1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
51 #include <asm/tlbflush.h>
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
59 * migrate_prep() needs to be called before we start compiling a list of pages
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
63 int migrate_prep(void)
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
84 int isolate_movable_page(struct page
*page
, isolate_mode_t mode
)
86 struct address_space
*mapping
;
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
97 if (unlikely(!get_page_unless_zero(page
)))
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grapping the lock ruins page's owner side.
105 if (unlikely(!__PageMovable(page
)))
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
118 if (unlikely(!trylock_page(page
)))
121 if (!PageMovable(page
) || PageIsolated(page
))
122 goto out_no_isolated
;
124 mapping
= page_mapping(page
);
125 VM_BUG_ON_PAGE(!mapping
, page
);
127 if (!mapping
->a_ops
->isolate_page(page
, mode
))
128 goto out_no_isolated
;
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page
));
132 __SetPageIsolated(page
);
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page
*page
)
148 struct address_space
*mapping
;
150 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
151 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
152 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
154 mapping
= page_mapping(page
);
155 mapping
->a_ops
->putback_page(page
);
156 __ClearPageIsolated(page
);
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
167 void putback_movable_pages(struct list_head
*l
)
172 list_for_each_entry_safe(page
, page2
, l
, lru
) {
173 if (unlikely(PageHuge(page
))) {
174 putback_active_hugepage(page
);
177 list_del(&page
->lru
);
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
183 if (unlikely(__PageMovable(page
))) {
184 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
186 if (PageMovable(page
))
187 putback_movable_page(page
);
189 __ClearPageIsolated(page
);
193 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+
194 page_is_file_cache(page
), -hpage_nr_pages(page
));
195 putback_lru_page(page
);
201 * Restore a potential migration pte to a working pte entry
203 static bool remove_migration_pte(struct page
*page
, struct vm_area_struct
*vma
,
204 unsigned long addr
, void *old
)
206 struct page_vma_mapped_walk pvmw
= {
210 .flags
= PVMW_SYNC
| PVMW_MIGRATION
,
216 VM_BUG_ON_PAGE(PageTail(page
), page
);
217 while (page_vma_mapped_walk(&pvmw
)) {
221 new = page
- pvmw
.page
->index
+
222 linear_page_index(vma
, pvmw
.address
);
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
227 VM_BUG_ON_PAGE(PageHuge(page
) || !PageTransCompound(page
), page
);
228 remove_migration_pmd(&pvmw
, new);
234 pte
= pte_mkold(mk_pte(new, READ_ONCE(vma
->vm_page_prot
)));
235 if (pte_swp_soft_dirty(*pvmw
.pte
))
236 pte
= pte_mksoft_dirty(pte
);
239 * Recheck VMA as permissions can change since migration started
241 entry
= pte_to_swp_entry(*pvmw
.pte
);
242 if (is_write_migration_entry(entry
))
243 pte
= maybe_mkwrite(pte
, vma
);
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry
= make_device_private_entry(new, pte_write(pte
));
248 pte
= swp_entry_to_pte(entry
);
249 } else if (is_device_public_page(new)) {
250 pte
= pte_mkdevmap(pte
);
251 flush_dcache_page(new);
254 flush_dcache_page(new);
256 #ifdef CONFIG_HUGETLB_PAGE
258 pte
= pte_mkhuge(pte
);
259 pte
= arch_make_huge_pte(pte
, vma
, new, 0);
260 set_huge_pte_at(vma
->vm_mm
, pvmw
.address
, pvmw
.pte
, pte
);
262 hugepage_add_anon_rmap(new, vma
, pvmw
.address
);
264 page_dup_rmap(new, true);
268 set_pte_at(vma
->vm_mm
, pvmw
.address
, pvmw
.pte
, pte
);
271 page_add_anon_rmap(new, vma
, pvmw
.address
, false);
273 page_add_file_rmap(new, false);
275 if (vma
->vm_flags
& VM_LOCKED
&& !PageTransCompound(new))
278 /* No need to invalidate - it was non-present before */
279 update_mmu_cache(vma
, pvmw
.address
, pvmw
.pte
);
286 * Get rid of all migration entries and replace them by
287 * references to the indicated page.
289 void remove_migration_ptes(struct page
*old
, struct page
*new, bool locked
)
291 struct rmap_walk_control rwc
= {
292 .rmap_one
= remove_migration_pte
,
297 rmap_walk_locked(new, &rwc
);
299 rmap_walk(new, &rwc
);
303 * Something used the pte of a page under migration. We need to
304 * get to the page and wait until migration is finished.
305 * When we return from this function the fault will be retried.
307 void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
316 if (!is_swap_pte(pte
))
319 entry
= pte_to_swp_entry(pte
);
320 if (!is_migration_entry(entry
))
323 page
= migration_entry_to_page(entry
);
326 * Once radix-tree replacement of page migration started, page_count
327 * *must* be zero. And, we don't want to call wait_on_page_locked()
328 * against a page without get_page().
329 * So, we use get_page_unless_zero(), here. Even failed, page fault
332 if (!get_page_unless_zero(page
))
334 pte_unmap_unlock(ptep
, ptl
);
335 wait_on_page_locked(page
);
339 pte_unmap_unlock(ptep
, ptl
);
342 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
343 unsigned long address
)
345 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
346 pte_t
*ptep
= pte_offset_map(pmd
, address
);
347 __migration_entry_wait(mm
, ptep
, ptl
);
350 void migration_entry_wait_huge(struct vm_area_struct
*vma
,
351 struct mm_struct
*mm
, pte_t
*pte
)
353 spinlock_t
*ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, pte
);
354 __migration_entry_wait(mm
, pte
, ptl
);
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
)
363 ptl
= pmd_lock(mm
, pmd
);
364 if (!is_pmd_migration_entry(*pmd
))
366 page
= migration_entry_to_page(pmd_to_swp_entry(*pmd
));
367 if (!get_page_unless_zero(page
))
370 wait_on_page_locked(page
);
379 /* Returns true if all buffers are successfully locked */
380 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
381 enum migrate_mode mode
)
383 struct buffer_head
*bh
= head
;
385 /* Simple case, sync compaction */
386 if (mode
!= MIGRATE_ASYNC
) {
390 bh
= bh
->b_this_page
;
392 } while (bh
!= head
);
397 /* async case, we cannot block on lock_buffer so use trylock_buffer */
400 if (!trylock_buffer(bh
)) {
402 * We failed to lock the buffer and cannot stall in
403 * async migration. Release the taken locks
405 struct buffer_head
*failed_bh
= bh
;
408 while (bh
!= failed_bh
) {
411 bh
= bh
->b_this_page
;
416 bh
= bh
->b_this_page
;
417 } while (bh
!= head
);
421 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
422 enum migrate_mode mode
)
426 #endif /* CONFIG_BLOCK */
429 * Replace the page in the mapping.
431 * The number of remaining references must be:
432 * 1 for anonymous pages without a mapping
433 * 2 for pages with a mapping
434 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
436 int migrate_page_move_mapping(struct address_space
*mapping
,
437 struct page
*newpage
, struct page
*page
,
438 struct buffer_head
*head
, enum migrate_mode mode
,
441 struct zone
*oldzone
, *newzone
;
443 int expected_count
= 1 + extra_count
;
447 * Device public or private pages have an extra refcount as they are
450 expected_count
+= is_device_private_page(page
);
451 expected_count
+= is_device_public_page(page
);
454 /* Anonymous page without mapping */
455 if (page_count(page
) != expected_count
)
458 /* No turning back from here */
459 newpage
->index
= page
->index
;
460 newpage
->mapping
= page
->mapping
;
461 if (PageSwapBacked(page
))
462 __SetPageSwapBacked(newpage
);
464 return MIGRATEPAGE_SUCCESS
;
467 oldzone
= page_zone(page
);
468 newzone
= page_zone(newpage
);
470 spin_lock_irq(&mapping
->tree_lock
);
472 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
475 expected_count
+= 1 + page_has_private(page
);
476 if (page_count(page
) != expected_count
||
477 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
478 spin_unlock_irq(&mapping
->tree_lock
);
482 if (!page_ref_freeze(page
, expected_count
)) {
483 spin_unlock_irq(&mapping
->tree_lock
);
488 * In the async migration case of moving a page with buffers, lock the
489 * buffers using trylock before the mapping is moved. If the mapping
490 * was moved, we later failed to lock the buffers and could not move
491 * the mapping back due to an elevated page count, we would have to
492 * block waiting on other references to be dropped.
494 if (mode
== MIGRATE_ASYNC
&& head
&&
495 !buffer_migrate_lock_buffers(head
, mode
)) {
496 page_ref_unfreeze(page
, expected_count
);
497 spin_unlock_irq(&mapping
->tree_lock
);
502 * Now we know that no one else is looking at the page:
503 * no turning back from here.
505 newpage
->index
= page
->index
;
506 newpage
->mapping
= page
->mapping
;
507 get_page(newpage
); /* add cache reference */
508 if (PageSwapBacked(page
)) {
509 __SetPageSwapBacked(newpage
);
510 if (PageSwapCache(page
)) {
511 SetPageSwapCache(newpage
);
512 set_page_private(newpage
, page_private(page
));
515 VM_BUG_ON_PAGE(PageSwapCache(page
), page
);
518 /* Move dirty while page refs frozen and newpage not yet exposed */
519 dirty
= PageDirty(page
);
521 ClearPageDirty(page
);
522 SetPageDirty(newpage
);
525 radix_tree_replace_slot(&mapping
->page_tree
, pslot
, newpage
);
528 * Drop cache reference from old page by unfreezing
529 * to one less reference.
530 * We know this isn't the last reference.
532 page_ref_unfreeze(page
, expected_count
- 1);
534 spin_unlock(&mapping
->tree_lock
);
535 /* Leave irq disabled to prevent preemption while updating stats */
538 * If moved to a different zone then also account
539 * the page for that zone. Other VM counters will be
540 * taken care of when we establish references to the
541 * new page and drop references to the old page.
543 * Note that anonymous pages are accounted for
544 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
545 * are mapped to swap space.
547 if (newzone
!= oldzone
) {
548 __dec_node_state(oldzone
->zone_pgdat
, NR_FILE_PAGES
);
549 __inc_node_state(newzone
->zone_pgdat
, NR_FILE_PAGES
);
550 if (PageSwapBacked(page
) && !PageSwapCache(page
)) {
551 __dec_node_state(oldzone
->zone_pgdat
, NR_SHMEM
);
552 __inc_node_state(newzone
->zone_pgdat
, NR_SHMEM
);
554 if (dirty
&& mapping_cap_account_dirty(mapping
)) {
555 __dec_node_state(oldzone
->zone_pgdat
, NR_FILE_DIRTY
);
556 __dec_zone_state(oldzone
, NR_ZONE_WRITE_PENDING
);
557 __inc_node_state(newzone
->zone_pgdat
, NR_FILE_DIRTY
);
558 __inc_zone_state(newzone
, NR_ZONE_WRITE_PENDING
);
563 return MIGRATEPAGE_SUCCESS
;
565 EXPORT_SYMBOL(migrate_page_move_mapping
);
568 * The expected number of remaining references is the same as that
569 * of migrate_page_move_mapping().
571 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
572 struct page
*newpage
, struct page
*page
)
577 spin_lock_irq(&mapping
->tree_lock
);
579 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
582 expected_count
= 2 + page_has_private(page
);
583 if (page_count(page
) != expected_count
||
584 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
585 spin_unlock_irq(&mapping
->tree_lock
);
589 if (!page_ref_freeze(page
, expected_count
)) {
590 spin_unlock_irq(&mapping
->tree_lock
);
594 newpage
->index
= page
->index
;
595 newpage
->mapping
= page
->mapping
;
599 radix_tree_replace_slot(&mapping
->page_tree
, pslot
, newpage
);
601 page_ref_unfreeze(page
, expected_count
- 1);
603 spin_unlock_irq(&mapping
->tree_lock
);
605 return MIGRATEPAGE_SUCCESS
;
609 * Gigantic pages are so large that we do not guarantee that page++ pointer
610 * arithmetic will work across the entire page. We need something more
613 static void __copy_gigantic_page(struct page
*dst
, struct page
*src
,
617 struct page
*dst_base
= dst
;
618 struct page
*src_base
= src
;
620 for (i
= 0; i
< nr_pages
; ) {
622 copy_highpage(dst
, src
);
625 dst
= mem_map_next(dst
, dst_base
, i
);
626 src
= mem_map_next(src
, src_base
, i
);
630 static void copy_huge_page(struct page
*dst
, struct page
*src
)
637 struct hstate
*h
= page_hstate(src
);
638 nr_pages
= pages_per_huge_page(h
);
640 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
)) {
641 __copy_gigantic_page(dst
, src
, nr_pages
);
646 BUG_ON(!PageTransHuge(src
));
647 nr_pages
= hpage_nr_pages(src
);
650 for (i
= 0; i
< nr_pages
; i
++) {
652 copy_highpage(dst
+ i
, src
+ i
);
657 * Copy the page to its new location
659 void migrate_page_states(struct page
*newpage
, struct page
*page
)
664 SetPageError(newpage
);
665 if (PageReferenced(page
))
666 SetPageReferenced(newpage
);
667 if (PageUptodate(page
))
668 SetPageUptodate(newpage
);
669 if (TestClearPageActive(page
)) {
670 VM_BUG_ON_PAGE(PageUnevictable(page
), page
);
671 SetPageActive(newpage
);
672 } else if (TestClearPageUnevictable(page
))
673 SetPageUnevictable(newpage
);
674 if (PageChecked(page
))
675 SetPageChecked(newpage
);
676 if (PageMappedToDisk(page
))
677 SetPageMappedToDisk(newpage
);
679 /* Move dirty on pages not done by migrate_page_move_mapping() */
681 SetPageDirty(newpage
);
683 if (page_is_young(page
))
684 set_page_young(newpage
);
685 if (page_is_idle(page
))
686 set_page_idle(newpage
);
689 * Copy NUMA information to the new page, to prevent over-eager
690 * future migrations of this same page.
692 cpupid
= page_cpupid_xchg_last(page
, -1);
693 page_cpupid_xchg_last(newpage
, cpupid
);
695 ksm_migrate_page(newpage
, page
);
697 * Please do not reorder this without considering how mm/ksm.c's
698 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
700 if (PageSwapCache(page
))
701 ClearPageSwapCache(page
);
702 ClearPagePrivate(page
);
703 set_page_private(page
, 0);
706 * If any waiters have accumulated on the new page then
709 if (PageWriteback(newpage
))
710 end_page_writeback(newpage
);
712 copy_page_owner(page
, newpage
);
714 mem_cgroup_migrate(page
, newpage
);
716 EXPORT_SYMBOL(migrate_page_states
);
718 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
720 if (PageHuge(page
) || PageTransHuge(page
))
721 copy_huge_page(newpage
, page
);
723 copy_highpage(newpage
, page
);
725 migrate_page_states(newpage
, page
);
727 EXPORT_SYMBOL(migrate_page_copy
);
729 /************************************************************
730 * Migration functions
731 ***********************************************************/
734 * Common logic to directly migrate a single LRU page suitable for
735 * pages that do not use PagePrivate/PagePrivate2.
737 * Pages are locked upon entry and exit.
739 int migrate_page(struct address_space
*mapping
,
740 struct page
*newpage
, struct page
*page
,
741 enum migrate_mode mode
)
745 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
747 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
749 if (rc
!= MIGRATEPAGE_SUCCESS
)
752 if (mode
!= MIGRATE_SYNC_NO_COPY
)
753 migrate_page_copy(newpage
, page
);
755 migrate_page_states(newpage
, page
);
756 return MIGRATEPAGE_SUCCESS
;
758 EXPORT_SYMBOL(migrate_page
);
762 * Migration function for pages with buffers. This function can only be used
763 * if the underlying filesystem guarantees that no other references to "page"
766 int buffer_migrate_page(struct address_space
*mapping
,
767 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
769 struct buffer_head
*bh
, *head
;
772 if (!page_has_buffers(page
))
773 return migrate_page(mapping
, newpage
, page
, mode
);
775 head
= page_buffers(page
);
777 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
, 0);
779 if (rc
!= MIGRATEPAGE_SUCCESS
)
783 * In the async case, migrate_page_move_mapping locked the buffers
784 * with an IRQ-safe spinlock held. In the sync case, the buffers
785 * need to be locked now
787 if (mode
!= MIGRATE_ASYNC
)
788 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
790 ClearPagePrivate(page
);
791 set_page_private(newpage
, page_private(page
));
792 set_page_private(page
, 0);
798 set_bh_page(bh
, newpage
, bh_offset(bh
));
799 bh
= bh
->b_this_page
;
801 } while (bh
!= head
);
803 SetPagePrivate(newpage
);
805 if (mode
!= MIGRATE_SYNC_NO_COPY
)
806 migrate_page_copy(newpage
, page
);
808 migrate_page_states(newpage
, page
);
814 bh
= bh
->b_this_page
;
816 } while (bh
!= head
);
818 return MIGRATEPAGE_SUCCESS
;
820 EXPORT_SYMBOL(buffer_migrate_page
);
824 * Writeback a page to clean the dirty state
826 static int writeout(struct address_space
*mapping
, struct page
*page
)
828 struct writeback_control wbc
= {
829 .sync_mode
= WB_SYNC_NONE
,
832 .range_end
= LLONG_MAX
,
837 if (!mapping
->a_ops
->writepage
)
838 /* No write method for the address space */
841 if (!clear_page_dirty_for_io(page
))
842 /* Someone else already triggered a write */
846 * A dirty page may imply that the underlying filesystem has
847 * the page on some queue. So the page must be clean for
848 * migration. Writeout may mean we loose the lock and the
849 * page state is no longer what we checked for earlier.
850 * At this point we know that the migration attempt cannot
853 remove_migration_ptes(page
, page
, false);
855 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
857 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
858 /* unlocked. Relock */
861 return (rc
< 0) ? -EIO
: -EAGAIN
;
865 * Default handling if a filesystem does not provide a migration function.
867 static int fallback_migrate_page(struct address_space
*mapping
,
868 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
870 if (PageDirty(page
)) {
871 /* Only writeback pages in full synchronous migration */
874 case MIGRATE_SYNC_NO_COPY
:
879 return writeout(mapping
, page
);
883 * Buffers may be managed in a filesystem specific way.
884 * We must have no buffers or drop them.
886 if (page_has_private(page
) &&
887 !try_to_release_page(page
, GFP_KERNEL
))
890 return migrate_page(mapping
, newpage
, page
, mode
);
894 * Move a page to a newly allocated page
895 * The page is locked and all ptes have been successfully removed.
897 * The new page will have replaced the old page if this function
902 * MIGRATEPAGE_SUCCESS - success
904 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
905 enum migrate_mode mode
)
907 struct address_space
*mapping
;
909 bool is_lru
= !__PageMovable(page
);
911 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
912 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
914 mapping
= page_mapping(page
);
916 if (likely(is_lru
)) {
918 rc
= migrate_page(mapping
, newpage
, page
, mode
);
919 else if (mapping
->a_ops
->migratepage
)
921 * Most pages have a mapping and most filesystems
922 * provide a migratepage callback. Anonymous pages
923 * are part of swap space which also has its own
924 * migratepage callback. This is the most common path
925 * for page migration.
927 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
,
930 rc
= fallback_migrate_page(mapping
, newpage
,
934 * In case of non-lru page, it could be released after
935 * isolation step. In that case, we shouldn't try migration.
937 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
938 if (!PageMovable(page
)) {
939 rc
= MIGRATEPAGE_SUCCESS
;
940 __ClearPageIsolated(page
);
944 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
,
946 WARN_ON_ONCE(rc
== MIGRATEPAGE_SUCCESS
&&
947 !PageIsolated(page
));
951 * When successful, old pagecache page->mapping must be cleared before
952 * page is freed; but stats require that PageAnon be left as PageAnon.
954 if (rc
== MIGRATEPAGE_SUCCESS
) {
955 if (__PageMovable(page
)) {
956 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
959 * We clear PG_movable under page_lock so any compactor
960 * cannot try to migrate this page.
962 __ClearPageIsolated(page
);
966 * Anonymous and movable page->mapping will be cleard by
967 * free_pages_prepare so don't reset it here for keeping
968 * the type to work PageAnon, for example.
970 if (!PageMappingFlags(page
))
971 page
->mapping
= NULL
;
977 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
978 int force
, enum migrate_mode mode
)
981 int page_was_mapped
= 0;
982 struct anon_vma
*anon_vma
= NULL
;
983 bool is_lru
= !__PageMovable(page
);
985 if (!trylock_page(page
)) {
986 if (!force
|| mode
== MIGRATE_ASYNC
)
990 * It's not safe for direct compaction to call lock_page.
991 * For example, during page readahead pages are added locked
992 * to the LRU. Later, when the IO completes the pages are
993 * marked uptodate and unlocked. However, the queueing
994 * could be merging multiple pages for one bio (e.g.
995 * mpage_readpages). If an allocation happens for the
996 * second or third page, the process can end up locking
997 * the same page twice and deadlocking. Rather than
998 * trying to be clever about what pages can be locked,
999 * avoid the use of lock_page for direct compaction
1002 if (current
->flags
& PF_MEMALLOC
)
1008 if (PageWriteback(page
)) {
1010 * Only in the case of a full synchronous migration is it
1011 * necessary to wait for PageWriteback. In the async case,
1012 * the retry loop is too short and in the sync-light case,
1013 * the overhead of stalling is too much
1017 case MIGRATE_SYNC_NO_COPY
:
1025 wait_on_page_writeback(page
);
1029 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1030 * we cannot notice that anon_vma is freed while we migrates a page.
1031 * This get_anon_vma() delays freeing anon_vma pointer until the end
1032 * of migration. File cache pages are no problem because of page_lock()
1033 * File Caches may use write_page() or lock_page() in migration, then,
1034 * just care Anon page here.
1036 * Only page_get_anon_vma() understands the subtleties of
1037 * getting a hold on an anon_vma from outside one of its mms.
1038 * But if we cannot get anon_vma, then we won't need it anyway,
1039 * because that implies that the anon page is no longer mapped
1040 * (and cannot be remapped so long as we hold the page lock).
1042 if (PageAnon(page
) && !PageKsm(page
))
1043 anon_vma
= page_get_anon_vma(page
);
1046 * Block others from accessing the new page when we get around to
1047 * establishing additional references. We are usually the only one
1048 * holding a reference to newpage at this point. We used to have a BUG
1049 * here if trylock_page(newpage) fails, but would like to allow for
1050 * cases where there might be a race with the previous use of newpage.
1051 * This is much like races on refcount of oldpage: just don't BUG().
1053 if (unlikely(!trylock_page(newpage
)))
1056 if (unlikely(!is_lru
)) {
1057 rc
= move_to_new_page(newpage
, page
, mode
);
1058 goto out_unlock_both
;
1062 * Corner case handling:
1063 * 1. When a new swap-cache page is read into, it is added to the LRU
1064 * and treated as swapcache but it has no rmap yet.
1065 * Calling try_to_unmap() against a page->mapping==NULL page will
1066 * trigger a BUG. So handle it here.
1067 * 2. An orphaned page (see truncate_complete_page) might have
1068 * fs-private metadata. The page can be picked up due to memory
1069 * offlining. Everywhere else except page reclaim, the page is
1070 * invisible to the vm, so the page can not be migrated. So try to
1071 * free the metadata, so the page can be freed.
1073 if (!page
->mapping
) {
1074 VM_BUG_ON_PAGE(PageAnon(page
), page
);
1075 if (page_has_private(page
)) {
1076 try_to_free_buffers(page
);
1077 goto out_unlock_both
;
1079 } else if (page_mapped(page
)) {
1080 /* Establish migration ptes */
1081 VM_BUG_ON_PAGE(PageAnon(page
) && !PageKsm(page
) && !anon_vma
,
1084 TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1085 page_was_mapped
= 1;
1088 if (!page_mapped(page
))
1089 rc
= move_to_new_page(newpage
, page
, mode
);
1091 if (page_was_mapped
)
1092 remove_migration_ptes(page
,
1093 rc
== MIGRATEPAGE_SUCCESS
? newpage
: page
, false);
1096 unlock_page(newpage
);
1098 /* Drop an anon_vma reference if we took one */
1100 put_anon_vma(anon_vma
);
1104 * If migration is successful, decrease refcount of the newpage
1105 * which will not free the page because new page owner increased
1106 * refcounter. As well, if it is LRU page, add the page to LRU
1109 if (rc
== MIGRATEPAGE_SUCCESS
) {
1110 if (unlikely(__PageMovable(newpage
)))
1113 putback_lru_page(newpage
);
1120 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1123 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1124 #define ICE_noinline noinline
1126 #define ICE_noinline
1130 * Obtain the lock on page, remove all ptes and migrate the page
1131 * to the newly allocated page in newpage.
1133 static ICE_noinline
int unmap_and_move(new_page_t get_new_page
,
1134 free_page_t put_new_page
,
1135 unsigned long private, struct page
*page
,
1136 int force
, enum migrate_mode mode
,
1137 enum migrate_reason reason
)
1139 int rc
= MIGRATEPAGE_SUCCESS
;
1141 struct page
*newpage
;
1143 newpage
= get_new_page(page
, private, &result
);
1147 if (page_count(page
) == 1) {
1148 /* page was freed from under us. So we are done. */
1149 ClearPageActive(page
);
1150 ClearPageUnevictable(page
);
1151 if (unlikely(__PageMovable(page
))) {
1153 if (!PageMovable(page
))
1154 __ClearPageIsolated(page
);
1158 put_new_page(newpage
, private);
1164 if (unlikely(PageTransHuge(page
) && !PageTransHuge(newpage
))) {
1166 rc
= split_huge_page(page
);
1172 rc
= __unmap_and_move(page
, newpage
, force
, mode
);
1173 if (rc
== MIGRATEPAGE_SUCCESS
)
1174 set_page_owner_migrate_reason(newpage
, reason
);
1177 if (rc
!= -EAGAIN
) {
1179 * A page that has been migrated has all references
1180 * removed and will be freed. A page that has not been
1181 * migrated will have kepts its references and be
1184 list_del(&page
->lru
);
1187 * Compaction can migrate also non-LRU pages which are
1188 * not accounted to NR_ISOLATED_*. They can be recognized
1191 if (likely(!__PageMovable(page
)))
1192 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+
1193 page_is_file_cache(page
), -hpage_nr_pages(page
));
1197 * If migration is successful, releases reference grabbed during
1198 * isolation. Otherwise, restore the page to right list unless
1201 if (rc
== MIGRATEPAGE_SUCCESS
) {
1203 if (reason
== MR_MEMORY_FAILURE
) {
1205 * Set PG_HWPoison on just freed page
1206 * intentionally. Although it's rather weird,
1207 * it's how HWPoison flag works at the moment.
1209 if (!test_set_page_hwpoison(page
))
1210 num_poisoned_pages_inc();
1213 if (rc
!= -EAGAIN
) {
1214 if (likely(!__PageMovable(page
))) {
1215 putback_lru_page(page
);
1220 if (PageMovable(page
))
1221 putback_movable_page(page
);
1223 __ClearPageIsolated(page
);
1229 put_new_page(newpage
, private);
1238 *result
= page_to_nid(newpage
);
1244 * Counterpart of unmap_and_move_page() for hugepage migration.
1246 * This function doesn't wait the completion of hugepage I/O
1247 * because there is no race between I/O and migration for hugepage.
1248 * Note that currently hugepage I/O occurs only in direct I/O
1249 * where no lock is held and PG_writeback is irrelevant,
1250 * and writeback status of all subpages are counted in the reference
1251 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1252 * under direct I/O, the reference of the head page is 512 and a bit more.)
1253 * This means that when we try to migrate hugepage whose subpages are
1254 * doing direct I/O, some references remain after try_to_unmap() and
1255 * hugepage migration fails without data corruption.
1257 * There is also no race when direct I/O is issued on the page under migration,
1258 * because then pte is replaced with migration swap entry and direct I/O code
1259 * will wait in the page fault for migration to complete.
1261 static int unmap_and_move_huge_page(new_page_t get_new_page
,
1262 free_page_t put_new_page
, unsigned long private,
1263 struct page
*hpage
, int force
,
1264 enum migrate_mode mode
, int reason
)
1268 int page_was_mapped
= 0;
1269 struct page
*new_hpage
;
1270 struct anon_vma
*anon_vma
= NULL
;
1273 * Movability of hugepages depends on architectures and hugepage size.
1274 * This check is necessary because some callers of hugepage migration
1275 * like soft offline and memory hotremove don't walk through page
1276 * tables or check whether the hugepage is pmd-based or not before
1277 * kicking migration.
1279 if (!hugepage_migration_supported(page_hstate(hpage
))) {
1280 putback_active_hugepage(hpage
);
1284 new_hpage
= get_new_page(hpage
, private, &result
);
1288 if (!trylock_page(hpage
)) {
1293 case MIGRATE_SYNC_NO_COPY
:
1301 if (PageAnon(hpage
))
1302 anon_vma
= page_get_anon_vma(hpage
);
1304 if (unlikely(!trylock_page(new_hpage
)))
1307 if (page_mapped(hpage
)) {
1309 TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1310 page_was_mapped
= 1;
1313 if (!page_mapped(hpage
))
1314 rc
= move_to_new_page(new_hpage
, hpage
, mode
);
1316 if (page_was_mapped
)
1317 remove_migration_ptes(hpage
,
1318 rc
== MIGRATEPAGE_SUCCESS
? new_hpage
: hpage
, false);
1320 unlock_page(new_hpage
);
1324 put_anon_vma(anon_vma
);
1326 if (rc
== MIGRATEPAGE_SUCCESS
) {
1327 move_hugetlb_state(hpage
, new_hpage
, reason
);
1328 put_new_page
= NULL
;
1334 putback_active_hugepage(hpage
);
1335 if (reason
== MR_MEMORY_FAILURE
&& !test_set_page_hwpoison(hpage
))
1336 num_poisoned_pages_inc();
1339 * If migration was not successful and there's a freeing callback, use
1340 * it. Otherwise, put_page() will drop the reference grabbed during
1344 put_new_page(new_hpage
, private);
1346 putback_active_hugepage(new_hpage
);
1352 *result
= page_to_nid(new_hpage
);
1358 * migrate_pages - migrate the pages specified in a list, to the free pages
1359 * supplied as the target for the page migration
1361 * @from: The list of pages to be migrated.
1362 * @get_new_page: The function used to allocate free pages to be used
1363 * as the target of the page migration.
1364 * @put_new_page: The function used to free target pages if migration
1365 * fails, or NULL if no special handling is necessary.
1366 * @private: Private data to be passed on to get_new_page()
1367 * @mode: The migration mode that specifies the constraints for
1368 * page migration, if any.
1369 * @reason: The reason for page migration.
1371 * The function returns after 10 attempts or if no pages are movable any more
1372 * because the list has become empty or no retryable pages exist any more.
1373 * The caller should call putback_movable_pages() to return pages to the LRU
1374 * or free list only if ret != 0.
1376 * Returns the number of pages that were not migrated, or an error code.
1378 int migrate_pages(struct list_head
*from
, new_page_t get_new_page
,
1379 free_page_t put_new_page
, unsigned long private,
1380 enum migrate_mode mode
, int reason
)
1384 int nr_succeeded
= 0;
1388 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1392 current
->flags
|= PF_SWAPWRITE
;
1394 for(pass
= 0; pass
< 10 && retry
; pass
++) {
1397 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1401 rc
= unmap_and_move_huge_page(get_new_page
,
1402 put_new_page
, private, page
,
1403 pass
> 2, mode
, reason
);
1405 rc
= unmap_and_move(get_new_page
, put_new_page
,
1406 private, page
, pass
> 2, mode
,
1416 case MIGRATEPAGE_SUCCESS
:
1421 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1422 * unlike -EAGAIN case, the failed page is
1423 * removed from migration page list and not
1424 * retried in the next outer loop.
1435 count_vm_events(PGMIGRATE_SUCCESS
, nr_succeeded
);
1437 count_vm_events(PGMIGRATE_FAIL
, nr_failed
);
1438 trace_mm_migrate_pages(nr_succeeded
, nr_failed
, mode
, reason
);
1441 current
->flags
&= ~PF_SWAPWRITE
;
1448 * Move a list of individual pages
1450 struct page_to_node
{
1457 static struct page
*new_page_node(struct page
*p
, unsigned long private,
1460 struct page_to_node
*pm
= (struct page_to_node
*)private;
1462 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
1465 if (pm
->node
== MAX_NUMNODES
)
1468 *result
= &pm
->status
;
1471 return alloc_huge_page_node(page_hstate(compound_head(p
)),
1473 else if (thp_migration_supported() && PageTransHuge(p
)) {
1476 thp
= alloc_pages_node(pm
->node
,
1477 (GFP_TRANSHUGE
| __GFP_THISNODE
) & ~__GFP_RECLAIM
,
1481 prep_transhuge_page(thp
);
1484 return __alloc_pages_node(pm
->node
,
1485 GFP_HIGHUSER_MOVABLE
| __GFP_THISNODE
, 0);
1489 * Move a set of pages as indicated in the pm array. The addr
1490 * field must be set to the virtual address of the page to be moved
1491 * and the node number must contain a valid target node.
1492 * The pm array ends with node = MAX_NUMNODES.
1494 static int do_move_page_to_node_array(struct mm_struct
*mm
,
1495 struct page_to_node
*pm
,
1499 struct page_to_node
*pp
;
1500 LIST_HEAD(pagelist
);
1502 down_read(&mm
->mmap_sem
);
1505 * Build a list of pages to migrate
1507 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
1508 struct vm_area_struct
*vma
;
1511 unsigned int follflags
;
1514 vma
= find_vma(mm
, pp
->addr
);
1515 if (!vma
|| pp
->addr
< vma
->vm_start
|| !vma_migratable(vma
))
1518 /* FOLL_DUMP to ignore special (like zero) pages */
1519 follflags
= FOLL_GET
| FOLL_DUMP
;
1520 if (!thp_migration_supported())
1521 follflags
|= FOLL_SPLIT
;
1522 page
= follow_page(vma
, pp
->addr
, follflags
);
1524 err
= PTR_ERR(page
);
1532 err
= page_to_nid(page
);
1534 if (err
== pp
->node
)
1536 * Node already in the right place
1541 if (page_mapcount(page
) > 1 &&
1545 if (PageHuge(page
)) {
1546 if (PageHead(page
)) {
1547 isolate_huge_page(page
, &pagelist
);
1554 pp
->page
= compound_head(page
);
1555 head
= compound_head(page
);
1556 err
= isolate_lru_page(head
);
1558 list_add_tail(&head
->lru
, &pagelist
);
1559 mod_node_page_state(page_pgdat(head
),
1560 NR_ISOLATED_ANON
+ page_is_file_cache(head
),
1561 hpage_nr_pages(head
));
1565 * Either remove the duplicate refcount from
1566 * isolate_lru_page() or drop the page ref if it was
1575 if (!list_empty(&pagelist
)) {
1576 err
= migrate_pages(&pagelist
, new_page_node
, NULL
,
1577 (unsigned long)pm
, MIGRATE_SYNC
, MR_SYSCALL
);
1579 putback_movable_pages(&pagelist
);
1582 up_read(&mm
->mmap_sem
);
1587 * Migrate an array of page address onto an array of nodes and fill
1588 * the corresponding array of status.
1590 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1591 unsigned long nr_pages
,
1592 const void __user
* __user
*pages
,
1593 const int __user
*nodes
,
1594 int __user
*status
, int flags
)
1596 struct page_to_node
*pm
;
1597 unsigned long chunk_nr_pages
;
1598 unsigned long chunk_start
;
1602 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
1609 * Store a chunk of page_to_node array in a page,
1610 * but keep the last one as a marker
1612 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
1614 for (chunk_start
= 0;
1615 chunk_start
< nr_pages
;
1616 chunk_start
+= chunk_nr_pages
) {
1619 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
1620 chunk_nr_pages
= nr_pages
- chunk_start
;
1622 /* fill the chunk pm with addrs and nodes from user-space */
1623 for (j
= 0; j
< chunk_nr_pages
; j
++) {
1624 const void __user
*p
;
1628 if (get_user(p
, pages
+ j
+ chunk_start
))
1630 pm
[j
].addr
= (unsigned long) p
;
1632 if (get_user(node
, nodes
+ j
+ chunk_start
))
1636 if (node
< 0 || node
>= MAX_NUMNODES
)
1639 if (!node_state(node
, N_MEMORY
))
1643 if (!node_isset(node
, task_nodes
))
1649 /* End marker for this chunk */
1650 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
1652 /* Migrate this chunk */
1653 err
= do_move_page_to_node_array(mm
, pm
,
1654 flags
& MPOL_MF_MOVE_ALL
);
1658 /* Return status information */
1659 for (j
= 0; j
< chunk_nr_pages
; j
++)
1660 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
1668 free_page((unsigned long)pm
);
1674 * Determine the nodes of an array of pages and store it in an array of status.
1676 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1677 const void __user
**pages
, int *status
)
1681 down_read(&mm
->mmap_sem
);
1683 for (i
= 0; i
< nr_pages
; i
++) {
1684 unsigned long addr
= (unsigned long)(*pages
);
1685 struct vm_area_struct
*vma
;
1689 vma
= find_vma(mm
, addr
);
1690 if (!vma
|| addr
< vma
->vm_start
)
1693 /* FOLL_DUMP to ignore special (like zero) pages */
1694 page
= follow_page(vma
, addr
, FOLL_DUMP
);
1696 err
= PTR_ERR(page
);
1700 err
= page
? page_to_nid(page
) : -ENOENT
;
1708 up_read(&mm
->mmap_sem
);
1712 * Determine the nodes of a user array of pages and store it in
1713 * a user array of status.
1715 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1716 const void __user
* __user
*pages
,
1719 #define DO_PAGES_STAT_CHUNK_NR 16
1720 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1721 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1724 unsigned long chunk_nr
;
1726 chunk_nr
= nr_pages
;
1727 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1728 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1730 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1733 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1735 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1740 nr_pages
-= chunk_nr
;
1742 return nr_pages
? -EFAULT
: 0;
1746 * Move a list of pages in the address space of the currently executing
1749 static int kernel_move_pages(pid_t pid
, unsigned long nr_pages
,
1750 const void __user
* __user
*pages
,
1751 const int __user
*nodes
,
1752 int __user
*status
, int flags
)
1754 struct task_struct
*task
;
1755 struct mm_struct
*mm
;
1757 nodemask_t task_nodes
;
1760 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1763 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1766 /* Find the mm_struct */
1768 task
= pid
? find_task_by_vpid(pid
) : current
;
1773 get_task_struct(task
);
1776 * Check if this process has the right to modify the specified
1777 * process. Use the regular "ptrace_may_access()" checks.
1779 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
)) {
1786 err
= security_task_movememory(task
);
1790 task_nodes
= cpuset_mems_allowed(task
);
1791 mm
= get_task_mm(task
);
1792 put_task_struct(task
);
1798 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1799 nodes
, status
, flags
);
1801 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1807 put_task_struct(task
);
1811 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1812 const void __user
* __user
*, pages
,
1813 const int __user
*, nodes
,
1814 int __user
*, status
, int, flags
)
1816 return kernel_move_pages(pid
, nr_pages
, pages
, nodes
, status
, flags
);
1819 #ifdef CONFIG_COMPAT
1820 COMPAT_SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, compat_ulong_t
, nr_pages
,
1821 compat_uptr_t __user
*, pages32
,
1822 const int __user
*, nodes
,
1823 int __user
*, status
,
1826 const void __user
* __user
*pages
;
1829 pages
= compat_alloc_user_space(nr_pages
* sizeof(void *));
1830 for (i
= 0; i
< nr_pages
; i
++) {
1833 if (get_user(p
, pages32
+ i
) ||
1834 put_user(compat_ptr(p
), pages
+ i
))
1837 return kernel_move_pages(pid
, nr_pages
, pages
, nodes
, status
, flags
);
1839 #endif /* CONFIG_COMPAT */
1841 #ifdef CONFIG_NUMA_BALANCING
1843 * Returns true if this is a safe migration target node for misplaced NUMA
1844 * pages. Currently it only checks the watermarks which crude
1846 static bool migrate_balanced_pgdat(struct pglist_data
*pgdat
,
1847 unsigned long nr_migrate_pages
)
1851 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
1852 struct zone
*zone
= pgdat
->node_zones
+ z
;
1854 if (!populated_zone(zone
))
1857 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1858 if (!zone_watermark_ok(zone
, 0,
1859 high_wmark_pages(zone
) +
1868 static struct page
*alloc_misplaced_dst_page(struct page
*page
,
1872 int nid
= (int) data
;
1873 struct page
*newpage
;
1875 newpage
= __alloc_pages_node(nid
,
1876 (GFP_HIGHUSER_MOVABLE
|
1877 __GFP_THISNODE
| __GFP_NOMEMALLOC
|
1878 __GFP_NORETRY
| __GFP_NOWARN
) &
1885 * page migration rate limiting control.
1886 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1887 * window of time. Default here says do not migrate more than 1280M per second.
1889 static unsigned int migrate_interval_millisecs __read_mostly
= 100;
1890 static unsigned int ratelimit_pages __read_mostly
= 128 << (20 - PAGE_SHIFT
);
1892 /* Returns true if the node is migrate rate-limited after the update */
1893 static bool numamigrate_update_ratelimit(pg_data_t
*pgdat
,
1894 unsigned long nr_pages
)
1897 * Rate-limit the amount of data that is being migrated to a node.
1898 * Optimal placement is no good if the memory bus is saturated and
1899 * all the time is being spent migrating!
1901 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
)) {
1902 spin_lock(&pgdat
->numabalancing_migrate_lock
);
1903 pgdat
->numabalancing_migrate_nr_pages
= 0;
1904 pgdat
->numabalancing_migrate_next_window
= jiffies
+
1905 msecs_to_jiffies(migrate_interval_millisecs
);
1906 spin_unlock(&pgdat
->numabalancing_migrate_lock
);
1908 if (pgdat
->numabalancing_migrate_nr_pages
> ratelimit_pages
) {
1909 trace_mm_numa_migrate_ratelimit(current
, pgdat
->node_id
,
1915 * This is an unlocked non-atomic update so errors are possible.
1916 * The consequences are failing to migrate when we potentiall should
1917 * have which is not severe enough to warrant locking. If it is ever
1918 * a problem, it can be converted to a per-cpu counter.
1920 pgdat
->numabalancing_migrate_nr_pages
+= nr_pages
;
1924 static int numamigrate_isolate_page(pg_data_t
*pgdat
, struct page
*page
)
1928 VM_BUG_ON_PAGE(compound_order(page
) && !PageTransHuge(page
), page
);
1930 /* Avoid migrating to a node that is nearly full */
1931 if (!migrate_balanced_pgdat(pgdat
, 1UL << compound_order(page
)))
1934 if (isolate_lru_page(page
))
1938 * migrate_misplaced_transhuge_page() skips page migration's usual
1939 * check on page_count(), so we must do it here, now that the page
1940 * has been isolated: a GUP pin, or any other pin, prevents migration.
1941 * The expected page count is 3: 1 for page's mapcount and 1 for the
1942 * caller's pin and 1 for the reference taken by isolate_lru_page().
1944 if (PageTransHuge(page
) && page_count(page
) != 3) {
1945 putback_lru_page(page
);
1949 page_lru
= page_is_file_cache(page
);
1950 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+ page_lru
,
1951 hpage_nr_pages(page
));
1954 * Isolating the page has taken another reference, so the
1955 * caller's reference can be safely dropped without the page
1956 * disappearing underneath us during migration.
1962 bool pmd_trans_migrating(pmd_t pmd
)
1964 struct page
*page
= pmd_page(pmd
);
1965 return PageLocked(page
);
1969 * Attempt to migrate a misplaced page to the specified destination
1970 * node. Caller is expected to have an elevated reference count on
1971 * the page that will be dropped by this function before returning.
1973 int migrate_misplaced_page(struct page
*page
, struct vm_area_struct
*vma
,
1976 pg_data_t
*pgdat
= NODE_DATA(node
);
1979 LIST_HEAD(migratepages
);
1982 * Don't migrate file pages that are mapped in multiple processes
1983 * with execute permissions as they are probably shared libraries.
1985 if (page_mapcount(page
) != 1 && page_is_file_cache(page
) &&
1986 (vma
->vm_flags
& VM_EXEC
))
1990 * Rate-limit the amount of data that is being migrated to a node.
1991 * Optimal placement is no good if the memory bus is saturated and
1992 * all the time is being spent migrating!
1994 if (numamigrate_update_ratelimit(pgdat
, 1))
1997 isolated
= numamigrate_isolate_page(pgdat
, page
);
2001 list_add(&page
->lru
, &migratepages
);
2002 nr_remaining
= migrate_pages(&migratepages
, alloc_misplaced_dst_page
,
2003 NULL
, node
, MIGRATE_ASYNC
,
2006 if (!list_empty(&migratepages
)) {
2007 list_del(&page
->lru
);
2008 dec_node_page_state(page
, NR_ISOLATED_ANON
+
2009 page_is_file_cache(page
));
2010 putback_lru_page(page
);
2014 count_vm_numa_event(NUMA_PAGE_MIGRATE
);
2015 BUG_ON(!list_empty(&migratepages
));
2022 #endif /* CONFIG_NUMA_BALANCING */
2024 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2026 * Migrates a THP to a given target node. page must be locked and is unlocked
2029 int migrate_misplaced_transhuge_page(struct mm_struct
*mm
,
2030 struct vm_area_struct
*vma
,
2031 pmd_t
*pmd
, pmd_t entry
,
2032 unsigned long address
,
2033 struct page
*page
, int node
)
2036 pg_data_t
*pgdat
= NODE_DATA(node
);
2038 struct page
*new_page
= NULL
;
2039 int page_lru
= page_is_file_cache(page
);
2040 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
2041 unsigned long mmun_end
= mmun_start
+ HPAGE_PMD_SIZE
;
2044 * Rate-limit the amount of data that is being migrated to a node.
2045 * Optimal placement is no good if the memory bus is saturated and
2046 * all the time is being spent migrating!
2048 if (numamigrate_update_ratelimit(pgdat
, HPAGE_PMD_NR
))
2051 new_page
= alloc_pages_node(node
,
2052 (GFP_TRANSHUGE_LIGHT
| __GFP_THISNODE
),
2056 prep_transhuge_page(new_page
);
2058 isolated
= numamigrate_isolate_page(pgdat
, page
);
2064 /* Prepare a page as a migration target */
2065 __SetPageLocked(new_page
);
2066 if (PageSwapBacked(page
))
2067 __SetPageSwapBacked(new_page
);
2069 /* anon mapping, we can simply copy page->mapping to the new page: */
2070 new_page
->mapping
= page
->mapping
;
2071 new_page
->index
= page
->index
;
2072 migrate_page_copy(new_page
, page
);
2073 WARN_ON(PageLRU(new_page
));
2075 /* Recheck the target PMD */
2076 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2077 ptl
= pmd_lock(mm
, pmd
);
2078 if (unlikely(!pmd_same(*pmd
, entry
) || !page_ref_freeze(page
, 2))) {
2080 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2082 /* Reverse changes made by migrate_page_copy() */
2083 if (TestClearPageActive(new_page
))
2084 SetPageActive(page
);
2085 if (TestClearPageUnevictable(new_page
))
2086 SetPageUnevictable(page
);
2088 unlock_page(new_page
);
2089 put_page(new_page
); /* Free it */
2091 /* Retake the callers reference and putback on LRU */
2093 putback_lru_page(page
);
2094 mod_node_page_state(page_pgdat(page
),
2095 NR_ISOLATED_ANON
+ page_lru
, -HPAGE_PMD_NR
);
2100 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
2101 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
2104 * Clear the old entry under pagetable lock and establish the new PTE.
2105 * Any parallel GUP will either observe the old page blocking on the
2106 * page lock, block on the page table lock or observe the new page.
2107 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2108 * guarantee the copy is visible before the pagetable update.
2110 flush_cache_range(vma
, mmun_start
, mmun_end
);
2111 page_add_anon_rmap(new_page
, vma
, mmun_start
, true);
2112 pmdp_huge_clear_flush_notify(vma
, mmun_start
, pmd
);
2113 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
2114 update_mmu_cache_pmd(vma
, address
, &entry
);
2116 page_ref_unfreeze(page
, 2);
2117 mlock_migrate_page(new_page
, page
);
2118 page_remove_rmap(page
, true);
2119 set_page_owner_migrate_reason(new_page
, MR_NUMA_MISPLACED
);
2123 * No need to double call mmu_notifier->invalidate_range() callback as
2124 * the above pmdp_huge_clear_flush_notify() did already call it.
2126 mmu_notifier_invalidate_range_only_end(mm
, mmun_start
, mmun_end
);
2128 /* Take an "isolate" reference and put new page on the LRU. */
2130 putback_lru_page(new_page
);
2132 unlock_page(new_page
);
2134 put_page(page
); /* Drop the rmap reference */
2135 put_page(page
); /* Drop the LRU isolation reference */
2137 count_vm_events(PGMIGRATE_SUCCESS
, HPAGE_PMD_NR
);
2138 count_vm_numa_events(NUMA_PAGE_MIGRATE
, HPAGE_PMD_NR
);
2140 mod_node_page_state(page_pgdat(page
),
2141 NR_ISOLATED_ANON
+ page_lru
,
2146 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
2148 ptl
= pmd_lock(mm
, pmd
);
2149 if (pmd_same(*pmd
, entry
)) {
2150 entry
= pmd_modify(entry
, vma
->vm_page_prot
);
2151 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
2152 update_mmu_cache_pmd(vma
, address
, &entry
);
2161 #endif /* CONFIG_NUMA_BALANCING */
2163 #endif /* CONFIG_NUMA */
2165 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2166 struct migrate_vma
{
2167 struct vm_area_struct
*vma
;
2170 unsigned long cpages
;
2171 unsigned long npages
;
2172 unsigned long start
;
2176 static int migrate_vma_collect_hole(unsigned long start
,
2178 struct mm_walk
*walk
)
2180 struct migrate_vma
*migrate
= walk
->private;
2183 for (addr
= start
& PAGE_MASK
; addr
< end
; addr
+= PAGE_SIZE
) {
2184 migrate
->src
[migrate
->npages
] = MIGRATE_PFN_MIGRATE
;
2185 migrate
->dst
[migrate
->npages
] = 0;
2193 static int migrate_vma_collect_skip(unsigned long start
,
2195 struct mm_walk
*walk
)
2197 struct migrate_vma
*migrate
= walk
->private;
2200 for (addr
= start
& PAGE_MASK
; addr
< end
; addr
+= PAGE_SIZE
) {
2201 migrate
->dst
[migrate
->npages
] = 0;
2202 migrate
->src
[migrate
->npages
++] = 0;
2208 static int migrate_vma_collect_pmd(pmd_t
*pmdp
,
2209 unsigned long start
,
2211 struct mm_walk
*walk
)
2213 struct migrate_vma
*migrate
= walk
->private;
2214 struct vm_area_struct
*vma
= walk
->vma
;
2215 struct mm_struct
*mm
= vma
->vm_mm
;
2216 unsigned long addr
= start
, unmapped
= 0;
2221 if (pmd_none(*pmdp
))
2222 return migrate_vma_collect_hole(start
, end
, walk
);
2224 if (pmd_trans_huge(*pmdp
)) {
2227 ptl
= pmd_lock(mm
, pmdp
);
2228 if (unlikely(!pmd_trans_huge(*pmdp
))) {
2233 page
= pmd_page(*pmdp
);
2234 if (is_huge_zero_page(page
)) {
2236 split_huge_pmd(vma
, pmdp
, addr
);
2237 if (pmd_trans_unstable(pmdp
))
2238 return migrate_vma_collect_skip(start
, end
,
2245 if (unlikely(!trylock_page(page
)))
2246 return migrate_vma_collect_skip(start
, end
,
2248 ret
= split_huge_page(page
);
2252 return migrate_vma_collect_skip(start
, end
,
2254 if (pmd_none(*pmdp
))
2255 return migrate_vma_collect_hole(start
, end
,
2260 if (unlikely(pmd_bad(*pmdp
)))
2261 return migrate_vma_collect_skip(start
, end
, walk
);
2263 ptep
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
2264 arch_enter_lazy_mmu_mode();
2266 for (; addr
< end
; addr
+= PAGE_SIZE
, ptep
++) {
2267 unsigned long mpfn
, pfn
;
2275 if (pte_none(pte
)) {
2276 mpfn
= MIGRATE_PFN_MIGRATE
;
2282 if (!pte_present(pte
)) {
2286 * Only care about unaddressable device page special
2287 * page table entry. Other special swap entries are not
2288 * migratable, and we ignore regular swapped page.
2290 entry
= pte_to_swp_entry(pte
);
2291 if (!is_device_private_entry(entry
))
2294 page
= device_private_entry_to_page(entry
);
2295 mpfn
= migrate_pfn(page_to_pfn(page
))|
2296 MIGRATE_PFN_DEVICE
| MIGRATE_PFN_MIGRATE
;
2297 if (is_write_device_private_entry(entry
))
2298 mpfn
|= MIGRATE_PFN_WRITE
;
2300 if (is_zero_pfn(pfn
)) {
2301 mpfn
= MIGRATE_PFN_MIGRATE
;
2306 page
= _vm_normal_page(migrate
->vma
, addr
, pte
, true);
2307 mpfn
= migrate_pfn(pfn
) | MIGRATE_PFN_MIGRATE
;
2308 mpfn
|= pte_write(pte
) ? MIGRATE_PFN_WRITE
: 0;
2311 /* FIXME support THP */
2312 if (!page
|| !page
->mapping
|| PageTransCompound(page
)) {
2316 pfn
= page_to_pfn(page
);
2319 * By getting a reference on the page we pin it and that blocks
2320 * any kind of migration. Side effect is that it "freezes" the
2323 * We drop this reference after isolating the page from the lru
2324 * for non device page (device page are not on the lru and thus
2325 * can't be dropped from it).
2331 * Optimize for the common case where page is only mapped once
2332 * in one process. If we can lock the page, then we can safely
2333 * set up a special migration page table entry now.
2335 if (trylock_page(page
)) {
2338 mpfn
|= MIGRATE_PFN_LOCKED
;
2339 ptep_get_and_clear(mm
, addr
, ptep
);
2341 /* Setup special migration page table entry */
2342 entry
= make_migration_entry(page
, pte_write(pte
));
2343 swp_pte
= swp_entry_to_pte(entry
);
2344 if (pte_soft_dirty(pte
))
2345 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
2346 set_pte_at(mm
, addr
, ptep
, swp_pte
);
2349 * This is like regular unmap: we remove the rmap and
2350 * drop page refcount. Page won't be freed, as we took
2351 * a reference just above.
2353 page_remove_rmap(page
, false);
2356 if (pte_present(pte
))
2361 migrate
->dst
[migrate
->npages
] = 0;
2362 migrate
->src
[migrate
->npages
++] = mpfn
;
2364 arch_leave_lazy_mmu_mode();
2365 pte_unmap_unlock(ptep
- 1, ptl
);
2367 /* Only flush the TLB if we actually modified any entries */
2369 flush_tlb_range(walk
->vma
, start
, end
);
2375 * migrate_vma_collect() - collect pages over a range of virtual addresses
2376 * @migrate: migrate struct containing all migration information
2378 * This will walk the CPU page table. For each virtual address backed by a
2379 * valid page, it updates the src array and takes a reference on the page, in
2380 * order to pin the page until we lock it and unmap it.
2382 static void migrate_vma_collect(struct migrate_vma
*migrate
)
2384 struct mm_walk mm_walk
;
2386 mm_walk
.pmd_entry
= migrate_vma_collect_pmd
;
2387 mm_walk
.pte_entry
= NULL
;
2388 mm_walk
.pte_hole
= migrate_vma_collect_hole
;
2389 mm_walk
.hugetlb_entry
= NULL
;
2390 mm_walk
.test_walk
= NULL
;
2391 mm_walk
.vma
= migrate
->vma
;
2392 mm_walk
.mm
= migrate
->vma
->vm_mm
;
2393 mm_walk
.private = migrate
;
2395 mmu_notifier_invalidate_range_start(mm_walk
.mm
,
2398 walk_page_range(migrate
->start
, migrate
->end
, &mm_walk
);
2399 mmu_notifier_invalidate_range_end(mm_walk
.mm
,
2403 migrate
->end
= migrate
->start
+ (migrate
->npages
<< PAGE_SHIFT
);
2407 * migrate_vma_check_page() - check if page is pinned or not
2408 * @page: struct page to check
2410 * Pinned pages cannot be migrated. This is the same test as in
2411 * migrate_page_move_mapping(), except that here we allow migration of a
2414 static bool migrate_vma_check_page(struct page
*page
)
2417 * One extra ref because caller holds an extra reference, either from
2418 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2424 * FIXME support THP (transparent huge page), it is bit more complex to
2425 * check them than regular pages, because they can be mapped with a pmd
2426 * or with a pte (split pte mapping).
2428 if (PageCompound(page
))
2431 /* Page from ZONE_DEVICE have one extra reference */
2432 if (is_zone_device_page(page
)) {
2434 * Private page can never be pin as they have no valid pte and
2435 * GUP will fail for those. Yet if there is a pending migration
2436 * a thread might try to wait on the pte migration entry and
2437 * will bump the page reference count. Sadly there is no way to
2438 * differentiate a regular pin from migration wait. Hence to
2439 * avoid 2 racing thread trying to migrate back to CPU to enter
2440 * infinite loop (one stoping migration because the other is
2441 * waiting on pte migration entry). We always return true here.
2443 * FIXME proper solution is to rework migration_entry_wait() so
2444 * it does not need to take a reference on page.
2446 if (is_device_private_page(page
))
2450 * Only allow device public page to be migrated and account for
2451 * the extra reference count imply by ZONE_DEVICE pages.
2453 if (!is_device_public_page(page
))
2458 /* For file back page */
2459 if (page_mapping(page
))
2460 extra
+= 1 + page_has_private(page
);
2462 if ((page_count(page
) - extra
) > page_mapcount(page
))
2469 * migrate_vma_prepare() - lock pages and isolate them from the lru
2470 * @migrate: migrate struct containing all migration information
2472 * This locks pages that have been collected by migrate_vma_collect(). Once each
2473 * page is locked it is isolated from the lru (for non-device pages). Finally,
2474 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2475 * migrated by concurrent kernel threads.
2477 static void migrate_vma_prepare(struct migrate_vma
*migrate
)
2479 const unsigned long npages
= migrate
->npages
;
2480 const unsigned long start
= migrate
->start
;
2481 unsigned long addr
, i
, restore
= 0;
2482 bool allow_drain
= true;
2486 for (i
= 0; (i
< npages
) && migrate
->cpages
; i
++) {
2487 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2493 if (!(migrate
->src
[i
] & MIGRATE_PFN_LOCKED
)) {
2495 * Because we are migrating several pages there can be
2496 * a deadlock between 2 concurrent migration where each
2497 * are waiting on each other page lock.
2499 * Make migrate_vma() a best effort thing and backoff
2500 * for any page we can not lock right away.
2502 if (!trylock_page(page
)) {
2503 migrate
->src
[i
] = 0;
2509 migrate
->src
[i
] |= MIGRATE_PFN_LOCKED
;
2512 /* ZONE_DEVICE pages are not on LRU */
2513 if (!is_zone_device_page(page
)) {
2514 if (!PageLRU(page
) && allow_drain
) {
2515 /* Drain CPU's pagevec */
2516 lru_add_drain_all();
2517 allow_drain
= false;
2520 if (isolate_lru_page(page
)) {
2522 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2526 migrate
->src
[i
] = 0;
2534 /* Drop the reference we took in collect */
2538 if (!migrate_vma_check_page(page
)) {
2540 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2544 if (!is_zone_device_page(page
)) {
2546 putback_lru_page(page
);
2549 migrate
->src
[i
] = 0;
2553 if (!is_zone_device_page(page
))
2554 putback_lru_page(page
);
2561 for (i
= 0, addr
= start
; i
< npages
&& restore
; i
++, addr
+= PAGE_SIZE
) {
2562 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2564 if (!page
|| (migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2567 remove_migration_pte(page
, migrate
->vma
, addr
, page
);
2569 migrate
->src
[i
] = 0;
2577 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2578 * @migrate: migrate struct containing all migration information
2580 * Replace page mapping (CPU page table pte) with a special migration pte entry
2581 * and check again if it has been pinned. Pinned pages are restored because we
2582 * cannot migrate them.
2584 * This is the last step before we call the device driver callback to allocate
2585 * destination memory and copy contents of original page over to new page.
2587 static void migrate_vma_unmap(struct migrate_vma
*migrate
)
2589 int flags
= TTU_MIGRATION
| TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
;
2590 const unsigned long npages
= migrate
->npages
;
2591 const unsigned long start
= migrate
->start
;
2592 unsigned long addr
, i
, restore
= 0;
2594 for (i
= 0; i
< npages
; i
++) {
2595 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2597 if (!page
|| !(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2600 if (page_mapped(page
)) {
2601 try_to_unmap(page
, flags
);
2602 if (page_mapped(page
))
2606 if (migrate_vma_check_page(page
))
2610 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2615 for (addr
= start
, i
= 0; i
< npages
&& restore
; addr
+= PAGE_SIZE
, i
++) {
2616 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2618 if (!page
|| (migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2621 remove_migration_ptes(page
, page
, false);
2623 migrate
->src
[i
] = 0;
2627 if (is_zone_device_page(page
))
2630 putback_lru_page(page
);
2634 static void migrate_vma_insert_page(struct migrate_vma
*migrate
,
2640 struct vm_area_struct
*vma
= migrate
->vma
;
2641 struct mm_struct
*mm
= vma
->vm_mm
;
2642 struct mem_cgroup
*memcg
;
2652 /* Only allow populating anonymous memory */
2653 if (!vma_is_anonymous(vma
))
2656 pgdp
= pgd_offset(mm
, addr
);
2657 p4dp
= p4d_alloc(mm
, pgdp
, addr
);
2660 pudp
= pud_alloc(mm
, p4dp
, addr
);
2663 pmdp
= pmd_alloc(mm
, pudp
, addr
);
2667 if (pmd_trans_huge(*pmdp
) || pmd_devmap(*pmdp
))
2671 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2672 * pte_offset_map() on pmds where a huge pmd might be created
2673 * from a different thread.
2675 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2676 * parallel threads are excluded by other means.
2678 * Here we only have down_read(mmap_sem).
2680 if (pte_alloc(mm
, pmdp
, addr
))
2683 /* See the comment in pte_alloc_one_map() */
2684 if (unlikely(pmd_trans_unstable(pmdp
)))
2687 if (unlikely(anon_vma_prepare(vma
)))
2689 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
, false))
2693 * The memory barrier inside __SetPageUptodate makes sure that
2694 * preceding stores to the page contents become visible before
2695 * the set_pte_at() write.
2697 __SetPageUptodate(page
);
2699 if (is_zone_device_page(page
)) {
2700 if (is_device_private_page(page
)) {
2701 swp_entry_t swp_entry
;
2703 swp_entry
= make_device_private_entry(page
, vma
->vm_flags
& VM_WRITE
);
2704 entry
= swp_entry_to_pte(swp_entry
);
2705 } else if (is_device_public_page(page
)) {
2706 entry
= pte_mkold(mk_pte(page
, READ_ONCE(vma
->vm_page_prot
)));
2707 if (vma
->vm_flags
& VM_WRITE
)
2708 entry
= pte_mkwrite(pte_mkdirty(entry
));
2709 entry
= pte_mkdevmap(entry
);
2712 entry
= mk_pte(page
, vma
->vm_page_prot
);
2713 if (vma
->vm_flags
& VM_WRITE
)
2714 entry
= pte_mkwrite(pte_mkdirty(entry
));
2717 ptep
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
2719 if (pte_present(*ptep
)) {
2720 unsigned long pfn
= pte_pfn(*ptep
);
2722 if (!is_zero_pfn(pfn
)) {
2723 pte_unmap_unlock(ptep
, ptl
);
2724 mem_cgroup_cancel_charge(page
, memcg
, false);
2728 } else if (!pte_none(*ptep
)) {
2729 pte_unmap_unlock(ptep
, ptl
);
2730 mem_cgroup_cancel_charge(page
, memcg
, false);
2735 * Check for usefaultfd but do not deliver the fault. Instead,
2738 if (userfaultfd_missing(vma
)) {
2739 pte_unmap_unlock(ptep
, ptl
);
2740 mem_cgroup_cancel_charge(page
, memcg
, false);
2744 inc_mm_counter(mm
, MM_ANONPAGES
);
2745 page_add_new_anon_rmap(page
, vma
, addr
, false);
2746 mem_cgroup_commit_charge(page
, memcg
, false, false);
2747 if (!is_zone_device_page(page
))
2748 lru_cache_add_active_or_unevictable(page
, vma
);
2752 flush_cache_page(vma
, addr
, pte_pfn(*ptep
));
2753 ptep_clear_flush_notify(vma
, addr
, ptep
);
2754 set_pte_at_notify(mm
, addr
, ptep
, entry
);
2755 update_mmu_cache(vma
, addr
, ptep
);
2757 /* No need to invalidate - it was non-present before */
2758 set_pte_at(mm
, addr
, ptep
, entry
);
2759 update_mmu_cache(vma
, addr
, ptep
);
2762 pte_unmap_unlock(ptep
, ptl
);
2763 *src
= MIGRATE_PFN_MIGRATE
;
2767 *src
&= ~MIGRATE_PFN_MIGRATE
;
2771 * migrate_vma_pages() - migrate meta-data from src page to dst page
2772 * @migrate: migrate struct containing all migration information
2774 * This migrates struct page meta-data from source struct page to destination
2775 * struct page. This effectively finishes the migration from source page to the
2778 static void migrate_vma_pages(struct migrate_vma
*migrate
)
2780 const unsigned long npages
= migrate
->npages
;
2781 const unsigned long start
= migrate
->start
;
2782 struct vm_area_struct
*vma
= migrate
->vma
;
2783 struct mm_struct
*mm
= vma
->vm_mm
;
2784 unsigned long addr
, i
, mmu_start
;
2785 bool notified
= false;
2787 for (i
= 0, addr
= start
; i
< npages
; addr
+= PAGE_SIZE
, i
++) {
2788 struct page
*newpage
= migrate_pfn_to_page(migrate
->dst
[i
]);
2789 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2790 struct address_space
*mapping
;
2794 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2799 if (!(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
)) {
2805 mmu_notifier_invalidate_range_start(mm
,
2809 migrate_vma_insert_page(migrate
, addr
, newpage
,
2815 mapping
= page_mapping(page
);
2817 if (is_zone_device_page(newpage
)) {
2818 if (is_device_private_page(newpage
)) {
2820 * For now only support private anonymous when
2821 * migrating to un-addressable device memory.
2824 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2827 } else if (!is_device_public_page(newpage
)) {
2829 * Other types of ZONE_DEVICE page are not
2832 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2837 r
= migrate_page(mapping
, newpage
, page
, MIGRATE_SYNC_NO_COPY
);
2838 if (r
!= MIGRATEPAGE_SUCCESS
)
2839 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2843 * No need to double call mmu_notifier->invalidate_range() callback as
2844 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2845 * did already call it.
2848 mmu_notifier_invalidate_range_only_end(mm
, mmu_start
,
2853 * migrate_vma_finalize() - restore CPU page table entry
2854 * @migrate: migrate struct containing all migration information
2856 * This replaces the special migration pte entry with either a mapping to the
2857 * new page if migration was successful for that page, or to the original page
2860 * This also unlocks the pages and puts them back on the lru, or drops the extra
2861 * refcount, for device pages.
2863 static void migrate_vma_finalize(struct migrate_vma
*migrate
)
2865 const unsigned long npages
= migrate
->npages
;
2868 for (i
= 0; i
< npages
; i
++) {
2869 struct page
*newpage
= migrate_pfn_to_page(migrate
->dst
[i
]);
2870 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2874 unlock_page(newpage
);
2880 if (!(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
) || !newpage
) {
2882 unlock_page(newpage
);
2888 remove_migration_ptes(page
, newpage
, false);
2892 if (is_zone_device_page(page
))
2895 putback_lru_page(page
);
2897 if (newpage
!= page
) {
2898 unlock_page(newpage
);
2899 if (is_zone_device_page(newpage
))
2902 putback_lru_page(newpage
);
2908 * migrate_vma() - migrate a range of memory inside vma
2910 * @ops: migration callback for allocating destination memory and copying
2911 * @vma: virtual memory area containing the range to be migrated
2912 * @start: start address of the range to migrate (inclusive)
2913 * @end: end address of the range to migrate (exclusive)
2914 * @src: array of hmm_pfn_t containing source pfns
2915 * @dst: array of hmm_pfn_t containing destination pfns
2916 * @private: pointer passed back to each of the callback
2917 * Returns: 0 on success, error code otherwise
2919 * This function tries to migrate a range of memory virtual address range, using
2920 * callbacks to allocate and copy memory from source to destination. First it
2921 * collects all the pages backing each virtual address in the range, saving this
2922 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2923 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2924 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2925 * in the corresponding src array entry. It then restores any pages that are
2926 * pinned, by remapping and unlocking those pages.
2928 * At this point it calls the alloc_and_copy() callback. For documentation on
2929 * what is expected from that callback, see struct migrate_vma_ops comments in
2930 * include/linux/migrate.h
2932 * After the alloc_and_copy() callback, this function goes over each entry in
2933 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2934 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2935 * then the function tries to migrate struct page information from the source
2936 * struct page to the destination struct page. If it fails to migrate the struct
2937 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2940 * At this point all successfully migrated pages have an entry in the src
2941 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2942 * array entry with MIGRATE_PFN_VALID flag set.
2944 * It then calls the finalize_and_map() callback. See comments for "struct
2945 * migrate_vma_ops", in include/linux/migrate.h for details about
2946 * finalize_and_map() behavior.
2948 * After the finalize_and_map() callback, for successfully migrated pages, this
2949 * function updates the CPU page table to point to new pages, otherwise it
2950 * restores the CPU page table to point to the original source pages.
2952 * Function returns 0 after the above steps, even if no pages were migrated
2953 * (The function only returns an error if any of the arguments are invalid.)
2955 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2956 * unsigned long entries.
2958 int migrate_vma(const struct migrate_vma_ops
*ops
,
2959 struct vm_area_struct
*vma
,
2960 unsigned long start
,
2966 struct migrate_vma migrate
;
2968 /* Sanity check the arguments */
2971 if (!vma
|| is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_SPECIAL
))
2973 if (start
< vma
->vm_start
|| start
>= vma
->vm_end
)
2975 if (end
<= vma
->vm_start
|| end
> vma
->vm_end
)
2977 if (!ops
|| !src
|| !dst
|| start
>= end
)
2980 memset(src
, 0, sizeof(*src
) * ((end
- start
) >> PAGE_SHIFT
));
2983 migrate
.start
= start
;
2989 /* Collect, and try to unmap source pages */
2990 migrate_vma_collect(&migrate
);
2991 if (!migrate
.cpages
)
2994 /* Lock and isolate page */
2995 migrate_vma_prepare(&migrate
);
2996 if (!migrate
.cpages
)
3000 migrate_vma_unmap(&migrate
);
3001 if (!migrate
.cpages
)
3005 * At this point pages are locked and unmapped, and thus they have
3006 * stable content and can safely be copied to destination memory that
3007 * is allocated by the callback.
3009 * Note that migration can fail in migrate_vma_struct_page() for each
3012 ops
->alloc_and_copy(vma
, src
, dst
, start
, end
, private);
3014 /* This does the real migration of struct page */
3015 migrate_vma_pages(&migrate
);
3017 ops
->finalize_and_map(vma
, src
, dst
, start
, end
, private);
3019 /* Unlock and remap pages */
3020 migrate_vma_finalize(&migrate
);
3024 EXPORT_SYMBOL(migrate_vma
);
3025 #endif /* defined(MIGRATE_VMA_HELPER) */