INTERNAL;
1152 return &p->mnt;
1155 static inline void mangle(struct seq_file *m, const char *s)
1157 seq_escape(m, s, " \t\n\\");
1161 * Simple .show_options callback for filesystems which don't want to
1162 * implement more complex mount option showing.
1164 * See also save_mount_options().
1166 int generic_show_options(struct seq_file *m, struct dentry *root)
1168 const char *options;
1170 rcu_read_lock();
1171 options = rcu_dereference(root->d_sb->s_options);
1173 if (options != NULL && options[0]) {
1174 seq_putc(m, ',');
1175 mangle(m, options);
1177 rcu_read_unlock();
1179 return 0;
1181 EXPORT_SYMBOL(generic_show_options);
1184 * If filesystem uses generic_show_options(), this function should be
1185 * called from the fill_super() callback.
1187 * The .remount_fs callback usually needs to be handled in a special
1188 * way, to make sure, that previous options are not overwritten if the
1189 * remount fails.
1191 * Also note, that if the filesystem's .remount_fs function doesn't
1192 * reset all options to their default value, but changes only newly
1193 * given options, then the displayed options will not reflect reality
1194 * any more.
1196 void save_mount_options(struct super_block *sb, char *options)
1198 BUG_ON(sb->s_options);
1199 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1201 EXPORT_SYMBOL(save_mount_options);
1203 void replace_mount_options(struct super_block *sb, char *options)
1205 char *old = sb->s_options;
1206 rcu_assign_pointer(sb->s_options, options);
1207 if (old) {
1208 synchronize_rcu();
1209 kfree(old);
1212 EXPORT_SYMBOL(replace_mount_options);
1214 #ifdef CONFIG_PROC_FS
1215 /* iterator; we want it to have access to namespace_sem, thus here... */
1216 static void *m_start(struct seq_file *m, loff_t *pos)
1218 struct proc_mounts *p = proc_mounts(m);
1220 down_read(&namespace_sem);
1221 if (p->cached_event == p->ns->event) {
1222 void *v = p->cached_mount;
1223 if (*pos == p->cached_index)
1224 return v;
1225 if (*pos == p->cached_index + 1) {
1226 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1227 return p->cached_mount = v;
1231 p->cached_event = p->ns->event;
1232 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1233 p->cached_index = *pos;
1234 return p->cached_mount;
1237 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1239 struct proc_mounts *p = proc_mounts(m);
1241 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1242 p->cached_index = *pos;
1243 return p->cached_mount;
1246 static void m_stop(struct seq_file *m, void *v)
1248 up_read(&namespace_sem);
1251 static int m_show(struct seq_file *m, void *v)
1253 struct proc_mounts *p = proc_mounts(m);
1254 struct mount *r = list_entry(v, struct mount, mnt_list);
1255 return p->show(m, &r->mnt);
1258 const struct seq_operations mounts_op = {
1259 .start = m_start,
1260 .next = m_next,
1261 .stop = m_stop,
1262 .show = m_show,
1264 #endif /* CONFIG_PROC_FS */
1267 * may_umount_tree - check if a mount tree is busy
1268 * @mnt: root of mount tree
1270 * This is called to check if a tree of mounts has any
1271 * open files, pwds, chroots or sub mounts that are
1272 * busy.
1274 int may_umount_tree(struct vfsmount *m)
1276 struct mount *mnt = real_mount(m);
1277 int actual_refs = 0;
1278 int minimum_refs = 0;
1279 struct mount *p;
1280 BUG_ON(!m);
1282 /* write lock needed for mnt_get_count */
1283 lock_mount_hash();
1284 for (p = mnt; p; p = next_mnt(p, mnt)) {
1285 actual_refs += mnt_get_count(p);
1286 minimum_refs += 2;
1288 unlock_mount_hash();
1290 if (actual_refs > minimum_refs)
1291 return 0;
1293 return 1;
1296 EXPORT_SYMBOL(may_umount_tree);
1299 * may_umount - check if a mount point is busy
1300 * @mnt: root of mount
1302 * This is called to check if a mount point has any
1303 * open files, pwds, chroots or sub mounts. If the
1304 * mount has sub mounts this will return busy
1305 * regardless of whether the sub mounts are busy.
1307 * Doesn't take quota and stuff into account. IOW, in some cases it will
1308 * give false negatives. The main reason why it's here is that we need
1309 * a non-destructive way to look for easily umountable filesystems.
1311 int may_umount(struct vfsmount *mnt)
1313 int ret = 1;
1314 down_read(&namespace_sem);
1315 lock_mount_hash();
1316 if (propagate_mount_busy(real_mount(mnt), 2))
1317 ret = 0;
1318 unlock_mount_hash();
1319 up_read(&namespace_sem);
1320 return ret;
1323 EXPORT_SYMBOL(may_umount);
1325 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1327 static void namespace_unlock(void)
1329 struct hlist_head head = unmounted;
1331 if (likely(hlist_empty(&head))) {
1332 up_write(&namespace_sem);
1333 return;
1336 head.first->pprev = &head.first;
1337 INIT_HLIST_HEAD(&unmounted);
1338 up_write(&namespace_sem);
1340 synchronize_rcu();
1342 group_pin_kill(&head);
1345 static inline void namespace_lock(void)
1347 down_write(&namespace_sem);
1350 enum umount_tree_flags {
1351 UMOUNT_SYNC = 1,
1352 UMOUNT_PROPAGATE = 2,
1353 UMOUNT_CONNECTED = 4,
1356 * mount_lock must be held
1357 * namespace_sem must be held for write
1359 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1361 LIST_HEAD(tmp_list);
1362 struct mount *p;
1364 if (how & UMOUNT_PROPAGATE)
1365 propagate_mount_unlock(mnt);
1367 /* Gather the mounts to umount */
1368 for (p = mnt; p; p = next_mnt(p, mnt)) {
1369 p->mnt.mnt_flags |= MNT_UMOUNT;
1370 list_move(&p->mnt_list, &tmp_list);
1373 /* Hide the mounts from mnt_mounts */
1374 list_for_each_entry(p, &tmp_list, mnt_list) {
1375 list_del_init(&p->mnt_child);
1378 /* Add propogated mounts to the tmp_list */
1379 if (how & UMOUNT_PROPAGATE)
1380 propagate_umount(&tmp_list);
1382 while (!list_empty(&tmp_list)) {
1383 bool disconnect;
1384 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1385 list_del_init(&p->mnt_expire);
1386 list_del_init(&p->mnt_list);
1387 __touch_mnt_namespace(p->mnt_ns);
1388 p->mnt_ns = NULL;
1389 if (how & UMOUNT_SYNC)
1390 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1392 disconnect = !(((how & UMOUNT_CONNECTED) &&
1393 mnt_has_parent(p) &&
1394 (p->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) ||
1395 IS_MNT_LOCKED_AND_LAZY(p));
1397 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1398 disconnect ? &unmounted : NULL);
1399 if (mnt_has_parent(p)) {
1400 mnt_add_count(p->mnt_parent, -1);
1401 if (!disconnect) {
1402 /* Don't forget about p */
1403 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1404 } else {
1405 umount_mnt(p);
1408 change_mnt_propagation(p, MS_PRIVATE);
1412 static void shrink_submounts(struct mount *mnt);
1414 static int do_umount(struct mount *mnt, int flags)
1416 struct super_block *sb = mnt->mnt.mnt_sb;
1417 int retval;
1419 retval = security_sb_umount(&mnt->mnt, flags);
1420 if (retval)
1421 return retval;
1424 * Allow userspace to request a mountpoint be expired rather than
1425 * unmounting unconditionally. Unmount only happens if:
1426 * (1) the mark is already set (the mark is cleared by mntput())
1427 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1429 if (flags & MNT_EXPIRE) {
1430 if (&mnt->mnt == current->fs->root.mnt ||
1431 flags & (MNT_FORCE | MNT_DETACH))
1432 return -EINVAL;
1435 * probably don't strictly need the lock here if we examined
1436 * all race cases, but it's a slowpath.
1438 lock_mount_hash();
1439 if (mnt_get_count(mnt) != 2) {
1440 unlock_mount_hash();
1441 return -EBUSY;
1443 unlock_mount_hash();
1445 if (!xchg(&mnt->mnt_expiry_mark, 1))
1446 return -EAGAIN;
1450 * If we may have to abort operations to get out of this
1451 * mount, and they will themselves hold resources we must
1452 * allow the fs to do things. In the Unix tradition of
1453 * 'Gee thats tricky lets do it in userspace' the umount_begin
1454 * might fail to complete on the first run through as other tasks
1455 * must return, and the like. Thats for the mount program to worry
1456 * about for the moment.
1459 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1460 sb->s_op->umount_begin(sb);
1464 * No sense to grab the lock for this test, but test itself looks
1465 * somewhat bogus. Suggestions for better replacement?
1466 * Ho-hum... In principle, we might treat that as umount + switch
1467 * to rootfs. GC would eventually take care of the old vfsmount.
1468 * Actually it makes sense, especially if rootfs would contain a
1469 * /reboot - static binary that would close all descriptors and
1470 * call reboot(9). Then init(8) could umount root and exec /reboot.
1472 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1474 * Special case for "unmounting" root ...
1475 * we just try to remount it readonly.
1477 if (!capable(CAP_SYS_ADMIN))
1478 return -EPERM;
1479 down_write(&sb->s_umount);
1480 if (!(sb->s_flags & MS_RDONLY))
1481 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1482 up_write(&sb->s_umount);
1483 return retval;
1486 namespace_lock();
1487 lock_mount_hash();
1488 event++;
1490 if (flags & MNT_DETACH) {
1491 if (!list_empty(&mnt->mnt_list))
1492 umount_tree(mnt, UMOUNT_PROPAGATE);
1493 retval = 0;
1494 } else {
1495 shrink_submounts(mnt);
1496 retval = -EBUSY;
1497 if (!propagate_mount_busy(mnt, 2)) {
1498 if (!list_empty(&mnt->mnt_list))
1499 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1500 retval = 0;
1503 unlock_mount_hash();
1504 namespace_unlock();
1505 return retval;
1509 * __detach_mounts - lazily unmount all mounts on the specified dentry
1511 * During unlink, rmdir, and d_drop it is possible to loose the path
1512 * to an existing mountpoint, and wind up leaking the mount.
1513 * detach_mounts allows lazily unmounting those mounts instead of
1514 * leaking them.
1516 * The caller may hold dentry->d_inode->i_mutex.
1518 void __detach_mounts(struct dentry *dentry)
1520 struct mountpoint *mp;
1521 struct mount *mnt;
1523 namespace_lock();
1524 mp = lookup_mountpoint(dentry);
1525 if (IS_ERR_OR_NULL(mp))
1526 goto out_unlock;
1528 lock_mount_hash();
1529 while (!hlist_empty(&mp->m_list)) {
1530 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1531 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1532 struct mount *p, *tmp;
1533 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1534 hlist_add_head(&p->mnt_umount.s_list, &unmounted);
1535 umount_mnt(p);
1538 else umount_tree(mnt, UMOUNT_CONNECTED);
1540 unlock_mount_hash();
1541 put_mountpoint(mp);
1542 out_unlock:
1543 namespace_unlock();
1547 * Is the caller allowed to modify his namespace?
1549 static inline bool may_mount(void)
1551 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1555 * Now umount can handle mount points as well as block devices.
1556 * This is important for filesystems which use unnamed block devices.
1558 * We now support a flag for forced unmount like the other 'big iron'
1559 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1562 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1564 struct path path;
1565 struct mount *mnt;
1566 int retval;
1567 int lookup_flags = 0;
1569 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1570 return -EINVAL;
1572 if (!may_mount())
1573 return -EPERM;
1575 if (!(flags & UMOUNT_NOFOLLOW))
1576 lookup_flags |= LOOKUP_FOLLOW;
1578 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1579 if (retval)
1580 goto out;
1581 mnt = real_mount(path.mnt);
1582 retval = -EINVAL;
1583 if (path.dentry != path.mnt->mnt_root)
1584 goto dput_and_out;
1585 if (!check_mnt(mnt))
1586 goto dput_and_out;
1587 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1588 goto dput_and_out;
1589 retval = -EPERM;
1590 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1591 goto dput_and_out;
1593 retval = do_umount(mnt, flags);
1594 dput_and_out:
1595 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1596 dput(path.dentry);
1597 mntput_no_expire(mnt);
1598 out:
1599 return retval;
1602 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1605 * The 2.0 compatible umount. No flags.
1607 SYSCALL_DEFINE1(oldumount, char __user *, name)
1609 return sys_umount(name, 0);
1612 #endif
1614 static bool is_mnt_ns_file(struct dentry *dentry)
1616 /* Is this a proxy for a mount namespace? */
1617 return dentry->d_op == &ns_dentry_operations &&
1618 dentry->d_fsdata == &mntns_operations;
1621 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1623 return container_of(ns, struct mnt_namespace, ns);
1626 static bool mnt_ns_loop(struct dentry *dentry)
1628 /* Could bind mounting the mount namespace inode cause a
1629 * mount namespace loop?
1631 struct mnt_namespace *mnt_ns;
1632 if (!is_mnt_ns_file(dentry))
1633 return false;
1635 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1636 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1639 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1640 int flag)
1642 struct mount *res, *p, *q, *r, *parent;
1644 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1645 return ERR_PTR(-EINVAL);
1647 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1648 return ERR_PTR(-EINVAL);
1650 res = q = clone_mnt(mnt, dentry, flag);
1651 if (IS_ERR(q))
1652 return q;
1654 q->mnt_mountpoint = mnt->mnt_mountpoint;
1656 p = mnt;
1657 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1658 struct mount *s;
1659 if (!is_subdir(r->mnt_mountpoint, dentry))
1660 continue;
1662 for (s = r; s; s = next_mnt(s, r)) {
1663 struct mount *t = NULL;
1664 if (!(flag & CL_COPY_UNBINDABLE) &&
1665 IS_MNT_UNBINDABLE(s)) {
1666 s = skip_mnt_tree(s);
1667 continue;
1669 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1670 is_mnt_ns_file(s->mnt.mnt_root)) {
1671 s = skip_mnt_tree(s);
1672 continue;
1674 while (p != s->mnt_parent) {
1675 p = p->mnt_parent;
1676 q = q->mnt_parent;
1678 p = s;
1679 parent = q;
1680 q = clone_mnt(p, p->mnt.mnt_root, flag);
1681 if (IS_ERR(q))
1682 goto out;
1683 lock_mount_hash();
1684 list_add_tail(&q->mnt_list, &res->mnt_list);
1685 mnt_set_mountpoint(parent, p->mnt_mp, q);
1686 if (!list_empty(&parent->mnt_mounts)) {
1687 t = list_last_entry(&parent->mnt_mounts,
1688 struct mount, mnt_child);
1689 if (t->mnt_mp != p->mnt_mp)
1690 t = NULL;
1692 attach_shadowed(q, parent, t);
1693 unlock_mount_hash();
1696 return res;
1697 out:
1698 if (res) {
1699 lock_mount_hash();
1700 umount_tree(res, UMOUNT_SYNC);
1701 unlock_mount_hash();
1703 return q;
1706 /* Caller should check returned pointer for errors */
1708 struct vfsmount *collect_mounts(struct path *path)
1710 struct mount *tree;
1711 namespace_lock();
1712 if (!check_mnt(real_mount(path->mnt)))
1713 tree = ERR_PTR(-EINVAL);
1714 else
1715 tree = copy_tree(real_mount(path->mnt), path->dentry,
1716 CL_COPY_ALL | CL_PRIVATE);
1717 namespace_unlock();
1718 if (IS_ERR(tree))
1719 return ERR_CAST(tree);
1720 return &tree->mnt;
1723 void drop_collected_mounts(struct vfsmount *mnt)
1725 namespace_lock();
1726 lock_mount_hash();
1727 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1728 unlock_mount_hash();
1729 namespace_unlock();
1733 * clone_private_mount - create a private clone of a path
1735 * This creates a new vfsmount, which will be the clone of @path. The new will
1736 * not be attached anywhere in the namespace and will be private (i.e. changes
1737 * to the originating mount won't be propagated into this).
1739 * Release with mntput().
1741 struct vfsmount *clone_private_mount(struct path *path)
1743 struct mount *old_mnt = real_mount(path->mnt);
1744 struct mount *new_mnt;
1746 if (IS_MNT_UNBINDABLE(old_mnt))
1747 return ERR_PTR(-EINVAL);
1749 down_read(&namespace_sem);
1750 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1751 up_read(&namespace_sem);
1752 if (IS_ERR(new_mnt))
1753 return ERR_CAST(new_mnt);
1755 return &new_mnt->mnt;
1757 EXPORT_SYMBOL_GPL(clone_private_mount);
1759 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1760 struct vfsmount *root)
1762 struct mount *mnt;
1763 int res = f(root, arg);
1764 if (res)
1765 return res;
1766 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1767 res = f(&mnt->mnt, arg);
1768 if (res)
1769 return res;
1771 return 0;
1774 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1776 struct mount *p;
1778 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1779 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1780 mnt_release_group_id(p);
1784 static int invent_group_ids(struct mount *mnt, bool recurse)
1786 struct mount *p;
1788 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1789 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1790 int err = mnt_alloc_group_id(p);
1791 if (err) {
1792 cleanup_group_ids(mnt, p);
1793 return err;
1798 return 0;
1802 * @source_mnt : mount tree to be attached
1803 * @nd : place the mount tree @source_mnt is attached
1804 * @parent_nd : if non-null, detach the source_mnt from its parent and
1805 * store the parent mount and mountpoint dentry.
1806 * (done when source_mnt is moved)
1808 * NOTE: in the table below explains the semantics when a source mount
1809 * of a given type is attached to a destination mount of a given type.
1810 * ---------------------------------------------------------------------------
1811 * | BIND MOUNT OPERATION |
1812 * |**************************************************************************
1813 * | source-->| shared | private | slave | unbindable |
1814 * | dest | | | | |
1815 * | | | | | | |
1816 * | v | | | | |
1817 * |**************************************************************************
1818 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1819 * | | | | | |
1820 * |non-shared| shared (+) | private | slave (*) | invalid |
1821 * ***************************************************************************
1822 * A bind operation clones the source mount and mounts the clone on the
1823 * destination mount.
1825 * (++) the cloned mount is propagated to all the mounts in the propagation
1826 * tree of the destination mount and the cloned mount is added to
1827 * the peer group of the source mount.
1828 * (+) the cloned mount is created under the destination mount and is marked
1829 * as shared. The cloned mount is added to the peer group of the source
1830 * mount.
1831 * (+++) the mount is propagated to all the mounts in the propagation tree
1832 * of the destination mount and the cloned mount is made slave
1833 * of the same master as that of the source mount. The cloned mount
1834 * is marked as 'shared and slave'.
1835 * (*) the cloned mount is made a slave of the same master as that of the
1836 * source mount.
1838 * ---------------------------------------------------------------------------
1839 * | MOVE MOUNT OPERATION |
1840 * |**************************************************************************
1841 * | source-->| shared | private | slave | unbindable |
1842 * | dest | | | | |
1843 * | | | | | | |
1844 * | v | | | | |
1845 * |**************************************************************************
1846 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1847 * | | | | | |
1848 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1849 * ***************************************************************************
1851 * (+) the mount is moved to the destination. And is then propagated to
1852 * all the mounts in the propagation tree of the destination mount.
1853 * (+*) the mount is moved to the destination.
1854 * (+++) the mount is moved to the destination and is then propagated to
1855 * all the mounts belonging to the destination mount's propagation tree.
1856 * the mount is marked as 'shared and slave'.
1857 * (*) the mount continues to be a slave at the new location.
1859 * if the source mount is a tree, the operations explained above is
1860 * applied to each mount in the tree.
1861 * Must be called without spinlocks held, since this function can sleep
1862 * in allocations.
1864 static int attach_recursive_mnt(struct mount *source_mnt,
1865 struct mount *dest_mnt,
1866 struct mountpoint *dest_mp,
1867 struct path *parent_path)
1869 HLIST_HEAD(tree_list);
1870 struct mount *child, *p;
1871 struct hlist_node *n;
1872 int err;
1874 if (IS_MNT_SHARED(dest_mnt)) {
1875 err = invent_group_ids(source_mnt, true);
1876 if (err)
1877 goto out;
1878 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1879 lock_mount_hash();
1880 if (err)
1881 goto out_cleanup_ids;
1882 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1883 set_mnt_shared(p);
1884 } else {
1885 lock_mount_hash();
1887 if (parent_path) {
1888 detach_mnt(source_mnt, parent_path);
1889 attach_mnt(source_mnt, dest_mnt, dest_mp);
1890 touch_mnt_namespace(source_mnt->mnt_ns);
1891 } else {
1892 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1893 commit_tree(source_mnt, NULL);
1896 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1897 struct mount *q;
1898 hlist_del_init(&child->mnt_hash);
1899 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1900 child->mnt_mountpoint);
1901 commit_tree(child, q);
1903 unlock_mount_hash();
1905 return 0;
1907 out_cleanup_ids:
1908 while (!hlist_empty(&tree_list)) {
1909 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1910 umount_tree(child, UMOUNT_SYNC);
1912 unlock_mount_hash();
1913 cleanup_group_ids(source_mnt, NULL);
1914 out:
1915 return err;
1918 static struct mountpoint *lock_mount(struct path *path)
1920 struct vfsmount *mnt;
1921 struct dentry *dentry = path->dentry;
1922 retry:
1923 mutex_lock(&dentry->d_inode->i_mutex);
1924 if (unlikely(cant_mount(dentry))) {
1925 mutex_unlock(&dentry->d_inode->i_mutex);
1926 return ERR_PTR(-ENOENT);
1928 namespace_lock();
1929 mnt = lookup_mnt(path);
1930 if (likely(!mnt)) {
1931 struct mountpoint *mp = lookup_mountpoint(dentry);
1932 if (!mp)
1933 mp = new_mountpoint(dentry);
1934 if (IS_ERR(mp)) {
1935 namespace_unlock();
1936 mutex_unlock(&dentry->d_inode->i_mutex);
1937 return mp;
1939 return mp;
1941 namespace_unlock();
1942 mutex_unlock(&path->dentry->d_inode->i_mutex);
1943 path_put(path);
1944 path->mnt = mnt;
1945 dentry = path->dentry = dget(mnt->mnt_root);
1946 goto retry;
1949 static void unlock_mount(struct mountpoint *where)
1951 struct dentry *dentry = where->m_dentry;
1952 put_mountpoint(where);
1953 namespace_unlock();
1954 mutex_unlock(&dentry->d_inode->i_mutex);
1957 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1959 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1960 return -EINVAL;
1962 if (d_is_dir(mp->m_dentry) !=
1963 d_is_dir(mnt->mnt.mnt_root))
1964 return -ENOTDIR;
1966 return attach_recursive_mnt(mnt, p, mp, NULL);
1970 * Sanity check the flags to change_mnt_propagation.
1973 static int flags_to_propagation_type(int flags)
1975 int type = flags & ~(MS_REC | MS_SILENT);
1977 /* Fail if any non-propagation flags are set */
1978 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1979 return 0;
1980 /* Only one propagation flag should be set */
1981 if (!is_power_of_2(type))
1982 return 0;
1983 return type;
1987 * recursively change the type of the mountpoint.
1989 static int do_change_type(struct path *path, int flag)
1991 struct mount *m;
1992 struct mount *mnt = real_mount(path->mnt);
1993 int recurse = flag & MS_REC;
1994 int type;
1995 int err = 0;
1997 if (path->dentry != path->mnt->mnt_root)
1998 return -EINVAL;
2000 type = flags_to_propagation_type(flag);
2001 if (!type)
2002 return -EINVAL;
2004 namespace_lock();
2005 if (type == MS_SHARED) {
2006 err = invent_group_ids(mnt, recurse);
2007 if (err)
2008 goto out_unlock;
2011 lock_mount_hash();
2012 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2013 change_mnt_propagation(m, type);
2014 unlock_mount_hash();
2016 out_unlock:
2017 namespace_unlock();
2018 return err;
2021 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2023 struct mount *child;
2024 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2025 if (!is_subdir(child->mnt_mountpoint, dentry))
2026 continue;
2028 if (child->mnt.mnt_flags & MNT_LOCKED)
2029 return true;
2031 return false;
2035 * do loopback mount.
2037 static int do_loopback(struct path *path, const char *old_name,
2038 int recurse)
2040 struct path old_path;
2041 struct mount *mnt = NULL, *old, *parent;
2042 struct mountpoint *mp;
2043 int err;
2044 if (!old_name || !*old_name)
2045 return -EINVAL;
2046 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2047 if (err)
2048 return err;
2050 err = -EINVAL;
2051 if (mnt_ns_loop(old_path.dentry))
2052 goto out;
2054 mp = lock_mount(path);
2055 err = PTR_ERR(mp);
2056 if (IS_ERR(mp))
2057 goto out;
2059 old = real_mount(old_path.mnt);
2060 parent = real_mount(path->mnt);
2062 err = -EINVAL;
2063 if (IS_MNT_UNBINDABLE(old))
2064 goto out2;
2066 if (!check_mnt(parent))
2067 goto out2;
2069 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2070 goto out2;
2072 if (!recurse && has_locked_children(old, old_path.dentry))
2073 goto out2;
2075 if (recurse)
2076 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2077 else
2078 mnt = clone_mnt(old, old_path.dentry, 0);
2080 if (IS_ERR(mnt)) {
2081 err = PTR_ERR(mnt);
2082 goto out2;
2085 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2087 err = graft_tree(mnt, parent, mp);
2088 if (err) {
2089 lock_mount_hash();
2090 umount_tree(mnt, UMOUNT_SYNC);
2091 unlock_mount_hash();
2093 out2:
2094 unlock_mount(mp);
2095 out:
2096 path_put(&old_path);
2097 return err;
2100 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2102 int error = 0;
2103 int readonly_request = 0;
2105 if (ms_flags & MS_RDONLY)
2106 readonly_request = 1;
2107 if (readonly_request == __mnt_is_readonly(mnt))
2108 return 0;
2110 if (readonly_request)
2111 error = mnt_make_readonly(real_mount(mnt));
2112 else
2113 __mnt_unmake_readonly(real_mount(mnt));
2114 return error;
2118 * change filesystem flags. dir should be a physical root of filesystem.
2119 * If you've mounted a non-root directory somewhere and want to do remount
2120 * on it - tough luck.
2122 static int do_remount(struct path *path, int flags, int mnt_flags,
2123 void *data)
2125 int err;
2126 struct super_block *sb = path->mnt->mnt_sb;
2127 struct mount *mnt = real_mount(path->mnt);
2129 if (!check_mnt(mnt))
2130 return -EINVAL;
2132 if (path->dentry != path->mnt->mnt_root)
2133 return -EINVAL;
2135 /* Don't allow changing of locked mnt flags.
2137 * No locks need to be held here while testing the various
2138 * MNT_LOCK flags because those flags can never be cleared
2139 * once they are set.
2141 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2142 !(mnt_flags & MNT_READONLY)) {
2143 return -EPERM;
2145 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2146 !(mnt_flags & MNT_NODEV)) {
2147 /* Was the nodev implicitly added in mount? */
2148 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2149 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2150 mnt_flags |= MNT_NODEV;
2151 } else {
2152 return -EPERM;
2155 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2156 !(mnt_flags & MNT_NOSUID)) {
2157 return -EPERM;
2159 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2160 !(mnt_flags & MNT_NOEXEC)) {
2161 return -EPERM;
2163 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2164 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2165 return -EPERM;
2168 err = security_sb_remount(sb, data);
2169 if (err)
2170 return err;
2172 down_write(&sb->s_umount);
2173 if (flags & MS_BIND)
2174 err = change_mount_flags(path->mnt, flags);
2175 else if (!capable(CAP_SYS_ADMIN))
2176 err = -EPERM;
2177 else
2178 err = do_remount_sb(sb, flags, data, 0);
2179 if (!err) {
2180 lock_mount_hash();
2181 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2182 mnt->mnt.mnt_flags = mnt_flags;
2183 touch_mnt_namespace(mnt->mnt_ns);
2184 unlock_mount_hash();
2186 up_write(&sb->s_umount);
2187 return err;
2190 static inline int tree_contains_unbindable(struct mount *mnt)
2192 struct mount *p;
2193 for (p = mnt; p; p = next_mnt(p, mnt)) {
2194 if (IS_MNT_UNBINDABLE(p))
2195 return 1;
2197 return 0;
2200 static int do_move_mount(struct path *path, const char *old_name)
2202 struct path old_path, parent_path;
2203 struct mount *p;
2204 struct mount *old;
2205 struct mountpoint *mp;
2206 int err;
2207 if (!old_name || !*old_name)
2208 return -EINVAL;
2209 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2210 if (err)
2211 return err;
2213 mp = lock_mount(path);
2214 err = PTR_ERR(mp);
2215 if (IS_ERR(mp))
2216 goto out;
2218 old = real_mount(old_path.mnt);
2219 p = real_mount(path->mnt);
2221 err = -EINVAL;
2222 if (!check_mnt(p) || !check_mnt(old))
2223 goto out1;
2225 if (old->mnt.mnt_flags & MNT_LOCKED)
2226 goto out1;
2228 err = -EINVAL;
2229 if (old_path.dentry != old_path.mnt->mnt_root)
2230 goto out1;
2232 if (!mnt_has_parent(old))
2233 goto out1;
2235 if (d_is_dir(path->dentry) !=
2236 d_is_dir(old_path.dentry))
2237 goto out1;
2239 * Don't move a mount residing in a shared parent.
2241 if (IS_MNT_SHARED(old->mnt_parent))
2242 goto out1;
2244 * Don't move a mount tree containing unbindable mounts to a destination
2245 * mount which is shared.
2247 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2248 goto out1;
2249 err = -ELOOP;
2250 for (; mnt_has_parent(p); p = p->mnt_parent)
2251 if (p == old)
2252 goto out1;
2254 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2255 if (err)
2256 goto out1;
2258 /* if the mount is moved, it should no longer be expire
2259 * automatically */
2260 list_del_init(&old->mnt_expire);
2261 out1:
2262 unlock_mount(mp);
2263 out:
2264 if (!err)
2265 path_put(&parent_path);
2266 path_put(&old_path);
2267 return err;
2270 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2272 int err;
2273 const char *subtype = strchr(fstype, '.');
2274 if (subtype) {
2275 subtype++;
2276 err = -EINVAL;
2277 if (!subtype[0])
2278 goto err;
2279 } else
2280 subtype = "";
2282 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2283 err = -ENOMEM;
2284 if (!mnt->mnt_sb->s_subtype)
2285 goto err;
2286 return mnt;
2288 err:
2289 mntput(mnt);
2290 return ERR_PTR(err);
2294 * add a mount into a namespace's mount tree
2296 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2298 struct mountpoint *mp;
2299 struct mount *parent;
2300 int err;
2302 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2304 mp = lock_mount(path);
2305 if (IS_ERR(mp))
2306 return PTR_ERR(mp);
2308 parent = real_mount(path->mnt);
2309 err = -EINVAL;
2310 if (unlikely(!check_mnt(parent))) {
2311 /* that's acceptable only for automounts done in private ns */
2312 if (!(mnt_flags & MNT_SHRINKABLE))
2313 goto unlock;
2314 /* ... and for those we'd better have mountpoint still alive */
2315 if (!parent->mnt_ns)
2316 goto unlock;
2319 /* Refuse the same filesystem on the same mount point */
2320 err = -EBUSY;
2321 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2322 path->mnt->mnt_root == path->dentry)
2323 goto unlock;
2325 err = -EINVAL;
2326 if (d_is_symlink(newmnt->mnt.mnt_root))
2327 goto unlock;
2329 newmnt->mnt.mnt_flags = mnt_flags;
2330 err = graft_tree(newmnt, parent, mp);
2332 unlock:
2333 unlock_mount(mp);
2334 return err;
2338 * create a new mount for userspace and request it to be added into the
2339 * namespace's tree
2341 static int do_new_mount(struct path *path, const char *fstype, int flags,
2342 int mnt_flags, const char *name, void *data)
2344 struct file_system_type *type;
2345 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2346 struct vfsmount *mnt;
2347 int err;
2349 if (!fstype)
2350 return -EINVAL;
2352 type = get_fs_type(fstype);
2353 if (!type)
2354 return -ENODEV;
2356 if (user_ns != &init_user_ns) {
2357 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2358 put_filesystem(type);
2359 return -EPERM;
2361 /* Only in special cases allow devices from mounts
2362 * created outside the initial user namespace.
2364 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2365 flags |= MS_NODEV;
2366 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2370 mnt = vfs_kern_mount(type, flags, name, data);
2371 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2372 !mnt->mnt_sb->s_subtype)
2373 mnt = fs_set_subtype(mnt, fstype);
2375 put_filesystem(type);
2376 if (IS_ERR(mnt))
2377 return PTR_ERR(mnt);
2379 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2380 if (err)
2381 mntput(mnt);
2382 return err;
2385 int finish_automount(struct vfsmount *m, struct path *path)
2387 struct mount *mnt = real_mount(m);
2388 int err;
2389 /* The new mount record should have at least 2 refs to prevent it being
2390 * expired before we get a chance to add it
2392 BUG_ON(mnt_get_count(mnt) < 2);
2394 if (m->mnt_sb == path->mnt->mnt_sb &&
2395 m->mnt_root == path->dentry) {
2396 err = -ELOOP;
2397 goto fail;
2400 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2401 if (!err)
2402 return 0;
2403 fail:
2404 /* remove m from any expiration list it may be on */
2405 if (!list_empty(&mnt->mnt_expire)) {
2406 namespace_lock();
2407 list_del_init(&mnt->mnt_expire);
2408 namespace_unlock();
2410 mntput(m);
2411 mntput(m);
2412 return err;
2416 * mnt_set_expiry - Put a mount on an expiration list
2417 * @mnt: The mount to list.
2418 * @expiry_list: The list to add the mount to.
2420 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2422 namespace_lock();
2424 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2426 namespace_unlock();
2428 EXPORT_SYMBOL(mnt_set_expiry);
2431 * process a list of expirable mountpoints with the intent of discarding any
2432 * mountpoints that aren't in use and haven't been touched since last we came
2433 * here
2435 void mark_mounts_for_expiry(struct list_head *mounts)
2437 struct mount *mnt, *next;
2438 LIST_HEAD(graveyard);
2440 if (list_empty(mounts))
2441 return;
2443 namespace_lock();
2444 lock_mount_hash();
2446 /* extract from the expiration list every vfsmount that matches the
2447 * following criteria:
2448 * - only referenced by its parent vfsmount
2449 * - still marked for expiry (marked on the last call here; marks are
2450 * cleared by mntput())
2452 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2453 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2454 propagate_mount_busy(mnt, 1))
2455 continue;
2456 list_move(&mnt->mnt_expire, &graveyard);
2458 while (!list_empty(&graveyard)) {
2459 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2460 touch_mnt_namespace(mnt->mnt_ns);
2461 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2463 unlock_mount_hash();
2464 namespace_unlock();
2467 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2470 * Ripoff of 'select_parent()'
2472 * search the list of submounts for a given mountpoint, and move any
2473 * shrinkable submounts to the 'graveyard' list.
2475 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2477 struct mount *this_parent = parent;
2478 struct list_head *next;
2479 int found = 0;
2481 repeat:
2482 next = this_parent->mnt_mounts.next;
2483 resume:
2484 while (next != &this_parent->mnt_mounts) {
2485 struct list_head *tmp = next;
2486 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2488 next = tmp->next;
2489 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2490 continue;
2492 * Descend a level if the d_mounts list is non-empty.
2494 if (!list_empty(&mnt->mnt_mounts)) {
2495 this_parent = mnt;
2496 goto repeat;
2499 if (!propagate_mount_busy(mnt, 1)) {
2500 list_move_tail(&mnt->mnt_expire, graveyard);
2501 found++;
2505 * All done at this level ... ascend and resume the search
2507 if (this_parent != parent) {
2508 next = this_parent->mnt_child.next;
2509 this_parent = this_parent->mnt_parent;
2510 goto resume;
2512 return found;
2516 * process a list of expirable mountpoints with the intent of discarding any
2517 * submounts of a specific parent mountpoint
2519 * mount_lock must be held for write
2521 static void shrink_submounts(struct mount *mnt)
2523 LIST_HEAD(graveyard);
2524 struct mount *m;
2526 /* extract submounts of 'mountpoint' from the expiration list */
2527 while (select_submounts(mnt, &graveyard)) {
2528 while (!list_empty(&graveyard)) {
2529 m = list_first_entry(&graveyard, struct mount,
2530 mnt_expire);
2531 touch_mnt_namespace(m->mnt_ns);
2532 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2538 * Some copy_from_user() implementations do not return the exact number of
2539 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2540 * Note that this function differs from copy_from_user() in that it will oops
2541 * on bad values of `to', rather than returning a short copy.
2543 static long exact_copy_from_user(void *to, const void __user * from,
2544 unsigned long n)
2546 char *t = to;
2547 const char __user *f = from;
2548 char c;
2550 if (!access_ok(VERIFY_READ, from, n))
2551 return n;
2553 while (n) {
2554 if (__get_user(c, f)) {
2555 memset(t, 0, n);
2556 break;
2558 *t++ = c;
2559 f++;
2560 n--;
2562 return n;
2565 int copy_mount_options(const void __user * data, unsigned long *where)
2567 int i;
2568 unsigned long page;
2569 unsigned long size;
2571 *where = 0;
2572 if (!data)
2573 return 0;
2575 if (!(page = __get_free_page(GFP_KERNEL)))
2576 return -ENOMEM;
2578 /* We only care that *some* data at the address the user
2579 * gave us is valid. Just in case, we'll zero
2580 * the remainder of the page.
2582 /* copy_from_user cannot cross TASK_SIZE ! */
2583 size = TASK_SIZE - (unsigned long)data;
2584 if (size > PAGE_SIZE)
2585 size = PAGE_SIZE;
2587 i = size - exact_copy_from_user((void *)page, data, size);
2588 if (!i) {
2589 free_page(page);
2590 return -EFAULT;
2592 if (i != PAGE_SIZE)
2593 memset((char *)page + i, 0, PAGE_SIZE - i);
2594 *where = page;
2595 return 0;
2598 char *copy_mount_string(const void __user *data)
2600 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2604 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2605 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2607 * data is a (void *) that can point to any structure up to
2608 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2609 * information (or be NULL).
2611 * Pre-0.97 versions of mount() didn't have a flags word.
2612 * When the flags word was introduced its top half was required
2613 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2614 * Therefore, if this magic number is present, it carries no information
2615 * and must be discarded.
2617 long do_mount(const char *dev_name, const char __user *dir_name,
2618 const char *type_page, unsigned long flags, void *data_page)
2620 struct path path;
2621 int retval = 0;
2622 int mnt_flags = 0;
2624 /* Discard magic */
2625 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2626 flags &= ~MS_MGC_MSK;
2628 /* Basic sanity checks */
2629 if (data_page)
2630 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2632 /* ... and get the mountpoint */
2633 retval = user_path(dir_name, &path);
2634 if (retval)
2635 return retval;
2637 retval = security_sb_mount(dev_name, &path,
2638 type_page, flags, data_page);
2639 if (!retval && !may_mount())
2640 retval = -EPERM;
2641 if (retval)
2642 goto dput_out;
2644 /* Default to relatime unless overriden */
2645 if (!(flags & MS_NOATIME))
2646 mnt_flags |= MNT_RELATIME;
2648 /* Separate the per-mountpoint flags */
2649 if (flags & MS_NOSUID)
2650 mnt_flags |= MNT_NOSUID;
2651 if (flags & MS_NODEV)
2652 mnt_flags |= MNT_NODEV;
2653 if (flags & MS_NOEXEC)
2654 mnt_flags |= MNT_NOEXEC;
2655 if (flags & MS_NOATIME)
2656 mnt_flags |= MNT_NOATIME;
2657 if (flags & MS_NODIRATIME)
2658 mnt_flags |= MNT_NODIRATIME;
2659 if (flags & MS_STRICTATIME)
2660 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2661 if (flags & MS_RDONLY)
2662 mnt_flags |= MNT_READONLY;
2664 /* The default atime for remount is preservation */
2665 if ((flags & MS_REMOUNT) &&
2666 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2667 MS_STRICTATIME)) == 0)) {
2668 mnt_flags &= ~MNT_ATIME_MASK;
2669 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2672 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2673 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2674 MS_STRICTATIME);
2676 if (flags & MS_REMOUNT)
2677 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2678 data_page);
2679 else if (flags & MS_BIND)
2680 retval = do_loopback(&path, dev_name, flags & MS_REC);
2681 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2682 retval = do_change_type(&path, flags);
2683 else if (flags & MS_MOVE)
2684 retval = do_move_mount(&path, dev_name);
2685 else
2686 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2687 dev_name, data_page);
2688 dput_out:
2689 path_put(&path);
2690 return retval;
2693 static void free_mnt_ns(struct mnt_namespace *ns)
2695 ns_free_inum(&ns->ns);
2696 put_user_ns(ns->user_ns);
2697 kfree(ns);
2701 * Assign a sequence number so we can detect when we attempt to bind
2702 * mount a reference to an older mount namespace into the current
2703 * mount namespace, preventing reference counting loops. A 64bit
2704 * number incrementing at 10Ghz will take 12,427 years to wrap which
2705 * is effectively never, so we can ignore the possibility.
2707 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2709 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2711 struct mnt_namespace *new_ns;
2712 int ret;
2714 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2715 if (!new_ns)
2716 return ERR_PTR(-ENOMEM);
2717 ret = ns_alloc_inum(&new_ns->ns);
2718 if (ret) {
2719 kfree(new_ns);
2720 return ERR_PTR(ret);
2722 new_ns->ns.ops = &mntns_operations;
2723 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2724 atomic_set(&new_ns->count, 1);
2725 new_ns->root = NULL;
2726 INIT_LIST_HEAD(&new_ns->list);
2727 init_waitqueue_head(&new_ns->poll);
2728 new_ns->event = 0;
2729 new_ns->user_ns = get_user_ns(user_ns);
2730 return new_ns;
2733 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2734 struct user_namespace *user_ns, struct fs_struct *new_fs)
2736 struct mnt_namespace *new_ns;
2737 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2738 struct mount *p, *q;
2739 struct mount *old;
2740 struct mount *new;
2741 int copy_flags;
2743 BUG_ON(!ns);
2745 if (likely(!(flags & CLONE_NEWNS))) {
2746 get_mnt_ns(ns);
2747 return ns;
2750 old = ns->root;
2752 new_ns = alloc_mnt_ns(user_ns);
2753 if (IS_ERR(new_ns))
2754 return new_ns;
2756 namespace_lock();
2757 /* First pass: copy the tree topology */
2758 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2759 if (user_ns != ns->user_ns)
2760 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2761 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2762 if (IS_ERR(new)) {
2763 namespace_unlock();
2764 free_mnt_ns(new_ns);
2765 return ERR_CAST(new);
2767 new_ns->root = new;
2768 list_add_tail(&new_ns->list, &new->mnt_list);
2771 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2772 * as belonging to new namespace. We have already acquired a private
2773 * fs_struct, so tsk->fs->lock is not needed.
2775 p = old;
2776 q = new;
2777 while (p) {
2778 q->mnt_ns = new_ns;
2779 if (new_fs) {
2780 if (&p->mnt == new_fs->root.mnt) {
2781 new_fs->root.mnt = mntget(&q->mnt);
2782 rootmnt = &p->mnt;
2784 if (&p->mnt == new_fs->pwd.mnt) {
2785 new_fs->pwd.mnt = mntget(&q->mnt);
2786 pwdmnt = &p->mnt;
2789 p = next_mnt(p, old);
2790 q = next_mnt(q, new);
2791 if (!q)
2792 break;
2793 while (p->mnt.mnt_root != q->mnt.mnt_root)
2794 p = next_mnt(p, old);
2796 namespace_unlock();
2798 if (rootmnt)
2799 mntput(rootmnt);
2800 if (pwdmnt)
2801 mntput(pwdmnt);
2803 return new_ns;
2807 * create_mnt_ns - creates a private namespace and adds a root filesystem
2808 * @mnt: pointer to the new root filesystem mountpoint
2810 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2812 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2813 if (!IS_ERR(new_ns)) {
2814 struct mount *mnt = real_mount(m);
2815 mnt->mnt_ns = new_ns;
2816 new_ns->root = mnt;
2817 list_add(&mnt->mnt_list, &new_ns->list);
2818 } else {
2819 mntput(m);
2821 return new_ns;
2824 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2826 struct mnt_namespace *ns;
2827 struct super_block *s;
2828 struct path path;
2829 int err;
2831 ns = create_mnt_ns(mnt);
2832 if (IS_ERR(ns))
2833 return ERR_CAST(ns);
2835 err = vfs_path_lookup(mnt->mnt_root, mnt,
2836 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2838 put_mnt_ns(ns);
2840 if (err)
2841 return ERR_PTR(err);
2843 /* trade a vfsmount reference for active sb one */
2844 s = path.mnt->mnt_sb;
2845 atomic_inc(&s->s_active);
2846 mntput(path.mnt);
2847 /* lock the sucker */
2848 down_write(&s->s_umount);
2849 /* ... and return the root of (sub)tree on it */
2850 return path.dentry;
2852 EXPORT_SYMBOL(mount_subtree);
2854 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2855 char __user *, type, unsigned long, flags, void __user *, data)
2857 int ret;
2858 char *kernel_type;
2859 char *kernel_dev;
2860 unsigned long data_page;
2862 kernel_type = copy_mount_string(type);
2863 ret = PTR_ERR(kernel_type);
2864 if (IS_ERR(kernel_type))
2865 goto out_type;
2867 kernel_dev = copy_mount_string(dev_name);
2868 ret = PTR_ERR(kernel_dev);
2869 if (IS_ERR(kernel_dev))
2870 goto out_dev;
2872 ret = copy_mount_options(data, &data_page);
2873 if (ret < 0)
2874 goto out_data;
2876 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
2877 (void *) data_page);
2879 free_page(data_page);
2880 out_data:
2881 kfree(kernel_dev);
2882 out_dev:
2883 kfree(kernel_type);
2884 out_type:
2885 return ret;
2889 * Return true if path is reachable from root
2891 * namespace_sem or mount_lock is held
2893 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2894 const struct path *root)
2896 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2897 dentry = mnt->mnt_mountpoint;
2898 mnt = mnt->mnt_parent;
2900 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2903 int path_is_under(struct path *path1, struct path *path2)
2905 int res;
2906 read_seqlock_excl(&mount_lock);
2907 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2908 read_sequnlock_excl(&mount_lock);
2909 return res;
2911 EXPORT_SYMBOL(path_is_under);
2914 * pivot_root Semantics:
2915 * Moves the root file system of the current process to the directory put_old,
2916 * makes new_root as the new root file system of the current process, and sets
2917 * root/cwd of all processes which had them on the current root to new_root.
2919 * Restrictions:
2920 * The new_root and put_old must be directories, and must not be on the
2921 * same file system as the current process root. The put_old must be
2922 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2923 * pointed to by put_old must yield the same directory as new_root. No other
2924 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2926 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2927 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2928 * in this situation.
2930 * Notes:
2931 * - we don't move root/cwd if they are not at the root (reason: if something
2932 * cared enough to change them, it's probably wrong to force them elsewhere)
2933 * - it's okay to pick a root that isn't the root of a file system, e.g.
2934 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2935 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2936 * first.
2938 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2939 const char __user *, put_old)
2941 struct path new, old, parent_path, root_parent, root;
2942 struct mount *new_mnt, *root_mnt, *old_mnt;
2943 struct mountpoint *old_mp, *root_mp;
2944 int error;
2946 if (!may_mount())
2947 return -EPERM;
2949 error = user_path_dir(new_root, &new);
2950 if (error)
2951 goto out0;
2953 error = user_path_dir(put_old, &old);
2954 if (error)
2955 goto out1;
2957 error = security_sb_pivotroot(&old, &new);
2958 if (error)
2959 goto out2;
2961 get_fs_root(current->fs, &root);
2962 old_mp = lock_mount(&old);
2963 error = PTR_ERR(old_mp);
2964 if (IS_ERR(old_mp))
2965 goto out3;
2967 error = -EINVAL;
2968 new_mnt = real_mount(new.mnt);
2969 root_mnt = real_mount(root.mnt);
2970 old_mnt = real_mount(old.mnt);
2971 if (IS_MNT_SHARED(old_mnt) ||
2972 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2973 IS_MNT_SHARED(root_mnt->mnt_parent))
2974 goto out4;
2975 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2976 goto out4;
2977 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2978 goto out4;
2979 error = -ENOENT;
2980 if (d_unlinked(new.dentry))
2981 goto out4;
2982 error = -EBUSY;
2983 if (new_mnt == root_mnt || old_mnt == root_mnt)
2984 goto out4; /* loop, on the same file system */
2985 error = -EINVAL;
2986 if (root.mnt->mnt_root != root.dentry)
2987 goto out4; /* not a mountpoint */
2988 if (!mnt_has_parent(root_mnt))
2989 goto out4; /* not attached */
2990 root_mp = root_mnt->mnt_mp;
2991 if (new.mnt->mnt_root != new.dentry)
2992 goto out4; /* not a mountpoint */
2993 if (!mnt_has_parent(new_mnt))
2994 goto out4; /* not attached */
2995 /* make sure we can reach put_old from new_root */
2996 if (!is_path_reachable(old_mnt, old.dentry, &new))
2997 goto out4;
2998 /* make certain new is below the root */
2999 if (!is_path_reachable(new_mnt, new.dentry, &root))
3000 goto out4;
3001 root_mp->m_count++; /* pin it so it won't go away */
3002 lock_mount_hash();
3003 detach_mnt(new_mnt, &parent_path);
3004 detach_mnt(root_mnt, &root_parent);
3005 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3006 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3007 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3009 /* mount old root on put_old */
3010 attach_mnt(root_mnt, old_mnt, old_mp);
3011 /* mount new_root on / */
3012 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3013 touch_mnt_namespace(current->nsproxy->mnt_ns);
3014 /* A moved mount should not expire automatically */
3015 list_del_init(&new_mnt->mnt_expire);
3016 unlock_mount_hash();
3017 chroot_fs_refs(&root, &new);
3018 put_mountpoint(root_mp);
3019 error = 0;
3020 out4:
3021 unlock_mount(old_mp);
3022 if (!error) {
3023 path_put(&root_parent);
3024 path_put(&parent_path);
3026 out3:
3027 path_put(&root);
3028 out2:
3029 path_put(&old);
3030 out1:
3031 path_put(&new);
3032 out0:
3033 return error;
3036 static void __init init_mount_tree(void)
3038 struct vfsmount *mnt;
3039 struct mnt_namespace *ns;
3040 struct path root;
3041 struct file_system_type *type;
3043 type = get_fs_type("rootfs");
3044 if (!type)
3045 panic("Can't find rootfs type");
3046 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3047 put_filesystem(type);
3048 if (IS_ERR(mnt))
3049 panic("Can't create rootfs");
3051 ns = create_mnt_ns(mnt);
3052 if (IS_ERR(ns))
3053 panic("Can't allocate initial namespace");
3055 init_task.nsproxy->mnt_ns = ns;
3056 get_mnt_ns(ns);
3058 root.mnt = mnt;
3059 root.dentry = mnt->mnt_root;
3060 mnt->mnt_flags |= MNT_LOCKED;
3062 set_fs_pwd(current->fs, &root);
3063 set_fs_root(current->fs, &root);
3066 void __init mnt_init(void)
3068 unsigned u;
3069 int err;
3071 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3072 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3074 mount_hashtable = alloc_large_system_hash("Mount-cache",
3075 sizeof(struct hlist_head),
3076 mhash_entries, 19,
3078 &m_hash_shift, &m_hash_mask, 0, 0);
3079 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3080 sizeof(struct hlist_head),
3081 mphash_entries, 19,
3083 &mp_hash_shift, &mp_hash_mask, 0, 0);
3085 if (!mount_hashtable || !mountpoint_hashtable)
3086 panic("Failed to allocate mount hash table\n");
3088 for (u = 0; u <= m_hash_mask; u++)
3089 INIT_HLIST_HEAD(&mount_hashtable[u]);
3090 for (u = 0; u <= mp_hash_mask; u++)
3091 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3093 kernfs_init();
3095 err = sysfs_init();
3096 if (err)
3097 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3098 __func__, err);
3099 fs_kobj = kobject_create_and_add("fs", NULL);
3100 if (!fs_kobj)
3101 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3102 init_rootfs();
3103 init_mount_tree();
3106 void put_mnt_ns(struct mnt_namespace *ns)
3108 if (!atomic_dec_and_test(&ns->count))
3109 return;
3110 drop_collected_mounts(&ns->root->mnt);
3111 free_mnt_ns(ns);
3114 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3116 struct vfsmount *mnt;
3117 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3118 if (!IS_ERR(mnt)) {
3120 * it is a longterm mount, don't release mnt until
3121 * we unmount before file sys is unregistered
3123 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3125 return mnt;
3127 EXPORT_SYMBOL_GPL(kern_mount_data);
3129 void kern_unmount(struct vfsmount *mnt)
3131 /* release long term mount so mount point can be released */
3132 if (!IS_ERR_OR_NULL(mnt)) {
3133 real_mount(mnt)->mnt_ns = NULL;
3134 synchronize_rcu(); /* yecchhh... */
3135 mntput(mnt);
3138 EXPORT_SYMBOL(kern_unmount);
3140 bool our_mnt(struct vfsmount *mnt)
3142 return check_mnt(real_mount(mnt));
3145 bool current_chrooted(void)
3147 /* Does the current process have a non-standard root */
3148 struct path ns_root;
3149 struct path fs_root;
3150 bool chrooted;
3152 /* Find the namespace root */
3153 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3154 ns_root.dentry = ns_root.mnt->mnt_root;
3155 path_get(&ns_root);
3156 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3159 get_fs_root(current->fs, &fs_root);
3161 chrooted = !path_equal(&fs_root, &ns_root);
3163 path_put(&fs_root);
3164 path_put(&ns_root);
3166 return chrooted;
3169 bool fs_fully_visible(struct file_system_type *type)
3171 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3172 struct mount *mnt;
3173 bool visible = false;
3175 if (unlikely(!ns))
3176 return false;
3178 down_read(&namespace_sem);
3179 list_for_each_entry(mnt, &ns->list, mnt_list) {
3180 struct mount *child;
3181 if (mnt->mnt.mnt_sb->s_type != type)
3182 continue;
3184 /* This mount is not fully visible if it's root directory
3185 * is not the root directory of the filesystem.
3187 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3188 continue;
3190 /* This mount is not fully visible if there are any child mounts
3191 * that cover anything except for empty directories.
3193 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3194 struct inode *inode = child->mnt_mountpoint->d_inode;
3195 if (!S_ISDIR(inode->i_mode))
3196 goto next;
3197 if (inode->i_nlink > 2)
3198 goto next;
3200 visible = true;
3201 goto found;
3202 next: ;
3204 found:
3205 up_read(&namespace_sem);
3206 return visible;
3209 static struct ns_common *mntns_get(struct task_struct *task)
3211 struct ns_common *ns = NULL;
3212 struct nsproxy *nsproxy;
3214 task_lock(task);
3215 nsproxy = task->nsproxy;
3216 if (nsproxy) {
3217 ns = &nsproxy->mnt_ns->ns;
3218 get_mnt_ns(to_mnt_ns(ns));
3220 task_unlock(task);
3222 return ns;
3225 static void mntns_put(struct ns_common *ns)
3227 put_mnt_ns(to_mnt_ns(ns));
3230 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3232 struct fs_struct *fs = current->fs;
3233 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3234 struct path root;
3236 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3237 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3238 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3239 return -EPERM;
3241 if (fs->users != 1)
3242 return -EINVAL;
3244 get_mnt_ns(mnt_ns);
3245 put_mnt_ns(nsproxy->mnt_ns);
3246 nsproxy->mnt_ns = mnt_ns;
3248 /* Find the root */
3249 root.mnt = &mnt_ns->root->mnt;
3250 root.dentry = mnt_ns->root->mnt.mnt_root;
3251 path_get(&root);
3252 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3255 /* Update the pwd and root */
3256 set_fs_pwd(fs, &root);
3257 set_fs_root(fs, &root);
3259 path_put(&root);
3260 return 0;
3263 const struct proc_ns_operations mntns_operations = {
3264 .name = "mnt",
3265 .type = CLONE_NEWNS,
3266 .get = mntns_get,
3267 .put = mntns_put,
3268 .install = mntns_install,