4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly
= 100000;
36 static unsigned int m_hash_mask __read_mostly
;
37 static unsigned int m_hash_shift __read_mostly
;
38 static unsigned int mp_hash_mask __read_mostly
;
39 static unsigned int mp_hash_shift __read_mostly
;
41 static __initdata
unsigned long mhash_entries
;
42 static int __init
set_mhash_entries(char *str
)
46 mhash_entries
= simple_strtoul(str
, &str
, 0);
49 __setup("mhash_entries=", set_mhash_entries
);
51 static __initdata
unsigned long mphash_entries
;
52 static int __init
set_mphash_entries(char *str
)
56 mphash_entries
= simple_strtoul(str
, &str
, 0);
59 __setup("mphash_entries=", set_mphash_entries
);
62 static DEFINE_IDA(mnt_id_ida
);
63 static DEFINE_IDA(mnt_group_ida
);
64 static DEFINE_SPINLOCK(mnt_id_lock
);
65 static int mnt_id_start
= 0;
66 static int mnt_group_start
= 1;
68 static struct hlist_head
*mount_hashtable __read_mostly
;
69 static struct hlist_head
*mountpoint_hashtable __read_mostly
;
70 static struct kmem_cache
*mnt_cache __read_mostly
;
71 static DECLARE_RWSEM(namespace_sem
);
74 struct kobject
*fs_kobj
;
75 EXPORT_SYMBOL_GPL(fs_kobj
);
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
85 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(mount_lock
);
87 static inline struct hlist_head
*m_hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
89 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
90 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
91 tmp
= tmp
+ (tmp
>> m_hash_shift
);
92 return &mount_hashtable
[tmp
& m_hash_mask
];
95 static inline struct hlist_head
*mp_hash(struct dentry
*dentry
)
97 unsigned long tmp
= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
98 tmp
= tmp
+ (tmp
>> mp_hash_shift
);
99 return &mountpoint_hashtable
[tmp
& mp_hash_mask
];
102 static int mnt_alloc_id(struct mount
*mnt
)
107 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
108 spin_lock(&mnt_id_lock
);
109 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
111 mnt_id_start
= mnt
->mnt_id
+ 1;
112 spin_unlock(&mnt_id_lock
);
119 static void mnt_free_id(struct mount
*mnt
)
121 int id
= mnt
->mnt_id
;
122 spin_lock(&mnt_id_lock
);
123 ida_remove(&mnt_id_ida
, id
);
124 if (mnt_id_start
> id
)
126 spin_unlock(&mnt_id_lock
);
130 * Allocate a new peer group ID
132 * mnt_group_ida is protected by namespace_sem
134 static int mnt_alloc_group_id(struct mount
*mnt
)
138 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
141 res
= ida_get_new_above(&mnt_group_ida
,
145 mnt_group_start
= mnt
->mnt_group_id
+ 1;
151 * Release a peer group ID
153 void mnt_release_group_id(struct mount
*mnt
)
155 int id
= mnt
->mnt_group_id
;
156 ida_remove(&mnt_group_ida
, id
);
157 if (mnt_group_start
> id
)
158 mnt_group_start
= id
;
159 mnt
->mnt_group_id
= 0;
163 * vfsmount lock must be held for read
165 static inline void mnt_add_count(struct mount
*mnt
, int n
)
168 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, n
);
177 * vfsmount lock must be held for write
179 unsigned int mnt_get_count(struct mount
*mnt
)
182 unsigned int count
= 0;
185 for_each_possible_cpu(cpu
) {
186 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_count
;
191 return mnt
->mnt_count
;
195 static void drop_mountpoint(struct fs_pin
*p
)
197 struct mount
*m
= container_of(p
, struct mount
, mnt_umount
);
198 dput(m
->mnt_ex_mountpoint
);
203 static struct mount
*alloc_vfsmnt(const char *name
)
205 struct mount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
209 err
= mnt_alloc_id(mnt
);
214 mnt
->mnt_devname
= kstrdup_const(name
, GFP_KERNEL
);
215 if (!mnt
->mnt_devname
)
220 mnt
->mnt_pcp
= alloc_percpu(struct mnt_pcp
);
222 goto out_free_devname
;
224 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, 1);
227 mnt
->mnt_writers
= 0;
230 INIT_HLIST_NODE(&mnt
->mnt_hash
);
231 INIT_LIST_HEAD(&mnt
->mnt_child
);
232 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
233 INIT_LIST_HEAD(&mnt
->mnt_list
);
234 INIT_LIST_HEAD(&mnt
->mnt_expire
);
235 INIT_LIST_HEAD(&mnt
->mnt_share
);
236 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
237 INIT_LIST_HEAD(&mnt
->mnt_slave
);
238 INIT_HLIST_NODE(&mnt
->mnt_mp_list
);
239 INIT_LIST_HEAD(&mnt
->mnt_umounting
);
240 init_fs_pin(&mnt
->mnt_umount
, drop_mountpoint
);
246 kfree_const(mnt
->mnt_devname
);
251 kmem_cache_free(mnt_cache
, mnt
);
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
274 int __mnt_is_readonly(struct vfsmount
*mnt
)
276 if (mnt
->mnt_flags
& MNT_READONLY
)
278 if (sb_rdonly(mnt
->mnt_sb
))
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
284 static inline void mnt_inc_writers(struct mount
*mnt
)
287 this_cpu_inc(mnt
->mnt_pcp
->mnt_writers
);
293 static inline void mnt_dec_writers(struct mount
*mnt
)
296 this_cpu_dec(mnt
->mnt_pcp
->mnt_writers
);
302 static unsigned int mnt_get_writers(struct mount
*mnt
)
305 unsigned int count
= 0;
308 for_each_possible_cpu(cpu
) {
309 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_writers
;
314 return mnt
->mnt_writers
;
318 static int mnt_is_readonly(struct vfsmount
*mnt
)
320 if (mnt
->mnt_sb
->s_readonly_remount
)
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
324 return __mnt_is_readonly(mnt
);
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
343 int __mnt_want_write(struct vfsmount
*m
)
345 struct mount
*mnt
= real_mount(m
);
349 mnt_inc_writers(mnt
);
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
356 while (READ_ONCE(mnt
->mnt
.mnt_flags
) & MNT_WRITE_HOLD
)
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
364 if (mnt_is_readonly(m
)) {
365 mnt_dec_writers(mnt
);
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
382 int mnt_want_write(struct vfsmount
*m
)
386 sb_start_write(m
->mnt_sb
);
387 ret
= __mnt_want_write(m
);
389 sb_end_write(m
->mnt_sb
);
392 EXPORT_SYMBOL_GPL(mnt_want_write
);
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
406 int mnt_clone_write(struct vfsmount
*mnt
)
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt
))
412 mnt_inc_writers(real_mount(mnt
));
416 EXPORT_SYMBOL_GPL(mnt_clone_write
);
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
425 int __mnt_want_write_file(struct file
*file
)
427 if (!(file
->f_mode
& FMODE_WRITER
))
428 return __mnt_want_write(file
->f_path
.mnt
);
430 return mnt_clone_write(file
->f_path
.mnt
);
434 * mnt_want_write_file_path - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
440 * Called by the vfs for cases when we have an open file at hand, but will do an
441 * inode operation on it (important distinction for files opened on overlayfs,
442 * since the file operations will come from the real underlying file, while
443 * inode operations come from the overlay).
445 int mnt_want_write_file_path(struct file
*file
)
449 sb_start_write(file
->f_path
.mnt
->mnt_sb
);
450 ret
= __mnt_want_write_file(file
);
452 sb_end_write(file
->f_path
.mnt
->mnt_sb
);
456 static inline int may_write_real(struct file
*file
)
458 struct dentry
*dentry
= file
->f_path
.dentry
;
459 struct dentry
*upperdentry
;
462 if (file
->f_mode
& FMODE_WRITER
)
466 if (likely(!(dentry
->d_flags
& DCACHE_OP_REAL
)))
469 /* File refers to upper, writable layer? */
470 upperdentry
= d_real(dentry
, NULL
, 0, D_REAL_UPPER
);
472 (file_inode(file
) == d_inode(upperdentry
) ||
473 file_inode(file
) == d_inode(dentry
)))
476 /* Lower layer: can't write to real file, sorry... */
481 * mnt_want_write_file - get write access to a file's mount
482 * @file: the file who's mount on which to take a write
484 * This is like mnt_want_write, but it takes a file and can
485 * do some optimisations if the file is open for write already
487 * Mostly called by filesystems from their ioctl operation before performing
488 * modification. On overlayfs this needs to check if the file is on a read-only
489 * lower layer and deny access in that case.
491 int mnt_want_write_file(struct file
*file
)
495 ret
= may_write_real(file
);
497 sb_start_write(file_inode(file
)->i_sb
);
498 ret
= __mnt_want_write_file(file
);
500 sb_end_write(file_inode(file
)->i_sb
);
504 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
507 * __mnt_drop_write - give up write access to a mount
508 * @mnt: the mount on which to give up write access
510 * Tells the low-level filesystem that we are done
511 * performing writes to it. Must be matched with
512 * __mnt_want_write() call above.
514 void __mnt_drop_write(struct vfsmount
*mnt
)
517 mnt_dec_writers(real_mount(mnt
));
522 * mnt_drop_write - give up write access to a mount
523 * @mnt: the mount on which to give up write access
525 * Tells the low-level filesystem that we are done performing writes to it and
526 * also allows filesystem to be frozen again. Must be matched with
527 * mnt_want_write() call above.
529 void mnt_drop_write(struct vfsmount
*mnt
)
531 __mnt_drop_write(mnt
);
532 sb_end_write(mnt
->mnt_sb
);
534 EXPORT_SYMBOL_GPL(mnt_drop_write
);
536 void __mnt_drop_write_file(struct file
*file
)
538 __mnt_drop_write(file
->f_path
.mnt
);
541 void mnt_drop_write_file_path(struct file
*file
)
543 mnt_drop_write(file
->f_path
.mnt
);
546 void mnt_drop_write_file(struct file
*file
)
548 __mnt_drop_write(file
->f_path
.mnt
);
549 sb_end_write(file_inode(file
)->i_sb
);
551 EXPORT_SYMBOL(mnt_drop_write_file
);
553 static int mnt_make_readonly(struct mount
*mnt
)
558 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
560 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
561 * should be visible before we do.
566 * With writers on hold, if this value is zero, then there are
567 * definitely no active writers (although held writers may subsequently
568 * increment the count, they'll have to wait, and decrement it after
569 * seeing MNT_READONLY).
571 * It is OK to have counter incremented on one CPU and decremented on
572 * another: the sum will add up correctly. The danger would be when we
573 * sum up each counter, if we read a counter before it is incremented,
574 * but then read another CPU's count which it has been subsequently
575 * decremented from -- we would see more decrements than we should.
576 * MNT_WRITE_HOLD protects against this scenario, because
577 * mnt_want_write first increments count, then smp_mb, then spins on
578 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
579 * we're counting up here.
581 if (mnt_get_writers(mnt
) > 0)
584 mnt
->mnt
.mnt_flags
|= MNT_READONLY
;
586 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
587 * that become unheld will see MNT_READONLY.
590 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
595 static void __mnt_unmake_readonly(struct mount
*mnt
)
598 mnt
->mnt
.mnt_flags
&= ~MNT_READONLY
;
602 int sb_prepare_remount_readonly(struct super_block
*sb
)
607 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
608 if (atomic_long_read(&sb
->s_remove_count
))
612 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
613 if (!(mnt
->mnt
.mnt_flags
& MNT_READONLY
)) {
614 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
616 if (mnt_get_writers(mnt
) > 0) {
622 if (!err
&& atomic_long_read(&sb
->s_remove_count
))
626 sb
->s_readonly_remount
= 1;
629 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
630 if (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
631 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
638 static void free_vfsmnt(struct mount
*mnt
)
640 kfree_const(mnt
->mnt_devname
);
642 free_percpu(mnt
->mnt_pcp
);
644 kmem_cache_free(mnt_cache
, mnt
);
647 static void delayed_free_vfsmnt(struct rcu_head
*head
)
649 free_vfsmnt(container_of(head
, struct mount
, mnt_rcu
));
652 /* call under rcu_read_lock */
653 int __legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
656 if (read_seqretry(&mount_lock
, seq
))
660 mnt
= real_mount(bastard
);
661 mnt_add_count(mnt
, 1);
662 if (likely(!read_seqretry(&mount_lock
, seq
)))
664 if (bastard
->mnt_flags
& MNT_SYNC_UMOUNT
) {
665 mnt_add_count(mnt
, -1);
671 /* call under rcu_read_lock */
672 bool legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
674 int res
= __legitimize_mnt(bastard
, seq
);
677 if (unlikely(res
< 0)) {
686 * find the first mount at @dentry on vfsmount @mnt.
687 * call under rcu_read_lock()
689 struct mount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
691 struct hlist_head
*head
= m_hash(mnt
, dentry
);
694 hlist_for_each_entry_rcu(p
, head
, mnt_hash
)
695 if (&p
->mnt_parent
->mnt
== mnt
&& p
->mnt_mountpoint
== dentry
)
701 * lookup_mnt - Return the first child mount mounted at path
703 * "First" means first mounted chronologically. If you create the
706 * mount /dev/sda1 /mnt
707 * mount /dev/sda2 /mnt
708 * mount /dev/sda3 /mnt
710 * Then lookup_mnt() on the base /mnt dentry in the root mount will
711 * return successively the root dentry and vfsmount of /dev/sda1, then
712 * /dev/sda2, then /dev/sda3, then NULL.
714 * lookup_mnt takes a reference to the found vfsmount.
716 struct vfsmount
*lookup_mnt(const struct path
*path
)
718 struct mount
*child_mnt
;
724 seq
= read_seqbegin(&mount_lock
);
725 child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
);
726 m
= child_mnt
? &child_mnt
->mnt
: NULL
;
727 } while (!legitimize_mnt(m
, seq
));
733 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
734 * current mount namespace.
736 * The common case is dentries are not mountpoints at all and that
737 * test is handled inline. For the slow case when we are actually
738 * dealing with a mountpoint of some kind, walk through all of the
739 * mounts in the current mount namespace and test to see if the dentry
742 * The mount_hashtable is not usable in the context because we
743 * need to identify all mounts that may be in the current mount
744 * namespace not just a mount that happens to have some specified
747 bool __is_local_mountpoint(struct dentry
*dentry
)
749 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
751 bool is_covered
= false;
753 if (!d_mountpoint(dentry
))
756 down_read(&namespace_sem
);
757 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
758 is_covered
= (mnt
->mnt_mountpoint
== dentry
);
762 up_read(&namespace_sem
);
767 static struct mountpoint
*lookup_mountpoint(struct dentry
*dentry
)
769 struct hlist_head
*chain
= mp_hash(dentry
);
770 struct mountpoint
*mp
;
772 hlist_for_each_entry(mp
, chain
, m_hash
) {
773 if (mp
->m_dentry
== dentry
) {
774 /* might be worth a WARN_ON() */
775 if (d_unlinked(dentry
))
776 return ERR_PTR(-ENOENT
);
784 static struct mountpoint
*get_mountpoint(struct dentry
*dentry
)
786 struct mountpoint
*mp
, *new = NULL
;
789 if (d_mountpoint(dentry
)) {
791 read_seqlock_excl(&mount_lock
);
792 mp
= lookup_mountpoint(dentry
);
793 read_sequnlock_excl(&mount_lock
);
799 new = kmalloc(sizeof(struct mountpoint
), GFP_KERNEL
);
801 return ERR_PTR(-ENOMEM
);
804 /* Exactly one processes may set d_mounted */
805 ret
= d_set_mounted(dentry
);
807 /* Someone else set d_mounted? */
811 /* The dentry is not available as a mountpoint? */
816 /* Add the new mountpoint to the hash table */
817 read_seqlock_excl(&mount_lock
);
818 new->m_dentry
= dentry
;
820 hlist_add_head(&new->m_hash
, mp_hash(dentry
));
821 INIT_HLIST_HEAD(&new->m_list
);
822 read_sequnlock_excl(&mount_lock
);
831 static void put_mountpoint(struct mountpoint
*mp
)
833 if (!--mp
->m_count
) {
834 struct dentry
*dentry
= mp
->m_dentry
;
835 BUG_ON(!hlist_empty(&mp
->m_list
));
836 spin_lock(&dentry
->d_lock
);
837 dentry
->d_flags
&= ~DCACHE_MOUNTED
;
838 spin_unlock(&dentry
->d_lock
);
839 hlist_del(&mp
->m_hash
);
844 static inline int check_mnt(struct mount
*mnt
)
846 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
850 * vfsmount lock must be held for write
852 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
856 wake_up_interruptible(&ns
->poll
);
861 * vfsmount lock must be held for write
863 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
865 if (ns
&& ns
->event
!= event
) {
867 wake_up_interruptible(&ns
->poll
);
872 * vfsmount lock must be held for write
874 static void unhash_mnt(struct mount
*mnt
)
876 mnt
->mnt_parent
= mnt
;
877 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
878 list_del_init(&mnt
->mnt_child
);
879 hlist_del_init_rcu(&mnt
->mnt_hash
);
880 hlist_del_init(&mnt
->mnt_mp_list
);
881 put_mountpoint(mnt
->mnt_mp
);
886 * vfsmount lock must be held for write
888 static void detach_mnt(struct mount
*mnt
, struct path
*old_path
)
890 old_path
->dentry
= mnt
->mnt_mountpoint
;
891 old_path
->mnt
= &mnt
->mnt_parent
->mnt
;
896 * vfsmount lock must be held for write
898 static void umount_mnt(struct mount
*mnt
)
900 /* old mountpoint will be dropped when we can do that */
901 mnt
->mnt_ex_mountpoint
= mnt
->mnt_mountpoint
;
906 * vfsmount lock must be held for write
908 void mnt_set_mountpoint(struct mount
*mnt
,
909 struct mountpoint
*mp
,
910 struct mount
*child_mnt
)
913 mnt_add_count(mnt
, 1); /* essentially, that's mntget */
914 child_mnt
->mnt_mountpoint
= dget(mp
->m_dentry
);
915 child_mnt
->mnt_parent
= mnt
;
916 child_mnt
->mnt_mp
= mp
;
917 hlist_add_head(&child_mnt
->mnt_mp_list
, &mp
->m_list
);
920 static void __attach_mnt(struct mount
*mnt
, struct mount
*parent
)
922 hlist_add_head_rcu(&mnt
->mnt_hash
,
923 m_hash(&parent
->mnt
, mnt
->mnt_mountpoint
));
924 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
928 * vfsmount lock must be held for write
930 static void attach_mnt(struct mount
*mnt
,
931 struct mount
*parent
,
932 struct mountpoint
*mp
)
934 mnt_set_mountpoint(parent
, mp
, mnt
);
935 __attach_mnt(mnt
, parent
);
938 void mnt_change_mountpoint(struct mount
*parent
, struct mountpoint
*mp
, struct mount
*mnt
)
940 struct mountpoint
*old_mp
= mnt
->mnt_mp
;
941 struct dentry
*old_mountpoint
= mnt
->mnt_mountpoint
;
942 struct mount
*old_parent
= mnt
->mnt_parent
;
944 list_del_init(&mnt
->mnt_child
);
945 hlist_del_init(&mnt
->mnt_mp_list
);
946 hlist_del_init_rcu(&mnt
->mnt_hash
);
948 attach_mnt(mnt
, parent
, mp
);
950 put_mountpoint(old_mp
);
953 * Safely avoid even the suggestion this code might sleep or
954 * lock the mount hash by taking advantage of the knowledge that
955 * mnt_change_mountpoint will not release the final reference
958 * During mounting, the mount passed in as the parent mount will
959 * continue to use the old mountpoint and during unmounting, the
960 * old mountpoint will continue to exist until namespace_unlock,
961 * which happens well after mnt_change_mountpoint.
963 spin_lock(&old_mountpoint
->d_lock
);
964 old_mountpoint
->d_lockref
.count
--;
965 spin_unlock(&old_mountpoint
->d_lock
);
967 mnt_add_count(old_parent
, -1);
971 * vfsmount lock must be held for write
973 static void commit_tree(struct mount
*mnt
)
975 struct mount
*parent
= mnt
->mnt_parent
;
978 struct mnt_namespace
*n
= parent
->mnt_ns
;
980 BUG_ON(parent
== mnt
);
982 list_add_tail(&head
, &mnt
->mnt_list
);
983 list_for_each_entry(m
, &head
, mnt_list
)
986 list_splice(&head
, n
->list
.prev
);
988 n
->mounts
+= n
->pending_mounts
;
989 n
->pending_mounts
= 0;
991 __attach_mnt(mnt
, parent
);
992 touch_mnt_namespace(n
);
995 static struct mount
*next_mnt(struct mount
*p
, struct mount
*root
)
997 struct list_head
*next
= p
->mnt_mounts
.next
;
998 if (next
== &p
->mnt_mounts
) {
1002 next
= p
->mnt_child
.next
;
1003 if (next
!= &p
->mnt_parent
->mnt_mounts
)
1008 return list_entry(next
, struct mount
, mnt_child
);
1011 static struct mount
*skip_mnt_tree(struct mount
*p
)
1013 struct list_head
*prev
= p
->mnt_mounts
.prev
;
1014 while (prev
!= &p
->mnt_mounts
) {
1015 p
= list_entry(prev
, struct mount
, mnt_child
);
1016 prev
= p
->mnt_mounts
.prev
;
1022 vfs_kern_mount(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
1025 struct dentry
*root
;
1028 return ERR_PTR(-ENODEV
);
1030 mnt
= alloc_vfsmnt(name
);
1032 return ERR_PTR(-ENOMEM
);
1034 if (flags
& SB_KERNMOUNT
)
1035 mnt
->mnt
.mnt_flags
= MNT_INTERNAL
;
1037 root
= mount_fs(type
, flags
, name
, data
);
1041 return ERR_CAST(root
);
1044 mnt
->mnt
.mnt_root
= root
;
1045 mnt
->mnt
.mnt_sb
= root
->d_sb
;
1046 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1047 mnt
->mnt_parent
= mnt
;
1049 list_add_tail(&mnt
->mnt_instance
, &root
->d_sb
->s_mounts
);
1050 unlock_mount_hash();
1053 EXPORT_SYMBOL_GPL(vfs_kern_mount
);
1056 vfs_submount(const struct dentry
*mountpoint
, struct file_system_type
*type
,
1057 const char *name
, void *data
)
1059 /* Until it is worked out how to pass the user namespace
1060 * through from the parent mount to the submount don't support
1061 * unprivileged mounts with submounts.
1063 if (mountpoint
->d_sb
->s_user_ns
!= &init_user_ns
)
1064 return ERR_PTR(-EPERM
);
1066 return vfs_kern_mount(type
, SB_SUBMOUNT
, name
, data
);
1068 EXPORT_SYMBOL_GPL(vfs_submount
);
1070 static struct mount
*clone_mnt(struct mount
*old
, struct dentry
*root
,
1073 struct super_block
*sb
= old
->mnt
.mnt_sb
;
1077 mnt
= alloc_vfsmnt(old
->mnt_devname
);
1079 return ERR_PTR(-ENOMEM
);
1081 if (flag
& (CL_SLAVE
| CL_PRIVATE
| CL_SHARED_TO_SLAVE
))
1082 mnt
->mnt_group_id
= 0; /* not a peer of original */
1084 mnt
->mnt_group_id
= old
->mnt_group_id
;
1086 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
1087 err
= mnt_alloc_group_id(mnt
);
1092 mnt
->mnt
.mnt_flags
= old
->mnt
.mnt_flags
;
1093 mnt
->mnt
.mnt_flags
&= ~(MNT_WRITE_HOLD
|MNT_MARKED
|MNT_INTERNAL
);
1094 /* Don't allow unprivileged users to change mount flags */
1095 if (flag
& CL_UNPRIVILEGED
) {
1096 mnt
->mnt
.mnt_flags
|= MNT_LOCK_ATIME
;
1098 if (mnt
->mnt
.mnt_flags
& MNT_READONLY
)
1099 mnt
->mnt
.mnt_flags
|= MNT_LOCK_READONLY
;
1101 if (mnt
->mnt
.mnt_flags
& MNT_NODEV
)
1102 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NODEV
;
1104 if (mnt
->mnt
.mnt_flags
& MNT_NOSUID
)
1105 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOSUID
;
1107 if (mnt
->mnt
.mnt_flags
& MNT_NOEXEC
)
1108 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOEXEC
;
1111 /* Don't allow unprivileged users to reveal what is under a mount */
1112 if ((flag
& CL_UNPRIVILEGED
) &&
1113 (!(flag
& CL_EXPIRE
) || list_empty(&old
->mnt_expire
)))
1114 mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
1116 atomic_inc(&sb
->s_active
);
1117 mnt
->mnt
.mnt_sb
= sb
;
1118 mnt
->mnt
.mnt_root
= dget(root
);
1119 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1120 mnt
->mnt_parent
= mnt
;
1122 list_add_tail(&mnt
->mnt_instance
, &sb
->s_mounts
);
1123 unlock_mount_hash();
1125 if ((flag
& CL_SLAVE
) ||
1126 ((flag
& CL_SHARED_TO_SLAVE
) && IS_MNT_SHARED(old
))) {
1127 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
1128 mnt
->mnt_master
= old
;
1129 CLEAR_MNT_SHARED(mnt
);
1130 } else if (!(flag
& CL_PRIVATE
)) {
1131 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
1132 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
1133 if (IS_MNT_SLAVE(old
))
1134 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
1135 mnt
->mnt_master
= old
->mnt_master
;
1137 CLEAR_MNT_SHARED(mnt
);
1139 if (flag
& CL_MAKE_SHARED
)
1140 set_mnt_shared(mnt
);
1142 /* stick the duplicate mount on the same expiry list
1143 * as the original if that was on one */
1144 if (flag
& CL_EXPIRE
) {
1145 if (!list_empty(&old
->mnt_expire
))
1146 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
1154 return ERR_PTR(err
);
1157 static void cleanup_mnt(struct mount
*mnt
)
1160 * This probably indicates that somebody messed
1161 * up a mnt_want/drop_write() pair. If this
1162 * happens, the filesystem was probably unable
1163 * to make r/w->r/o transitions.
1166 * The locking used to deal with mnt_count decrement provides barriers,
1167 * so mnt_get_writers() below is safe.
1169 WARN_ON(mnt_get_writers(mnt
));
1170 if (unlikely(mnt
->mnt_pins
.first
))
1172 fsnotify_vfsmount_delete(&mnt
->mnt
);
1173 dput(mnt
->mnt
.mnt_root
);
1174 deactivate_super(mnt
->mnt
.mnt_sb
);
1176 call_rcu(&mnt
->mnt_rcu
, delayed_free_vfsmnt
);
1179 static void __cleanup_mnt(struct rcu_head
*head
)
1181 cleanup_mnt(container_of(head
, struct mount
, mnt_rcu
));
1184 static LLIST_HEAD(delayed_mntput_list
);
1185 static void delayed_mntput(struct work_struct
*unused
)
1187 struct llist_node
*node
= llist_del_all(&delayed_mntput_list
);
1188 struct mount
*m
, *t
;
1190 llist_for_each_entry_safe(m
, t
, node
, mnt_llist
)
1193 static DECLARE_DELAYED_WORK(delayed_mntput_work
, delayed_mntput
);
1195 static void mntput_no_expire(struct mount
*mnt
)
1198 mnt_add_count(mnt
, -1);
1199 if (likely(mnt
->mnt_ns
)) { /* shouldn't be the last one */
1204 if (mnt_get_count(mnt
)) {
1206 unlock_mount_hash();
1209 if (unlikely(mnt
->mnt
.mnt_flags
& MNT_DOOMED
)) {
1211 unlock_mount_hash();
1214 mnt
->mnt
.mnt_flags
|= MNT_DOOMED
;
1217 list_del(&mnt
->mnt_instance
);
1219 if (unlikely(!list_empty(&mnt
->mnt_mounts
))) {
1220 struct mount
*p
, *tmp
;
1221 list_for_each_entry_safe(p
, tmp
, &mnt
->mnt_mounts
, mnt_child
) {
1225 unlock_mount_hash();
1227 if (likely(!(mnt
->mnt
.mnt_flags
& MNT_INTERNAL
))) {
1228 struct task_struct
*task
= current
;
1229 if (likely(!(task
->flags
& PF_KTHREAD
))) {
1230 init_task_work(&mnt
->mnt_rcu
, __cleanup_mnt
);
1231 if (!task_work_add(task
, &mnt
->mnt_rcu
, true))
1234 if (llist_add(&mnt
->mnt_llist
, &delayed_mntput_list
))
1235 schedule_delayed_work(&delayed_mntput_work
, 1);
1241 void mntput(struct vfsmount
*mnt
)
1244 struct mount
*m
= real_mount(mnt
);
1245 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1246 if (unlikely(m
->mnt_expiry_mark
))
1247 m
->mnt_expiry_mark
= 0;
1248 mntput_no_expire(m
);
1251 EXPORT_SYMBOL(mntput
);
1253 struct vfsmount
*mntget(struct vfsmount
*mnt
)
1256 mnt_add_count(real_mount(mnt
), 1);
1259 EXPORT_SYMBOL(mntget
);
1261 /* path_is_mountpoint() - Check if path is a mount in the current
1264 * d_mountpoint() can only be used reliably to establish if a dentry is
1265 * not mounted in any namespace and that common case is handled inline.
1266 * d_mountpoint() isn't aware of the possibility there may be multiple
1267 * mounts using a given dentry in a different namespace. This function
1268 * checks if the passed in path is a mountpoint rather than the dentry
1271 bool path_is_mountpoint(const struct path
*path
)
1276 if (!d_mountpoint(path
->dentry
))
1281 seq
= read_seqbegin(&mount_lock
);
1282 res
= __path_is_mountpoint(path
);
1283 } while (read_seqretry(&mount_lock
, seq
));
1288 EXPORT_SYMBOL(path_is_mountpoint
);
1290 struct vfsmount
*mnt_clone_internal(const struct path
*path
)
1293 p
= clone_mnt(real_mount(path
->mnt
), path
->dentry
, CL_PRIVATE
);
1296 p
->mnt
.mnt_flags
|= MNT_INTERNAL
;
1300 #ifdef CONFIG_PROC_FS
1301 /* iterator; we want it to have access to namespace_sem, thus here... */
1302 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
1304 struct proc_mounts
*p
= m
->private;
1306 down_read(&namespace_sem
);
1307 if (p
->cached_event
== p
->ns
->event
) {
1308 void *v
= p
->cached_mount
;
1309 if (*pos
== p
->cached_index
)
1311 if (*pos
== p
->cached_index
+ 1) {
1312 v
= seq_list_next(v
, &p
->ns
->list
, &p
->cached_index
);
1313 return p
->cached_mount
= v
;
1317 p
->cached_event
= p
->ns
->event
;
1318 p
->cached_mount
= seq_list_start(&p
->ns
->list
, *pos
);
1319 p
->cached_index
= *pos
;
1320 return p
->cached_mount
;
1323 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1325 struct proc_mounts
*p
= m
->private;
1327 p
->cached_mount
= seq_list_next(v
, &p
->ns
->list
, pos
);
1328 p
->cached_index
= *pos
;
1329 return p
->cached_mount
;
1332 static void m_stop(struct seq_file
*m
, void *v
)
1334 up_read(&namespace_sem
);
1337 static int m_show(struct seq_file
*m
, void *v
)
1339 struct proc_mounts
*p
= m
->private;
1340 struct mount
*r
= list_entry(v
, struct mount
, mnt_list
);
1341 return p
->show(m
, &r
->mnt
);
1344 const struct seq_operations mounts_op
= {
1350 #endif /* CONFIG_PROC_FS */
1353 * may_umount_tree - check if a mount tree is busy
1354 * @mnt: root of mount tree
1356 * This is called to check if a tree of mounts has any
1357 * open files, pwds, chroots or sub mounts that are
1360 int may_umount_tree(struct vfsmount
*m
)
1362 struct mount
*mnt
= real_mount(m
);
1363 int actual_refs
= 0;
1364 int minimum_refs
= 0;
1368 /* write lock needed for mnt_get_count */
1370 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1371 actual_refs
+= mnt_get_count(p
);
1374 unlock_mount_hash();
1376 if (actual_refs
> minimum_refs
)
1382 EXPORT_SYMBOL(may_umount_tree
);
1385 * may_umount - check if a mount point is busy
1386 * @mnt: root of mount
1388 * This is called to check if a mount point has any
1389 * open files, pwds, chroots or sub mounts. If the
1390 * mount has sub mounts this will return busy
1391 * regardless of whether the sub mounts are busy.
1393 * Doesn't take quota and stuff into account. IOW, in some cases it will
1394 * give false negatives. The main reason why it's here is that we need
1395 * a non-destructive way to look for easily umountable filesystems.
1397 int may_umount(struct vfsmount
*mnt
)
1400 down_read(&namespace_sem
);
1402 if (propagate_mount_busy(real_mount(mnt
), 2))
1404 unlock_mount_hash();
1405 up_read(&namespace_sem
);
1409 EXPORT_SYMBOL(may_umount
);
1411 static HLIST_HEAD(unmounted
); /* protected by namespace_sem */
1413 static void namespace_unlock(void)
1415 struct hlist_head head
;
1417 hlist_move_list(&unmounted
, &head
);
1419 up_write(&namespace_sem
);
1421 if (likely(hlist_empty(&head
)))
1426 group_pin_kill(&head
);
1429 static inline void namespace_lock(void)
1431 down_write(&namespace_sem
);
1434 enum umount_tree_flags
{
1436 UMOUNT_PROPAGATE
= 2,
1437 UMOUNT_CONNECTED
= 4,
1440 static bool disconnect_mount(struct mount
*mnt
, enum umount_tree_flags how
)
1442 /* Leaving mounts connected is only valid for lazy umounts */
1443 if (how
& UMOUNT_SYNC
)
1446 /* A mount without a parent has nothing to be connected to */
1447 if (!mnt_has_parent(mnt
))
1450 /* Because the reference counting rules change when mounts are
1451 * unmounted and connected, umounted mounts may not be
1452 * connected to mounted mounts.
1454 if (!(mnt
->mnt_parent
->mnt
.mnt_flags
& MNT_UMOUNT
))
1457 /* Has it been requested that the mount remain connected? */
1458 if (how
& UMOUNT_CONNECTED
)
1461 /* Is the mount locked such that it needs to remain connected? */
1462 if (IS_MNT_LOCKED(mnt
))
1465 /* By default disconnect the mount */
1470 * mount_lock must be held
1471 * namespace_sem must be held for write
1473 static void umount_tree(struct mount
*mnt
, enum umount_tree_flags how
)
1475 LIST_HEAD(tmp_list
);
1478 if (how
& UMOUNT_PROPAGATE
)
1479 propagate_mount_unlock(mnt
);
1481 /* Gather the mounts to umount */
1482 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1483 p
->mnt
.mnt_flags
|= MNT_UMOUNT
;
1484 list_move(&p
->mnt_list
, &tmp_list
);
1487 /* Hide the mounts from mnt_mounts */
1488 list_for_each_entry(p
, &tmp_list
, mnt_list
) {
1489 list_del_init(&p
->mnt_child
);
1492 /* Add propogated mounts to the tmp_list */
1493 if (how
& UMOUNT_PROPAGATE
)
1494 propagate_umount(&tmp_list
);
1496 while (!list_empty(&tmp_list
)) {
1497 struct mnt_namespace
*ns
;
1499 p
= list_first_entry(&tmp_list
, struct mount
, mnt_list
);
1500 list_del_init(&p
->mnt_expire
);
1501 list_del_init(&p
->mnt_list
);
1505 __touch_mnt_namespace(ns
);
1508 if (how
& UMOUNT_SYNC
)
1509 p
->mnt
.mnt_flags
|= MNT_SYNC_UMOUNT
;
1511 disconnect
= disconnect_mount(p
, how
);
1513 pin_insert_group(&p
->mnt_umount
, &p
->mnt_parent
->mnt
,
1514 disconnect
? &unmounted
: NULL
);
1515 if (mnt_has_parent(p
)) {
1516 mnt_add_count(p
->mnt_parent
, -1);
1518 /* Don't forget about p */
1519 list_add_tail(&p
->mnt_child
, &p
->mnt_parent
->mnt_mounts
);
1524 change_mnt_propagation(p
, MS_PRIVATE
);
1528 static void shrink_submounts(struct mount
*mnt
);
1530 static int do_umount(struct mount
*mnt
, int flags
)
1532 struct super_block
*sb
= mnt
->mnt
.mnt_sb
;
1535 retval
= security_sb_umount(&mnt
->mnt
, flags
);
1540 * Allow userspace to request a mountpoint be expired rather than
1541 * unmounting unconditionally. Unmount only happens if:
1542 * (1) the mark is already set (the mark is cleared by mntput())
1543 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1545 if (flags
& MNT_EXPIRE
) {
1546 if (&mnt
->mnt
== current
->fs
->root
.mnt
||
1547 flags
& (MNT_FORCE
| MNT_DETACH
))
1551 * probably don't strictly need the lock here if we examined
1552 * all race cases, but it's a slowpath.
1555 if (mnt_get_count(mnt
) != 2) {
1556 unlock_mount_hash();
1559 unlock_mount_hash();
1561 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1566 * If we may have to abort operations to get out of this
1567 * mount, and they will themselves hold resources we must
1568 * allow the fs to do things. In the Unix tradition of
1569 * 'Gee thats tricky lets do it in userspace' the umount_begin
1570 * might fail to complete on the first run through as other tasks
1571 * must return, and the like. Thats for the mount program to worry
1572 * about for the moment.
1575 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1576 sb
->s_op
->umount_begin(sb
);
1580 * No sense to grab the lock for this test, but test itself looks
1581 * somewhat bogus. Suggestions for better replacement?
1582 * Ho-hum... In principle, we might treat that as umount + switch
1583 * to rootfs. GC would eventually take care of the old vfsmount.
1584 * Actually it makes sense, especially if rootfs would contain a
1585 * /reboot - static binary that would close all descriptors and
1586 * call reboot(9). Then init(8) could umount root and exec /reboot.
1588 if (&mnt
->mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1590 * Special case for "unmounting" root ...
1591 * we just try to remount it readonly.
1593 if (!capable(CAP_SYS_ADMIN
))
1595 down_write(&sb
->s_umount
);
1597 retval
= do_remount_sb(sb
, SB_RDONLY
, NULL
, 0);
1598 up_write(&sb
->s_umount
);
1606 if (flags
& MNT_DETACH
) {
1607 if (!list_empty(&mnt
->mnt_list
))
1608 umount_tree(mnt
, UMOUNT_PROPAGATE
);
1611 shrink_submounts(mnt
);
1613 if (!propagate_mount_busy(mnt
, 2)) {
1614 if (!list_empty(&mnt
->mnt_list
))
1615 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
1619 unlock_mount_hash();
1625 * __detach_mounts - lazily unmount all mounts on the specified dentry
1627 * During unlink, rmdir, and d_drop it is possible to loose the path
1628 * to an existing mountpoint, and wind up leaking the mount.
1629 * detach_mounts allows lazily unmounting those mounts instead of
1632 * The caller may hold dentry->d_inode->i_mutex.
1634 void __detach_mounts(struct dentry
*dentry
)
1636 struct mountpoint
*mp
;
1641 mp
= lookup_mountpoint(dentry
);
1642 if (IS_ERR_OR_NULL(mp
))
1646 while (!hlist_empty(&mp
->m_list
)) {
1647 mnt
= hlist_entry(mp
->m_list
.first
, struct mount
, mnt_mp_list
);
1648 if (mnt
->mnt
.mnt_flags
& MNT_UMOUNT
) {
1649 hlist_add_head(&mnt
->mnt_umount
.s_list
, &unmounted
);
1652 else umount_tree(mnt
, UMOUNT_CONNECTED
);
1656 unlock_mount_hash();
1661 * Is the caller allowed to modify his namespace?
1663 static inline bool may_mount(void)
1665 return ns_capable(current
->nsproxy
->mnt_ns
->user_ns
, CAP_SYS_ADMIN
);
1668 static inline bool may_mandlock(void)
1670 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1673 return capable(CAP_SYS_ADMIN
);
1677 * Now umount can handle mount points as well as block devices.
1678 * This is important for filesystems which use unnamed block devices.
1680 * We now support a flag for forced unmount like the other 'big iron'
1681 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1684 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1689 int lookup_flags
= 0;
1691 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1697 if (!(flags
& UMOUNT_NOFOLLOW
))
1698 lookup_flags
|= LOOKUP_FOLLOW
;
1700 retval
= user_path_mountpoint_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1703 mnt
= real_mount(path
.mnt
);
1705 if (path
.dentry
!= path
.mnt
->mnt_root
)
1707 if (!check_mnt(mnt
))
1709 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
1712 if (flags
& MNT_FORCE
&& !capable(CAP_SYS_ADMIN
))
1715 retval
= do_umount(mnt
, flags
);
1717 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1719 mntput_no_expire(mnt
);
1724 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1727 * The 2.0 compatible umount. No flags.
1729 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1731 return sys_umount(name
, 0);
1736 static bool is_mnt_ns_file(struct dentry
*dentry
)
1738 /* Is this a proxy for a mount namespace? */
1739 return dentry
->d_op
== &ns_dentry_operations
&&
1740 dentry
->d_fsdata
== &mntns_operations
;
1743 struct mnt_namespace
*to_mnt_ns(struct ns_common
*ns
)
1745 return container_of(ns
, struct mnt_namespace
, ns
);
1748 static bool mnt_ns_loop(struct dentry
*dentry
)
1750 /* Could bind mounting the mount namespace inode cause a
1751 * mount namespace loop?
1753 struct mnt_namespace
*mnt_ns
;
1754 if (!is_mnt_ns_file(dentry
))
1757 mnt_ns
= to_mnt_ns(get_proc_ns(dentry
->d_inode
));
1758 return current
->nsproxy
->mnt_ns
->seq
>= mnt_ns
->seq
;
1761 struct mount
*copy_tree(struct mount
*mnt
, struct dentry
*dentry
,
1764 struct mount
*res
, *p
, *q
, *r
, *parent
;
1766 if (!(flag
& CL_COPY_UNBINDABLE
) && IS_MNT_UNBINDABLE(mnt
))
1767 return ERR_PTR(-EINVAL
);
1769 if (!(flag
& CL_COPY_MNT_NS_FILE
) && is_mnt_ns_file(dentry
))
1770 return ERR_PTR(-EINVAL
);
1772 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1776 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1779 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1781 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1784 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1785 if (!(flag
& CL_COPY_UNBINDABLE
) &&
1786 IS_MNT_UNBINDABLE(s
)) {
1787 s
= skip_mnt_tree(s
);
1790 if (!(flag
& CL_COPY_MNT_NS_FILE
) &&
1791 is_mnt_ns_file(s
->mnt
.mnt_root
)) {
1792 s
= skip_mnt_tree(s
);
1795 while (p
!= s
->mnt_parent
) {
1801 q
= clone_mnt(p
, p
->mnt
.mnt_root
, flag
);
1805 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1806 attach_mnt(q
, parent
, p
->mnt_mp
);
1807 unlock_mount_hash();
1814 umount_tree(res
, UMOUNT_SYNC
);
1815 unlock_mount_hash();
1820 /* Caller should check returned pointer for errors */
1822 struct vfsmount
*collect_mounts(const struct path
*path
)
1826 if (!check_mnt(real_mount(path
->mnt
)))
1827 tree
= ERR_PTR(-EINVAL
);
1829 tree
= copy_tree(real_mount(path
->mnt
), path
->dentry
,
1830 CL_COPY_ALL
| CL_PRIVATE
);
1833 return ERR_CAST(tree
);
1837 void drop_collected_mounts(struct vfsmount
*mnt
)
1841 umount_tree(real_mount(mnt
), UMOUNT_SYNC
);
1842 unlock_mount_hash();
1847 * clone_private_mount - create a private clone of a path
1849 * This creates a new vfsmount, which will be the clone of @path. The new will
1850 * not be attached anywhere in the namespace and will be private (i.e. changes
1851 * to the originating mount won't be propagated into this).
1853 * Release with mntput().
1855 struct vfsmount
*clone_private_mount(const struct path
*path
)
1857 struct mount
*old_mnt
= real_mount(path
->mnt
);
1858 struct mount
*new_mnt
;
1860 if (IS_MNT_UNBINDABLE(old_mnt
))
1861 return ERR_PTR(-EINVAL
);
1863 new_mnt
= clone_mnt(old_mnt
, path
->dentry
, CL_PRIVATE
);
1864 if (IS_ERR(new_mnt
))
1865 return ERR_CAST(new_mnt
);
1867 return &new_mnt
->mnt
;
1869 EXPORT_SYMBOL_GPL(clone_private_mount
);
1871 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1872 struct vfsmount
*root
)
1875 int res
= f(root
, arg
);
1878 list_for_each_entry(mnt
, &real_mount(root
)->mnt_list
, mnt_list
) {
1879 res
= f(&mnt
->mnt
, arg
);
1886 static void cleanup_group_ids(struct mount
*mnt
, struct mount
*end
)
1890 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1891 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1892 mnt_release_group_id(p
);
1896 static int invent_group_ids(struct mount
*mnt
, bool recurse
)
1900 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1901 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1902 int err
= mnt_alloc_group_id(p
);
1904 cleanup_group_ids(mnt
, p
);
1913 int count_mounts(struct mnt_namespace
*ns
, struct mount
*mnt
)
1915 unsigned int max
= READ_ONCE(sysctl_mount_max
);
1916 unsigned int mounts
= 0, old
, pending
, sum
;
1919 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1923 pending
= ns
->pending_mounts
;
1924 sum
= old
+ pending
;
1928 (mounts
> (max
- sum
)))
1931 ns
->pending_mounts
= pending
+ mounts
;
1936 * @source_mnt : mount tree to be attached
1937 * @nd : place the mount tree @source_mnt is attached
1938 * @parent_nd : if non-null, detach the source_mnt from its parent and
1939 * store the parent mount and mountpoint dentry.
1940 * (done when source_mnt is moved)
1942 * NOTE: in the table below explains the semantics when a source mount
1943 * of a given type is attached to a destination mount of a given type.
1944 * ---------------------------------------------------------------------------
1945 * | BIND MOUNT OPERATION |
1946 * |**************************************************************************
1947 * | source-->| shared | private | slave | unbindable |
1951 * |**************************************************************************
1952 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1954 * |non-shared| shared (+) | private | slave (*) | invalid |
1955 * ***************************************************************************
1956 * A bind operation clones the source mount and mounts the clone on the
1957 * destination mount.
1959 * (++) the cloned mount is propagated to all the mounts in the propagation
1960 * tree of the destination mount and the cloned mount is added to
1961 * the peer group of the source mount.
1962 * (+) the cloned mount is created under the destination mount and is marked
1963 * as shared. The cloned mount is added to the peer group of the source
1965 * (+++) the mount is propagated to all the mounts in the propagation tree
1966 * of the destination mount and the cloned mount is made slave
1967 * of the same master as that of the source mount. The cloned mount
1968 * is marked as 'shared and slave'.
1969 * (*) the cloned mount is made a slave of the same master as that of the
1972 * ---------------------------------------------------------------------------
1973 * | MOVE MOUNT OPERATION |
1974 * |**************************************************************************
1975 * | source-->| shared | private | slave | unbindable |
1979 * |**************************************************************************
1980 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1982 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1983 * ***************************************************************************
1985 * (+) the mount is moved to the destination. And is then propagated to
1986 * all the mounts in the propagation tree of the destination mount.
1987 * (+*) the mount is moved to the destination.
1988 * (+++) the mount is moved to the destination and is then propagated to
1989 * all the mounts belonging to the destination mount's propagation tree.
1990 * the mount is marked as 'shared and slave'.
1991 * (*) the mount continues to be a slave at the new location.
1993 * if the source mount is a tree, the operations explained above is
1994 * applied to each mount in the tree.
1995 * Must be called without spinlocks held, since this function can sleep
1998 static int attach_recursive_mnt(struct mount
*source_mnt
,
1999 struct mount
*dest_mnt
,
2000 struct mountpoint
*dest_mp
,
2001 struct path
*parent_path
)
2003 HLIST_HEAD(tree_list
);
2004 struct mnt_namespace
*ns
= dest_mnt
->mnt_ns
;
2005 struct mountpoint
*smp
;
2006 struct mount
*child
, *p
;
2007 struct hlist_node
*n
;
2010 /* Preallocate a mountpoint in case the new mounts need
2011 * to be tucked under other mounts.
2013 smp
= get_mountpoint(source_mnt
->mnt
.mnt_root
);
2015 return PTR_ERR(smp
);
2017 /* Is there space to add these mounts to the mount namespace? */
2019 err
= count_mounts(ns
, source_mnt
);
2024 if (IS_MNT_SHARED(dest_mnt
)) {
2025 err
= invent_group_ids(source_mnt
, true);
2028 err
= propagate_mnt(dest_mnt
, dest_mp
, source_mnt
, &tree_list
);
2031 goto out_cleanup_ids
;
2032 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
2038 detach_mnt(source_mnt
, parent_path
);
2039 attach_mnt(source_mnt
, dest_mnt
, dest_mp
);
2040 touch_mnt_namespace(source_mnt
->mnt_ns
);
2042 mnt_set_mountpoint(dest_mnt
, dest_mp
, source_mnt
);
2043 commit_tree(source_mnt
);
2046 hlist_for_each_entry_safe(child
, n
, &tree_list
, mnt_hash
) {
2048 hlist_del_init(&child
->mnt_hash
);
2049 q
= __lookup_mnt(&child
->mnt_parent
->mnt
,
2050 child
->mnt_mountpoint
);
2052 mnt_change_mountpoint(child
, smp
, q
);
2055 put_mountpoint(smp
);
2056 unlock_mount_hash();
2061 while (!hlist_empty(&tree_list
)) {
2062 child
= hlist_entry(tree_list
.first
, struct mount
, mnt_hash
);
2063 child
->mnt_parent
->mnt_ns
->pending_mounts
= 0;
2064 umount_tree(child
, UMOUNT_SYNC
);
2066 unlock_mount_hash();
2067 cleanup_group_ids(source_mnt
, NULL
);
2069 ns
->pending_mounts
= 0;
2071 read_seqlock_excl(&mount_lock
);
2072 put_mountpoint(smp
);
2073 read_sequnlock_excl(&mount_lock
);
2078 static struct mountpoint
*lock_mount(struct path
*path
)
2080 struct vfsmount
*mnt
;
2081 struct dentry
*dentry
= path
->dentry
;
2083 inode_lock(dentry
->d_inode
);
2084 if (unlikely(cant_mount(dentry
))) {
2085 inode_unlock(dentry
->d_inode
);
2086 return ERR_PTR(-ENOENT
);
2089 mnt
= lookup_mnt(path
);
2091 struct mountpoint
*mp
= get_mountpoint(dentry
);
2094 inode_unlock(dentry
->d_inode
);
2100 inode_unlock(path
->dentry
->d_inode
);
2103 dentry
= path
->dentry
= dget(mnt
->mnt_root
);
2107 static void unlock_mount(struct mountpoint
*where
)
2109 struct dentry
*dentry
= where
->m_dentry
;
2111 read_seqlock_excl(&mount_lock
);
2112 put_mountpoint(where
);
2113 read_sequnlock_excl(&mount_lock
);
2116 inode_unlock(dentry
->d_inode
);
2119 static int graft_tree(struct mount
*mnt
, struct mount
*p
, struct mountpoint
*mp
)
2121 if (mnt
->mnt
.mnt_sb
->s_flags
& SB_NOUSER
)
2124 if (d_is_dir(mp
->m_dentry
) !=
2125 d_is_dir(mnt
->mnt
.mnt_root
))
2128 return attach_recursive_mnt(mnt
, p
, mp
, NULL
);
2132 * Sanity check the flags to change_mnt_propagation.
2135 static int flags_to_propagation_type(int ms_flags
)
2137 int type
= ms_flags
& ~(MS_REC
| MS_SILENT
);
2139 /* Fail if any non-propagation flags are set */
2140 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2142 /* Only one propagation flag should be set */
2143 if (!is_power_of_2(type
))
2149 * recursively change the type of the mountpoint.
2151 static int do_change_type(struct path
*path
, int ms_flags
)
2154 struct mount
*mnt
= real_mount(path
->mnt
);
2155 int recurse
= ms_flags
& MS_REC
;
2159 if (path
->dentry
!= path
->mnt
->mnt_root
)
2162 type
= flags_to_propagation_type(ms_flags
);
2167 if (type
== MS_SHARED
) {
2168 err
= invent_group_ids(mnt
, recurse
);
2174 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
2175 change_mnt_propagation(m
, type
);
2176 unlock_mount_hash();
2183 static bool has_locked_children(struct mount
*mnt
, struct dentry
*dentry
)
2185 struct mount
*child
;
2186 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
2187 if (!is_subdir(child
->mnt_mountpoint
, dentry
))
2190 if (child
->mnt
.mnt_flags
& MNT_LOCKED
)
2197 * do loopback mount.
2199 static int do_loopback(struct path
*path
, const char *old_name
,
2202 struct path old_path
;
2203 struct mount
*mnt
= NULL
, *old
, *parent
;
2204 struct mountpoint
*mp
;
2206 if (!old_name
|| !*old_name
)
2208 err
= kern_path(old_name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &old_path
);
2213 if (mnt_ns_loop(old_path
.dentry
))
2216 mp
= lock_mount(path
);
2221 old
= real_mount(old_path
.mnt
);
2222 parent
= real_mount(path
->mnt
);
2225 if (IS_MNT_UNBINDABLE(old
))
2228 if (!check_mnt(parent
))
2231 if (!check_mnt(old
) && old_path
.dentry
->d_op
!= &ns_dentry_operations
)
2234 if (!recurse
&& has_locked_children(old
, old_path
.dentry
))
2238 mnt
= copy_tree(old
, old_path
.dentry
, CL_COPY_MNT_NS_FILE
);
2240 mnt
= clone_mnt(old
, old_path
.dentry
, 0);
2247 mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
2249 err
= graft_tree(mnt
, parent
, mp
);
2252 umount_tree(mnt
, UMOUNT_SYNC
);
2253 unlock_mount_hash();
2258 path_put(&old_path
);
2262 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
2265 int readonly_request
= 0;
2267 if (ms_flags
& MS_RDONLY
)
2268 readonly_request
= 1;
2269 if (readonly_request
== __mnt_is_readonly(mnt
))
2272 if (readonly_request
)
2273 error
= mnt_make_readonly(real_mount(mnt
));
2275 __mnt_unmake_readonly(real_mount(mnt
));
2280 * change filesystem flags. dir should be a physical root of filesystem.
2281 * If you've mounted a non-root directory somewhere and want to do remount
2282 * on it - tough luck.
2284 static int do_remount(struct path
*path
, int ms_flags
, int sb_flags
,
2285 int mnt_flags
, void *data
)
2288 struct super_block
*sb
= path
->mnt
->mnt_sb
;
2289 struct mount
*mnt
= real_mount(path
->mnt
);
2291 if (!check_mnt(mnt
))
2294 if (path
->dentry
!= path
->mnt
->mnt_root
)
2297 /* Don't allow changing of locked mnt flags.
2299 * No locks need to be held here while testing the various
2300 * MNT_LOCK flags because those flags can never be cleared
2301 * once they are set.
2303 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_READONLY
) &&
2304 !(mnt_flags
& MNT_READONLY
)) {
2307 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NODEV
) &&
2308 !(mnt_flags
& MNT_NODEV
)) {
2311 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOSUID
) &&
2312 !(mnt_flags
& MNT_NOSUID
)) {
2315 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOEXEC
) &&
2316 !(mnt_flags
& MNT_NOEXEC
)) {
2319 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_ATIME
) &&
2320 ((mnt
->mnt
.mnt_flags
& MNT_ATIME_MASK
) != (mnt_flags
& MNT_ATIME_MASK
))) {
2324 err
= security_sb_remount(sb
, data
);
2328 down_write(&sb
->s_umount
);
2329 if (ms_flags
& MS_BIND
)
2330 err
= change_mount_flags(path
->mnt
, ms_flags
);
2331 else if (!capable(CAP_SYS_ADMIN
))
2334 err
= do_remount_sb(sb
, sb_flags
, data
, 0);
2337 mnt_flags
|= mnt
->mnt
.mnt_flags
& ~MNT_USER_SETTABLE_MASK
;
2338 mnt
->mnt
.mnt_flags
= mnt_flags
;
2339 touch_mnt_namespace(mnt
->mnt_ns
);
2340 unlock_mount_hash();
2342 up_write(&sb
->s_umount
);
2346 static inline int tree_contains_unbindable(struct mount
*mnt
)
2349 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
2350 if (IS_MNT_UNBINDABLE(p
))
2356 static int do_move_mount(struct path
*path
, const char *old_name
)
2358 struct path old_path
, parent_path
;
2361 struct mountpoint
*mp
;
2363 if (!old_name
|| !*old_name
)
2365 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
2369 mp
= lock_mount(path
);
2374 old
= real_mount(old_path
.mnt
);
2375 p
= real_mount(path
->mnt
);
2378 if (!check_mnt(p
) || !check_mnt(old
))
2381 if (old
->mnt
.mnt_flags
& MNT_LOCKED
)
2385 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
2388 if (!mnt_has_parent(old
))
2391 if (d_is_dir(path
->dentry
) !=
2392 d_is_dir(old_path
.dentry
))
2395 * Don't move a mount residing in a shared parent.
2397 if (IS_MNT_SHARED(old
->mnt_parent
))
2400 * Don't move a mount tree containing unbindable mounts to a destination
2401 * mount which is shared.
2403 if (IS_MNT_SHARED(p
) && tree_contains_unbindable(old
))
2406 for (; mnt_has_parent(p
); p
= p
->mnt_parent
)
2410 err
= attach_recursive_mnt(old
, real_mount(path
->mnt
), mp
, &parent_path
);
2414 /* if the mount is moved, it should no longer be expire
2416 list_del_init(&old
->mnt_expire
);
2421 path_put(&parent_path
);
2422 path_put(&old_path
);
2426 static struct vfsmount
*fs_set_subtype(struct vfsmount
*mnt
, const char *fstype
)
2429 const char *subtype
= strchr(fstype
, '.');
2438 mnt
->mnt_sb
->s_subtype
= kstrdup(subtype
, GFP_KERNEL
);
2440 if (!mnt
->mnt_sb
->s_subtype
)
2446 return ERR_PTR(err
);
2450 * add a mount into a namespace's mount tree
2452 static int do_add_mount(struct mount
*newmnt
, struct path
*path
, int mnt_flags
)
2454 struct mountpoint
*mp
;
2455 struct mount
*parent
;
2458 mnt_flags
&= ~MNT_INTERNAL_FLAGS
;
2460 mp
= lock_mount(path
);
2464 parent
= real_mount(path
->mnt
);
2466 if (unlikely(!check_mnt(parent
))) {
2467 /* that's acceptable only for automounts done in private ns */
2468 if (!(mnt_flags
& MNT_SHRINKABLE
))
2470 /* ... and for those we'd better have mountpoint still alive */
2471 if (!parent
->mnt_ns
)
2475 /* Refuse the same filesystem on the same mount point */
2477 if (path
->mnt
->mnt_sb
== newmnt
->mnt
.mnt_sb
&&
2478 path
->mnt
->mnt_root
== path
->dentry
)
2482 if (d_is_symlink(newmnt
->mnt
.mnt_root
))
2485 newmnt
->mnt
.mnt_flags
= mnt_flags
;
2486 err
= graft_tree(newmnt
, parent
, mp
);
2493 static bool mount_too_revealing(struct vfsmount
*mnt
, int *new_mnt_flags
);
2496 * create a new mount for userspace and request it to be added into the
2499 static int do_new_mount(struct path
*path
, const char *fstype
, int sb_flags
,
2500 int mnt_flags
, const char *name
, void *data
)
2502 struct file_system_type
*type
;
2503 struct vfsmount
*mnt
;
2509 type
= get_fs_type(fstype
);
2513 mnt
= vfs_kern_mount(type
, sb_flags
, name
, data
);
2514 if (!IS_ERR(mnt
) && (type
->fs_flags
& FS_HAS_SUBTYPE
) &&
2515 !mnt
->mnt_sb
->s_subtype
)
2516 mnt
= fs_set_subtype(mnt
, fstype
);
2518 put_filesystem(type
);
2520 return PTR_ERR(mnt
);
2522 if (mount_too_revealing(mnt
, &mnt_flags
)) {
2527 err
= do_add_mount(real_mount(mnt
), path
, mnt_flags
);
2533 int finish_automount(struct vfsmount
*m
, struct path
*path
)
2535 struct mount
*mnt
= real_mount(m
);
2537 /* The new mount record should have at least 2 refs to prevent it being
2538 * expired before we get a chance to add it
2540 BUG_ON(mnt_get_count(mnt
) < 2);
2542 if (m
->mnt_sb
== path
->mnt
->mnt_sb
&&
2543 m
->mnt_root
== path
->dentry
) {
2548 err
= do_add_mount(mnt
, path
, path
->mnt
->mnt_flags
| MNT_SHRINKABLE
);
2552 /* remove m from any expiration list it may be on */
2553 if (!list_empty(&mnt
->mnt_expire
)) {
2555 list_del_init(&mnt
->mnt_expire
);
2564 * mnt_set_expiry - Put a mount on an expiration list
2565 * @mnt: The mount to list.
2566 * @expiry_list: The list to add the mount to.
2568 void mnt_set_expiry(struct vfsmount
*mnt
, struct list_head
*expiry_list
)
2572 list_add_tail(&real_mount(mnt
)->mnt_expire
, expiry_list
);
2576 EXPORT_SYMBOL(mnt_set_expiry
);
2579 * process a list of expirable mountpoints with the intent of discarding any
2580 * mountpoints that aren't in use and haven't been touched since last we came
2583 void mark_mounts_for_expiry(struct list_head
*mounts
)
2585 struct mount
*mnt
, *next
;
2586 LIST_HEAD(graveyard
);
2588 if (list_empty(mounts
))
2594 /* extract from the expiration list every vfsmount that matches the
2595 * following criteria:
2596 * - only referenced by its parent vfsmount
2597 * - still marked for expiry (marked on the last call here; marks are
2598 * cleared by mntput())
2600 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
2601 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
2602 propagate_mount_busy(mnt
, 1))
2604 list_move(&mnt
->mnt_expire
, &graveyard
);
2606 while (!list_empty(&graveyard
)) {
2607 mnt
= list_first_entry(&graveyard
, struct mount
, mnt_expire
);
2608 touch_mnt_namespace(mnt
->mnt_ns
);
2609 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2611 unlock_mount_hash();
2615 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
2618 * Ripoff of 'select_parent()'
2620 * search the list of submounts for a given mountpoint, and move any
2621 * shrinkable submounts to the 'graveyard' list.
2623 static int select_submounts(struct mount
*parent
, struct list_head
*graveyard
)
2625 struct mount
*this_parent
= parent
;
2626 struct list_head
*next
;
2630 next
= this_parent
->mnt_mounts
.next
;
2632 while (next
!= &this_parent
->mnt_mounts
) {
2633 struct list_head
*tmp
= next
;
2634 struct mount
*mnt
= list_entry(tmp
, struct mount
, mnt_child
);
2637 if (!(mnt
->mnt
.mnt_flags
& MNT_SHRINKABLE
))
2640 * Descend a level if the d_mounts list is non-empty.
2642 if (!list_empty(&mnt
->mnt_mounts
)) {
2647 if (!propagate_mount_busy(mnt
, 1)) {
2648 list_move_tail(&mnt
->mnt_expire
, graveyard
);
2653 * All done at this level ... ascend and resume the search
2655 if (this_parent
!= parent
) {
2656 next
= this_parent
->mnt_child
.next
;
2657 this_parent
= this_parent
->mnt_parent
;
2664 * process a list of expirable mountpoints with the intent of discarding any
2665 * submounts of a specific parent mountpoint
2667 * mount_lock must be held for write
2669 static void shrink_submounts(struct mount
*mnt
)
2671 LIST_HEAD(graveyard
);
2674 /* extract submounts of 'mountpoint' from the expiration list */
2675 while (select_submounts(mnt
, &graveyard
)) {
2676 while (!list_empty(&graveyard
)) {
2677 m
= list_first_entry(&graveyard
, struct mount
,
2679 touch_mnt_namespace(m
->mnt_ns
);
2680 umount_tree(m
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2686 * Some copy_from_user() implementations do not return the exact number of
2687 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2688 * Note that this function differs from copy_from_user() in that it will oops
2689 * on bad values of `to', rather than returning a short copy.
2691 static long exact_copy_from_user(void *to
, const void __user
* from
,
2695 const char __user
*f
= from
;
2698 if (!access_ok(VERIFY_READ
, from
, n
))
2702 if (__get_user(c
, f
)) {
2713 void *copy_mount_options(const void __user
* data
)
2722 copy
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2724 return ERR_PTR(-ENOMEM
);
2726 /* We only care that *some* data at the address the user
2727 * gave us is valid. Just in case, we'll zero
2728 * the remainder of the page.
2730 /* copy_from_user cannot cross TASK_SIZE ! */
2731 size
= TASK_SIZE
- (unsigned long)data
;
2732 if (size
> PAGE_SIZE
)
2735 i
= size
- exact_copy_from_user(copy
, data
, size
);
2738 return ERR_PTR(-EFAULT
);
2741 memset(copy
+ i
, 0, PAGE_SIZE
- i
);
2745 char *copy_mount_string(const void __user
*data
)
2747 return data
? strndup_user(data
, PAGE_SIZE
) : NULL
;
2751 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2752 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2754 * data is a (void *) that can point to any structure up to
2755 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2756 * information (or be NULL).
2758 * Pre-0.97 versions of mount() didn't have a flags word.
2759 * When the flags word was introduced its top half was required
2760 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2761 * Therefore, if this magic number is present, it carries no information
2762 * and must be discarded.
2764 long do_mount(const char *dev_name
, const char __user
*dir_name
,
2765 const char *type_page
, unsigned long flags
, void *data_page
)
2768 unsigned int mnt_flags
= 0, sb_flags
;
2772 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
2773 flags
&= ~MS_MGC_MSK
;
2775 /* Basic sanity checks */
2777 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
2779 if (flags
& MS_NOUSER
)
2782 /* ... and get the mountpoint */
2783 retval
= user_path(dir_name
, &path
);
2787 retval
= security_sb_mount(dev_name
, &path
,
2788 type_page
, flags
, data_page
);
2789 if (!retval
&& !may_mount())
2791 if (!retval
&& (flags
& SB_MANDLOCK
) && !may_mandlock())
2796 /* Default to relatime unless overriden */
2797 if (!(flags
& MS_NOATIME
))
2798 mnt_flags
|= MNT_RELATIME
;
2800 /* Separate the per-mountpoint flags */
2801 if (flags
& MS_NOSUID
)
2802 mnt_flags
|= MNT_NOSUID
;
2803 if (flags
& MS_NODEV
)
2804 mnt_flags
|= MNT_NODEV
;
2805 if (flags
& MS_NOEXEC
)
2806 mnt_flags
|= MNT_NOEXEC
;
2807 if (flags
& MS_NOATIME
)
2808 mnt_flags
|= MNT_NOATIME
;
2809 if (flags
& MS_NODIRATIME
)
2810 mnt_flags
|= MNT_NODIRATIME
;
2811 if (flags
& MS_STRICTATIME
)
2812 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
2813 if (flags
& SB_RDONLY
)
2814 mnt_flags
|= MNT_READONLY
;
2816 /* The default atime for remount is preservation */
2817 if ((flags
& MS_REMOUNT
) &&
2818 ((flags
& (MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
|
2819 MS_STRICTATIME
)) == 0)) {
2820 mnt_flags
&= ~MNT_ATIME_MASK
;
2821 mnt_flags
|= path
.mnt
->mnt_flags
& MNT_ATIME_MASK
;
2824 sb_flags
= flags
& (SB_RDONLY
|
2833 if (flags
& MS_REMOUNT
)
2834 retval
= do_remount(&path
, flags
, sb_flags
, mnt_flags
,
2836 else if (flags
& MS_BIND
)
2837 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2838 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2839 retval
= do_change_type(&path
, flags
);
2840 else if (flags
& MS_MOVE
)
2841 retval
= do_move_mount(&path
, dev_name
);
2843 retval
= do_new_mount(&path
, type_page
, sb_flags
, mnt_flags
,
2844 dev_name
, data_page
);
2850 static struct ucounts
*inc_mnt_namespaces(struct user_namespace
*ns
)
2852 return inc_ucount(ns
, current_euid(), UCOUNT_MNT_NAMESPACES
);
2855 static void dec_mnt_namespaces(struct ucounts
*ucounts
)
2857 dec_ucount(ucounts
, UCOUNT_MNT_NAMESPACES
);
2860 static void free_mnt_ns(struct mnt_namespace
*ns
)
2862 ns_free_inum(&ns
->ns
);
2863 dec_mnt_namespaces(ns
->ucounts
);
2864 put_user_ns(ns
->user_ns
);
2869 * Assign a sequence number so we can detect when we attempt to bind
2870 * mount a reference to an older mount namespace into the current
2871 * mount namespace, preventing reference counting loops. A 64bit
2872 * number incrementing at 10Ghz will take 12,427 years to wrap which
2873 * is effectively never, so we can ignore the possibility.
2875 static atomic64_t mnt_ns_seq
= ATOMIC64_INIT(1);
2877 static struct mnt_namespace
*alloc_mnt_ns(struct user_namespace
*user_ns
)
2879 struct mnt_namespace
*new_ns
;
2880 struct ucounts
*ucounts
;
2883 ucounts
= inc_mnt_namespaces(user_ns
);
2885 return ERR_PTR(-ENOSPC
);
2887 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2889 dec_mnt_namespaces(ucounts
);
2890 return ERR_PTR(-ENOMEM
);
2892 ret
= ns_alloc_inum(&new_ns
->ns
);
2895 dec_mnt_namespaces(ucounts
);
2896 return ERR_PTR(ret
);
2898 new_ns
->ns
.ops
= &mntns_operations
;
2899 new_ns
->seq
= atomic64_add_return(1, &mnt_ns_seq
);
2900 atomic_set(&new_ns
->count
, 1);
2901 new_ns
->root
= NULL
;
2902 INIT_LIST_HEAD(&new_ns
->list
);
2903 init_waitqueue_head(&new_ns
->poll
);
2905 new_ns
->user_ns
= get_user_ns(user_ns
);
2906 new_ns
->ucounts
= ucounts
;
2908 new_ns
->pending_mounts
= 0;
2913 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2914 struct user_namespace
*user_ns
, struct fs_struct
*new_fs
)
2916 struct mnt_namespace
*new_ns
;
2917 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2918 struct mount
*p
, *q
;
2925 if (likely(!(flags
& CLONE_NEWNS
))) {
2932 new_ns
= alloc_mnt_ns(user_ns
);
2937 /* First pass: copy the tree topology */
2938 copy_flags
= CL_COPY_UNBINDABLE
| CL_EXPIRE
;
2939 if (user_ns
!= ns
->user_ns
)
2940 copy_flags
|= CL_SHARED_TO_SLAVE
| CL_UNPRIVILEGED
;
2941 new = copy_tree(old
, old
->mnt
.mnt_root
, copy_flags
);
2944 free_mnt_ns(new_ns
);
2945 return ERR_CAST(new);
2948 list_add_tail(&new_ns
->list
, &new->mnt_list
);
2951 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2952 * as belonging to new namespace. We have already acquired a private
2953 * fs_struct, so tsk->fs->lock is not needed.
2961 if (&p
->mnt
== new_fs
->root
.mnt
) {
2962 new_fs
->root
.mnt
= mntget(&q
->mnt
);
2965 if (&p
->mnt
== new_fs
->pwd
.mnt
) {
2966 new_fs
->pwd
.mnt
= mntget(&q
->mnt
);
2970 p
= next_mnt(p
, old
);
2971 q
= next_mnt(q
, new);
2974 while (p
->mnt
.mnt_root
!= q
->mnt
.mnt_root
)
2975 p
= next_mnt(p
, old
);
2988 * create_mnt_ns - creates a private namespace and adds a root filesystem
2989 * @mnt: pointer to the new root filesystem mountpoint
2991 static struct mnt_namespace
*create_mnt_ns(struct vfsmount
*m
)
2993 struct mnt_namespace
*new_ns
= alloc_mnt_ns(&init_user_ns
);
2994 if (!IS_ERR(new_ns
)) {
2995 struct mount
*mnt
= real_mount(m
);
2996 mnt
->mnt_ns
= new_ns
;
2999 list_add(&mnt
->mnt_list
, &new_ns
->list
);
3006 struct dentry
*mount_subtree(struct vfsmount
*mnt
, const char *name
)
3008 struct mnt_namespace
*ns
;
3009 struct super_block
*s
;
3013 ns
= create_mnt_ns(mnt
);
3015 return ERR_CAST(ns
);
3017 err
= vfs_path_lookup(mnt
->mnt_root
, mnt
,
3018 name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &path
);
3023 return ERR_PTR(err
);
3025 /* trade a vfsmount reference for active sb one */
3026 s
= path
.mnt
->mnt_sb
;
3027 atomic_inc(&s
->s_active
);
3029 /* lock the sucker */
3030 down_write(&s
->s_umount
);
3031 /* ... and return the root of (sub)tree on it */
3034 EXPORT_SYMBOL(mount_subtree
);
3036 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
3037 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
3044 kernel_type
= copy_mount_string(type
);
3045 ret
= PTR_ERR(kernel_type
);
3046 if (IS_ERR(kernel_type
))
3049 kernel_dev
= copy_mount_string(dev_name
);
3050 ret
= PTR_ERR(kernel_dev
);
3051 if (IS_ERR(kernel_dev
))
3054 options
= copy_mount_options(data
);
3055 ret
= PTR_ERR(options
);
3056 if (IS_ERR(options
))
3059 ret
= do_mount(kernel_dev
, dir_name
, kernel_type
, flags
, options
);
3071 * Return true if path is reachable from root
3073 * namespace_sem or mount_lock is held
3075 bool is_path_reachable(struct mount
*mnt
, struct dentry
*dentry
,
3076 const struct path
*root
)
3078 while (&mnt
->mnt
!= root
->mnt
&& mnt_has_parent(mnt
)) {
3079 dentry
= mnt
->mnt_mountpoint
;
3080 mnt
= mnt
->mnt_parent
;
3082 return &mnt
->mnt
== root
->mnt
&& is_subdir(dentry
, root
->dentry
);
3085 bool path_is_under(const struct path
*path1
, const struct path
*path2
)
3088 read_seqlock_excl(&mount_lock
);
3089 res
= is_path_reachable(real_mount(path1
->mnt
), path1
->dentry
, path2
);
3090 read_sequnlock_excl(&mount_lock
);
3093 EXPORT_SYMBOL(path_is_under
);
3096 * pivot_root Semantics:
3097 * Moves the root file system of the current process to the directory put_old,
3098 * makes new_root as the new root file system of the current process, and sets
3099 * root/cwd of all processes which had them on the current root to new_root.
3102 * The new_root and put_old must be directories, and must not be on the
3103 * same file system as the current process root. The put_old must be
3104 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3105 * pointed to by put_old must yield the same directory as new_root. No other
3106 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3108 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3109 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3110 * in this situation.
3113 * - we don't move root/cwd if they are not at the root (reason: if something
3114 * cared enough to change them, it's probably wrong to force them elsewhere)
3115 * - it's okay to pick a root that isn't the root of a file system, e.g.
3116 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3117 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3120 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
3121 const char __user
*, put_old
)
3123 struct path
new, old
, parent_path
, root_parent
, root
;
3124 struct mount
*new_mnt
, *root_mnt
, *old_mnt
;
3125 struct mountpoint
*old_mp
, *root_mp
;
3131 error
= user_path_dir(new_root
, &new);
3135 error
= user_path_dir(put_old
, &old
);
3139 error
= security_sb_pivotroot(&old
, &new);
3143 get_fs_root(current
->fs
, &root
);
3144 old_mp
= lock_mount(&old
);
3145 error
= PTR_ERR(old_mp
);
3150 new_mnt
= real_mount(new.mnt
);
3151 root_mnt
= real_mount(root
.mnt
);
3152 old_mnt
= real_mount(old
.mnt
);
3153 if (IS_MNT_SHARED(old_mnt
) ||
3154 IS_MNT_SHARED(new_mnt
->mnt_parent
) ||
3155 IS_MNT_SHARED(root_mnt
->mnt_parent
))
3157 if (!check_mnt(root_mnt
) || !check_mnt(new_mnt
))
3159 if (new_mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
3162 if (d_unlinked(new.dentry
))
3165 if (new_mnt
== root_mnt
|| old_mnt
== root_mnt
)
3166 goto out4
; /* loop, on the same file system */
3168 if (root
.mnt
->mnt_root
!= root
.dentry
)
3169 goto out4
; /* not a mountpoint */
3170 if (!mnt_has_parent(root_mnt
))
3171 goto out4
; /* not attached */
3172 root_mp
= root_mnt
->mnt_mp
;
3173 if (new.mnt
->mnt_root
!= new.dentry
)
3174 goto out4
; /* not a mountpoint */
3175 if (!mnt_has_parent(new_mnt
))
3176 goto out4
; /* not attached */
3177 /* make sure we can reach put_old from new_root */
3178 if (!is_path_reachable(old_mnt
, old
.dentry
, &new))
3180 /* make certain new is below the root */
3181 if (!is_path_reachable(new_mnt
, new.dentry
, &root
))
3183 root_mp
->m_count
++; /* pin it so it won't go away */
3185 detach_mnt(new_mnt
, &parent_path
);
3186 detach_mnt(root_mnt
, &root_parent
);
3187 if (root_mnt
->mnt
.mnt_flags
& MNT_LOCKED
) {
3188 new_mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
3189 root_mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
3191 /* mount old root on put_old */
3192 attach_mnt(root_mnt
, old_mnt
, old_mp
);
3193 /* mount new_root on / */
3194 attach_mnt(new_mnt
, real_mount(root_parent
.mnt
), root_mp
);
3195 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
3196 /* A moved mount should not expire automatically */
3197 list_del_init(&new_mnt
->mnt_expire
);
3198 put_mountpoint(root_mp
);
3199 unlock_mount_hash();
3200 chroot_fs_refs(&root
, &new);
3203 unlock_mount(old_mp
);
3205 path_put(&root_parent
);
3206 path_put(&parent_path
);
3218 static void __init
init_mount_tree(void)
3220 struct vfsmount
*mnt
;
3221 struct mnt_namespace
*ns
;
3223 struct file_system_type
*type
;
3225 type
= get_fs_type("rootfs");
3227 panic("Can't find rootfs type");
3228 mnt
= vfs_kern_mount(type
, 0, "rootfs", NULL
);
3229 put_filesystem(type
);
3231 panic("Can't create rootfs");
3233 ns
= create_mnt_ns(mnt
);
3235 panic("Can't allocate initial namespace");
3237 init_task
.nsproxy
->mnt_ns
= ns
;
3241 root
.dentry
= mnt
->mnt_root
;
3242 mnt
->mnt_flags
|= MNT_LOCKED
;
3244 set_fs_pwd(current
->fs
, &root
);
3245 set_fs_root(current
->fs
, &root
);
3248 void __init
mnt_init(void)
3252 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct mount
),
3253 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3255 mount_hashtable
= alloc_large_system_hash("Mount-cache",
3256 sizeof(struct hlist_head
),
3259 &m_hash_shift
, &m_hash_mask
, 0, 0);
3260 mountpoint_hashtable
= alloc_large_system_hash("Mountpoint-cache",
3261 sizeof(struct hlist_head
),
3264 &mp_hash_shift
, &mp_hash_mask
, 0, 0);
3266 if (!mount_hashtable
|| !mountpoint_hashtable
)
3267 panic("Failed to allocate mount hash table\n");
3273 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
3275 fs_kobj
= kobject_create_and_add("fs", NULL
);
3277 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
3282 void put_mnt_ns(struct mnt_namespace
*ns
)
3284 if (!atomic_dec_and_test(&ns
->count
))
3286 drop_collected_mounts(&ns
->root
->mnt
);
3290 struct vfsmount
*kern_mount_data(struct file_system_type
*type
, void *data
)
3292 struct vfsmount
*mnt
;
3293 mnt
= vfs_kern_mount(type
, SB_KERNMOUNT
, type
->name
, data
);
3296 * it is a longterm mount, don't release mnt until
3297 * we unmount before file sys is unregistered
3299 real_mount(mnt
)->mnt_ns
= MNT_NS_INTERNAL
;
3303 EXPORT_SYMBOL_GPL(kern_mount_data
);
3305 void kern_unmount(struct vfsmount
*mnt
)
3307 /* release long term mount so mount point can be released */
3308 if (!IS_ERR_OR_NULL(mnt
)) {
3309 real_mount(mnt
)->mnt_ns
= NULL
;
3310 synchronize_rcu(); /* yecchhh... */
3314 EXPORT_SYMBOL(kern_unmount
);
3316 bool our_mnt(struct vfsmount
*mnt
)
3318 return check_mnt(real_mount(mnt
));
3321 bool current_chrooted(void)
3323 /* Does the current process have a non-standard root */
3324 struct path ns_root
;
3325 struct path fs_root
;
3328 /* Find the namespace root */
3329 ns_root
.mnt
= ¤t
->nsproxy
->mnt_ns
->root
->mnt
;
3330 ns_root
.dentry
= ns_root
.mnt
->mnt_root
;
3332 while (d_mountpoint(ns_root
.dentry
) && follow_down_one(&ns_root
))
3335 get_fs_root(current
->fs
, &fs_root
);
3337 chrooted
= !path_equal(&fs_root
, &ns_root
);
3345 static bool mnt_already_visible(struct mnt_namespace
*ns
, struct vfsmount
*new,
3348 int new_flags
= *new_mnt_flags
;
3350 bool visible
= false;
3352 down_read(&namespace_sem
);
3353 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
3354 struct mount
*child
;
3357 if (mnt
->mnt
.mnt_sb
->s_type
!= new->mnt_sb
->s_type
)
3360 /* This mount is not fully visible if it's root directory
3361 * is not the root directory of the filesystem.
3363 if (mnt
->mnt
.mnt_root
!= mnt
->mnt
.mnt_sb
->s_root
)
3366 /* A local view of the mount flags */
3367 mnt_flags
= mnt
->mnt
.mnt_flags
;
3369 /* Don't miss readonly hidden in the superblock flags */
3370 if (sb_rdonly(mnt
->mnt
.mnt_sb
))
3371 mnt_flags
|= MNT_LOCK_READONLY
;
3373 /* Verify the mount flags are equal to or more permissive
3374 * than the proposed new mount.
3376 if ((mnt_flags
& MNT_LOCK_READONLY
) &&
3377 !(new_flags
& MNT_READONLY
))
3379 if ((mnt_flags
& MNT_LOCK_ATIME
) &&
3380 ((mnt_flags
& MNT_ATIME_MASK
) != (new_flags
& MNT_ATIME_MASK
)))
3383 /* This mount is not fully visible if there are any
3384 * locked child mounts that cover anything except for
3385 * empty directories.
3387 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
3388 struct inode
*inode
= child
->mnt_mountpoint
->d_inode
;
3389 /* Only worry about locked mounts */
3390 if (!(child
->mnt
.mnt_flags
& MNT_LOCKED
))
3392 /* Is the directory permanetly empty? */
3393 if (!is_empty_dir_inode(inode
))
3396 /* Preserve the locked attributes */
3397 *new_mnt_flags
|= mnt_flags
& (MNT_LOCK_READONLY
| \
3404 up_read(&namespace_sem
);
3408 static bool mount_too_revealing(struct vfsmount
*mnt
, int *new_mnt_flags
)
3410 const unsigned long required_iflags
= SB_I_NOEXEC
| SB_I_NODEV
;
3411 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
3412 unsigned long s_iflags
;
3414 if (ns
->user_ns
== &init_user_ns
)
3417 /* Can this filesystem be too revealing? */
3418 s_iflags
= mnt
->mnt_sb
->s_iflags
;
3419 if (!(s_iflags
& SB_I_USERNS_VISIBLE
))
3422 if ((s_iflags
& required_iflags
) != required_iflags
) {
3423 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3428 return !mnt_already_visible(ns
, mnt
, new_mnt_flags
);
3431 bool mnt_may_suid(struct vfsmount
*mnt
)
3434 * Foreign mounts (accessed via fchdir or through /proc
3435 * symlinks) are always treated as if they are nosuid. This
3436 * prevents namespaces from trusting potentially unsafe
3437 * suid/sgid bits, file caps, or security labels that originate
3438 * in other namespaces.
3440 return !(mnt
->mnt_flags
& MNT_NOSUID
) && check_mnt(real_mount(mnt
)) &&
3441 current_in_userns(mnt
->mnt_sb
->s_user_ns
);
3444 static struct ns_common
*mntns_get(struct task_struct
*task
)
3446 struct ns_common
*ns
= NULL
;
3447 struct nsproxy
*nsproxy
;
3450 nsproxy
= task
->nsproxy
;
3452 ns
= &nsproxy
->mnt_ns
->ns
;
3453 get_mnt_ns(to_mnt_ns(ns
));
3460 static void mntns_put(struct ns_common
*ns
)
3462 put_mnt_ns(to_mnt_ns(ns
));
3465 static int mntns_install(struct nsproxy
*nsproxy
, struct ns_common
*ns
)
3467 struct fs_struct
*fs
= current
->fs
;
3468 struct mnt_namespace
*mnt_ns
= to_mnt_ns(ns
), *old_mnt_ns
;
3472 if (!ns_capable(mnt_ns
->user_ns
, CAP_SYS_ADMIN
) ||
3473 !ns_capable(current_user_ns(), CAP_SYS_CHROOT
) ||
3474 !ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
3481 old_mnt_ns
= nsproxy
->mnt_ns
;
3482 nsproxy
->mnt_ns
= mnt_ns
;
3485 err
= vfs_path_lookup(mnt_ns
->root
->mnt
.mnt_root
, &mnt_ns
->root
->mnt
,
3486 "/", LOOKUP_DOWN
, &root
);
3488 /* revert to old namespace */
3489 nsproxy
->mnt_ns
= old_mnt_ns
;
3494 put_mnt_ns(old_mnt_ns
);
3496 /* Update the pwd and root */
3497 set_fs_pwd(fs
, &root
);
3498 set_fs_root(fs
, &root
);
3504 static struct user_namespace
*mntns_owner(struct ns_common
*ns
)
3506 return to_mnt_ns(ns
)->user_ns
;
3509 const struct proc_ns_operations mntns_operations
= {
3511 .type
= CLONE_NEWNS
,
3514 .install
= mntns_install
,
3515 .owner
= mntns_owner
,