slub: make slab_index() return unsigned int
[linux/fpc-iii.git] / mm / migrate.c
blob003886606a2251cab9b1e1e50d128d5d5f1de497
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
51 #include <asm/tlbflush.h>
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
56 #include "internal.h"
59 * migrate_prep() needs to be called before we start compiling a list of pages
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
63 int migrate_prep(void)
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
71 lru_add_drain_all();
73 return 0;
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
79 lru_add_drain();
81 return 0;
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
86 struct address_space *mapping;
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
97 if (unlikely(!get_page_unless_zero(page)))
98 goto out;
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grapping the lock ruins page's owner side.
105 if (unlikely(!__PageMovable(page)))
106 goto out_putpage;
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
118 if (unlikely(!trylock_page(page)))
119 goto out_putpage;
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
133 unlock_page(page);
135 return 0;
137 out_no_isolated:
138 unlock_page(page);
139 out_putpage:
140 put_page(page);
141 out:
142 return -EBUSY;
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
148 struct address_space *mapping;
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
167 void putback_movable_pages(struct list_head *l)
169 struct page *page;
170 struct page *page2;
172 list_for_each_entry_safe(page, page2, l, lru) {
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
175 continue;
177 list_del(&page->lru);
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
183 if (unlikely(__PageMovable(page))) {
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 lock_page(page);
186 if (PageMovable(page))
187 putback_movable_page(page);
188 else
189 __ClearPageIsolated(page);
190 unlock_page(page);
191 put_page(page);
192 } else {
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
195 putback_lru_page(page);
201 * Restore a potential migration pte to a working pte entry
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 unsigned long addr, void *old)
206 struct page_vma_mapped_walk pvmw = {
207 .page = old,
208 .vma = vma,
209 .address = addr,
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
212 struct page *new;
213 pte_t pte;
214 swp_entry_t entry;
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
218 if (PageKsm(page))
219 new = page;
220 else
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
226 if (!pvmw.pte) {
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
229 continue;
231 #endif
233 get_page(new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
239 * Recheck VMA as permissions can change since migration started
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
249 } else if (is_device_public_page(new)) {
250 pte = pte_mkdevmap(pte);
251 flush_dcache_page(new);
253 } else
254 flush_dcache_page(new);
256 #ifdef CONFIG_HUGETLB_PAGE
257 if (PageHuge(new)) {
258 pte = pte_mkhuge(pte);
259 pte = arch_make_huge_pte(pte, vma, new, 0);
260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 if (PageAnon(new))
262 hugepage_add_anon_rmap(new, vma, pvmw.address);
263 else
264 page_dup_rmap(new, true);
265 } else
266 #endif
268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
270 if (PageAnon(new))
271 page_add_anon_rmap(new, vma, pvmw.address, false);
272 else
273 page_add_file_rmap(new, false);
275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 mlock_vma_page(new);
278 /* No need to invalidate - it was non-present before */
279 update_mmu_cache(vma, pvmw.address, pvmw.pte);
282 return true;
286 * Get rid of all migration entries and replace them by
287 * references to the indicated page.
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
291 struct rmap_walk_control rwc = {
292 .rmap_one = remove_migration_pte,
293 .arg = old,
296 if (locked)
297 rmap_walk_locked(new, &rwc);
298 else
299 rmap_walk(new, &rwc);
303 * Something used the pte of a page under migration. We need to
304 * get to the page and wait until migration is finished.
305 * When we return from this function the fault will be retried.
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308 spinlock_t *ptl)
310 pte_t pte;
311 swp_entry_t entry;
312 struct page *page;
314 spin_lock(ptl);
315 pte = *ptep;
316 if (!is_swap_pte(pte))
317 goto out;
319 entry = pte_to_swp_entry(pte);
320 if (!is_migration_entry(entry))
321 goto out;
323 page = migration_entry_to_page(entry);
326 * Once radix-tree replacement of page migration started, page_count
327 * *must* be zero. And, we don't want to call wait_on_page_locked()
328 * against a page without get_page().
329 * So, we use get_page_unless_zero(), here. Even failed, page fault
330 * will occur again.
332 if (!get_page_unless_zero(page))
333 goto out;
334 pte_unmap_unlock(ptep, ptl);
335 wait_on_page_locked(page);
336 put_page(page);
337 return;
338 out:
339 pte_unmap_unlock(ptep, ptl);
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 unsigned long address)
345 spinlock_t *ptl = pte_lockptr(mm, pmd);
346 pte_t *ptep = pte_offset_map(pmd, address);
347 __migration_entry_wait(mm, ptep, ptl);
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351 struct mm_struct *mm, pte_t *pte)
353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354 __migration_entry_wait(mm, pte, ptl);
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
360 spinlock_t *ptl;
361 struct page *page;
363 ptl = pmd_lock(mm, pmd);
364 if (!is_pmd_migration_entry(*pmd))
365 goto unlock;
366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 if (!get_page_unless_zero(page))
368 goto unlock;
369 spin_unlock(ptl);
370 wait_on_page_locked(page);
371 put_page(page);
372 return;
373 unlock:
374 spin_unlock(ptl);
376 #endif
378 #ifdef CONFIG_BLOCK
379 /* Returns true if all buffers are successfully locked */
380 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
381 enum migrate_mode mode)
383 struct buffer_head *bh = head;
385 /* Simple case, sync compaction */
386 if (mode != MIGRATE_ASYNC) {
387 do {
388 get_bh(bh);
389 lock_buffer(bh);
390 bh = bh->b_this_page;
392 } while (bh != head);
394 return true;
397 /* async case, we cannot block on lock_buffer so use trylock_buffer */
398 do {
399 get_bh(bh);
400 if (!trylock_buffer(bh)) {
402 * We failed to lock the buffer and cannot stall in
403 * async migration. Release the taken locks
405 struct buffer_head *failed_bh = bh;
406 put_bh(failed_bh);
407 bh = head;
408 while (bh != failed_bh) {
409 unlock_buffer(bh);
410 put_bh(bh);
411 bh = bh->b_this_page;
413 return false;
416 bh = bh->b_this_page;
417 } while (bh != head);
418 return true;
420 #else
421 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
422 enum migrate_mode mode)
424 return true;
426 #endif /* CONFIG_BLOCK */
429 * Replace the page in the mapping.
431 * The number of remaining references must be:
432 * 1 for anonymous pages without a mapping
433 * 2 for pages with a mapping
434 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
436 int migrate_page_move_mapping(struct address_space *mapping,
437 struct page *newpage, struct page *page,
438 struct buffer_head *head, enum migrate_mode mode,
439 int extra_count)
441 struct zone *oldzone, *newzone;
442 int dirty;
443 int expected_count = 1 + extra_count;
444 void **pslot;
447 * Device public or private pages have an extra refcount as they are
448 * ZONE_DEVICE pages.
450 expected_count += is_device_private_page(page);
451 expected_count += is_device_public_page(page);
453 if (!mapping) {
454 /* Anonymous page without mapping */
455 if (page_count(page) != expected_count)
456 return -EAGAIN;
458 /* No turning back from here */
459 newpage->index = page->index;
460 newpage->mapping = page->mapping;
461 if (PageSwapBacked(page))
462 __SetPageSwapBacked(newpage);
464 return MIGRATEPAGE_SUCCESS;
467 oldzone = page_zone(page);
468 newzone = page_zone(newpage);
470 spin_lock_irq(&mapping->tree_lock);
472 pslot = radix_tree_lookup_slot(&mapping->page_tree,
473 page_index(page));
475 expected_count += 1 + page_has_private(page);
476 if (page_count(page) != expected_count ||
477 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
478 spin_unlock_irq(&mapping->tree_lock);
479 return -EAGAIN;
482 if (!page_ref_freeze(page, expected_count)) {
483 spin_unlock_irq(&mapping->tree_lock);
484 return -EAGAIN;
488 * In the async migration case of moving a page with buffers, lock the
489 * buffers using trylock before the mapping is moved. If the mapping
490 * was moved, we later failed to lock the buffers and could not move
491 * the mapping back due to an elevated page count, we would have to
492 * block waiting on other references to be dropped.
494 if (mode == MIGRATE_ASYNC && head &&
495 !buffer_migrate_lock_buffers(head, mode)) {
496 page_ref_unfreeze(page, expected_count);
497 spin_unlock_irq(&mapping->tree_lock);
498 return -EAGAIN;
502 * Now we know that no one else is looking at the page:
503 * no turning back from here.
505 newpage->index = page->index;
506 newpage->mapping = page->mapping;
507 get_page(newpage); /* add cache reference */
508 if (PageSwapBacked(page)) {
509 __SetPageSwapBacked(newpage);
510 if (PageSwapCache(page)) {
511 SetPageSwapCache(newpage);
512 set_page_private(newpage, page_private(page));
514 } else {
515 VM_BUG_ON_PAGE(PageSwapCache(page), page);
518 /* Move dirty while page refs frozen and newpage not yet exposed */
519 dirty = PageDirty(page);
520 if (dirty) {
521 ClearPageDirty(page);
522 SetPageDirty(newpage);
525 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
528 * Drop cache reference from old page by unfreezing
529 * to one less reference.
530 * We know this isn't the last reference.
532 page_ref_unfreeze(page, expected_count - 1);
534 spin_unlock(&mapping->tree_lock);
535 /* Leave irq disabled to prevent preemption while updating stats */
538 * If moved to a different zone then also account
539 * the page for that zone. Other VM counters will be
540 * taken care of when we establish references to the
541 * new page and drop references to the old page.
543 * Note that anonymous pages are accounted for
544 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
545 * are mapped to swap space.
547 if (newzone != oldzone) {
548 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
549 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
550 if (PageSwapBacked(page) && !PageSwapCache(page)) {
551 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
552 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
554 if (dirty && mapping_cap_account_dirty(mapping)) {
555 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
556 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
557 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
558 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
561 local_irq_enable();
563 return MIGRATEPAGE_SUCCESS;
565 EXPORT_SYMBOL(migrate_page_move_mapping);
568 * The expected number of remaining references is the same as that
569 * of migrate_page_move_mapping().
571 int migrate_huge_page_move_mapping(struct address_space *mapping,
572 struct page *newpage, struct page *page)
574 int expected_count;
575 void **pslot;
577 spin_lock_irq(&mapping->tree_lock);
579 pslot = radix_tree_lookup_slot(&mapping->page_tree,
580 page_index(page));
582 expected_count = 2 + page_has_private(page);
583 if (page_count(page) != expected_count ||
584 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
585 spin_unlock_irq(&mapping->tree_lock);
586 return -EAGAIN;
589 if (!page_ref_freeze(page, expected_count)) {
590 spin_unlock_irq(&mapping->tree_lock);
591 return -EAGAIN;
594 newpage->index = page->index;
595 newpage->mapping = page->mapping;
597 get_page(newpage);
599 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
601 page_ref_unfreeze(page, expected_count - 1);
603 spin_unlock_irq(&mapping->tree_lock);
605 return MIGRATEPAGE_SUCCESS;
609 * Gigantic pages are so large that we do not guarantee that page++ pointer
610 * arithmetic will work across the entire page. We need something more
611 * specialized.
613 static void __copy_gigantic_page(struct page *dst, struct page *src,
614 int nr_pages)
616 int i;
617 struct page *dst_base = dst;
618 struct page *src_base = src;
620 for (i = 0; i < nr_pages; ) {
621 cond_resched();
622 copy_highpage(dst, src);
624 i++;
625 dst = mem_map_next(dst, dst_base, i);
626 src = mem_map_next(src, src_base, i);
630 static void copy_huge_page(struct page *dst, struct page *src)
632 int i;
633 int nr_pages;
635 if (PageHuge(src)) {
636 /* hugetlbfs page */
637 struct hstate *h = page_hstate(src);
638 nr_pages = pages_per_huge_page(h);
640 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
641 __copy_gigantic_page(dst, src, nr_pages);
642 return;
644 } else {
645 /* thp page */
646 BUG_ON(!PageTransHuge(src));
647 nr_pages = hpage_nr_pages(src);
650 for (i = 0; i < nr_pages; i++) {
651 cond_resched();
652 copy_highpage(dst + i, src + i);
657 * Copy the page to its new location
659 void migrate_page_states(struct page *newpage, struct page *page)
661 int cpupid;
663 if (PageError(page))
664 SetPageError(newpage);
665 if (PageReferenced(page))
666 SetPageReferenced(newpage);
667 if (PageUptodate(page))
668 SetPageUptodate(newpage);
669 if (TestClearPageActive(page)) {
670 VM_BUG_ON_PAGE(PageUnevictable(page), page);
671 SetPageActive(newpage);
672 } else if (TestClearPageUnevictable(page))
673 SetPageUnevictable(newpage);
674 if (PageChecked(page))
675 SetPageChecked(newpage);
676 if (PageMappedToDisk(page))
677 SetPageMappedToDisk(newpage);
679 /* Move dirty on pages not done by migrate_page_move_mapping() */
680 if (PageDirty(page))
681 SetPageDirty(newpage);
683 if (page_is_young(page))
684 set_page_young(newpage);
685 if (page_is_idle(page))
686 set_page_idle(newpage);
689 * Copy NUMA information to the new page, to prevent over-eager
690 * future migrations of this same page.
692 cpupid = page_cpupid_xchg_last(page, -1);
693 page_cpupid_xchg_last(newpage, cpupid);
695 ksm_migrate_page(newpage, page);
697 * Please do not reorder this without considering how mm/ksm.c's
698 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
700 if (PageSwapCache(page))
701 ClearPageSwapCache(page);
702 ClearPagePrivate(page);
703 set_page_private(page, 0);
706 * If any waiters have accumulated on the new page then
707 * wake them up.
709 if (PageWriteback(newpage))
710 end_page_writeback(newpage);
712 copy_page_owner(page, newpage);
714 mem_cgroup_migrate(page, newpage);
716 EXPORT_SYMBOL(migrate_page_states);
718 void migrate_page_copy(struct page *newpage, struct page *page)
720 if (PageHuge(page) || PageTransHuge(page))
721 copy_huge_page(newpage, page);
722 else
723 copy_highpage(newpage, page);
725 migrate_page_states(newpage, page);
727 EXPORT_SYMBOL(migrate_page_copy);
729 /************************************************************
730 * Migration functions
731 ***********************************************************/
734 * Common logic to directly migrate a single LRU page suitable for
735 * pages that do not use PagePrivate/PagePrivate2.
737 * Pages are locked upon entry and exit.
739 int migrate_page(struct address_space *mapping,
740 struct page *newpage, struct page *page,
741 enum migrate_mode mode)
743 int rc;
745 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
747 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
749 if (rc != MIGRATEPAGE_SUCCESS)
750 return rc;
752 if (mode != MIGRATE_SYNC_NO_COPY)
753 migrate_page_copy(newpage, page);
754 else
755 migrate_page_states(newpage, page);
756 return MIGRATEPAGE_SUCCESS;
758 EXPORT_SYMBOL(migrate_page);
760 #ifdef CONFIG_BLOCK
762 * Migration function for pages with buffers. This function can only be used
763 * if the underlying filesystem guarantees that no other references to "page"
764 * exist.
766 int buffer_migrate_page(struct address_space *mapping,
767 struct page *newpage, struct page *page, enum migrate_mode mode)
769 struct buffer_head *bh, *head;
770 int rc;
772 if (!page_has_buffers(page))
773 return migrate_page(mapping, newpage, page, mode);
775 head = page_buffers(page);
777 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
779 if (rc != MIGRATEPAGE_SUCCESS)
780 return rc;
783 * In the async case, migrate_page_move_mapping locked the buffers
784 * with an IRQ-safe spinlock held. In the sync case, the buffers
785 * need to be locked now
787 if (mode != MIGRATE_ASYNC)
788 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
790 ClearPagePrivate(page);
791 set_page_private(newpage, page_private(page));
792 set_page_private(page, 0);
793 put_page(page);
794 get_page(newpage);
796 bh = head;
797 do {
798 set_bh_page(bh, newpage, bh_offset(bh));
799 bh = bh->b_this_page;
801 } while (bh != head);
803 SetPagePrivate(newpage);
805 if (mode != MIGRATE_SYNC_NO_COPY)
806 migrate_page_copy(newpage, page);
807 else
808 migrate_page_states(newpage, page);
810 bh = head;
811 do {
812 unlock_buffer(bh);
813 put_bh(bh);
814 bh = bh->b_this_page;
816 } while (bh != head);
818 return MIGRATEPAGE_SUCCESS;
820 EXPORT_SYMBOL(buffer_migrate_page);
821 #endif
824 * Writeback a page to clean the dirty state
826 static int writeout(struct address_space *mapping, struct page *page)
828 struct writeback_control wbc = {
829 .sync_mode = WB_SYNC_NONE,
830 .nr_to_write = 1,
831 .range_start = 0,
832 .range_end = LLONG_MAX,
833 .for_reclaim = 1
835 int rc;
837 if (!mapping->a_ops->writepage)
838 /* No write method for the address space */
839 return -EINVAL;
841 if (!clear_page_dirty_for_io(page))
842 /* Someone else already triggered a write */
843 return -EAGAIN;
846 * A dirty page may imply that the underlying filesystem has
847 * the page on some queue. So the page must be clean for
848 * migration. Writeout may mean we loose the lock and the
849 * page state is no longer what we checked for earlier.
850 * At this point we know that the migration attempt cannot
851 * be successful.
853 remove_migration_ptes(page, page, false);
855 rc = mapping->a_ops->writepage(page, &wbc);
857 if (rc != AOP_WRITEPAGE_ACTIVATE)
858 /* unlocked. Relock */
859 lock_page(page);
861 return (rc < 0) ? -EIO : -EAGAIN;
865 * Default handling if a filesystem does not provide a migration function.
867 static int fallback_migrate_page(struct address_space *mapping,
868 struct page *newpage, struct page *page, enum migrate_mode mode)
870 if (PageDirty(page)) {
871 /* Only writeback pages in full synchronous migration */
872 switch (mode) {
873 case MIGRATE_SYNC:
874 case MIGRATE_SYNC_NO_COPY:
875 break;
876 default:
877 return -EBUSY;
879 return writeout(mapping, page);
883 * Buffers may be managed in a filesystem specific way.
884 * We must have no buffers or drop them.
886 if (page_has_private(page) &&
887 !try_to_release_page(page, GFP_KERNEL))
888 return -EAGAIN;
890 return migrate_page(mapping, newpage, page, mode);
894 * Move a page to a newly allocated page
895 * The page is locked and all ptes have been successfully removed.
897 * The new page will have replaced the old page if this function
898 * is successful.
900 * Return value:
901 * < 0 - error code
902 * MIGRATEPAGE_SUCCESS - success
904 static int move_to_new_page(struct page *newpage, struct page *page,
905 enum migrate_mode mode)
907 struct address_space *mapping;
908 int rc = -EAGAIN;
909 bool is_lru = !__PageMovable(page);
911 VM_BUG_ON_PAGE(!PageLocked(page), page);
912 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
914 mapping = page_mapping(page);
916 if (likely(is_lru)) {
917 if (!mapping)
918 rc = migrate_page(mapping, newpage, page, mode);
919 else if (mapping->a_ops->migratepage)
921 * Most pages have a mapping and most filesystems
922 * provide a migratepage callback. Anonymous pages
923 * are part of swap space which also has its own
924 * migratepage callback. This is the most common path
925 * for page migration.
927 rc = mapping->a_ops->migratepage(mapping, newpage,
928 page, mode);
929 else
930 rc = fallback_migrate_page(mapping, newpage,
931 page, mode);
932 } else {
934 * In case of non-lru page, it could be released after
935 * isolation step. In that case, we shouldn't try migration.
937 VM_BUG_ON_PAGE(!PageIsolated(page), page);
938 if (!PageMovable(page)) {
939 rc = MIGRATEPAGE_SUCCESS;
940 __ClearPageIsolated(page);
941 goto out;
944 rc = mapping->a_ops->migratepage(mapping, newpage,
945 page, mode);
946 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
947 !PageIsolated(page));
951 * When successful, old pagecache page->mapping must be cleared before
952 * page is freed; but stats require that PageAnon be left as PageAnon.
954 if (rc == MIGRATEPAGE_SUCCESS) {
955 if (__PageMovable(page)) {
956 VM_BUG_ON_PAGE(!PageIsolated(page), page);
959 * We clear PG_movable under page_lock so any compactor
960 * cannot try to migrate this page.
962 __ClearPageIsolated(page);
966 * Anonymous and movable page->mapping will be cleard by
967 * free_pages_prepare so don't reset it here for keeping
968 * the type to work PageAnon, for example.
970 if (!PageMappingFlags(page))
971 page->mapping = NULL;
973 out:
974 return rc;
977 static int __unmap_and_move(struct page *page, struct page *newpage,
978 int force, enum migrate_mode mode)
980 int rc = -EAGAIN;
981 int page_was_mapped = 0;
982 struct anon_vma *anon_vma = NULL;
983 bool is_lru = !__PageMovable(page);
985 if (!trylock_page(page)) {
986 if (!force || mode == MIGRATE_ASYNC)
987 goto out;
990 * It's not safe for direct compaction to call lock_page.
991 * For example, during page readahead pages are added locked
992 * to the LRU. Later, when the IO completes the pages are
993 * marked uptodate and unlocked. However, the queueing
994 * could be merging multiple pages for one bio (e.g.
995 * mpage_readpages). If an allocation happens for the
996 * second or third page, the process can end up locking
997 * the same page twice and deadlocking. Rather than
998 * trying to be clever about what pages can be locked,
999 * avoid the use of lock_page for direct compaction
1000 * altogether.
1002 if (current->flags & PF_MEMALLOC)
1003 goto out;
1005 lock_page(page);
1008 if (PageWriteback(page)) {
1010 * Only in the case of a full synchronous migration is it
1011 * necessary to wait for PageWriteback. In the async case,
1012 * the retry loop is too short and in the sync-light case,
1013 * the overhead of stalling is too much
1015 switch (mode) {
1016 case MIGRATE_SYNC:
1017 case MIGRATE_SYNC_NO_COPY:
1018 break;
1019 default:
1020 rc = -EBUSY;
1021 goto out_unlock;
1023 if (!force)
1024 goto out_unlock;
1025 wait_on_page_writeback(page);
1029 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1030 * we cannot notice that anon_vma is freed while we migrates a page.
1031 * This get_anon_vma() delays freeing anon_vma pointer until the end
1032 * of migration. File cache pages are no problem because of page_lock()
1033 * File Caches may use write_page() or lock_page() in migration, then,
1034 * just care Anon page here.
1036 * Only page_get_anon_vma() understands the subtleties of
1037 * getting a hold on an anon_vma from outside one of its mms.
1038 * But if we cannot get anon_vma, then we won't need it anyway,
1039 * because that implies that the anon page is no longer mapped
1040 * (and cannot be remapped so long as we hold the page lock).
1042 if (PageAnon(page) && !PageKsm(page))
1043 anon_vma = page_get_anon_vma(page);
1046 * Block others from accessing the new page when we get around to
1047 * establishing additional references. We are usually the only one
1048 * holding a reference to newpage at this point. We used to have a BUG
1049 * here if trylock_page(newpage) fails, but would like to allow for
1050 * cases where there might be a race with the previous use of newpage.
1051 * This is much like races on refcount of oldpage: just don't BUG().
1053 if (unlikely(!trylock_page(newpage)))
1054 goto out_unlock;
1056 if (unlikely(!is_lru)) {
1057 rc = move_to_new_page(newpage, page, mode);
1058 goto out_unlock_both;
1062 * Corner case handling:
1063 * 1. When a new swap-cache page is read into, it is added to the LRU
1064 * and treated as swapcache but it has no rmap yet.
1065 * Calling try_to_unmap() against a page->mapping==NULL page will
1066 * trigger a BUG. So handle it here.
1067 * 2. An orphaned page (see truncate_complete_page) might have
1068 * fs-private metadata. The page can be picked up due to memory
1069 * offlining. Everywhere else except page reclaim, the page is
1070 * invisible to the vm, so the page can not be migrated. So try to
1071 * free the metadata, so the page can be freed.
1073 if (!page->mapping) {
1074 VM_BUG_ON_PAGE(PageAnon(page), page);
1075 if (page_has_private(page)) {
1076 try_to_free_buffers(page);
1077 goto out_unlock_both;
1079 } else if (page_mapped(page)) {
1080 /* Establish migration ptes */
1081 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1082 page);
1083 try_to_unmap(page,
1084 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1085 page_was_mapped = 1;
1088 if (!page_mapped(page))
1089 rc = move_to_new_page(newpage, page, mode);
1091 if (page_was_mapped)
1092 remove_migration_ptes(page,
1093 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1095 out_unlock_both:
1096 unlock_page(newpage);
1097 out_unlock:
1098 /* Drop an anon_vma reference if we took one */
1099 if (anon_vma)
1100 put_anon_vma(anon_vma);
1101 unlock_page(page);
1102 out:
1104 * If migration is successful, decrease refcount of the newpage
1105 * which will not free the page because new page owner increased
1106 * refcounter. As well, if it is LRU page, add the page to LRU
1107 * list in here.
1109 if (rc == MIGRATEPAGE_SUCCESS) {
1110 if (unlikely(__PageMovable(newpage)))
1111 put_page(newpage);
1112 else
1113 putback_lru_page(newpage);
1116 return rc;
1120 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1121 * around it.
1123 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1124 #define ICE_noinline noinline
1125 #else
1126 #define ICE_noinline
1127 #endif
1130 * Obtain the lock on page, remove all ptes and migrate the page
1131 * to the newly allocated page in newpage.
1133 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1134 free_page_t put_new_page,
1135 unsigned long private, struct page *page,
1136 int force, enum migrate_mode mode,
1137 enum migrate_reason reason)
1139 int rc = MIGRATEPAGE_SUCCESS;
1140 int *result = NULL;
1141 struct page *newpage;
1143 newpage = get_new_page(page, private, &result);
1144 if (!newpage)
1145 return -ENOMEM;
1147 if (page_count(page) == 1) {
1148 /* page was freed from under us. So we are done. */
1149 ClearPageActive(page);
1150 ClearPageUnevictable(page);
1151 if (unlikely(__PageMovable(page))) {
1152 lock_page(page);
1153 if (!PageMovable(page))
1154 __ClearPageIsolated(page);
1155 unlock_page(page);
1157 if (put_new_page)
1158 put_new_page(newpage, private);
1159 else
1160 put_page(newpage);
1161 goto out;
1164 if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) {
1165 lock_page(page);
1166 rc = split_huge_page(page);
1167 unlock_page(page);
1168 if (rc)
1169 goto out;
1172 rc = __unmap_and_move(page, newpage, force, mode);
1173 if (rc == MIGRATEPAGE_SUCCESS)
1174 set_page_owner_migrate_reason(newpage, reason);
1176 out:
1177 if (rc != -EAGAIN) {
1179 * A page that has been migrated has all references
1180 * removed and will be freed. A page that has not been
1181 * migrated will have kepts its references and be
1182 * restored.
1184 list_del(&page->lru);
1187 * Compaction can migrate also non-LRU pages which are
1188 * not accounted to NR_ISOLATED_*. They can be recognized
1189 * as __PageMovable
1191 if (likely(!__PageMovable(page)))
1192 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1193 page_is_file_cache(page), -hpage_nr_pages(page));
1197 * If migration is successful, releases reference grabbed during
1198 * isolation. Otherwise, restore the page to right list unless
1199 * we want to retry.
1201 if (rc == MIGRATEPAGE_SUCCESS) {
1202 put_page(page);
1203 if (reason == MR_MEMORY_FAILURE) {
1205 * Set PG_HWPoison on just freed page
1206 * intentionally. Although it's rather weird,
1207 * it's how HWPoison flag works at the moment.
1209 if (!test_set_page_hwpoison(page))
1210 num_poisoned_pages_inc();
1212 } else {
1213 if (rc != -EAGAIN) {
1214 if (likely(!__PageMovable(page))) {
1215 putback_lru_page(page);
1216 goto put_new;
1219 lock_page(page);
1220 if (PageMovable(page))
1221 putback_movable_page(page);
1222 else
1223 __ClearPageIsolated(page);
1224 unlock_page(page);
1225 put_page(page);
1227 put_new:
1228 if (put_new_page)
1229 put_new_page(newpage, private);
1230 else
1231 put_page(newpage);
1234 if (result) {
1235 if (rc)
1236 *result = rc;
1237 else
1238 *result = page_to_nid(newpage);
1240 return rc;
1244 * Counterpart of unmap_and_move_page() for hugepage migration.
1246 * This function doesn't wait the completion of hugepage I/O
1247 * because there is no race between I/O and migration for hugepage.
1248 * Note that currently hugepage I/O occurs only in direct I/O
1249 * where no lock is held and PG_writeback is irrelevant,
1250 * and writeback status of all subpages are counted in the reference
1251 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1252 * under direct I/O, the reference of the head page is 512 and a bit more.)
1253 * This means that when we try to migrate hugepage whose subpages are
1254 * doing direct I/O, some references remain after try_to_unmap() and
1255 * hugepage migration fails without data corruption.
1257 * There is also no race when direct I/O is issued on the page under migration,
1258 * because then pte is replaced with migration swap entry and direct I/O code
1259 * will wait in the page fault for migration to complete.
1261 static int unmap_and_move_huge_page(new_page_t get_new_page,
1262 free_page_t put_new_page, unsigned long private,
1263 struct page *hpage, int force,
1264 enum migrate_mode mode, int reason)
1266 int rc = -EAGAIN;
1267 int *result = NULL;
1268 int page_was_mapped = 0;
1269 struct page *new_hpage;
1270 struct anon_vma *anon_vma = NULL;
1273 * Movability of hugepages depends on architectures and hugepage size.
1274 * This check is necessary because some callers of hugepage migration
1275 * like soft offline and memory hotremove don't walk through page
1276 * tables or check whether the hugepage is pmd-based or not before
1277 * kicking migration.
1279 if (!hugepage_migration_supported(page_hstate(hpage))) {
1280 putback_active_hugepage(hpage);
1281 return -ENOSYS;
1284 new_hpage = get_new_page(hpage, private, &result);
1285 if (!new_hpage)
1286 return -ENOMEM;
1288 if (!trylock_page(hpage)) {
1289 if (!force)
1290 goto out;
1291 switch (mode) {
1292 case MIGRATE_SYNC:
1293 case MIGRATE_SYNC_NO_COPY:
1294 break;
1295 default:
1296 goto out;
1298 lock_page(hpage);
1301 if (PageAnon(hpage))
1302 anon_vma = page_get_anon_vma(hpage);
1304 if (unlikely(!trylock_page(new_hpage)))
1305 goto put_anon;
1307 if (page_mapped(hpage)) {
1308 try_to_unmap(hpage,
1309 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1310 page_was_mapped = 1;
1313 if (!page_mapped(hpage))
1314 rc = move_to_new_page(new_hpage, hpage, mode);
1316 if (page_was_mapped)
1317 remove_migration_ptes(hpage,
1318 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1320 unlock_page(new_hpage);
1322 put_anon:
1323 if (anon_vma)
1324 put_anon_vma(anon_vma);
1326 if (rc == MIGRATEPAGE_SUCCESS) {
1327 move_hugetlb_state(hpage, new_hpage, reason);
1328 put_new_page = NULL;
1331 unlock_page(hpage);
1332 out:
1333 if (rc != -EAGAIN)
1334 putback_active_hugepage(hpage);
1335 if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1336 num_poisoned_pages_inc();
1339 * If migration was not successful and there's a freeing callback, use
1340 * it. Otherwise, put_page() will drop the reference grabbed during
1341 * isolation.
1343 if (put_new_page)
1344 put_new_page(new_hpage, private);
1345 else
1346 putback_active_hugepage(new_hpage);
1348 if (result) {
1349 if (rc)
1350 *result = rc;
1351 else
1352 *result = page_to_nid(new_hpage);
1354 return rc;
1358 * migrate_pages - migrate the pages specified in a list, to the free pages
1359 * supplied as the target for the page migration
1361 * @from: The list of pages to be migrated.
1362 * @get_new_page: The function used to allocate free pages to be used
1363 * as the target of the page migration.
1364 * @put_new_page: The function used to free target pages if migration
1365 * fails, or NULL if no special handling is necessary.
1366 * @private: Private data to be passed on to get_new_page()
1367 * @mode: The migration mode that specifies the constraints for
1368 * page migration, if any.
1369 * @reason: The reason for page migration.
1371 * The function returns after 10 attempts or if no pages are movable any more
1372 * because the list has become empty or no retryable pages exist any more.
1373 * The caller should call putback_movable_pages() to return pages to the LRU
1374 * or free list only if ret != 0.
1376 * Returns the number of pages that were not migrated, or an error code.
1378 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1379 free_page_t put_new_page, unsigned long private,
1380 enum migrate_mode mode, int reason)
1382 int retry = 1;
1383 int nr_failed = 0;
1384 int nr_succeeded = 0;
1385 int pass = 0;
1386 struct page *page;
1387 struct page *page2;
1388 int swapwrite = current->flags & PF_SWAPWRITE;
1389 int rc;
1391 if (!swapwrite)
1392 current->flags |= PF_SWAPWRITE;
1394 for(pass = 0; pass < 10 && retry; pass++) {
1395 retry = 0;
1397 list_for_each_entry_safe(page, page2, from, lru) {
1398 cond_resched();
1400 if (PageHuge(page))
1401 rc = unmap_and_move_huge_page(get_new_page,
1402 put_new_page, private, page,
1403 pass > 2, mode, reason);
1404 else
1405 rc = unmap_and_move(get_new_page, put_new_page,
1406 private, page, pass > 2, mode,
1407 reason);
1409 switch(rc) {
1410 case -ENOMEM:
1411 nr_failed++;
1412 goto out;
1413 case -EAGAIN:
1414 retry++;
1415 break;
1416 case MIGRATEPAGE_SUCCESS:
1417 nr_succeeded++;
1418 break;
1419 default:
1421 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1422 * unlike -EAGAIN case, the failed page is
1423 * removed from migration page list and not
1424 * retried in the next outer loop.
1426 nr_failed++;
1427 break;
1431 nr_failed += retry;
1432 rc = nr_failed;
1433 out:
1434 if (nr_succeeded)
1435 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1436 if (nr_failed)
1437 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1438 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1440 if (!swapwrite)
1441 current->flags &= ~PF_SWAPWRITE;
1443 return rc;
1446 #ifdef CONFIG_NUMA
1448 * Move a list of individual pages
1450 struct page_to_node {
1451 unsigned long addr;
1452 struct page *page;
1453 int node;
1454 int status;
1457 static struct page *new_page_node(struct page *p, unsigned long private,
1458 int **result)
1460 struct page_to_node *pm = (struct page_to_node *)private;
1462 while (pm->node != MAX_NUMNODES && pm->page != p)
1463 pm++;
1465 if (pm->node == MAX_NUMNODES)
1466 return NULL;
1468 *result = &pm->status;
1470 if (PageHuge(p))
1471 return alloc_huge_page_node(page_hstate(compound_head(p)),
1472 pm->node);
1473 else if (thp_migration_supported() && PageTransHuge(p)) {
1474 struct page *thp;
1476 thp = alloc_pages_node(pm->node,
1477 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1478 HPAGE_PMD_ORDER);
1479 if (!thp)
1480 return NULL;
1481 prep_transhuge_page(thp);
1482 return thp;
1483 } else
1484 return __alloc_pages_node(pm->node,
1485 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1489 * Move a set of pages as indicated in the pm array. The addr
1490 * field must be set to the virtual address of the page to be moved
1491 * and the node number must contain a valid target node.
1492 * The pm array ends with node = MAX_NUMNODES.
1494 static int do_move_page_to_node_array(struct mm_struct *mm,
1495 struct page_to_node *pm,
1496 int migrate_all)
1498 int err;
1499 struct page_to_node *pp;
1500 LIST_HEAD(pagelist);
1502 down_read(&mm->mmap_sem);
1505 * Build a list of pages to migrate
1507 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1508 struct vm_area_struct *vma;
1509 struct page *page;
1510 struct page *head;
1511 unsigned int follflags;
1513 err = -EFAULT;
1514 vma = find_vma(mm, pp->addr);
1515 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1516 goto set_status;
1518 /* FOLL_DUMP to ignore special (like zero) pages */
1519 follflags = FOLL_GET | FOLL_DUMP;
1520 if (!thp_migration_supported())
1521 follflags |= FOLL_SPLIT;
1522 page = follow_page(vma, pp->addr, follflags);
1524 err = PTR_ERR(page);
1525 if (IS_ERR(page))
1526 goto set_status;
1528 err = -ENOENT;
1529 if (!page)
1530 goto set_status;
1532 err = page_to_nid(page);
1534 if (err == pp->node)
1536 * Node already in the right place
1538 goto put_and_set;
1540 err = -EACCES;
1541 if (page_mapcount(page) > 1 &&
1542 !migrate_all)
1543 goto put_and_set;
1545 if (PageHuge(page)) {
1546 if (PageHead(page)) {
1547 isolate_huge_page(page, &pagelist);
1548 err = 0;
1549 pp->page = page;
1551 goto put_and_set;
1554 pp->page = compound_head(page);
1555 head = compound_head(page);
1556 err = isolate_lru_page(head);
1557 if (!err) {
1558 list_add_tail(&head->lru, &pagelist);
1559 mod_node_page_state(page_pgdat(head),
1560 NR_ISOLATED_ANON + page_is_file_cache(head),
1561 hpage_nr_pages(head));
1563 put_and_set:
1565 * Either remove the duplicate refcount from
1566 * isolate_lru_page() or drop the page ref if it was
1567 * not isolated.
1569 put_page(page);
1570 set_status:
1571 pp->status = err;
1574 err = 0;
1575 if (!list_empty(&pagelist)) {
1576 err = migrate_pages(&pagelist, new_page_node, NULL,
1577 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1578 if (err)
1579 putback_movable_pages(&pagelist);
1582 up_read(&mm->mmap_sem);
1583 return err;
1587 * Migrate an array of page address onto an array of nodes and fill
1588 * the corresponding array of status.
1590 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1591 unsigned long nr_pages,
1592 const void __user * __user *pages,
1593 const int __user *nodes,
1594 int __user *status, int flags)
1596 struct page_to_node *pm;
1597 unsigned long chunk_nr_pages;
1598 unsigned long chunk_start;
1599 int err;
1601 err = -ENOMEM;
1602 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1603 if (!pm)
1604 goto out;
1606 migrate_prep();
1609 * Store a chunk of page_to_node array in a page,
1610 * but keep the last one as a marker
1612 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1614 for (chunk_start = 0;
1615 chunk_start < nr_pages;
1616 chunk_start += chunk_nr_pages) {
1617 int j;
1619 if (chunk_start + chunk_nr_pages > nr_pages)
1620 chunk_nr_pages = nr_pages - chunk_start;
1622 /* fill the chunk pm with addrs and nodes from user-space */
1623 for (j = 0; j < chunk_nr_pages; j++) {
1624 const void __user *p;
1625 int node;
1627 err = -EFAULT;
1628 if (get_user(p, pages + j + chunk_start))
1629 goto out_pm;
1630 pm[j].addr = (unsigned long) p;
1632 if (get_user(node, nodes + j + chunk_start))
1633 goto out_pm;
1635 err = -ENODEV;
1636 if (node < 0 || node >= MAX_NUMNODES)
1637 goto out_pm;
1639 if (!node_state(node, N_MEMORY))
1640 goto out_pm;
1642 err = -EACCES;
1643 if (!node_isset(node, task_nodes))
1644 goto out_pm;
1646 pm[j].node = node;
1649 /* End marker for this chunk */
1650 pm[chunk_nr_pages].node = MAX_NUMNODES;
1652 /* Migrate this chunk */
1653 err = do_move_page_to_node_array(mm, pm,
1654 flags & MPOL_MF_MOVE_ALL);
1655 if (err < 0)
1656 goto out_pm;
1658 /* Return status information */
1659 for (j = 0; j < chunk_nr_pages; j++)
1660 if (put_user(pm[j].status, status + j + chunk_start)) {
1661 err = -EFAULT;
1662 goto out_pm;
1665 err = 0;
1667 out_pm:
1668 free_page((unsigned long)pm);
1669 out:
1670 return err;
1674 * Determine the nodes of an array of pages and store it in an array of status.
1676 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1677 const void __user **pages, int *status)
1679 unsigned long i;
1681 down_read(&mm->mmap_sem);
1683 for (i = 0; i < nr_pages; i++) {
1684 unsigned long addr = (unsigned long)(*pages);
1685 struct vm_area_struct *vma;
1686 struct page *page;
1687 int err = -EFAULT;
1689 vma = find_vma(mm, addr);
1690 if (!vma || addr < vma->vm_start)
1691 goto set_status;
1693 /* FOLL_DUMP to ignore special (like zero) pages */
1694 page = follow_page(vma, addr, FOLL_DUMP);
1696 err = PTR_ERR(page);
1697 if (IS_ERR(page))
1698 goto set_status;
1700 err = page ? page_to_nid(page) : -ENOENT;
1701 set_status:
1702 *status = err;
1704 pages++;
1705 status++;
1708 up_read(&mm->mmap_sem);
1712 * Determine the nodes of a user array of pages and store it in
1713 * a user array of status.
1715 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1716 const void __user * __user *pages,
1717 int __user *status)
1719 #define DO_PAGES_STAT_CHUNK_NR 16
1720 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1721 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1723 while (nr_pages) {
1724 unsigned long chunk_nr;
1726 chunk_nr = nr_pages;
1727 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1728 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1730 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1731 break;
1733 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1735 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1736 break;
1738 pages += chunk_nr;
1739 status += chunk_nr;
1740 nr_pages -= chunk_nr;
1742 return nr_pages ? -EFAULT : 0;
1746 * Move a list of pages in the address space of the currently executing
1747 * process.
1749 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1750 const void __user * __user *pages,
1751 const int __user *nodes,
1752 int __user *status, int flags)
1754 struct task_struct *task;
1755 struct mm_struct *mm;
1756 int err;
1757 nodemask_t task_nodes;
1759 /* Check flags */
1760 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1761 return -EINVAL;
1763 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1764 return -EPERM;
1766 /* Find the mm_struct */
1767 rcu_read_lock();
1768 task = pid ? find_task_by_vpid(pid) : current;
1769 if (!task) {
1770 rcu_read_unlock();
1771 return -ESRCH;
1773 get_task_struct(task);
1776 * Check if this process has the right to modify the specified
1777 * process. Use the regular "ptrace_may_access()" checks.
1779 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1780 rcu_read_unlock();
1781 err = -EPERM;
1782 goto out;
1784 rcu_read_unlock();
1786 err = security_task_movememory(task);
1787 if (err)
1788 goto out;
1790 task_nodes = cpuset_mems_allowed(task);
1791 mm = get_task_mm(task);
1792 put_task_struct(task);
1794 if (!mm)
1795 return -EINVAL;
1797 if (nodes)
1798 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1799 nodes, status, flags);
1800 else
1801 err = do_pages_stat(mm, nr_pages, pages, status);
1803 mmput(mm);
1804 return err;
1806 out:
1807 put_task_struct(task);
1808 return err;
1811 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1812 const void __user * __user *, pages,
1813 const int __user *, nodes,
1814 int __user *, status, int, flags)
1816 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1819 #ifdef CONFIG_COMPAT
1820 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1821 compat_uptr_t __user *, pages32,
1822 const int __user *, nodes,
1823 int __user *, status,
1824 int, flags)
1826 const void __user * __user *pages;
1827 int i;
1829 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1830 for (i = 0; i < nr_pages; i++) {
1831 compat_uptr_t p;
1833 if (get_user(p, pages32 + i) ||
1834 put_user(compat_ptr(p), pages + i))
1835 return -EFAULT;
1837 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1839 #endif /* CONFIG_COMPAT */
1841 #ifdef CONFIG_NUMA_BALANCING
1843 * Returns true if this is a safe migration target node for misplaced NUMA
1844 * pages. Currently it only checks the watermarks which crude
1846 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1847 unsigned long nr_migrate_pages)
1849 int z;
1851 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1852 struct zone *zone = pgdat->node_zones + z;
1854 if (!populated_zone(zone))
1855 continue;
1857 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1858 if (!zone_watermark_ok(zone, 0,
1859 high_wmark_pages(zone) +
1860 nr_migrate_pages,
1861 0, 0))
1862 continue;
1863 return true;
1865 return false;
1868 static struct page *alloc_misplaced_dst_page(struct page *page,
1869 unsigned long data,
1870 int **result)
1872 int nid = (int) data;
1873 struct page *newpage;
1875 newpage = __alloc_pages_node(nid,
1876 (GFP_HIGHUSER_MOVABLE |
1877 __GFP_THISNODE | __GFP_NOMEMALLOC |
1878 __GFP_NORETRY | __GFP_NOWARN) &
1879 ~__GFP_RECLAIM, 0);
1881 return newpage;
1885 * page migration rate limiting control.
1886 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1887 * window of time. Default here says do not migrate more than 1280M per second.
1889 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1890 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1892 /* Returns true if the node is migrate rate-limited after the update */
1893 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1894 unsigned long nr_pages)
1897 * Rate-limit the amount of data that is being migrated to a node.
1898 * Optimal placement is no good if the memory bus is saturated and
1899 * all the time is being spent migrating!
1901 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1902 spin_lock(&pgdat->numabalancing_migrate_lock);
1903 pgdat->numabalancing_migrate_nr_pages = 0;
1904 pgdat->numabalancing_migrate_next_window = jiffies +
1905 msecs_to_jiffies(migrate_interval_millisecs);
1906 spin_unlock(&pgdat->numabalancing_migrate_lock);
1908 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1909 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1910 nr_pages);
1911 return true;
1915 * This is an unlocked non-atomic update so errors are possible.
1916 * The consequences are failing to migrate when we potentiall should
1917 * have which is not severe enough to warrant locking. If it is ever
1918 * a problem, it can be converted to a per-cpu counter.
1920 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1921 return false;
1924 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1926 int page_lru;
1928 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1930 /* Avoid migrating to a node that is nearly full */
1931 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1932 return 0;
1934 if (isolate_lru_page(page))
1935 return 0;
1938 * migrate_misplaced_transhuge_page() skips page migration's usual
1939 * check on page_count(), so we must do it here, now that the page
1940 * has been isolated: a GUP pin, or any other pin, prevents migration.
1941 * The expected page count is 3: 1 for page's mapcount and 1 for the
1942 * caller's pin and 1 for the reference taken by isolate_lru_page().
1944 if (PageTransHuge(page) && page_count(page) != 3) {
1945 putback_lru_page(page);
1946 return 0;
1949 page_lru = page_is_file_cache(page);
1950 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1951 hpage_nr_pages(page));
1954 * Isolating the page has taken another reference, so the
1955 * caller's reference can be safely dropped without the page
1956 * disappearing underneath us during migration.
1958 put_page(page);
1959 return 1;
1962 bool pmd_trans_migrating(pmd_t pmd)
1964 struct page *page = pmd_page(pmd);
1965 return PageLocked(page);
1969 * Attempt to migrate a misplaced page to the specified destination
1970 * node. Caller is expected to have an elevated reference count on
1971 * the page that will be dropped by this function before returning.
1973 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1974 int node)
1976 pg_data_t *pgdat = NODE_DATA(node);
1977 int isolated;
1978 int nr_remaining;
1979 LIST_HEAD(migratepages);
1982 * Don't migrate file pages that are mapped in multiple processes
1983 * with execute permissions as they are probably shared libraries.
1985 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1986 (vma->vm_flags & VM_EXEC))
1987 goto out;
1990 * Rate-limit the amount of data that is being migrated to a node.
1991 * Optimal placement is no good if the memory bus is saturated and
1992 * all the time is being spent migrating!
1994 if (numamigrate_update_ratelimit(pgdat, 1))
1995 goto out;
1997 isolated = numamigrate_isolate_page(pgdat, page);
1998 if (!isolated)
1999 goto out;
2001 list_add(&page->lru, &migratepages);
2002 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2003 NULL, node, MIGRATE_ASYNC,
2004 MR_NUMA_MISPLACED);
2005 if (nr_remaining) {
2006 if (!list_empty(&migratepages)) {
2007 list_del(&page->lru);
2008 dec_node_page_state(page, NR_ISOLATED_ANON +
2009 page_is_file_cache(page));
2010 putback_lru_page(page);
2012 isolated = 0;
2013 } else
2014 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2015 BUG_ON(!list_empty(&migratepages));
2016 return isolated;
2018 out:
2019 put_page(page);
2020 return 0;
2022 #endif /* CONFIG_NUMA_BALANCING */
2024 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2026 * Migrates a THP to a given target node. page must be locked and is unlocked
2027 * before returning.
2029 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2030 struct vm_area_struct *vma,
2031 pmd_t *pmd, pmd_t entry,
2032 unsigned long address,
2033 struct page *page, int node)
2035 spinlock_t *ptl;
2036 pg_data_t *pgdat = NODE_DATA(node);
2037 int isolated = 0;
2038 struct page *new_page = NULL;
2039 int page_lru = page_is_file_cache(page);
2040 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2041 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2044 * Rate-limit the amount of data that is being migrated to a node.
2045 * Optimal placement is no good if the memory bus is saturated and
2046 * all the time is being spent migrating!
2048 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2049 goto out_dropref;
2051 new_page = alloc_pages_node(node,
2052 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2053 HPAGE_PMD_ORDER);
2054 if (!new_page)
2055 goto out_fail;
2056 prep_transhuge_page(new_page);
2058 isolated = numamigrate_isolate_page(pgdat, page);
2059 if (!isolated) {
2060 put_page(new_page);
2061 goto out_fail;
2064 /* Prepare a page as a migration target */
2065 __SetPageLocked(new_page);
2066 if (PageSwapBacked(page))
2067 __SetPageSwapBacked(new_page);
2069 /* anon mapping, we can simply copy page->mapping to the new page: */
2070 new_page->mapping = page->mapping;
2071 new_page->index = page->index;
2072 migrate_page_copy(new_page, page);
2073 WARN_ON(PageLRU(new_page));
2075 /* Recheck the target PMD */
2076 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2077 ptl = pmd_lock(mm, pmd);
2078 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2079 spin_unlock(ptl);
2080 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2082 /* Reverse changes made by migrate_page_copy() */
2083 if (TestClearPageActive(new_page))
2084 SetPageActive(page);
2085 if (TestClearPageUnevictable(new_page))
2086 SetPageUnevictable(page);
2088 unlock_page(new_page);
2089 put_page(new_page); /* Free it */
2091 /* Retake the callers reference and putback on LRU */
2092 get_page(page);
2093 putback_lru_page(page);
2094 mod_node_page_state(page_pgdat(page),
2095 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2097 goto out_unlock;
2100 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2101 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2104 * Clear the old entry under pagetable lock and establish the new PTE.
2105 * Any parallel GUP will either observe the old page blocking on the
2106 * page lock, block on the page table lock or observe the new page.
2107 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2108 * guarantee the copy is visible before the pagetable update.
2110 flush_cache_range(vma, mmun_start, mmun_end);
2111 page_add_anon_rmap(new_page, vma, mmun_start, true);
2112 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2113 set_pmd_at(mm, mmun_start, pmd, entry);
2114 update_mmu_cache_pmd(vma, address, &entry);
2116 page_ref_unfreeze(page, 2);
2117 mlock_migrate_page(new_page, page);
2118 page_remove_rmap(page, true);
2119 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2121 spin_unlock(ptl);
2123 * No need to double call mmu_notifier->invalidate_range() callback as
2124 * the above pmdp_huge_clear_flush_notify() did already call it.
2126 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2128 /* Take an "isolate" reference and put new page on the LRU. */
2129 get_page(new_page);
2130 putback_lru_page(new_page);
2132 unlock_page(new_page);
2133 unlock_page(page);
2134 put_page(page); /* Drop the rmap reference */
2135 put_page(page); /* Drop the LRU isolation reference */
2137 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2138 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2140 mod_node_page_state(page_pgdat(page),
2141 NR_ISOLATED_ANON + page_lru,
2142 -HPAGE_PMD_NR);
2143 return isolated;
2145 out_fail:
2146 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2147 out_dropref:
2148 ptl = pmd_lock(mm, pmd);
2149 if (pmd_same(*pmd, entry)) {
2150 entry = pmd_modify(entry, vma->vm_page_prot);
2151 set_pmd_at(mm, mmun_start, pmd, entry);
2152 update_mmu_cache_pmd(vma, address, &entry);
2154 spin_unlock(ptl);
2156 out_unlock:
2157 unlock_page(page);
2158 put_page(page);
2159 return 0;
2161 #endif /* CONFIG_NUMA_BALANCING */
2163 #endif /* CONFIG_NUMA */
2165 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2166 struct migrate_vma {
2167 struct vm_area_struct *vma;
2168 unsigned long *dst;
2169 unsigned long *src;
2170 unsigned long cpages;
2171 unsigned long npages;
2172 unsigned long start;
2173 unsigned long end;
2176 static int migrate_vma_collect_hole(unsigned long start,
2177 unsigned long end,
2178 struct mm_walk *walk)
2180 struct migrate_vma *migrate = walk->private;
2181 unsigned long addr;
2183 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2184 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2185 migrate->dst[migrate->npages] = 0;
2186 migrate->npages++;
2187 migrate->cpages++;
2190 return 0;
2193 static int migrate_vma_collect_skip(unsigned long start,
2194 unsigned long end,
2195 struct mm_walk *walk)
2197 struct migrate_vma *migrate = walk->private;
2198 unsigned long addr;
2200 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2201 migrate->dst[migrate->npages] = 0;
2202 migrate->src[migrate->npages++] = 0;
2205 return 0;
2208 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2209 unsigned long start,
2210 unsigned long end,
2211 struct mm_walk *walk)
2213 struct migrate_vma *migrate = walk->private;
2214 struct vm_area_struct *vma = walk->vma;
2215 struct mm_struct *mm = vma->vm_mm;
2216 unsigned long addr = start, unmapped = 0;
2217 spinlock_t *ptl;
2218 pte_t *ptep;
2220 again:
2221 if (pmd_none(*pmdp))
2222 return migrate_vma_collect_hole(start, end, walk);
2224 if (pmd_trans_huge(*pmdp)) {
2225 struct page *page;
2227 ptl = pmd_lock(mm, pmdp);
2228 if (unlikely(!pmd_trans_huge(*pmdp))) {
2229 spin_unlock(ptl);
2230 goto again;
2233 page = pmd_page(*pmdp);
2234 if (is_huge_zero_page(page)) {
2235 spin_unlock(ptl);
2236 split_huge_pmd(vma, pmdp, addr);
2237 if (pmd_trans_unstable(pmdp))
2238 return migrate_vma_collect_skip(start, end,
2239 walk);
2240 } else {
2241 int ret;
2243 get_page(page);
2244 spin_unlock(ptl);
2245 if (unlikely(!trylock_page(page)))
2246 return migrate_vma_collect_skip(start, end,
2247 walk);
2248 ret = split_huge_page(page);
2249 unlock_page(page);
2250 put_page(page);
2251 if (ret)
2252 return migrate_vma_collect_skip(start, end,
2253 walk);
2254 if (pmd_none(*pmdp))
2255 return migrate_vma_collect_hole(start, end,
2256 walk);
2260 if (unlikely(pmd_bad(*pmdp)))
2261 return migrate_vma_collect_skip(start, end, walk);
2263 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2264 arch_enter_lazy_mmu_mode();
2266 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2267 unsigned long mpfn, pfn;
2268 struct page *page;
2269 swp_entry_t entry;
2270 pte_t pte;
2272 pte = *ptep;
2273 pfn = pte_pfn(pte);
2275 if (pte_none(pte)) {
2276 mpfn = MIGRATE_PFN_MIGRATE;
2277 migrate->cpages++;
2278 pfn = 0;
2279 goto next;
2282 if (!pte_present(pte)) {
2283 mpfn = pfn = 0;
2286 * Only care about unaddressable device page special
2287 * page table entry. Other special swap entries are not
2288 * migratable, and we ignore regular swapped page.
2290 entry = pte_to_swp_entry(pte);
2291 if (!is_device_private_entry(entry))
2292 goto next;
2294 page = device_private_entry_to_page(entry);
2295 mpfn = migrate_pfn(page_to_pfn(page))|
2296 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2297 if (is_write_device_private_entry(entry))
2298 mpfn |= MIGRATE_PFN_WRITE;
2299 } else {
2300 if (is_zero_pfn(pfn)) {
2301 mpfn = MIGRATE_PFN_MIGRATE;
2302 migrate->cpages++;
2303 pfn = 0;
2304 goto next;
2306 page = _vm_normal_page(migrate->vma, addr, pte, true);
2307 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2308 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2311 /* FIXME support THP */
2312 if (!page || !page->mapping || PageTransCompound(page)) {
2313 mpfn = pfn = 0;
2314 goto next;
2316 pfn = page_to_pfn(page);
2319 * By getting a reference on the page we pin it and that blocks
2320 * any kind of migration. Side effect is that it "freezes" the
2321 * pte.
2323 * We drop this reference after isolating the page from the lru
2324 * for non device page (device page are not on the lru and thus
2325 * can't be dropped from it).
2327 get_page(page);
2328 migrate->cpages++;
2331 * Optimize for the common case where page is only mapped once
2332 * in one process. If we can lock the page, then we can safely
2333 * set up a special migration page table entry now.
2335 if (trylock_page(page)) {
2336 pte_t swp_pte;
2338 mpfn |= MIGRATE_PFN_LOCKED;
2339 ptep_get_and_clear(mm, addr, ptep);
2341 /* Setup special migration page table entry */
2342 entry = make_migration_entry(page, pte_write(pte));
2343 swp_pte = swp_entry_to_pte(entry);
2344 if (pte_soft_dirty(pte))
2345 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2346 set_pte_at(mm, addr, ptep, swp_pte);
2349 * This is like regular unmap: we remove the rmap and
2350 * drop page refcount. Page won't be freed, as we took
2351 * a reference just above.
2353 page_remove_rmap(page, false);
2354 put_page(page);
2356 if (pte_present(pte))
2357 unmapped++;
2360 next:
2361 migrate->dst[migrate->npages] = 0;
2362 migrate->src[migrate->npages++] = mpfn;
2364 arch_leave_lazy_mmu_mode();
2365 pte_unmap_unlock(ptep - 1, ptl);
2367 /* Only flush the TLB if we actually modified any entries */
2368 if (unmapped)
2369 flush_tlb_range(walk->vma, start, end);
2371 return 0;
2375 * migrate_vma_collect() - collect pages over a range of virtual addresses
2376 * @migrate: migrate struct containing all migration information
2378 * This will walk the CPU page table. For each virtual address backed by a
2379 * valid page, it updates the src array and takes a reference on the page, in
2380 * order to pin the page until we lock it and unmap it.
2382 static void migrate_vma_collect(struct migrate_vma *migrate)
2384 struct mm_walk mm_walk;
2386 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2387 mm_walk.pte_entry = NULL;
2388 mm_walk.pte_hole = migrate_vma_collect_hole;
2389 mm_walk.hugetlb_entry = NULL;
2390 mm_walk.test_walk = NULL;
2391 mm_walk.vma = migrate->vma;
2392 mm_walk.mm = migrate->vma->vm_mm;
2393 mm_walk.private = migrate;
2395 mmu_notifier_invalidate_range_start(mm_walk.mm,
2396 migrate->start,
2397 migrate->end);
2398 walk_page_range(migrate->start, migrate->end, &mm_walk);
2399 mmu_notifier_invalidate_range_end(mm_walk.mm,
2400 migrate->start,
2401 migrate->end);
2403 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2407 * migrate_vma_check_page() - check if page is pinned or not
2408 * @page: struct page to check
2410 * Pinned pages cannot be migrated. This is the same test as in
2411 * migrate_page_move_mapping(), except that here we allow migration of a
2412 * ZONE_DEVICE page.
2414 static bool migrate_vma_check_page(struct page *page)
2417 * One extra ref because caller holds an extra reference, either from
2418 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2419 * a device page.
2421 int extra = 1;
2424 * FIXME support THP (transparent huge page), it is bit more complex to
2425 * check them than regular pages, because they can be mapped with a pmd
2426 * or with a pte (split pte mapping).
2428 if (PageCompound(page))
2429 return false;
2431 /* Page from ZONE_DEVICE have one extra reference */
2432 if (is_zone_device_page(page)) {
2434 * Private page can never be pin as they have no valid pte and
2435 * GUP will fail for those. Yet if there is a pending migration
2436 * a thread might try to wait on the pte migration entry and
2437 * will bump the page reference count. Sadly there is no way to
2438 * differentiate a regular pin from migration wait. Hence to
2439 * avoid 2 racing thread trying to migrate back to CPU to enter
2440 * infinite loop (one stoping migration because the other is
2441 * waiting on pte migration entry). We always return true here.
2443 * FIXME proper solution is to rework migration_entry_wait() so
2444 * it does not need to take a reference on page.
2446 if (is_device_private_page(page))
2447 return true;
2450 * Only allow device public page to be migrated and account for
2451 * the extra reference count imply by ZONE_DEVICE pages.
2453 if (!is_device_public_page(page))
2454 return false;
2455 extra++;
2458 /* For file back page */
2459 if (page_mapping(page))
2460 extra += 1 + page_has_private(page);
2462 if ((page_count(page) - extra) > page_mapcount(page))
2463 return false;
2465 return true;
2469 * migrate_vma_prepare() - lock pages and isolate them from the lru
2470 * @migrate: migrate struct containing all migration information
2472 * This locks pages that have been collected by migrate_vma_collect(). Once each
2473 * page is locked it is isolated from the lru (for non-device pages). Finally,
2474 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2475 * migrated by concurrent kernel threads.
2477 static void migrate_vma_prepare(struct migrate_vma *migrate)
2479 const unsigned long npages = migrate->npages;
2480 const unsigned long start = migrate->start;
2481 unsigned long addr, i, restore = 0;
2482 bool allow_drain = true;
2484 lru_add_drain();
2486 for (i = 0; (i < npages) && migrate->cpages; i++) {
2487 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2488 bool remap = true;
2490 if (!page)
2491 continue;
2493 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2495 * Because we are migrating several pages there can be
2496 * a deadlock between 2 concurrent migration where each
2497 * are waiting on each other page lock.
2499 * Make migrate_vma() a best effort thing and backoff
2500 * for any page we can not lock right away.
2502 if (!trylock_page(page)) {
2503 migrate->src[i] = 0;
2504 migrate->cpages--;
2505 put_page(page);
2506 continue;
2508 remap = false;
2509 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2512 /* ZONE_DEVICE pages are not on LRU */
2513 if (!is_zone_device_page(page)) {
2514 if (!PageLRU(page) && allow_drain) {
2515 /* Drain CPU's pagevec */
2516 lru_add_drain_all();
2517 allow_drain = false;
2520 if (isolate_lru_page(page)) {
2521 if (remap) {
2522 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2523 migrate->cpages--;
2524 restore++;
2525 } else {
2526 migrate->src[i] = 0;
2527 unlock_page(page);
2528 migrate->cpages--;
2529 put_page(page);
2531 continue;
2534 /* Drop the reference we took in collect */
2535 put_page(page);
2538 if (!migrate_vma_check_page(page)) {
2539 if (remap) {
2540 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2541 migrate->cpages--;
2542 restore++;
2544 if (!is_zone_device_page(page)) {
2545 get_page(page);
2546 putback_lru_page(page);
2548 } else {
2549 migrate->src[i] = 0;
2550 unlock_page(page);
2551 migrate->cpages--;
2553 if (!is_zone_device_page(page))
2554 putback_lru_page(page);
2555 else
2556 put_page(page);
2561 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2562 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2564 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2565 continue;
2567 remove_migration_pte(page, migrate->vma, addr, page);
2569 migrate->src[i] = 0;
2570 unlock_page(page);
2571 put_page(page);
2572 restore--;
2577 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2578 * @migrate: migrate struct containing all migration information
2580 * Replace page mapping (CPU page table pte) with a special migration pte entry
2581 * and check again if it has been pinned. Pinned pages are restored because we
2582 * cannot migrate them.
2584 * This is the last step before we call the device driver callback to allocate
2585 * destination memory and copy contents of original page over to new page.
2587 static void migrate_vma_unmap(struct migrate_vma *migrate)
2589 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2590 const unsigned long npages = migrate->npages;
2591 const unsigned long start = migrate->start;
2592 unsigned long addr, i, restore = 0;
2594 for (i = 0; i < npages; i++) {
2595 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2597 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2598 continue;
2600 if (page_mapped(page)) {
2601 try_to_unmap(page, flags);
2602 if (page_mapped(page))
2603 goto restore;
2606 if (migrate_vma_check_page(page))
2607 continue;
2609 restore:
2610 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2611 migrate->cpages--;
2612 restore++;
2615 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2616 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2618 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2619 continue;
2621 remove_migration_ptes(page, page, false);
2623 migrate->src[i] = 0;
2624 unlock_page(page);
2625 restore--;
2627 if (is_zone_device_page(page))
2628 put_page(page);
2629 else
2630 putback_lru_page(page);
2634 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2635 unsigned long addr,
2636 struct page *page,
2637 unsigned long *src,
2638 unsigned long *dst)
2640 struct vm_area_struct *vma = migrate->vma;
2641 struct mm_struct *mm = vma->vm_mm;
2642 struct mem_cgroup *memcg;
2643 bool flush = false;
2644 spinlock_t *ptl;
2645 pte_t entry;
2646 pgd_t *pgdp;
2647 p4d_t *p4dp;
2648 pud_t *pudp;
2649 pmd_t *pmdp;
2650 pte_t *ptep;
2652 /* Only allow populating anonymous memory */
2653 if (!vma_is_anonymous(vma))
2654 goto abort;
2656 pgdp = pgd_offset(mm, addr);
2657 p4dp = p4d_alloc(mm, pgdp, addr);
2658 if (!p4dp)
2659 goto abort;
2660 pudp = pud_alloc(mm, p4dp, addr);
2661 if (!pudp)
2662 goto abort;
2663 pmdp = pmd_alloc(mm, pudp, addr);
2664 if (!pmdp)
2665 goto abort;
2667 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2668 goto abort;
2671 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2672 * pte_offset_map() on pmds where a huge pmd might be created
2673 * from a different thread.
2675 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2676 * parallel threads are excluded by other means.
2678 * Here we only have down_read(mmap_sem).
2680 if (pte_alloc(mm, pmdp, addr))
2681 goto abort;
2683 /* See the comment in pte_alloc_one_map() */
2684 if (unlikely(pmd_trans_unstable(pmdp)))
2685 goto abort;
2687 if (unlikely(anon_vma_prepare(vma)))
2688 goto abort;
2689 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2690 goto abort;
2693 * The memory barrier inside __SetPageUptodate makes sure that
2694 * preceding stores to the page contents become visible before
2695 * the set_pte_at() write.
2697 __SetPageUptodate(page);
2699 if (is_zone_device_page(page)) {
2700 if (is_device_private_page(page)) {
2701 swp_entry_t swp_entry;
2703 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2704 entry = swp_entry_to_pte(swp_entry);
2705 } else if (is_device_public_page(page)) {
2706 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2707 if (vma->vm_flags & VM_WRITE)
2708 entry = pte_mkwrite(pte_mkdirty(entry));
2709 entry = pte_mkdevmap(entry);
2711 } else {
2712 entry = mk_pte(page, vma->vm_page_prot);
2713 if (vma->vm_flags & VM_WRITE)
2714 entry = pte_mkwrite(pte_mkdirty(entry));
2717 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2719 if (pte_present(*ptep)) {
2720 unsigned long pfn = pte_pfn(*ptep);
2722 if (!is_zero_pfn(pfn)) {
2723 pte_unmap_unlock(ptep, ptl);
2724 mem_cgroup_cancel_charge(page, memcg, false);
2725 goto abort;
2727 flush = true;
2728 } else if (!pte_none(*ptep)) {
2729 pte_unmap_unlock(ptep, ptl);
2730 mem_cgroup_cancel_charge(page, memcg, false);
2731 goto abort;
2735 * Check for usefaultfd but do not deliver the fault. Instead,
2736 * just back off.
2738 if (userfaultfd_missing(vma)) {
2739 pte_unmap_unlock(ptep, ptl);
2740 mem_cgroup_cancel_charge(page, memcg, false);
2741 goto abort;
2744 inc_mm_counter(mm, MM_ANONPAGES);
2745 page_add_new_anon_rmap(page, vma, addr, false);
2746 mem_cgroup_commit_charge(page, memcg, false, false);
2747 if (!is_zone_device_page(page))
2748 lru_cache_add_active_or_unevictable(page, vma);
2749 get_page(page);
2751 if (flush) {
2752 flush_cache_page(vma, addr, pte_pfn(*ptep));
2753 ptep_clear_flush_notify(vma, addr, ptep);
2754 set_pte_at_notify(mm, addr, ptep, entry);
2755 update_mmu_cache(vma, addr, ptep);
2756 } else {
2757 /* No need to invalidate - it was non-present before */
2758 set_pte_at(mm, addr, ptep, entry);
2759 update_mmu_cache(vma, addr, ptep);
2762 pte_unmap_unlock(ptep, ptl);
2763 *src = MIGRATE_PFN_MIGRATE;
2764 return;
2766 abort:
2767 *src &= ~MIGRATE_PFN_MIGRATE;
2771 * migrate_vma_pages() - migrate meta-data from src page to dst page
2772 * @migrate: migrate struct containing all migration information
2774 * This migrates struct page meta-data from source struct page to destination
2775 * struct page. This effectively finishes the migration from source page to the
2776 * destination page.
2778 static void migrate_vma_pages(struct migrate_vma *migrate)
2780 const unsigned long npages = migrate->npages;
2781 const unsigned long start = migrate->start;
2782 struct vm_area_struct *vma = migrate->vma;
2783 struct mm_struct *mm = vma->vm_mm;
2784 unsigned long addr, i, mmu_start;
2785 bool notified = false;
2787 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2788 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2789 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2790 struct address_space *mapping;
2791 int r;
2793 if (!newpage) {
2794 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2795 continue;
2798 if (!page) {
2799 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2800 continue;
2802 if (!notified) {
2803 mmu_start = addr;
2804 notified = true;
2805 mmu_notifier_invalidate_range_start(mm,
2806 mmu_start,
2807 migrate->end);
2809 migrate_vma_insert_page(migrate, addr, newpage,
2810 &migrate->src[i],
2811 &migrate->dst[i]);
2812 continue;
2815 mapping = page_mapping(page);
2817 if (is_zone_device_page(newpage)) {
2818 if (is_device_private_page(newpage)) {
2820 * For now only support private anonymous when
2821 * migrating to un-addressable device memory.
2823 if (mapping) {
2824 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2825 continue;
2827 } else if (!is_device_public_page(newpage)) {
2829 * Other types of ZONE_DEVICE page are not
2830 * supported.
2832 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2833 continue;
2837 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2838 if (r != MIGRATEPAGE_SUCCESS)
2839 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2843 * No need to double call mmu_notifier->invalidate_range() callback as
2844 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2845 * did already call it.
2847 if (notified)
2848 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2849 migrate->end);
2853 * migrate_vma_finalize() - restore CPU page table entry
2854 * @migrate: migrate struct containing all migration information
2856 * This replaces the special migration pte entry with either a mapping to the
2857 * new page if migration was successful for that page, or to the original page
2858 * otherwise.
2860 * This also unlocks the pages and puts them back on the lru, or drops the extra
2861 * refcount, for device pages.
2863 static void migrate_vma_finalize(struct migrate_vma *migrate)
2865 const unsigned long npages = migrate->npages;
2866 unsigned long i;
2868 for (i = 0; i < npages; i++) {
2869 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2870 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2872 if (!page) {
2873 if (newpage) {
2874 unlock_page(newpage);
2875 put_page(newpage);
2877 continue;
2880 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2881 if (newpage) {
2882 unlock_page(newpage);
2883 put_page(newpage);
2885 newpage = page;
2888 remove_migration_ptes(page, newpage, false);
2889 unlock_page(page);
2890 migrate->cpages--;
2892 if (is_zone_device_page(page))
2893 put_page(page);
2894 else
2895 putback_lru_page(page);
2897 if (newpage != page) {
2898 unlock_page(newpage);
2899 if (is_zone_device_page(newpage))
2900 put_page(newpage);
2901 else
2902 putback_lru_page(newpage);
2908 * migrate_vma() - migrate a range of memory inside vma
2910 * @ops: migration callback for allocating destination memory and copying
2911 * @vma: virtual memory area containing the range to be migrated
2912 * @start: start address of the range to migrate (inclusive)
2913 * @end: end address of the range to migrate (exclusive)
2914 * @src: array of hmm_pfn_t containing source pfns
2915 * @dst: array of hmm_pfn_t containing destination pfns
2916 * @private: pointer passed back to each of the callback
2917 * Returns: 0 on success, error code otherwise
2919 * This function tries to migrate a range of memory virtual address range, using
2920 * callbacks to allocate and copy memory from source to destination. First it
2921 * collects all the pages backing each virtual address in the range, saving this
2922 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2923 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2924 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2925 * in the corresponding src array entry. It then restores any pages that are
2926 * pinned, by remapping and unlocking those pages.
2928 * At this point it calls the alloc_and_copy() callback. For documentation on
2929 * what is expected from that callback, see struct migrate_vma_ops comments in
2930 * include/linux/migrate.h
2932 * After the alloc_and_copy() callback, this function goes over each entry in
2933 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2934 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2935 * then the function tries to migrate struct page information from the source
2936 * struct page to the destination struct page. If it fails to migrate the struct
2937 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2938 * array.
2940 * At this point all successfully migrated pages have an entry in the src
2941 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2942 * array entry with MIGRATE_PFN_VALID flag set.
2944 * It then calls the finalize_and_map() callback. See comments for "struct
2945 * migrate_vma_ops", in include/linux/migrate.h for details about
2946 * finalize_and_map() behavior.
2948 * After the finalize_and_map() callback, for successfully migrated pages, this
2949 * function updates the CPU page table to point to new pages, otherwise it
2950 * restores the CPU page table to point to the original source pages.
2952 * Function returns 0 after the above steps, even if no pages were migrated
2953 * (The function only returns an error if any of the arguments are invalid.)
2955 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2956 * unsigned long entries.
2958 int migrate_vma(const struct migrate_vma_ops *ops,
2959 struct vm_area_struct *vma,
2960 unsigned long start,
2961 unsigned long end,
2962 unsigned long *src,
2963 unsigned long *dst,
2964 void *private)
2966 struct migrate_vma migrate;
2968 /* Sanity check the arguments */
2969 start &= PAGE_MASK;
2970 end &= PAGE_MASK;
2971 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2972 return -EINVAL;
2973 if (start < vma->vm_start || start >= vma->vm_end)
2974 return -EINVAL;
2975 if (end <= vma->vm_start || end > vma->vm_end)
2976 return -EINVAL;
2977 if (!ops || !src || !dst || start >= end)
2978 return -EINVAL;
2980 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2981 migrate.src = src;
2982 migrate.dst = dst;
2983 migrate.start = start;
2984 migrate.npages = 0;
2985 migrate.cpages = 0;
2986 migrate.end = end;
2987 migrate.vma = vma;
2989 /* Collect, and try to unmap source pages */
2990 migrate_vma_collect(&migrate);
2991 if (!migrate.cpages)
2992 return 0;
2994 /* Lock and isolate page */
2995 migrate_vma_prepare(&migrate);
2996 if (!migrate.cpages)
2997 return 0;
2999 /* Unmap pages */
3000 migrate_vma_unmap(&migrate);
3001 if (!migrate.cpages)
3002 return 0;
3005 * At this point pages are locked and unmapped, and thus they have
3006 * stable content and can safely be copied to destination memory that
3007 * is allocated by the callback.
3009 * Note that migration can fail in migrate_vma_struct_page() for each
3010 * individual page.
3012 ops->alloc_and_copy(vma, src, dst, start, end, private);
3014 /* This does the real migration of struct page */
3015 migrate_vma_pages(&migrate);
3017 ops->finalize_and_map(vma, src, dst, start, end, private);
3019 /* Unlock and remap pages */
3020 migrate_vma_finalize(&migrate);
3022 return 0;
3024 EXPORT_SYMBOL(migrate_vma);
3025 #endif /* defined(MIGRATE_VMA_HELPER) */