mm, memory_hotplug: be more verbose for memory offline failures
[linux/fpc-iii.git] / mm / page_alloc.c
blobc6f090e9a1122065d1d1fa2af1ad380fbd315a33
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/memblock.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kasan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/ratelimit.h>
33 #include <linux/oom.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/vmstat.h>
42 #include <linux/mempolicy.h>
43 #include <linux/memremap.h>
44 #include <linux/stop_machine.h>
45 #include <linux/sort.h>
46 #include <linux/pfn.h>
47 #include <linux/backing-dev.h>
48 #include <linux/fault-inject.h>
49 #include <linux/page-isolation.h>
50 #include <linux/page_ext.h>
51 #include <linux/debugobjects.h>
52 #include <linux/kmemleak.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <trace/events/oom.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/hugetlb.h>
60 #include <linux/sched/rt.h>
61 #include <linux/sched/mm.h>
62 #include <linux/page_owner.h>
63 #include <linux/kthread.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/lockdep.h>
67 #include <linux/nmi.h>
68 #include <linux/psi.h>
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
73 #include "internal.h"
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock);
77 #define MIN_PERCPU_PAGELIST_FRACTION (8)
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node);
81 EXPORT_PER_CPU_SYMBOL(numa_node);
82 #endif
84 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
88 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
89 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
90 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
91 * defined in <linux/topology.h>.
93 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
94 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
95 int _node_numa_mem_[MAX_NUMNODES];
96 #endif
98 /* work_structs for global per-cpu drains */
99 DEFINE_MUTEX(pcpu_drain_mutex);
100 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
102 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
103 volatile unsigned long latent_entropy __latent_entropy;
104 EXPORT_SYMBOL(latent_entropy);
105 #endif
108 * Array of node states.
110 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
111 [N_POSSIBLE] = NODE_MASK_ALL,
112 [N_ONLINE] = { { [0] = 1UL } },
113 #ifndef CONFIG_NUMA
114 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
115 #ifdef CONFIG_HIGHMEM
116 [N_HIGH_MEMORY] = { { [0] = 1UL } },
117 #endif
118 [N_MEMORY] = { { [0] = 1UL } },
119 [N_CPU] = { { [0] = 1UL } },
120 #endif /* NUMA */
122 EXPORT_SYMBOL(node_states);
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock);
127 unsigned long totalram_pages __read_mostly;
128 unsigned long totalreserve_pages __read_mostly;
129 unsigned long totalcma_pages __read_mostly;
131 int percpu_pagelist_fraction;
132 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
142 static inline int get_pcppage_migratetype(struct page *page)
144 return page->index;
147 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
149 page->index = migratetype;
152 #ifdef CONFIG_PM_SLEEP
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with system_transition_mutex held
158 * (gfp_allowed_mask also should only be modified with system_transition_mutex
159 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
160 * with that modification).
163 static gfp_t saved_gfp_mask;
165 void pm_restore_gfp_mask(void)
167 WARN_ON(!mutex_is_locked(&system_transition_mutex));
168 if (saved_gfp_mask) {
169 gfp_allowed_mask = saved_gfp_mask;
170 saved_gfp_mask = 0;
174 void pm_restrict_gfp_mask(void)
176 WARN_ON(!mutex_is_locked(&system_transition_mutex));
177 WARN_ON(saved_gfp_mask);
178 saved_gfp_mask = gfp_allowed_mask;
179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
182 bool pm_suspended_storage(void)
184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
185 return false;
186 return true;
188 #endif /* CONFIG_PM_SLEEP */
190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191 unsigned int pageblock_order __read_mostly;
192 #endif
194 static void __free_pages_ok(struct page *page, unsigned int order);
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
207 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
208 #ifdef CONFIG_ZONE_DMA
209 [ZONE_DMA] = 256,
210 #endif
211 #ifdef CONFIG_ZONE_DMA32
212 [ZONE_DMA32] = 256,
213 #endif
214 [ZONE_NORMAL] = 32,
215 #ifdef CONFIG_HIGHMEM
216 [ZONE_HIGHMEM] = 0,
217 #endif
218 [ZONE_MOVABLE] = 0,
221 EXPORT_SYMBOL(totalram_pages);
223 static char * const zone_names[MAX_NR_ZONES] = {
224 #ifdef CONFIG_ZONE_DMA
225 "DMA",
226 #endif
227 #ifdef CONFIG_ZONE_DMA32
228 "DMA32",
229 #endif
230 "Normal",
231 #ifdef CONFIG_HIGHMEM
232 "HighMem",
233 #endif
234 "Movable",
235 #ifdef CONFIG_ZONE_DEVICE
236 "Device",
237 #endif
240 char * const migratetype_names[MIGRATE_TYPES] = {
241 "Unmovable",
242 "Movable",
243 "Reclaimable",
244 "HighAtomic",
245 #ifdef CONFIG_CMA
246 "CMA",
247 #endif
248 #ifdef CONFIG_MEMORY_ISOLATION
249 "Isolate",
250 #endif
253 compound_page_dtor * const compound_page_dtors[] = {
254 NULL,
255 free_compound_page,
256 #ifdef CONFIG_HUGETLB_PAGE
257 free_huge_page,
258 #endif
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 free_transhuge_page,
261 #endif
264 int min_free_kbytes = 1024;
265 int user_min_free_kbytes = -1;
266 int watermark_scale_factor = 10;
268 static unsigned long nr_kernel_pages __meminitdata;
269 static unsigned long nr_all_pages __meminitdata;
270 static unsigned long dma_reserve __meminitdata;
272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
274 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275 static unsigned long required_kernelcore __initdata;
276 static unsigned long required_kernelcore_percent __initdata;
277 static unsigned long required_movablecore __initdata;
278 static unsigned long required_movablecore_percent __initdata;
279 static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
280 static bool mirrored_kernelcore __meminitdata;
282 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
283 int movable_zone;
284 EXPORT_SYMBOL(movable_zone);
285 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
287 #if MAX_NUMNODES > 1
288 int nr_node_ids __read_mostly = MAX_NUMNODES;
289 int nr_online_nodes __read_mostly = 1;
290 EXPORT_SYMBOL(nr_node_ids);
291 EXPORT_SYMBOL(nr_online_nodes);
292 #endif
294 int page_group_by_mobility_disabled __read_mostly;
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297 /* Returns true if the struct page for the pfn is uninitialised */
298 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
300 int nid = early_pfn_to_nid(pfn);
302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 return true;
305 return false;
309 * Returns true when the remaining initialisation should be deferred until
310 * later in the boot cycle when it can be parallelised.
312 static bool __meminit
313 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
315 static unsigned long prev_end_pfn, nr_initialised;
318 * prev_end_pfn static that contains the end of previous zone
319 * No need to protect because called very early in boot before smp_init.
321 if (prev_end_pfn != end_pfn) {
322 prev_end_pfn = end_pfn;
323 nr_initialised = 0;
326 /* Always populate low zones for address-constrained allocations */
327 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
328 return false;
329 nr_initialised++;
330 if ((nr_initialised > NODE_DATA(nid)->static_init_pgcnt) &&
331 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
332 NODE_DATA(nid)->first_deferred_pfn = pfn;
333 return true;
335 return false;
337 #else
338 static inline bool early_page_uninitialised(unsigned long pfn)
340 return false;
343 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
345 return false;
347 #endif
349 /* Return a pointer to the bitmap storing bits affecting a block of pages */
350 static inline unsigned long *get_pageblock_bitmap(struct page *page,
351 unsigned long pfn)
353 #ifdef CONFIG_SPARSEMEM
354 return __pfn_to_section(pfn)->pageblock_flags;
355 #else
356 return page_zone(page)->pageblock_flags;
357 #endif /* CONFIG_SPARSEMEM */
360 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
362 #ifdef CONFIG_SPARSEMEM
363 pfn &= (PAGES_PER_SECTION-1);
364 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
365 #else
366 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
367 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
368 #endif /* CONFIG_SPARSEMEM */
372 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
373 * @page: The page within the block of interest
374 * @pfn: The target page frame number
375 * @end_bitidx: The last bit of interest to retrieve
376 * @mask: mask of bits that the caller is interested in
378 * Return: pageblock_bits flags
380 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
381 unsigned long pfn,
382 unsigned long end_bitidx,
383 unsigned long mask)
385 unsigned long *bitmap;
386 unsigned long bitidx, word_bitidx;
387 unsigned long word;
389 bitmap = get_pageblock_bitmap(page, pfn);
390 bitidx = pfn_to_bitidx(page, pfn);
391 word_bitidx = bitidx / BITS_PER_LONG;
392 bitidx &= (BITS_PER_LONG-1);
394 word = bitmap[word_bitidx];
395 bitidx += end_bitidx;
396 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
399 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
400 unsigned long end_bitidx,
401 unsigned long mask)
403 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
406 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
408 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
412 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
413 * @page: The page within the block of interest
414 * @flags: The flags to set
415 * @pfn: The target page frame number
416 * @end_bitidx: The last bit of interest
417 * @mask: mask of bits that the caller is interested in
419 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
420 unsigned long pfn,
421 unsigned long end_bitidx,
422 unsigned long mask)
424 unsigned long *bitmap;
425 unsigned long bitidx, word_bitidx;
426 unsigned long old_word, word;
428 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
430 bitmap = get_pageblock_bitmap(page, pfn);
431 bitidx = pfn_to_bitidx(page, pfn);
432 word_bitidx = bitidx / BITS_PER_LONG;
433 bitidx &= (BITS_PER_LONG-1);
435 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
437 bitidx += end_bitidx;
438 mask <<= (BITS_PER_LONG - bitidx - 1);
439 flags <<= (BITS_PER_LONG - bitidx - 1);
441 word = READ_ONCE(bitmap[word_bitidx]);
442 for (;;) {
443 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
444 if (word == old_word)
445 break;
446 word = old_word;
450 void set_pageblock_migratetype(struct page *page, int migratetype)
452 if (unlikely(page_group_by_mobility_disabled &&
453 migratetype < MIGRATE_PCPTYPES))
454 migratetype = MIGRATE_UNMOVABLE;
456 set_pageblock_flags_group(page, (unsigned long)migratetype,
457 PB_migrate, PB_migrate_end);
460 #ifdef CONFIG_DEBUG_VM
461 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
463 int ret = 0;
464 unsigned seq;
465 unsigned long pfn = page_to_pfn(page);
466 unsigned long sp, start_pfn;
468 do {
469 seq = zone_span_seqbegin(zone);
470 start_pfn = zone->zone_start_pfn;
471 sp = zone->spanned_pages;
472 if (!zone_spans_pfn(zone, pfn))
473 ret = 1;
474 } while (zone_span_seqretry(zone, seq));
476 if (ret)
477 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
478 pfn, zone_to_nid(zone), zone->name,
479 start_pfn, start_pfn + sp);
481 return ret;
484 static int page_is_consistent(struct zone *zone, struct page *page)
486 if (!pfn_valid_within(page_to_pfn(page)))
487 return 0;
488 if (zone != page_zone(page))
489 return 0;
491 return 1;
494 * Temporary debugging check for pages not lying within a given zone.
496 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
498 if (page_outside_zone_boundaries(zone, page))
499 return 1;
500 if (!page_is_consistent(zone, page))
501 return 1;
503 return 0;
505 #else
506 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
508 return 0;
510 #endif
512 static void bad_page(struct page *page, const char *reason,
513 unsigned long bad_flags)
515 static unsigned long resume;
516 static unsigned long nr_shown;
517 static unsigned long nr_unshown;
520 * Allow a burst of 60 reports, then keep quiet for that minute;
521 * or allow a steady drip of one report per second.
523 if (nr_shown == 60) {
524 if (time_before(jiffies, resume)) {
525 nr_unshown++;
526 goto out;
528 if (nr_unshown) {
529 pr_alert(
530 "BUG: Bad page state: %lu messages suppressed\n",
531 nr_unshown);
532 nr_unshown = 0;
534 nr_shown = 0;
536 if (nr_shown++ == 0)
537 resume = jiffies + 60 * HZ;
539 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
540 current->comm, page_to_pfn(page));
541 __dump_page(page, reason);
542 bad_flags &= page->flags;
543 if (bad_flags)
544 pr_alert("bad because of flags: %#lx(%pGp)\n",
545 bad_flags, &bad_flags);
546 dump_page_owner(page);
548 print_modules();
549 dump_stack();
550 out:
551 /* Leave bad fields for debug, except PageBuddy could make trouble */
552 page_mapcount_reset(page); /* remove PageBuddy */
553 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
557 * Higher-order pages are called "compound pages". They are structured thusly:
559 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
561 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
562 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
564 * The first tail page's ->compound_dtor holds the offset in array of compound
565 * page destructors. See compound_page_dtors.
567 * The first tail page's ->compound_order holds the order of allocation.
568 * This usage means that zero-order pages may not be compound.
571 void free_compound_page(struct page *page)
573 __free_pages_ok(page, compound_order(page));
576 void prep_compound_page(struct page *page, unsigned int order)
578 int i;
579 int nr_pages = 1 << order;
581 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
582 set_compound_order(page, order);
583 __SetPageHead(page);
584 for (i = 1; i < nr_pages; i++) {
585 struct page *p = page + i;
586 set_page_count(p, 0);
587 p->mapping = TAIL_MAPPING;
588 set_compound_head(p, page);
590 atomic_set(compound_mapcount_ptr(page), -1);
593 #ifdef CONFIG_DEBUG_PAGEALLOC
594 unsigned int _debug_guardpage_minorder;
595 bool _debug_pagealloc_enabled __read_mostly
596 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
597 EXPORT_SYMBOL(_debug_pagealloc_enabled);
598 bool _debug_guardpage_enabled __read_mostly;
600 static int __init early_debug_pagealloc(char *buf)
602 if (!buf)
603 return -EINVAL;
604 return kstrtobool(buf, &_debug_pagealloc_enabled);
606 early_param("debug_pagealloc", early_debug_pagealloc);
608 static bool need_debug_guardpage(void)
610 /* If we don't use debug_pagealloc, we don't need guard page */
611 if (!debug_pagealloc_enabled())
612 return false;
614 if (!debug_guardpage_minorder())
615 return false;
617 return true;
620 static void init_debug_guardpage(void)
622 if (!debug_pagealloc_enabled())
623 return;
625 if (!debug_guardpage_minorder())
626 return;
628 _debug_guardpage_enabled = true;
631 struct page_ext_operations debug_guardpage_ops = {
632 .need = need_debug_guardpage,
633 .init = init_debug_guardpage,
636 static int __init debug_guardpage_minorder_setup(char *buf)
638 unsigned long res;
640 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
641 pr_err("Bad debug_guardpage_minorder value\n");
642 return 0;
644 _debug_guardpage_minorder = res;
645 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
646 return 0;
648 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
650 static inline bool set_page_guard(struct zone *zone, struct page *page,
651 unsigned int order, int migratetype)
653 struct page_ext *page_ext;
655 if (!debug_guardpage_enabled())
656 return false;
658 if (order >= debug_guardpage_minorder())
659 return false;
661 page_ext = lookup_page_ext(page);
662 if (unlikely(!page_ext))
663 return false;
665 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
667 INIT_LIST_HEAD(&page->lru);
668 set_page_private(page, order);
669 /* Guard pages are not available for any usage */
670 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
672 return true;
675 static inline void clear_page_guard(struct zone *zone, struct page *page,
676 unsigned int order, int migratetype)
678 struct page_ext *page_ext;
680 if (!debug_guardpage_enabled())
681 return;
683 page_ext = lookup_page_ext(page);
684 if (unlikely(!page_ext))
685 return;
687 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
689 set_page_private(page, 0);
690 if (!is_migrate_isolate(migratetype))
691 __mod_zone_freepage_state(zone, (1 << order), migratetype);
693 #else
694 struct page_ext_operations debug_guardpage_ops;
695 static inline bool set_page_guard(struct zone *zone, struct page *page,
696 unsigned int order, int migratetype) { return false; }
697 static inline void clear_page_guard(struct zone *zone, struct page *page,
698 unsigned int order, int migratetype) {}
699 #endif
701 static inline void set_page_order(struct page *page, unsigned int order)
703 set_page_private(page, order);
704 __SetPageBuddy(page);
707 static inline void rmv_page_order(struct page *page)
709 __ClearPageBuddy(page);
710 set_page_private(page, 0);
714 * This function checks whether a page is free && is the buddy
715 * we can coalesce a page and its buddy if
716 * (a) the buddy is not in a hole (check before calling!) &&
717 * (b) the buddy is in the buddy system &&
718 * (c) a page and its buddy have the same order &&
719 * (d) a page and its buddy are in the same zone.
721 * For recording whether a page is in the buddy system, we set PageBuddy.
722 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
724 * For recording page's order, we use page_private(page).
726 static inline int page_is_buddy(struct page *page, struct page *buddy,
727 unsigned int order)
729 if (page_is_guard(buddy) && page_order(buddy) == order) {
730 if (page_zone_id(page) != page_zone_id(buddy))
731 return 0;
733 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
735 return 1;
738 if (PageBuddy(buddy) && page_order(buddy) == order) {
740 * zone check is done late to avoid uselessly
741 * calculating zone/node ids for pages that could
742 * never merge.
744 if (page_zone_id(page) != page_zone_id(buddy))
745 return 0;
747 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
749 return 1;
751 return 0;
755 * Freeing function for a buddy system allocator.
757 * The concept of a buddy system is to maintain direct-mapped table
758 * (containing bit values) for memory blocks of various "orders".
759 * The bottom level table contains the map for the smallest allocatable
760 * units of memory (here, pages), and each level above it describes
761 * pairs of units from the levels below, hence, "buddies".
762 * At a high level, all that happens here is marking the table entry
763 * at the bottom level available, and propagating the changes upward
764 * as necessary, plus some accounting needed to play nicely with other
765 * parts of the VM system.
766 * At each level, we keep a list of pages, which are heads of continuous
767 * free pages of length of (1 << order) and marked with PageBuddy.
768 * Page's order is recorded in page_private(page) field.
769 * So when we are allocating or freeing one, we can derive the state of the
770 * other. That is, if we allocate a small block, and both were
771 * free, the remainder of the region must be split into blocks.
772 * If a block is freed, and its buddy is also free, then this
773 * triggers coalescing into a block of larger size.
775 * -- nyc
778 static inline void __free_one_page(struct page *page,
779 unsigned long pfn,
780 struct zone *zone, unsigned int order,
781 int migratetype)
783 unsigned long combined_pfn;
784 unsigned long uninitialized_var(buddy_pfn);
785 struct page *buddy;
786 unsigned int max_order;
788 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
790 VM_BUG_ON(!zone_is_initialized(zone));
791 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
793 VM_BUG_ON(migratetype == -1);
794 if (likely(!is_migrate_isolate(migratetype)))
795 __mod_zone_freepage_state(zone, 1 << order, migratetype);
797 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
798 VM_BUG_ON_PAGE(bad_range(zone, page), page);
800 continue_merging:
801 while (order < max_order - 1) {
802 buddy_pfn = __find_buddy_pfn(pfn, order);
803 buddy = page + (buddy_pfn - pfn);
805 if (!pfn_valid_within(buddy_pfn))
806 goto done_merging;
807 if (!page_is_buddy(page, buddy, order))
808 goto done_merging;
810 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
811 * merge with it and move up one order.
813 if (page_is_guard(buddy)) {
814 clear_page_guard(zone, buddy, order, migratetype);
815 } else {
816 list_del(&buddy->lru);
817 zone->free_area[order].nr_free--;
818 rmv_page_order(buddy);
820 combined_pfn = buddy_pfn & pfn;
821 page = page + (combined_pfn - pfn);
822 pfn = combined_pfn;
823 order++;
825 if (max_order < MAX_ORDER) {
826 /* If we are here, it means order is >= pageblock_order.
827 * We want to prevent merge between freepages on isolate
828 * pageblock and normal pageblock. Without this, pageblock
829 * isolation could cause incorrect freepage or CMA accounting.
831 * We don't want to hit this code for the more frequent
832 * low-order merging.
834 if (unlikely(has_isolate_pageblock(zone))) {
835 int buddy_mt;
837 buddy_pfn = __find_buddy_pfn(pfn, order);
838 buddy = page + (buddy_pfn - pfn);
839 buddy_mt = get_pageblock_migratetype(buddy);
841 if (migratetype != buddy_mt
842 && (is_migrate_isolate(migratetype) ||
843 is_migrate_isolate(buddy_mt)))
844 goto done_merging;
846 max_order++;
847 goto continue_merging;
850 done_merging:
851 set_page_order(page, order);
854 * If this is not the largest possible page, check if the buddy
855 * of the next-highest order is free. If it is, it's possible
856 * that pages are being freed that will coalesce soon. In case,
857 * that is happening, add the free page to the tail of the list
858 * so it's less likely to be used soon and more likely to be merged
859 * as a higher order page
861 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
862 struct page *higher_page, *higher_buddy;
863 combined_pfn = buddy_pfn & pfn;
864 higher_page = page + (combined_pfn - pfn);
865 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
866 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
867 if (pfn_valid_within(buddy_pfn) &&
868 page_is_buddy(higher_page, higher_buddy, order + 1)) {
869 list_add_tail(&page->lru,
870 &zone->free_area[order].free_list[migratetype]);
871 goto out;
875 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
876 out:
877 zone->free_area[order].nr_free++;
881 * A bad page could be due to a number of fields. Instead of multiple branches,
882 * try and check multiple fields with one check. The caller must do a detailed
883 * check if necessary.
885 static inline bool page_expected_state(struct page *page,
886 unsigned long check_flags)
888 if (unlikely(atomic_read(&page->_mapcount) != -1))
889 return false;
891 if (unlikely((unsigned long)page->mapping |
892 page_ref_count(page) |
893 #ifdef CONFIG_MEMCG
894 (unsigned long)page->mem_cgroup |
895 #endif
896 (page->flags & check_flags)))
897 return false;
899 return true;
902 static void free_pages_check_bad(struct page *page)
904 const char *bad_reason;
905 unsigned long bad_flags;
907 bad_reason = NULL;
908 bad_flags = 0;
910 if (unlikely(atomic_read(&page->_mapcount) != -1))
911 bad_reason = "nonzero mapcount";
912 if (unlikely(page->mapping != NULL))
913 bad_reason = "non-NULL mapping";
914 if (unlikely(page_ref_count(page) != 0))
915 bad_reason = "nonzero _refcount";
916 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
917 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
918 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
920 #ifdef CONFIG_MEMCG
921 if (unlikely(page->mem_cgroup))
922 bad_reason = "page still charged to cgroup";
923 #endif
924 bad_page(page, bad_reason, bad_flags);
927 static inline int free_pages_check(struct page *page)
929 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
930 return 0;
932 /* Something has gone sideways, find it */
933 free_pages_check_bad(page);
934 return 1;
937 static int free_tail_pages_check(struct page *head_page, struct page *page)
939 int ret = 1;
942 * We rely page->lru.next never has bit 0 set, unless the page
943 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
945 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
947 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
948 ret = 0;
949 goto out;
951 switch (page - head_page) {
952 case 1:
953 /* the first tail page: ->mapping may be compound_mapcount() */
954 if (unlikely(compound_mapcount(page))) {
955 bad_page(page, "nonzero compound_mapcount", 0);
956 goto out;
958 break;
959 case 2:
961 * the second tail page: ->mapping is
962 * deferred_list.next -- ignore value.
964 break;
965 default:
966 if (page->mapping != TAIL_MAPPING) {
967 bad_page(page, "corrupted mapping in tail page", 0);
968 goto out;
970 break;
972 if (unlikely(!PageTail(page))) {
973 bad_page(page, "PageTail not set", 0);
974 goto out;
976 if (unlikely(compound_head(page) != head_page)) {
977 bad_page(page, "compound_head not consistent", 0);
978 goto out;
980 ret = 0;
981 out:
982 page->mapping = NULL;
983 clear_compound_head(page);
984 return ret;
987 static __always_inline bool free_pages_prepare(struct page *page,
988 unsigned int order, bool check_free)
990 int bad = 0;
992 VM_BUG_ON_PAGE(PageTail(page), page);
994 trace_mm_page_free(page, order);
997 * Check tail pages before head page information is cleared to
998 * avoid checking PageCompound for order-0 pages.
1000 if (unlikely(order)) {
1001 bool compound = PageCompound(page);
1002 int i;
1004 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1006 if (compound)
1007 ClearPageDoubleMap(page);
1008 for (i = 1; i < (1 << order); i++) {
1009 if (compound)
1010 bad += free_tail_pages_check(page, page + i);
1011 if (unlikely(free_pages_check(page + i))) {
1012 bad++;
1013 continue;
1015 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1018 if (PageMappingFlags(page))
1019 page->mapping = NULL;
1020 if (memcg_kmem_enabled() && PageKmemcg(page))
1021 memcg_kmem_uncharge(page, order);
1022 if (check_free)
1023 bad += free_pages_check(page);
1024 if (bad)
1025 return false;
1027 page_cpupid_reset_last(page);
1028 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1029 reset_page_owner(page, order);
1031 if (!PageHighMem(page)) {
1032 debug_check_no_locks_freed(page_address(page),
1033 PAGE_SIZE << order);
1034 debug_check_no_obj_freed(page_address(page),
1035 PAGE_SIZE << order);
1037 arch_free_page(page, order);
1038 kernel_poison_pages(page, 1 << order, 0);
1039 kernel_map_pages(page, 1 << order, 0);
1040 kasan_free_pages(page, order);
1042 return true;
1045 #ifdef CONFIG_DEBUG_VM
1046 static inline bool free_pcp_prepare(struct page *page)
1048 return free_pages_prepare(page, 0, true);
1051 static inline bool bulkfree_pcp_prepare(struct page *page)
1053 return false;
1055 #else
1056 static bool free_pcp_prepare(struct page *page)
1058 return free_pages_prepare(page, 0, false);
1061 static bool bulkfree_pcp_prepare(struct page *page)
1063 return free_pages_check(page);
1065 #endif /* CONFIG_DEBUG_VM */
1067 static inline void prefetch_buddy(struct page *page)
1069 unsigned long pfn = page_to_pfn(page);
1070 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1071 struct page *buddy = page + (buddy_pfn - pfn);
1073 prefetch(buddy);
1077 * Frees a number of pages from the PCP lists
1078 * Assumes all pages on list are in same zone, and of same order.
1079 * count is the number of pages to free.
1081 * If the zone was previously in an "all pages pinned" state then look to
1082 * see if this freeing clears that state.
1084 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1085 * pinned" detection logic.
1087 static void free_pcppages_bulk(struct zone *zone, int count,
1088 struct per_cpu_pages *pcp)
1090 int migratetype = 0;
1091 int batch_free = 0;
1092 int prefetch_nr = 0;
1093 bool isolated_pageblocks;
1094 struct page *page, *tmp;
1095 LIST_HEAD(head);
1097 while (count) {
1098 struct list_head *list;
1101 * Remove pages from lists in a round-robin fashion. A
1102 * batch_free count is maintained that is incremented when an
1103 * empty list is encountered. This is so more pages are freed
1104 * off fuller lists instead of spinning excessively around empty
1105 * lists
1107 do {
1108 batch_free++;
1109 if (++migratetype == MIGRATE_PCPTYPES)
1110 migratetype = 0;
1111 list = &pcp->lists[migratetype];
1112 } while (list_empty(list));
1114 /* This is the only non-empty list. Free them all. */
1115 if (batch_free == MIGRATE_PCPTYPES)
1116 batch_free = count;
1118 do {
1119 page = list_last_entry(list, struct page, lru);
1120 /* must delete to avoid corrupting pcp list */
1121 list_del(&page->lru);
1122 pcp->count--;
1124 if (bulkfree_pcp_prepare(page))
1125 continue;
1127 list_add_tail(&page->lru, &head);
1130 * We are going to put the page back to the global
1131 * pool, prefetch its buddy to speed up later access
1132 * under zone->lock. It is believed the overhead of
1133 * an additional test and calculating buddy_pfn here
1134 * can be offset by reduced memory latency later. To
1135 * avoid excessive prefetching due to large count, only
1136 * prefetch buddy for the first pcp->batch nr of pages.
1138 if (prefetch_nr++ < pcp->batch)
1139 prefetch_buddy(page);
1140 } while (--count && --batch_free && !list_empty(list));
1143 spin_lock(&zone->lock);
1144 isolated_pageblocks = has_isolate_pageblock(zone);
1147 * Use safe version since after __free_one_page(),
1148 * page->lru.next will not point to original list.
1150 list_for_each_entry_safe(page, tmp, &head, lru) {
1151 int mt = get_pcppage_migratetype(page);
1152 /* MIGRATE_ISOLATE page should not go to pcplists */
1153 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1154 /* Pageblock could have been isolated meanwhile */
1155 if (unlikely(isolated_pageblocks))
1156 mt = get_pageblock_migratetype(page);
1158 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1159 trace_mm_page_pcpu_drain(page, 0, mt);
1161 spin_unlock(&zone->lock);
1164 static void free_one_page(struct zone *zone,
1165 struct page *page, unsigned long pfn,
1166 unsigned int order,
1167 int migratetype)
1169 spin_lock(&zone->lock);
1170 if (unlikely(has_isolate_pageblock(zone) ||
1171 is_migrate_isolate(migratetype))) {
1172 migratetype = get_pfnblock_migratetype(page, pfn);
1174 __free_one_page(page, pfn, zone, order, migratetype);
1175 spin_unlock(&zone->lock);
1178 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1179 unsigned long zone, int nid)
1181 mm_zero_struct_page(page);
1182 set_page_links(page, zone, nid, pfn);
1183 init_page_count(page);
1184 page_mapcount_reset(page);
1185 page_cpupid_reset_last(page);
1186 page_kasan_tag_reset(page);
1188 INIT_LIST_HEAD(&page->lru);
1189 #ifdef WANT_PAGE_VIRTUAL
1190 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1191 if (!is_highmem_idx(zone))
1192 set_page_address(page, __va(pfn << PAGE_SHIFT));
1193 #endif
1196 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1197 static void __meminit init_reserved_page(unsigned long pfn)
1199 pg_data_t *pgdat;
1200 int nid, zid;
1202 if (!early_page_uninitialised(pfn))
1203 return;
1205 nid = early_pfn_to_nid(pfn);
1206 pgdat = NODE_DATA(nid);
1208 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1209 struct zone *zone = &pgdat->node_zones[zid];
1211 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1212 break;
1214 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1216 #else
1217 static inline void init_reserved_page(unsigned long pfn)
1220 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1223 * Initialised pages do not have PageReserved set. This function is
1224 * called for each range allocated by the bootmem allocator and
1225 * marks the pages PageReserved. The remaining valid pages are later
1226 * sent to the buddy page allocator.
1228 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1230 unsigned long start_pfn = PFN_DOWN(start);
1231 unsigned long end_pfn = PFN_UP(end);
1233 for (; start_pfn < end_pfn; start_pfn++) {
1234 if (pfn_valid(start_pfn)) {
1235 struct page *page = pfn_to_page(start_pfn);
1237 init_reserved_page(start_pfn);
1239 /* Avoid false-positive PageTail() */
1240 INIT_LIST_HEAD(&page->lru);
1243 * no need for atomic set_bit because the struct
1244 * page is not visible yet so nobody should
1245 * access it yet.
1247 __SetPageReserved(page);
1252 static void __free_pages_ok(struct page *page, unsigned int order)
1254 unsigned long flags;
1255 int migratetype;
1256 unsigned long pfn = page_to_pfn(page);
1258 if (!free_pages_prepare(page, order, true))
1259 return;
1261 migratetype = get_pfnblock_migratetype(page, pfn);
1262 local_irq_save(flags);
1263 __count_vm_events(PGFREE, 1 << order);
1264 free_one_page(page_zone(page), page, pfn, order, migratetype);
1265 local_irq_restore(flags);
1268 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1270 unsigned int nr_pages = 1 << order;
1271 struct page *p = page;
1272 unsigned int loop;
1274 prefetchw(p);
1275 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1276 prefetchw(p + 1);
1277 __ClearPageReserved(p);
1278 set_page_count(p, 0);
1280 __ClearPageReserved(p);
1281 set_page_count(p, 0);
1283 page_zone(page)->managed_pages += nr_pages;
1284 set_page_refcounted(page);
1285 __free_pages(page, order);
1288 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1289 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1291 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1293 int __meminit early_pfn_to_nid(unsigned long pfn)
1295 static DEFINE_SPINLOCK(early_pfn_lock);
1296 int nid;
1298 spin_lock(&early_pfn_lock);
1299 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1300 if (nid < 0)
1301 nid = first_online_node;
1302 spin_unlock(&early_pfn_lock);
1304 return nid;
1306 #endif
1308 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1309 static inline bool __meminit __maybe_unused
1310 meminit_pfn_in_nid(unsigned long pfn, int node,
1311 struct mminit_pfnnid_cache *state)
1313 int nid;
1315 nid = __early_pfn_to_nid(pfn, state);
1316 if (nid >= 0 && nid != node)
1317 return false;
1318 return true;
1321 /* Only safe to use early in boot when initialisation is single-threaded */
1322 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1324 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1327 #else
1329 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1331 return true;
1333 static inline bool __meminit __maybe_unused
1334 meminit_pfn_in_nid(unsigned long pfn, int node,
1335 struct mminit_pfnnid_cache *state)
1337 return true;
1339 #endif
1342 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1343 unsigned int order)
1345 if (early_page_uninitialised(pfn))
1346 return;
1347 return __free_pages_boot_core(page, order);
1351 * Check that the whole (or subset of) a pageblock given by the interval of
1352 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1353 * with the migration of free compaction scanner. The scanners then need to
1354 * use only pfn_valid_within() check for arches that allow holes within
1355 * pageblocks.
1357 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1359 * It's possible on some configurations to have a setup like node0 node1 node0
1360 * i.e. it's possible that all pages within a zones range of pages do not
1361 * belong to a single zone. We assume that a border between node0 and node1
1362 * can occur within a single pageblock, but not a node0 node1 node0
1363 * interleaving within a single pageblock. It is therefore sufficient to check
1364 * the first and last page of a pageblock and avoid checking each individual
1365 * page in a pageblock.
1367 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1368 unsigned long end_pfn, struct zone *zone)
1370 struct page *start_page;
1371 struct page *end_page;
1373 /* end_pfn is one past the range we are checking */
1374 end_pfn--;
1376 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1377 return NULL;
1379 start_page = pfn_to_online_page(start_pfn);
1380 if (!start_page)
1381 return NULL;
1383 if (page_zone(start_page) != zone)
1384 return NULL;
1386 end_page = pfn_to_page(end_pfn);
1388 /* This gives a shorter code than deriving page_zone(end_page) */
1389 if (page_zone_id(start_page) != page_zone_id(end_page))
1390 return NULL;
1392 return start_page;
1395 void set_zone_contiguous(struct zone *zone)
1397 unsigned long block_start_pfn = zone->zone_start_pfn;
1398 unsigned long block_end_pfn;
1400 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1401 for (; block_start_pfn < zone_end_pfn(zone);
1402 block_start_pfn = block_end_pfn,
1403 block_end_pfn += pageblock_nr_pages) {
1405 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1407 if (!__pageblock_pfn_to_page(block_start_pfn,
1408 block_end_pfn, zone))
1409 return;
1412 /* We confirm that there is no hole */
1413 zone->contiguous = true;
1416 void clear_zone_contiguous(struct zone *zone)
1418 zone->contiguous = false;
1421 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1422 static void __init deferred_free_range(unsigned long pfn,
1423 unsigned long nr_pages)
1425 struct page *page;
1426 unsigned long i;
1428 if (!nr_pages)
1429 return;
1431 page = pfn_to_page(pfn);
1433 /* Free a large naturally-aligned chunk if possible */
1434 if (nr_pages == pageblock_nr_pages &&
1435 (pfn & (pageblock_nr_pages - 1)) == 0) {
1436 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1437 __free_pages_boot_core(page, pageblock_order);
1438 return;
1441 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1442 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1443 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1444 __free_pages_boot_core(page, 0);
1448 /* Completion tracking for deferred_init_memmap() threads */
1449 static atomic_t pgdat_init_n_undone __initdata;
1450 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1452 static inline void __init pgdat_init_report_one_done(void)
1454 if (atomic_dec_and_test(&pgdat_init_n_undone))
1455 complete(&pgdat_init_all_done_comp);
1459 * Returns true if page needs to be initialized or freed to buddy allocator.
1461 * First we check if pfn is valid on architectures where it is possible to have
1462 * holes within pageblock_nr_pages. On systems where it is not possible, this
1463 * function is optimized out.
1465 * Then, we check if a current large page is valid by only checking the validity
1466 * of the head pfn.
1468 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1469 * within a node: a pfn is between start and end of a node, but does not belong
1470 * to this memory node.
1472 static inline bool __init
1473 deferred_pfn_valid(int nid, unsigned long pfn,
1474 struct mminit_pfnnid_cache *nid_init_state)
1476 if (!pfn_valid_within(pfn))
1477 return false;
1478 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1479 return false;
1480 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1481 return false;
1482 return true;
1486 * Free pages to buddy allocator. Try to free aligned pages in
1487 * pageblock_nr_pages sizes.
1489 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1490 unsigned long end_pfn)
1492 struct mminit_pfnnid_cache nid_init_state = { };
1493 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1494 unsigned long nr_free = 0;
1496 for (; pfn < end_pfn; pfn++) {
1497 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1498 deferred_free_range(pfn - nr_free, nr_free);
1499 nr_free = 0;
1500 } else if (!(pfn & nr_pgmask)) {
1501 deferred_free_range(pfn - nr_free, nr_free);
1502 nr_free = 1;
1503 touch_nmi_watchdog();
1504 } else {
1505 nr_free++;
1508 /* Free the last block of pages to allocator */
1509 deferred_free_range(pfn - nr_free, nr_free);
1513 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1514 * by performing it only once every pageblock_nr_pages.
1515 * Return number of pages initialized.
1517 static unsigned long __init deferred_init_pages(int nid, int zid,
1518 unsigned long pfn,
1519 unsigned long end_pfn)
1521 struct mminit_pfnnid_cache nid_init_state = { };
1522 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1523 unsigned long nr_pages = 0;
1524 struct page *page = NULL;
1526 for (; pfn < end_pfn; pfn++) {
1527 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1528 page = NULL;
1529 continue;
1530 } else if (!page || !(pfn & nr_pgmask)) {
1531 page = pfn_to_page(pfn);
1532 touch_nmi_watchdog();
1533 } else {
1534 page++;
1536 __init_single_page(page, pfn, zid, nid);
1537 nr_pages++;
1539 return (nr_pages);
1542 /* Initialise remaining memory on a node */
1543 static int __init deferred_init_memmap(void *data)
1545 pg_data_t *pgdat = data;
1546 int nid = pgdat->node_id;
1547 unsigned long start = jiffies;
1548 unsigned long nr_pages = 0;
1549 unsigned long spfn, epfn, first_init_pfn, flags;
1550 phys_addr_t spa, epa;
1551 int zid;
1552 struct zone *zone;
1553 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1554 u64 i;
1556 /* Bind memory initialisation thread to a local node if possible */
1557 if (!cpumask_empty(cpumask))
1558 set_cpus_allowed_ptr(current, cpumask);
1560 pgdat_resize_lock(pgdat, &flags);
1561 first_init_pfn = pgdat->first_deferred_pfn;
1562 if (first_init_pfn == ULONG_MAX) {
1563 pgdat_resize_unlock(pgdat, &flags);
1564 pgdat_init_report_one_done();
1565 return 0;
1568 /* Sanity check boundaries */
1569 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1570 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1571 pgdat->first_deferred_pfn = ULONG_MAX;
1573 /* Only the highest zone is deferred so find it */
1574 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1575 zone = pgdat->node_zones + zid;
1576 if (first_init_pfn < zone_end_pfn(zone))
1577 break;
1579 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1582 * Initialize and free pages. We do it in two loops: first we initialize
1583 * struct page, than free to buddy allocator, because while we are
1584 * freeing pages we can access pages that are ahead (computing buddy
1585 * page in __free_one_page()).
1587 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1588 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1589 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1590 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1592 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1593 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1594 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1595 deferred_free_pages(nid, zid, spfn, epfn);
1597 pgdat_resize_unlock(pgdat, &flags);
1599 /* Sanity check that the next zone really is unpopulated */
1600 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1602 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1603 jiffies_to_msecs(jiffies - start));
1605 pgdat_init_report_one_done();
1606 return 0;
1610 * During boot we initialize deferred pages on-demand, as needed, but once
1611 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1612 * and we can permanently disable that path.
1614 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1617 * If this zone has deferred pages, try to grow it by initializing enough
1618 * deferred pages to satisfy the allocation specified by order, rounded up to
1619 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1620 * of SECTION_SIZE bytes by initializing struct pages in increments of
1621 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1623 * Return true when zone was grown, otherwise return false. We return true even
1624 * when we grow less than requested, to let the caller decide if there are
1625 * enough pages to satisfy the allocation.
1627 * Note: We use noinline because this function is needed only during boot, and
1628 * it is called from a __ref function _deferred_grow_zone. This way we are
1629 * making sure that it is not inlined into permanent text section.
1631 static noinline bool __init
1632 deferred_grow_zone(struct zone *zone, unsigned int order)
1634 int zid = zone_idx(zone);
1635 int nid = zone_to_nid(zone);
1636 pg_data_t *pgdat = NODE_DATA(nid);
1637 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1638 unsigned long nr_pages = 0;
1639 unsigned long first_init_pfn, spfn, epfn, t, flags;
1640 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1641 phys_addr_t spa, epa;
1642 u64 i;
1644 /* Only the last zone may have deferred pages */
1645 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1646 return false;
1648 pgdat_resize_lock(pgdat, &flags);
1651 * If deferred pages have been initialized while we were waiting for
1652 * the lock, return true, as the zone was grown. The caller will retry
1653 * this zone. We won't return to this function since the caller also
1654 * has this static branch.
1656 if (!static_branch_unlikely(&deferred_pages)) {
1657 pgdat_resize_unlock(pgdat, &flags);
1658 return true;
1662 * If someone grew this zone while we were waiting for spinlock, return
1663 * true, as there might be enough pages already.
1665 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1666 pgdat_resize_unlock(pgdat, &flags);
1667 return true;
1670 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1672 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1673 pgdat_resize_unlock(pgdat, &flags);
1674 return false;
1677 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1678 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1679 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1681 while (spfn < epfn && nr_pages < nr_pages_needed) {
1682 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1683 first_deferred_pfn = min(t, epfn);
1684 nr_pages += deferred_init_pages(nid, zid, spfn,
1685 first_deferred_pfn);
1686 spfn = first_deferred_pfn;
1689 if (nr_pages >= nr_pages_needed)
1690 break;
1693 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1694 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1695 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1696 deferred_free_pages(nid, zid, spfn, epfn);
1698 if (first_deferred_pfn == epfn)
1699 break;
1701 pgdat->first_deferred_pfn = first_deferred_pfn;
1702 pgdat_resize_unlock(pgdat, &flags);
1704 return nr_pages > 0;
1708 * deferred_grow_zone() is __init, but it is called from
1709 * get_page_from_freelist() during early boot until deferred_pages permanently
1710 * disables this call. This is why we have refdata wrapper to avoid warning,
1711 * and to ensure that the function body gets unloaded.
1713 static bool __ref
1714 _deferred_grow_zone(struct zone *zone, unsigned int order)
1716 return deferred_grow_zone(zone, order);
1719 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1721 void __init page_alloc_init_late(void)
1723 struct zone *zone;
1725 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1726 int nid;
1728 /* There will be num_node_state(N_MEMORY) threads */
1729 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1730 for_each_node_state(nid, N_MEMORY) {
1731 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1734 /* Block until all are initialised */
1735 wait_for_completion(&pgdat_init_all_done_comp);
1738 * We initialized the rest of the deferred pages. Permanently disable
1739 * on-demand struct page initialization.
1741 static_branch_disable(&deferred_pages);
1743 /* Reinit limits that are based on free pages after the kernel is up */
1744 files_maxfiles_init();
1745 #endif
1746 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1747 /* Discard memblock private memory */
1748 memblock_discard();
1749 #endif
1751 for_each_populated_zone(zone)
1752 set_zone_contiguous(zone);
1755 #ifdef CONFIG_CMA
1756 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1757 void __init init_cma_reserved_pageblock(struct page *page)
1759 unsigned i = pageblock_nr_pages;
1760 struct page *p = page;
1762 do {
1763 __ClearPageReserved(p);
1764 set_page_count(p, 0);
1765 } while (++p, --i);
1767 set_pageblock_migratetype(page, MIGRATE_CMA);
1769 if (pageblock_order >= MAX_ORDER) {
1770 i = pageblock_nr_pages;
1771 p = page;
1772 do {
1773 set_page_refcounted(p);
1774 __free_pages(p, MAX_ORDER - 1);
1775 p += MAX_ORDER_NR_PAGES;
1776 } while (i -= MAX_ORDER_NR_PAGES);
1777 } else {
1778 set_page_refcounted(page);
1779 __free_pages(page, pageblock_order);
1782 adjust_managed_page_count(page, pageblock_nr_pages);
1784 #endif
1787 * The order of subdivision here is critical for the IO subsystem.
1788 * Please do not alter this order without good reasons and regression
1789 * testing. Specifically, as large blocks of memory are subdivided,
1790 * the order in which smaller blocks are delivered depends on the order
1791 * they're subdivided in this function. This is the primary factor
1792 * influencing the order in which pages are delivered to the IO
1793 * subsystem according to empirical testing, and this is also justified
1794 * by considering the behavior of a buddy system containing a single
1795 * large block of memory acted on by a series of small allocations.
1796 * This behavior is a critical factor in sglist merging's success.
1798 * -- nyc
1800 static inline void expand(struct zone *zone, struct page *page,
1801 int low, int high, struct free_area *area,
1802 int migratetype)
1804 unsigned long size = 1 << high;
1806 while (high > low) {
1807 area--;
1808 high--;
1809 size >>= 1;
1810 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1813 * Mark as guard pages (or page), that will allow to
1814 * merge back to allocator when buddy will be freed.
1815 * Corresponding page table entries will not be touched,
1816 * pages will stay not present in virtual address space
1818 if (set_page_guard(zone, &page[size], high, migratetype))
1819 continue;
1821 list_add(&page[size].lru, &area->free_list[migratetype]);
1822 area->nr_free++;
1823 set_page_order(&page[size], high);
1827 static void check_new_page_bad(struct page *page)
1829 const char *bad_reason = NULL;
1830 unsigned long bad_flags = 0;
1832 if (unlikely(atomic_read(&page->_mapcount) != -1))
1833 bad_reason = "nonzero mapcount";
1834 if (unlikely(page->mapping != NULL))
1835 bad_reason = "non-NULL mapping";
1836 if (unlikely(page_ref_count(page) != 0))
1837 bad_reason = "nonzero _count";
1838 if (unlikely(page->flags & __PG_HWPOISON)) {
1839 bad_reason = "HWPoisoned (hardware-corrupted)";
1840 bad_flags = __PG_HWPOISON;
1841 /* Don't complain about hwpoisoned pages */
1842 page_mapcount_reset(page); /* remove PageBuddy */
1843 return;
1845 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1846 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1847 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1849 #ifdef CONFIG_MEMCG
1850 if (unlikely(page->mem_cgroup))
1851 bad_reason = "page still charged to cgroup";
1852 #endif
1853 bad_page(page, bad_reason, bad_flags);
1857 * This page is about to be returned from the page allocator
1859 static inline int check_new_page(struct page *page)
1861 if (likely(page_expected_state(page,
1862 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1863 return 0;
1865 check_new_page_bad(page);
1866 return 1;
1869 static inline bool free_pages_prezeroed(void)
1871 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1872 page_poisoning_enabled();
1875 #ifdef CONFIG_DEBUG_VM
1876 static bool check_pcp_refill(struct page *page)
1878 return false;
1881 static bool check_new_pcp(struct page *page)
1883 return check_new_page(page);
1885 #else
1886 static bool check_pcp_refill(struct page *page)
1888 return check_new_page(page);
1890 static bool check_new_pcp(struct page *page)
1892 return false;
1894 #endif /* CONFIG_DEBUG_VM */
1896 static bool check_new_pages(struct page *page, unsigned int order)
1898 int i;
1899 for (i = 0; i < (1 << order); i++) {
1900 struct page *p = page + i;
1902 if (unlikely(check_new_page(p)))
1903 return true;
1906 return false;
1909 inline void post_alloc_hook(struct page *page, unsigned int order,
1910 gfp_t gfp_flags)
1912 set_page_private(page, 0);
1913 set_page_refcounted(page);
1915 arch_alloc_page(page, order);
1916 kernel_map_pages(page, 1 << order, 1);
1917 kernel_poison_pages(page, 1 << order, 1);
1918 kasan_alloc_pages(page, order);
1919 set_page_owner(page, order, gfp_flags);
1922 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1923 unsigned int alloc_flags)
1925 int i;
1927 post_alloc_hook(page, order, gfp_flags);
1929 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1930 for (i = 0; i < (1 << order); i++)
1931 clear_highpage(page + i);
1933 if (order && (gfp_flags & __GFP_COMP))
1934 prep_compound_page(page, order);
1937 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1938 * allocate the page. The expectation is that the caller is taking
1939 * steps that will free more memory. The caller should avoid the page
1940 * being used for !PFMEMALLOC purposes.
1942 if (alloc_flags & ALLOC_NO_WATERMARKS)
1943 set_page_pfmemalloc(page);
1944 else
1945 clear_page_pfmemalloc(page);
1949 * Go through the free lists for the given migratetype and remove
1950 * the smallest available page from the freelists
1952 static __always_inline
1953 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1954 int migratetype)
1956 unsigned int current_order;
1957 struct free_area *area;
1958 struct page *page;
1960 /* Find a page of the appropriate size in the preferred list */
1961 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1962 area = &(zone->free_area[current_order]);
1963 page = list_first_entry_or_null(&area->free_list[migratetype],
1964 struct page, lru);
1965 if (!page)
1966 continue;
1967 list_del(&page->lru);
1968 rmv_page_order(page);
1969 area->nr_free--;
1970 expand(zone, page, order, current_order, area, migratetype);
1971 set_pcppage_migratetype(page, migratetype);
1972 return page;
1975 return NULL;
1980 * This array describes the order lists are fallen back to when
1981 * the free lists for the desirable migrate type are depleted
1983 static int fallbacks[MIGRATE_TYPES][4] = {
1984 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1985 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1986 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1987 #ifdef CONFIG_CMA
1988 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1989 #endif
1990 #ifdef CONFIG_MEMORY_ISOLATION
1991 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1992 #endif
1995 #ifdef CONFIG_CMA
1996 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1997 unsigned int order)
1999 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2001 #else
2002 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2003 unsigned int order) { return NULL; }
2004 #endif
2007 * Move the free pages in a range to the free lists of the requested type.
2008 * Note that start_page and end_pages are not aligned on a pageblock
2009 * boundary. If alignment is required, use move_freepages_block()
2011 static int move_freepages(struct zone *zone,
2012 struct page *start_page, struct page *end_page,
2013 int migratetype, int *num_movable)
2015 struct page *page;
2016 unsigned int order;
2017 int pages_moved = 0;
2019 #ifndef CONFIG_HOLES_IN_ZONE
2021 * page_zone is not safe to call in this context when
2022 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2023 * anyway as we check zone boundaries in move_freepages_block().
2024 * Remove at a later date when no bug reports exist related to
2025 * grouping pages by mobility
2027 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2028 pfn_valid(page_to_pfn(end_page)) &&
2029 page_zone(start_page) != page_zone(end_page));
2030 #endif
2031 for (page = start_page; page <= end_page;) {
2032 if (!pfn_valid_within(page_to_pfn(page))) {
2033 page++;
2034 continue;
2037 /* Make sure we are not inadvertently changing nodes */
2038 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2040 if (!PageBuddy(page)) {
2042 * We assume that pages that could be isolated for
2043 * migration are movable. But we don't actually try
2044 * isolating, as that would be expensive.
2046 if (num_movable &&
2047 (PageLRU(page) || __PageMovable(page)))
2048 (*num_movable)++;
2050 page++;
2051 continue;
2054 order = page_order(page);
2055 list_move(&page->lru,
2056 &zone->free_area[order].free_list[migratetype]);
2057 page += 1 << order;
2058 pages_moved += 1 << order;
2061 return pages_moved;
2064 int move_freepages_block(struct zone *zone, struct page *page,
2065 int migratetype, int *num_movable)
2067 unsigned long start_pfn, end_pfn;
2068 struct page *start_page, *end_page;
2070 if (num_movable)
2071 *num_movable = 0;
2073 start_pfn = page_to_pfn(page);
2074 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2075 start_page = pfn_to_page(start_pfn);
2076 end_page = start_page + pageblock_nr_pages - 1;
2077 end_pfn = start_pfn + pageblock_nr_pages - 1;
2079 /* Do not cross zone boundaries */
2080 if (!zone_spans_pfn(zone, start_pfn))
2081 start_page = page;
2082 if (!zone_spans_pfn(zone, end_pfn))
2083 return 0;
2085 return move_freepages(zone, start_page, end_page, migratetype,
2086 num_movable);
2089 static void change_pageblock_range(struct page *pageblock_page,
2090 int start_order, int migratetype)
2092 int nr_pageblocks = 1 << (start_order - pageblock_order);
2094 while (nr_pageblocks--) {
2095 set_pageblock_migratetype(pageblock_page, migratetype);
2096 pageblock_page += pageblock_nr_pages;
2101 * When we are falling back to another migratetype during allocation, try to
2102 * steal extra free pages from the same pageblocks to satisfy further
2103 * allocations, instead of polluting multiple pageblocks.
2105 * If we are stealing a relatively large buddy page, it is likely there will
2106 * be more free pages in the pageblock, so try to steal them all. For
2107 * reclaimable and unmovable allocations, we steal regardless of page size,
2108 * as fragmentation caused by those allocations polluting movable pageblocks
2109 * is worse than movable allocations stealing from unmovable and reclaimable
2110 * pageblocks.
2112 static bool can_steal_fallback(unsigned int order, int start_mt)
2115 * Leaving this order check is intended, although there is
2116 * relaxed order check in next check. The reason is that
2117 * we can actually steal whole pageblock if this condition met,
2118 * but, below check doesn't guarantee it and that is just heuristic
2119 * so could be changed anytime.
2121 if (order >= pageblock_order)
2122 return true;
2124 if (order >= pageblock_order / 2 ||
2125 start_mt == MIGRATE_RECLAIMABLE ||
2126 start_mt == MIGRATE_UNMOVABLE ||
2127 page_group_by_mobility_disabled)
2128 return true;
2130 return false;
2134 * This function implements actual steal behaviour. If order is large enough,
2135 * we can steal whole pageblock. If not, we first move freepages in this
2136 * pageblock to our migratetype and determine how many already-allocated pages
2137 * are there in the pageblock with a compatible migratetype. If at least half
2138 * of pages are free or compatible, we can change migratetype of the pageblock
2139 * itself, so pages freed in the future will be put on the correct free list.
2141 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2142 int start_type, bool whole_block)
2144 unsigned int current_order = page_order(page);
2145 struct free_area *area;
2146 int free_pages, movable_pages, alike_pages;
2147 int old_block_type;
2149 old_block_type = get_pageblock_migratetype(page);
2152 * This can happen due to races and we want to prevent broken
2153 * highatomic accounting.
2155 if (is_migrate_highatomic(old_block_type))
2156 goto single_page;
2158 /* Take ownership for orders >= pageblock_order */
2159 if (current_order >= pageblock_order) {
2160 change_pageblock_range(page, current_order, start_type);
2161 goto single_page;
2164 /* We are not allowed to try stealing from the whole block */
2165 if (!whole_block)
2166 goto single_page;
2168 free_pages = move_freepages_block(zone, page, start_type,
2169 &movable_pages);
2171 * Determine how many pages are compatible with our allocation.
2172 * For movable allocation, it's the number of movable pages which
2173 * we just obtained. For other types it's a bit more tricky.
2175 if (start_type == MIGRATE_MOVABLE) {
2176 alike_pages = movable_pages;
2177 } else {
2179 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2180 * to MOVABLE pageblock, consider all non-movable pages as
2181 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2182 * vice versa, be conservative since we can't distinguish the
2183 * exact migratetype of non-movable pages.
2185 if (old_block_type == MIGRATE_MOVABLE)
2186 alike_pages = pageblock_nr_pages
2187 - (free_pages + movable_pages);
2188 else
2189 alike_pages = 0;
2192 /* moving whole block can fail due to zone boundary conditions */
2193 if (!free_pages)
2194 goto single_page;
2197 * If a sufficient number of pages in the block are either free or of
2198 * comparable migratability as our allocation, claim the whole block.
2200 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2201 page_group_by_mobility_disabled)
2202 set_pageblock_migratetype(page, start_type);
2204 return;
2206 single_page:
2207 area = &zone->free_area[current_order];
2208 list_move(&page->lru, &area->free_list[start_type]);
2212 * Check whether there is a suitable fallback freepage with requested order.
2213 * If only_stealable is true, this function returns fallback_mt only if
2214 * we can steal other freepages all together. This would help to reduce
2215 * fragmentation due to mixed migratetype pages in one pageblock.
2217 int find_suitable_fallback(struct free_area *area, unsigned int order,
2218 int migratetype, bool only_stealable, bool *can_steal)
2220 int i;
2221 int fallback_mt;
2223 if (area->nr_free == 0)
2224 return -1;
2226 *can_steal = false;
2227 for (i = 0;; i++) {
2228 fallback_mt = fallbacks[migratetype][i];
2229 if (fallback_mt == MIGRATE_TYPES)
2230 break;
2232 if (list_empty(&area->free_list[fallback_mt]))
2233 continue;
2235 if (can_steal_fallback(order, migratetype))
2236 *can_steal = true;
2238 if (!only_stealable)
2239 return fallback_mt;
2241 if (*can_steal)
2242 return fallback_mt;
2245 return -1;
2249 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2250 * there are no empty page blocks that contain a page with a suitable order
2252 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2253 unsigned int alloc_order)
2255 int mt;
2256 unsigned long max_managed, flags;
2259 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2260 * Check is race-prone but harmless.
2262 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2263 if (zone->nr_reserved_highatomic >= max_managed)
2264 return;
2266 spin_lock_irqsave(&zone->lock, flags);
2268 /* Recheck the nr_reserved_highatomic limit under the lock */
2269 if (zone->nr_reserved_highatomic >= max_managed)
2270 goto out_unlock;
2272 /* Yoink! */
2273 mt = get_pageblock_migratetype(page);
2274 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2275 && !is_migrate_cma(mt)) {
2276 zone->nr_reserved_highatomic += pageblock_nr_pages;
2277 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2278 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2281 out_unlock:
2282 spin_unlock_irqrestore(&zone->lock, flags);
2286 * Used when an allocation is about to fail under memory pressure. This
2287 * potentially hurts the reliability of high-order allocations when under
2288 * intense memory pressure but failed atomic allocations should be easier
2289 * to recover from than an OOM.
2291 * If @force is true, try to unreserve a pageblock even though highatomic
2292 * pageblock is exhausted.
2294 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2295 bool force)
2297 struct zonelist *zonelist = ac->zonelist;
2298 unsigned long flags;
2299 struct zoneref *z;
2300 struct zone *zone;
2301 struct page *page;
2302 int order;
2303 bool ret;
2305 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2306 ac->nodemask) {
2308 * Preserve at least one pageblock unless memory pressure
2309 * is really high.
2311 if (!force && zone->nr_reserved_highatomic <=
2312 pageblock_nr_pages)
2313 continue;
2315 spin_lock_irqsave(&zone->lock, flags);
2316 for (order = 0; order < MAX_ORDER; order++) {
2317 struct free_area *area = &(zone->free_area[order]);
2319 page = list_first_entry_or_null(
2320 &area->free_list[MIGRATE_HIGHATOMIC],
2321 struct page, lru);
2322 if (!page)
2323 continue;
2326 * In page freeing path, migratetype change is racy so
2327 * we can counter several free pages in a pageblock
2328 * in this loop althoug we changed the pageblock type
2329 * from highatomic to ac->migratetype. So we should
2330 * adjust the count once.
2332 if (is_migrate_highatomic_page(page)) {
2334 * It should never happen but changes to
2335 * locking could inadvertently allow a per-cpu
2336 * drain to add pages to MIGRATE_HIGHATOMIC
2337 * while unreserving so be safe and watch for
2338 * underflows.
2340 zone->nr_reserved_highatomic -= min(
2341 pageblock_nr_pages,
2342 zone->nr_reserved_highatomic);
2346 * Convert to ac->migratetype and avoid the normal
2347 * pageblock stealing heuristics. Minimally, the caller
2348 * is doing the work and needs the pages. More
2349 * importantly, if the block was always converted to
2350 * MIGRATE_UNMOVABLE or another type then the number
2351 * of pageblocks that cannot be completely freed
2352 * may increase.
2354 set_pageblock_migratetype(page, ac->migratetype);
2355 ret = move_freepages_block(zone, page, ac->migratetype,
2356 NULL);
2357 if (ret) {
2358 spin_unlock_irqrestore(&zone->lock, flags);
2359 return ret;
2362 spin_unlock_irqrestore(&zone->lock, flags);
2365 return false;
2369 * Try finding a free buddy page on the fallback list and put it on the free
2370 * list of requested migratetype, possibly along with other pages from the same
2371 * block, depending on fragmentation avoidance heuristics. Returns true if
2372 * fallback was found so that __rmqueue_smallest() can grab it.
2374 * The use of signed ints for order and current_order is a deliberate
2375 * deviation from the rest of this file, to make the for loop
2376 * condition simpler.
2378 static __always_inline bool
2379 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2381 struct free_area *area;
2382 int current_order;
2383 struct page *page;
2384 int fallback_mt;
2385 bool can_steal;
2388 * Find the largest available free page in the other list. This roughly
2389 * approximates finding the pageblock with the most free pages, which
2390 * would be too costly to do exactly.
2392 for (current_order = MAX_ORDER - 1; current_order >= order;
2393 --current_order) {
2394 area = &(zone->free_area[current_order]);
2395 fallback_mt = find_suitable_fallback(area, current_order,
2396 start_migratetype, false, &can_steal);
2397 if (fallback_mt == -1)
2398 continue;
2401 * We cannot steal all free pages from the pageblock and the
2402 * requested migratetype is movable. In that case it's better to
2403 * steal and split the smallest available page instead of the
2404 * largest available page, because even if the next movable
2405 * allocation falls back into a different pageblock than this
2406 * one, it won't cause permanent fragmentation.
2408 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2409 && current_order > order)
2410 goto find_smallest;
2412 goto do_steal;
2415 return false;
2417 find_smallest:
2418 for (current_order = order; current_order < MAX_ORDER;
2419 current_order++) {
2420 area = &(zone->free_area[current_order]);
2421 fallback_mt = find_suitable_fallback(area, current_order,
2422 start_migratetype, false, &can_steal);
2423 if (fallback_mt != -1)
2424 break;
2428 * This should not happen - we already found a suitable fallback
2429 * when looking for the largest page.
2431 VM_BUG_ON(current_order == MAX_ORDER);
2433 do_steal:
2434 page = list_first_entry(&area->free_list[fallback_mt],
2435 struct page, lru);
2437 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2439 trace_mm_page_alloc_extfrag(page, order, current_order,
2440 start_migratetype, fallback_mt);
2442 return true;
2447 * Do the hard work of removing an element from the buddy allocator.
2448 * Call me with the zone->lock already held.
2450 static __always_inline struct page *
2451 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2453 struct page *page;
2455 retry:
2456 page = __rmqueue_smallest(zone, order, migratetype);
2457 if (unlikely(!page)) {
2458 if (migratetype == MIGRATE_MOVABLE)
2459 page = __rmqueue_cma_fallback(zone, order);
2461 if (!page && __rmqueue_fallback(zone, order, migratetype))
2462 goto retry;
2465 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2466 return page;
2470 * Obtain a specified number of elements from the buddy allocator, all under
2471 * a single hold of the lock, for efficiency. Add them to the supplied list.
2472 * Returns the number of new pages which were placed at *list.
2474 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2475 unsigned long count, struct list_head *list,
2476 int migratetype)
2478 int i, alloced = 0;
2480 spin_lock(&zone->lock);
2481 for (i = 0; i < count; ++i) {
2482 struct page *page = __rmqueue(zone, order, migratetype);
2483 if (unlikely(page == NULL))
2484 break;
2486 if (unlikely(check_pcp_refill(page)))
2487 continue;
2490 * Split buddy pages returned by expand() are received here in
2491 * physical page order. The page is added to the tail of
2492 * caller's list. From the callers perspective, the linked list
2493 * is ordered by page number under some conditions. This is
2494 * useful for IO devices that can forward direction from the
2495 * head, thus also in the physical page order. This is useful
2496 * for IO devices that can merge IO requests if the physical
2497 * pages are ordered properly.
2499 list_add_tail(&page->lru, list);
2500 alloced++;
2501 if (is_migrate_cma(get_pcppage_migratetype(page)))
2502 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2503 -(1 << order));
2507 * i pages were removed from the buddy list even if some leak due
2508 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2509 * on i. Do not confuse with 'alloced' which is the number of
2510 * pages added to the pcp list.
2512 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2513 spin_unlock(&zone->lock);
2514 return alloced;
2517 #ifdef CONFIG_NUMA
2519 * Called from the vmstat counter updater to drain pagesets of this
2520 * currently executing processor on remote nodes after they have
2521 * expired.
2523 * Note that this function must be called with the thread pinned to
2524 * a single processor.
2526 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2528 unsigned long flags;
2529 int to_drain, batch;
2531 local_irq_save(flags);
2532 batch = READ_ONCE(pcp->batch);
2533 to_drain = min(pcp->count, batch);
2534 if (to_drain > 0)
2535 free_pcppages_bulk(zone, to_drain, pcp);
2536 local_irq_restore(flags);
2538 #endif
2541 * Drain pcplists of the indicated processor and zone.
2543 * The processor must either be the current processor and the
2544 * thread pinned to the current processor or a processor that
2545 * is not online.
2547 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2549 unsigned long flags;
2550 struct per_cpu_pageset *pset;
2551 struct per_cpu_pages *pcp;
2553 local_irq_save(flags);
2554 pset = per_cpu_ptr(zone->pageset, cpu);
2556 pcp = &pset->pcp;
2557 if (pcp->count)
2558 free_pcppages_bulk(zone, pcp->count, pcp);
2559 local_irq_restore(flags);
2563 * Drain pcplists of all zones on the indicated processor.
2565 * The processor must either be the current processor and the
2566 * thread pinned to the current processor or a processor that
2567 * is not online.
2569 static void drain_pages(unsigned int cpu)
2571 struct zone *zone;
2573 for_each_populated_zone(zone) {
2574 drain_pages_zone(cpu, zone);
2579 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2581 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2582 * the single zone's pages.
2584 void drain_local_pages(struct zone *zone)
2586 int cpu = smp_processor_id();
2588 if (zone)
2589 drain_pages_zone(cpu, zone);
2590 else
2591 drain_pages(cpu);
2594 static void drain_local_pages_wq(struct work_struct *work)
2597 * drain_all_pages doesn't use proper cpu hotplug protection so
2598 * we can race with cpu offline when the WQ can move this from
2599 * a cpu pinned worker to an unbound one. We can operate on a different
2600 * cpu which is allright but we also have to make sure to not move to
2601 * a different one.
2603 preempt_disable();
2604 drain_local_pages(NULL);
2605 preempt_enable();
2609 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2611 * When zone parameter is non-NULL, spill just the single zone's pages.
2613 * Note that this can be extremely slow as the draining happens in a workqueue.
2615 void drain_all_pages(struct zone *zone)
2617 int cpu;
2620 * Allocate in the BSS so we wont require allocation in
2621 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2623 static cpumask_t cpus_with_pcps;
2626 * Make sure nobody triggers this path before mm_percpu_wq is fully
2627 * initialized.
2629 if (WARN_ON_ONCE(!mm_percpu_wq))
2630 return;
2633 * Do not drain if one is already in progress unless it's specific to
2634 * a zone. Such callers are primarily CMA and memory hotplug and need
2635 * the drain to be complete when the call returns.
2637 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2638 if (!zone)
2639 return;
2640 mutex_lock(&pcpu_drain_mutex);
2644 * We don't care about racing with CPU hotplug event
2645 * as offline notification will cause the notified
2646 * cpu to drain that CPU pcps and on_each_cpu_mask
2647 * disables preemption as part of its processing
2649 for_each_online_cpu(cpu) {
2650 struct per_cpu_pageset *pcp;
2651 struct zone *z;
2652 bool has_pcps = false;
2654 if (zone) {
2655 pcp = per_cpu_ptr(zone->pageset, cpu);
2656 if (pcp->pcp.count)
2657 has_pcps = true;
2658 } else {
2659 for_each_populated_zone(z) {
2660 pcp = per_cpu_ptr(z->pageset, cpu);
2661 if (pcp->pcp.count) {
2662 has_pcps = true;
2663 break;
2668 if (has_pcps)
2669 cpumask_set_cpu(cpu, &cpus_with_pcps);
2670 else
2671 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2674 for_each_cpu(cpu, &cpus_with_pcps) {
2675 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2676 INIT_WORK(work, drain_local_pages_wq);
2677 queue_work_on(cpu, mm_percpu_wq, work);
2679 for_each_cpu(cpu, &cpus_with_pcps)
2680 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2682 mutex_unlock(&pcpu_drain_mutex);
2685 #ifdef CONFIG_HIBERNATION
2688 * Touch the watchdog for every WD_PAGE_COUNT pages.
2690 #define WD_PAGE_COUNT (128*1024)
2692 void mark_free_pages(struct zone *zone)
2694 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2695 unsigned long flags;
2696 unsigned int order, t;
2697 struct page *page;
2699 if (zone_is_empty(zone))
2700 return;
2702 spin_lock_irqsave(&zone->lock, flags);
2704 max_zone_pfn = zone_end_pfn(zone);
2705 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2706 if (pfn_valid(pfn)) {
2707 page = pfn_to_page(pfn);
2709 if (!--page_count) {
2710 touch_nmi_watchdog();
2711 page_count = WD_PAGE_COUNT;
2714 if (page_zone(page) != zone)
2715 continue;
2717 if (!swsusp_page_is_forbidden(page))
2718 swsusp_unset_page_free(page);
2721 for_each_migratetype_order(order, t) {
2722 list_for_each_entry(page,
2723 &zone->free_area[order].free_list[t], lru) {
2724 unsigned long i;
2726 pfn = page_to_pfn(page);
2727 for (i = 0; i < (1UL << order); i++) {
2728 if (!--page_count) {
2729 touch_nmi_watchdog();
2730 page_count = WD_PAGE_COUNT;
2732 swsusp_set_page_free(pfn_to_page(pfn + i));
2736 spin_unlock_irqrestore(&zone->lock, flags);
2738 #endif /* CONFIG_PM */
2740 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2742 int migratetype;
2744 if (!free_pcp_prepare(page))
2745 return false;
2747 migratetype = get_pfnblock_migratetype(page, pfn);
2748 set_pcppage_migratetype(page, migratetype);
2749 return true;
2752 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2754 struct zone *zone = page_zone(page);
2755 struct per_cpu_pages *pcp;
2756 int migratetype;
2758 migratetype = get_pcppage_migratetype(page);
2759 __count_vm_event(PGFREE);
2762 * We only track unmovable, reclaimable and movable on pcp lists.
2763 * Free ISOLATE pages back to the allocator because they are being
2764 * offlined but treat HIGHATOMIC as movable pages so we can get those
2765 * areas back if necessary. Otherwise, we may have to free
2766 * excessively into the page allocator
2768 if (migratetype >= MIGRATE_PCPTYPES) {
2769 if (unlikely(is_migrate_isolate(migratetype))) {
2770 free_one_page(zone, page, pfn, 0, migratetype);
2771 return;
2773 migratetype = MIGRATE_MOVABLE;
2776 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2777 list_add(&page->lru, &pcp->lists[migratetype]);
2778 pcp->count++;
2779 if (pcp->count >= pcp->high) {
2780 unsigned long batch = READ_ONCE(pcp->batch);
2781 free_pcppages_bulk(zone, batch, pcp);
2786 * Free a 0-order page
2788 void free_unref_page(struct page *page)
2790 unsigned long flags;
2791 unsigned long pfn = page_to_pfn(page);
2793 if (!free_unref_page_prepare(page, pfn))
2794 return;
2796 local_irq_save(flags);
2797 free_unref_page_commit(page, pfn);
2798 local_irq_restore(flags);
2802 * Free a list of 0-order pages
2804 void free_unref_page_list(struct list_head *list)
2806 struct page *page, *next;
2807 unsigned long flags, pfn;
2808 int batch_count = 0;
2810 /* Prepare pages for freeing */
2811 list_for_each_entry_safe(page, next, list, lru) {
2812 pfn = page_to_pfn(page);
2813 if (!free_unref_page_prepare(page, pfn))
2814 list_del(&page->lru);
2815 set_page_private(page, pfn);
2818 local_irq_save(flags);
2819 list_for_each_entry_safe(page, next, list, lru) {
2820 unsigned long pfn = page_private(page);
2822 set_page_private(page, 0);
2823 trace_mm_page_free_batched(page);
2824 free_unref_page_commit(page, pfn);
2827 * Guard against excessive IRQ disabled times when we get
2828 * a large list of pages to free.
2830 if (++batch_count == SWAP_CLUSTER_MAX) {
2831 local_irq_restore(flags);
2832 batch_count = 0;
2833 local_irq_save(flags);
2836 local_irq_restore(flags);
2840 * split_page takes a non-compound higher-order page, and splits it into
2841 * n (1<<order) sub-pages: page[0..n]
2842 * Each sub-page must be freed individually.
2844 * Note: this is probably too low level an operation for use in drivers.
2845 * Please consult with lkml before using this in your driver.
2847 void split_page(struct page *page, unsigned int order)
2849 int i;
2851 VM_BUG_ON_PAGE(PageCompound(page), page);
2852 VM_BUG_ON_PAGE(!page_count(page), page);
2854 for (i = 1; i < (1 << order); i++)
2855 set_page_refcounted(page + i);
2856 split_page_owner(page, order);
2858 EXPORT_SYMBOL_GPL(split_page);
2860 int __isolate_free_page(struct page *page, unsigned int order)
2862 unsigned long watermark;
2863 struct zone *zone;
2864 int mt;
2866 BUG_ON(!PageBuddy(page));
2868 zone = page_zone(page);
2869 mt = get_pageblock_migratetype(page);
2871 if (!is_migrate_isolate(mt)) {
2873 * Obey watermarks as if the page was being allocated. We can
2874 * emulate a high-order watermark check with a raised order-0
2875 * watermark, because we already know our high-order page
2876 * exists.
2878 watermark = min_wmark_pages(zone) + (1UL << order);
2879 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2880 return 0;
2882 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2885 /* Remove page from free list */
2886 list_del(&page->lru);
2887 zone->free_area[order].nr_free--;
2888 rmv_page_order(page);
2891 * Set the pageblock if the isolated page is at least half of a
2892 * pageblock
2894 if (order >= pageblock_order - 1) {
2895 struct page *endpage = page + (1 << order) - 1;
2896 for (; page < endpage; page += pageblock_nr_pages) {
2897 int mt = get_pageblock_migratetype(page);
2898 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2899 && !is_migrate_highatomic(mt))
2900 set_pageblock_migratetype(page,
2901 MIGRATE_MOVABLE);
2906 return 1UL << order;
2910 * Update NUMA hit/miss statistics
2912 * Must be called with interrupts disabled.
2914 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2916 #ifdef CONFIG_NUMA
2917 enum numa_stat_item local_stat = NUMA_LOCAL;
2919 /* skip numa counters update if numa stats is disabled */
2920 if (!static_branch_likely(&vm_numa_stat_key))
2921 return;
2923 if (zone_to_nid(z) != numa_node_id())
2924 local_stat = NUMA_OTHER;
2926 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2927 __inc_numa_state(z, NUMA_HIT);
2928 else {
2929 __inc_numa_state(z, NUMA_MISS);
2930 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2932 __inc_numa_state(z, local_stat);
2933 #endif
2936 /* Remove page from the per-cpu list, caller must protect the list */
2937 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2938 struct per_cpu_pages *pcp,
2939 struct list_head *list)
2941 struct page *page;
2943 do {
2944 if (list_empty(list)) {
2945 pcp->count += rmqueue_bulk(zone, 0,
2946 pcp->batch, list,
2947 migratetype);
2948 if (unlikely(list_empty(list)))
2949 return NULL;
2952 page = list_first_entry(list, struct page, lru);
2953 list_del(&page->lru);
2954 pcp->count--;
2955 } while (check_new_pcp(page));
2957 return page;
2960 /* Lock and remove page from the per-cpu list */
2961 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2962 struct zone *zone, unsigned int order,
2963 gfp_t gfp_flags, int migratetype)
2965 struct per_cpu_pages *pcp;
2966 struct list_head *list;
2967 struct page *page;
2968 unsigned long flags;
2970 local_irq_save(flags);
2971 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2972 list = &pcp->lists[migratetype];
2973 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
2974 if (page) {
2975 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2976 zone_statistics(preferred_zone, zone);
2978 local_irq_restore(flags);
2979 return page;
2983 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2985 static inline
2986 struct page *rmqueue(struct zone *preferred_zone,
2987 struct zone *zone, unsigned int order,
2988 gfp_t gfp_flags, unsigned int alloc_flags,
2989 int migratetype)
2991 unsigned long flags;
2992 struct page *page;
2994 if (likely(order == 0)) {
2995 page = rmqueue_pcplist(preferred_zone, zone, order,
2996 gfp_flags, migratetype);
2997 goto out;
3001 * We most definitely don't want callers attempting to
3002 * allocate greater than order-1 page units with __GFP_NOFAIL.
3004 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3005 spin_lock_irqsave(&zone->lock, flags);
3007 do {
3008 page = NULL;
3009 if (alloc_flags & ALLOC_HARDER) {
3010 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3011 if (page)
3012 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3014 if (!page)
3015 page = __rmqueue(zone, order, migratetype);
3016 } while (page && check_new_pages(page, order));
3017 spin_unlock(&zone->lock);
3018 if (!page)
3019 goto failed;
3020 __mod_zone_freepage_state(zone, -(1 << order),
3021 get_pcppage_migratetype(page));
3023 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3024 zone_statistics(preferred_zone, zone);
3025 local_irq_restore(flags);
3027 out:
3028 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3029 return page;
3031 failed:
3032 local_irq_restore(flags);
3033 return NULL;
3036 #ifdef CONFIG_FAIL_PAGE_ALLOC
3038 static struct {
3039 struct fault_attr attr;
3041 bool ignore_gfp_highmem;
3042 bool ignore_gfp_reclaim;
3043 u32 min_order;
3044 } fail_page_alloc = {
3045 .attr = FAULT_ATTR_INITIALIZER,
3046 .ignore_gfp_reclaim = true,
3047 .ignore_gfp_highmem = true,
3048 .min_order = 1,
3051 static int __init setup_fail_page_alloc(char *str)
3053 return setup_fault_attr(&fail_page_alloc.attr, str);
3055 __setup("fail_page_alloc=", setup_fail_page_alloc);
3057 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3059 if (order < fail_page_alloc.min_order)
3060 return false;
3061 if (gfp_mask & __GFP_NOFAIL)
3062 return false;
3063 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3064 return false;
3065 if (fail_page_alloc.ignore_gfp_reclaim &&
3066 (gfp_mask & __GFP_DIRECT_RECLAIM))
3067 return false;
3069 return should_fail(&fail_page_alloc.attr, 1 << order);
3072 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3074 static int __init fail_page_alloc_debugfs(void)
3076 umode_t mode = S_IFREG | 0600;
3077 struct dentry *dir;
3079 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3080 &fail_page_alloc.attr);
3081 if (IS_ERR(dir))
3082 return PTR_ERR(dir);
3084 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3085 &fail_page_alloc.ignore_gfp_reclaim))
3086 goto fail;
3087 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3088 &fail_page_alloc.ignore_gfp_highmem))
3089 goto fail;
3090 if (!debugfs_create_u32("min-order", mode, dir,
3091 &fail_page_alloc.min_order))
3092 goto fail;
3094 return 0;
3095 fail:
3096 debugfs_remove_recursive(dir);
3098 return -ENOMEM;
3101 late_initcall(fail_page_alloc_debugfs);
3103 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3105 #else /* CONFIG_FAIL_PAGE_ALLOC */
3107 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3109 return false;
3112 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3115 * Return true if free base pages are above 'mark'. For high-order checks it
3116 * will return true of the order-0 watermark is reached and there is at least
3117 * one free page of a suitable size. Checking now avoids taking the zone lock
3118 * to check in the allocation paths if no pages are free.
3120 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3121 int classzone_idx, unsigned int alloc_flags,
3122 long free_pages)
3124 long min = mark;
3125 int o;
3126 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3128 /* free_pages may go negative - that's OK */
3129 free_pages -= (1 << order) - 1;
3131 if (alloc_flags & ALLOC_HIGH)
3132 min -= min / 2;
3135 * If the caller does not have rights to ALLOC_HARDER then subtract
3136 * the high-atomic reserves. This will over-estimate the size of the
3137 * atomic reserve but it avoids a search.
3139 if (likely(!alloc_harder)) {
3140 free_pages -= z->nr_reserved_highatomic;
3141 } else {
3143 * OOM victims can try even harder than normal ALLOC_HARDER
3144 * users on the grounds that it's definitely going to be in
3145 * the exit path shortly and free memory. Any allocation it
3146 * makes during the free path will be small and short-lived.
3148 if (alloc_flags & ALLOC_OOM)
3149 min -= min / 2;
3150 else
3151 min -= min / 4;
3155 #ifdef CONFIG_CMA
3156 /* If allocation can't use CMA areas don't use free CMA pages */
3157 if (!(alloc_flags & ALLOC_CMA))
3158 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3159 #endif
3162 * Check watermarks for an order-0 allocation request. If these
3163 * are not met, then a high-order request also cannot go ahead
3164 * even if a suitable page happened to be free.
3166 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3167 return false;
3169 /* If this is an order-0 request then the watermark is fine */
3170 if (!order)
3171 return true;
3173 /* For a high-order request, check at least one suitable page is free */
3174 for (o = order; o < MAX_ORDER; o++) {
3175 struct free_area *area = &z->free_area[o];
3176 int mt;
3178 if (!area->nr_free)
3179 continue;
3181 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3182 if (!list_empty(&area->free_list[mt]))
3183 return true;
3186 #ifdef CONFIG_CMA
3187 if ((alloc_flags & ALLOC_CMA) &&
3188 !list_empty(&area->free_list[MIGRATE_CMA])) {
3189 return true;
3191 #endif
3192 if (alloc_harder &&
3193 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3194 return true;
3196 return false;
3199 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3200 int classzone_idx, unsigned int alloc_flags)
3202 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3203 zone_page_state(z, NR_FREE_PAGES));
3206 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3207 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3209 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3210 long cma_pages = 0;
3212 #ifdef CONFIG_CMA
3213 /* If allocation can't use CMA areas don't use free CMA pages */
3214 if (!(alloc_flags & ALLOC_CMA))
3215 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3216 #endif
3219 * Fast check for order-0 only. If this fails then the reserves
3220 * need to be calculated. There is a corner case where the check
3221 * passes but only the high-order atomic reserve are free. If
3222 * the caller is !atomic then it'll uselessly search the free
3223 * list. That corner case is then slower but it is harmless.
3225 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3226 return true;
3228 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3229 free_pages);
3232 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3233 unsigned long mark, int classzone_idx)
3235 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3237 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3238 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3240 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3241 free_pages);
3244 #ifdef CONFIG_NUMA
3245 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3247 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3248 RECLAIM_DISTANCE;
3250 #else /* CONFIG_NUMA */
3251 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3253 return true;
3255 #endif /* CONFIG_NUMA */
3258 * get_page_from_freelist goes through the zonelist trying to allocate
3259 * a page.
3261 static struct page *
3262 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3263 const struct alloc_context *ac)
3265 struct zoneref *z = ac->preferred_zoneref;
3266 struct zone *zone;
3267 struct pglist_data *last_pgdat_dirty_limit = NULL;
3270 * Scan zonelist, looking for a zone with enough free.
3271 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3273 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3274 ac->nodemask) {
3275 struct page *page;
3276 unsigned long mark;
3278 if (cpusets_enabled() &&
3279 (alloc_flags & ALLOC_CPUSET) &&
3280 !__cpuset_zone_allowed(zone, gfp_mask))
3281 continue;
3283 * When allocating a page cache page for writing, we
3284 * want to get it from a node that is within its dirty
3285 * limit, such that no single node holds more than its
3286 * proportional share of globally allowed dirty pages.
3287 * The dirty limits take into account the node's
3288 * lowmem reserves and high watermark so that kswapd
3289 * should be able to balance it without having to
3290 * write pages from its LRU list.
3292 * XXX: For now, allow allocations to potentially
3293 * exceed the per-node dirty limit in the slowpath
3294 * (spread_dirty_pages unset) before going into reclaim,
3295 * which is important when on a NUMA setup the allowed
3296 * nodes are together not big enough to reach the
3297 * global limit. The proper fix for these situations
3298 * will require awareness of nodes in the
3299 * dirty-throttling and the flusher threads.
3301 if (ac->spread_dirty_pages) {
3302 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3303 continue;
3305 if (!node_dirty_ok(zone->zone_pgdat)) {
3306 last_pgdat_dirty_limit = zone->zone_pgdat;
3307 continue;
3311 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3312 if (!zone_watermark_fast(zone, order, mark,
3313 ac_classzone_idx(ac), alloc_flags)) {
3314 int ret;
3316 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3318 * Watermark failed for this zone, but see if we can
3319 * grow this zone if it contains deferred pages.
3321 if (static_branch_unlikely(&deferred_pages)) {
3322 if (_deferred_grow_zone(zone, order))
3323 goto try_this_zone;
3325 #endif
3326 /* Checked here to keep the fast path fast */
3327 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3328 if (alloc_flags & ALLOC_NO_WATERMARKS)
3329 goto try_this_zone;
3331 if (node_reclaim_mode == 0 ||
3332 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3333 continue;
3335 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3336 switch (ret) {
3337 case NODE_RECLAIM_NOSCAN:
3338 /* did not scan */
3339 continue;
3340 case NODE_RECLAIM_FULL:
3341 /* scanned but unreclaimable */
3342 continue;
3343 default:
3344 /* did we reclaim enough */
3345 if (zone_watermark_ok(zone, order, mark,
3346 ac_classzone_idx(ac), alloc_flags))
3347 goto try_this_zone;
3349 continue;
3353 try_this_zone:
3354 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3355 gfp_mask, alloc_flags, ac->migratetype);
3356 if (page) {
3357 prep_new_page(page, order, gfp_mask, alloc_flags);
3360 * If this is a high-order atomic allocation then check
3361 * if the pageblock should be reserved for the future
3363 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3364 reserve_highatomic_pageblock(page, zone, order);
3366 return page;
3367 } else {
3368 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3369 /* Try again if zone has deferred pages */
3370 if (static_branch_unlikely(&deferred_pages)) {
3371 if (_deferred_grow_zone(zone, order))
3372 goto try_this_zone;
3374 #endif
3378 return NULL;
3381 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3383 unsigned int filter = SHOW_MEM_FILTER_NODES;
3384 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3386 if (!__ratelimit(&show_mem_rs))
3387 return;
3390 * This documents exceptions given to allocations in certain
3391 * contexts that are allowed to allocate outside current's set
3392 * of allowed nodes.
3394 if (!(gfp_mask & __GFP_NOMEMALLOC))
3395 if (tsk_is_oom_victim(current) ||
3396 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3397 filter &= ~SHOW_MEM_FILTER_NODES;
3398 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3399 filter &= ~SHOW_MEM_FILTER_NODES;
3401 show_mem(filter, nodemask);
3404 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3406 struct va_format vaf;
3407 va_list args;
3408 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3409 DEFAULT_RATELIMIT_BURST);
3411 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3412 return;
3414 va_start(args, fmt);
3415 vaf.fmt = fmt;
3416 vaf.va = &args;
3417 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3418 current->comm, &vaf, gfp_mask, &gfp_mask,
3419 nodemask_pr_args(nodemask));
3420 va_end(args);
3422 cpuset_print_current_mems_allowed();
3424 dump_stack();
3425 warn_alloc_show_mem(gfp_mask, nodemask);
3428 static inline struct page *
3429 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3430 unsigned int alloc_flags,
3431 const struct alloc_context *ac)
3433 struct page *page;
3435 page = get_page_from_freelist(gfp_mask, order,
3436 alloc_flags|ALLOC_CPUSET, ac);
3438 * fallback to ignore cpuset restriction if our nodes
3439 * are depleted
3441 if (!page)
3442 page = get_page_from_freelist(gfp_mask, order,
3443 alloc_flags, ac);
3445 return page;
3448 static inline struct page *
3449 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3450 const struct alloc_context *ac, unsigned long *did_some_progress)
3452 struct oom_control oc = {
3453 .zonelist = ac->zonelist,
3454 .nodemask = ac->nodemask,
3455 .memcg = NULL,
3456 .gfp_mask = gfp_mask,
3457 .order = order,
3459 struct page *page;
3461 *did_some_progress = 0;
3464 * Acquire the oom lock. If that fails, somebody else is
3465 * making progress for us.
3467 if (!mutex_trylock(&oom_lock)) {
3468 *did_some_progress = 1;
3469 schedule_timeout_uninterruptible(1);
3470 return NULL;
3474 * Go through the zonelist yet one more time, keep very high watermark
3475 * here, this is only to catch a parallel oom killing, we must fail if
3476 * we're still under heavy pressure. But make sure that this reclaim
3477 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3478 * allocation which will never fail due to oom_lock already held.
3480 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3481 ~__GFP_DIRECT_RECLAIM, order,
3482 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3483 if (page)
3484 goto out;
3486 /* Coredumps can quickly deplete all memory reserves */
3487 if (current->flags & PF_DUMPCORE)
3488 goto out;
3489 /* The OOM killer will not help higher order allocs */
3490 if (order > PAGE_ALLOC_COSTLY_ORDER)
3491 goto out;
3493 * We have already exhausted all our reclaim opportunities without any
3494 * success so it is time to admit defeat. We will skip the OOM killer
3495 * because it is very likely that the caller has a more reasonable
3496 * fallback than shooting a random task.
3498 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3499 goto out;
3500 /* The OOM killer does not needlessly kill tasks for lowmem */
3501 if (ac->high_zoneidx < ZONE_NORMAL)
3502 goto out;
3503 if (pm_suspended_storage())
3504 goto out;
3506 * XXX: GFP_NOFS allocations should rather fail than rely on
3507 * other request to make a forward progress.
3508 * We are in an unfortunate situation where out_of_memory cannot
3509 * do much for this context but let's try it to at least get
3510 * access to memory reserved if the current task is killed (see
3511 * out_of_memory). Once filesystems are ready to handle allocation
3512 * failures more gracefully we should just bail out here.
3515 /* The OOM killer may not free memory on a specific node */
3516 if (gfp_mask & __GFP_THISNODE)
3517 goto out;
3519 /* Exhausted what can be done so it's blame time */
3520 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3521 *did_some_progress = 1;
3524 * Help non-failing allocations by giving them access to memory
3525 * reserves
3527 if (gfp_mask & __GFP_NOFAIL)
3528 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3529 ALLOC_NO_WATERMARKS, ac);
3531 out:
3532 mutex_unlock(&oom_lock);
3533 return page;
3537 * Maximum number of compaction retries wit a progress before OOM
3538 * killer is consider as the only way to move forward.
3540 #define MAX_COMPACT_RETRIES 16
3542 #ifdef CONFIG_COMPACTION
3543 /* Try memory compaction for high-order allocations before reclaim */
3544 static struct page *
3545 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3546 unsigned int alloc_flags, const struct alloc_context *ac,
3547 enum compact_priority prio, enum compact_result *compact_result)
3549 struct page *page;
3550 unsigned long pflags;
3551 unsigned int noreclaim_flag;
3553 if (!order)
3554 return NULL;
3556 psi_memstall_enter(&pflags);
3557 noreclaim_flag = memalloc_noreclaim_save();
3559 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3560 prio);
3562 memalloc_noreclaim_restore(noreclaim_flag);
3563 psi_memstall_leave(&pflags);
3565 if (*compact_result <= COMPACT_INACTIVE)
3566 return NULL;
3569 * At least in one zone compaction wasn't deferred or skipped, so let's
3570 * count a compaction stall
3572 count_vm_event(COMPACTSTALL);
3574 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3576 if (page) {
3577 struct zone *zone = page_zone(page);
3579 zone->compact_blockskip_flush = false;
3580 compaction_defer_reset(zone, order, true);
3581 count_vm_event(COMPACTSUCCESS);
3582 return page;
3586 * It's bad if compaction run occurs and fails. The most likely reason
3587 * is that pages exist, but not enough to satisfy watermarks.
3589 count_vm_event(COMPACTFAIL);
3591 cond_resched();
3593 return NULL;
3596 static inline bool
3597 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3598 enum compact_result compact_result,
3599 enum compact_priority *compact_priority,
3600 int *compaction_retries)
3602 int max_retries = MAX_COMPACT_RETRIES;
3603 int min_priority;
3604 bool ret = false;
3605 int retries = *compaction_retries;
3606 enum compact_priority priority = *compact_priority;
3608 if (!order)
3609 return false;
3611 if (compaction_made_progress(compact_result))
3612 (*compaction_retries)++;
3615 * compaction considers all the zone as desperately out of memory
3616 * so it doesn't really make much sense to retry except when the
3617 * failure could be caused by insufficient priority
3619 if (compaction_failed(compact_result))
3620 goto check_priority;
3623 * make sure the compaction wasn't deferred or didn't bail out early
3624 * due to locks contention before we declare that we should give up.
3625 * But do not retry if the given zonelist is not suitable for
3626 * compaction.
3628 if (compaction_withdrawn(compact_result)) {
3629 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3630 goto out;
3634 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3635 * costly ones because they are de facto nofail and invoke OOM
3636 * killer to move on while costly can fail and users are ready
3637 * to cope with that. 1/4 retries is rather arbitrary but we
3638 * would need much more detailed feedback from compaction to
3639 * make a better decision.
3641 if (order > PAGE_ALLOC_COSTLY_ORDER)
3642 max_retries /= 4;
3643 if (*compaction_retries <= max_retries) {
3644 ret = true;
3645 goto out;
3649 * Make sure there are attempts at the highest priority if we exhausted
3650 * all retries or failed at the lower priorities.
3652 check_priority:
3653 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3654 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3656 if (*compact_priority > min_priority) {
3657 (*compact_priority)--;
3658 *compaction_retries = 0;
3659 ret = true;
3661 out:
3662 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3663 return ret;
3665 #else
3666 static inline struct page *
3667 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3668 unsigned int alloc_flags, const struct alloc_context *ac,
3669 enum compact_priority prio, enum compact_result *compact_result)
3671 *compact_result = COMPACT_SKIPPED;
3672 return NULL;
3675 static inline bool
3676 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3677 enum compact_result compact_result,
3678 enum compact_priority *compact_priority,
3679 int *compaction_retries)
3681 struct zone *zone;
3682 struct zoneref *z;
3684 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3685 return false;
3688 * There are setups with compaction disabled which would prefer to loop
3689 * inside the allocator rather than hit the oom killer prematurely.
3690 * Let's give them a good hope and keep retrying while the order-0
3691 * watermarks are OK.
3693 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3694 ac->nodemask) {
3695 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3696 ac_classzone_idx(ac), alloc_flags))
3697 return true;
3699 return false;
3701 #endif /* CONFIG_COMPACTION */
3703 #ifdef CONFIG_LOCKDEP
3704 static struct lockdep_map __fs_reclaim_map =
3705 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3707 static bool __need_fs_reclaim(gfp_t gfp_mask)
3709 gfp_mask = current_gfp_context(gfp_mask);
3711 /* no reclaim without waiting on it */
3712 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3713 return false;
3715 /* this guy won't enter reclaim */
3716 if (current->flags & PF_MEMALLOC)
3717 return false;
3719 /* We're only interested __GFP_FS allocations for now */
3720 if (!(gfp_mask & __GFP_FS))
3721 return false;
3723 if (gfp_mask & __GFP_NOLOCKDEP)
3724 return false;
3726 return true;
3729 void __fs_reclaim_acquire(void)
3731 lock_map_acquire(&__fs_reclaim_map);
3734 void __fs_reclaim_release(void)
3736 lock_map_release(&__fs_reclaim_map);
3739 void fs_reclaim_acquire(gfp_t gfp_mask)
3741 if (__need_fs_reclaim(gfp_mask))
3742 __fs_reclaim_acquire();
3744 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3746 void fs_reclaim_release(gfp_t gfp_mask)
3748 if (__need_fs_reclaim(gfp_mask))
3749 __fs_reclaim_release();
3751 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3752 #endif
3754 /* Perform direct synchronous page reclaim */
3755 static int
3756 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3757 const struct alloc_context *ac)
3759 struct reclaim_state reclaim_state;
3760 int progress;
3761 unsigned int noreclaim_flag;
3762 unsigned long pflags;
3764 cond_resched();
3766 /* We now go into synchronous reclaim */
3767 cpuset_memory_pressure_bump();
3768 psi_memstall_enter(&pflags);
3769 fs_reclaim_acquire(gfp_mask);
3770 noreclaim_flag = memalloc_noreclaim_save();
3771 reclaim_state.reclaimed_slab = 0;
3772 current->reclaim_state = &reclaim_state;
3774 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3775 ac->nodemask);
3777 current->reclaim_state = NULL;
3778 memalloc_noreclaim_restore(noreclaim_flag);
3779 fs_reclaim_release(gfp_mask);
3780 psi_memstall_leave(&pflags);
3782 cond_resched();
3784 return progress;
3787 /* The really slow allocator path where we enter direct reclaim */
3788 static inline struct page *
3789 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3790 unsigned int alloc_flags, const struct alloc_context *ac,
3791 unsigned long *did_some_progress)
3793 struct page *page = NULL;
3794 bool drained = false;
3796 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3797 if (unlikely(!(*did_some_progress)))
3798 return NULL;
3800 retry:
3801 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3804 * If an allocation failed after direct reclaim, it could be because
3805 * pages are pinned on the per-cpu lists or in high alloc reserves.
3806 * Shrink them them and try again
3808 if (!page && !drained) {
3809 unreserve_highatomic_pageblock(ac, false);
3810 drain_all_pages(NULL);
3811 drained = true;
3812 goto retry;
3815 return page;
3818 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3819 const struct alloc_context *ac)
3821 struct zoneref *z;
3822 struct zone *zone;
3823 pg_data_t *last_pgdat = NULL;
3824 enum zone_type high_zoneidx = ac->high_zoneidx;
3826 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3827 ac->nodemask) {
3828 if (last_pgdat != zone->zone_pgdat)
3829 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3830 last_pgdat = zone->zone_pgdat;
3834 static inline unsigned int
3835 gfp_to_alloc_flags(gfp_t gfp_mask)
3837 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3839 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3840 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3843 * The caller may dip into page reserves a bit more if the caller
3844 * cannot run direct reclaim, or if the caller has realtime scheduling
3845 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3846 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3848 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3850 if (gfp_mask & __GFP_ATOMIC) {
3852 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3853 * if it can't schedule.
3855 if (!(gfp_mask & __GFP_NOMEMALLOC))
3856 alloc_flags |= ALLOC_HARDER;
3858 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3859 * comment for __cpuset_node_allowed().
3861 alloc_flags &= ~ALLOC_CPUSET;
3862 } else if (unlikely(rt_task(current)) && !in_interrupt())
3863 alloc_flags |= ALLOC_HARDER;
3865 #ifdef CONFIG_CMA
3866 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3867 alloc_flags |= ALLOC_CMA;
3868 #endif
3869 return alloc_flags;
3872 static bool oom_reserves_allowed(struct task_struct *tsk)
3874 if (!tsk_is_oom_victim(tsk))
3875 return false;
3878 * !MMU doesn't have oom reaper so give access to memory reserves
3879 * only to the thread with TIF_MEMDIE set
3881 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3882 return false;
3884 return true;
3888 * Distinguish requests which really need access to full memory
3889 * reserves from oom victims which can live with a portion of it
3891 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3893 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3894 return 0;
3895 if (gfp_mask & __GFP_MEMALLOC)
3896 return ALLOC_NO_WATERMARKS;
3897 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3898 return ALLOC_NO_WATERMARKS;
3899 if (!in_interrupt()) {
3900 if (current->flags & PF_MEMALLOC)
3901 return ALLOC_NO_WATERMARKS;
3902 else if (oom_reserves_allowed(current))
3903 return ALLOC_OOM;
3906 return 0;
3909 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3911 return !!__gfp_pfmemalloc_flags(gfp_mask);
3915 * Checks whether it makes sense to retry the reclaim to make a forward progress
3916 * for the given allocation request.
3918 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3919 * without success, or when we couldn't even meet the watermark if we
3920 * reclaimed all remaining pages on the LRU lists.
3922 * Returns true if a retry is viable or false to enter the oom path.
3924 static inline bool
3925 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3926 struct alloc_context *ac, int alloc_flags,
3927 bool did_some_progress, int *no_progress_loops)
3929 struct zone *zone;
3930 struct zoneref *z;
3931 bool ret = false;
3934 * Costly allocations might have made a progress but this doesn't mean
3935 * their order will become available due to high fragmentation so
3936 * always increment the no progress counter for them
3938 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3939 *no_progress_loops = 0;
3940 else
3941 (*no_progress_loops)++;
3944 * Make sure we converge to OOM if we cannot make any progress
3945 * several times in the row.
3947 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3948 /* Before OOM, exhaust highatomic_reserve */
3949 return unreserve_highatomic_pageblock(ac, true);
3953 * Keep reclaiming pages while there is a chance this will lead
3954 * somewhere. If none of the target zones can satisfy our allocation
3955 * request even if all reclaimable pages are considered then we are
3956 * screwed and have to go OOM.
3958 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3959 ac->nodemask) {
3960 unsigned long available;
3961 unsigned long reclaimable;
3962 unsigned long min_wmark = min_wmark_pages(zone);
3963 bool wmark;
3965 available = reclaimable = zone_reclaimable_pages(zone);
3966 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3969 * Would the allocation succeed if we reclaimed all
3970 * reclaimable pages?
3972 wmark = __zone_watermark_ok(zone, order, min_wmark,
3973 ac_classzone_idx(ac), alloc_flags, available);
3974 trace_reclaim_retry_zone(z, order, reclaimable,
3975 available, min_wmark, *no_progress_loops, wmark);
3976 if (wmark) {
3978 * If we didn't make any progress and have a lot of
3979 * dirty + writeback pages then we should wait for
3980 * an IO to complete to slow down the reclaim and
3981 * prevent from pre mature OOM
3983 if (!did_some_progress) {
3984 unsigned long write_pending;
3986 write_pending = zone_page_state_snapshot(zone,
3987 NR_ZONE_WRITE_PENDING);
3989 if (2 * write_pending > reclaimable) {
3990 congestion_wait(BLK_RW_ASYNC, HZ/10);
3991 return true;
3995 ret = true;
3996 goto out;
4000 out:
4002 * Memory allocation/reclaim might be called from a WQ context and the
4003 * current implementation of the WQ concurrency control doesn't
4004 * recognize that a particular WQ is congested if the worker thread is
4005 * looping without ever sleeping. Therefore we have to do a short sleep
4006 * here rather than calling cond_resched().
4008 if (current->flags & PF_WQ_WORKER)
4009 schedule_timeout_uninterruptible(1);
4010 else
4011 cond_resched();
4012 return ret;
4015 static inline bool
4016 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4019 * It's possible that cpuset's mems_allowed and the nodemask from
4020 * mempolicy don't intersect. This should be normally dealt with by
4021 * policy_nodemask(), but it's possible to race with cpuset update in
4022 * such a way the check therein was true, and then it became false
4023 * before we got our cpuset_mems_cookie here.
4024 * This assumes that for all allocations, ac->nodemask can come only
4025 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4026 * when it does not intersect with the cpuset restrictions) or the
4027 * caller can deal with a violated nodemask.
4029 if (cpusets_enabled() && ac->nodemask &&
4030 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4031 ac->nodemask = NULL;
4032 return true;
4036 * When updating a task's mems_allowed or mempolicy nodemask, it is
4037 * possible to race with parallel threads in such a way that our
4038 * allocation can fail while the mask is being updated. If we are about
4039 * to fail, check if the cpuset changed during allocation and if so,
4040 * retry.
4042 if (read_mems_allowed_retry(cpuset_mems_cookie))
4043 return true;
4045 return false;
4048 static inline struct page *
4049 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4050 struct alloc_context *ac)
4052 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4053 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4054 struct page *page = NULL;
4055 unsigned int alloc_flags;
4056 unsigned long did_some_progress;
4057 enum compact_priority compact_priority;
4058 enum compact_result compact_result;
4059 int compaction_retries;
4060 int no_progress_loops;
4061 unsigned int cpuset_mems_cookie;
4062 int reserve_flags;
4065 * We also sanity check to catch abuse of atomic reserves being used by
4066 * callers that are not in atomic context.
4068 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4069 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4070 gfp_mask &= ~__GFP_ATOMIC;
4072 retry_cpuset:
4073 compaction_retries = 0;
4074 no_progress_loops = 0;
4075 compact_priority = DEF_COMPACT_PRIORITY;
4076 cpuset_mems_cookie = read_mems_allowed_begin();
4079 * The fast path uses conservative alloc_flags to succeed only until
4080 * kswapd needs to be woken up, and to avoid the cost of setting up
4081 * alloc_flags precisely. So we do that now.
4083 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4086 * We need to recalculate the starting point for the zonelist iterator
4087 * because we might have used different nodemask in the fast path, or
4088 * there was a cpuset modification and we are retrying - otherwise we
4089 * could end up iterating over non-eligible zones endlessly.
4091 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4092 ac->high_zoneidx, ac->nodemask);
4093 if (!ac->preferred_zoneref->zone)
4094 goto nopage;
4096 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4097 wake_all_kswapds(order, gfp_mask, ac);
4100 * The adjusted alloc_flags might result in immediate success, so try
4101 * that first
4103 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4104 if (page)
4105 goto got_pg;
4108 * For costly allocations, try direct compaction first, as it's likely
4109 * that we have enough base pages and don't need to reclaim. For non-
4110 * movable high-order allocations, do that as well, as compaction will
4111 * try prevent permanent fragmentation by migrating from blocks of the
4112 * same migratetype.
4113 * Don't try this for allocations that are allowed to ignore
4114 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4116 if (can_direct_reclaim &&
4117 (costly_order ||
4118 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4119 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4120 page = __alloc_pages_direct_compact(gfp_mask, order,
4121 alloc_flags, ac,
4122 INIT_COMPACT_PRIORITY,
4123 &compact_result);
4124 if (page)
4125 goto got_pg;
4128 * Checks for costly allocations with __GFP_NORETRY, which
4129 * includes THP page fault allocations
4131 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4133 * If compaction is deferred for high-order allocations,
4134 * it is because sync compaction recently failed. If
4135 * this is the case and the caller requested a THP
4136 * allocation, we do not want to heavily disrupt the
4137 * system, so we fail the allocation instead of entering
4138 * direct reclaim.
4140 if (compact_result == COMPACT_DEFERRED)
4141 goto nopage;
4144 * Looks like reclaim/compaction is worth trying, but
4145 * sync compaction could be very expensive, so keep
4146 * using async compaction.
4148 compact_priority = INIT_COMPACT_PRIORITY;
4152 retry:
4153 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4154 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4155 wake_all_kswapds(order, gfp_mask, ac);
4157 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4158 if (reserve_flags)
4159 alloc_flags = reserve_flags;
4162 * Reset the nodemask and zonelist iterators if memory policies can be
4163 * ignored. These allocations are high priority and system rather than
4164 * user oriented.
4166 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4167 ac->nodemask = NULL;
4168 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4169 ac->high_zoneidx, ac->nodemask);
4172 /* Attempt with potentially adjusted zonelist and alloc_flags */
4173 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4174 if (page)
4175 goto got_pg;
4177 /* Caller is not willing to reclaim, we can't balance anything */
4178 if (!can_direct_reclaim)
4179 goto nopage;
4181 /* Avoid recursion of direct reclaim */
4182 if (current->flags & PF_MEMALLOC)
4183 goto nopage;
4185 /* Try direct reclaim and then allocating */
4186 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4187 &did_some_progress);
4188 if (page)
4189 goto got_pg;
4191 /* Try direct compaction and then allocating */
4192 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4193 compact_priority, &compact_result);
4194 if (page)
4195 goto got_pg;
4197 /* Do not loop if specifically requested */
4198 if (gfp_mask & __GFP_NORETRY)
4199 goto nopage;
4202 * Do not retry costly high order allocations unless they are
4203 * __GFP_RETRY_MAYFAIL
4205 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4206 goto nopage;
4208 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4209 did_some_progress > 0, &no_progress_loops))
4210 goto retry;
4213 * It doesn't make any sense to retry for the compaction if the order-0
4214 * reclaim is not able to make any progress because the current
4215 * implementation of the compaction depends on the sufficient amount
4216 * of free memory (see __compaction_suitable)
4218 if (did_some_progress > 0 &&
4219 should_compact_retry(ac, order, alloc_flags,
4220 compact_result, &compact_priority,
4221 &compaction_retries))
4222 goto retry;
4225 /* Deal with possible cpuset update races before we start OOM killing */
4226 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4227 goto retry_cpuset;
4229 /* Reclaim has failed us, start killing things */
4230 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4231 if (page)
4232 goto got_pg;
4234 /* Avoid allocations with no watermarks from looping endlessly */
4235 if (tsk_is_oom_victim(current) &&
4236 (alloc_flags == ALLOC_OOM ||
4237 (gfp_mask & __GFP_NOMEMALLOC)))
4238 goto nopage;
4240 /* Retry as long as the OOM killer is making progress */
4241 if (did_some_progress) {
4242 no_progress_loops = 0;
4243 goto retry;
4246 nopage:
4247 /* Deal with possible cpuset update races before we fail */
4248 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4249 goto retry_cpuset;
4252 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4253 * we always retry
4255 if (gfp_mask & __GFP_NOFAIL) {
4257 * All existing users of the __GFP_NOFAIL are blockable, so warn
4258 * of any new users that actually require GFP_NOWAIT
4260 if (WARN_ON_ONCE(!can_direct_reclaim))
4261 goto fail;
4264 * PF_MEMALLOC request from this context is rather bizarre
4265 * because we cannot reclaim anything and only can loop waiting
4266 * for somebody to do a work for us
4268 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4271 * non failing costly orders are a hard requirement which we
4272 * are not prepared for much so let's warn about these users
4273 * so that we can identify them and convert them to something
4274 * else.
4276 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4279 * Help non-failing allocations by giving them access to memory
4280 * reserves but do not use ALLOC_NO_WATERMARKS because this
4281 * could deplete whole memory reserves which would just make
4282 * the situation worse
4284 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4285 if (page)
4286 goto got_pg;
4288 cond_resched();
4289 goto retry;
4291 fail:
4292 warn_alloc(gfp_mask, ac->nodemask,
4293 "page allocation failure: order:%u", order);
4294 got_pg:
4295 return page;
4298 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4299 int preferred_nid, nodemask_t *nodemask,
4300 struct alloc_context *ac, gfp_t *alloc_mask,
4301 unsigned int *alloc_flags)
4303 ac->high_zoneidx = gfp_zone(gfp_mask);
4304 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4305 ac->nodemask = nodemask;
4306 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4308 if (cpusets_enabled()) {
4309 *alloc_mask |= __GFP_HARDWALL;
4310 if (!ac->nodemask)
4311 ac->nodemask = &cpuset_current_mems_allowed;
4312 else
4313 *alloc_flags |= ALLOC_CPUSET;
4316 fs_reclaim_acquire(gfp_mask);
4317 fs_reclaim_release(gfp_mask);
4319 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4321 if (should_fail_alloc_page(gfp_mask, order))
4322 return false;
4324 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4325 *alloc_flags |= ALLOC_CMA;
4327 return true;
4330 /* Determine whether to spread dirty pages and what the first usable zone */
4331 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4333 /* Dirty zone balancing only done in the fast path */
4334 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4337 * The preferred zone is used for statistics but crucially it is
4338 * also used as the starting point for the zonelist iterator. It
4339 * may get reset for allocations that ignore memory policies.
4341 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4342 ac->high_zoneidx, ac->nodemask);
4346 * This is the 'heart' of the zoned buddy allocator.
4348 struct page *
4349 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4350 nodemask_t *nodemask)
4352 struct page *page;
4353 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4354 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4355 struct alloc_context ac = { };
4358 * There are several places where we assume that the order value is sane
4359 * so bail out early if the request is out of bound.
4361 if (unlikely(order >= MAX_ORDER)) {
4362 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4363 return NULL;
4366 gfp_mask &= gfp_allowed_mask;
4367 alloc_mask = gfp_mask;
4368 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4369 return NULL;
4371 finalise_ac(gfp_mask, &ac);
4373 /* First allocation attempt */
4374 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4375 if (likely(page))
4376 goto out;
4379 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4380 * resp. GFP_NOIO which has to be inherited for all allocation requests
4381 * from a particular context which has been marked by
4382 * memalloc_no{fs,io}_{save,restore}.
4384 alloc_mask = current_gfp_context(gfp_mask);
4385 ac.spread_dirty_pages = false;
4388 * Restore the original nodemask if it was potentially replaced with
4389 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4391 if (unlikely(ac.nodemask != nodemask))
4392 ac.nodemask = nodemask;
4394 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4396 out:
4397 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4398 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4399 __free_pages(page, order);
4400 page = NULL;
4403 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4405 return page;
4407 EXPORT_SYMBOL(__alloc_pages_nodemask);
4410 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4411 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4412 * you need to access high mem.
4414 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4416 struct page *page;
4418 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4419 if (!page)
4420 return 0;
4421 return (unsigned long) page_address(page);
4423 EXPORT_SYMBOL(__get_free_pages);
4425 unsigned long get_zeroed_page(gfp_t gfp_mask)
4427 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4429 EXPORT_SYMBOL(get_zeroed_page);
4431 void __free_pages(struct page *page, unsigned int order)
4433 if (put_page_testzero(page)) {
4434 if (order == 0)
4435 free_unref_page(page);
4436 else
4437 __free_pages_ok(page, order);
4441 EXPORT_SYMBOL(__free_pages);
4443 void free_pages(unsigned long addr, unsigned int order)
4445 if (addr != 0) {
4446 VM_BUG_ON(!virt_addr_valid((void *)addr));
4447 __free_pages(virt_to_page((void *)addr), order);
4451 EXPORT_SYMBOL(free_pages);
4454 * Page Fragment:
4455 * An arbitrary-length arbitrary-offset area of memory which resides
4456 * within a 0 or higher order page. Multiple fragments within that page
4457 * are individually refcounted, in the page's reference counter.
4459 * The page_frag functions below provide a simple allocation framework for
4460 * page fragments. This is used by the network stack and network device
4461 * drivers to provide a backing region of memory for use as either an
4462 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4464 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4465 gfp_t gfp_mask)
4467 struct page *page = NULL;
4468 gfp_t gfp = gfp_mask;
4470 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4471 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4472 __GFP_NOMEMALLOC;
4473 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4474 PAGE_FRAG_CACHE_MAX_ORDER);
4475 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4476 #endif
4477 if (unlikely(!page))
4478 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4480 nc->va = page ? page_address(page) : NULL;
4482 return page;
4485 void __page_frag_cache_drain(struct page *page, unsigned int count)
4487 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4489 if (page_ref_sub_and_test(page, count)) {
4490 unsigned int order = compound_order(page);
4492 if (order == 0)
4493 free_unref_page(page);
4494 else
4495 __free_pages_ok(page, order);
4498 EXPORT_SYMBOL(__page_frag_cache_drain);
4500 void *page_frag_alloc(struct page_frag_cache *nc,
4501 unsigned int fragsz, gfp_t gfp_mask)
4503 unsigned int size = PAGE_SIZE;
4504 struct page *page;
4505 int offset;
4507 if (unlikely(!nc->va)) {
4508 refill:
4509 page = __page_frag_cache_refill(nc, gfp_mask);
4510 if (!page)
4511 return NULL;
4513 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4514 /* if size can vary use size else just use PAGE_SIZE */
4515 size = nc->size;
4516 #endif
4517 /* Even if we own the page, we do not use atomic_set().
4518 * This would break get_page_unless_zero() users.
4520 page_ref_add(page, size - 1);
4522 /* reset page count bias and offset to start of new frag */
4523 nc->pfmemalloc = page_is_pfmemalloc(page);
4524 nc->pagecnt_bias = size;
4525 nc->offset = size;
4528 offset = nc->offset - fragsz;
4529 if (unlikely(offset < 0)) {
4530 page = virt_to_page(nc->va);
4532 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4533 goto refill;
4535 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4536 /* if size can vary use size else just use PAGE_SIZE */
4537 size = nc->size;
4538 #endif
4539 /* OK, page count is 0, we can safely set it */
4540 set_page_count(page, size);
4542 /* reset page count bias and offset to start of new frag */
4543 nc->pagecnt_bias = size;
4544 offset = size - fragsz;
4547 nc->pagecnt_bias--;
4548 nc->offset = offset;
4550 return nc->va + offset;
4552 EXPORT_SYMBOL(page_frag_alloc);
4555 * Frees a page fragment allocated out of either a compound or order 0 page.
4557 void page_frag_free(void *addr)
4559 struct page *page = virt_to_head_page(addr);
4561 if (unlikely(put_page_testzero(page)))
4562 __free_pages_ok(page, compound_order(page));
4564 EXPORT_SYMBOL(page_frag_free);
4566 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4567 size_t size)
4569 if (addr) {
4570 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4571 unsigned long used = addr + PAGE_ALIGN(size);
4573 split_page(virt_to_page((void *)addr), order);
4574 while (used < alloc_end) {
4575 free_page(used);
4576 used += PAGE_SIZE;
4579 return (void *)addr;
4583 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4584 * @size: the number of bytes to allocate
4585 * @gfp_mask: GFP flags for the allocation
4587 * This function is similar to alloc_pages(), except that it allocates the
4588 * minimum number of pages to satisfy the request. alloc_pages() can only
4589 * allocate memory in power-of-two pages.
4591 * This function is also limited by MAX_ORDER.
4593 * Memory allocated by this function must be released by free_pages_exact().
4595 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4597 unsigned int order = get_order(size);
4598 unsigned long addr;
4600 addr = __get_free_pages(gfp_mask, order);
4601 return make_alloc_exact(addr, order, size);
4603 EXPORT_SYMBOL(alloc_pages_exact);
4606 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4607 * pages on a node.
4608 * @nid: the preferred node ID where memory should be allocated
4609 * @size: the number of bytes to allocate
4610 * @gfp_mask: GFP flags for the allocation
4612 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4613 * back.
4615 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4617 unsigned int order = get_order(size);
4618 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4619 if (!p)
4620 return NULL;
4621 return make_alloc_exact((unsigned long)page_address(p), order, size);
4625 * free_pages_exact - release memory allocated via alloc_pages_exact()
4626 * @virt: the value returned by alloc_pages_exact.
4627 * @size: size of allocation, same value as passed to alloc_pages_exact().
4629 * Release the memory allocated by a previous call to alloc_pages_exact.
4631 void free_pages_exact(void *virt, size_t size)
4633 unsigned long addr = (unsigned long)virt;
4634 unsigned long end = addr + PAGE_ALIGN(size);
4636 while (addr < end) {
4637 free_page(addr);
4638 addr += PAGE_SIZE;
4641 EXPORT_SYMBOL(free_pages_exact);
4644 * nr_free_zone_pages - count number of pages beyond high watermark
4645 * @offset: The zone index of the highest zone
4647 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4648 * high watermark within all zones at or below a given zone index. For each
4649 * zone, the number of pages is calculated as:
4651 * nr_free_zone_pages = managed_pages - high_pages
4653 static unsigned long nr_free_zone_pages(int offset)
4655 struct zoneref *z;
4656 struct zone *zone;
4658 /* Just pick one node, since fallback list is circular */
4659 unsigned long sum = 0;
4661 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4663 for_each_zone_zonelist(zone, z, zonelist, offset) {
4664 unsigned long size = zone->managed_pages;
4665 unsigned long high = high_wmark_pages(zone);
4666 if (size > high)
4667 sum += size - high;
4670 return sum;
4674 * nr_free_buffer_pages - count number of pages beyond high watermark
4676 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4677 * watermark within ZONE_DMA and ZONE_NORMAL.
4679 unsigned long nr_free_buffer_pages(void)
4681 return nr_free_zone_pages(gfp_zone(GFP_USER));
4683 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4686 * nr_free_pagecache_pages - count number of pages beyond high watermark
4688 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4689 * high watermark within all zones.
4691 unsigned long nr_free_pagecache_pages(void)
4693 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4696 static inline void show_node(struct zone *zone)
4698 if (IS_ENABLED(CONFIG_NUMA))
4699 printk("Node %d ", zone_to_nid(zone));
4702 long si_mem_available(void)
4704 long available;
4705 unsigned long pagecache;
4706 unsigned long wmark_low = 0;
4707 unsigned long pages[NR_LRU_LISTS];
4708 unsigned long reclaimable;
4709 struct zone *zone;
4710 int lru;
4712 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4713 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4715 for_each_zone(zone)
4716 wmark_low += zone->watermark[WMARK_LOW];
4719 * Estimate the amount of memory available for userspace allocations,
4720 * without causing swapping.
4722 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4725 * Not all the page cache can be freed, otherwise the system will
4726 * start swapping. Assume at least half of the page cache, or the
4727 * low watermark worth of cache, needs to stay.
4729 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4730 pagecache -= min(pagecache / 2, wmark_low);
4731 available += pagecache;
4734 * Part of the reclaimable slab and other kernel memory consists of
4735 * items that are in use, and cannot be freed. Cap this estimate at the
4736 * low watermark.
4738 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4739 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4740 available += reclaimable - min(reclaimable / 2, wmark_low);
4742 if (available < 0)
4743 available = 0;
4744 return available;
4746 EXPORT_SYMBOL_GPL(si_mem_available);
4748 void si_meminfo(struct sysinfo *val)
4750 val->totalram = totalram_pages;
4751 val->sharedram = global_node_page_state(NR_SHMEM);
4752 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4753 val->bufferram = nr_blockdev_pages();
4754 val->totalhigh = totalhigh_pages;
4755 val->freehigh = nr_free_highpages();
4756 val->mem_unit = PAGE_SIZE;
4759 EXPORT_SYMBOL(si_meminfo);
4761 #ifdef CONFIG_NUMA
4762 void si_meminfo_node(struct sysinfo *val, int nid)
4764 int zone_type; /* needs to be signed */
4765 unsigned long managed_pages = 0;
4766 unsigned long managed_highpages = 0;
4767 unsigned long free_highpages = 0;
4768 pg_data_t *pgdat = NODE_DATA(nid);
4770 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4771 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4772 val->totalram = managed_pages;
4773 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4774 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4775 #ifdef CONFIG_HIGHMEM
4776 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4777 struct zone *zone = &pgdat->node_zones[zone_type];
4779 if (is_highmem(zone)) {
4780 managed_highpages += zone->managed_pages;
4781 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4784 val->totalhigh = managed_highpages;
4785 val->freehigh = free_highpages;
4786 #else
4787 val->totalhigh = managed_highpages;
4788 val->freehigh = free_highpages;
4789 #endif
4790 val->mem_unit = PAGE_SIZE;
4792 #endif
4795 * Determine whether the node should be displayed or not, depending on whether
4796 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4798 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4800 if (!(flags & SHOW_MEM_FILTER_NODES))
4801 return false;
4804 * no node mask - aka implicit memory numa policy. Do not bother with
4805 * the synchronization - read_mems_allowed_begin - because we do not
4806 * have to be precise here.
4808 if (!nodemask)
4809 nodemask = &cpuset_current_mems_allowed;
4811 return !node_isset(nid, *nodemask);
4814 #define K(x) ((x) << (PAGE_SHIFT-10))
4816 static void show_migration_types(unsigned char type)
4818 static const char types[MIGRATE_TYPES] = {
4819 [MIGRATE_UNMOVABLE] = 'U',
4820 [MIGRATE_MOVABLE] = 'M',
4821 [MIGRATE_RECLAIMABLE] = 'E',
4822 [MIGRATE_HIGHATOMIC] = 'H',
4823 #ifdef CONFIG_CMA
4824 [MIGRATE_CMA] = 'C',
4825 #endif
4826 #ifdef CONFIG_MEMORY_ISOLATION
4827 [MIGRATE_ISOLATE] = 'I',
4828 #endif
4830 char tmp[MIGRATE_TYPES + 1];
4831 char *p = tmp;
4832 int i;
4834 for (i = 0; i < MIGRATE_TYPES; i++) {
4835 if (type & (1 << i))
4836 *p++ = types[i];
4839 *p = '\0';
4840 printk(KERN_CONT "(%s) ", tmp);
4844 * Show free area list (used inside shift_scroll-lock stuff)
4845 * We also calculate the percentage fragmentation. We do this by counting the
4846 * memory on each free list with the exception of the first item on the list.
4848 * Bits in @filter:
4849 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4850 * cpuset.
4852 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4854 unsigned long free_pcp = 0;
4855 int cpu;
4856 struct zone *zone;
4857 pg_data_t *pgdat;
4859 for_each_populated_zone(zone) {
4860 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4861 continue;
4863 for_each_online_cpu(cpu)
4864 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4867 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4868 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4869 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4870 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4871 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4872 " free:%lu free_pcp:%lu free_cma:%lu\n",
4873 global_node_page_state(NR_ACTIVE_ANON),
4874 global_node_page_state(NR_INACTIVE_ANON),
4875 global_node_page_state(NR_ISOLATED_ANON),
4876 global_node_page_state(NR_ACTIVE_FILE),
4877 global_node_page_state(NR_INACTIVE_FILE),
4878 global_node_page_state(NR_ISOLATED_FILE),
4879 global_node_page_state(NR_UNEVICTABLE),
4880 global_node_page_state(NR_FILE_DIRTY),
4881 global_node_page_state(NR_WRITEBACK),
4882 global_node_page_state(NR_UNSTABLE_NFS),
4883 global_node_page_state(NR_SLAB_RECLAIMABLE),
4884 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4885 global_node_page_state(NR_FILE_MAPPED),
4886 global_node_page_state(NR_SHMEM),
4887 global_zone_page_state(NR_PAGETABLE),
4888 global_zone_page_state(NR_BOUNCE),
4889 global_zone_page_state(NR_FREE_PAGES),
4890 free_pcp,
4891 global_zone_page_state(NR_FREE_CMA_PAGES));
4893 for_each_online_pgdat(pgdat) {
4894 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4895 continue;
4897 printk("Node %d"
4898 " active_anon:%lukB"
4899 " inactive_anon:%lukB"
4900 " active_file:%lukB"
4901 " inactive_file:%lukB"
4902 " unevictable:%lukB"
4903 " isolated(anon):%lukB"
4904 " isolated(file):%lukB"
4905 " mapped:%lukB"
4906 " dirty:%lukB"
4907 " writeback:%lukB"
4908 " shmem:%lukB"
4909 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4910 " shmem_thp: %lukB"
4911 " shmem_pmdmapped: %lukB"
4912 " anon_thp: %lukB"
4913 #endif
4914 " writeback_tmp:%lukB"
4915 " unstable:%lukB"
4916 " all_unreclaimable? %s"
4917 "\n",
4918 pgdat->node_id,
4919 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4920 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4921 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4922 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4923 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4924 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4925 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4926 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4927 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4928 K(node_page_state(pgdat, NR_WRITEBACK)),
4929 K(node_page_state(pgdat, NR_SHMEM)),
4930 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4931 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4932 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4933 * HPAGE_PMD_NR),
4934 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4935 #endif
4936 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4937 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4938 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4939 "yes" : "no");
4942 for_each_populated_zone(zone) {
4943 int i;
4945 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4946 continue;
4948 free_pcp = 0;
4949 for_each_online_cpu(cpu)
4950 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4952 show_node(zone);
4953 printk(KERN_CONT
4954 "%s"
4955 " free:%lukB"
4956 " min:%lukB"
4957 " low:%lukB"
4958 " high:%lukB"
4959 " active_anon:%lukB"
4960 " inactive_anon:%lukB"
4961 " active_file:%lukB"
4962 " inactive_file:%lukB"
4963 " unevictable:%lukB"
4964 " writepending:%lukB"
4965 " present:%lukB"
4966 " managed:%lukB"
4967 " mlocked:%lukB"
4968 " kernel_stack:%lukB"
4969 " pagetables:%lukB"
4970 " bounce:%lukB"
4971 " free_pcp:%lukB"
4972 " local_pcp:%ukB"
4973 " free_cma:%lukB"
4974 "\n",
4975 zone->name,
4976 K(zone_page_state(zone, NR_FREE_PAGES)),
4977 K(min_wmark_pages(zone)),
4978 K(low_wmark_pages(zone)),
4979 K(high_wmark_pages(zone)),
4980 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4981 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4982 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4983 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4984 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4985 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4986 K(zone->present_pages),
4987 K(zone->managed_pages),
4988 K(zone_page_state(zone, NR_MLOCK)),
4989 zone_page_state(zone, NR_KERNEL_STACK_KB),
4990 K(zone_page_state(zone, NR_PAGETABLE)),
4991 K(zone_page_state(zone, NR_BOUNCE)),
4992 K(free_pcp),
4993 K(this_cpu_read(zone->pageset->pcp.count)),
4994 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4995 printk("lowmem_reserve[]:");
4996 for (i = 0; i < MAX_NR_ZONES; i++)
4997 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4998 printk(KERN_CONT "\n");
5001 for_each_populated_zone(zone) {
5002 unsigned int order;
5003 unsigned long nr[MAX_ORDER], flags, total = 0;
5004 unsigned char types[MAX_ORDER];
5006 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5007 continue;
5008 show_node(zone);
5009 printk(KERN_CONT "%s: ", zone->name);
5011 spin_lock_irqsave(&zone->lock, flags);
5012 for (order = 0; order < MAX_ORDER; order++) {
5013 struct free_area *area = &zone->free_area[order];
5014 int type;
5016 nr[order] = area->nr_free;
5017 total += nr[order] << order;
5019 types[order] = 0;
5020 for (type = 0; type < MIGRATE_TYPES; type++) {
5021 if (!list_empty(&area->free_list[type]))
5022 types[order] |= 1 << type;
5025 spin_unlock_irqrestore(&zone->lock, flags);
5026 for (order = 0; order < MAX_ORDER; order++) {
5027 printk(KERN_CONT "%lu*%lukB ",
5028 nr[order], K(1UL) << order);
5029 if (nr[order])
5030 show_migration_types(types[order]);
5032 printk(KERN_CONT "= %lukB\n", K(total));
5035 hugetlb_show_meminfo();
5037 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5039 show_swap_cache_info();
5042 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5044 zoneref->zone = zone;
5045 zoneref->zone_idx = zone_idx(zone);
5049 * Builds allocation fallback zone lists.
5051 * Add all populated zones of a node to the zonelist.
5053 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5055 struct zone *zone;
5056 enum zone_type zone_type = MAX_NR_ZONES;
5057 int nr_zones = 0;
5059 do {
5060 zone_type--;
5061 zone = pgdat->node_zones + zone_type;
5062 if (managed_zone(zone)) {
5063 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5064 check_highest_zone(zone_type);
5066 } while (zone_type);
5068 return nr_zones;
5071 #ifdef CONFIG_NUMA
5073 static int __parse_numa_zonelist_order(char *s)
5076 * We used to support different zonlists modes but they turned
5077 * out to be just not useful. Let's keep the warning in place
5078 * if somebody still use the cmd line parameter so that we do
5079 * not fail it silently
5081 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5082 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5083 return -EINVAL;
5085 return 0;
5088 static __init int setup_numa_zonelist_order(char *s)
5090 if (!s)
5091 return 0;
5093 return __parse_numa_zonelist_order(s);
5095 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5097 char numa_zonelist_order[] = "Node";
5100 * sysctl handler for numa_zonelist_order
5102 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5103 void __user *buffer, size_t *length,
5104 loff_t *ppos)
5106 char *str;
5107 int ret;
5109 if (!write)
5110 return proc_dostring(table, write, buffer, length, ppos);
5111 str = memdup_user_nul(buffer, 16);
5112 if (IS_ERR(str))
5113 return PTR_ERR(str);
5115 ret = __parse_numa_zonelist_order(str);
5116 kfree(str);
5117 return ret;
5121 #define MAX_NODE_LOAD (nr_online_nodes)
5122 static int node_load[MAX_NUMNODES];
5125 * find_next_best_node - find the next node that should appear in a given node's fallback list
5126 * @node: node whose fallback list we're appending
5127 * @used_node_mask: nodemask_t of already used nodes
5129 * We use a number of factors to determine which is the next node that should
5130 * appear on a given node's fallback list. The node should not have appeared
5131 * already in @node's fallback list, and it should be the next closest node
5132 * according to the distance array (which contains arbitrary distance values
5133 * from each node to each node in the system), and should also prefer nodes
5134 * with no CPUs, since presumably they'll have very little allocation pressure
5135 * on them otherwise.
5136 * It returns -1 if no node is found.
5138 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5140 int n, val;
5141 int min_val = INT_MAX;
5142 int best_node = NUMA_NO_NODE;
5143 const struct cpumask *tmp = cpumask_of_node(0);
5145 /* Use the local node if we haven't already */
5146 if (!node_isset(node, *used_node_mask)) {
5147 node_set(node, *used_node_mask);
5148 return node;
5151 for_each_node_state(n, N_MEMORY) {
5153 /* Don't want a node to appear more than once */
5154 if (node_isset(n, *used_node_mask))
5155 continue;
5157 /* Use the distance array to find the distance */
5158 val = node_distance(node, n);
5160 /* Penalize nodes under us ("prefer the next node") */
5161 val += (n < node);
5163 /* Give preference to headless and unused nodes */
5164 tmp = cpumask_of_node(n);
5165 if (!cpumask_empty(tmp))
5166 val += PENALTY_FOR_NODE_WITH_CPUS;
5168 /* Slight preference for less loaded node */
5169 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5170 val += node_load[n];
5172 if (val < min_val) {
5173 min_val = val;
5174 best_node = n;
5178 if (best_node >= 0)
5179 node_set(best_node, *used_node_mask);
5181 return best_node;
5186 * Build zonelists ordered by node and zones within node.
5187 * This results in maximum locality--normal zone overflows into local
5188 * DMA zone, if any--but risks exhausting DMA zone.
5190 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5191 unsigned nr_nodes)
5193 struct zoneref *zonerefs;
5194 int i;
5196 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5198 for (i = 0; i < nr_nodes; i++) {
5199 int nr_zones;
5201 pg_data_t *node = NODE_DATA(node_order[i]);
5203 nr_zones = build_zonerefs_node(node, zonerefs);
5204 zonerefs += nr_zones;
5206 zonerefs->zone = NULL;
5207 zonerefs->zone_idx = 0;
5211 * Build gfp_thisnode zonelists
5213 static void build_thisnode_zonelists(pg_data_t *pgdat)
5215 struct zoneref *zonerefs;
5216 int nr_zones;
5218 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5219 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5220 zonerefs += nr_zones;
5221 zonerefs->zone = NULL;
5222 zonerefs->zone_idx = 0;
5226 * Build zonelists ordered by zone and nodes within zones.
5227 * This results in conserving DMA zone[s] until all Normal memory is
5228 * exhausted, but results in overflowing to remote node while memory
5229 * may still exist in local DMA zone.
5232 static void build_zonelists(pg_data_t *pgdat)
5234 static int node_order[MAX_NUMNODES];
5235 int node, load, nr_nodes = 0;
5236 nodemask_t used_mask;
5237 int local_node, prev_node;
5239 /* NUMA-aware ordering of nodes */
5240 local_node = pgdat->node_id;
5241 load = nr_online_nodes;
5242 prev_node = local_node;
5243 nodes_clear(used_mask);
5245 memset(node_order, 0, sizeof(node_order));
5246 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5248 * We don't want to pressure a particular node.
5249 * So adding penalty to the first node in same
5250 * distance group to make it round-robin.
5252 if (node_distance(local_node, node) !=
5253 node_distance(local_node, prev_node))
5254 node_load[node] = load;
5256 node_order[nr_nodes++] = node;
5257 prev_node = node;
5258 load--;
5261 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5262 build_thisnode_zonelists(pgdat);
5265 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5267 * Return node id of node used for "local" allocations.
5268 * I.e., first node id of first zone in arg node's generic zonelist.
5269 * Used for initializing percpu 'numa_mem', which is used primarily
5270 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5272 int local_memory_node(int node)
5274 struct zoneref *z;
5276 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5277 gfp_zone(GFP_KERNEL),
5278 NULL);
5279 return zone_to_nid(z->zone);
5281 #endif
5283 static void setup_min_unmapped_ratio(void);
5284 static void setup_min_slab_ratio(void);
5285 #else /* CONFIG_NUMA */
5287 static void build_zonelists(pg_data_t *pgdat)
5289 int node, local_node;
5290 struct zoneref *zonerefs;
5291 int nr_zones;
5293 local_node = pgdat->node_id;
5295 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5296 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5297 zonerefs += nr_zones;
5300 * Now we build the zonelist so that it contains the zones
5301 * of all the other nodes.
5302 * We don't want to pressure a particular node, so when
5303 * building the zones for node N, we make sure that the
5304 * zones coming right after the local ones are those from
5305 * node N+1 (modulo N)
5307 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5308 if (!node_online(node))
5309 continue;
5310 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5311 zonerefs += nr_zones;
5313 for (node = 0; node < local_node; node++) {
5314 if (!node_online(node))
5315 continue;
5316 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5317 zonerefs += nr_zones;
5320 zonerefs->zone = NULL;
5321 zonerefs->zone_idx = 0;
5324 #endif /* CONFIG_NUMA */
5327 * Boot pageset table. One per cpu which is going to be used for all
5328 * zones and all nodes. The parameters will be set in such a way
5329 * that an item put on a list will immediately be handed over to
5330 * the buddy list. This is safe since pageset manipulation is done
5331 * with interrupts disabled.
5333 * The boot_pagesets must be kept even after bootup is complete for
5334 * unused processors and/or zones. They do play a role for bootstrapping
5335 * hotplugged processors.
5337 * zoneinfo_show() and maybe other functions do
5338 * not check if the processor is online before following the pageset pointer.
5339 * Other parts of the kernel may not check if the zone is available.
5341 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5342 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5343 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5345 static void __build_all_zonelists(void *data)
5347 int nid;
5348 int __maybe_unused cpu;
5349 pg_data_t *self = data;
5350 static DEFINE_SPINLOCK(lock);
5352 spin_lock(&lock);
5354 #ifdef CONFIG_NUMA
5355 memset(node_load, 0, sizeof(node_load));
5356 #endif
5359 * This node is hotadded and no memory is yet present. So just
5360 * building zonelists is fine - no need to touch other nodes.
5362 if (self && !node_online(self->node_id)) {
5363 build_zonelists(self);
5364 } else {
5365 for_each_online_node(nid) {
5366 pg_data_t *pgdat = NODE_DATA(nid);
5368 build_zonelists(pgdat);
5371 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5373 * We now know the "local memory node" for each node--
5374 * i.e., the node of the first zone in the generic zonelist.
5375 * Set up numa_mem percpu variable for on-line cpus. During
5376 * boot, only the boot cpu should be on-line; we'll init the
5377 * secondary cpus' numa_mem as they come on-line. During
5378 * node/memory hotplug, we'll fixup all on-line cpus.
5380 for_each_online_cpu(cpu)
5381 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5382 #endif
5385 spin_unlock(&lock);
5388 static noinline void __init
5389 build_all_zonelists_init(void)
5391 int cpu;
5393 __build_all_zonelists(NULL);
5396 * Initialize the boot_pagesets that are going to be used
5397 * for bootstrapping processors. The real pagesets for
5398 * each zone will be allocated later when the per cpu
5399 * allocator is available.
5401 * boot_pagesets are used also for bootstrapping offline
5402 * cpus if the system is already booted because the pagesets
5403 * are needed to initialize allocators on a specific cpu too.
5404 * F.e. the percpu allocator needs the page allocator which
5405 * needs the percpu allocator in order to allocate its pagesets
5406 * (a chicken-egg dilemma).
5408 for_each_possible_cpu(cpu)
5409 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5411 mminit_verify_zonelist();
5412 cpuset_init_current_mems_allowed();
5416 * unless system_state == SYSTEM_BOOTING.
5418 * __ref due to call of __init annotated helper build_all_zonelists_init
5419 * [protected by SYSTEM_BOOTING].
5421 void __ref build_all_zonelists(pg_data_t *pgdat)
5423 if (system_state == SYSTEM_BOOTING) {
5424 build_all_zonelists_init();
5425 } else {
5426 __build_all_zonelists(pgdat);
5427 /* cpuset refresh routine should be here */
5429 vm_total_pages = nr_free_pagecache_pages();
5431 * Disable grouping by mobility if the number of pages in the
5432 * system is too low to allow the mechanism to work. It would be
5433 * more accurate, but expensive to check per-zone. This check is
5434 * made on memory-hotadd so a system can start with mobility
5435 * disabled and enable it later
5437 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5438 page_group_by_mobility_disabled = 1;
5439 else
5440 page_group_by_mobility_disabled = 0;
5442 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5443 nr_online_nodes,
5444 page_group_by_mobility_disabled ? "off" : "on",
5445 vm_total_pages);
5446 #ifdef CONFIG_NUMA
5447 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5448 #endif
5451 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5452 static bool __meminit
5453 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5455 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5456 static struct memblock_region *r;
5458 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5459 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5460 for_each_memblock(memory, r) {
5461 if (*pfn < memblock_region_memory_end_pfn(r))
5462 break;
5465 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5466 memblock_is_mirror(r)) {
5467 *pfn = memblock_region_memory_end_pfn(r);
5468 return true;
5471 #endif
5472 return false;
5476 * Initially all pages are reserved - free ones are freed
5477 * up by memblock_free_all() once the early boot process is
5478 * done. Non-atomic initialization, single-pass.
5480 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5481 unsigned long start_pfn, enum memmap_context context,
5482 struct vmem_altmap *altmap)
5484 unsigned long pfn, end_pfn = start_pfn + size;
5485 struct page *page;
5487 if (highest_memmap_pfn < end_pfn - 1)
5488 highest_memmap_pfn = end_pfn - 1;
5490 #ifdef CONFIG_ZONE_DEVICE
5492 * Honor reservation requested by the driver for this ZONE_DEVICE
5493 * memory. We limit the total number of pages to initialize to just
5494 * those that might contain the memory mapping. We will defer the
5495 * ZONE_DEVICE page initialization until after we have released
5496 * the hotplug lock.
5498 if (zone == ZONE_DEVICE) {
5499 if (!altmap)
5500 return;
5502 if (start_pfn == altmap->base_pfn)
5503 start_pfn += altmap->reserve;
5504 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5506 #endif
5508 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5510 * There can be holes in boot-time mem_map[]s handed to this
5511 * function. They do not exist on hotplugged memory.
5513 if (context == MEMMAP_EARLY) {
5514 if (!early_pfn_valid(pfn))
5515 continue;
5516 if (!early_pfn_in_nid(pfn, nid))
5517 continue;
5518 if (overlap_memmap_init(zone, &pfn))
5519 continue;
5520 if (defer_init(nid, pfn, end_pfn))
5521 break;
5524 page = pfn_to_page(pfn);
5525 __init_single_page(page, pfn, zone, nid);
5526 if (context == MEMMAP_HOTPLUG)
5527 __SetPageReserved(page);
5530 * Mark the block movable so that blocks are reserved for
5531 * movable at startup. This will force kernel allocations
5532 * to reserve their blocks rather than leaking throughout
5533 * the address space during boot when many long-lived
5534 * kernel allocations are made.
5536 * bitmap is created for zone's valid pfn range. but memmap
5537 * can be created for invalid pages (for alignment)
5538 * check here not to call set_pageblock_migratetype() against
5539 * pfn out of zone.
5541 if (!(pfn & (pageblock_nr_pages - 1))) {
5542 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5543 cond_resched();
5546 #ifdef CONFIG_SPARSEMEM
5548 * If the zone does not span the rest of the section then
5549 * we should at least initialize those pages. Otherwise we
5550 * could blow up on a poisoned page in some paths which depend
5551 * on full sections being initialized (e.g. memory hotplug).
5553 while (end_pfn % PAGES_PER_SECTION) {
5554 __init_single_page(pfn_to_page(end_pfn), end_pfn, zone, nid);
5555 end_pfn++;
5557 #endif
5560 #ifdef CONFIG_ZONE_DEVICE
5561 void __ref memmap_init_zone_device(struct zone *zone,
5562 unsigned long start_pfn,
5563 unsigned long size,
5564 struct dev_pagemap *pgmap)
5566 unsigned long pfn, end_pfn = start_pfn + size;
5567 struct pglist_data *pgdat = zone->zone_pgdat;
5568 unsigned long zone_idx = zone_idx(zone);
5569 unsigned long start = jiffies;
5570 int nid = pgdat->node_id;
5572 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5573 return;
5576 * The call to memmap_init_zone should have already taken care
5577 * of the pages reserved for the memmap, so we can just jump to
5578 * the end of that region and start processing the device pages.
5580 if (pgmap->altmap_valid) {
5581 struct vmem_altmap *altmap = &pgmap->altmap;
5583 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5584 size = end_pfn - start_pfn;
5587 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5588 struct page *page = pfn_to_page(pfn);
5590 __init_single_page(page, pfn, zone_idx, nid);
5593 * Mark page reserved as it will need to wait for onlining
5594 * phase for it to be fully associated with a zone.
5596 * We can use the non-atomic __set_bit operation for setting
5597 * the flag as we are still initializing the pages.
5599 __SetPageReserved(page);
5602 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5603 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5604 * page is ever freed or placed on a driver-private list.
5606 page->pgmap = pgmap;
5607 page->hmm_data = 0;
5610 * Mark the block movable so that blocks are reserved for
5611 * movable at startup. This will force kernel allocations
5612 * to reserve their blocks rather than leaking throughout
5613 * the address space during boot when many long-lived
5614 * kernel allocations are made.
5616 * bitmap is created for zone's valid pfn range. but memmap
5617 * can be created for invalid pages (for alignment)
5618 * check here not to call set_pageblock_migratetype() against
5619 * pfn out of zone.
5621 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5622 * because this is done early in sparse_add_one_section
5624 if (!(pfn & (pageblock_nr_pages - 1))) {
5625 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5626 cond_resched();
5630 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5631 size, jiffies_to_msecs(jiffies - start));
5634 #endif
5635 static void __meminit zone_init_free_lists(struct zone *zone)
5637 unsigned int order, t;
5638 for_each_migratetype_order(order, t) {
5639 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5640 zone->free_area[order].nr_free = 0;
5644 void __meminit __weak memmap_init(unsigned long size, int nid,
5645 unsigned long zone, unsigned long start_pfn)
5647 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5650 static int zone_batchsize(struct zone *zone)
5652 #ifdef CONFIG_MMU
5653 int batch;
5656 * The per-cpu-pages pools are set to around 1000th of the
5657 * size of the zone.
5659 batch = zone->managed_pages / 1024;
5660 /* But no more than a meg. */
5661 if (batch * PAGE_SIZE > 1024 * 1024)
5662 batch = (1024 * 1024) / PAGE_SIZE;
5663 batch /= 4; /* We effectively *= 4 below */
5664 if (batch < 1)
5665 batch = 1;
5668 * Clamp the batch to a 2^n - 1 value. Having a power
5669 * of 2 value was found to be more likely to have
5670 * suboptimal cache aliasing properties in some cases.
5672 * For example if 2 tasks are alternately allocating
5673 * batches of pages, one task can end up with a lot
5674 * of pages of one half of the possible page colors
5675 * and the other with pages of the other colors.
5677 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5679 return batch;
5681 #else
5682 /* The deferral and batching of frees should be suppressed under NOMMU
5683 * conditions.
5685 * The problem is that NOMMU needs to be able to allocate large chunks
5686 * of contiguous memory as there's no hardware page translation to
5687 * assemble apparent contiguous memory from discontiguous pages.
5689 * Queueing large contiguous runs of pages for batching, however,
5690 * causes the pages to actually be freed in smaller chunks. As there
5691 * can be a significant delay between the individual batches being
5692 * recycled, this leads to the once large chunks of space being
5693 * fragmented and becoming unavailable for high-order allocations.
5695 return 0;
5696 #endif
5700 * pcp->high and pcp->batch values are related and dependent on one another:
5701 * ->batch must never be higher then ->high.
5702 * The following function updates them in a safe manner without read side
5703 * locking.
5705 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5706 * those fields changing asynchronously (acording the the above rule).
5708 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5709 * outside of boot time (or some other assurance that no concurrent updaters
5710 * exist).
5712 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5713 unsigned long batch)
5715 /* start with a fail safe value for batch */
5716 pcp->batch = 1;
5717 smp_wmb();
5719 /* Update high, then batch, in order */
5720 pcp->high = high;
5721 smp_wmb();
5723 pcp->batch = batch;
5726 /* a companion to pageset_set_high() */
5727 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5729 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5732 static void pageset_init(struct per_cpu_pageset *p)
5734 struct per_cpu_pages *pcp;
5735 int migratetype;
5737 memset(p, 0, sizeof(*p));
5739 pcp = &p->pcp;
5740 pcp->count = 0;
5741 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5742 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5745 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5747 pageset_init(p);
5748 pageset_set_batch(p, batch);
5752 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5753 * to the value high for the pageset p.
5755 static void pageset_set_high(struct per_cpu_pageset *p,
5756 unsigned long high)
5758 unsigned long batch = max(1UL, high / 4);
5759 if ((high / 4) > (PAGE_SHIFT * 8))
5760 batch = PAGE_SHIFT * 8;
5762 pageset_update(&p->pcp, high, batch);
5765 static void pageset_set_high_and_batch(struct zone *zone,
5766 struct per_cpu_pageset *pcp)
5768 if (percpu_pagelist_fraction)
5769 pageset_set_high(pcp,
5770 (zone->managed_pages /
5771 percpu_pagelist_fraction));
5772 else
5773 pageset_set_batch(pcp, zone_batchsize(zone));
5776 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5778 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5780 pageset_init(pcp);
5781 pageset_set_high_and_batch(zone, pcp);
5784 void __meminit setup_zone_pageset(struct zone *zone)
5786 int cpu;
5787 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5788 for_each_possible_cpu(cpu)
5789 zone_pageset_init(zone, cpu);
5793 * Allocate per cpu pagesets and initialize them.
5794 * Before this call only boot pagesets were available.
5796 void __init setup_per_cpu_pageset(void)
5798 struct pglist_data *pgdat;
5799 struct zone *zone;
5801 for_each_populated_zone(zone)
5802 setup_zone_pageset(zone);
5804 for_each_online_pgdat(pgdat)
5805 pgdat->per_cpu_nodestats =
5806 alloc_percpu(struct per_cpu_nodestat);
5809 static __meminit void zone_pcp_init(struct zone *zone)
5812 * per cpu subsystem is not up at this point. The following code
5813 * relies on the ability of the linker to provide the
5814 * offset of a (static) per cpu variable into the per cpu area.
5816 zone->pageset = &boot_pageset;
5818 if (populated_zone(zone))
5819 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5820 zone->name, zone->present_pages,
5821 zone_batchsize(zone));
5824 void __meminit init_currently_empty_zone(struct zone *zone,
5825 unsigned long zone_start_pfn,
5826 unsigned long size)
5828 struct pglist_data *pgdat = zone->zone_pgdat;
5829 int zone_idx = zone_idx(zone) + 1;
5831 if (zone_idx > pgdat->nr_zones)
5832 pgdat->nr_zones = zone_idx;
5834 zone->zone_start_pfn = zone_start_pfn;
5836 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5837 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5838 pgdat->node_id,
5839 (unsigned long)zone_idx(zone),
5840 zone_start_pfn, (zone_start_pfn + size));
5842 zone_init_free_lists(zone);
5843 zone->initialized = 1;
5846 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5847 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5850 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5852 int __meminit __early_pfn_to_nid(unsigned long pfn,
5853 struct mminit_pfnnid_cache *state)
5855 unsigned long start_pfn, end_pfn;
5856 int nid;
5858 if (state->last_start <= pfn && pfn < state->last_end)
5859 return state->last_nid;
5861 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5862 if (nid != -1) {
5863 state->last_start = start_pfn;
5864 state->last_end = end_pfn;
5865 state->last_nid = nid;
5868 return nid;
5870 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5873 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5874 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5875 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5877 * If an architecture guarantees that all ranges registered contain no holes
5878 * and may be freed, this this function may be used instead of calling
5879 * memblock_free_early_nid() manually.
5881 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5883 unsigned long start_pfn, end_pfn;
5884 int i, this_nid;
5886 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5887 start_pfn = min(start_pfn, max_low_pfn);
5888 end_pfn = min(end_pfn, max_low_pfn);
5890 if (start_pfn < end_pfn)
5891 memblock_free_early_nid(PFN_PHYS(start_pfn),
5892 (end_pfn - start_pfn) << PAGE_SHIFT,
5893 this_nid);
5898 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5899 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5901 * If an architecture guarantees that all ranges registered contain no holes and may
5902 * be freed, this function may be used instead of calling memory_present() manually.
5904 void __init sparse_memory_present_with_active_regions(int nid)
5906 unsigned long start_pfn, end_pfn;
5907 int i, this_nid;
5909 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5910 memory_present(this_nid, start_pfn, end_pfn);
5914 * get_pfn_range_for_nid - Return the start and end page frames for a node
5915 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5916 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5917 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5919 * It returns the start and end page frame of a node based on information
5920 * provided by memblock_set_node(). If called for a node
5921 * with no available memory, a warning is printed and the start and end
5922 * PFNs will be 0.
5924 void __meminit get_pfn_range_for_nid(unsigned int nid,
5925 unsigned long *start_pfn, unsigned long *end_pfn)
5927 unsigned long this_start_pfn, this_end_pfn;
5928 int i;
5930 *start_pfn = -1UL;
5931 *end_pfn = 0;
5933 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5934 *start_pfn = min(*start_pfn, this_start_pfn);
5935 *end_pfn = max(*end_pfn, this_end_pfn);
5938 if (*start_pfn == -1UL)
5939 *start_pfn = 0;
5943 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5944 * assumption is made that zones within a node are ordered in monotonic
5945 * increasing memory addresses so that the "highest" populated zone is used
5947 static void __init find_usable_zone_for_movable(void)
5949 int zone_index;
5950 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5951 if (zone_index == ZONE_MOVABLE)
5952 continue;
5954 if (arch_zone_highest_possible_pfn[zone_index] >
5955 arch_zone_lowest_possible_pfn[zone_index])
5956 break;
5959 VM_BUG_ON(zone_index == -1);
5960 movable_zone = zone_index;
5964 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5965 * because it is sized independent of architecture. Unlike the other zones,
5966 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5967 * in each node depending on the size of each node and how evenly kernelcore
5968 * is distributed. This helper function adjusts the zone ranges
5969 * provided by the architecture for a given node by using the end of the
5970 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5971 * zones within a node are in order of monotonic increases memory addresses
5973 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5974 unsigned long zone_type,
5975 unsigned long node_start_pfn,
5976 unsigned long node_end_pfn,
5977 unsigned long *zone_start_pfn,
5978 unsigned long *zone_end_pfn)
5980 /* Only adjust if ZONE_MOVABLE is on this node */
5981 if (zone_movable_pfn[nid]) {
5982 /* Size ZONE_MOVABLE */
5983 if (zone_type == ZONE_MOVABLE) {
5984 *zone_start_pfn = zone_movable_pfn[nid];
5985 *zone_end_pfn = min(node_end_pfn,
5986 arch_zone_highest_possible_pfn[movable_zone]);
5988 /* Adjust for ZONE_MOVABLE starting within this range */
5989 } else if (!mirrored_kernelcore &&
5990 *zone_start_pfn < zone_movable_pfn[nid] &&
5991 *zone_end_pfn > zone_movable_pfn[nid]) {
5992 *zone_end_pfn = zone_movable_pfn[nid];
5994 /* Check if this whole range is within ZONE_MOVABLE */
5995 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5996 *zone_start_pfn = *zone_end_pfn;
6001 * Return the number of pages a zone spans in a node, including holes
6002 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6004 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
6005 unsigned long zone_type,
6006 unsigned long node_start_pfn,
6007 unsigned long node_end_pfn,
6008 unsigned long *zone_start_pfn,
6009 unsigned long *zone_end_pfn,
6010 unsigned long *ignored)
6012 /* When hotadd a new node from cpu_up(), the node should be empty */
6013 if (!node_start_pfn && !node_end_pfn)
6014 return 0;
6016 /* Get the start and end of the zone */
6017 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
6018 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
6019 adjust_zone_range_for_zone_movable(nid, zone_type,
6020 node_start_pfn, node_end_pfn,
6021 zone_start_pfn, zone_end_pfn);
6023 /* Check that this node has pages within the zone's required range */
6024 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6025 return 0;
6027 /* Move the zone boundaries inside the node if necessary */
6028 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6029 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6031 /* Return the spanned pages */
6032 return *zone_end_pfn - *zone_start_pfn;
6036 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6037 * then all holes in the requested range will be accounted for.
6039 unsigned long __meminit __absent_pages_in_range(int nid,
6040 unsigned long range_start_pfn,
6041 unsigned long range_end_pfn)
6043 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6044 unsigned long start_pfn, end_pfn;
6045 int i;
6047 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6048 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6049 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6050 nr_absent -= end_pfn - start_pfn;
6052 return nr_absent;
6056 * absent_pages_in_range - Return number of page frames in holes within a range
6057 * @start_pfn: The start PFN to start searching for holes
6058 * @end_pfn: The end PFN to stop searching for holes
6060 * It returns the number of pages frames in memory holes within a range.
6062 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6063 unsigned long end_pfn)
6065 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6068 /* Return the number of page frames in holes in a zone on a node */
6069 static unsigned long __meminit zone_absent_pages_in_node(int nid,
6070 unsigned long zone_type,
6071 unsigned long node_start_pfn,
6072 unsigned long node_end_pfn,
6073 unsigned long *ignored)
6075 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6076 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6077 unsigned long zone_start_pfn, zone_end_pfn;
6078 unsigned long nr_absent;
6080 /* When hotadd a new node from cpu_up(), the node should be empty */
6081 if (!node_start_pfn && !node_end_pfn)
6082 return 0;
6084 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6085 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6087 adjust_zone_range_for_zone_movable(nid, zone_type,
6088 node_start_pfn, node_end_pfn,
6089 &zone_start_pfn, &zone_end_pfn);
6090 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6093 * ZONE_MOVABLE handling.
6094 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6095 * and vice versa.
6097 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6098 unsigned long start_pfn, end_pfn;
6099 struct memblock_region *r;
6101 for_each_memblock(memory, r) {
6102 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6103 zone_start_pfn, zone_end_pfn);
6104 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6105 zone_start_pfn, zone_end_pfn);
6107 if (zone_type == ZONE_MOVABLE &&
6108 memblock_is_mirror(r))
6109 nr_absent += end_pfn - start_pfn;
6111 if (zone_type == ZONE_NORMAL &&
6112 !memblock_is_mirror(r))
6113 nr_absent += end_pfn - start_pfn;
6117 return nr_absent;
6120 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6121 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6122 unsigned long zone_type,
6123 unsigned long node_start_pfn,
6124 unsigned long node_end_pfn,
6125 unsigned long *zone_start_pfn,
6126 unsigned long *zone_end_pfn,
6127 unsigned long *zones_size)
6129 unsigned int zone;
6131 *zone_start_pfn = node_start_pfn;
6132 for (zone = 0; zone < zone_type; zone++)
6133 *zone_start_pfn += zones_size[zone];
6135 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6137 return zones_size[zone_type];
6140 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6141 unsigned long zone_type,
6142 unsigned long node_start_pfn,
6143 unsigned long node_end_pfn,
6144 unsigned long *zholes_size)
6146 if (!zholes_size)
6147 return 0;
6149 return zholes_size[zone_type];
6152 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6154 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6155 unsigned long node_start_pfn,
6156 unsigned long node_end_pfn,
6157 unsigned long *zones_size,
6158 unsigned long *zholes_size)
6160 unsigned long realtotalpages = 0, totalpages = 0;
6161 enum zone_type i;
6163 for (i = 0; i < MAX_NR_ZONES; i++) {
6164 struct zone *zone = pgdat->node_zones + i;
6165 unsigned long zone_start_pfn, zone_end_pfn;
6166 unsigned long size, real_size;
6168 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6169 node_start_pfn,
6170 node_end_pfn,
6171 &zone_start_pfn,
6172 &zone_end_pfn,
6173 zones_size);
6174 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6175 node_start_pfn, node_end_pfn,
6176 zholes_size);
6177 if (size)
6178 zone->zone_start_pfn = zone_start_pfn;
6179 else
6180 zone->zone_start_pfn = 0;
6181 zone->spanned_pages = size;
6182 zone->present_pages = real_size;
6184 totalpages += size;
6185 realtotalpages += real_size;
6188 pgdat->node_spanned_pages = totalpages;
6189 pgdat->node_present_pages = realtotalpages;
6190 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6191 realtotalpages);
6194 #ifndef CONFIG_SPARSEMEM
6196 * Calculate the size of the zone->blockflags rounded to an unsigned long
6197 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6198 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6199 * round what is now in bits to nearest long in bits, then return it in
6200 * bytes.
6202 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6204 unsigned long usemapsize;
6206 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6207 usemapsize = roundup(zonesize, pageblock_nr_pages);
6208 usemapsize = usemapsize >> pageblock_order;
6209 usemapsize *= NR_PAGEBLOCK_BITS;
6210 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6212 return usemapsize / 8;
6215 static void __ref setup_usemap(struct pglist_data *pgdat,
6216 struct zone *zone,
6217 unsigned long zone_start_pfn,
6218 unsigned long zonesize)
6220 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6221 zone->pageblock_flags = NULL;
6222 if (usemapsize)
6223 zone->pageblock_flags =
6224 memblock_alloc_node_nopanic(usemapsize,
6225 pgdat->node_id);
6227 #else
6228 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6229 unsigned long zone_start_pfn, unsigned long zonesize) {}
6230 #endif /* CONFIG_SPARSEMEM */
6232 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6234 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6235 void __init set_pageblock_order(void)
6237 unsigned int order;
6239 /* Check that pageblock_nr_pages has not already been setup */
6240 if (pageblock_order)
6241 return;
6243 if (HPAGE_SHIFT > PAGE_SHIFT)
6244 order = HUGETLB_PAGE_ORDER;
6245 else
6246 order = MAX_ORDER - 1;
6249 * Assume the largest contiguous order of interest is a huge page.
6250 * This value may be variable depending on boot parameters on IA64 and
6251 * powerpc.
6253 pageblock_order = order;
6255 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6258 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6259 * is unused as pageblock_order is set at compile-time. See
6260 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6261 * the kernel config
6263 void __init set_pageblock_order(void)
6267 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6269 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6270 unsigned long present_pages)
6272 unsigned long pages = spanned_pages;
6275 * Provide a more accurate estimation if there are holes within
6276 * the zone and SPARSEMEM is in use. If there are holes within the
6277 * zone, each populated memory region may cost us one or two extra
6278 * memmap pages due to alignment because memmap pages for each
6279 * populated regions may not be naturally aligned on page boundary.
6280 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6282 if (spanned_pages > present_pages + (present_pages >> 4) &&
6283 IS_ENABLED(CONFIG_SPARSEMEM))
6284 pages = present_pages;
6286 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6289 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6290 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6292 spin_lock_init(&pgdat->split_queue_lock);
6293 INIT_LIST_HEAD(&pgdat->split_queue);
6294 pgdat->split_queue_len = 0;
6296 #else
6297 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6298 #endif
6300 #ifdef CONFIG_COMPACTION
6301 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6303 init_waitqueue_head(&pgdat->kcompactd_wait);
6305 #else
6306 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6307 #endif
6309 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6311 pgdat_resize_init(pgdat);
6313 pgdat_init_split_queue(pgdat);
6314 pgdat_init_kcompactd(pgdat);
6316 init_waitqueue_head(&pgdat->kswapd_wait);
6317 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6319 pgdat_page_ext_init(pgdat);
6320 spin_lock_init(&pgdat->lru_lock);
6321 lruvec_init(node_lruvec(pgdat));
6324 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6325 unsigned long remaining_pages)
6327 zone->managed_pages = remaining_pages;
6328 zone_set_nid(zone, nid);
6329 zone->name = zone_names[idx];
6330 zone->zone_pgdat = NODE_DATA(nid);
6331 spin_lock_init(&zone->lock);
6332 zone_seqlock_init(zone);
6333 zone_pcp_init(zone);
6337 * Set up the zone data structures
6338 * - init pgdat internals
6339 * - init all zones belonging to this node
6341 * NOTE: this function is only called during memory hotplug
6343 #ifdef CONFIG_MEMORY_HOTPLUG
6344 void __ref free_area_init_core_hotplug(int nid)
6346 enum zone_type z;
6347 pg_data_t *pgdat = NODE_DATA(nid);
6349 pgdat_init_internals(pgdat);
6350 for (z = 0; z < MAX_NR_ZONES; z++)
6351 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6353 #endif
6356 * Set up the zone data structures:
6357 * - mark all pages reserved
6358 * - mark all memory queues empty
6359 * - clear the memory bitmaps
6361 * NOTE: pgdat should get zeroed by caller.
6362 * NOTE: this function is only called during early init.
6364 static void __init free_area_init_core(struct pglist_data *pgdat)
6366 enum zone_type j;
6367 int nid = pgdat->node_id;
6369 pgdat_init_internals(pgdat);
6370 pgdat->per_cpu_nodestats = &boot_nodestats;
6372 for (j = 0; j < MAX_NR_ZONES; j++) {
6373 struct zone *zone = pgdat->node_zones + j;
6374 unsigned long size, freesize, memmap_pages;
6375 unsigned long zone_start_pfn = zone->zone_start_pfn;
6377 size = zone->spanned_pages;
6378 freesize = zone->present_pages;
6381 * Adjust freesize so that it accounts for how much memory
6382 * is used by this zone for memmap. This affects the watermark
6383 * and per-cpu initialisations
6385 memmap_pages = calc_memmap_size(size, freesize);
6386 if (!is_highmem_idx(j)) {
6387 if (freesize >= memmap_pages) {
6388 freesize -= memmap_pages;
6389 if (memmap_pages)
6390 printk(KERN_DEBUG
6391 " %s zone: %lu pages used for memmap\n",
6392 zone_names[j], memmap_pages);
6393 } else
6394 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6395 zone_names[j], memmap_pages, freesize);
6398 /* Account for reserved pages */
6399 if (j == 0 && freesize > dma_reserve) {
6400 freesize -= dma_reserve;
6401 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6402 zone_names[0], dma_reserve);
6405 if (!is_highmem_idx(j))
6406 nr_kernel_pages += freesize;
6407 /* Charge for highmem memmap if there are enough kernel pages */
6408 else if (nr_kernel_pages > memmap_pages * 2)
6409 nr_kernel_pages -= memmap_pages;
6410 nr_all_pages += freesize;
6413 * Set an approximate value for lowmem here, it will be adjusted
6414 * when the bootmem allocator frees pages into the buddy system.
6415 * And all highmem pages will be managed by the buddy system.
6417 zone_init_internals(zone, j, nid, freesize);
6419 if (!size)
6420 continue;
6422 set_pageblock_order();
6423 setup_usemap(pgdat, zone, zone_start_pfn, size);
6424 init_currently_empty_zone(zone, zone_start_pfn, size);
6425 memmap_init(size, nid, j, zone_start_pfn);
6429 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6430 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6432 unsigned long __maybe_unused start = 0;
6433 unsigned long __maybe_unused offset = 0;
6435 /* Skip empty nodes */
6436 if (!pgdat->node_spanned_pages)
6437 return;
6439 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6440 offset = pgdat->node_start_pfn - start;
6441 /* ia64 gets its own node_mem_map, before this, without bootmem */
6442 if (!pgdat->node_mem_map) {
6443 unsigned long size, end;
6444 struct page *map;
6447 * The zone's endpoints aren't required to be MAX_ORDER
6448 * aligned but the node_mem_map endpoints must be in order
6449 * for the buddy allocator to function correctly.
6451 end = pgdat_end_pfn(pgdat);
6452 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6453 size = (end - start) * sizeof(struct page);
6454 map = memblock_alloc_node_nopanic(size, pgdat->node_id);
6455 pgdat->node_mem_map = map + offset;
6457 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6458 __func__, pgdat->node_id, (unsigned long)pgdat,
6459 (unsigned long)pgdat->node_mem_map);
6460 #ifndef CONFIG_NEED_MULTIPLE_NODES
6462 * With no DISCONTIG, the global mem_map is just set as node 0's
6464 if (pgdat == NODE_DATA(0)) {
6465 mem_map = NODE_DATA(0)->node_mem_map;
6466 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6467 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6468 mem_map -= offset;
6469 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6471 #endif
6473 #else
6474 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6475 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6477 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6478 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6481 * We start only with one section of pages, more pages are added as
6482 * needed until the rest of deferred pages are initialized.
6484 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6485 pgdat->node_spanned_pages);
6486 pgdat->first_deferred_pfn = ULONG_MAX;
6488 #else
6489 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6490 #endif
6492 void __init free_area_init_node(int nid, unsigned long *zones_size,
6493 unsigned long node_start_pfn,
6494 unsigned long *zholes_size)
6496 pg_data_t *pgdat = NODE_DATA(nid);
6497 unsigned long start_pfn = 0;
6498 unsigned long end_pfn = 0;
6500 /* pg_data_t should be reset to zero when it's allocated */
6501 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6503 pgdat->node_id = nid;
6504 pgdat->node_start_pfn = node_start_pfn;
6505 pgdat->per_cpu_nodestats = NULL;
6506 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6507 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6508 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6509 (u64)start_pfn << PAGE_SHIFT,
6510 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6511 #else
6512 start_pfn = node_start_pfn;
6513 #endif
6514 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6515 zones_size, zholes_size);
6517 alloc_node_mem_map(pgdat);
6518 pgdat_set_deferred_range(pgdat);
6520 free_area_init_core(pgdat);
6523 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6525 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6526 * pages zeroed
6528 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6530 unsigned long pfn;
6531 u64 pgcnt = 0;
6533 for (pfn = spfn; pfn < epfn; pfn++) {
6534 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6535 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6536 + pageblock_nr_pages - 1;
6537 continue;
6539 mm_zero_struct_page(pfn_to_page(pfn));
6540 pgcnt++;
6543 return pgcnt;
6547 * Only struct pages that are backed by physical memory are zeroed and
6548 * initialized by going through __init_single_page(). But, there are some
6549 * struct pages which are reserved in memblock allocator and their fields
6550 * may be accessed (for example page_to_pfn() on some configuration accesses
6551 * flags). We must explicitly zero those struct pages.
6553 * This function also addresses a similar issue where struct pages are left
6554 * uninitialized because the physical address range is not covered by
6555 * memblock.memory or memblock.reserved. That could happen when memblock
6556 * layout is manually configured via memmap=.
6558 void __init zero_resv_unavail(void)
6560 phys_addr_t start, end;
6561 u64 i, pgcnt;
6562 phys_addr_t next = 0;
6565 * Loop through unavailable ranges not covered by memblock.memory.
6567 pgcnt = 0;
6568 for_each_mem_range(i, &memblock.memory, NULL,
6569 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6570 if (next < start)
6571 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6572 next = end;
6574 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6577 * Struct pages that do not have backing memory. This could be because
6578 * firmware is using some of this memory, or for some other reasons.
6580 if (pgcnt)
6581 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6583 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6585 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6587 #if MAX_NUMNODES > 1
6589 * Figure out the number of possible node ids.
6591 void __init setup_nr_node_ids(void)
6593 unsigned int highest;
6595 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6596 nr_node_ids = highest + 1;
6598 #endif
6601 * node_map_pfn_alignment - determine the maximum internode alignment
6603 * This function should be called after node map is populated and sorted.
6604 * It calculates the maximum power of two alignment which can distinguish
6605 * all the nodes.
6607 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6608 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6609 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6610 * shifted, 1GiB is enough and this function will indicate so.
6612 * This is used to test whether pfn -> nid mapping of the chosen memory
6613 * model has fine enough granularity to avoid incorrect mapping for the
6614 * populated node map.
6616 * Returns the determined alignment in pfn's. 0 if there is no alignment
6617 * requirement (single node).
6619 unsigned long __init node_map_pfn_alignment(void)
6621 unsigned long accl_mask = 0, last_end = 0;
6622 unsigned long start, end, mask;
6623 int last_nid = -1;
6624 int i, nid;
6626 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6627 if (!start || last_nid < 0 || last_nid == nid) {
6628 last_nid = nid;
6629 last_end = end;
6630 continue;
6634 * Start with a mask granular enough to pin-point to the
6635 * start pfn and tick off bits one-by-one until it becomes
6636 * too coarse to separate the current node from the last.
6638 mask = ~((1 << __ffs(start)) - 1);
6639 while (mask && last_end <= (start & (mask << 1)))
6640 mask <<= 1;
6642 /* accumulate all internode masks */
6643 accl_mask |= mask;
6646 /* convert mask to number of pages */
6647 return ~accl_mask + 1;
6650 /* Find the lowest pfn for a node */
6651 static unsigned long __init find_min_pfn_for_node(int nid)
6653 unsigned long min_pfn = ULONG_MAX;
6654 unsigned long start_pfn;
6655 int i;
6657 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6658 min_pfn = min(min_pfn, start_pfn);
6660 if (min_pfn == ULONG_MAX) {
6661 pr_warn("Could not find start_pfn for node %d\n", nid);
6662 return 0;
6665 return min_pfn;
6669 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6671 * It returns the minimum PFN based on information provided via
6672 * memblock_set_node().
6674 unsigned long __init find_min_pfn_with_active_regions(void)
6676 return find_min_pfn_for_node(MAX_NUMNODES);
6680 * early_calculate_totalpages()
6681 * Sum pages in active regions for movable zone.
6682 * Populate N_MEMORY for calculating usable_nodes.
6684 static unsigned long __init early_calculate_totalpages(void)
6686 unsigned long totalpages = 0;
6687 unsigned long start_pfn, end_pfn;
6688 int i, nid;
6690 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6691 unsigned long pages = end_pfn - start_pfn;
6693 totalpages += pages;
6694 if (pages)
6695 node_set_state(nid, N_MEMORY);
6697 return totalpages;
6701 * Find the PFN the Movable zone begins in each node. Kernel memory
6702 * is spread evenly between nodes as long as the nodes have enough
6703 * memory. When they don't, some nodes will have more kernelcore than
6704 * others
6706 static void __init find_zone_movable_pfns_for_nodes(void)
6708 int i, nid;
6709 unsigned long usable_startpfn;
6710 unsigned long kernelcore_node, kernelcore_remaining;
6711 /* save the state before borrow the nodemask */
6712 nodemask_t saved_node_state = node_states[N_MEMORY];
6713 unsigned long totalpages = early_calculate_totalpages();
6714 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6715 struct memblock_region *r;
6717 /* Need to find movable_zone earlier when movable_node is specified. */
6718 find_usable_zone_for_movable();
6721 * If movable_node is specified, ignore kernelcore and movablecore
6722 * options.
6724 if (movable_node_is_enabled()) {
6725 for_each_memblock(memory, r) {
6726 if (!memblock_is_hotpluggable(r))
6727 continue;
6729 nid = r->nid;
6731 usable_startpfn = PFN_DOWN(r->base);
6732 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6733 min(usable_startpfn, zone_movable_pfn[nid]) :
6734 usable_startpfn;
6737 goto out2;
6741 * If kernelcore=mirror is specified, ignore movablecore option
6743 if (mirrored_kernelcore) {
6744 bool mem_below_4gb_not_mirrored = false;
6746 for_each_memblock(memory, r) {
6747 if (memblock_is_mirror(r))
6748 continue;
6750 nid = r->nid;
6752 usable_startpfn = memblock_region_memory_base_pfn(r);
6754 if (usable_startpfn < 0x100000) {
6755 mem_below_4gb_not_mirrored = true;
6756 continue;
6759 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6760 min(usable_startpfn, zone_movable_pfn[nid]) :
6761 usable_startpfn;
6764 if (mem_below_4gb_not_mirrored)
6765 pr_warn("This configuration results in unmirrored kernel memory.");
6767 goto out2;
6771 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6772 * amount of necessary memory.
6774 if (required_kernelcore_percent)
6775 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6776 10000UL;
6777 if (required_movablecore_percent)
6778 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6779 10000UL;
6782 * If movablecore= was specified, calculate what size of
6783 * kernelcore that corresponds so that memory usable for
6784 * any allocation type is evenly spread. If both kernelcore
6785 * and movablecore are specified, then the value of kernelcore
6786 * will be used for required_kernelcore if it's greater than
6787 * what movablecore would have allowed.
6789 if (required_movablecore) {
6790 unsigned long corepages;
6793 * Round-up so that ZONE_MOVABLE is at least as large as what
6794 * was requested by the user
6796 required_movablecore =
6797 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6798 required_movablecore = min(totalpages, required_movablecore);
6799 corepages = totalpages - required_movablecore;
6801 required_kernelcore = max(required_kernelcore, corepages);
6805 * If kernelcore was not specified or kernelcore size is larger
6806 * than totalpages, there is no ZONE_MOVABLE.
6808 if (!required_kernelcore || required_kernelcore >= totalpages)
6809 goto out;
6811 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6812 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6814 restart:
6815 /* Spread kernelcore memory as evenly as possible throughout nodes */
6816 kernelcore_node = required_kernelcore / usable_nodes;
6817 for_each_node_state(nid, N_MEMORY) {
6818 unsigned long start_pfn, end_pfn;
6821 * Recalculate kernelcore_node if the division per node
6822 * now exceeds what is necessary to satisfy the requested
6823 * amount of memory for the kernel
6825 if (required_kernelcore < kernelcore_node)
6826 kernelcore_node = required_kernelcore / usable_nodes;
6829 * As the map is walked, we track how much memory is usable
6830 * by the kernel using kernelcore_remaining. When it is
6831 * 0, the rest of the node is usable by ZONE_MOVABLE
6833 kernelcore_remaining = kernelcore_node;
6835 /* Go through each range of PFNs within this node */
6836 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6837 unsigned long size_pages;
6839 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6840 if (start_pfn >= end_pfn)
6841 continue;
6843 /* Account for what is only usable for kernelcore */
6844 if (start_pfn < usable_startpfn) {
6845 unsigned long kernel_pages;
6846 kernel_pages = min(end_pfn, usable_startpfn)
6847 - start_pfn;
6849 kernelcore_remaining -= min(kernel_pages,
6850 kernelcore_remaining);
6851 required_kernelcore -= min(kernel_pages,
6852 required_kernelcore);
6854 /* Continue if range is now fully accounted */
6855 if (end_pfn <= usable_startpfn) {
6858 * Push zone_movable_pfn to the end so
6859 * that if we have to rebalance
6860 * kernelcore across nodes, we will
6861 * not double account here
6863 zone_movable_pfn[nid] = end_pfn;
6864 continue;
6866 start_pfn = usable_startpfn;
6870 * The usable PFN range for ZONE_MOVABLE is from
6871 * start_pfn->end_pfn. Calculate size_pages as the
6872 * number of pages used as kernelcore
6874 size_pages = end_pfn - start_pfn;
6875 if (size_pages > kernelcore_remaining)
6876 size_pages = kernelcore_remaining;
6877 zone_movable_pfn[nid] = start_pfn + size_pages;
6880 * Some kernelcore has been met, update counts and
6881 * break if the kernelcore for this node has been
6882 * satisfied
6884 required_kernelcore -= min(required_kernelcore,
6885 size_pages);
6886 kernelcore_remaining -= size_pages;
6887 if (!kernelcore_remaining)
6888 break;
6893 * If there is still required_kernelcore, we do another pass with one
6894 * less node in the count. This will push zone_movable_pfn[nid] further
6895 * along on the nodes that still have memory until kernelcore is
6896 * satisfied
6898 usable_nodes--;
6899 if (usable_nodes && required_kernelcore > usable_nodes)
6900 goto restart;
6902 out2:
6903 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6904 for (nid = 0; nid < MAX_NUMNODES; nid++)
6905 zone_movable_pfn[nid] =
6906 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6908 out:
6909 /* restore the node_state */
6910 node_states[N_MEMORY] = saved_node_state;
6913 /* Any regular or high memory on that node ? */
6914 static void check_for_memory(pg_data_t *pgdat, int nid)
6916 enum zone_type zone_type;
6918 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6919 struct zone *zone = &pgdat->node_zones[zone_type];
6920 if (populated_zone(zone)) {
6921 if (IS_ENABLED(CONFIG_HIGHMEM))
6922 node_set_state(nid, N_HIGH_MEMORY);
6923 if (zone_type <= ZONE_NORMAL)
6924 node_set_state(nid, N_NORMAL_MEMORY);
6925 break;
6931 * free_area_init_nodes - Initialise all pg_data_t and zone data
6932 * @max_zone_pfn: an array of max PFNs for each zone
6934 * This will call free_area_init_node() for each active node in the system.
6935 * Using the page ranges provided by memblock_set_node(), the size of each
6936 * zone in each node and their holes is calculated. If the maximum PFN
6937 * between two adjacent zones match, it is assumed that the zone is empty.
6938 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6939 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6940 * starts where the previous one ended. For example, ZONE_DMA32 starts
6941 * at arch_max_dma_pfn.
6943 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6945 unsigned long start_pfn, end_pfn;
6946 int i, nid;
6948 /* Record where the zone boundaries are */
6949 memset(arch_zone_lowest_possible_pfn, 0,
6950 sizeof(arch_zone_lowest_possible_pfn));
6951 memset(arch_zone_highest_possible_pfn, 0,
6952 sizeof(arch_zone_highest_possible_pfn));
6954 start_pfn = find_min_pfn_with_active_regions();
6956 for (i = 0; i < MAX_NR_ZONES; i++) {
6957 if (i == ZONE_MOVABLE)
6958 continue;
6960 end_pfn = max(max_zone_pfn[i], start_pfn);
6961 arch_zone_lowest_possible_pfn[i] = start_pfn;
6962 arch_zone_highest_possible_pfn[i] = end_pfn;
6964 start_pfn = end_pfn;
6967 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6968 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6969 find_zone_movable_pfns_for_nodes();
6971 /* Print out the zone ranges */
6972 pr_info("Zone ranges:\n");
6973 for (i = 0; i < MAX_NR_ZONES; i++) {
6974 if (i == ZONE_MOVABLE)
6975 continue;
6976 pr_info(" %-8s ", zone_names[i]);
6977 if (arch_zone_lowest_possible_pfn[i] ==
6978 arch_zone_highest_possible_pfn[i])
6979 pr_cont("empty\n");
6980 else
6981 pr_cont("[mem %#018Lx-%#018Lx]\n",
6982 (u64)arch_zone_lowest_possible_pfn[i]
6983 << PAGE_SHIFT,
6984 ((u64)arch_zone_highest_possible_pfn[i]
6985 << PAGE_SHIFT) - 1);
6988 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6989 pr_info("Movable zone start for each node\n");
6990 for (i = 0; i < MAX_NUMNODES; i++) {
6991 if (zone_movable_pfn[i])
6992 pr_info(" Node %d: %#018Lx\n", i,
6993 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6996 /* Print out the early node map */
6997 pr_info("Early memory node ranges\n");
6998 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6999 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7000 (u64)start_pfn << PAGE_SHIFT,
7001 ((u64)end_pfn << PAGE_SHIFT) - 1);
7003 /* Initialise every node */
7004 mminit_verify_pageflags_layout();
7005 setup_nr_node_ids();
7006 zero_resv_unavail();
7007 for_each_online_node(nid) {
7008 pg_data_t *pgdat = NODE_DATA(nid);
7009 free_area_init_node(nid, NULL,
7010 find_min_pfn_for_node(nid), NULL);
7012 /* Any memory on that node */
7013 if (pgdat->node_present_pages)
7014 node_set_state(nid, N_MEMORY);
7015 check_for_memory(pgdat, nid);
7019 static int __init cmdline_parse_core(char *p, unsigned long *core,
7020 unsigned long *percent)
7022 unsigned long long coremem;
7023 char *endptr;
7025 if (!p)
7026 return -EINVAL;
7028 /* Value may be a percentage of total memory, otherwise bytes */
7029 coremem = simple_strtoull(p, &endptr, 0);
7030 if (*endptr == '%') {
7031 /* Paranoid check for percent values greater than 100 */
7032 WARN_ON(coremem > 100);
7034 *percent = coremem;
7035 } else {
7036 coremem = memparse(p, &p);
7037 /* Paranoid check that UL is enough for the coremem value */
7038 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7040 *core = coremem >> PAGE_SHIFT;
7041 *percent = 0UL;
7043 return 0;
7047 * kernelcore=size sets the amount of memory for use for allocations that
7048 * cannot be reclaimed or migrated.
7050 static int __init cmdline_parse_kernelcore(char *p)
7052 /* parse kernelcore=mirror */
7053 if (parse_option_str(p, "mirror")) {
7054 mirrored_kernelcore = true;
7055 return 0;
7058 return cmdline_parse_core(p, &required_kernelcore,
7059 &required_kernelcore_percent);
7063 * movablecore=size sets the amount of memory for use for allocations that
7064 * can be reclaimed or migrated.
7066 static int __init cmdline_parse_movablecore(char *p)
7068 return cmdline_parse_core(p, &required_movablecore,
7069 &required_movablecore_percent);
7072 early_param("kernelcore", cmdline_parse_kernelcore);
7073 early_param("movablecore", cmdline_parse_movablecore);
7075 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7077 void adjust_managed_page_count(struct page *page, long count)
7079 spin_lock(&managed_page_count_lock);
7080 page_zone(page)->managed_pages += count;
7081 totalram_pages += count;
7082 #ifdef CONFIG_HIGHMEM
7083 if (PageHighMem(page))
7084 totalhigh_pages += count;
7085 #endif
7086 spin_unlock(&managed_page_count_lock);
7088 EXPORT_SYMBOL(adjust_managed_page_count);
7090 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
7092 void *pos;
7093 unsigned long pages = 0;
7095 start = (void *)PAGE_ALIGN((unsigned long)start);
7096 end = (void *)((unsigned long)end & PAGE_MASK);
7097 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7098 struct page *page = virt_to_page(pos);
7099 void *direct_map_addr;
7102 * 'direct_map_addr' might be different from 'pos'
7103 * because some architectures' virt_to_page()
7104 * work with aliases. Getting the direct map
7105 * address ensures that we get a _writeable_
7106 * alias for the memset().
7108 direct_map_addr = page_address(page);
7109 if ((unsigned int)poison <= 0xFF)
7110 memset(direct_map_addr, poison, PAGE_SIZE);
7112 free_reserved_page(page);
7115 if (pages && s)
7116 pr_info("Freeing %s memory: %ldK\n",
7117 s, pages << (PAGE_SHIFT - 10));
7119 return pages;
7121 EXPORT_SYMBOL(free_reserved_area);
7123 #ifdef CONFIG_HIGHMEM
7124 void free_highmem_page(struct page *page)
7126 __free_reserved_page(page);
7127 totalram_pages++;
7128 page_zone(page)->managed_pages++;
7129 totalhigh_pages++;
7131 #endif
7134 void __init mem_init_print_info(const char *str)
7136 unsigned long physpages, codesize, datasize, rosize, bss_size;
7137 unsigned long init_code_size, init_data_size;
7139 physpages = get_num_physpages();
7140 codesize = _etext - _stext;
7141 datasize = _edata - _sdata;
7142 rosize = __end_rodata - __start_rodata;
7143 bss_size = __bss_stop - __bss_start;
7144 init_data_size = __init_end - __init_begin;
7145 init_code_size = _einittext - _sinittext;
7148 * Detect special cases and adjust section sizes accordingly:
7149 * 1) .init.* may be embedded into .data sections
7150 * 2) .init.text.* may be out of [__init_begin, __init_end],
7151 * please refer to arch/tile/kernel/vmlinux.lds.S.
7152 * 3) .rodata.* may be embedded into .text or .data sections.
7154 #define adj_init_size(start, end, size, pos, adj) \
7155 do { \
7156 if (start <= pos && pos < end && size > adj) \
7157 size -= adj; \
7158 } while (0)
7160 adj_init_size(__init_begin, __init_end, init_data_size,
7161 _sinittext, init_code_size);
7162 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7163 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7164 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7165 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7167 #undef adj_init_size
7169 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7170 #ifdef CONFIG_HIGHMEM
7171 ", %luK highmem"
7172 #endif
7173 "%s%s)\n",
7174 nr_free_pages() << (PAGE_SHIFT - 10),
7175 physpages << (PAGE_SHIFT - 10),
7176 codesize >> 10, datasize >> 10, rosize >> 10,
7177 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7178 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7179 totalcma_pages << (PAGE_SHIFT - 10),
7180 #ifdef CONFIG_HIGHMEM
7181 totalhigh_pages << (PAGE_SHIFT - 10),
7182 #endif
7183 str ? ", " : "", str ? str : "");
7187 * set_dma_reserve - set the specified number of pages reserved in the first zone
7188 * @new_dma_reserve: The number of pages to mark reserved
7190 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7191 * In the DMA zone, a significant percentage may be consumed by kernel image
7192 * and other unfreeable allocations which can skew the watermarks badly. This
7193 * function may optionally be used to account for unfreeable pages in the
7194 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7195 * smaller per-cpu batchsize.
7197 void __init set_dma_reserve(unsigned long new_dma_reserve)
7199 dma_reserve = new_dma_reserve;
7202 void __init free_area_init(unsigned long *zones_size)
7204 zero_resv_unavail();
7205 free_area_init_node(0, zones_size,
7206 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7209 static int page_alloc_cpu_dead(unsigned int cpu)
7212 lru_add_drain_cpu(cpu);
7213 drain_pages(cpu);
7216 * Spill the event counters of the dead processor
7217 * into the current processors event counters.
7218 * This artificially elevates the count of the current
7219 * processor.
7221 vm_events_fold_cpu(cpu);
7224 * Zero the differential counters of the dead processor
7225 * so that the vm statistics are consistent.
7227 * This is only okay since the processor is dead and cannot
7228 * race with what we are doing.
7230 cpu_vm_stats_fold(cpu);
7231 return 0;
7234 void __init page_alloc_init(void)
7236 int ret;
7238 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7239 "mm/page_alloc:dead", NULL,
7240 page_alloc_cpu_dead);
7241 WARN_ON(ret < 0);
7245 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7246 * or min_free_kbytes changes.
7248 static void calculate_totalreserve_pages(void)
7250 struct pglist_data *pgdat;
7251 unsigned long reserve_pages = 0;
7252 enum zone_type i, j;
7254 for_each_online_pgdat(pgdat) {
7256 pgdat->totalreserve_pages = 0;
7258 for (i = 0; i < MAX_NR_ZONES; i++) {
7259 struct zone *zone = pgdat->node_zones + i;
7260 long max = 0;
7262 /* Find valid and maximum lowmem_reserve in the zone */
7263 for (j = i; j < MAX_NR_ZONES; j++) {
7264 if (zone->lowmem_reserve[j] > max)
7265 max = zone->lowmem_reserve[j];
7268 /* we treat the high watermark as reserved pages. */
7269 max += high_wmark_pages(zone);
7271 if (max > zone->managed_pages)
7272 max = zone->managed_pages;
7274 pgdat->totalreserve_pages += max;
7276 reserve_pages += max;
7279 totalreserve_pages = reserve_pages;
7283 * setup_per_zone_lowmem_reserve - called whenever
7284 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7285 * has a correct pages reserved value, so an adequate number of
7286 * pages are left in the zone after a successful __alloc_pages().
7288 static void setup_per_zone_lowmem_reserve(void)
7290 struct pglist_data *pgdat;
7291 enum zone_type j, idx;
7293 for_each_online_pgdat(pgdat) {
7294 for (j = 0; j < MAX_NR_ZONES; j++) {
7295 struct zone *zone = pgdat->node_zones + j;
7296 unsigned long managed_pages = zone->managed_pages;
7298 zone->lowmem_reserve[j] = 0;
7300 idx = j;
7301 while (idx) {
7302 struct zone *lower_zone;
7304 idx--;
7305 lower_zone = pgdat->node_zones + idx;
7307 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7308 sysctl_lowmem_reserve_ratio[idx] = 0;
7309 lower_zone->lowmem_reserve[j] = 0;
7310 } else {
7311 lower_zone->lowmem_reserve[j] =
7312 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7314 managed_pages += lower_zone->managed_pages;
7319 /* update totalreserve_pages */
7320 calculate_totalreserve_pages();
7323 static void __setup_per_zone_wmarks(void)
7325 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7326 unsigned long lowmem_pages = 0;
7327 struct zone *zone;
7328 unsigned long flags;
7330 /* Calculate total number of !ZONE_HIGHMEM pages */
7331 for_each_zone(zone) {
7332 if (!is_highmem(zone))
7333 lowmem_pages += zone->managed_pages;
7336 for_each_zone(zone) {
7337 u64 tmp;
7339 spin_lock_irqsave(&zone->lock, flags);
7340 tmp = (u64)pages_min * zone->managed_pages;
7341 do_div(tmp, lowmem_pages);
7342 if (is_highmem(zone)) {
7344 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7345 * need highmem pages, so cap pages_min to a small
7346 * value here.
7348 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7349 * deltas control asynch page reclaim, and so should
7350 * not be capped for highmem.
7352 unsigned long min_pages;
7354 min_pages = zone->managed_pages / 1024;
7355 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7356 zone->watermark[WMARK_MIN] = min_pages;
7357 } else {
7359 * If it's a lowmem zone, reserve a number of pages
7360 * proportionate to the zone's size.
7362 zone->watermark[WMARK_MIN] = tmp;
7366 * Set the kswapd watermarks distance according to the
7367 * scale factor in proportion to available memory, but
7368 * ensure a minimum size on small systems.
7370 tmp = max_t(u64, tmp >> 2,
7371 mult_frac(zone->managed_pages,
7372 watermark_scale_factor, 10000));
7374 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7375 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7377 spin_unlock_irqrestore(&zone->lock, flags);
7380 /* update totalreserve_pages */
7381 calculate_totalreserve_pages();
7385 * setup_per_zone_wmarks - called when min_free_kbytes changes
7386 * or when memory is hot-{added|removed}
7388 * Ensures that the watermark[min,low,high] values for each zone are set
7389 * correctly with respect to min_free_kbytes.
7391 void setup_per_zone_wmarks(void)
7393 static DEFINE_SPINLOCK(lock);
7395 spin_lock(&lock);
7396 __setup_per_zone_wmarks();
7397 spin_unlock(&lock);
7401 * Initialise min_free_kbytes.
7403 * For small machines we want it small (128k min). For large machines
7404 * we want it large (64MB max). But it is not linear, because network
7405 * bandwidth does not increase linearly with machine size. We use
7407 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7408 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7410 * which yields
7412 * 16MB: 512k
7413 * 32MB: 724k
7414 * 64MB: 1024k
7415 * 128MB: 1448k
7416 * 256MB: 2048k
7417 * 512MB: 2896k
7418 * 1024MB: 4096k
7419 * 2048MB: 5792k
7420 * 4096MB: 8192k
7421 * 8192MB: 11584k
7422 * 16384MB: 16384k
7424 int __meminit init_per_zone_wmark_min(void)
7426 unsigned long lowmem_kbytes;
7427 int new_min_free_kbytes;
7429 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7430 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7432 if (new_min_free_kbytes > user_min_free_kbytes) {
7433 min_free_kbytes = new_min_free_kbytes;
7434 if (min_free_kbytes < 128)
7435 min_free_kbytes = 128;
7436 if (min_free_kbytes > 65536)
7437 min_free_kbytes = 65536;
7438 } else {
7439 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7440 new_min_free_kbytes, user_min_free_kbytes);
7442 setup_per_zone_wmarks();
7443 refresh_zone_stat_thresholds();
7444 setup_per_zone_lowmem_reserve();
7446 #ifdef CONFIG_NUMA
7447 setup_min_unmapped_ratio();
7448 setup_min_slab_ratio();
7449 #endif
7451 return 0;
7453 core_initcall(init_per_zone_wmark_min)
7456 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7457 * that we can call two helper functions whenever min_free_kbytes
7458 * changes.
7460 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7461 void __user *buffer, size_t *length, loff_t *ppos)
7463 int rc;
7465 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7466 if (rc)
7467 return rc;
7469 if (write) {
7470 user_min_free_kbytes = min_free_kbytes;
7471 setup_per_zone_wmarks();
7473 return 0;
7476 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7477 void __user *buffer, size_t *length, loff_t *ppos)
7479 int rc;
7481 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7482 if (rc)
7483 return rc;
7485 if (write)
7486 setup_per_zone_wmarks();
7488 return 0;
7491 #ifdef CONFIG_NUMA
7492 static void setup_min_unmapped_ratio(void)
7494 pg_data_t *pgdat;
7495 struct zone *zone;
7497 for_each_online_pgdat(pgdat)
7498 pgdat->min_unmapped_pages = 0;
7500 for_each_zone(zone)
7501 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7502 sysctl_min_unmapped_ratio) / 100;
7506 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7507 void __user *buffer, size_t *length, loff_t *ppos)
7509 int rc;
7511 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7512 if (rc)
7513 return rc;
7515 setup_min_unmapped_ratio();
7517 return 0;
7520 static void setup_min_slab_ratio(void)
7522 pg_data_t *pgdat;
7523 struct zone *zone;
7525 for_each_online_pgdat(pgdat)
7526 pgdat->min_slab_pages = 0;
7528 for_each_zone(zone)
7529 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7530 sysctl_min_slab_ratio) / 100;
7533 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7534 void __user *buffer, size_t *length, loff_t *ppos)
7536 int rc;
7538 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7539 if (rc)
7540 return rc;
7542 setup_min_slab_ratio();
7544 return 0;
7546 #endif
7549 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7550 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7551 * whenever sysctl_lowmem_reserve_ratio changes.
7553 * The reserve ratio obviously has absolutely no relation with the
7554 * minimum watermarks. The lowmem reserve ratio can only make sense
7555 * if in function of the boot time zone sizes.
7557 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7558 void __user *buffer, size_t *length, loff_t *ppos)
7560 proc_dointvec_minmax(table, write, buffer, length, ppos);
7561 setup_per_zone_lowmem_reserve();
7562 return 0;
7566 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7567 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7568 * pagelist can have before it gets flushed back to buddy allocator.
7570 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7571 void __user *buffer, size_t *length, loff_t *ppos)
7573 struct zone *zone;
7574 int old_percpu_pagelist_fraction;
7575 int ret;
7577 mutex_lock(&pcp_batch_high_lock);
7578 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7580 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7581 if (!write || ret < 0)
7582 goto out;
7584 /* Sanity checking to avoid pcp imbalance */
7585 if (percpu_pagelist_fraction &&
7586 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7587 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7588 ret = -EINVAL;
7589 goto out;
7592 /* No change? */
7593 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7594 goto out;
7596 for_each_populated_zone(zone) {
7597 unsigned int cpu;
7599 for_each_possible_cpu(cpu)
7600 pageset_set_high_and_batch(zone,
7601 per_cpu_ptr(zone->pageset, cpu));
7603 out:
7604 mutex_unlock(&pcp_batch_high_lock);
7605 return ret;
7608 #ifdef CONFIG_NUMA
7609 int hashdist = HASHDIST_DEFAULT;
7611 static int __init set_hashdist(char *str)
7613 if (!str)
7614 return 0;
7615 hashdist = simple_strtoul(str, &str, 0);
7616 return 1;
7618 __setup("hashdist=", set_hashdist);
7619 #endif
7621 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7623 * Returns the number of pages that arch has reserved but
7624 * is not known to alloc_large_system_hash().
7626 static unsigned long __init arch_reserved_kernel_pages(void)
7628 return 0;
7630 #endif
7633 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7634 * machines. As memory size is increased the scale is also increased but at
7635 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7636 * quadruples the scale is increased by one, which means the size of hash table
7637 * only doubles, instead of quadrupling as well.
7638 * Because 32-bit systems cannot have large physical memory, where this scaling
7639 * makes sense, it is disabled on such platforms.
7641 #if __BITS_PER_LONG > 32
7642 #define ADAPT_SCALE_BASE (64ul << 30)
7643 #define ADAPT_SCALE_SHIFT 2
7644 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7645 #endif
7648 * allocate a large system hash table from bootmem
7649 * - it is assumed that the hash table must contain an exact power-of-2
7650 * quantity of entries
7651 * - limit is the number of hash buckets, not the total allocation size
7653 void *__init alloc_large_system_hash(const char *tablename,
7654 unsigned long bucketsize,
7655 unsigned long numentries,
7656 int scale,
7657 int flags,
7658 unsigned int *_hash_shift,
7659 unsigned int *_hash_mask,
7660 unsigned long low_limit,
7661 unsigned long high_limit)
7663 unsigned long long max = high_limit;
7664 unsigned long log2qty, size;
7665 void *table = NULL;
7666 gfp_t gfp_flags;
7668 /* allow the kernel cmdline to have a say */
7669 if (!numentries) {
7670 /* round applicable memory size up to nearest megabyte */
7671 numentries = nr_kernel_pages;
7672 numentries -= arch_reserved_kernel_pages();
7674 /* It isn't necessary when PAGE_SIZE >= 1MB */
7675 if (PAGE_SHIFT < 20)
7676 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7678 #if __BITS_PER_LONG > 32
7679 if (!high_limit) {
7680 unsigned long adapt;
7682 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7683 adapt <<= ADAPT_SCALE_SHIFT)
7684 scale++;
7686 #endif
7688 /* limit to 1 bucket per 2^scale bytes of low memory */
7689 if (scale > PAGE_SHIFT)
7690 numentries >>= (scale - PAGE_SHIFT);
7691 else
7692 numentries <<= (PAGE_SHIFT - scale);
7694 /* Make sure we've got at least a 0-order allocation.. */
7695 if (unlikely(flags & HASH_SMALL)) {
7696 /* Makes no sense without HASH_EARLY */
7697 WARN_ON(!(flags & HASH_EARLY));
7698 if (!(numentries >> *_hash_shift)) {
7699 numentries = 1UL << *_hash_shift;
7700 BUG_ON(!numentries);
7702 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7703 numentries = PAGE_SIZE / bucketsize;
7705 numentries = roundup_pow_of_two(numentries);
7707 /* limit allocation size to 1/16 total memory by default */
7708 if (max == 0) {
7709 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7710 do_div(max, bucketsize);
7712 max = min(max, 0x80000000ULL);
7714 if (numentries < low_limit)
7715 numentries = low_limit;
7716 if (numentries > max)
7717 numentries = max;
7719 log2qty = ilog2(numentries);
7721 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7722 do {
7723 size = bucketsize << log2qty;
7724 if (flags & HASH_EARLY) {
7725 if (flags & HASH_ZERO)
7726 table = memblock_alloc_nopanic(size,
7727 SMP_CACHE_BYTES);
7728 else
7729 table = memblock_alloc_raw(size,
7730 SMP_CACHE_BYTES);
7731 } else if (hashdist) {
7732 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7733 } else {
7735 * If bucketsize is not a power-of-two, we may free
7736 * some pages at the end of hash table which
7737 * alloc_pages_exact() automatically does
7739 if (get_order(size) < MAX_ORDER) {
7740 table = alloc_pages_exact(size, gfp_flags);
7741 kmemleak_alloc(table, size, 1, gfp_flags);
7744 } while (!table && size > PAGE_SIZE && --log2qty);
7746 if (!table)
7747 panic("Failed to allocate %s hash table\n", tablename);
7749 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7750 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7752 if (_hash_shift)
7753 *_hash_shift = log2qty;
7754 if (_hash_mask)
7755 *_hash_mask = (1 << log2qty) - 1;
7757 return table;
7761 * This function checks whether pageblock includes unmovable pages or not.
7762 * If @count is not zero, it is okay to include less @count unmovable pages
7764 * PageLRU check without isolation or lru_lock could race so that
7765 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7766 * check without lock_page also may miss some movable non-lru pages at
7767 * race condition. So you can't expect this function should be exact.
7769 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7770 int migratetype,
7771 bool skip_hwpoisoned_pages)
7773 unsigned long pfn, iter, found;
7776 * TODO we could make this much more efficient by not checking every
7777 * page in the range if we know all of them are in MOVABLE_ZONE and
7778 * that the movable zone guarantees that pages are migratable but
7779 * the later is not the case right now unfortunatelly. E.g. movablecore
7780 * can still lead to having bootmem allocations in zone_movable.
7784 * CMA allocations (alloc_contig_range) really need to mark isolate
7785 * CMA pageblocks even when they are not movable in fact so consider
7786 * them movable here.
7788 if (is_migrate_cma(migratetype) &&
7789 is_migrate_cma(get_pageblock_migratetype(page)))
7790 return false;
7792 pfn = page_to_pfn(page);
7793 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7794 unsigned long check = pfn + iter;
7796 if (!pfn_valid_within(check))
7797 continue;
7799 page = pfn_to_page(check);
7801 if (PageReserved(page))
7802 goto unmovable;
7805 * If the zone is movable and we have ruled out all reserved
7806 * pages then it should be reasonably safe to assume the rest
7807 * is movable.
7809 if (zone_idx(zone) == ZONE_MOVABLE)
7810 continue;
7813 * Hugepages are not in LRU lists, but they're movable.
7814 * We need not scan over tail pages bacause we don't
7815 * handle each tail page individually in migration.
7817 if (PageHuge(page)) {
7818 struct page *head = compound_head(page);
7819 unsigned int skip_pages;
7821 if (!hugepage_migration_supported(page_hstate(head)))
7822 goto unmovable;
7824 skip_pages = (1 << compound_order(head)) - (page - head);
7825 iter += skip_pages - 1;
7826 continue;
7830 * We can't use page_count without pin a page
7831 * because another CPU can free compound page.
7832 * This check already skips compound tails of THP
7833 * because their page->_refcount is zero at all time.
7835 if (!page_ref_count(page)) {
7836 if (PageBuddy(page))
7837 iter += (1 << page_order(page)) - 1;
7838 continue;
7842 * The HWPoisoned page may be not in buddy system, and
7843 * page_count() is not 0.
7845 if (skip_hwpoisoned_pages && PageHWPoison(page))
7846 continue;
7848 if (__PageMovable(page))
7849 continue;
7851 if (!PageLRU(page))
7852 found++;
7854 * If there are RECLAIMABLE pages, we need to check
7855 * it. But now, memory offline itself doesn't call
7856 * shrink_node_slabs() and it still to be fixed.
7859 * If the page is not RAM, page_count()should be 0.
7860 * we don't need more check. This is an _used_ not-movable page.
7862 * The problematic thing here is PG_reserved pages. PG_reserved
7863 * is set to both of a memory hole page and a _used_ kernel
7864 * page at boot.
7866 if (found > count)
7867 goto unmovable;
7869 return false;
7870 unmovable:
7871 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7872 dump_page(pfn_to_page(pfn+iter), "unmovable page");
7873 return true;
7876 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7878 static unsigned long pfn_max_align_down(unsigned long pfn)
7880 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7881 pageblock_nr_pages) - 1);
7884 static unsigned long pfn_max_align_up(unsigned long pfn)
7886 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7887 pageblock_nr_pages));
7890 /* [start, end) must belong to a single zone. */
7891 static int __alloc_contig_migrate_range(struct compact_control *cc,
7892 unsigned long start, unsigned long end)
7894 /* This function is based on compact_zone() from compaction.c. */
7895 unsigned long nr_reclaimed;
7896 unsigned long pfn = start;
7897 unsigned int tries = 0;
7898 int ret = 0;
7900 migrate_prep();
7902 while (pfn < end || !list_empty(&cc->migratepages)) {
7903 if (fatal_signal_pending(current)) {
7904 ret = -EINTR;
7905 break;
7908 if (list_empty(&cc->migratepages)) {
7909 cc->nr_migratepages = 0;
7910 pfn = isolate_migratepages_range(cc, pfn, end);
7911 if (!pfn) {
7912 ret = -EINTR;
7913 break;
7915 tries = 0;
7916 } else if (++tries == 5) {
7917 ret = ret < 0 ? ret : -EBUSY;
7918 break;
7921 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7922 &cc->migratepages);
7923 cc->nr_migratepages -= nr_reclaimed;
7925 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7926 NULL, 0, cc->mode, MR_CONTIG_RANGE);
7928 if (ret < 0) {
7929 putback_movable_pages(&cc->migratepages);
7930 return ret;
7932 return 0;
7936 * alloc_contig_range() -- tries to allocate given range of pages
7937 * @start: start PFN to allocate
7938 * @end: one-past-the-last PFN to allocate
7939 * @migratetype: migratetype of the underlaying pageblocks (either
7940 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7941 * in range must have the same migratetype and it must
7942 * be either of the two.
7943 * @gfp_mask: GFP mask to use during compaction
7945 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7946 * aligned. The PFN range must belong to a single zone.
7948 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7949 * pageblocks in the range. Once isolated, the pageblocks should not
7950 * be modified by others.
7952 * Returns zero on success or negative error code. On success all
7953 * pages which PFN is in [start, end) are allocated for the caller and
7954 * need to be freed with free_contig_range().
7956 int alloc_contig_range(unsigned long start, unsigned long end,
7957 unsigned migratetype, gfp_t gfp_mask)
7959 unsigned long outer_start, outer_end;
7960 unsigned int order;
7961 int ret = 0;
7963 struct compact_control cc = {
7964 .nr_migratepages = 0,
7965 .order = -1,
7966 .zone = page_zone(pfn_to_page(start)),
7967 .mode = MIGRATE_SYNC,
7968 .ignore_skip_hint = true,
7969 .no_set_skip_hint = true,
7970 .gfp_mask = current_gfp_context(gfp_mask),
7972 INIT_LIST_HEAD(&cc.migratepages);
7975 * What we do here is we mark all pageblocks in range as
7976 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7977 * have different sizes, and due to the way page allocator
7978 * work, we align the range to biggest of the two pages so
7979 * that page allocator won't try to merge buddies from
7980 * different pageblocks and change MIGRATE_ISOLATE to some
7981 * other migration type.
7983 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7984 * migrate the pages from an unaligned range (ie. pages that
7985 * we are interested in). This will put all the pages in
7986 * range back to page allocator as MIGRATE_ISOLATE.
7988 * When this is done, we take the pages in range from page
7989 * allocator removing them from the buddy system. This way
7990 * page allocator will never consider using them.
7992 * This lets us mark the pageblocks back as
7993 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7994 * aligned range but not in the unaligned, original range are
7995 * put back to page allocator so that buddy can use them.
7998 ret = start_isolate_page_range(pfn_max_align_down(start),
7999 pfn_max_align_up(end), migratetype,
8000 false);
8001 if (ret)
8002 return ret;
8005 * In case of -EBUSY, we'd like to know which page causes problem.
8006 * So, just fall through. test_pages_isolated() has a tracepoint
8007 * which will report the busy page.
8009 * It is possible that busy pages could become available before
8010 * the call to test_pages_isolated, and the range will actually be
8011 * allocated. So, if we fall through be sure to clear ret so that
8012 * -EBUSY is not accidentally used or returned to caller.
8014 ret = __alloc_contig_migrate_range(&cc, start, end);
8015 if (ret && ret != -EBUSY)
8016 goto done;
8017 ret =0;
8020 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8021 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8022 * more, all pages in [start, end) are free in page allocator.
8023 * What we are going to do is to allocate all pages from
8024 * [start, end) (that is remove them from page allocator).
8026 * The only problem is that pages at the beginning and at the
8027 * end of interesting range may be not aligned with pages that
8028 * page allocator holds, ie. they can be part of higher order
8029 * pages. Because of this, we reserve the bigger range and
8030 * once this is done free the pages we are not interested in.
8032 * We don't have to hold zone->lock here because the pages are
8033 * isolated thus they won't get removed from buddy.
8036 lru_add_drain_all();
8037 drain_all_pages(cc.zone);
8039 order = 0;
8040 outer_start = start;
8041 while (!PageBuddy(pfn_to_page(outer_start))) {
8042 if (++order >= MAX_ORDER) {
8043 outer_start = start;
8044 break;
8046 outer_start &= ~0UL << order;
8049 if (outer_start != start) {
8050 order = page_order(pfn_to_page(outer_start));
8053 * outer_start page could be small order buddy page and
8054 * it doesn't include start page. Adjust outer_start
8055 * in this case to report failed page properly
8056 * on tracepoint in test_pages_isolated()
8058 if (outer_start + (1UL << order) <= start)
8059 outer_start = start;
8062 /* Make sure the range is really isolated. */
8063 if (test_pages_isolated(outer_start, end, false)) {
8064 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8065 __func__, outer_start, end);
8066 ret = -EBUSY;
8067 goto done;
8070 /* Grab isolated pages from freelists. */
8071 outer_end = isolate_freepages_range(&cc, outer_start, end);
8072 if (!outer_end) {
8073 ret = -EBUSY;
8074 goto done;
8077 /* Free head and tail (if any) */
8078 if (start != outer_start)
8079 free_contig_range(outer_start, start - outer_start);
8080 if (end != outer_end)
8081 free_contig_range(end, outer_end - end);
8083 done:
8084 undo_isolate_page_range(pfn_max_align_down(start),
8085 pfn_max_align_up(end), migratetype);
8086 return ret;
8089 void free_contig_range(unsigned long pfn, unsigned nr_pages)
8091 unsigned int count = 0;
8093 for (; nr_pages--; pfn++) {
8094 struct page *page = pfn_to_page(pfn);
8096 count += page_count(page) != 1;
8097 __free_page(page);
8099 WARN(count != 0, "%d pages are still in use!\n", count);
8101 #endif
8103 #ifdef CONFIG_MEMORY_HOTPLUG
8105 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8106 * page high values need to be recalulated.
8108 void __meminit zone_pcp_update(struct zone *zone)
8110 unsigned cpu;
8111 mutex_lock(&pcp_batch_high_lock);
8112 for_each_possible_cpu(cpu)
8113 pageset_set_high_and_batch(zone,
8114 per_cpu_ptr(zone->pageset, cpu));
8115 mutex_unlock(&pcp_batch_high_lock);
8117 #endif
8119 void zone_pcp_reset(struct zone *zone)
8121 unsigned long flags;
8122 int cpu;
8123 struct per_cpu_pageset *pset;
8125 /* avoid races with drain_pages() */
8126 local_irq_save(flags);
8127 if (zone->pageset != &boot_pageset) {
8128 for_each_online_cpu(cpu) {
8129 pset = per_cpu_ptr(zone->pageset, cpu);
8130 drain_zonestat(zone, pset);
8132 free_percpu(zone->pageset);
8133 zone->pageset = &boot_pageset;
8135 local_irq_restore(flags);
8138 #ifdef CONFIG_MEMORY_HOTREMOVE
8140 * All pages in the range must be in a single zone and isolated
8141 * before calling this.
8143 void
8144 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8146 struct page *page;
8147 struct zone *zone;
8148 unsigned int order, i;
8149 unsigned long pfn;
8150 unsigned long flags;
8151 /* find the first valid pfn */
8152 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8153 if (pfn_valid(pfn))
8154 break;
8155 if (pfn == end_pfn)
8156 return;
8157 offline_mem_sections(pfn, end_pfn);
8158 zone = page_zone(pfn_to_page(pfn));
8159 spin_lock_irqsave(&zone->lock, flags);
8160 pfn = start_pfn;
8161 while (pfn < end_pfn) {
8162 if (!pfn_valid(pfn)) {
8163 pfn++;
8164 continue;
8166 page = pfn_to_page(pfn);
8168 * The HWPoisoned page may be not in buddy system, and
8169 * page_count() is not 0.
8171 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8172 pfn++;
8173 SetPageReserved(page);
8174 continue;
8177 BUG_ON(page_count(page));
8178 BUG_ON(!PageBuddy(page));
8179 order = page_order(page);
8180 #ifdef CONFIG_DEBUG_VM
8181 pr_info("remove from free list %lx %d %lx\n",
8182 pfn, 1 << order, end_pfn);
8183 #endif
8184 list_del(&page->lru);
8185 rmv_page_order(page);
8186 zone->free_area[order].nr_free--;
8187 for (i = 0; i < (1 << order); i++)
8188 SetPageReserved((page+i));
8189 pfn += (1 << order);
8191 spin_unlock_irqrestore(&zone->lock, flags);
8193 #endif
8195 bool is_free_buddy_page(struct page *page)
8197 struct zone *zone = page_zone(page);
8198 unsigned long pfn = page_to_pfn(page);
8199 unsigned long flags;
8200 unsigned int order;
8202 spin_lock_irqsave(&zone->lock, flags);
8203 for (order = 0; order < MAX_ORDER; order++) {
8204 struct page *page_head = page - (pfn & ((1 << order) - 1));
8206 if (PageBuddy(page_head) && page_order(page_head) >= order)
8207 break;
8209 spin_unlock_irqrestore(&zone->lock, flags);
8211 return order < MAX_ORDER;
8214 #ifdef CONFIG_MEMORY_FAILURE
8216 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8217 * test is performed under the zone lock to prevent a race against page
8218 * allocation.
8220 bool set_hwpoison_free_buddy_page(struct page *page)
8222 struct zone *zone = page_zone(page);
8223 unsigned long pfn = page_to_pfn(page);
8224 unsigned long flags;
8225 unsigned int order;
8226 bool hwpoisoned = false;
8228 spin_lock_irqsave(&zone->lock, flags);
8229 for (order = 0; order < MAX_ORDER; order++) {
8230 struct page *page_head = page - (pfn & ((1 << order) - 1));
8232 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8233 if (!TestSetPageHWPoison(page))
8234 hwpoisoned = true;
8235 break;
8238 spin_unlock_irqrestore(&zone->lock, flags);
8240 return hwpoisoned;
8242 #endif