usb: renesas_usbhs: disable TX IRQ before starting TX DMAC transfer
[linux/fpc-iii.git] / mm / filemap.c
blob322462d27b9961744ee72b4e7e3592536ba87007
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
43 * FIXME: remove all knowledge of the buffer layer from the core VM
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 #include <asm/mman.h>
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
53 * Shared mappings now work. 15.8.1995 Bruno.
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
62 * Lock ordering:
64 * ->i_mmap_mutex (truncate_pagecache)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
69 * ->i_mutex
70 * ->i_mmap_mutex (truncate->unmap_mapping_range)
72 * ->mmap_sem
73 * ->i_mmap_mutex
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
80 * ->i_mutex (generic_perform_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 * bdi->wb.list_lock
84 * sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
87 * ->i_mmap_mutex
88 * ->anon_vma.lock (vma_adjust)
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
104 * ->inode->i_lock (zap_pte_range->set_page_dirty)
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 * ->i_mmap_mutex
108 * ->tasklist_lock (memory_failure, collect_procs_ao)
111 static void page_cache_tree_delete(struct address_space *mapping,
112 struct page *page, void *shadow)
114 struct radix_tree_node *node;
115 unsigned long index;
116 unsigned int offset;
117 unsigned int tag;
118 void **slot;
120 VM_BUG_ON(!PageLocked(page));
122 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
124 if (shadow) {
125 mapping->nrshadows++;
127 * Make sure the nrshadows update is committed before
128 * the nrpages update so that final truncate racing
129 * with reclaim does not see both counters 0 at the
130 * same time and miss a shadow entry.
132 smp_wmb();
134 mapping->nrpages--;
136 if (!node) {
137 /* Clear direct pointer tags in root node */
138 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139 radix_tree_replace_slot(slot, shadow);
140 return;
143 /* Clear tree tags for the removed page */
144 index = page->index;
145 offset = index & RADIX_TREE_MAP_MASK;
146 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147 if (test_bit(offset, node->tags[tag]))
148 radix_tree_tag_clear(&mapping->page_tree, index, tag);
151 /* Delete page, swap shadow entry */
152 radix_tree_replace_slot(slot, shadow);
153 workingset_node_pages_dec(node);
154 if (shadow)
155 workingset_node_shadows_inc(node);
156 else
157 if (__radix_tree_delete_node(&mapping->page_tree, node))
158 return;
161 * Track node that only contains shadow entries.
163 * Avoid acquiring the list_lru lock if already tracked. The
164 * list_empty() test is safe as node->private_list is
165 * protected by mapping->tree_lock.
167 if (!workingset_node_pages(node) &&
168 list_empty(&node->private_list)) {
169 node->private_data = mapping;
170 list_lru_add(&workingset_shadow_nodes, &node->private_list);
175 * Delete a page from the page cache and free it. Caller has to make
176 * sure the page is locked and that nobody else uses it - or that usage
177 * is safe. The caller must hold the mapping's tree_lock.
179 void __delete_from_page_cache(struct page *page, void *shadow)
181 struct address_space *mapping = page->mapping;
183 trace_mm_filemap_delete_from_page_cache(page);
185 * if we're uptodate, flush out into the cleancache, otherwise
186 * invalidate any existing cleancache entries. We can't leave
187 * stale data around in the cleancache once our page is gone
189 if (PageUptodate(page) && PageMappedToDisk(page))
190 cleancache_put_page(page);
191 else
192 cleancache_invalidate_page(mapping, page);
194 page_cache_tree_delete(mapping, page, shadow);
196 page->mapping = NULL;
197 /* Leave page->index set: truncation lookup relies upon it */
199 __dec_zone_page_state(page, NR_FILE_PAGES);
200 if (PageSwapBacked(page))
201 __dec_zone_page_state(page, NR_SHMEM);
202 BUG_ON(page_mapped(page));
205 * Some filesystems seem to re-dirty the page even after
206 * the VM has canceled the dirty bit (eg ext3 journaling).
208 * Fix it up by doing a final dirty accounting check after
209 * having removed the page entirely.
211 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
212 dec_zone_page_state(page, NR_FILE_DIRTY);
213 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
218 * delete_from_page_cache - delete page from page cache
219 * @page: the page which the kernel is trying to remove from page cache
221 * This must be called only on pages that have been verified to be in the page
222 * cache and locked. It will never put the page into the free list, the caller
223 * has a reference on the page.
225 void delete_from_page_cache(struct page *page)
227 struct address_space *mapping = page->mapping;
228 void (*freepage)(struct page *);
230 BUG_ON(!PageLocked(page));
232 freepage = mapping->a_ops->freepage;
233 spin_lock_irq(&mapping->tree_lock);
234 __delete_from_page_cache(page, NULL);
235 spin_unlock_irq(&mapping->tree_lock);
236 mem_cgroup_uncharge_cache_page(page);
238 if (freepage)
239 freepage(page);
240 page_cache_release(page);
242 EXPORT_SYMBOL(delete_from_page_cache);
244 static int sleep_on_page(void *word)
246 io_schedule();
247 return 0;
250 static int sleep_on_page_killable(void *word)
252 sleep_on_page(word);
253 return fatal_signal_pending(current) ? -EINTR : 0;
256 static int filemap_check_errors(struct address_space *mapping)
258 int ret = 0;
259 /* Check for outstanding write errors */
260 if (test_bit(AS_ENOSPC, &mapping->flags) &&
261 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
262 ret = -ENOSPC;
263 if (test_bit(AS_EIO, &mapping->flags) &&
264 test_and_clear_bit(AS_EIO, &mapping->flags))
265 ret = -EIO;
266 return ret;
270 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
271 * @mapping: address space structure to write
272 * @start: offset in bytes where the range starts
273 * @end: offset in bytes where the range ends (inclusive)
274 * @sync_mode: enable synchronous operation
276 * Start writeback against all of a mapping's dirty pages that lie
277 * within the byte offsets <start, end> inclusive.
279 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
280 * opposed to a regular memory cleansing writeback. The difference between
281 * these two operations is that if a dirty page/buffer is encountered, it must
282 * be waited upon, and not just skipped over.
284 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
285 loff_t end, int sync_mode)
287 int ret;
288 struct writeback_control wbc = {
289 .sync_mode = sync_mode,
290 .nr_to_write = LONG_MAX,
291 .range_start = start,
292 .range_end = end,
295 if (!mapping_cap_writeback_dirty(mapping))
296 return 0;
298 ret = do_writepages(mapping, &wbc);
299 return ret;
302 static inline int __filemap_fdatawrite(struct address_space *mapping,
303 int sync_mode)
305 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
308 int filemap_fdatawrite(struct address_space *mapping)
310 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
312 EXPORT_SYMBOL(filemap_fdatawrite);
314 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
315 loff_t end)
317 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
319 EXPORT_SYMBOL(filemap_fdatawrite_range);
322 * filemap_flush - mostly a non-blocking flush
323 * @mapping: target address_space
325 * This is a mostly non-blocking flush. Not suitable for data-integrity
326 * purposes - I/O may not be started against all dirty pages.
328 int filemap_flush(struct address_space *mapping)
330 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
332 EXPORT_SYMBOL(filemap_flush);
335 * filemap_fdatawait_range - wait for writeback to complete
336 * @mapping: address space structure to wait for
337 * @start_byte: offset in bytes where the range starts
338 * @end_byte: offset in bytes where the range ends (inclusive)
340 * Walk the list of under-writeback pages of the given address space
341 * in the given range and wait for all of them.
343 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
344 loff_t end_byte)
346 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
347 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
348 struct pagevec pvec;
349 int nr_pages;
350 int ret2, ret = 0;
352 if (end_byte < start_byte)
353 goto out;
355 pagevec_init(&pvec, 0);
356 while ((index <= end) &&
357 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
358 PAGECACHE_TAG_WRITEBACK,
359 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
360 unsigned i;
362 for (i = 0; i < nr_pages; i++) {
363 struct page *page = pvec.pages[i];
365 /* until radix tree lookup accepts end_index */
366 if (page->index > end)
367 continue;
369 wait_on_page_writeback(page);
370 if (TestClearPageError(page))
371 ret = -EIO;
373 pagevec_release(&pvec);
374 cond_resched();
376 out:
377 ret2 = filemap_check_errors(mapping);
378 if (!ret)
379 ret = ret2;
381 return ret;
383 EXPORT_SYMBOL(filemap_fdatawait_range);
386 * filemap_fdatawait - wait for all under-writeback pages to complete
387 * @mapping: address space structure to wait for
389 * Walk the list of under-writeback pages of the given address space
390 * and wait for all of them.
392 int filemap_fdatawait(struct address_space *mapping)
394 loff_t i_size = i_size_read(mapping->host);
396 if (i_size == 0)
397 return 0;
399 return filemap_fdatawait_range(mapping, 0, i_size - 1);
401 EXPORT_SYMBOL(filemap_fdatawait);
403 int filemap_write_and_wait(struct address_space *mapping)
405 int err = 0;
407 if (mapping->nrpages) {
408 err = filemap_fdatawrite(mapping);
410 * Even if the above returned error, the pages may be
411 * written partially (e.g. -ENOSPC), so we wait for it.
412 * But the -EIO is special case, it may indicate the worst
413 * thing (e.g. bug) happened, so we avoid waiting for it.
415 if (err != -EIO) {
416 int err2 = filemap_fdatawait(mapping);
417 if (!err)
418 err = err2;
420 } else {
421 err = filemap_check_errors(mapping);
423 return err;
425 EXPORT_SYMBOL(filemap_write_and_wait);
428 * filemap_write_and_wait_range - write out & wait on a file range
429 * @mapping: the address_space for the pages
430 * @lstart: offset in bytes where the range starts
431 * @lend: offset in bytes where the range ends (inclusive)
433 * Write out and wait upon file offsets lstart->lend, inclusive.
435 * Note that `lend' is inclusive (describes the last byte to be written) so
436 * that this function can be used to write to the very end-of-file (end = -1).
438 int filemap_write_and_wait_range(struct address_space *mapping,
439 loff_t lstart, loff_t lend)
441 int err = 0;
443 if (mapping->nrpages) {
444 err = __filemap_fdatawrite_range(mapping, lstart, lend,
445 WB_SYNC_ALL);
446 /* See comment of filemap_write_and_wait() */
447 if (err != -EIO) {
448 int err2 = filemap_fdatawait_range(mapping,
449 lstart, lend);
450 if (!err)
451 err = err2;
453 } else {
454 err = filemap_check_errors(mapping);
456 return err;
458 EXPORT_SYMBOL(filemap_write_and_wait_range);
461 * replace_page_cache_page - replace a pagecache page with a new one
462 * @old: page to be replaced
463 * @new: page to replace with
464 * @gfp_mask: allocation mode
466 * This function replaces a page in the pagecache with a new one. On
467 * success it acquires the pagecache reference for the new page and
468 * drops it for the old page. Both the old and new pages must be
469 * locked. This function does not add the new page to the LRU, the
470 * caller must do that.
472 * The remove + add is atomic. The only way this function can fail is
473 * memory allocation failure.
475 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
477 int error;
479 VM_BUG_ON_PAGE(!PageLocked(old), old);
480 VM_BUG_ON_PAGE(!PageLocked(new), new);
481 VM_BUG_ON_PAGE(new->mapping, new);
483 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
484 if (!error) {
485 struct address_space *mapping = old->mapping;
486 void (*freepage)(struct page *);
488 pgoff_t offset = old->index;
489 freepage = mapping->a_ops->freepage;
491 page_cache_get(new);
492 new->mapping = mapping;
493 new->index = offset;
495 spin_lock_irq(&mapping->tree_lock);
496 __delete_from_page_cache(old, NULL);
497 error = radix_tree_insert(&mapping->page_tree, offset, new);
498 BUG_ON(error);
499 mapping->nrpages++;
500 __inc_zone_page_state(new, NR_FILE_PAGES);
501 if (PageSwapBacked(new))
502 __inc_zone_page_state(new, NR_SHMEM);
503 spin_unlock_irq(&mapping->tree_lock);
504 /* mem_cgroup codes must not be called under tree_lock */
505 mem_cgroup_replace_page_cache(old, new);
506 radix_tree_preload_end();
507 if (freepage)
508 freepage(old);
509 page_cache_release(old);
512 return error;
514 EXPORT_SYMBOL_GPL(replace_page_cache_page);
516 static int page_cache_tree_insert(struct address_space *mapping,
517 struct page *page, void **shadowp)
519 struct radix_tree_node *node;
520 void **slot;
521 int error;
523 error = __radix_tree_create(&mapping->page_tree, page->index,
524 &node, &slot);
525 if (error)
526 return error;
527 if (*slot) {
528 void *p;
530 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
531 if (!radix_tree_exceptional_entry(p))
532 return -EEXIST;
533 if (shadowp)
534 *shadowp = p;
535 mapping->nrshadows--;
536 if (node)
537 workingset_node_shadows_dec(node);
539 radix_tree_replace_slot(slot, page);
540 mapping->nrpages++;
541 if (node) {
542 workingset_node_pages_inc(node);
544 * Don't track node that contains actual pages.
546 * Avoid acquiring the list_lru lock if already
547 * untracked. The list_empty() test is safe as
548 * node->private_list is protected by
549 * mapping->tree_lock.
551 if (!list_empty(&node->private_list))
552 list_lru_del(&workingset_shadow_nodes,
553 &node->private_list);
555 return 0;
558 static int __add_to_page_cache_locked(struct page *page,
559 struct address_space *mapping,
560 pgoff_t offset, gfp_t gfp_mask,
561 void **shadowp)
563 int error;
565 VM_BUG_ON_PAGE(!PageLocked(page), page);
566 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
568 error = mem_cgroup_charge_file(page, current->mm,
569 gfp_mask & GFP_RECLAIM_MASK);
570 if (error)
571 return error;
573 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
574 if (error) {
575 mem_cgroup_uncharge_cache_page(page);
576 return error;
579 page_cache_get(page);
580 page->mapping = mapping;
581 page->index = offset;
583 spin_lock_irq(&mapping->tree_lock);
584 error = page_cache_tree_insert(mapping, page, shadowp);
585 radix_tree_preload_end();
586 if (unlikely(error))
587 goto err_insert;
588 __inc_zone_page_state(page, NR_FILE_PAGES);
589 spin_unlock_irq(&mapping->tree_lock);
590 trace_mm_filemap_add_to_page_cache(page);
591 return 0;
592 err_insert:
593 page->mapping = NULL;
594 /* Leave page->index set: truncation relies upon it */
595 spin_unlock_irq(&mapping->tree_lock);
596 mem_cgroup_uncharge_cache_page(page);
597 page_cache_release(page);
598 return error;
602 * add_to_page_cache_locked - add a locked page to the pagecache
603 * @page: page to add
604 * @mapping: the page's address_space
605 * @offset: page index
606 * @gfp_mask: page allocation mode
608 * This function is used to add a page to the pagecache. It must be locked.
609 * This function does not add the page to the LRU. The caller must do that.
611 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
612 pgoff_t offset, gfp_t gfp_mask)
614 return __add_to_page_cache_locked(page, mapping, offset,
615 gfp_mask, NULL);
617 EXPORT_SYMBOL(add_to_page_cache_locked);
619 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
620 pgoff_t offset, gfp_t gfp_mask)
622 void *shadow = NULL;
623 int ret;
625 __set_page_locked(page);
626 ret = __add_to_page_cache_locked(page, mapping, offset,
627 gfp_mask, &shadow);
628 if (unlikely(ret))
629 __clear_page_locked(page);
630 else {
632 * The page might have been evicted from cache only
633 * recently, in which case it should be activated like
634 * any other repeatedly accessed page.
636 if (shadow && workingset_refault(shadow)) {
637 SetPageActive(page);
638 workingset_activation(page);
639 } else
640 ClearPageActive(page);
641 lru_cache_add(page);
643 return ret;
645 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
647 #ifdef CONFIG_NUMA
648 struct page *__page_cache_alloc(gfp_t gfp)
650 int n;
651 struct page *page;
653 if (cpuset_do_page_mem_spread()) {
654 unsigned int cpuset_mems_cookie;
655 do {
656 cpuset_mems_cookie = read_mems_allowed_begin();
657 n = cpuset_mem_spread_node();
658 page = alloc_pages_exact_node(n, gfp, 0);
659 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
661 return page;
663 return alloc_pages(gfp, 0);
665 EXPORT_SYMBOL(__page_cache_alloc);
666 #endif
669 * In order to wait for pages to become available there must be
670 * waitqueues associated with pages. By using a hash table of
671 * waitqueues where the bucket discipline is to maintain all
672 * waiters on the same queue and wake all when any of the pages
673 * become available, and for the woken contexts to check to be
674 * sure the appropriate page became available, this saves space
675 * at a cost of "thundering herd" phenomena during rare hash
676 * collisions.
678 static wait_queue_head_t *page_waitqueue(struct page *page)
680 const struct zone *zone = page_zone(page);
682 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
685 static inline void wake_up_page(struct page *page, int bit)
687 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
690 void wait_on_page_bit(struct page *page, int bit_nr)
692 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
694 if (test_bit(bit_nr, &page->flags))
695 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
696 TASK_UNINTERRUPTIBLE);
698 EXPORT_SYMBOL(wait_on_page_bit);
700 int wait_on_page_bit_killable(struct page *page, int bit_nr)
702 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
704 if (!test_bit(bit_nr, &page->flags))
705 return 0;
707 return __wait_on_bit(page_waitqueue(page), &wait,
708 sleep_on_page_killable, TASK_KILLABLE);
712 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
713 * @page: Page defining the wait queue of interest
714 * @waiter: Waiter to add to the queue
716 * Add an arbitrary @waiter to the wait queue for the nominated @page.
718 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
720 wait_queue_head_t *q = page_waitqueue(page);
721 unsigned long flags;
723 spin_lock_irqsave(&q->lock, flags);
724 __add_wait_queue(q, waiter);
725 spin_unlock_irqrestore(&q->lock, flags);
727 EXPORT_SYMBOL_GPL(add_page_wait_queue);
730 * unlock_page - unlock a locked page
731 * @page: the page
733 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
734 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
735 * mechananism between PageLocked pages and PageWriteback pages is shared.
736 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
738 * The mb is necessary to enforce ordering between the clear_bit and the read
739 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
741 void unlock_page(struct page *page)
743 VM_BUG_ON_PAGE(!PageLocked(page), page);
744 clear_bit_unlock(PG_locked, &page->flags);
745 smp_mb__after_atomic();
746 wake_up_page(page, PG_locked);
748 EXPORT_SYMBOL(unlock_page);
751 * end_page_writeback - end writeback against a page
752 * @page: the page
754 void end_page_writeback(struct page *page)
757 * TestClearPageReclaim could be used here but it is an atomic
758 * operation and overkill in this particular case. Failing to
759 * shuffle a page marked for immediate reclaim is too mild to
760 * justify taking an atomic operation penalty at the end of
761 * ever page writeback.
763 if (PageReclaim(page)) {
764 ClearPageReclaim(page);
765 rotate_reclaimable_page(page);
768 if (!test_clear_page_writeback(page))
769 BUG();
771 smp_mb__after_atomic();
772 wake_up_page(page, PG_writeback);
774 EXPORT_SYMBOL(end_page_writeback);
777 * After completing I/O on a page, call this routine to update the page
778 * flags appropriately
780 void page_endio(struct page *page, int rw, int err)
782 if (rw == READ) {
783 if (!err) {
784 SetPageUptodate(page);
785 } else {
786 ClearPageUptodate(page);
787 SetPageError(page);
789 unlock_page(page);
790 } else { /* rw == WRITE */
791 if (err) {
792 SetPageError(page);
793 if (page->mapping)
794 mapping_set_error(page->mapping, err);
796 end_page_writeback(page);
799 EXPORT_SYMBOL_GPL(page_endio);
802 * __lock_page - get a lock on the page, assuming we need to sleep to get it
803 * @page: the page to lock
805 void __lock_page(struct page *page)
807 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
809 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
810 TASK_UNINTERRUPTIBLE);
812 EXPORT_SYMBOL(__lock_page);
814 int __lock_page_killable(struct page *page)
816 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
818 return __wait_on_bit_lock(page_waitqueue(page), &wait,
819 sleep_on_page_killable, TASK_KILLABLE);
821 EXPORT_SYMBOL_GPL(__lock_page_killable);
823 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
824 unsigned int flags)
826 if (flags & FAULT_FLAG_ALLOW_RETRY) {
828 * CAUTION! In this case, mmap_sem is not released
829 * even though return 0.
831 if (flags & FAULT_FLAG_RETRY_NOWAIT)
832 return 0;
834 up_read(&mm->mmap_sem);
835 if (flags & FAULT_FLAG_KILLABLE)
836 wait_on_page_locked_killable(page);
837 else
838 wait_on_page_locked(page);
839 return 0;
840 } else {
841 if (flags & FAULT_FLAG_KILLABLE) {
842 int ret;
844 ret = __lock_page_killable(page);
845 if (ret) {
846 up_read(&mm->mmap_sem);
847 return 0;
849 } else
850 __lock_page(page);
851 return 1;
856 * page_cache_next_hole - find the next hole (not-present entry)
857 * @mapping: mapping
858 * @index: index
859 * @max_scan: maximum range to search
861 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
862 * lowest indexed hole.
864 * Returns: the index of the hole if found, otherwise returns an index
865 * outside of the set specified (in which case 'return - index >=
866 * max_scan' will be true). In rare cases of index wrap-around, 0 will
867 * be returned.
869 * page_cache_next_hole may be called under rcu_read_lock. However,
870 * like radix_tree_gang_lookup, this will not atomically search a
871 * snapshot of the tree at a single point in time. For example, if a
872 * hole is created at index 5, then subsequently a hole is created at
873 * index 10, page_cache_next_hole covering both indexes may return 10
874 * if called under rcu_read_lock.
876 pgoff_t page_cache_next_hole(struct address_space *mapping,
877 pgoff_t index, unsigned long max_scan)
879 unsigned long i;
881 for (i = 0; i < max_scan; i++) {
882 struct page *page;
884 page = radix_tree_lookup(&mapping->page_tree, index);
885 if (!page || radix_tree_exceptional_entry(page))
886 break;
887 index++;
888 if (index == 0)
889 break;
892 return index;
894 EXPORT_SYMBOL(page_cache_next_hole);
897 * page_cache_prev_hole - find the prev hole (not-present entry)
898 * @mapping: mapping
899 * @index: index
900 * @max_scan: maximum range to search
902 * Search backwards in the range [max(index-max_scan+1, 0), index] for
903 * the first hole.
905 * Returns: the index of the hole if found, otherwise returns an index
906 * outside of the set specified (in which case 'index - return >=
907 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
908 * will be returned.
910 * page_cache_prev_hole may be called under rcu_read_lock. However,
911 * like radix_tree_gang_lookup, this will not atomically search a
912 * snapshot of the tree at a single point in time. For example, if a
913 * hole is created at index 10, then subsequently a hole is created at
914 * index 5, page_cache_prev_hole covering both indexes may return 5 if
915 * called under rcu_read_lock.
917 pgoff_t page_cache_prev_hole(struct address_space *mapping,
918 pgoff_t index, unsigned long max_scan)
920 unsigned long i;
922 for (i = 0; i < max_scan; i++) {
923 struct page *page;
925 page = radix_tree_lookup(&mapping->page_tree, index);
926 if (!page || radix_tree_exceptional_entry(page))
927 break;
928 index--;
929 if (index == ULONG_MAX)
930 break;
933 return index;
935 EXPORT_SYMBOL(page_cache_prev_hole);
938 * find_get_entry - find and get a page cache entry
939 * @mapping: the address_space to search
940 * @offset: the page cache index
942 * Looks up the page cache slot at @mapping & @offset. If there is a
943 * page cache page, it is returned with an increased refcount.
945 * If the slot holds a shadow entry of a previously evicted page, or a
946 * swap entry from shmem/tmpfs, it is returned.
948 * Otherwise, %NULL is returned.
950 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
952 void **pagep;
953 struct page *page;
955 rcu_read_lock();
956 repeat:
957 page = NULL;
958 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
959 if (pagep) {
960 page = radix_tree_deref_slot(pagep);
961 if (unlikely(!page))
962 goto out;
963 if (radix_tree_exception(page)) {
964 if (radix_tree_deref_retry(page))
965 goto repeat;
967 * A shadow entry of a recently evicted page,
968 * or a swap entry from shmem/tmpfs. Return
969 * it without attempting to raise page count.
971 goto out;
973 if (!page_cache_get_speculative(page))
974 goto repeat;
977 * Has the page moved?
978 * This is part of the lockless pagecache protocol. See
979 * include/linux/pagemap.h for details.
981 if (unlikely(page != *pagep)) {
982 page_cache_release(page);
983 goto repeat;
986 out:
987 rcu_read_unlock();
989 return page;
991 EXPORT_SYMBOL(find_get_entry);
994 * find_lock_entry - locate, pin and lock a page cache entry
995 * @mapping: the address_space to search
996 * @offset: the page cache index
998 * Looks up the page cache slot at @mapping & @offset. If there is a
999 * page cache page, it is returned locked and with an increased
1000 * refcount.
1002 * If the slot holds a shadow entry of a previously evicted page, or a
1003 * swap entry from shmem/tmpfs, it is returned.
1005 * Otherwise, %NULL is returned.
1007 * find_lock_entry() may sleep.
1009 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1011 struct page *page;
1013 repeat:
1014 page = find_get_entry(mapping, offset);
1015 if (page && !radix_tree_exception(page)) {
1016 lock_page(page);
1017 /* Has the page been truncated? */
1018 if (unlikely(page->mapping != mapping)) {
1019 unlock_page(page);
1020 page_cache_release(page);
1021 goto repeat;
1023 VM_BUG_ON_PAGE(page->index != offset, page);
1025 return page;
1027 EXPORT_SYMBOL(find_lock_entry);
1030 * pagecache_get_page - find and get a page reference
1031 * @mapping: the address_space to search
1032 * @offset: the page index
1033 * @fgp_flags: PCG flags
1034 * @gfp_mask: gfp mask to use for the page cache data page allocation
1036 * Looks up the page cache slot at @mapping & @offset.
1038 * PCG flags modify how the page is returned.
1040 * FGP_ACCESSED: the page will be marked accessed
1041 * FGP_LOCK: Page is return locked
1042 * FGP_CREAT: If page is not present then a new page is allocated using
1043 * @gfp_mask and added to the page cache and the VM's LRU
1044 * list. The page is returned locked and with an increased
1045 * refcount. Otherwise, %NULL is returned.
1047 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1048 * if the GFP flags specified for FGP_CREAT are atomic.
1050 * If there is a page cache page, it is returned with an increased refcount.
1052 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1053 int fgp_flags, gfp_t gfp_mask)
1055 struct page *page;
1057 repeat:
1058 page = find_get_entry(mapping, offset);
1059 if (radix_tree_exceptional_entry(page))
1060 page = NULL;
1061 if (!page)
1062 goto no_page;
1064 if (fgp_flags & FGP_LOCK) {
1065 if (fgp_flags & FGP_NOWAIT) {
1066 if (!trylock_page(page)) {
1067 page_cache_release(page);
1068 return NULL;
1070 } else {
1071 lock_page(page);
1074 /* Has the page been truncated? */
1075 if (unlikely(page->mapping != mapping)) {
1076 unlock_page(page);
1077 page_cache_release(page);
1078 goto repeat;
1080 VM_BUG_ON_PAGE(page->index != offset, page);
1083 if (page && (fgp_flags & FGP_ACCESSED))
1084 mark_page_accessed(page);
1086 no_page:
1087 if (!page && (fgp_flags & FGP_CREAT)) {
1088 int err;
1089 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1090 gfp_mask |= __GFP_WRITE;
1091 if (fgp_flags & FGP_NOFS)
1092 gfp_mask &= ~__GFP_FS;
1094 page = __page_cache_alloc(gfp_mask);
1095 if (!page)
1096 return NULL;
1098 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1099 fgp_flags |= FGP_LOCK;
1101 /* Init accessed so avoit atomic mark_page_accessed later */
1102 if (fgp_flags & FGP_ACCESSED)
1103 init_page_accessed(page);
1105 err = add_to_page_cache_lru(page, mapping, offset,
1106 gfp_mask & GFP_RECLAIM_MASK);
1107 if (unlikely(err)) {
1108 page_cache_release(page);
1109 page = NULL;
1110 if (err == -EEXIST)
1111 goto repeat;
1115 return page;
1117 EXPORT_SYMBOL(pagecache_get_page);
1120 * find_get_entries - gang pagecache lookup
1121 * @mapping: The address_space to search
1122 * @start: The starting page cache index
1123 * @nr_entries: The maximum number of entries
1124 * @entries: Where the resulting entries are placed
1125 * @indices: The cache indices corresponding to the entries in @entries
1127 * find_get_entries() will search for and return a group of up to
1128 * @nr_entries entries in the mapping. The entries are placed at
1129 * @entries. find_get_entries() takes a reference against any actual
1130 * pages it returns.
1132 * The search returns a group of mapping-contiguous page cache entries
1133 * with ascending indexes. There may be holes in the indices due to
1134 * not-present pages.
1136 * Any shadow entries of evicted pages, or swap entries from
1137 * shmem/tmpfs, are included in the returned array.
1139 * find_get_entries() returns the number of pages and shadow entries
1140 * which were found.
1142 unsigned find_get_entries(struct address_space *mapping,
1143 pgoff_t start, unsigned int nr_entries,
1144 struct page **entries, pgoff_t *indices)
1146 void **slot;
1147 unsigned int ret = 0;
1148 struct radix_tree_iter iter;
1150 if (!nr_entries)
1151 return 0;
1153 rcu_read_lock();
1154 restart:
1155 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1156 struct page *page;
1157 repeat:
1158 page = radix_tree_deref_slot(slot);
1159 if (unlikely(!page))
1160 continue;
1161 if (radix_tree_exception(page)) {
1162 if (radix_tree_deref_retry(page))
1163 goto restart;
1165 * A shadow entry of a recently evicted page,
1166 * or a swap entry from shmem/tmpfs. Return
1167 * it without attempting to raise page count.
1169 goto export;
1171 if (!page_cache_get_speculative(page))
1172 goto repeat;
1174 /* Has the page moved? */
1175 if (unlikely(page != *slot)) {
1176 page_cache_release(page);
1177 goto repeat;
1179 export:
1180 indices[ret] = iter.index;
1181 entries[ret] = page;
1182 if (++ret == nr_entries)
1183 break;
1185 rcu_read_unlock();
1186 return ret;
1190 * find_get_pages - gang pagecache lookup
1191 * @mapping: The address_space to search
1192 * @start: The starting page index
1193 * @nr_pages: The maximum number of pages
1194 * @pages: Where the resulting pages are placed
1196 * find_get_pages() will search for and return a group of up to
1197 * @nr_pages pages in the mapping. The pages are placed at @pages.
1198 * find_get_pages() takes a reference against the returned pages.
1200 * The search returns a group of mapping-contiguous pages with ascending
1201 * indexes. There may be holes in the indices due to not-present pages.
1203 * find_get_pages() returns the number of pages which were found.
1205 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1206 unsigned int nr_pages, struct page **pages)
1208 struct radix_tree_iter iter;
1209 void **slot;
1210 unsigned ret = 0;
1212 if (unlikely(!nr_pages))
1213 return 0;
1215 rcu_read_lock();
1216 restart:
1217 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1218 struct page *page;
1219 repeat:
1220 page = radix_tree_deref_slot(slot);
1221 if (unlikely(!page))
1222 continue;
1224 if (radix_tree_exception(page)) {
1225 if (radix_tree_deref_retry(page)) {
1227 * Transient condition which can only trigger
1228 * when entry at index 0 moves out of or back
1229 * to root: none yet gotten, safe to restart.
1231 WARN_ON(iter.index);
1232 goto restart;
1235 * A shadow entry of a recently evicted page,
1236 * or a swap entry from shmem/tmpfs. Skip
1237 * over it.
1239 continue;
1242 if (!page_cache_get_speculative(page))
1243 goto repeat;
1245 /* Has the page moved? */
1246 if (unlikely(page != *slot)) {
1247 page_cache_release(page);
1248 goto repeat;
1251 pages[ret] = page;
1252 if (++ret == nr_pages)
1253 break;
1256 rcu_read_unlock();
1257 return ret;
1261 * find_get_pages_contig - gang contiguous pagecache lookup
1262 * @mapping: The address_space to search
1263 * @index: The starting page index
1264 * @nr_pages: The maximum number of pages
1265 * @pages: Where the resulting pages are placed
1267 * find_get_pages_contig() works exactly like find_get_pages(), except
1268 * that the returned number of pages are guaranteed to be contiguous.
1270 * find_get_pages_contig() returns the number of pages which were found.
1272 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1273 unsigned int nr_pages, struct page **pages)
1275 struct radix_tree_iter iter;
1276 void **slot;
1277 unsigned int ret = 0;
1279 if (unlikely(!nr_pages))
1280 return 0;
1282 rcu_read_lock();
1283 restart:
1284 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1285 struct page *page;
1286 repeat:
1287 page = radix_tree_deref_slot(slot);
1288 /* The hole, there no reason to continue */
1289 if (unlikely(!page))
1290 break;
1292 if (radix_tree_exception(page)) {
1293 if (radix_tree_deref_retry(page)) {
1295 * Transient condition which can only trigger
1296 * when entry at index 0 moves out of or back
1297 * to root: none yet gotten, safe to restart.
1299 goto restart;
1302 * A shadow entry of a recently evicted page,
1303 * or a swap entry from shmem/tmpfs. Stop
1304 * looking for contiguous pages.
1306 break;
1309 if (!page_cache_get_speculative(page))
1310 goto repeat;
1312 /* Has the page moved? */
1313 if (unlikely(page != *slot)) {
1314 page_cache_release(page);
1315 goto repeat;
1319 * must check mapping and index after taking the ref.
1320 * otherwise we can get both false positives and false
1321 * negatives, which is just confusing to the caller.
1323 if (page->mapping == NULL || page->index != iter.index) {
1324 page_cache_release(page);
1325 break;
1328 pages[ret] = page;
1329 if (++ret == nr_pages)
1330 break;
1332 rcu_read_unlock();
1333 return ret;
1335 EXPORT_SYMBOL(find_get_pages_contig);
1338 * find_get_pages_tag - find and return pages that match @tag
1339 * @mapping: the address_space to search
1340 * @index: the starting page index
1341 * @tag: the tag index
1342 * @nr_pages: the maximum number of pages
1343 * @pages: where the resulting pages are placed
1345 * Like find_get_pages, except we only return pages which are tagged with
1346 * @tag. We update @index to index the next page for the traversal.
1348 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1349 int tag, unsigned int nr_pages, struct page **pages)
1351 struct radix_tree_iter iter;
1352 void **slot;
1353 unsigned ret = 0;
1355 if (unlikely(!nr_pages))
1356 return 0;
1358 rcu_read_lock();
1359 restart:
1360 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1361 &iter, *index, tag) {
1362 struct page *page;
1363 repeat:
1364 page = radix_tree_deref_slot(slot);
1365 if (unlikely(!page))
1366 continue;
1368 if (radix_tree_exception(page)) {
1369 if (radix_tree_deref_retry(page)) {
1371 * Transient condition which can only trigger
1372 * when entry at index 0 moves out of or back
1373 * to root: none yet gotten, safe to restart.
1375 goto restart;
1378 * A shadow entry of a recently evicted page.
1380 * Those entries should never be tagged, but
1381 * this tree walk is lockless and the tags are
1382 * looked up in bulk, one radix tree node at a
1383 * time, so there is a sizable window for page
1384 * reclaim to evict a page we saw tagged.
1386 * Skip over it.
1388 continue;
1391 if (!page_cache_get_speculative(page))
1392 goto repeat;
1394 /* Has the page moved? */
1395 if (unlikely(page != *slot)) {
1396 page_cache_release(page);
1397 goto repeat;
1400 pages[ret] = page;
1401 if (++ret == nr_pages)
1402 break;
1405 rcu_read_unlock();
1407 if (ret)
1408 *index = pages[ret - 1]->index + 1;
1410 return ret;
1412 EXPORT_SYMBOL(find_get_pages_tag);
1415 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1416 * a _large_ part of the i/o request. Imagine the worst scenario:
1418 * ---R__________________________________________B__________
1419 * ^ reading here ^ bad block(assume 4k)
1421 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1422 * => failing the whole request => read(R) => read(R+1) =>
1423 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1424 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1425 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1427 * It is going insane. Fix it by quickly scaling down the readahead size.
1429 static void shrink_readahead_size_eio(struct file *filp,
1430 struct file_ra_state *ra)
1432 ra->ra_pages /= 4;
1436 * do_generic_file_read - generic file read routine
1437 * @filp: the file to read
1438 * @ppos: current file position
1439 * @iter: data destination
1440 * @written: already copied
1442 * This is a generic file read routine, and uses the
1443 * mapping->a_ops->readpage() function for the actual low-level stuff.
1445 * This is really ugly. But the goto's actually try to clarify some
1446 * of the logic when it comes to error handling etc.
1448 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1449 struct iov_iter *iter, ssize_t written)
1451 struct address_space *mapping = filp->f_mapping;
1452 struct inode *inode = mapping->host;
1453 struct file_ra_state *ra = &filp->f_ra;
1454 pgoff_t index;
1455 pgoff_t last_index;
1456 pgoff_t prev_index;
1457 unsigned long offset; /* offset into pagecache page */
1458 unsigned int prev_offset;
1459 int error = 0;
1461 index = *ppos >> PAGE_CACHE_SHIFT;
1462 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1463 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1464 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1465 offset = *ppos & ~PAGE_CACHE_MASK;
1467 for (;;) {
1468 struct page *page;
1469 pgoff_t end_index;
1470 loff_t isize;
1471 unsigned long nr, ret;
1473 cond_resched();
1474 find_page:
1475 page = find_get_page(mapping, index);
1476 if (!page) {
1477 page_cache_sync_readahead(mapping,
1478 ra, filp,
1479 index, last_index - index);
1480 page = find_get_page(mapping, index);
1481 if (unlikely(page == NULL))
1482 goto no_cached_page;
1484 if (PageReadahead(page)) {
1485 page_cache_async_readahead(mapping,
1486 ra, filp, page,
1487 index, last_index - index);
1489 if (!PageUptodate(page)) {
1490 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1491 !mapping->a_ops->is_partially_uptodate)
1492 goto page_not_up_to_date;
1493 if (!trylock_page(page))
1494 goto page_not_up_to_date;
1495 /* Did it get truncated before we got the lock? */
1496 if (!page->mapping)
1497 goto page_not_up_to_date_locked;
1498 if (!mapping->a_ops->is_partially_uptodate(page,
1499 offset, iter->count))
1500 goto page_not_up_to_date_locked;
1501 unlock_page(page);
1503 page_ok:
1505 * i_size must be checked after we know the page is Uptodate.
1507 * Checking i_size after the check allows us to calculate
1508 * the correct value for "nr", which means the zero-filled
1509 * part of the page is not copied back to userspace (unless
1510 * another truncate extends the file - this is desired though).
1513 isize = i_size_read(inode);
1514 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1515 if (unlikely(!isize || index > end_index)) {
1516 page_cache_release(page);
1517 goto out;
1520 /* nr is the maximum number of bytes to copy from this page */
1521 nr = PAGE_CACHE_SIZE;
1522 if (index == end_index) {
1523 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1524 if (nr <= offset) {
1525 page_cache_release(page);
1526 goto out;
1529 nr = nr - offset;
1531 /* If users can be writing to this page using arbitrary
1532 * virtual addresses, take care about potential aliasing
1533 * before reading the page on the kernel side.
1535 if (mapping_writably_mapped(mapping))
1536 flush_dcache_page(page);
1539 * When a sequential read accesses a page several times,
1540 * only mark it as accessed the first time.
1542 if (prev_index != index || offset != prev_offset)
1543 mark_page_accessed(page);
1544 prev_index = index;
1547 * Ok, we have the page, and it's up-to-date, so
1548 * now we can copy it to user space...
1551 ret = copy_page_to_iter(page, offset, nr, iter);
1552 offset += ret;
1553 index += offset >> PAGE_CACHE_SHIFT;
1554 offset &= ~PAGE_CACHE_MASK;
1555 prev_offset = offset;
1557 page_cache_release(page);
1558 written += ret;
1559 if (!iov_iter_count(iter))
1560 goto out;
1561 if (ret < nr) {
1562 error = -EFAULT;
1563 goto out;
1565 continue;
1567 page_not_up_to_date:
1568 /* Get exclusive access to the page ... */
1569 error = lock_page_killable(page);
1570 if (unlikely(error))
1571 goto readpage_error;
1573 page_not_up_to_date_locked:
1574 /* Did it get truncated before we got the lock? */
1575 if (!page->mapping) {
1576 unlock_page(page);
1577 page_cache_release(page);
1578 continue;
1581 /* Did somebody else fill it already? */
1582 if (PageUptodate(page)) {
1583 unlock_page(page);
1584 goto page_ok;
1587 readpage:
1589 * A previous I/O error may have been due to temporary
1590 * failures, eg. multipath errors.
1591 * PG_error will be set again if readpage fails.
1593 ClearPageError(page);
1594 /* Start the actual read. The read will unlock the page. */
1595 error = mapping->a_ops->readpage(filp, page);
1597 if (unlikely(error)) {
1598 if (error == AOP_TRUNCATED_PAGE) {
1599 page_cache_release(page);
1600 error = 0;
1601 goto find_page;
1603 goto readpage_error;
1606 if (!PageUptodate(page)) {
1607 error = lock_page_killable(page);
1608 if (unlikely(error))
1609 goto readpage_error;
1610 if (!PageUptodate(page)) {
1611 if (page->mapping == NULL) {
1613 * invalidate_mapping_pages got it
1615 unlock_page(page);
1616 page_cache_release(page);
1617 goto find_page;
1619 unlock_page(page);
1620 shrink_readahead_size_eio(filp, ra);
1621 error = -EIO;
1622 goto readpage_error;
1624 unlock_page(page);
1627 goto page_ok;
1629 readpage_error:
1630 /* UHHUH! A synchronous read error occurred. Report it */
1631 page_cache_release(page);
1632 goto out;
1634 no_cached_page:
1636 * Ok, it wasn't cached, so we need to create a new
1637 * page..
1639 page = page_cache_alloc_cold(mapping);
1640 if (!page) {
1641 error = -ENOMEM;
1642 goto out;
1644 error = add_to_page_cache_lru(page, mapping,
1645 index, GFP_KERNEL);
1646 if (error) {
1647 page_cache_release(page);
1648 if (error == -EEXIST) {
1649 error = 0;
1650 goto find_page;
1652 goto out;
1654 goto readpage;
1657 out:
1658 ra->prev_pos = prev_index;
1659 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1660 ra->prev_pos |= prev_offset;
1662 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1663 file_accessed(filp);
1664 return written ? written : error;
1668 * generic_file_read_iter - generic filesystem read routine
1669 * @iocb: kernel I/O control block
1670 * @iter: destination for the data read
1672 * This is the "read_iter()" routine for all filesystems
1673 * that can use the page cache directly.
1675 ssize_t
1676 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1678 struct file *file = iocb->ki_filp;
1679 ssize_t retval = 0;
1680 loff_t *ppos = &iocb->ki_pos;
1681 loff_t pos = *ppos;
1683 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1684 if (file->f_flags & O_DIRECT) {
1685 struct address_space *mapping = file->f_mapping;
1686 struct inode *inode = mapping->host;
1687 size_t count = iov_iter_count(iter);
1688 loff_t size;
1690 if (!count)
1691 goto out; /* skip atime */
1692 size = i_size_read(inode);
1693 retval = filemap_write_and_wait_range(mapping, pos,
1694 pos + count - 1);
1695 if (!retval) {
1696 struct iov_iter data = *iter;
1697 retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
1700 if (retval > 0) {
1701 *ppos = pos + retval;
1702 iov_iter_advance(iter, retval);
1706 * Btrfs can have a short DIO read if we encounter
1707 * compressed extents, so if there was an error, or if
1708 * we've already read everything we wanted to, or if
1709 * there was a short read because we hit EOF, go ahead
1710 * and return. Otherwise fallthrough to buffered io for
1711 * the rest of the read.
1713 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) {
1714 file_accessed(file);
1715 goto out;
1719 retval = do_generic_file_read(file, ppos, iter, retval);
1720 out:
1721 return retval;
1723 EXPORT_SYMBOL(generic_file_read_iter);
1725 #ifdef CONFIG_MMU
1727 * page_cache_read - adds requested page to the page cache if not already there
1728 * @file: file to read
1729 * @offset: page index
1731 * This adds the requested page to the page cache if it isn't already there,
1732 * and schedules an I/O to read in its contents from disk.
1734 static int page_cache_read(struct file *file, pgoff_t offset)
1736 struct address_space *mapping = file->f_mapping;
1737 struct page *page;
1738 int ret;
1740 do {
1741 page = page_cache_alloc_cold(mapping);
1742 if (!page)
1743 return -ENOMEM;
1745 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1746 if (ret == 0)
1747 ret = mapping->a_ops->readpage(file, page);
1748 else if (ret == -EEXIST)
1749 ret = 0; /* losing race to add is OK */
1751 page_cache_release(page);
1753 } while (ret == AOP_TRUNCATED_PAGE);
1755 return ret;
1758 #define MMAP_LOTSAMISS (100)
1761 * Synchronous readahead happens when we don't even find
1762 * a page in the page cache at all.
1764 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1765 struct file_ra_state *ra,
1766 struct file *file,
1767 pgoff_t offset)
1769 unsigned long ra_pages;
1770 struct address_space *mapping = file->f_mapping;
1772 /* If we don't want any read-ahead, don't bother */
1773 if (vma->vm_flags & VM_RAND_READ)
1774 return;
1775 if (!ra->ra_pages)
1776 return;
1778 if (vma->vm_flags & VM_SEQ_READ) {
1779 page_cache_sync_readahead(mapping, ra, file, offset,
1780 ra->ra_pages);
1781 return;
1784 /* Avoid banging the cache line if not needed */
1785 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1786 ra->mmap_miss++;
1789 * Do we miss much more than hit in this file? If so,
1790 * stop bothering with read-ahead. It will only hurt.
1792 if (ra->mmap_miss > MMAP_LOTSAMISS)
1793 return;
1796 * mmap read-around
1798 ra_pages = max_sane_readahead(ra->ra_pages);
1799 ra->start = max_t(long, 0, offset - ra_pages / 2);
1800 ra->size = ra_pages;
1801 ra->async_size = ra_pages / 4;
1802 ra_submit(ra, mapping, file);
1806 * Asynchronous readahead happens when we find the page and PG_readahead,
1807 * so we want to possibly extend the readahead further..
1809 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1810 struct file_ra_state *ra,
1811 struct file *file,
1812 struct page *page,
1813 pgoff_t offset)
1815 struct address_space *mapping = file->f_mapping;
1817 /* If we don't want any read-ahead, don't bother */
1818 if (vma->vm_flags & VM_RAND_READ)
1819 return;
1820 if (ra->mmap_miss > 0)
1821 ra->mmap_miss--;
1822 if (PageReadahead(page))
1823 page_cache_async_readahead(mapping, ra, file,
1824 page, offset, ra->ra_pages);
1828 * filemap_fault - read in file data for page fault handling
1829 * @vma: vma in which the fault was taken
1830 * @vmf: struct vm_fault containing details of the fault
1832 * filemap_fault() is invoked via the vma operations vector for a
1833 * mapped memory region to read in file data during a page fault.
1835 * The goto's are kind of ugly, but this streamlines the normal case of having
1836 * it in the page cache, and handles the special cases reasonably without
1837 * having a lot of duplicated code.
1839 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1841 int error;
1842 struct file *file = vma->vm_file;
1843 struct address_space *mapping = file->f_mapping;
1844 struct file_ra_state *ra = &file->f_ra;
1845 struct inode *inode = mapping->host;
1846 pgoff_t offset = vmf->pgoff;
1847 struct page *page;
1848 loff_t size;
1849 int ret = 0;
1851 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1852 if (offset >= size >> PAGE_CACHE_SHIFT)
1853 return VM_FAULT_SIGBUS;
1856 * Do we have something in the page cache already?
1858 page = find_get_page(mapping, offset);
1859 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1861 * We found the page, so try async readahead before
1862 * waiting for the lock.
1864 do_async_mmap_readahead(vma, ra, file, page, offset);
1865 } else if (!page) {
1866 /* No page in the page cache at all */
1867 do_sync_mmap_readahead(vma, ra, file, offset);
1868 count_vm_event(PGMAJFAULT);
1869 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1870 ret = VM_FAULT_MAJOR;
1871 retry_find:
1872 page = find_get_page(mapping, offset);
1873 if (!page)
1874 goto no_cached_page;
1877 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1878 page_cache_release(page);
1879 return ret | VM_FAULT_RETRY;
1882 /* Did it get truncated? */
1883 if (unlikely(page->mapping != mapping)) {
1884 unlock_page(page);
1885 put_page(page);
1886 goto retry_find;
1888 VM_BUG_ON_PAGE(page->index != offset, page);
1891 * We have a locked page in the page cache, now we need to check
1892 * that it's up-to-date. If not, it is going to be due to an error.
1894 if (unlikely(!PageUptodate(page)))
1895 goto page_not_uptodate;
1898 * Found the page and have a reference on it.
1899 * We must recheck i_size under page lock.
1901 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1902 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1903 unlock_page(page);
1904 page_cache_release(page);
1905 return VM_FAULT_SIGBUS;
1908 vmf->page = page;
1909 return ret | VM_FAULT_LOCKED;
1911 no_cached_page:
1913 * We're only likely to ever get here if MADV_RANDOM is in
1914 * effect.
1916 error = page_cache_read(file, offset);
1919 * The page we want has now been added to the page cache.
1920 * In the unlikely event that someone removed it in the
1921 * meantime, we'll just come back here and read it again.
1923 if (error >= 0)
1924 goto retry_find;
1927 * An error return from page_cache_read can result if the
1928 * system is low on memory, or a problem occurs while trying
1929 * to schedule I/O.
1931 if (error == -ENOMEM)
1932 return VM_FAULT_OOM;
1933 return VM_FAULT_SIGBUS;
1935 page_not_uptodate:
1937 * Umm, take care of errors if the page isn't up-to-date.
1938 * Try to re-read it _once_. We do this synchronously,
1939 * because there really aren't any performance issues here
1940 * and we need to check for errors.
1942 ClearPageError(page);
1943 error = mapping->a_ops->readpage(file, page);
1944 if (!error) {
1945 wait_on_page_locked(page);
1946 if (!PageUptodate(page))
1947 error = -EIO;
1949 page_cache_release(page);
1951 if (!error || error == AOP_TRUNCATED_PAGE)
1952 goto retry_find;
1954 /* Things didn't work out. Return zero to tell the mm layer so. */
1955 shrink_readahead_size_eio(file, ra);
1956 return VM_FAULT_SIGBUS;
1958 EXPORT_SYMBOL(filemap_fault);
1960 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1962 struct radix_tree_iter iter;
1963 void **slot;
1964 struct file *file = vma->vm_file;
1965 struct address_space *mapping = file->f_mapping;
1966 loff_t size;
1967 struct page *page;
1968 unsigned long address = (unsigned long) vmf->virtual_address;
1969 unsigned long addr;
1970 pte_t *pte;
1972 rcu_read_lock();
1973 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
1974 if (iter.index > vmf->max_pgoff)
1975 break;
1976 repeat:
1977 page = radix_tree_deref_slot(slot);
1978 if (unlikely(!page))
1979 goto next;
1980 if (radix_tree_exception(page)) {
1981 if (radix_tree_deref_retry(page))
1982 break;
1983 else
1984 goto next;
1987 if (!page_cache_get_speculative(page))
1988 goto repeat;
1990 /* Has the page moved? */
1991 if (unlikely(page != *slot)) {
1992 page_cache_release(page);
1993 goto repeat;
1996 if (!PageUptodate(page) ||
1997 PageReadahead(page) ||
1998 PageHWPoison(page))
1999 goto skip;
2000 if (!trylock_page(page))
2001 goto skip;
2003 if (page->mapping != mapping || !PageUptodate(page))
2004 goto unlock;
2006 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2007 if (page->index >= size >> PAGE_CACHE_SHIFT)
2008 goto unlock;
2010 pte = vmf->pte + page->index - vmf->pgoff;
2011 if (!pte_none(*pte))
2012 goto unlock;
2014 if (file->f_ra.mmap_miss > 0)
2015 file->f_ra.mmap_miss--;
2016 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2017 do_set_pte(vma, addr, page, pte, false, false);
2018 unlock_page(page);
2019 goto next;
2020 unlock:
2021 unlock_page(page);
2022 skip:
2023 page_cache_release(page);
2024 next:
2025 if (iter.index == vmf->max_pgoff)
2026 break;
2028 rcu_read_unlock();
2030 EXPORT_SYMBOL(filemap_map_pages);
2032 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2034 struct page *page = vmf->page;
2035 struct inode *inode = file_inode(vma->vm_file);
2036 int ret = VM_FAULT_LOCKED;
2038 sb_start_pagefault(inode->i_sb);
2039 file_update_time(vma->vm_file);
2040 lock_page(page);
2041 if (page->mapping != inode->i_mapping) {
2042 unlock_page(page);
2043 ret = VM_FAULT_NOPAGE;
2044 goto out;
2047 * We mark the page dirty already here so that when freeze is in
2048 * progress, we are guaranteed that writeback during freezing will
2049 * see the dirty page and writeprotect it again.
2051 set_page_dirty(page);
2052 wait_for_stable_page(page);
2053 out:
2054 sb_end_pagefault(inode->i_sb);
2055 return ret;
2057 EXPORT_SYMBOL(filemap_page_mkwrite);
2059 const struct vm_operations_struct generic_file_vm_ops = {
2060 .fault = filemap_fault,
2061 .map_pages = filemap_map_pages,
2062 .page_mkwrite = filemap_page_mkwrite,
2063 .remap_pages = generic_file_remap_pages,
2066 /* This is used for a general mmap of a disk file */
2068 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2070 struct address_space *mapping = file->f_mapping;
2072 if (!mapping->a_ops->readpage)
2073 return -ENOEXEC;
2074 file_accessed(file);
2075 vma->vm_ops = &generic_file_vm_ops;
2076 return 0;
2080 * This is for filesystems which do not implement ->writepage.
2082 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2084 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2085 return -EINVAL;
2086 return generic_file_mmap(file, vma);
2088 #else
2089 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2091 return -ENOSYS;
2093 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2095 return -ENOSYS;
2097 #endif /* CONFIG_MMU */
2099 EXPORT_SYMBOL(generic_file_mmap);
2100 EXPORT_SYMBOL(generic_file_readonly_mmap);
2102 static struct page *wait_on_page_read(struct page *page)
2104 if (!IS_ERR(page)) {
2105 wait_on_page_locked(page);
2106 if (!PageUptodate(page)) {
2107 page_cache_release(page);
2108 page = ERR_PTR(-EIO);
2111 return page;
2114 static struct page *__read_cache_page(struct address_space *mapping,
2115 pgoff_t index,
2116 int (*filler)(void *, struct page *),
2117 void *data,
2118 gfp_t gfp)
2120 struct page *page;
2121 int err;
2122 repeat:
2123 page = find_get_page(mapping, index);
2124 if (!page) {
2125 page = __page_cache_alloc(gfp | __GFP_COLD);
2126 if (!page)
2127 return ERR_PTR(-ENOMEM);
2128 err = add_to_page_cache_lru(page, mapping, index, gfp);
2129 if (unlikely(err)) {
2130 page_cache_release(page);
2131 if (err == -EEXIST)
2132 goto repeat;
2133 /* Presumably ENOMEM for radix tree node */
2134 return ERR_PTR(err);
2136 err = filler(data, page);
2137 if (err < 0) {
2138 page_cache_release(page);
2139 page = ERR_PTR(err);
2140 } else {
2141 page = wait_on_page_read(page);
2144 return page;
2147 static struct page *do_read_cache_page(struct address_space *mapping,
2148 pgoff_t index,
2149 int (*filler)(void *, struct page *),
2150 void *data,
2151 gfp_t gfp)
2154 struct page *page;
2155 int err;
2157 retry:
2158 page = __read_cache_page(mapping, index, filler, data, gfp);
2159 if (IS_ERR(page))
2160 return page;
2161 if (PageUptodate(page))
2162 goto out;
2164 lock_page(page);
2165 if (!page->mapping) {
2166 unlock_page(page);
2167 page_cache_release(page);
2168 goto retry;
2170 if (PageUptodate(page)) {
2171 unlock_page(page);
2172 goto out;
2174 err = filler(data, page);
2175 if (err < 0) {
2176 page_cache_release(page);
2177 return ERR_PTR(err);
2178 } else {
2179 page = wait_on_page_read(page);
2180 if (IS_ERR(page))
2181 return page;
2183 out:
2184 mark_page_accessed(page);
2185 return page;
2189 * read_cache_page - read into page cache, fill it if needed
2190 * @mapping: the page's address_space
2191 * @index: the page index
2192 * @filler: function to perform the read
2193 * @data: first arg to filler(data, page) function, often left as NULL
2195 * Read into the page cache. If a page already exists, and PageUptodate() is
2196 * not set, try to fill the page and wait for it to become unlocked.
2198 * If the page does not get brought uptodate, return -EIO.
2200 struct page *read_cache_page(struct address_space *mapping,
2201 pgoff_t index,
2202 int (*filler)(void *, struct page *),
2203 void *data)
2205 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2207 EXPORT_SYMBOL(read_cache_page);
2210 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2211 * @mapping: the page's address_space
2212 * @index: the page index
2213 * @gfp: the page allocator flags to use if allocating
2215 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2216 * any new page allocations done using the specified allocation flags.
2218 * If the page does not get brought uptodate, return -EIO.
2220 struct page *read_cache_page_gfp(struct address_space *mapping,
2221 pgoff_t index,
2222 gfp_t gfp)
2224 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2226 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2228 EXPORT_SYMBOL(read_cache_page_gfp);
2231 * Performs necessary checks before doing a write
2233 * Can adjust writing position or amount of bytes to write.
2234 * Returns appropriate error code that caller should return or
2235 * zero in case that write should be allowed.
2237 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2239 struct inode *inode = file->f_mapping->host;
2240 unsigned long limit = rlimit(RLIMIT_FSIZE);
2242 if (unlikely(*pos < 0))
2243 return -EINVAL;
2245 if (!isblk) {
2246 /* FIXME: this is for backwards compatibility with 2.4 */
2247 if (file->f_flags & O_APPEND)
2248 *pos = i_size_read(inode);
2250 if (limit != RLIM_INFINITY) {
2251 if (*pos >= limit) {
2252 send_sig(SIGXFSZ, current, 0);
2253 return -EFBIG;
2255 if (*count > limit - (typeof(limit))*pos) {
2256 *count = limit - (typeof(limit))*pos;
2262 * LFS rule
2264 if (unlikely(*pos + *count > MAX_NON_LFS &&
2265 !(file->f_flags & O_LARGEFILE))) {
2266 if (*pos >= MAX_NON_LFS) {
2267 return -EFBIG;
2269 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2270 *count = MAX_NON_LFS - (unsigned long)*pos;
2275 * Are we about to exceed the fs block limit ?
2277 * If we have written data it becomes a short write. If we have
2278 * exceeded without writing data we send a signal and return EFBIG.
2279 * Linus frestrict idea will clean these up nicely..
2281 if (likely(!isblk)) {
2282 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2283 if (*count || *pos > inode->i_sb->s_maxbytes) {
2284 return -EFBIG;
2286 /* zero-length writes at ->s_maxbytes are OK */
2289 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2290 *count = inode->i_sb->s_maxbytes - *pos;
2291 } else {
2292 #ifdef CONFIG_BLOCK
2293 loff_t isize;
2294 if (bdev_read_only(I_BDEV(inode)))
2295 return -EPERM;
2296 isize = i_size_read(inode);
2297 if (*pos >= isize) {
2298 if (*count || *pos > isize)
2299 return -ENOSPC;
2302 if (*pos + *count > isize)
2303 *count = isize - *pos;
2304 #else
2305 return -EPERM;
2306 #endif
2308 return 0;
2310 EXPORT_SYMBOL(generic_write_checks);
2312 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2313 loff_t pos, unsigned len, unsigned flags,
2314 struct page **pagep, void **fsdata)
2316 const struct address_space_operations *aops = mapping->a_ops;
2318 return aops->write_begin(file, mapping, pos, len, flags,
2319 pagep, fsdata);
2321 EXPORT_SYMBOL(pagecache_write_begin);
2323 int pagecache_write_end(struct file *file, struct address_space *mapping,
2324 loff_t pos, unsigned len, unsigned copied,
2325 struct page *page, void *fsdata)
2327 const struct address_space_operations *aops = mapping->a_ops;
2329 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2331 EXPORT_SYMBOL(pagecache_write_end);
2333 ssize_t
2334 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2336 struct file *file = iocb->ki_filp;
2337 struct address_space *mapping = file->f_mapping;
2338 struct inode *inode = mapping->host;
2339 ssize_t written;
2340 size_t write_len;
2341 pgoff_t end;
2342 struct iov_iter data;
2344 write_len = iov_iter_count(from);
2345 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2347 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2348 if (written)
2349 goto out;
2352 * After a write we want buffered reads to be sure to go to disk to get
2353 * the new data. We invalidate clean cached page from the region we're
2354 * about to write. We do this *before* the write so that we can return
2355 * without clobbering -EIOCBQUEUED from ->direct_IO().
2357 if (mapping->nrpages) {
2358 written = invalidate_inode_pages2_range(mapping,
2359 pos >> PAGE_CACHE_SHIFT, end);
2361 * If a page can not be invalidated, return 0 to fall back
2362 * to buffered write.
2364 if (written) {
2365 if (written == -EBUSY)
2366 return 0;
2367 goto out;
2371 data = *from;
2372 written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
2375 * Finally, try again to invalidate clean pages which might have been
2376 * cached by non-direct readahead, or faulted in by get_user_pages()
2377 * if the source of the write was an mmap'ed region of the file
2378 * we're writing. Either one is a pretty crazy thing to do,
2379 * so we don't support it 100%. If this invalidation
2380 * fails, tough, the write still worked...
2382 if (mapping->nrpages) {
2383 invalidate_inode_pages2_range(mapping,
2384 pos >> PAGE_CACHE_SHIFT, end);
2387 if (written > 0) {
2388 pos += written;
2389 iov_iter_advance(from, written);
2390 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2391 i_size_write(inode, pos);
2392 mark_inode_dirty(inode);
2394 iocb->ki_pos = pos;
2396 out:
2397 return written;
2399 EXPORT_SYMBOL(generic_file_direct_write);
2402 * Find or create a page at the given pagecache position. Return the locked
2403 * page. This function is specifically for buffered writes.
2405 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2406 pgoff_t index, unsigned flags)
2408 struct page *page;
2409 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2411 if (flags & AOP_FLAG_NOFS)
2412 fgp_flags |= FGP_NOFS;
2414 page = pagecache_get_page(mapping, index, fgp_flags,
2415 mapping_gfp_mask(mapping));
2416 if (page)
2417 wait_for_stable_page(page);
2419 return page;
2421 EXPORT_SYMBOL(grab_cache_page_write_begin);
2423 ssize_t generic_perform_write(struct file *file,
2424 struct iov_iter *i, loff_t pos)
2426 struct address_space *mapping = file->f_mapping;
2427 const struct address_space_operations *a_ops = mapping->a_ops;
2428 long status = 0;
2429 ssize_t written = 0;
2430 unsigned int flags = 0;
2433 * Copies from kernel address space cannot fail (NFSD is a big user).
2435 if (segment_eq(get_fs(), KERNEL_DS))
2436 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2438 do {
2439 struct page *page;
2440 unsigned long offset; /* Offset into pagecache page */
2441 unsigned long bytes; /* Bytes to write to page */
2442 size_t copied; /* Bytes copied from user */
2443 void *fsdata;
2445 offset = (pos & (PAGE_CACHE_SIZE - 1));
2446 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2447 iov_iter_count(i));
2449 again:
2451 * Bring in the user page that we will copy from _first_.
2452 * Otherwise there's a nasty deadlock on copying from the
2453 * same page as we're writing to, without it being marked
2454 * up-to-date.
2456 * Not only is this an optimisation, but it is also required
2457 * to check that the address is actually valid, when atomic
2458 * usercopies are used, below.
2460 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2461 status = -EFAULT;
2462 break;
2465 if (fatal_signal_pending(current)) {
2466 status = -EINTR;
2467 break;
2470 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2471 &page, &fsdata);
2472 if (unlikely(status < 0))
2473 break;
2475 if (mapping_writably_mapped(mapping))
2476 flush_dcache_page(page);
2478 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2479 flush_dcache_page(page);
2481 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2482 page, fsdata);
2483 if (unlikely(status < 0))
2484 break;
2485 copied = status;
2487 cond_resched();
2489 iov_iter_advance(i, copied);
2490 if (unlikely(copied == 0)) {
2492 * If we were unable to copy any data at all, we must
2493 * fall back to a single segment length write.
2495 * If we didn't fallback here, we could livelock
2496 * because not all segments in the iov can be copied at
2497 * once without a pagefault.
2499 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2500 iov_iter_single_seg_count(i));
2501 goto again;
2503 pos += copied;
2504 written += copied;
2506 balance_dirty_pages_ratelimited(mapping);
2507 } while (iov_iter_count(i));
2509 return written ? written : status;
2511 EXPORT_SYMBOL(generic_perform_write);
2514 * __generic_file_write_iter - write data to a file
2515 * @iocb: IO state structure (file, offset, etc.)
2516 * @from: iov_iter with data to write
2518 * This function does all the work needed for actually writing data to a
2519 * file. It does all basic checks, removes SUID from the file, updates
2520 * modification times and calls proper subroutines depending on whether we
2521 * do direct IO or a standard buffered write.
2523 * It expects i_mutex to be grabbed unless we work on a block device or similar
2524 * object which does not need locking at all.
2526 * This function does *not* take care of syncing data in case of O_SYNC write.
2527 * A caller has to handle it. This is mainly due to the fact that we want to
2528 * avoid syncing under i_mutex.
2530 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2532 struct file *file = iocb->ki_filp;
2533 struct address_space * mapping = file->f_mapping;
2534 struct inode *inode = mapping->host;
2535 loff_t pos = iocb->ki_pos;
2536 ssize_t written = 0;
2537 ssize_t err;
2538 ssize_t status;
2539 size_t count = iov_iter_count(from);
2541 /* We can write back this queue in page reclaim */
2542 current->backing_dev_info = mapping->backing_dev_info;
2543 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2544 if (err)
2545 goto out;
2547 if (count == 0)
2548 goto out;
2550 iov_iter_truncate(from, count);
2552 err = file_remove_suid(file);
2553 if (err)
2554 goto out;
2556 err = file_update_time(file);
2557 if (err)
2558 goto out;
2560 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2561 if (unlikely(file->f_flags & O_DIRECT)) {
2562 loff_t endbyte;
2564 written = generic_file_direct_write(iocb, from, pos);
2565 if (written < 0 || written == count)
2566 goto out;
2569 * direct-io write to a hole: fall through to buffered I/O
2570 * for completing the rest of the request.
2572 pos += written;
2573 count -= written;
2575 status = generic_perform_write(file, from, pos);
2577 * If generic_perform_write() returned a synchronous error
2578 * then we want to return the number of bytes which were
2579 * direct-written, or the error code if that was zero. Note
2580 * that this differs from normal direct-io semantics, which
2581 * will return -EFOO even if some bytes were written.
2583 if (unlikely(status < 0)) {
2584 err = status;
2585 goto out;
2587 iocb->ki_pos = pos + status;
2589 * We need to ensure that the page cache pages are written to
2590 * disk and invalidated to preserve the expected O_DIRECT
2591 * semantics.
2593 endbyte = pos + status - 1;
2594 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2595 if (err == 0) {
2596 written += status;
2597 invalidate_mapping_pages(mapping,
2598 pos >> PAGE_CACHE_SHIFT,
2599 endbyte >> PAGE_CACHE_SHIFT);
2600 } else {
2602 * We don't know how much we wrote, so just return
2603 * the number of bytes which were direct-written
2606 } else {
2607 written = generic_perform_write(file, from, pos);
2608 if (likely(written >= 0))
2609 iocb->ki_pos = pos + written;
2611 out:
2612 current->backing_dev_info = NULL;
2613 return written ? written : err;
2615 EXPORT_SYMBOL(__generic_file_write_iter);
2618 * generic_file_write_iter - write data to a file
2619 * @iocb: IO state structure
2620 * @from: iov_iter with data to write
2622 * This is a wrapper around __generic_file_write_iter() to be used by most
2623 * filesystems. It takes care of syncing the file in case of O_SYNC file
2624 * and acquires i_mutex as needed.
2626 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2628 struct file *file = iocb->ki_filp;
2629 struct inode *inode = file->f_mapping->host;
2630 ssize_t ret;
2632 mutex_lock(&inode->i_mutex);
2633 ret = __generic_file_write_iter(iocb, from);
2634 mutex_unlock(&inode->i_mutex);
2636 if (ret > 0) {
2637 ssize_t err;
2639 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2640 if (err < 0)
2641 ret = err;
2643 return ret;
2645 EXPORT_SYMBOL(generic_file_write_iter);
2648 * try_to_release_page() - release old fs-specific metadata on a page
2650 * @page: the page which the kernel is trying to free
2651 * @gfp_mask: memory allocation flags (and I/O mode)
2653 * The address_space is to try to release any data against the page
2654 * (presumably at page->private). If the release was successful, return `1'.
2655 * Otherwise return zero.
2657 * This may also be called if PG_fscache is set on a page, indicating that the
2658 * page is known to the local caching routines.
2660 * The @gfp_mask argument specifies whether I/O may be performed to release
2661 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2664 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2666 struct address_space * const mapping = page->mapping;
2668 BUG_ON(!PageLocked(page));
2669 if (PageWriteback(page))
2670 return 0;
2672 if (mapping && mapping->a_ops->releasepage)
2673 return mapping->a_ops->releasepage(page, gfp_mask);
2674 return try_to_free_buffers(page);
2677 EXPORT_SYMBOL(try_to_release_page);