2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Author: Adrian Hunter
25 * An orphan is an inode number whose inode node has been committed to the index
26 * with a link count of zero. That happens when an open file is deleted
27 * (unlinked) and then a commit is run. In the normal course of events the inode
28 * would be deleted when the file is closed. However in the case of an unclean
29 * unmount, orphans need to be accounted for. After an unclean unmount, the
30 * orphans' inodes must be deleted which means either scanning the entire index
31 * looking for them, or keeping a list on flash somewhere. This unit implements
32 * the latter approach.
34 * The orphan area is a fixed number of LEBs situated between the LPT area and
35 * the main area. The number of orphan area LEBs is specified when the file
36 * system is created. The minimum number is 1. The size of the orphan area
37 * should be so that it can hold the maximum number of orphans that are expected
38 * to ever exist at one time.
40 * The number of orphans that can fit in a LEB is:
42 * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
44 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
46 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
47 * zero, the inode number is added to the rb-tree. It is removed from the tree
48 * when the inode is deleted. Any new orphans that are in the orphan tree when
49 * the commit is run, are written to the orphan area in 1 or more orphan nodes.
50 * If the orphan area is full, it is consolidated to make space. There is
51 * always enough space because validation prevents the user from creating more
52 * than the maximum number of orphans allowed.
55 static int dbg_check_orphans(struct ubifs_info
*c
);
58 * ubifs_add_orphan - add an orphan.
59 * @c: UBIFS file-system description object
60 * @inum: orphan inode number
62 * Add an orphan. This function is called when an inodes link count drops to
65 int ubifs_add_orphan(struct ubifs_info
*c
, ino_t inum
)
67 struct ubifs_orphan
*orphan
, *o
;
68 struct rb_node
**p
, *parent
= NULL
;
70 orphan
= kzalloc(sizeof(struct ubifs_orphan
), GFP_NOFS
);
76 spin_lock(&c
->orphan_lock
);
77 if (c
->tot_orphans
>= c
->max_orphans
) {
78 spin_unlock(&c
->orphan_lock
);
82 p
= &c
->orph_tree
.rb_node
;
85 o
= rb_entry(parent
, struct ubifs_orphan
, rb
);
88 else if (inum
> o
->inum
)
91 ubifs_err("orphaned twice");
92 spin_unlock(&c
->orphan_lock
);
99 rb_link_node(&orphan
->rb
, parent
, p
);
100 rb_insert_color(&orphan
->rb
, &c
->orph_tree
);
101 list_add_tail(&orphan
->list
, &c
->orph_list
);
102 list_add_tail(&orphan
->new_list
, &c
->orph_new
);
103 spin_unlock(&c
->orphan_lock
);
104 dbg_gen("ino %lu", (unsigned long)inum
);
109 * ubifs_delete_orphan - delete an orphan.
110 * @c: UBIFS file-system description object
111 * @inum: orphan inode number
113 * Delete an orphan. This function is called when an inode is deleted.
115 void ubifs_delete_orphan(struct ubifs_info
*c
, ino_t inum
)
117 struct ubifs_orphan
*o
;
120 spin_lock(&c
->orphan_lock
);
121 p
= c
->orph_tree
.rb_node
;
123 o
= rb_entry(p
, struct ubifs_orphan
, rb
);
126 else if (inum
> o
->inum
)
130 spin_unlock(&c
->orphan_lock
);
131 dbg_gen("deleted twice ino %lu",
132 (unsigned long)inum
);
137 o
->dnext
= c
->orph_dnext
;
139 spin_unlock(&c
->orphan_lock
);
140 dbg_gen("delete later ino %lu",
141 (unsigned long)inum
);
144 rb_erase(p
, &c
->orph_tree
);
148 list_del(&o
->new_list
);
151 spin_unlock(&c
->orphan_lock
);
153 dbg_gen("inum %lu", (unsigned long)inum
);
157 spin_unlock(&c
->orphan_lock
);
158 ubifs_err("missing orphan ino %lu", (unsigned long)inum
);
163 * ubifs_orphan_start_commit - start commit of orphans.
164 * @c: UBIFS file-system description object
166 * Start commit of orphans.
168 int ubifs_orphan_start_commit(struct ubifs_info
*c
)
170 struct ubifs_orphan
*orphan
, **last
;
172 spin_lock(&c
->orphan_lock
);
173 last
= &c
->orph_cnext
;
174 list_for_each_entry(orphan
, &c
->orph_new
, new_list
) {
175 ubifs_assert(orphan
->new);
176 ubifs_assert(!orphan
->cmt
);
180 last
= &orphan
->cnext
;
183 c
->cmt_orphans
= c
->new_orphans
;
185 dbg_cmt("%d orphans to commit", c
->cmt_orphans
);
186 INIT_LIST_HEAD(&c
->orph_new
);
187 if (c
->tot_orphans
== 0)
191 spin_unlock(&c
->orphan_lock
);
196 * avail_orphs - calculate available space.
197 * @c: UBIFS file-system description object
199 * This function returns the number of orphans that can be written in the
202 static int avail_orphs(struct ubifs_info
*c
)
204 int avail_lebs
, avail
, gap
;
206 avail_lebs
= c
->orph_lebs
- (c
->ohead_lnum
- c
->orph_first
) - 1;
208 ((c
->leb_size
- UBIFS_ORPH_NODE_SZ
) / sizeof(__le64
));
209 gap
= c
->leb_size
- c
->ohead_offs
;
210 if (gap
>= UBIFS_ORPH_NODE_SZ
+ sizeof(__le64
))
211 avail
+= (gap
- UBIFS_ORPH_NODE_SZ
) / sizeof(__le64
);
216 * tot_avail_orphs - calculate total space.
217 * @c: UBIFS file-system description object
219 * This function returns the number of orphans that can be written in half
220 * the total space. That leaves half the space for adding new orphans.
222 static int tot_avail_orphs(struct ubifs_info
*c
)
224 int avail_lebs
, avail
;
226 avail_lebs
= c
->orph_lebs
;
228 ((c
->leb_size
- UBIFS_ORPH_NODE_SZ
) / sizeof(__le64
));
233 * do_write_orph_node - write a node to the orphan head.
234 * @c: UBIFS file-system description object
235 * @len: length of node
236 * @atomic: write atomically
238 * This function writes a node to the orphan head from the orphan buffer. If
239 * %atomic is not zero, then the write is done atomically. On success, %0 is
240 * returned, otherwise a negative error code is returned.
242 static int do_write_orph_node(struct ubifs_info
*c
, int len
, int atomic
)
247 ubifs_assert(c
->ohead_offs
== 0);
248 ubifs_prepare_node(c
, c
->orph_buf
, len
, 1);
249 len
= ALIGN(len
, c
->min_io_size
);
250 err
= ubifs_leb_change(c
, c
->ohead_lnum
, c
->orph_buf
, len
);
252 if (c
->ohead_offs
== 0) {
253 /* Ensure LEB has been unmapped */
254 err
= ubifs_leb_unmap(c
, c
->ohead_lnum
);
258 err
= ubifs_write_node(c
, c
->orph_buf
, len
, c
->ohead_lnum
,
265 * write_orph_node - write an orphan node.
266 * @c: UBIFS file-system description object
267 * @atomic: write atomically
269 * This function builds an orphan node from the cnext list and writes it to the
270 * orphan head. On success, %0 is returned, otherwise a negative error code
273 static int write_orph_node(struct ubifs_info
*c
, int atomic
)
275 struct ubifs_orphan
*orphan
, *cnext
;
276 struct ubifs_orph_node
*orph
;
277 int gap
, err
, len
, cnt
, i
;
279 ubifs_assert(c
->cmt_orphans
> 0);
280 gap
= c
->leb_size
- c
->ohead_offs
;
281 if (gap
< UBIFS_ORPH_NODE_SZ
+ sizeof(__le64
)) {
285 if (c
->ohead_lnum
> c
->orph_last
) {
287 * We limit the number of orphans so that this should
290 ubifs_err("out of space in orphan area");
294 cnt
= (gap
- UBIFS_ORPH_NODE_SZ
) / sizeof(__le64
);
295 if (cnt
> c
->cmt_orphans
)
296 cnt
= c
->cmt_orphans
;
297 len
= UBIFS_ORPH_NODE_SZ
+ cnt
* sizeof(__le64
);
298 ubifs_assert(c
->orph_buf
);
300 orph
->ch
.node_type
= UBIFS_ORPH_NODE
;
301 spin_lock(&c
->orphan_lock
);
302 cnext
= c
->orph_cnext
;
303 for (i
= 0; i
< cnt
; i
++) {
305 ubifs_assert(orphan
->cmt
);
306 orph
->inos
[i
] = cpu_to_le64(orphan
->inum
);
308 cnext
= orphan
->cnext
;
309 orphan
->cnext
= NULL
;
311 c
->orph_cnext
= cnext
;
312 c
->cmt_orphans
-= cnt
;
313 spin_unlock(&c
->orphan_lock
);
315 orph
->cmt_no
= cpu_to_le64(c
->cmt_no
);
317 /* Mark the last node of the commit */
318 orph
->cmt_no
= cpu_to_le64((c
->cmt_no
) | (1ULL << 63));
319 ubifs_assert(c
->ohead_offs
+ len
<= c
->leb_size
);
320 ubifs_assert(c
->ohead_lnum
>= c
->orph_first
);
321 ubifs_assert(c
->ohead_lnum
<= c
->orph_last
);
322 err
= do_write_orph_node(c
, len
, atomic
);
323 c
->ohead_offs
+= ALIGN(len
, c
->min_io_size
);
324 c
->ohead_offs
= ALIGN(c
->ohead_offs
, 8);
329 * write_orph_nodes - write orphan nodes until there are no more to commit.
330 * @c: UBIFS file-system description object
331 * @atomic: write atomically
333 * This function writes orphan nodes for all the orphans to commit. On success,
334 * %0 is returned, otherwise a negative error code is returned.
336 static int write_orph_nodes(struct ubifs_info
*c
, int atomic
)
340 while (c
->cmt_orphans
> 0) {
341 err
= write_orph_node(c
, atomic
);
348 /* Unmap any unused LEBs after consolidation */
349 for (lnum
= c
->ohead_lnum
+ 1; lnum
<= c
->orph_last
; lnum
++) {
350 err
= ubifs_leb_unmap(c
, lnum
);
359 * consolidate - consolidate the orphan area.
360 * @c: UBIFS file-system description object
362 * This function enables consolidation by putting all the orphans into the list
363 * to commit. The list is in the order that the orphans were added, and the
364 * LEBs are written atomically in order, so at no time can orphans be lost by
365 * an unclean unmount.
367 * This function returns %0 on success and a negative error code on failure.
369 static int consolidate(struct ubifs_info
*c
)
371 int tot_avail
= tot_avail_orphs(c
), err
= 0;
373 spin_lock(&c
->orphan_lock
);
374 dbg_cmt("there is space for %d orphans and there are %d",
375 tot_avail
, c
->tot_orphans
);
376 if (c
->tot_orphans
- c
->new_orphans
<= tot_avail
) {
377 struct ubifs_orphan
*orphan
, **last
;
380 /* Change the cnext list to include all non-new orphans */
381 last
= &c
->orph_cnext
;
382 list_for_each_entry(orphan
, &c
->orph_list
, list
) {
387 last
= &orphan
->cnext
;
391 ubifs_assert(cnt
== c
->tot_orphans
- c
->new_orphans
);
392 c
->cmt_orphans
= cnt
;
393 c
->ohead_lnum
= c
->orph_first
;
397 * We limit the number of orphans so that this should
400 ubifs_err("out of space in orphan area");
403 spin_unlock(&c
->orphan_lock
);
408 * commit_orphans - commit orphans.
409 * @c: UBIFS file-system description object
411 * This function commits orphans to flash. On success, %0 is returned,
412 * otherwise a negative error code is returned.
414 static int commit_orphans(struct ubifs_info
*c
)
416 int avail
, atomic
= 0, err
;
418 ubifs_assert(c
->cmt_orphans
> 0);
419 avail
= avail_orphs(c
);
420 if (avail
< c
->cmt_orphans
) {
421 /* Not enough space to write new orphans, so consolidate */
422 err
= consolidate(c
);
427 err
= write_orph_nodes(c
, atomic
);
432 * erase_deleted - erase the orphans marked for deletion.
433 * @c: UBIFS file-system description object
435 * During commit, the orphans being committed cannot be deleted, so they are
436 * marked for deletion and deleted by this function. Also, the recovery
437 * adds killed orphans to the deletion list, and therefore they are deleted
440 static void erase_deleted(struct ubifs_info
*c
)
442 struct ubifs_orphan
*orphan
, *dnext
;
444 spin_lock(&c
->orphan_lock
);
445 dnext
= c
->orph_dnext
;
448 dnext
= orphan
->dnext
;
449 ubifs_assert(!orphan
->new);
450 ubifs_assert(orphan
->del
);
451 rb_erase(&orphan
->rb
, &c
->orph_tree
);
452 list_del(&orphan
->list
);
454 dbg_gen("deleting orphan ino %lu", (unsigned long)orphan
->inum
);
457 c
->orph_dnext
= NULL
;
458 spin_unlock(&c
->orphan_lock
);
462 * ubifs_orphan_end_commit - end commit of orphans.
463 * @c: UBIFS file-system description object
465 * End commit of orphans.
467 int ubifs_orphan_end_commit(struct ubifs_info
*c
)
471 if (c
->cmt_orphans
!= 0) {
472 err
= commit_orphans(c
);
477 err
= dbg_check_orphans(c
);
482 * ubifs_clear_orphans - erase all LEBs used for orphans.
483 * @c: UBIFS file-system description object
485 * If recovery is not required, then the orphans from the previous session
486 * are not needed. This function locates the LEBs used to record
487 * orphans, and un-maps them.
489 int ubifs_clear_orphans(struct ubifs_info
*c
)
493 for (lnum
= c
->orph_first
; lnum
<= c
->orph_last
; lnum
++) {
494 err
= ubifs_leb_unmap(c
, lnum
);
498 c
->ohead_lnum
= c
->orph_first
;
504 * insert_dead_orphan - insert an orphan.
505 * @c: UBIFS file-system description object
506 * @inum: orphan inode number
508 * This function is a helper to the 'do_kill_orphans()' function. The orphan
509 * must be kept until the next commit, so it is added to the rb-tree and the
512 static int insert_dead_orphan(struct ubifs_info
*c
, ino_t inum
)
514 struct ubifs_orphan
*orphan
, *o
;
515 struct rb_node
**p
, *parent
= NULL
;
517 orphan
= kzalloc(sizeof(struct ubifs_orphan
), GFP_KERNEL
);
522 p
= &c
->orph_tree
.rb_node
;
525 o
= rb_entry(parent
, struct ubifs_orphan
, rb
);
528 else if (inum
> o
->inum
)
531 /* Already added - no problem */
537 rb_link_node(&orphan
->rb
, parent
, p
);
538 rb_insert_color(&orphan
->rb
, &c
->orph_tree
);
539 list_add_tail(&orphan
->list
, &c
->orph_list
);
541 orphan
->dnext
= c
->orph_dnext
;
542 c
->orph_dnext
= orphan
;
543 dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum
,
544 c
->new_orphans
, c
->tot_orphans
);
549 * do_kill_orphans - remove orphan inodes from the index.
550 * @c: UBIFS file-system description object
552 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
553 * @outofdate: whether the LEB is out of date is returned here
554 * @last_flagged: whether the end orphan node is encountered
556 * This function is a helper to the 'kill_orphans()' function. It goes through
557 * every orphan node in a LEB and for every inode number recorded, removes
558 * all keys for that inode from the TNC.
560 static int do_kill_orphans(struct ubifs_info
*c
, struct ubifs_scan_leb
*sleb
,
561 unsigned long long *last_cmt_no
, int *outofdate
,
564 struct ubifs_scan_node
*snod
;
565 struct ubifs_orph_node
*orph
;
566 unsigned long long cmt_no
;
568 int i
, n
, err
, first
= 1;
570 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
571 if (snod
->type
!= UBIFS_ORPH_NODE
) {
572 ubifs_err("invalid node type %d in orphan area at %d:%d",
573 snod
->type
, sleb
->lnum
, snod
->offs
);
574 ubifs_dump_node(c
, snod
->node
);
580 /* Check commit number */
581 cmt_no
= le64_to_cpu(orph
->cmt_no
) & LLONG_MAX
;
583 * The commit number on the master node may be less, because
584 * of a failed commit. If there are several failed commits in a
585 * row, the commit number written on orphan nodes will continue
586 * to increase (because the commit number is adjusted here) even
587 * though the commit number on the master node stays the same
588 * because the master node has not been re-written.
590 if (cmt_no
> c
->cmt_no
)
592 if (cmt_no
< *last_cmt_no
&& *last_flagged
) {
594 * The last orphan node had a higher commit number and
595 * was flagged as the last written for that commit
596 * number. That makes this orphan node, out of date.
599 ubifs_err("out of order commit number %llu in orphan node at %d:%d",
600 cmt_no
, sleb
->lnum
, snod
->offs
);
601 ubifs_dump_node(c
, snod
->node
);
604 dbg_rcvry("out of date LEB %d", sleb
->lnum
);
612 n
= (le32_to_cpu(orph
->ch
.len
) - UBIFS_ORPH_NODE_SZ
) >> 3;
613 for (i
= 0; i
< n
; i
++) {
614 inum
= le64_to_cpu(orph
->inos
[i
]);
615 dbg_rcvry("deleting orphaned inode %lu",
616 (unsigned long)inum
);
617 err
= ubifs_tnc_remove_ino(c
, inum
);
620 err
= insert_dead_orphan(c
, inum
);
625 *last_cmt_no
= cmt_no
;
626 if (le64_to_cpu(orph
->cmt_no
) & (1ULL << 63)) {
627 dbg_rcvry("last orph node for commit %llu at %d:%d",
628 cmt_no
, sleb
->lnum
, snod
->offs
);
638 * kill_orphans - remove all orphan inodes from the index.
639 * @c: UBIFS file-system description object
641 * If recovery is required, then orphan inodes recorded during the previous
642 * session (which ended with an unclean unmount) must be deleted from the index.
643 * This is done by updating the TNC, but since the index is not updated until
644 * the next commit, the LEBs where the orphan information is recorded are not
645 * erased until the next commit.
647 static int kill_orphans(struct ubifs_info
*c
)
649 unsigned long long last_cmt_no
= 0;
650 int lnum
, err
= 0, outofdate
= 0, last_flagged
= 0;
652 c
->ohead_lnum
= c
->orph_first
;
654 /* Check no-orphans flag and skip this if no orphans */
656 dbg_rcvry("no orphans");
660 * Orph nodes always start at c->orph_first and are written to each
661 * successive LEB in turn. Generally unused LEBs will have been unmapped
662 * but may contain out of date orphan nodes if the unmap didn't go
663 * through. In addition, the last orphan node written for each commit is
664 * marked (top bit of orph->cmt_no is set to 1). It is possible that
665 * there are orphan nodes from the next commit (i.e. the commit did not
666 * complete successfully). In that case, no orphans will have been lost
667 * due to the way that orphans are written, and any orphans added will
668 * be valid orphans anyway and so can be deleted.
670 for (lnum
= c
->orph_first
; lnum
<= c
->orph_last
; lnum
++) {
671 struct ubifs_scan_leb
*sleb
;
673 dbg_rcvry("LEB %d", lnum
);
674 sleb
= ubifs_scan(c
, lnum
, 0, c
->sbuf
, 1);
676 if (PTR_ERR(sleb
) == -EUCLEAN
)
677 sleb
= ubifs_recover_leb(c
, lnum
, 0,
684 err
= do_kill_orphans(c
, sleb
, &last_cmt_no
, &outofdate
,
686 if (err
|| outofdate
) {
687 ubifs_scan_destroy(sleb
);
691 c
->ohead_lnum
= lnum
;
692 c
->ohead_offs
= sleb
->endpt
;
694 ubifs_scan_destroy(sleb
);
700 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
701 * @c: UBIFS file-system description object
702 * @unclean: indicates recovery from unclean unmount
703 * @read_only: indicates read only mount
705 * This function is called when mounting to erase orphans from the previous
706 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
707 * orphans are deleted.
709 int ubifs_mount_orphans(struct ubifs_info
*c
, int unclean
, int read_only
)
713 c
->max_orphans
= tot_avail_orphs(c
);
716 c
->orph_buf
= vmalloc(c
->leb_size
);
722 err
= kill_orphans(c
);
724 err
= ubifs_clear_orphans(c
);
730 * Everything below is related to debugging.
733 struct check_orphan
{
739 unsigned long last_ino
;
740 unsigned long tot_inos
;
741 unsigned long missing
;
742 unsigned long long leaf_cnt
;
743 struct ubifs_ino_node
*node
;
747 static int dbg_find_orphan(struct ubifs_info
*c
, ino_t inum
)
749 struct ubifs_orphan
*o
;
752 spin_lock(&c
->orphan_lock
);
753 p
= c
->orph_tree
.rb_node
;
755 o
= rb_entry(p
, struct ubifs_orphan
, rb
);
758 else if (inum
> o
->inum
)
761 spin_unlock(&c
->orphan_lock
);
765 spin_unlock(&c
->orphan_lock
);
769 static int dbg_ins_check_orphan(struct rb_root
*root
, ino_t inum
)
771 struct check_orphan
*orphan
, *o
;
772 struct rb_node
**p
, *parent
= NULL
;
774 orphan
= kzalloc(sizeof(struct check_orphan
), GFP_NOFS
);
782 o
= rb_entry(parent
, struct check_orphan
, rb
);
785 else if (inum
> o
->inum
)
792 rb_link_node(&orphan
->rb
, parent
, p
);
793 rb_insert_color(&orphan
->rb
, root
);
797 static int dbg_find_check_orphan(struct rb_root
*root
, ino_t inum
)
799 struct check_orphan
*o
;
804 o
= rb_entry(p
, struct check_orphan
, rb
);
807 else if (inum
> o
->inum
)
815 static void dbg_free_check_tree(struct rb_root
*root
)
817 struct check_orphan
*o
, *n
;
819 rbtree_postorder_for_each_entry_safe(o
, n
, root
, rb
)
823 static int dbg_orphan_check(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
826 struct check_info
*ci
= priv
;
830 inum
= key_inum(c
, &zbr
->key
);
831 if (inum
!= ci
->last_ino
) {
832 /* Lowest node type is the inode node, so it comes first */
833 if (key_type(c
, &zbr
->key
) != UBIFS_INO_KEY
)
834 ubifs_err("found orphan node ino %lu, type %d",
835 (unsigned long)inum
, key_type(c
, &zbr
->key
));
838 err
= ubifs_tnc_read_node(c
, zbr
, ci
->node
);
840 ubifs_err("node read failed, error %d", err
);
843 if (ci
->node
->nlink
== 0)
844 /* Must be recorded as an orphan */
845 if (!dbg_find_check_orphan(&ci
->root
, inum
) &&
846 !dbg_find_orphan(c
, inum
)) {
847 ubifs_err("missing orphan, ino %lu",
848 (unsigned long)inum
);
856 static int dbg_read_orphans(struct check_info
*ci
, struct ubifs_scan_leb
*sleb
)
858 struct ubifs_scan_node
*snod
;
859 struct ubifs_orph_node
*orph
;
863 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
865 if (snod
->type
!= UBIFS_ORPH_NODE
)
868 n
= (le32_to_cpu(orph
->ch
.len
) - UBIFS_ORPH_NODE_SZ
) >> 3;
869 for (i
= 0; i
< n
; i
++) {
870 inum
= le64_to_cpu(orph
->inos
[i
]);
871 err
= dbg_ins_check_orphan(&ci
->root
, inum
);
879 static int dbg_scan_orphans(struct ubifs_info
*c
, struct check_info
*ci
)
884 /* Check no-orphans flag and skip this if no orphans */
888 buf
= __vmalloc(c
->leb_size
, GFP_NOFS
, PAGE_KERNEL
);
890 ubifs_err("cannot allocate memory to check orphans");
894 for (lnum
= c
->orph_first
; lnum
<= c
->orph_last
; lnum
++) {
895 struct ubifs_scan_leb
*sleb
;
897 sleb
= ubifs_scan(c
, lnum
, 0, buf
, 0);
903 err
= dbg_read_orphans(ci
, sleb
);
904 ubifs_scan_destroy(sleb
);
913 static int dbg_check_orphans(struct ubifs_info
*c
)
915 struct check_info ci
;
918 if (!dbg_is_chk_orph(c
))
926 ci
.node
= kmalloc(UBIFS_MAX_INO_NODE_SZ
, GFP_NOFS
);
928 ubifs_err("out of memory");
932 err
= dbg_scan_orphans(c
, &ci
);
936 err
= dbg_walk_index(c
, &dbg_orphan_check
, NULL
, &ci
);
938 ubifs_err("cannot scan TNC, error %d", err
);
943 ubifs_err("%lu missing orphan(s)", ci
.missing
);
948 dbg_cmt("last inode number is %lu", ci
.last_ino
);
949 dbg_cmt("total number of inodes is %lu", ci
.tot_inos
);
950 dbg_cmt("total number of leaf nodes is %llu", ci
.leaf_cnt
);
953 dbg_free_check_tree(&ci
.root
);