2 * linux/kernel/power/snapshot.c
4 * This file provides system snapshot/restore functionality for swsusp.
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * This file is released under the GPLv2.
13 #include <linux/version.h>
14 #include <linux/module.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30 #include <linux/compiler.h>
31 #include <linux/ktime.h>
33 #include <asm/uaccess.h>
34 #include <asm/mmu_context.h>
35 #include <asm/pgtable.h>
36 #include <asm/tlbflush.h>
41 static int swsusp_page_is_free(struct page
*);
42 static void swsusp_set_page_forbidden(struct page
*);
43 static void swsusp_unset_page_forbidden(struct page
*);
46 * Number of bytes to reserve for memory allocations made by device drivers
47 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
48 * cause image creation to fail (tunable via /sys/power/reserved_size).
50 unsigned long reserved_size
;
52 void __init
hibernate_reserved_size_init(void)
54 reserved_size
= SPARE_PAGES
* PAGE_SIZE
;
58 * Preferred image size in bytes (tunable via /sys/power/image_size).
59 * When it is set to N, swsusp will do its best to ensure the image
60 * size will not exceed N bytes, but if that is impossible, it will
61 * try to create the smallest image possible.
63 unsigned long image_size
;
65 void __init
hibernate_image_size_init(void)
67 image_size
= ((totalram_pages
* 2) / 5) * PAGE_SIZE
;
70 /* List of PBEs needed for restoring the pages that were allocated before
71 * the suspend and included in the suspend image, but have also been
72 * allocated by the "resume" kernel, so their contents cannot be written
73 * directly to their "original" page frames.
75 struct pbe
*restore_pblist
;
77 /* Pointer to an auxiliary buffer (1 page) */
81 * @safe_needed - on resume, for storing the PBE list and the image,
82 * we can only use memory pages that do not conflict with the pages
83 * used before suspend. The unsafe pages have PageNosaveFree set
84 * and we count them using unsafe_pages.
86 * Each allocated image page is marked as PageNosave and PageNosaveFree
87 * so that swsusp_free() can release it.
92 #define PG_UNSAFE_CLEAR 1
93 #define PG_UNSAFE_KEEP 0
95 static unsigned int allocated_unsafe_pages
;
97 static void *get_image_page(gfp_t gfp_mask
, int safe_needed
)
101 res
= (void *)get_zeroed_page(gfp_mask
);
103 while (res
&& swsusp_page_is_free(virt_to_page(res
))) {
104 /* The page is unsafe, mark it for swsusp_free() */
105 swsusp_set_page_forbidden(virt_to_page(res
));
106 allocated_unsafe_pages
++;
107 res
= (void *)get_zeroed_page(gfp_mask
);
110 swsusp_set_page_forbidden(virt_to_page(res
));
111 swsusp_set_page_free(virt_to_page(res
));
116 unsigned long get_safe_page(gfp_t gfp_mask
)
118 return (unsigned long)get_image_page(gfp_mask
, PG_SAFE
);
121 static struct page
*alloc_image_page(gfp_t gfp_mask
)
125 page
= alloc_page(gfp_mask
);
127 swsusp_set_page_forbidden(page
);
128 swsusp_set_page_free(page
);
134 * free_image_page - free page represented by @addr, allocated with
135 * get_image_page (page flags set by it must be cleared)
138 static inline void free_image_page(void *addr
, int clear_nosave_free
)
142 BUG_ON(!virt_addr_valid(addr
));
144 page
= virt_to_page(addr
);
146 swsusp_unset_page_forbidden(page
);
147 if (clear_nosave_free
)
148 swsusp_unset_page_free(page
);
153 /* struct linked_page is used to build chains of pages */
155 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
158 struct linked_page
*next
;
159 char data
[LINKED_PAGE_DATA_SIZE
];
163 free_list_of_pages(struct linked_page
*list
, int clear_page_nosave
)
166 struct linked_page
*lp
= list
->next
;
168 free_image_page(list
, clear_page_nosave
);
174 * struct chain_allocator is used for allocating small objects out of
175 * a linked list of pages called 'the chain'.
177 * The chain grows each time when there is no room for a new object in
178 * the current page. The allocated objects cannot be freed individually.
179 * It is only possible to free them all at once, by freeing the entire
182 * NOTE: The chain allocator may be inefficient if the allocated objects
183 * are not much smaller than PAGE_SIZE.
186 struct chain_allocator
{
187 struct linked_page
*chain
; /* the chain */
188 unsigned int used_space
; /* total size of objects allocated out
189 * of the current page
191 gfp_t gfp_mask
; /* mask for allocating pages */
192 int safe_needed
; /* if set, only "safe" pages are allocated */
196 chain_init(struct chain_allocator
*ca
, gfp_t gfp_mask
, int safe_needed
)
199 ca
->used_space
= LINKED_PAGE_DATA_SIZE
;
200 ca
->gfp_mask
= gfp_mask
;
201 ca
->safe_needed
= safe_needed
;
204 static void *chain_alloc(struct chain_allocator
*ca
, unsigned int size
)
208 if (LINKED_PAGE_DATA_SIZE
- ca
->used_space
< size
) {
209 struct linked_page
*lp
;
211 lp
= get_image_page(ca
->gfp_mask
, ca
->safe_needed
);
215 lp
->next
= ca
->chain
;
219 ret
= ca
->chain
->data
+ ca
->used_space
;
220 ca
->used_space
+= size
;
225 * Data types related to memory bitmaps.
227 * Memory bitmap is a structure consiting of many linked lists of
228 * objects. The main list's elements are of type struct zone_bitmap
229 * and each of them corresonds to one zone. For each zone bitmap
230 * object there is a list of objects of type struct bm_block that
231 * represent each blocks of bitmap in which information is stored.
233 * struct memory_bitmap contains a pointer to the main list of zone
234 * bitmap objects, a struct bm_position used for browsing the bitmap,
235 * and a pointer to the list of pages used for allocating all of the
236 * zone bitmap objects and bitmap block objects.
238 * NOTE: It has to be possible to lay out the bitmap in memory
239 * using only allocations of order 0. Additionally, the bitmap is
240 * designed to work with arbitrary number of zones (this is over the
241 * top for now, but let's avoid making unnecessary assumptions ;-).
243 * struct zone_bitmap contains a pointer to a list of bitmap block
244 * objects and a pointer to the bitmap block object that has been
245 * most recently used for setting bits. Additionally, it contains the
246 * pfns that correspond to the start and end of the represented zone.
248 * struct bm_block contains a pointer to the memory page in which
249 * information is stored (in the form of a block of bitmap)
250 * It also contains the pfns that correspond to the start and end of
251 * the represented memory area.
253 * The memory bitmap is organized as a radix tree to guarantee fast random
254 * access to the bits. There is one radix tree for each zone (as returned
255 * from create_mem_extents).
257 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
258 * two linked lists for the nodes of the tree, one for the inner nodes and
259 * one for the leave nodes. The linked leave nodes are used for fast linear
260 * access of the memory bitmap.
262 * The struct rtree_node represents one node of the radix tree.
265 #define BM_END_OF_MAP (~0UL)
267 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
268 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3)
269 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1)
272 * struct rtree_node is a wrapper struct to link the nodes
273 * of the rtree together for easy linear iteration over
274 * bits and easy freeing
277 struct list_head list
;
282 * struct mem_zone_bm_rtree represents a bitmap used for one
283 * populated memory zone.
285 struct mem_zone_bm_rtree
{
286 struct list_head list
; /* Link Zones together */
287 struct list_head nodes
; /* Radix Tree inner nodes */
288 struct list_head leaves
; /* Radix Tree leaves */
289 unsigned long start_pfn
; /* Zone start page frame */
290 unsigned long end_pfn
; /* Zone end page frame + 1 */
291 struct rtree_node
*rtree
; /* Radix Tree Root */
292 int levels
; /* Number of Radix Tree Levels */
293 unsigned int blocks
; /* Number of Bitmap Blocks */
296 /* strcut bm_position is used for browsing memory bitmaps */
299 struct mem_zone_bm_rtree
*zone
;
300 struct rtree_node
*node
;
301 unsigned long node_pfn
;
305 struct memory_bitmap
{
306 struct list_head zones
;
307 struct linked_page
*p_list
; /* list of pages used to store zone
308 * bitmap objects and bitmap block
311 struct bm_position cur
; /* most recently used bit position */
314 /* Functions that operate on memory bitmaps */
316 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long))
317 #if BITS_PER_LONG == 32
318 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2)
320 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3)
322 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
325 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
327 * This function is used to allocate inner nodes as well as the
328 * leave nodes of the radix tree. It also adds the node to the
329 * corresponding linked list passed in by the *list parameter.
331 static struct rtree_node
*alloc_rtree_node(gfp_t gfp_mask
, int safe_needed
,
332 struct chain_allocator
*ca
,
333 struct list_head
*list
)
335 struct rtree_node
*node
;
337 node
= chain_alloc(ca
, sizeof(struct rtree_node
));
341 node
->data
= get_image_page(gfp_mask
, safe_needed
);
345 list_add_tail(&node
->list
, list
);
351 * add_rtree_block - Add a new leave node to the radix tree
353 * The leave nodes need to be allocated in order to keep the leaves
354 * linked list in order. This is guaranteed by the zone->blocks
357 static int add_rtree_block(struct mem_zone_bm_rtree
*zone
, gfp_t gfp_mask
,
358 int safe_needed
, struct chain_allocator
*ca
)
360 struct rtree_node
*node
, *block
, **dst
;
361 unsigned int levels_needed
, block_nr
;
364 block_nr
= zone
->blocks
;
367 /* How many levels do we need for this block nr? */
370 block_nr
>>= BM_RTREE_LEVEL_SHIFT
;
373 /* Make sure the rtree has enough levels */
374 for (i
= zone
->levels
; i
< levels_needed
; i
++) {
375 node
= alloc_rtree_node(gfp_mask
, safe_needed
, ca
,
380 node
->data
[0] = (unsigned long)zone
->rtree
;
385 /* Allocate new block */
386 block
= alloc_rtree_node(gfp_mask
, safe_needed
, ca
, &zone
->leaves
);
390 /* Now walk the rtree to insert the block */
393 block_nr
= zone
->blocks
;
394 for (i
= zone
->levels
; i
> 0; i
--) {
398 node
= alloc_rtree_node(gfp_mask
, safe_needed
, ca
,
405 index
= block_nr
>> ((i
- 1) * BM_RTREE_LEVEL_SHIFT
);
406 index
&= BM_RTREE_LEVEL_MASK
;
407 dst
= (struct rtree_node
**)&((*dst
)->data
[index
]);
417 static void free_zone_bm_rtree(struct mem_zone_bm_rtree
*zone
,
418 int clear_nosave_free
);
421 * create_zone_bm_rtree - create a radix tree for one zone
423 * Allocated the mem_zone_bm_rtree structure and initializes it.
424 * This function also allocated and builds the radix tree for the
427 static struct mem_zone_bm_rtree
*
428 create_zone_bm_rtree(gfp_t gfp_mask
, int safe_needed
,
429 struct chain_allocator
*ca
,
430 unsigned long start
, unsigned long end
)
432 struct mem_zone_bm_rtree
*zone
;
433 unsigned int i
, nr_blocks
;
437 zone
= chain_alloc(ca
, sizeof(struct mem_zone_bm_rtree
));
441 INIT_LIST_HEAD(&zone
->nodes
);
442 INIT_LIST_HEAD(&zone
->leaves
);
443 zone
->start_pfn
= start
;
445 nr_blocks
= DIV_ROUND_UP(pages
, BM_BITS_PER_BLOCK
);
447 for (i
= 0; i
< nr_blocks
; i
++) {
448 if (add_rtree_block(zone
, gfp_mask
, safe_needed
, ca
)) {
449 free_zone_bm_rtree(zone
, PG_UNSAFE_CLEAR
);
458 * free_zone_bm_rtree - Free the memory of the radix tree
460 * Free all node pages of the radix tree. The mem_zone_bm_rtree
461 * structure itself is not freed here nor are the rtree_node
464 static void free_zone_bm_rtree(struct mem_zone_bm_rtree
*zone
,
465 int clear_nosave_free
)
467 struct rtree_node
*node
;
469 list_for_each_entry(node
, &zone
->nodes
, list
)
470 free_image_page(node
->data
, clear_nosave_free
);
472 list_for_each_entry(node
, &zone
->leaves
, list
)
473 free_image_page(node
->data
, clear_nosave_free
);
476 static void memory_bm_position_reset(struct memory_bitmap
*bm
)
478 bm
->cur
.zone
= list_entry(bm
->zones
.next
, struct mem_zone_bm_rtree
,
480 bm
->cur
.node
= list_entry(bm
->cur
.zone
->leaves
.next
,
481 struct rtree_node
, list
);
482 bm
->cur
.node_pfn
= 0;
483 bm
->cur
.node_bit
= 0;
486 static void memory_bm_free(struct memory_bitmap
*bm
, int clear_nosave_free
);
489 struct list_head hook
;
495 * free_mem_extents - free a list of memory extents
496 * @list - list of extents to empty
498 static void free_mem_extents(struct list_head
*list
)
500 struct mem_extent
*ext
, *aux
;
502 list_for_each_entry_safe(ext
, aux
, list
, hook
) {
503 list_del(&ext
->hook
);
509 * create_mem_extents - create a list of memory extents representing
510 * contiguous ranges of PFNs
511 * @list - list to put the extents into
512 * @gfp_mask - mask to use for memory allocations
514 static int create_mem_extents(struct list_head
*list
, gfp_t gfp_mask
)
518 INIT_LIST_HEAD(list
);
520 for_each_populated_zone(zone
) {
521 unsigned long zone_start
, zone_end
;
522 struct mem_extent
*ext
, *cur
, *aux
;
524 zone_start
= zone
->zone_start_pfn
;
525 zone_end
= zone_end_pfn(zone
);
527 list_for_each_entry(ext
, list
, hook
)
528 if (zone_start
<= ext
->end
)
531 if (&ext
->hook
== list
|| zone_end
< ext
->start
) {
532 /* New extent is necessary */
533 struct mem_extent
*new_ext
;
535 new_ext
= kzalloc(sizeof(struct mem_extent
), gfp_mask
);
537 free_mem_extents(list
);
540 new_ext
->start
= zone_start
;
541 new_ext
->end
= zone_end
;
542 list_add_tail(&new_ext
->hook
, &ext
->hook
);
546 /* Merge this zone's range of PFNs with the existing one */
547 if (zone_start
< ext
->start
)
548 ext
->start
= zone_start
;
549 if (zone_end
> ext
->end
)
552 /* More merging may be possible */
554 list_for_each_entry_safe_continue(cur
, aux
, list
, hook
) {
555 if (zone_end
< cur
->start
)
557 if (zone_end
< cur
->end
)
559 list_del(&cur
->hook
);
568 * memory_bm_create - allocate memory for a memory bitmap
571 memory_bm_create(struct memory_bitmap
*bm
, gfp_t gfp_mask
, int safe_needed
)
573 struct chain_allocator ca
;
574 struct list_head mem_extents
;
575 struct mem_extent
*ext
;
578 chain_init(&ca
, gfp_mask
, safe_needed
);
579 INIT_LIST_HEAD(&bm
->zones
);
581 error
= create_mem_extents(&mem_extents
, gfp_mask
);
585 list_for_each_entry(ext
, &mem_extents
, hook
) {
586 struct mem_zone_bm_rtree
*zone
;
588 zone
= create_zone_bm_rtree(gfp_mask
, safe_needed
, &ca
,
589 ext
->start
, ext
->end
);
594 list_add_tail(&zone
->list
, &bm
->zones
);
597 bm
->p_list
= ca
.chain
;
598 memory_bm_position_reset(bm
);
600 free_mem_extents(&mem_extents
);
604 bm
->p_list
= ca
.chain
;
605 memory_bm_free(bm
, PG_UNSAFE_CLEAR
);
610 * memory_bm_free - free memory occupied by the memory bitmap @bm
612 static void memory_bm_free(struct memory_bitmap
*bm
, int clear_nosave_free
)
614 struct mem_zone_bm_rtree
*zone
;
616 list_for_each_entry(zone
, &bm
->zones
, list
)
617 free_zone_bm_rtree(zone
, clear_nosave_free
);
619 free_list_of_pages(bm
->p_list
, clear_nosave_free
);
621 INIT_LIST_HEAD(&bm
->zones
);
625 * memory_bm_find_bit - Find the bit for pfn in the memory
628 * Find the bit in the bitmap @bm that corresponds to given pfn.
629 * The cur.zone, cur.block and cur.node_pfn member of @bm are
631 * It walks the radix tree to find the page which contains the bit for
632 * pfn and returns the bit position in **addr and *bit_nr.
634 static int memory_bm_find_bit(struct memory_bitmap
*bm
, unsigned long pfn
,
635 void **addr
, unsigned int *bit_nr
)
637 struct mem_zone_bm_rtree
*curr
, *zone
;
638 struct rtree_node
*node
;
643 if (pfn
>= zone
->start_pfn
&& pfn
< zone
->end_pfn
)
648 /* Find the right zone */
649 list_for_each_entry(curr
, &bm
->zones
, list
) {
650 if (pfn
>= curr
->start_pfn
&& pfn
< curr
->end_pfn
) {
661 * We have a zone. Now walk the radix tree to find the leave
666 if (((pfn
- zone
->start_pfn
) & ~BM_BLOCK_MASK
) == bm
->cur
.node_pfn
)
670 block_nr
= (pfn
- zone
->start_pfn
) >> BM_BLOCK_SHIFT
;
672 for (i
= zone
->levels
; i
> 0; i
--) {
675 index
= block_nr
>> ((i
- 1) * BM_RTREE_LEVEL_SHIFT
);
676 index
&= BM_RTREE_LEVEL_MASK
;
677 BUG_ON(node
->data
[index
] == 0);
678 node
= (struct rtree_node
*)node
->data
[index
];
682 /* Update last position */
685 bm
->cur
.node_pfn
= (pfn
- zone
->start_pfn
) & ~BM_BLOCK_MASK
;
687 /* Set return values */
689 *bit_nr
= (pfn
- zone
->start_pfn
) & BM_BLOCK_MASK
;
694 static void memory_bm_set_bit(struct memory_bitmap
*bm
, unsigned long pfn
)
700 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
705 static int mem_bm_set_bit_check(struct memory_bitmap
*bm
, unsigned long pfn
)
711 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
718 static void memory_bm_clear_bit(struct memory_bitmap
*bm
, unsigned long pfn
)
724 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
726 clear_bit(bit
, addr
);
729 static void memory_bm_clear_current(struct memory_bitmap
*bm
)
733 bit
= max(bm
->cur
.node_bit
- 1, 0);
734 clear_bit(bit
, bm
->cur
.node
->data
);
737 static int memory_bm_test_bit(struct memory_bitmap
*bm
, unsigned long pfn
)
743 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
745 return test_bit(bit
, addr
);
748 static bool memory_bm_pfn_present(struct memory_bitmap
*bm
, unsigned long pfn
)
753 return !memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
757 * rtree_next_node - Jumps to the next leave node
759 * Sets the position to the beginning of the next node in the
760 * memory bitmap. This is either the next node in the current
761 * zone's radix tree or the first node in the radix tree of the
764 * Returns true if there is a next node, false otherwise.
766 static bool rtree_next_node(struct memory_bitmap
*bm
)
768 bm
->cur
.node
= list_entry(bm
->cur
.node
->list
.next
,
769 struct rtree_node
, list
);
770 if (&bm
->cur
.node
->list
!= &bm
->cur
.zone
->leaves
) {
771 bm
->cur
.node_pfn
+= BM_BITS_PER_BLOCK
;
772 bm
->cur
.node_bit
= 0;
773 touch_softlockup_watchdog();
777 /* No more nodes, goto next zone */
778 bm
->cur
.zone
= list_entry(bm
->cur
.zone
->list
.next
,
779 struct mem_zone_bm_rtree
, list
);
780 if (&bm
->cur
.zone
->list
!= &bm
->zones
) {
781 bm
->cur
.node
= list_entry(bm
->cur
.zone
->leaves
.next
,
782 struct rtree_node
, list
);
783 bm
->cur
.node_pfn
= 0;
784 bm
->cur
.node_bit
= 0;
793 * memory_bm_rtree_next_pfn - Find the next set bit in the bitmap @bm
795 * Starting from the last returned position this function searches
796 * for the next set bit in the memory bitmap and returns its
797 * number. If no more bit is set BM_END_OF_MAP is returned.
799 * It is required to run memory_bm_position_reset() before the
800 * first call to this function.
802 static unsigned long memory_bm_next_pfn(struct memory_bitmap
*bm
)
804 unsigned long bits
, pfn
, pages
;
808 pages
= bm
->cur
.zone
->end_pfn
- bm
->cur
.zone
->start_pfn
;
809 bits
= min(pages
- bm
->cur
.node_pfn
, BM_BITS_PER_BLOCK
);
810 bit
= find_next_bit(bm
->cur
.node
->data
, bits
,
813 pfn
= bm
->cur
.zone
->start_pfn
+ bm
->cur
.node_pfn
+ bit
;
814 bm
->cur
.node_bit
= bit
+ 1;
817 } while (rtree_next_node(bm
));
819 return BM_END_OF_MAP
;
823 * This structure represents a range of page frames the contents of which
824 * should not be saved during the suspend.
827 struct nosave_region
{
828 struct list_head list
;
829 unsigned long start_pfn
;
830 unsigned long end_pfn
;
833 static LIST_HEAD(nosave_regions
);
836 * register_nosave_region - register a range of page frames the contents
837 * of which should not be saved during the suspend (to be used in the early
838 * initialization code)
842 __register_nosave_region(unsigned long start_pfn
, unsigned long end_pfn
,
845 struct nosave_region
*region
;
847 if (start_pfn
>= end_pfn
)
850 if (!list_empty(&nosave_regions
)) {
851 /* Try to extend the previous region (they should be sorted) */
852 region
= list_entry(nosave_regions
.prev
,
853 struct nosave_region
, list
);
854 if (region
->end_pfn
== start_pfn
) {
855 region
->end_pfn
= end_pfn
;
860 /* during init, this shouldn't fail */
861 region
= kmalloc(sizeof(struct nosave_region
), GFP_KERNEL
);
864 /* This allocation cannot fail */
865 region
= memblock_virt_alloc(sizeof(struct nosave_region
), 0);
866 region
->start_pfn
= start_pfn
;
867 region
->end_pfn
= end_pfn
;
868 list_add_tail(®ion
->list
, &nosave_regions
);
870 printk(KERN_INFO
"PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
871 (unsigned long long) start_pfn
<< PAGE_SHIFT
,
872 ((unsigned long long) end_pfn
<< PAGE_SHIFT
) - 1);
876 * Set bits in this map correspond to the page frames the contents of which
877 * should not be saved during the suspend.
879 static struct memory_bitmap
*forbidden_pages_map
;
881 /* Set bits in this map correspond to free page frames. */
882 static struct memory_bitmap
*free_pages_map
;
885 * Each page frame allocated for creating the image is marked by setting the
886 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
889 void swsusp_set_page_free(struct page
*page
)
892 memory_bm_set_bit(free_pages_map
, page_to_pfn(page
));
895 static int swsusp_page_is_free(struct page
*page
)
897 return free_pages_map
?
898 memory_bm_test_bit(free_pages_map
, page_to_pfn(page
)) : 0;
901 void swsusp_unset_page_free(struct page
*page
)
904 memory_bm_clear_bit(free_pages_map
, page_to_pfn(page
));
907 static void swsusp_set_page_forbidden(struct page
*page
)
909 if (forbidden_pages_map
)
910 memory_bm_set_bit(forbidden_pages_map
, page_to_pfn(page
));
913 int swsusp_page_is_forbidden(struct page
*page
)
915 return forbidden_pages_map
?
916 memory_bm_test_bit(forbidden_pages_map
, page_to_pfn(page
)) : 0;
919 static void swsusp_unset_page_forbidden(struct page
*page
)
921 if (forbidden_pages_map
)
922 memory_bm_clear_bit(forbidden_pages_map
, page_to_pfn(page
));
926 * mark_nosave_pages - set bits corresponding to the page frames the
927 * contents of which should not be saved in a given bitmap.
930 static void mark_nosave_pages(struct memory_bitmap
*bm
)
932 struct nosave_region
*region
;
934 if (list_empty(&nosave_regions
))
937 list_for_each_entry(region
, &nosave_regions
, list
) {
940 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
941 (unsigned long long) region
->start_pfn
<< PAGE_SHIFT
,
942 ((unsigned long long) region
->end_pfn
<< PAGE_SHIFT
)
945 for (pfn
= region
->start_pfn
; pfn
< region
->end_pfn
; pfn
++)
946 if (pfn_valid(pfn
)) {
948 * It is safe to ignore the result of
949 * mem_bm_set_bit_check() here, since we won't
950 * touch the PFNs for which the error is
953 mem_bm_set_bit_check(bm
, pfn
);
959 * create_basic_memory_bitmaps - create bitmaps needed for marking page
960 * frames that should not be saved and free page frames. The pointers
961 * forbidden_pages_map and free_pages_map are only modified if everything
962 * goes well, because we don't want the bits to be used before both bitmaps
966 int create_basic_memory_bitmaps(void)
968 struct memory_bitmap
*bm1
, *bm2
;
971 if (forbidden_pages_map
&& free_pages_map
)
974 BUG_ON(forbidden_pages_map
|| free_pages_map
);
976 bm1
= kzalloc(sizeof(struct memory_bitmap
), GFP_KERNEL
);
980 error
= memory_bm_create(bm1
, GFP_KERNEL
, PG_ANY
);
982 goto Free_first_object
;
984 bm2
= kzalloc(sizeof(struct memory_bitmap
), GFP_KERNEL
);
986 goto Free_first_bitmap
;
988 error
= memory_bm_create(bm2
, GFP_KERNEL
, PG_ANY
);
990 goto Free_second_object
;
992 forbidden_pages_map
= bm1
;
993 free_pages_map
= bm2
;
994 mark_nosave_pages(forbidden_pages_map
);
996 pr_debug("PM: Basic memory bitmaps created\n");
1003 memory_bm_free(bm1
, PG_UNSAFE_CLEAR
);
1010 * free_basic_memory_bitmaps - free memory bitmaps allocated by
1011 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
1012 * so that the bitmaps themselves are not referred to while they are being
1016 void free_basic_memory_bitmaps(void)
1018 struct memory_bitmap
*bm1
, *bm2
;
1020 if (WARN_ON(!(forbidden_pages_map
&& free_pages_map
)))
1023 bm1
= forbidden_pages_map
;
1024 bm2
= free_pages_map
;
1025 forbidden_pages_map
= NULL
;
1026 free_pages_map
= NULL
;
1027 memory_bm_free(bm1
, PG_UNSAFE_CLEAR
);
1029 memory_bm_free(bm2
, PG_UNSAFE_CLEAR
);
1032 pr_debug("PM: Basic memory bitmaps freed\n");
1036 * snapshot_additional_pages - estimate the number of additional pages
1037 * be needed for setting up the suspend image data structures for given
1038 * zone (usually the returned value is greater than the exact number)
1041 unsigned int snapshot_additional_pages(struct zone
*zone
)
1043 unsigned int rtree
, nodes
;
1045 rtree
= nodes
= DIV_ROUND_UP(zone
->spanned_pages
, BM_BITS_PER_BLOCK
);
1046 rtree
+= DIV_ROUND_UP(rtree
* sizeof(struct rtree_node
),
1047 LINKED_PAGE_DATA_SIZE
);
1049 nodes
= DIV_ROUND_UP(nodes
, BM_ENTRIES_PER_LEVEL
);
1056 #ifdef CONFIG_HIGHMEM
1058 * count_free_highmem_pages - compute the total number of free highmem
1059 * pages, system-wide.
1062 static unsigned int count_free_highmem_pages(void)
1065 unsigned int cnt
= 0;
1067 for_each_populated_zone(zone
)
1068 if (is_highmem(zone
))
1069 cnt
+= zone_page_state(zone
, NR_FREE_PAGES
);
1075 * saveable_highmem_page - Determine whether a highmem page should be
1076 * included in the suspend image.
1078 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1079 * and it isn't a part of a free chunk of pages.
1081 static struct page
*saveable_highmem_page(struct zone
*zone
, unsigned long pfn
)
1085 if (!pfn_valid(pfn
))
1088 page
= pfn_to_page(pfn
);
1089 if (page_zone(page
) != zone
)
1092 BUG_ON(!PageHighMem(page
));
1094 if (swsusp_page_is_forbidden(page
) || swsusp_page_is_free(page
) ||
1098 if (page_is_guard(page
))
1105 * count_highmem_pages - compute the total number of saveable highmem
1109 static unsigned int count_highmem_pages(void)
1114 for_each_populated_zone(zone
) {
1115 unsigned long pfn
, max_zone_pfn
;
1117 if (!is_highmem(zone
))
1120 mark_free_pages(zone
);
1121 max_zone_pfn
= zone_end_pfn(zone
);
1122 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1123 if (saveable_highmem_page(zone
, pfn
))
1129 static inline void *saveable_highmem_page(struct zone
*z
, unsigned long p
)
1133 #endif /* CONFIG_HIGHMEM */
1136 * saveable_page - Determine whether a non-highmem page should be included
1137 * in the suspend image.
1139 * We should save the page if it isn't Nosave, and is not in the range
1140 * of pages statically defined as 'unsaveable', and it isn't a part of
1141 * a free chunk of pages.
1143 static struct page
*saveable_page(struct zone
*zone
, unsigned long pfn
)
1147 if (!pfn_valid(pfn
))
1150 page
= pfn_to_page(pfn
);
1151 if (page_zone(page
) != zone
)
1154 BUG_ON(PageHighMem(page
));
1156 if (swsusp_page_is_forbidden(page
) || swsusp_page_is_free(page
))
1159 if (PageReserved(page
)
1160 && (!kernel_page_present(page
) || pfn_is_nosave(pfn
)))
1163 if (page_is_guard(page
))
1170 * count_data_pages - compute the total number of saveable non-highmem
1174 static unsigned int count_data_pages(void)
1177 unsigned long pfn
, max_zone_pfn
;
1180 for_each_populated_zone(zone
) {
1181 if (is_highmem(zone
))
1184 mark_free_pages(zone
);
1185 max_zone_pfn
= zone_end_pfn(zone
);
1186 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1187 if (saveable_page(zone
, pfn
))
1193 /* This is needed, because copy_page and memcpy are not usable for copying
1196 static inline void do_copy_page(long *dst
, long *src
)
1200 for (n
= PAGE_SIZE
/ sizeof(long); n
; n
--)
1206 * safe_copy_page - check if the page we are going to copy is marked as
1207 * present in the kernel page tables (this always is the case if
1208 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
1209 * kernel_page_present() always returns 'true').
1211 static void safe_copy_page(void *dst
, struct page
*s_page
)
1213 if (kernel_page_present(s_page
)) {
1214 do_copy_page(dst
, page_address(s_page
));
1216 kernel_map_pages(s_page
, 1, 1);
1217 do_copy_page(dst
, page_address(s_page
));
1218 kernel_map_pages(s_page
, 1, 0);
1223 #ifdef CONFIG_HIGHMEM
1224 static inline struct page
*
1225 page_is_saveable(struct zone
*zone
, unsigned long pfn
)
1227 return is_highmem(zone
) ?
1228 saveable_highmem_page(zone
, pfn
) : saveable_page(zone
, pfn
);
1231 static void copy_data_page(unsigned long dst_pfn
, unsigned long src_pfn
)
1233 struct page
*s_page
, *d_page
;
1236 s_page
= pfn_to_page(src_pfn
);
1237 d_page
= pfn_to_page(dst_pfn
);
1238 if (PageHighMem(s_page
)) {
1239 src
= kmap_atomic(s_page
);
1240 dst
= kmap_atomic(d_page
);
1241 do_copy_page(dst
, src
);
1245 if (PageHighMem(d_page
)) {
1246 /* Page pointed to by src may contain some kernel
1247 * data modified by kmap_atomic()
1249 safe_copy_page(buffer
, s_page
);
1250 dst
= kmap_atomic(d_page
);
1251 copy_page(dst
, buffer
);
1254 safe_copy_page(page_address(d_page
), s_page
);
1259 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1261 static inline void copy_data_page(unsigned long dst_pfn
, unsigned long src_pfn
)
1263 safe_copy_page(page_address(pfn_to_page(dst_pfn
)),
1264 pfn_to_page(src_pfn
));
1266 #endif /* CONFIG_HIGHMEM */
1269 copy_data_pages(struct memory_bitmap
*copy_bm
, struct memory_bitmap
*orig_bm
)
1274 for_each_populated_zone(zone
) {
1275 unsigned long max_zone_pfn
;
1277 mark_free_pages(zone
);
1278 max_zone_pfn
= zone_end_pfn(zone
);
1279 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1280 if (page_is_saveable(zone
, pfn
))
1281 memory_bm_set_bit(orig_bm
, pfn
);
1283 memory_bm_position_reset(orig_bm
);
1284 memory_bm_position_reset(copy_bm
);
1286 pfn
= memory_bm_next_pfn(orig_bm
);
1287 if (unlikely(pfn
== BM_END_OF_MAP
))
1289 copy_data_page(memory_bm_next_pfn(copy_bm
), pfn
);
1293 /* Total number of image pages */
1294 static unsigned int nr_copy_pages
;
1295 /* Number of pages needed for saving the original pfns of the image pages */
1296 static unsigned int nr_meta_pages
;
1298 * Numbers of normal and highmem page frames allocated for hibernation image
1299 * before suspending devices.
1301 unsigned int alloc_normal
, alloc_highmem
;
1303 * Memory bitmap used for marking saveable pages (during hibernation) or
1304 * hibernation image pages (during restore)
1306 static struct memory_bitmap orig_bm
;
1308 * Memory bitmap used during hibernation for marking allocated page frames that
1309 * will contain copies of saveable pages. During restore it is initially used
1310 * for marking hibernation image pages, but then the set bits from it are
1311 * duplicated in @orig_bm and it is released. On highmem systems it is next
1312 * used for marking "safe" highmem pages, but it has to be reinitialized for
1315 static struct memory_bitmap copy_bm
;
1318 * swsusp_free - free pages allocated for the suspend.
1320 * Suspend pages are alocated before the atomic copy is made, so we
1321 * need to release them after the resume.
1324 void swsusp_free(void)
1326 unsigned long fb_pfn
, fr_pfn
;
1328 if (!forbidden_pages_map
|| !free_pages_map
)
1331 memory_bm_position_reset(forbidden_pages_map
);
1332 memory_bm_position_reset(free_pages_map
);
1335 fr_pfn
= memory_bm_next_pfn(free_pages_map
);
1336 fb_pfn
= memory_bm_next_pfn(forbidden_pages_map
);
1339 * Find the next bit set in both bitmaps. This is guaranteed to
1340 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1343 if (fb_pfn
< fr_pfn
)
1344 fb_pfn
= memory_bm_next_pfn(forbidden_pages_map
);
1345 if (fr_pfn
< fb_pfn
)
1346 fr_pfn
= memory_bm_next_pfn(free_pages_map
);
1347 } while (fb_pfn
!= fr_pfn
);
1349 if (fr_pfn
!= BM_END_OF_MAP
&& pfn_valid(fr_pfn
)) {
1350 struct page
*page
= pfn_to_page(fr_pfn
);
1352 memory_bm_clear_current(forbidden_pages_map
);
1353 memory_bm_clear_current(free_pages_map
);
1361 restore_pblist
= NULL
;
1367 /* Helper functions used for the shrinking of memory. */
1369 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1372 * preallocate_image_pages - Allocate a number of pages for hibernation image
1373 * @nr_pages: Number of page frames to allocate.
1374 * @mask: GFP flags to use for the allocation.
1376 * Return value: Number of page frames actually allocated
1378 static unsigned long preallocate_image_pages(unsigned long nr_pages
, gfp_t mask
)
1380 unsigned long nr_alloc
= 0;
1382 while (nr_pages
> 0) {
1385 page
= alloc_image_page(mask
);
1388 memory_bm_set_bit(©_bm
, page_to_pfn(page
));
1389 if (PageHighMem(page
))
1400 static unsigned long preallocate_image_memory(unsigned long nr_pages
,
1401 unsigned long avail_normal
)
1403 unsigned long alloc
;
1405 if (avail_normal
<= alloc_normal
)
1408 alloc
= avail_normal
- alloc_normal
;
1409 if (nr_pages
< alloc
)
1412 return preallocate_image_pages(alloc
, GFP_IMAGE
);
1415 #ifdef CONFIG_HIGHMEM
1416 static unsigned long preallocate_image_highmem(unsigned long nr_pages
)
1418 return preallocate_image_pages(nr_pages
, GFP_IMAGE
| __GFP_HIGHMEM
);
1422 * __fraction - Compute (an approximation of) x * (multiplier / base)
1424 static unsigned long __fraction(u64 x
, u64 multiplier
, u64 base
)
1428 return (unsigned long)x
;
1431 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages
,
1432 unsigned long highmem
,
1433 unsigned long total
)
1435 unsigned long alloc
= __fraction(nr_pages
, highmem
, total
);
1437 return preallocate_image_pages(alloc
, GFP_IMAGE
| __GFP_HIGHMEM
);
1439 #else /* CONFIG_HIGHMEM */
1440 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages
)
1445 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages
,
1446 unsigned long highmem
,
1447 unsigned long total
)
1451 #endif /* CONFIG_HIGHMEM */
1454 * free_unnecessary_pages - Release preallocated pages not needed for the image
1456 static unsigned long free_unnecessary_pages(void)
1458 unsigned long save
, to_free_normal
, to_free_highmem
, free
;
1460 save
= count_data_pages();
1461 if (alloc_normal
>= save
) {
1462 to_free_normal
= alloc_normal
- save
;
1466 save
-= alloc_normal
;
1468 save
+= count_highmem_pages();
1469 if (alloc_highmem
>= save
) {
1470 to_free_highmem
= alloc_highmem
- save
;
1472 to_free_highmem
= 0;
1473 save
-= alloc_highmem
;
1474 if (to_free_normal
> save
)
1475 to_free_normal
-= save
;
1479 free
= to_free_normal
+ to_free_highmem
;
1481 memory_bm_position_reset(©_bm
);
1483 while (to_free_normal
> 0 || to_free_highmem
> 0) {
1484 unsigned long pfn
= memory_bm_next_pfn(©_bm
);
1485 struct page
*page
= pfn_to_page(pfn
);
1487 if (PageHighMem(page
)) {
1488 if (!to_free_highmem
)
1493 if (!to_free_normal
)
1498 memory_bm_clear_bit(©_bm
, pfn
);
1499 swsusp_unset_page_forbidden(page
);
1500 swsusp_unset_page_free(page
);
1508 * minimum_image_size - Estimate the minimum acceptable size of an image
1509 * @saveable: Number of saveable pages in the system.
1511 * We want to avoid attempting to free too much memory too hard, so estimate the
1512 * minimum acceptable size of a hibernation image to use as the lower limit for
1513 * preallocating memory.
1515 * We assume that the minimum image size should be proportional to
1517 * [number of saveable pages] - [number of pages that can be freed in theory]
1519 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1520 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1521 * minus mapped file pages.
1523 static unsigned long minimum_image_size(unsigned long saveable
)
1527 size
= global_page_state(NR_SLAB_RECLAIMABLE
)
1528 + global_page_state(NR_ACTIVE_ANON
)
1529 + global_page_state(NR_INACTIVE_ANON
)
1530 + global_page_state(NR_ACTIVE_FILE
)
1531 + global_page_state(NR_INACTIVE_FILE
)
1532 - global_page_state(NR_FILE_MAPPED
);
1534 return saveable
<= size
? 0 : saveable
- size
;
1538 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1540 * To create a hibernation image it is necessary to make a copy of every page
1541 * frame in use. We also need a number of page frames to be free during
1542 * hibernation for allocations made while saving the image and for device
1543 * drivers, in case they need to allocate memory from their hibernation
1544 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1545 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1546 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1547 * total number of available page frames and allocate at least
1549 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1550 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1552 * of them, which corresponds to the maximum size of a hibernation image.
1554 * If image_size is set below the number following from the above formula,
1555 * the preallocation of memory is continued until the total number of saveable
1556 * pages in the system is below the requested image size or the minimum
1557 * acceptable image size returned by minimum_image_size(), whichever is greater.
1559 int hibernate_preallocate_memory(void)
1562 unsigned long saveable
, size
, max_size
, count
, highmem
, pages
= 0;
1563 unsigned long alloc
, save_highmem
, pages_highmem
, avail_normal
;
1564 ktime_t start
, stop
;
1567 printk(KERN_INFO
"PM: Preallocating image memory... ");
1568 start
= ktime_get();
1570 error
= memory_bm_create(&orig_bm
, GFP_IMAGE
, PG_ANY
);
1574 error
= memory_bm_create(©_bm
, GFP_IMAGE
, PG_ANY
);
1581 /* Count the number of saveable data pages. */
1582 save_highmem
= count_highmem_pages();
1583 saveable
= count_data_pages();
1586 * Compute the total number of page frames we can use (count) and the
1587 * number of pages needed for image metadata (size).
1590 saveable
+= save_highmem
;
1591 highmem
= save_highmem
;
1593 for_each_populated_zone(zone
) {
1594 size
+= snapshot_additional_pages(zone
);
1595 if (is_highmem(zone
))
1596 highmem
+= zone_page_state(zone
, NR_FREE_PAGES
);
1598 count
+= zone_page_state(zone
, NR_FREE_PAGES
);
1600 avail_normal
= count
;
1602 count
-= totalreserve_pages
;
1604 /* Add number of pages required for page keys (s390 only). */
1605 size
+= page_key_additional_pages(saveable
);
1607 /* Compute the maximum number of saveable pages to leave in memory. */
1608 max_size
= (count
- (size
+ PAGES_FOR_IO
)) / 2
1609 - 2 * DIV_ROUND_UP(reserved_size
, PAGE_SIZE
);
1610 /* Compute the desired number of image pages specified by image_size. */
1611 size
= DIV_ROUND_UP(image_size
, PAGE_SIZE
);
1612 if (size
> max_size
)
1615 * If the desired number of image pages is at least as large as the
1616 * current number of saveable pages in memory, allocate page frames for
1617 * the image and we're done.
1619 if (size
>= saveable
) {
1620 pages
= preallocate_image_highmem(save_highmem
);
1621 pages
+= preallocate_image_memory(saveable
- pages
, avail_normal
);
1625 /* Estimate the minimum size of the image. */
1626 pages
= minimum_image_size(saveable
);
1628 * To avoid excessive pressure on the normal zone, leave room in it to
1629 * accommodate an image of the minimum size (unless it's already too
1630 * small, in which case don't preallocate pages from it at all).
1632 if (avail_normal
> pages
)
1633 avail_normal
-= pages
;
1637 size
= min_t(unsigned long, pages
, max_size
);
1640 * Let the memory management subsystem know that we're going to need a
1641 * large number of page frames to allocate and make it free some memory.
1642 * NOTE: If this is not done, performance will be hurt badly in some
1645 shrink_all_memory(saveable
- size
);
1648 * The number of saveable pages in memory was too high, so apply some
1649 * pressure to decrease it. First, make room for the largest possible
1650 * image and fail if that doesn't work. Next, try to decrease the size
1651 * of the image as much as indicated by 'size' using allocations from
1652 * highmem and non-highmem zones separately.
1654 pages_highmem
= preallocate_image_highmem(highmem
/ 2);
1655 alloc
= count
- max_size
;
1656 if (alloc
> pages_highmem
)
1657 alloc
-= pages_highmem
;
1660 pages
= preallocate_image_memory(alloc
, avail_normal
);
1661 if (pages
< alloc
) {
1662 /* We have exhausted non-highmem pages, try highmem. */
1664 pages
+= pages_highmem
;
1665 pages_highmem
= preallocate_image_highmem(alloc
);
1666 if (pages_highmem
< alloc
)
1668 pages
+= pages_highmem
;
1670 * size is the desired number of saveable pages to leave in
1671 * memory, so try to preallocate (all memory - size) pages.
1673 alloc
= (count
- pages
) - size
;
1674 pages
+= preallocate_image_highmem(alloc
);
1677 * There are approximately max_size saveable pages at this point
1678 * and we want to reduce this number down to size.
1680 alloc
= max_size
- size
;
1681 size
= preallocate_highmem_fraction(alloc
, highmem
, count
);
1682 pages_highmem
+= size
;
1684 size
= preallocate_image_memory(alloc
, avail_normal
);
1685 pages_highmem
+= preallocate_image_highmem(alloc
- size
);
1686 pages
+= pages_highmem
+ size
;
1690 * We only need as many page frames for the image as there are saveable
1691 * pages in memory, but we have allocated more. Release the excessive
1694 pages
-= free_unnecessary_pages();
1698 printk(KERN_CONT
"done (allocated %lu pages)\n", pages
);
1699 swsusp_show_speed(start
, stop
, pages
, "Allocated");
1704 printk(KERN_CONT
"\n");
1709 #ifdef CONFIG_HIGHMEM
1711 * count_pages_for_highmem - compute the number of non-highmem pages
1712 * that will be necessary for creating copies of highmem pages.
1715 static unsigned int count_pages_for_highmem(unsigned int nr_highmem
)
1717 unsigned int free_highmem
= count_free_highmem_pages() + alloc_highmem
;
1719 if (free_highmem
>= nr_highmem
)
1722 nr_highmem
-= free_highmem
;
1728 count_pages_for_highmem(unsigned int nr_highmem
) { return 0; }
1729 #endif /* CONFIG_HIGHMEM */
1732 * enough_free_mem - Make sure we have enough free memory for the
1736 static int enough_free_mem(unsigned int nr_pages
, unsigned int nr_highmem
)
1739 unsigned int free
= alloc_normal
;
1741 for_each_populated_zone(zone
)
1742 if (!is_highmem(zone
))
1743 free
+= zone_page_state(zone
, NR_FREE_PAGES
);
1745 nr_pages
+= count_pages_for_highmem(nr_highmem
);
1746 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1747 nr_pages
, PAGES_FOR_IO
, free
);
1749 return free
> nr_pages
+ PAGES_FOR_IO
;
1752 #ifdef CONFIG_HIGHMEM
1754 * get_highmem_buffer - if there are some highmem pages in the suspend
1755 * image, we may need the buffer to copy them and/or load their data.
1758 static inline int get_highmem_buffer(int safe_needed
)
1760 buffer
= get_image_page(GFP_ATOMIC
| __GFP_COLD
, safe_needed
);
1761 return buffer
? 0 : -ENOMEM
;
1765 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1766 * Try to allocate as many pages as needed, but if the number of free
1767 * highmem pages is lesser than that, allocate them all.
1770 static inline unsigned int
1771 alloc_highmem_pages(struct memory_bitmap
*bm
, unsigned int nr_highmem
)
1773 unsigned int to_alloc
= count_free_highmem_pages();
1775 if (to_alloc
> nr_highmem
)
1776 to_alloc
= nr_highmem
;
1778 nr_highmem
-= to_alloc
;
1779 while (to_alloc
-- > 0) {
1782 page
= alloc_image_page(__GFP_HIGHMEM
);
1783 memory_bm_set_bit(bm
, page_to_pfn(page
));
1788 static inline int get_highmem_buffer(int safe_needed
) { return 0; }
1790 static inline unsigned int
1791 alloc_highmem_pages(struct memory_bitmap
*bm
, unsigned int n
) { return 0; }
1792 #endif /* CONFIG_HIGHMEM */
1795 * swsusp_alloc - allocate memory for the suspend image
1797 * We first try to allocate as many highmem pages as there are
1798 * saveable highmem pages in the system. If that fails, we allocate
1799 * non-highmem pages for the copies of the remaining highmem ones.
1801 * In this approach it is likely that the copies of highmem pages will
1802 * also be located in the high memory, because of the way in which
1803 * copy_data_pages() works.
1807 swsusp_alloc(struct memory_bitmap
*orig_bm
, struct memory_bitmap
*copy_bm
,
1808 unsigned int nr_pages
, unsigned int nr_highmem
)
1810 if (nr_highmem
> 0) {
1811 if (get_highmem_buffer(PG_ANY
))
1813 if (nr_highmem
> alloc_highmem
) {
1814 nr_highmem
-= alloc_highmem
;
1815 nr_pages
+= alloc_highmem_pages(copy_bm
, nr_highmem
);
1818 if (nr_pages
> alloc_normal
) {
1819 nr_pages
-= alloc_normal
;
1820 while (nr_pages
-- > 0) {
1823 page
= alloc_image_page(GFP_ATOMIC
| __GFP_COLD
);
1826 memory_bm_set_bit(copy_bm
, page_to_pfn(page
));
1837 asmlinkage __visible
int swsusp_save(void)
1839 unsigned int nr_pages
, nr_highmem
;
1841 printk(KERN_INFO
"PM: Creating hibernation image:\n");
1843 drain_local_pages(NULL
);
1844 nr_pages
= count_data_pages();
1845 nr_highmem
= count_highmem_pages();
1846 printk(KERN_INFO
"PM: Need to copy %u pages\n", nr_pages
+ nr_highmem
);
1848 if (!enough_free_mem(nr_pages
, nr_highmem
)) {
1849 printk(KERN_ERR
"PM: Not enough free memory\n");
1853 if (swsusp_alloc(&orig_bm
, ©_bm
, nr_pages
, nr_highmem
)) {
1854 printk(KERN_ERR
"PM: Memory allocation failed\n");
1858 /* During allocating of suspend pagedir, new cold pages may appear.
1861 drain_local_pages(NULL
);
1862 copy_data_pages(©_bm
, &orig_bm
);
1865 * End of critical section. From now on, we can write to memory,
1866 * but we should not touch disk. This specially means we must _not_
1867 * touch swap space! Except we must write out our image of course.
1870 nr_pages
+= nr_highmem
;
1871 nr_copy_pages
= nr_pages
;
1872 nr_meta_pages
= DIV_ROUND_UP(nr_pages
* sizeof(long), PAGE_SIZE
);
1874 printk(KERN_INFO
"PM: Hibernation image created (%d pages copied)\n",
1880 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1881 static int init_header_complete(struct swsusp_info
*info
)
1883 memcpy(&info
->uts
, init_utsname(), sizeof(struct new_utsname
));
1884 info
->version_code
= LINUX_VERSION_CODE
;
1888 static char *check_image_kernel(struct swsusp_info
*info
)
1890 if (info
->version_code
!= LINUX_VERSION_CODE
)
1891 return "kernel version";
1892 if (strcmp(info
->uts
.sysname
,init_utsname()->sysname
))
1893 return "system type";
1894 if (strcmp(info
->uts
.release
,init_utsname()->release
))
1895 return "kernel release";
1896 if (strcmp(info
->uts
.version
,init_utsname()->version
))
1898 if (strcmp(info
->uts
.machine
,init_utsname()->machine
))
1902 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1904 unsigned long snapshot_get_image_size(void)
1906 return nr_copy_pages
+ nr_meta_pages
+ 1;
1909 static int init_header(struct swsusp_info
*info
)
1911 memset(info
, 0, sizeof(struct swsusp_info
));
1912 info
->num_physpages
= get_num_physpages();
1913 info
->image_pages
= nr_copy_pages
;
1914 info
->pages
= snapshot_get_image_size();
1915 info
->size
= info
->pages
;
1916 info
->size
<<= PAGE_SHIFT
;
1917 return init_header_complete(info
);
1921 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1922 * are stored in the array @buf[] (1 page at a time)
1926 pack_pfns(unsigned long *buf
, struct memory_bitmap
*bm
)
1930 for (j
= 0; j
< PAGE_SIZE
/ sizeof(long); j
++) {
1931 buf
[j
] = memory_bm_next_pfn(bm
);
1932 if (unlikely(buf
[j
] == BM_END_OF_MAP
))
1934 /* Save page key for data page (s390 only). */
1935 page_key_read(buf
+ j
);
1940 * snapshot_read_next - used for reading the system memory snapshot.
1942 * On the first call to it @handle should point to a zeroed
1943 * snapshot_handle structure. The structure gets updated and a pointer
1944 * to it should be passed to this function every next time.
1946 * On success the function returns a positive number. Then, the caller
1947 * is allowed to read up to the returned number of bytes from the memory
1948 * location computed by the data_of() macro.
1950 * The function returns 0 to indicate the end of data stream condition,
1951 * and a negative number is returned on error. In such cases the
1952 * structure pointed to by @handle is not updated and should not be used
1956 int snapshot_read_next(struct snapshot_handle
*handle
)
1958 if (handle
->cur
> nr_meta_pages
+ nr_copy_pages
)
1962 /* This makes the buffer be freed by swsusp_free() */
1963 buffer
= get_image_page(GFP_ATOMIC
, PG_ANY
);
1970 error
= init_header((struct swsusp_info
*)buffer
);
1973 handle
->buffer
= buffer
;
1974 memory_bm_position_reset(&orig_bm
);
1975 memory_bm_position_reset(©_bm
);
1976 } else if (handle
->cur
<= nr_meta_pages
) {
1978 pack_pfns(buffer
, &orig_bm
);
1982 page
= pfn_to_page(memory_bm_next_pfn(©_bm
));
1983 if (PageHighMem(page
)) {
1984 /* Highmem pages are copied to the buffer,
1985 * because we can't return with a kmapped
1986 * highmem page (we may not be called again).
1990 kaddr
= kmap_atomic(page
);
1991 copy_page(buffer
, kaddr
);
1992 kunmap_atomic(kaddr
);
1993 handle
->buffer
= buffer
;
1995 handle
->buffer
= page_address(page
);
2003 * mark_unsafe_pages - mark the pages that cannot be used for storing
2004 * the image during resume, because they conflict with the pages that
2005 * had been used before suspend
2008 static int mark_unsafe_pages(struct memory_bitmap
*bm
)
2011 unsigned long pfn
, max_zone_pfn
;
2013 /* Clear page flags */
2014 for_each_populated_zone(zone
) {
2015 max_zone_pfn
= zone_end_pfn(zone
);
2016 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2018 swsusp_unset_page_free(pfn_to_page(pfn
));
2021 /* Mark pages that correspond to the "original" pfns as "unsafe" */
2022 memory_bm_position_reset(bm
);
2024 pfn
= memory_bm_next_pfn(bm
);
2025 if (likely(pfn
!= BM_END_OF_MAP
)) {
2026 if (likely(pfn_valid(pfn
)))
2027 swsusp_set_page_free(pfn_to_page(pfn
));
2031 } while (pfn
!= BM_END_OF_MAP
);
2033 allocated_unsafe_pages
= 0;
2039 duplicate_memory_bitmap(struct memory_bitmap
*dst
, struct memory_bitmap
*src
)
2043 memory_bm_position_reset(src
);
2044 pfn
= memory_bm_next_pfn(src
);
2045 while (pfn
!= BM_END_OF_MAP
) {
2046 memory_bm_set_bit(dst
, pfn
);
2047 pfn
= memory_bm_next_pfn(src
);
2051 static int check_header(struct swsusp_info
*info
)
2055 reason
= check_image_kernel(info
);
2056 if (!reason
&& info
->num_physpages
!= get_num_physpages())
2057 reason
= "memory size";
2059 printk(KERN_ERR
"PM: Image mismatch: %s\n", reason
);
2066 * load header - check the image header and copy data from it
2070 load_header(struct swsusp_info
*info
)
2074 restore_pblist
= NULL
;
2075 error
= check_header(info
);
2077 nr_copy_pages
= info
->image_pages
;
2078 nr_meta_pages
= info
->pages
- info
->image_pages
- 1;
2084 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
2085 * the corresponding bit in the memory bitmap @bm
2087 static int unpack_orig_pfns(unsigned long *buf
, struct memory_bitmap
*bm
)
2091 for (j
= 0; j
< PAGE_SIZE
/ sizeof(long); j
++) {
2092 if (unlikely(buf
[j
] == BM_END_OF_MAP
))
2095 /* Extract and buffer page key for data page (s390 only). */
2096 page_key_memorize(buf
+ j
);
2098 if (memory_bm_pfn_present(bm
, buf
[j
]))
2099 memory_bm_set_bit(bm
, buf
[j
]);
2107 /* List of "safe" pages that may be used to store data loaded from the suspend
2110 static struct linked_page
*safe_pages_list
;
2112 #ifdef CONFIG_HIGHMEM
2113 /* struct highmem_pbe is used for creating the list of highmem pages that
2114 * should be restored atomically during the resume from disk, because the page
2115 * frames they have occupied before the suspend are in use.
2117 struct highmem_pbe
{
2118 struct page
*copy_page
; /* data is here now */
2119 struct page
*orig_page
; /* data was here before the suspend */
2120 struct highmem_pbe
*next
;
2123 /* List of highmem PBEs needed for restoring the highmem pages that were
2124 * allocated before the suspend and included in the suspend image, but have
2125 * also been allocated by the "resume" kernel, so their contents cannot be
2126 * written directly to their "original" page frames.
2128 static struct highmem_pbe
*highmem_pblist
;
2131 * count_highmem_image_pages - compute the number of highmem pages in the
2132 * suspend image. The bits in the memory bitmap @bm that correspond to the
2133 * image pages are assumed to be set.
2136 static unsigned int count_highmem_image_pages(struct memory_bitmap
*bm
)
2139 unsigned int cnt
= 0;
2141 memory_bm_position_reset(bm
);
2142 pfn
= memory_bm_next_pfn(bm
);
2143 while (pfn
!= BM_END_OF_MAP
) {
2144 if (PageHighMem(pfn_to_page(pfn
)))
2147 pfn
= memory_bm_next_pfn(bm
);
2153 * prepare_highmem_image - try to allocate as many highmem pages as
2154 * there are highmem image pages (@nr_highmem_p points to the variable
2155 * containing the number of highmem image pages). The pages that are
2156 * "safe" (ie. will not be overwritten when the suspend image is
2157 * restored) have the corresponding bits set in @bm (it must be
2160 * NOTE: This function should not be called if there are no highmem
2164 static unsigned int safe_highmem_pages
;
2166 static struct memory_bitmap
*safe_highmem_bm
;
2169 prepare_highmem_image(struct memory_bitmap
*bm
, unsigned int *nr_highmem_p
)
2171 unsigned int to_alloc
;
2173 if (memory_bm_create(bm
, GFP_ATOMIC
, PG_SAFE
))
2176 if (get_highmem_buffer(PG_SAFE
))
2179 to_alloc
= count_free_highmem_pages();
2180 if (to_alloc
> *nr_highmem_p
)
2181 to_alloc
= *nr_highmem_p
;
2183 *nr_highmem_p
= to_alloc
;
2185 safe_highmem_pages
= 0;
2186 while (to_alloc
-- > 0) {
2189 page
= alloc_page(__GFP_HIGHMEM
);
2190 if (!swsusp_page_is_free(page
)) {
2191 /* The page is "safe", set its bit the bitmap */
2192 memory_bm_set_bit(bm
, page_to_pfn(page
));
2193 safe_highmem_pages
++;
2195 /* Mark the page as allocated */
2196 swsusp_set_page_forbidden(page
);
2197 swsusp_set_page_free(page
);
2199 memory_bm_position_reset(bm
);
2200 safe_highmem_bm
= bm
;
2205 * get_highmem_page_buffer - for given highmem image page find the buffer
2206 * that suspend_write_next() should set for its caller to write to.
2208 * If the page is to be saved to its "original" page frame or a copy of
2209 * the page is to be made in the highmem, @buffer is returned. Otherwise,
2210 * the copy of the page is to be made in normal memory, so the address of
2211 * the copy is returned.
2213 * If @buffer is returned, the caller of suspend_write_next() will write
2214 * the page's contents to @buffer, so they will have to be copied to the
2215 * right location on the next call to suspend_write_next() and it is done
2216 * with the help of copy_last_highmem_page(). For this purpose, if
2217 * @buffer is returned, @last_highmem page is set to the page to which
2218 * the data will have to be copied from @buffer.
2221 static struct page
*last_highmem_page
;
2224 get_highmem_page_buffer(struct page
*page
, struct chain_allocator
*ca
)
2226 struct highmem_pbe
*pbe
;
2229 if (swsusp_page_is_forbidden(page
) && swsusp_page_is_free(page
)) {
2230 /* We have allocated the "original" page frame and we can
2231 * use it directly to store the loaded page.
2233 last_highmem_page
= page
;
2236 /* The "original" page frame has not been allocated and we have to
2237 * use a "safe" page frame to store the loaded page.
2239 pbe
= chain_alloc(ca
, sizeof(struct highmem_pbe
));
2242 return ERR_PTR(-ENOMEM
);
2244 pbe
->orig_page
= page
;
2245 if (safe_highmem_pages
> 0) {
2248 /* Copy of the page will be stored in high memory */
2250 tmp
= pfn_to_page(memory_bm_next_pfn(safe_highmem_bm
));
2251 safe_highmem_pages
--;
2252 last_highmem_page
= tmp
;
2253 pbe
->copy_page
= tmp
;
2255 /* Copy of the page will be stored in normal memory */
2256 kaddr
= safe_pages_list
;
2257 safe_pages_list
= safe_pages_list
->next
;
2258 pbe
->copy_page
= virt_to_page(kaddr
);
2260 pbe
->next
= highmem_pblist
;
2261 highmem_pblist
= pbe
;
2266 * copy_last_highmem_page - copy the contents of a highmem image from
2267 * @buffer, where the caller of snapshot_write_next() has place them,
2268 * to the right location represented by @last_highmem_page .
2271 static void copy_last_highmem_page(void)
2273 if (last_highmem_page
) {
2276 dst
= kmap_atomic(last_highmem_page
);
2277 copy_page(dst
, buffer
);
2279 last_highmem_page
= NULL
;
2283 static inline int last_highmem_page_copied(void)
2285 return !last_highmem_page
;
2288 static inline void free_highmem_data(void)
2290 if (safe_highmem_bm
)
2291 memory_bm_free(safe_highmem_bm
, PG_UNSAFE_CLEAR
);
2294 free_image_page(buffer
, PG_UNSAFE_CLEAR
);
2298 count_highmem_image_pages(struct memory_bitmap
*bm
) { return 0; }
2301 prepare_highmem_image(struct memory_bitmap
*bm
, unsigned int *nr_highmem_p
)
2306 static inline void *
2307 get_highmem_page_buffer(struct page
*page
, struct chain_allocator
*ca
)
2309 return ERR_PTR(-EINVAL
);
2312 static inline void copy_last_highmem_page(void) {}
2313 static inline int last_highmem_page_copied(void) { return 1; }
2314 static inline void free_highmem_data(void) {}
2315 #endif /* CONFIG_HIGHMEM */
2318 * prepare_image - use the memory bitmap @bm to mark the pages that will
2319 * be overwritten in the process of restoring the system memory state
2320 * from the suspend image ("unsafe" pages) and allocate memory for the
2323 * The idea is to allocate a new memory bitmap first and then allocate
2324 * as many pages as needed for the image data, but not to assign these
2325 * pages to specific tasks initially. Instead, we just mark them as
2326 * allocated and create a lists of "safe" pages that will be used
2327 * later. On systems with high memory a list of "safe" highmem pages is
2331 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2334 prepare_image(struct memory_bitmap
*new_bm
, struct memory_bitmap
*bm
)
2336 unsigned int nr_pages
, nr_highmem
;
2337 struct linked_page
*sp_list
, *lp
;
2340 /* If there is no highmem, the buffer will not be necessary */
2341 free_image_page(buffer
, PG_UNSAFE_CLEAR
);
2344 nr_highmem
= count_highmem_image_pages(bm
);
2345 error
= mark_unsafe_pages(bm
);
2349 error
= memory_bm_create(new_bm
, GFP_ATOMIC
, PG_SAFE
);
2353 duplicate_memory_bitmap(new_bm
, bm
);
2354 memory_bm_free(bm
, PG_UNSAFE_KEEP
);
2355 if (nr_highmem
> 0) {
2356 error
= prepare_highmem_image(bm
, &nr_highmem
);
2360 /* Reserve some safe pages for potential later use.
2362 * NOTE: This way we make sure there will be enough safe pages for the
2363 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2364 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2367 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2368 nr_pages
= nr_copy_pages
- nr_highmem
- allocated_unsafe_pages
;
2369 nr_pages
= DIV_ROUND_UP(nr_pages
, PBES_PER_LINKED_PAGE
);
2370 while (nr_pages
> 0) {
2371 lp
= get_image_page(GFP_ATOMIC
, PG_SAFE
);
2380 /* Preallocate memory for the image */
2381 safe_pages_list
= NULL
;
2382 nr_pages
= nr_copy_pages
- nr_highmem
- allocated_unsafe_pages
;
2383 while (nr_pages
> 0) {
2384 lp
= (struct linked_page
*)get_zeroed_page(GFP_ATOMIC
);
2389 if (!swsusp_page_is_free(virt_to_page(lp
))) {
2390 /* The page is "safe", add it to the list */
2391 lp
->next
= safe_pages_list
;
2392 safe_pages_list
= lp
;
2394 /* Mark the page as allocated */
2395 swsusp_set_page_forbidden(virt_to_page(lp
));
2396 swsusp_set_page_free(virt_to_page(lp
));
2399 /* Free the reserved safe pages so that chain_alloc() can use them */
2402 free_image_page(sp_list
, PG_UNSAFE_CLEAR
);
2413 * get_buffer - compute the address that snapshot_write_next() should
2414 * set for its caller to write to.
2417 static void *get_buffer(struct memory_bitmap
*bm
, struct chain_allocator
*ca
)
2421 unsigned long pfn
= memory_bm_next_pfn(bm
);
2423 if (pfn
== BM_END_OF_MAP
)
2424 return ERR_PTR(-EFAULT
);
2426 page
= pfn_to_page(pfn
);
2427 if (PageHighMem(page
))
2428 return get_highmem_page_buffer(page
, ca
);
2430 if (swsusp_page_is_forbidden(page
) && swsusp_page_is_free(page
))
2431 /* We have allocated the "original" page frame and we can
2432 * use it directly to store the loaded page.
2434 return page_address(page
);
2436 /* The "original" page frame has not been allocated and we have to
2437 * use a "safe" page frame to store the loaded page.
2439 pbe
= chain_alloc(ca
, sizeof(struct pbe
));
2442 return ERR_PTR(-ENOMEM
);
2444 pbe
->orig_address
= page_address(page
);
2445 pbe
->address
= safe_pages_list
;
2446 safe_pages_list
= safe_pages_list
->next
;
2447 pbe
->next
= restore_pblist
;
2448 restore_pblist
= pbe
;
2449 return pbe
->address
;
2453 * snapshot_write_next - used for writing the system memory snapshot.
2455 * On the first call to it @handle should point to a zeroed
2456 * snapshot_handle structure. The structure gets updated and a pointer
2457 * to it should be passed to this function every next time.
2459 * On success the function returns a positive number. Then, the caller
2460 * is allowed to write up to the returned number of bytes to the memory
2461 * location computed by the data_of() macro.
2463 * The function returns 0 to indicate the "end of file" condition,
2464 * and a negative number is returned on error. In such cases the
2465 * structure pointed to by @handle is not updated and should not be used
2469 int snapshot_write_next(struct snapshot_handle
*handle
)
2471 static struct chain_allocator ca
;
2474 /* Check if we have already loaded the entire image */
2475 if (handle
->cur
> 1 && handle
->cur
> nr_meta_pages
+ nr_copy_pages
)
2478 handle
->sync_read
= 1;
2482 /* This makes the buffer be freed by swsusp_free() */
2483 buffer
= get_image_page(GFP_ATOMIC
, PG_ANY
);
2488 handle
->buffer
= buffer
;
2489 } else if (handle
->cur
== 1) {
2490 error
= load_header(buffer
);
2494 error
= memory_bm_create(©_bm
, GFP_ATOMIC
, PG_ANY
);
2498 /* Allocate buffer for page keys. */
2499 error
= page_key_alloc(nr_copy_pages
);
2503 } else if (handle
->cur
<= nr_meta_pages
+ 1) {
2504 error
= unpack_orig_pfns(buffer
, ©_bm
);
2508 if (handle
->cur
== nr_meta_pages
+ 1) {
2509 error
= prepare_image(&orig_bm
, ©_bm
);
2513 chain_init(&ca
, GFP_ATOMIC
, PG_SAFE
);
2514 memory_bm_position_reset(&orig_bm
);
2515 restore_pblist
= NULL
;
2516 handle
->buffer
= get_buffer(&orig_bm
, &ca
);
2517 handle
->sync_read
= 0;
2518 if (IS_ERR(handle
->buffer
))
2519 return PTR_ERR(handle
->buffer
);
2522 copy_last_highmem_page();
2523 /* Restore page key for data page (s390 only). */
2524 page_key_write(handle
->buffer
);
2525 handle
->buffer
= get_buffer(&orig_bm
, &ca
);
2526 if (IS_ERR(handle
->buffer
))
2527 return PTR_ERR(handle
->buffer
);
2528 if (handle
->buffer
!= buffer
)
2529 handle
->sync_read
= 0;
2536 * snapshot_write_finalize - must be called after the last call to
2537 * snapshot_write_next() in case the last page in the image happens
2538 * to be a highmem page and its contents should be stored in the
2539 * highmem. Additionally, it releases the memory that will not be
2543 void snapshot_write_finalize(struct snapshot_handle
*handle
)
2545 copy_last_highmem_page();
2546 /* Restore page key for data page (s390 only). */
2547 page_key_write(handle
->buffer
);
2549 /* Free only if we have loaded the image entirely */
2550 if (handle
->cur
> 1 && handle
->cur
> nr_meta_pages
+ nr_copy_pages
) {
2551 memory_bm_free(&orig_bm
, PG_UNSAFE_CLEAR
);
2552 free_highmem_data();
2556 int snapshot_image_loaded(struct snapshot_handle
*handle
)
2558 return !(!nr_copy_pages
|| !last_highmem_page_copied() ||
2559 handle
->cur
<= nr_meta_pages
+ nr_copy_pages
);
2562 #ifdef CONFIG_HIGHMEM
2563 /* Assumes that @buf is ready and points to a "safe" page */
2565 swap_two_pages_data(struct page
*p1
, struct page
*p2
, void *buf
)
2567 void *kaddr1
, *kaddr2
;
2569 kaddr1
= kmap_atomic(p1
);
2570 kaddr2
= kmap_atomic(p2
);
2571 copy_page(buf
, kaddr1
);
2572 copy_page(kaddr1
, kaddr2
);
2573 copy_page(kaddr2
, buf
);
2574 kunmap_atomic(kaddr2
);
2575 kunmap_atomic(kaddr1
);
2579 * restore_highmem - for each highmem page that was allocated before
2580 * the suspend and included in the suspend image, and also has been
2581 * allocated by the "resume" kernel swap its current (ie. "before
2582 * resume") contents with the previous (ie. "before suspend") one.
2584 * If the resume eventually fails, we can call this function once
2585 * again and restore the "before resume" highmem state.
2588 int restore_highmem(void)
2590 struct highmem_pbe
*pbe
= highmem_pblist
;
2596 buf
= get_image_page(GFP_ATOMIC
, PG_SAFE
);
2601 swap_two_pages_data(pbe
->copy_page
, pbe
->orig_page
, buf
);
2604 free_image_page(buf
, PG_UNSAFE_CLEAR
);
2607 #endif /* CONFIG_HIGHMEM */