2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/memblock.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kasan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/ratelimit.h>
33 #include <linux/oom.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/vmstat.h>
42 #include <linux/mempolicy.h>
43 #include <linux/memremap.h>
44 #include <linux/stop_machine.h>
45 #include <linux/sort.h>
46 #include <linux/pfn.h>
47 #include <linux/backing-dev.h>
48 #include <linux/fault-inject.h>
49 #include <linux/page-isolation.h>
50 #include <linux/page_ext.h>
51 #include <linux/debugobjects.h>
52 #include <linux/kmemleak.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <trace/events/oom.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/hugetlb.h>
60 #include <linux/sched/rt.h>
61 #include <linux/sched/mm.h>
62 #include <linux/page_owner.h>
63 #include <linux/kthread.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/lockdep.h>
67 #include <linux/nmi.h>
68 #include <linux/psi.h>
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock
);
77 #define MIN_PERCPU_PAGELIST_FRACTION (8)
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node
);
81 EXPORT_PER_CPU_SYMBOL(numa_node
);
84 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key
);
86 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
88 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
89 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
90 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
91 * defined in <linux/topology.h>.
93 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
94 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
95 int _node_numa_mem_
[MAX_NUMNODES
];
98 /* work_structs for global per-cpu drains */
99 DEFINE_MUTEX(pcpu_drain_mutex
);
100 DEFINE_PER_CPU(struct work_struct
, pcpu_drain
);
102 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
103 volatile unsigned long latent_entropy __latent_entropy
;
104 EXPORT_SYMBOL(latent_entropy
);
108 * Array of node states.
110 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
111 [N_POSSIBLE
] = NODE_MASK_ALL
,
112 [N_ONLINE
] = { { [0] = 1UL } },
114 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
115 #ifdef CONFIG_HIGHMEM
116 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
118 [N_MEMORY
] = { { [0] = 1UL } },
119 [N_CPU
] = { { [0] = 1UL } },
122 EXPORT_SYMBOL(node_states
);
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock
);
127 unsigned long totalram_pages __read_mostly
;
128 unsigned long totalreserve_pages __read_mostly
;
129 unsigned long totalcma_pages __read_mostly
;
131 int percpu_pagelist_fraction
;
132 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
142 static inline int get_pcppage_migratetype(struct page
*page
)
147 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
149 page
->index
= migratetype
;
152 #ifdef CONFIG_PM_SLEEP
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with system_transition_mutex held
158 * (gfp_allowed_mask also should only be modified with system_transition_mutex
159 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
160 * with that modification).
163 static gfp_t saved_gfp_mask
;
165 void pm_restore_gfp_mask(void)
167 WARN_ON(!mutex_is_locked(&system_transition_mutex
));
168 if (saved_gfp_mask
) {
169 gfp_allowed_mask
= saved_gfp_mask
;
174 void pm_restrict_gfp_mask(void)
176 WARN_ON(!mutex_is_locked(&system_transition_mutex
));
177 WARN_ON(saved_gfp_mask
);
178 saved_gfp_mask
= gfp_allowed_mask
;
179 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
182 bool pm_suspended_storage(void)
184 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
188 #endif /* CONFIG_PM_SLEEP */
190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191 unsigned int pageblock_order __read_mostly
;
194 static void __free_pages_ok(struct page
*page
, unsigned int order
);
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
207 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
] = {
208 #ifdef CONFIG_ZONE_DMA
211 #ifdef CONFIG_ZONE_DMA32
215 #ifdef CONFIG_HIGHMEM
221 EXPORT_SYMBOL(totalram_pages
);
223 static char * const zone_names
[MAX_NR_ZONES
] = {
224 #ifdef CONFIG_ZONE_DMA
227 #ifdef CONFIG_ZONE_DMA32
231 #ifdef CONFIG_HIGHMEM
235 #ifdef CONFIG_ZONE_DEVICE
240 char * const migratetype_names
[MIGRATE_TYPES
] = {
248 #ifdef CONFIG_MEMORY_ISOLATION
253 compound_page_dtor
* const compound_page_dtors
[] = {
256 #ifdef CONFIG_HUGETLB_PAGE
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
264 int min_free_kbytes
= 1024;
265 int user_min_free_kbytes
= -1;
266 int watermark_scale_factor
= 10;
268 static unsigned long nr_kernel_pages __meminitdata
;
269 static unsigned long nr_all_pages __meminitdata
;
270 static unsigned long dma_reserve __meminitdata
;
272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 static unsigned long arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
] __meminitdata
;
274 static unsigned long arch_zone_highest_possible_pfn
[MAX_NR_ZONES
] __meminitdata
;
275 static unsigned long required_kernelcore __initdata
;
276 static unsigned long required_kernelcore_percent __initdata
;
277 static unsigned long required_movablecore __initdata
;
278 static unsigned long required_movablecore_percent __initdata
;
279 static unsigned long zone_movable_pfn
[MAX_NUMNODES
] __meminitdata
;
280 static bool mirrored_kernelcore __meminitdata
;
282 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
284 EXPORT_SYMBOL(movable_zone
);
285 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
288 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
289 int nr_online_nodes __read_mostly
= 1;
290 EXPORT_SYMBOL(nr_node_ids
);
291 EXPORT_SYMBOL(nr_online_nodes
);
294 int page_group_by_mobility_disabled __read_mostly
;
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297 /* Returns true if the struct page for the pfn is uninitialised */
298 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
300 int nid
= early_pfn_to_nid(pfn
);
302 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
309 * Returns true when the remaining initialisation should be deferred until
310 * later in the boot cycle when it can be parallelised.
312 static bool __meminit
313 defer_init(int nid
, unsigned long pfn
, unsigned long end_pfn
)
315 static unsigned long prev_end_pfn
, nr_initialised
;
318 * prev_end_pfn static that contains the end of previous zone
319 * No need to protect because called very early in boot before smp_init.
321 if (prev_end_pfn
!= end_pfn
) {
322 prev_end_pfn
= end_pfn
;
326 /* Always populate low zones for address-constrained allocations */
327 if (end_pfn
< pgdat_end_pfn(NODE_DATA(nid
)))
330 if ((nr_initialised
> NODE_DATA(nid
)->static_init_pgcnt
) &&
331 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
332 NODE_DATA(nid
)->first_deferred_pfn
= pfn
;
338 static inline bool early_page_uninitialised(unsigned long pfn
)
343 static inline bool defer_init(int nid
, unsigned long pfn
, unsigned long end_pfn
)
349 /* Return a pointer to the bitmap storing bits affecting a block of pages */
350 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
353 #ifdef CONFIG_SPARSEMEM
354 return __pfn_to_section(pfn
)->pageblock_flags
;
356 return page_zone(page
)->pageblock_flags
;
357 #endif /* CONFIG_SPARSEMEM */
360 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
362 #ifdef CONFIG_SPARSEMEM
363 pfn
&= (PAGES_PER_SECTION
-1);
364 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
366 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
367 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
368 #endif /* CONFIG_SPARSEMEM */
372 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
373 * @page: The page within the block of interest
374 * @pfn: The target page frame number
375 * @end_bitidx: The last bit of interest to retrieve
376 * @mask: mask of bits that the caller is interested in
378 * Return: pageblock_bits flags
380 static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page
*page
,
382 unsigned long end_bitidx
,
385 unsigned long *bitmap
;
386 unsigned long bitidx
, word_bitidx
;
389 bitmap
= get_pageblock_bitmap(page
, pfn
);
390 bitidx
= pfn_to_bitidx(page
, pfn
);
391 word_bitidx
= bitidx
/ BITS_PER_LONG
;
392 bitidx
&= (BITS_PER_LONG
-1);
394 word
= bitmap
[word_bitidx
];
395 bitidx
+= end_bitidx
;
396 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
399 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
400 unsigned long end_bitidx
,
403 return __get_pfnblock_flags_mask(page
, pfn
, end_bitidx
, mask
);
406 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
408 return __get_pfnblock_flags_mask(page
, pfn
, PB_migrate_end
, MIGRATETYPE_MASK
);
412 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
413 * @page: The page within the block of interest
414 * @flags: The flags to set
415 * @pfn: The target page frame number
416 * @end_bitidx: The last bit of interest
417 * @mask: mask of bits that the caller is interested in
419 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
421 unsigned long end_bitidx
,
424 unsigned long *bitmap
;
425 unsigned long bitidx
, word_bitidx
;
426 unsigned long old_word
, word
;
428 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
430 bitmap
= get_pageblock_bitmap(page
, pfn
);
431 bitidx
= pfn_to_bitidx(page
, pfn
);
432 word_bitidx
= bitidx
/ BITS_PER_LONG
;
433 bitidx
&= (BITS_PER_LONG
-1);
435 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
437 bitidx
+= end_bitidx
;
438 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
439 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
441 word
= READ_ONCE(bitmap
[word_bitidx
]);
443 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
444 if (word
== old_word
)
450 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
452 if (unlikely(page_group_by_mobility_disabled
&&
453 migratetype
< MIGRATE_PCPTYPES
))
454 migratetype
= MIGRATE_UNMOVABLE
;
456 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
457 PB_migrate
, PB_migrate_end
);
460 #ifdef CONFIG_DEBUG_VM
461 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
465 unsigned long pfn
= page_to_pfn(page
);
466 unsigned long sp
, start_pfn
;
469 seq
= zone_span_seqbegin(zone
);
470 start_pfn
= zone
->zone_start_pfn
;
471 sp
= zone
->spanned_pages
;
472 if (!zone_spans_pfn(zone
, pfn
))
474 } while (zone_span_seqretry(zone
, seq
));
477 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
478 pfn
, zone_to_nid(zone
), zone
->name
,
479 start_pfn
, start_pfn
+ sp
);
484 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
486 if (!pfn_valid_within(page_to_pfn(page
)))
488 if (zone
!= page_zone(page
))
494 * Temporary debugging check for pages not lying within a given zone.
496 static int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
498 if (page_outside_zone_boundaries(zone
, page
))
500 if (!page_is_consistent(zone
, page
))
506 static inline int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
512 static void bad_page(struct page
*page
, const char *reason
,
513 unsigned long bad_flags
)
515 static unsigned long resume
;
516 static unsigned long nr_shown
;
517 static unsigned long nr_unshown
;
520 * Allow a burst of 60 reports, then keep quiet for that minute;
521 * or allow a steady drip of one report per second.
523 if (nr_shown
== 60) {
524 if (time_before(jiffies
, resume
)) {
530 "BUG: Bad page state: %lu messages suppressed\n",
537 resume
= jiffies
+ 60 * HZ
;
539 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
540 current
->comm
, page_to_pfn(page
));
541 __dump_page(page
, reason
);
542 bad_flags
&= page
->flags
;
544 pr_alert("bad because of flags: %#lx(%pGp)\n",
545 bad_flags
, &bad_flags
);
546 dump_page_owner(page
);
551 /* Leave bad fields for debug, except PageBuddy could make trouble */
552 page_mapcount_reset(page
); /* remove PageBuddy */
553 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
557 * Higher-order pages are called "compound pages". They are structured thusly:
559 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
561 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
562 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
564 * The first tail page's ->compound_dtor holds the offset in array of compound
565 * page destructors. See compound_page_dtors.
567 * The first tail page's ->compound_order holds the order of allocation.
568 * This usage means that zero-order pages may not be compound.
571 void free_compound_page(struct page
*page
)
573 __free_pages_ok(page
, compound_order(page
));
576 void prep_compound_page(struct page
*page
, unsigned int order
)
579 int nr_pages
= 1 << order
;
581 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
582 set_compound_order(page
, order
);
584 for (i
= 1; i
< nr_pages
; i
++) {
585 struct page
*p
= page
+ i
;
586 set_page_count(p
, 0);
587 p
->mapping
= TAIL_MAPPING
;
588 set_compound_head(p
, page
);
590 atomic_set(compound_mapcount_ptr(page
), -1);
593 #ifdef CONFIG_DEBUG_PAGEALLOC
594 unsigned int _debug_guardpage_minorder
;
595 bool _debug_pagealloc_enabled __read_mostly
596 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
597 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
598 bool _debug_guardpage_enabled __read_mostly
;
600 static int __init
early_debug_pagealloc(char *buf
)
604 return kstrtobool(buf
, &_debug_pagealloc_enabled
);
606 early_param("debug_pagealloc", early_debug_pagealloc
);
608 static bool need_debug_guardpage(void)
610 /* If we don't use debug_pagealloc, we don't need guard page */
611 if (!debug_pagealloc_enabled())
614 if (!debug_guardpage_minorder())
620 static void init_debug_guardpage(void)
622 if (!debug_pagealloc_enabled())
625 if (!debug_guardpage_minorder())
628 _debug_guardpage_enabled
= true;
631 struct page_ext_operations debug_guardpage_ops
= {
632 .need
= need_debug_guardpage
,
633 .init
= init_debug_guardpage
,
636 static int __init
debug_guardpage_minorder_setup(char *buf
)
640 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
641 pr_err("Bad debug_guardpage_minorder value\n");
644 _debug_guardpage_minorder
= res
;
645 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
648 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
650 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
651 unsigned int order
, int migratetype
)
653 struct page_ext
*page_ext
;
655 if (!debug_guardpage_enabled())
658 if (order
>= debug_guardpage_minorder())
661 page_ext
= lookup_page_ext(page
);
662 if (unlikely(!page_ext
))
665 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
667 INIT_LIST_HEAD(&page
->lru
);
668 set_page_private(page
, order
);
669 /* Guard pages are not available for any usage */
670 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
675 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
676 unsigned int order
, int migratetype
)
678 struct page_ext
*page_ext
;
680 if (!debug_guardpage_enabled())
683 page_ext
= lookup_page_ext(page
);
684 if (unlikely(!page_ext
))
687 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
689 set_page_private(page
, 0);
690 if (!is_migrate_isolate(migratetype
))
691 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
694 struct page_ext_operations debug_guardpage_ops
;
695 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
696 unsigned int order
, int migratetype
) { return false; }
697 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
698 unsigned int order
, int migratetype
) {}
701 static inline void set_page_order(struct page
*page
, unsigned int order
)
703 set_page_private(page
, order
);
704 __SetPageBuddy(page
);
707 static inline void rmv_page_order(struct page
*page
)
709 __ClearPageBuddy(page
);
710 set_page_private(page
, 0);
714 * This function checks whether a page is free && is the buddy
715 * we can coalesce a page and its buddy if
716 * (a) the buddy is not in a hole (check before calling!) &&
717 * (b) the buddy is in the buddy system &&
718 * (c) a page and its buddy have the same order &&
719 * (d) a page and its buddy are in the same zone.
721 * For recording whether a page is in the buddy system, we set PageBuddy.
722 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
724 * For recording page's order, we use page_private(page).
726 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
729 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
730 if (page_zone_id(page
) != page_zone_id(buddy
))
733 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
738 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
740 * zone check is done late to avoid uselessly
741 * calculating zone/node ids for pages that could
744 if (page_zone_id(page
) != page_zone_id(buddy
))
747 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
755 * Freeing function for a buddy system allocator.
757 * The concept of a buddy system is to maintain direct-mapped table
758 * (containing bit values) for memory blocks of various "orders".
759 * The bottom level table contains the map for the smallest allocatable
760 * units of memory (here, pages), and each level above it describes
761 * pairs of units from the levels below, hence, "buddies".
762 * At a high level, all that happens here is marking the table entry
763 * at the bottom level available, and propagating the changes upward
764 * as necessary, plus some accounting needed to play nicely with other
765 * parts of the VM system.
766 * At each level, we keep a list of pages, which are heads of continuous
767 * free pages of length of (1 << order) and marked with PageBuddy.
768 * Page's order is recorded in page_private(page) field.
769 * So when we are allocating or freeing one, we can derive the state of the
770 * other. That is, if we allocate a small block, and both were
771 * free, the remainder of the region must be split into blocks.
772 * If a block is freed, and its buddy is also free, then this
773 * triggers coalescing into a block of larger size.
778 static inline void __free_one_page(struct page
*page
,
780 struct zone
*zone
, unsigned int order
,
783 unsigned long combined_pfn
;
784 unsigned long uninitialized_var(buddy_pfn
);
786 unsigned int max_order
;
788 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
790 VM_BUG_ON(!zone_is_initialized(zone
));
791 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
793 VM_BUG_ON(migratetype
== -1);
794 if (likely(!is_migrate_isolate(migratetype
)))
795 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
797 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
798 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
801 while (order
< max_order
- 1) {
802 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
803 buddy
= page
+ (buddy_pfn
- pfn
);
805 if (!pfn_valid_within(buddy_pfn
))
807 if (!page_is_buddy(page
, buddy
, order
))
810 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
811 * merge with it and move up one order.
813 if (page_is_guard(buddy
)) {
814 clear_page_guard(zone
, buddy
, order
, migratetype
);
816 list_del(&buddy
->lru
);
817 zone
->free_area
[order
].nr_free
--;
818 rmv_page_order(buddy
);
820 combined_pfn
= buddy_pfn
& pfn
;
821 page
= page
+ (combined_pfn
- pfn
);
825 if (max_order
< MAX_ORDER
) {
826 /* If we are here, it means order is >= pageblock_order.
827 * We want to prevent merge between freepages on isolate
828 * pageblock and normal pageblock. Without this, pageblock
829 * isolation could cause incorrect freepage or CMA accounting.
831 * We don't want to hit this code for the more frequent
834 if (unlikely(has_isolate_pageblock(zone
))) {
837 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
838 buddy
= page
+ (buddy_pfn
- pfn
);
839 buddy_mt
= get_pageblock_migratetype(buddy
);
841 if (migratetype
!= buddy_mt
842 && (is_migrate_isolate(migratetype
) ||
843 is_migrate_isolate(buddy_mt
)))
847 goto continue_merging
;
851 set_page_order(page
, order
);
854 * If this is not the largest possible page, check if the buddy
855 * of the next-highest order is free. If it is, it's possible
856 * that pages are being freed that will coalesce soon. In case,
857 * that is happening, add the free page to the tail of the list
858 * so it's less likely to be used soon and more likely to be merged
859 * as a higher order page
861 if ((order
< MAX_ORDER
-2) && pfn_valid_within(buddy_pfn
)) {
862 struct page
*higher_page
, *higher_buddy
;
863 combined_pfn
= buddy_pfn
& pfn
;
864 higher_page
= page
+ (combined_pfn
- pfn
);
865 buddy_pfn
= __find_buddy_pfn(combined_pfn
, order
+ 1);
866 higher_buddy
= higher_page
+ (buddy_pfn
- combined_pfn
);
867 if (pfn_valid_within(buddy_pfn
) &&
868 page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
869 list_add_tail(&page
->lru
,
870 &zone
->free_area
[order
].free_list
[migratetype
]);
875 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
877 zone
->free_area
[order
].nr_free
++;
881 * A bad page could be due to a number of fields. Instead of multiple branches,
882 * try and check multiple fields with one check. The caller must do a detailed
883 * check if necessary.
885 static inline bool page_expected_state(struct page
*page
,
886 unsigned long check_flags
)
888 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
891 if (unlikely((unsigned long)page
->mapping
|
892 page_ref_count(page
) |
894 (unsigned long)page
->mem_cgroup
|
896 (page
->flags
& check_flags
)))
902 static void free_pages_check_bad(struct page
*page
)
904 const char *bad_reason
;
905 unsigned long bad_flags
;
910 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
911 bad_reason
= "nonzero mapcount";
912 if (unlikely(page
->mapping
!= NULL
))
913 bad_reason
= "non-NULL mapping";
914 if (unlikely(page_ref_count(page
) != 0))
915 bad_reason
= "nonzero _refcount";
916 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
917 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
918 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
921 if (unlikely(page
->mem_cgroup
))
922 bad_reason
= "page still charged to cgroup";
924 bad_page(page
, bad_reason
, bad_flags
);
927 static inline int free_pages_check(struct page
*page
)
929 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
932 /* Something has gone sideways, find it */
933 free_pages_check_bad(page
);
937 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
942 * We rely page->lru.next never has bit 0 set, unless the page
943 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
945 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
947 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
951 switch (page
- head_page
) {
953 /* the first tail page: ->mapping may be compound_mapcount() */
954 if (unlikely(compound_mapcount(page
))) {
955 bad_page(page
, "nonzero compound_mapcount", 0);
961 * the second tail page: ->mapping is
962 * deferred_list.next -- ignore value.
966 if (page
->mapping
!= TAIL_MAPPING
) {
967 bad_page(page
, "corrupted mapping in tail page", 0);
972 if (unlikely(!PageTail(page
))) {
973 bad_page(page
, "PageTail not set", 0);
976 if (unlikely(compound_head(page
) != head_page
)) {
977 bad_page(page
, "compound_head not consistent", 0);
982 page
->mapping
= NULL
;
983 clear_compound_head(page
);
987 static __always_inline
bool free_pages_prepare(struct page
*page
,
988 unsigned int order
, bool check_free
)
992 VM_BUG_ON_PAGE(PageTail(page
), page
);
994 trace_mm_page_free(page
, order
);
997 * Check tail pages before head page information is cleared to
998 * avoid checking PageCompound for order-0 pages.
1000 if (unlikely(order
)) {
1001 bool compound
= PageCompound(page
);
1004 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1007 ClearPageDoubleMap(page
);
1008 for (i
= 1; i
< (1 << order
); i
++) {
1010 bad
+= free_tail_pages_check(page
, page
+ i
);
1011 if (unlikely(free_pages_check(page
+ i
))) {
1015 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1018 if (PageMappingFlags(page
))
1019 page
->mapping
= NULL
;
1020 if (memcg_kmem_enabled() && PageKmemcg(page
))
1021 memcg_kmem_uncharge(page
, order
);
1023 bad
+= free_pages_check(page
);
1027 page_cpupid_reset_last(page
);
1028 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1029 reset_page_owner(page
, order
);
1031 if (!PageHighMem(page
)) {
1032 debug_check_no_locks_freed(page_address(page
),
1033 PAGE_SIZE
<< order
);
1034 debug_check_no_obj_freed(page_address(page
),
1035 PAGE_SIZE
<< order
);
1037 arch_free_page(page
, order
);
1038 kernel_poison_pages(page
, 1 << order
, 0);
1039 kernel_map_pages(page
, 1 << order
, 0);
1040 kasan_free_pages(page
, order
);
1045 #ifdef CONFIG_DEBUG_VM
1046 static inline bool free_pcp_prepare(struct page
*page
)
1048 return free_pages_prepare(page
, 0, true);
1051 static inline bool bulkfree_pcp_prepare(struct page
*page
)
1056 static bool free_pcp_prepare(struct page
*page
)
1058 return free_pages_prepare(page
, 0, false);
1061 static bool bulkfree_pcp_prepare(struct page
*page
)
1063 return free_pages_check(page
);
1065 #endif /* CONFIG_DEBUG_VM */
1067 static inline void prefetch_buddy(struct page
*page
)
1069 unsigned long pfn
= page_to_pfn(page
);
1070 unsigned long buddy_pfn
= __find_buddy_pfn(pfn
, 0);
1071 struct page
*buddy
= page
+ (buddy_pfn
- pfn
);
1077 * Frees a number of pages from the PCP lists
1078 * Assumes all pages on list are in same zone, and of same order.
1079 * count is the number of pages to free.
1081 * If the zone was previously in an "all pages pinned" state then look to
1082 * see if this freeing clears that state.
1084 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1085 * pinned" detection logic.
1087 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1088 struct per_cpu_pages
*pcp
)
1090 int migratetype
= 0;
1092 int prefetch_nr
= 0;
1093 bool isolated_pageblocks
;
1094 struct page
*page
, *tmp
;
1098 struct list_head
*list
;
1101 * Remove pages from lists in a round-robin fashion. A
1102 * batch_free count is maintained that is incremented when an
1103 * empty list is encountered. This is so more pages are freed
1104 * off fuller lists instead of spinning excessively around empty
1109 if (++migratetype
== MIGRATE_PCPTYPES
)
1111 list
= &pcp
->lists
[migratetype
];
1112 } while (list_empty(list
));
1114 /* This is the only non-empty list. Free them all. */
1115 if (batch_free
== MIGRATE_PCPTYPES
)
1119 page
= list_last_entry(list
, struct page
, lru
);
1120 /* must delete to avoid corrupting pcp list */
1121 list_del(&page
->lru
);
1124 if (bulkfree_pcp_prepare(page
))
1127 list_add_tail(&page
->lru
, &head
);
1130 * We are going to put the page back to the global
1131 * pool, prefetch its buddy to speed up later access
1132 * under zone->lock. It is believed the overhead of
1133 * an additional test and calculating buddy_pfn here
1134 * can be offset by reduced memory latency later. To
1135 * avoid excessive prefetching due to large count, only
1136 * prefetch buddy for the first pcp->batch nr of pages.
1138 if (prefetch_nr
++ < pcp
->batch
)
1139 prefetch_buddy(page
);
1140 } while (--count
&& --batch_free
&& !list_empty(list
));
1143 spin_lock(&zone
->lock
);
1144 isolated_pageblocks
= has_isolate_pageblock(zone
);
1147 * Use safe version since after __free_one_page(),
1148 * page->lru.next will not point to original list.
1150 list_for_each_entry_safe(page
, tmp
, &head
, lru
) {
1151 int mt
= get_pcppage_migratetype(page
);
1152 /* MIGRATE_ISOLATE page should not go to pcplists */
1153 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1154 /* Pageblock could have been isolated meanwhile */
1155 if (unlikely(isolated_pageblocks
))
1156 mt
= get_pageblock_migratetype(page
);
1158 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
1159 trace_mm_page_pcpu_drain(page
, 0, mt
);
1161 spin_unlock(&zone
->lock
);
1164 static void free_one_page(struct zone
*zone
,
1165 struct page
*page
, unsigned long pfn
,
1169 spin_lock(&zone
->lock
);
1170 if (unlikely(has_isolate_pageblock(zone
) ||
1171 is_migrate_isolate(migratetype
))) {
1172 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1174 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
1175 spin_unlock(&zone
->lock
);
1178 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1179 unsigned long zone
, int nid
)
1181 mm_zero_struct_page(page
);
1182 set_page_links(page
, zone
, nid
, pfn
);
1183 init_page_count(page
);
1184 page_mapcount_reset(page
);
1185 page_cpupid_reset_last(page
);
1186 page_kasan_tag_reset(page
);
1188 INIT_LIST_HEAD(&page
->lru
);
1189 #ifdef WANT_PAGE_VIRTUAL
1190 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1191 if (!is_highmem_idx(zone
))
1192 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1196 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1197 static void __meminit
init_reserved_page(unsigned long pfn
)
1202 if (!early_page_uninitialised(pfn
))
1205 nid
= early_pfn_to_nid(pfn
);
1206 pgdat
= NODE_DATA(nid
);
1208 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1209 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1211 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1214 __init_single_page(pfn_to_page(pfn
), pfn
, zid
, nid
);
1217 static inline void init_reserved_page(unsigned long pfn
)
1220 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1223 * Initialised pages do not have PageReserved set. This function is
1224 * called for each range allocated by the bootmem allocator and
1225 * marks the pages PageReserved. The remaining valid pages are later
1226 * sent to the buddy page allocator.
1228 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1230 unsigned long start_pfn
= PFN_DOWN(start
);
1231 unsigned long end_pfn
= PFN_UP(end
);
1233 for (; start_pfn
< end_pfn
; start_pfn
++) {
1234 if (pfn_valid(start_pfn
)) {
1235 struct page
*page
= pfn_to_page(start_pfn
);
1237 init_reserved_page(start_pfn
);
1239 /* Avoid false-positive PageTail() */
1240 INIT_LIST_HEAD(&page
->lru
);
1243 * no need for atomic set_bit because the struct
1244 * page is not visible yet so nobody should
1247 __SetPageReserved(page
);
1252 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1254 unsigned long flags
;
1256 unsigned long pfn
= page_to_pfn(page
);
1258 if (!free_pages_prepare(page
, order
, true))
1261 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1262 local_irq_save(flags
);
1263 __count_vm_events(PGFREE
, 1 << order
);
1264 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1265 local_irq_restore(flags
);
1268 static void __init
__free_pages_boot_core(struct page
*page
, unsigned int order
)
1270 unsigned int nr_pages
= 1 << order
;
1271 struct page
*p
= page
;
1275 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1277 __ClearPageReserved(p
);
1278 set_page_count(p
, 0);
1280 __ClearPageReserved(p
);
1281 set_page_count(p
, 0);
1283 page_zone(page
)->managed_pages
+= nr_pages
;
1284 set_page_refcounted(page
);
1285 __free_pages(page
, order
);
1288 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1289 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1291 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1293 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1295 static DEFINE_SPINLOCK(early_pfn_lock
);
1298 spin_lock(&early_pfn_lock
);
1299 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1301 nid
= first_online_node
;
1302 spin_unlock(&early_pfn_lock
);
1308 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1309 static inline bool __meminit __maybe_unused
1310 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1311 struct mminit_pfnnid_cache
*state
)
1315 nid
= __early_pfn_to_nid(pfn
, state
);
1316 if (nid
>= 0 && nid
!= node
)
1321 /* Only safe to use early in boot when initialisation is single-threaded */
1322 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1324 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1329 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1333 static inline bool __meminit __maybe_unused
1334 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1335 struct mminit_pfnnid_cache
*state
)
1342 void __init
memblock_free_pages(struct page
*page
, unsigned long pfn
,
1345 if (early_page_uninitialised(pfn
))
1347 return __free_pages_boot_core(page
, order
);
1351 * Check that the whole (or subset of) a pageblock given by the interval of
1352 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1353 * with the migration of free compaction scanner. The scanners then need to
1354 * use only pfn_valid_within() check for arches that allow holes within
1357 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1359 * It's possible on some configurations to have a setup like node0 node1 node0
1360 * i.e. it's possible that all pages within a zones range of pages do not
1361 * belong to a single zone. We assume that a border between node0 and node1
1362 * can occur within a single pageblock, but not a node0 node1 node0
1363 * interleaving within a single pageblock. It is therefore sufficient to check
1364 * the first and last page of a pageblock and avoid checking each individual
1365 * page in a pageblock.
1367 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1368 unsigned long end_pfn
, struct zone
*zone
)
1370 struct page
*start_page
;
1371 struct page
*end_page
;
1373 /* end_pfn is one past the range we are checking */
1376 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1379 start_page
= pfn_to_online_page(start_pfn
);
1383 if (page_zone(start_page
) != zone
)
1386 end_page
= pfn_to_page(end_pfn
);
1388 /* This gives a shorter code than deriving page_zone(end_page) */
1389 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1395 void set_zone_contiguous(struct zone
*zone
)
1397 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1398 unsigned long block_end_pfn
;
1400 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1401 for (; block_start_pfn
< zone_end_pfn(zone
);
1402 block_start_pfn
= block_end_pfn
,
1403 block_end_pfn
+= pageblock_nr_pages
) {
1405 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1407 if (!__pageblock_pfn_to_page(block_start_pfn
,
1408 block_end_pfn
, zone
))
1412 /* We confirm that there is no hole */
1413 zone
->contiguous
= true;
1416 void clear_zone_contiguous(struct zone
*zone
)
1418 zone
->contiguous
= false;
1421 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1422 static void __init
deferred_free_range(unsigned long pfn
,
1423 unsigned long nr_pages
)
1431 page
= pfn_to_page(pfn
);
1433 /* Free a large naturally-aligned chunk if possible */
1434 if (nr_pages
== pageblock_nr_pages
&&
1435 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1436 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1437 __free_pages_boot_core(page
, pageblock_order
);
1441 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1442 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1443 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1444 __free_pages_boot_core(page
, 0);
1448 /* Completion tracking for deferred_init_memmap() threads */
1449 static atomic_t pgdat_init_n_undone __initdata
;
1450 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1452 static inline void __init
pgdat_init_report_one_done(void)
1454 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1455 complete(&pgdat_init_all_done_comp
);
1459 * Returns true if page needs to be initialized or freed to buddy allocator.
1461 * First we check if pfn is valid on architectures where it is possible to have
1462 * holes within pageblock_nr_pages. On systems where it is not possible, this
1463 * function is optimized out.
1465 * Then, we check if a current large page is valid by only checking the validity
1468 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1469 * within a node: a pfn is between start and end of a node, but does not belong
1470 * to this memory node.
1472 static inline bool __init
1473 deferred_pfn_valid(int nid
, unsigned long pfn
,
1474 struct mminit_pfnnid_cache
*nid_init_state
)
1476 if (!pfn_valid_within(pfn
))
1478 if (!(pfn
& (pageblock_nr_pages
- 1)) && !pfn_valid(pfn
))
1480 if (!meminit_pfn_in_nid(pfn
, nid
, nid_init_state
))
1486 * Free pages to buddy allocator. Try to free aligned pages in
1487 * pageblock_nr_pages sizes.
1489 static void __init
deferred_free_pages(int nid
, int zid
, unsigned long pfn
,
1490 unsigned long end_pfn
)
1492 struct mminit_pfnnid_cache nid_init_state
= { };
1493 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1494 unsigned long nr_free
= 0;
1496 for (; pfn
< end_pfn
; pfn
++) {
1497 if (!deferred_pfn_valid(nid
, pfn
, &nid_init_state
)) {
1498 deferred_free_range(pfn
- nr_free
, nr_free
);
1500 } else if (!(pfn
& nr_pgmask
)) {
1501 deferred_free_range(pfn
- nr_free
, nr_free
);
1503 touch_nmi_watchdog();
1508 /* Free the last block of pages to allocator */
1509 deferred_free_range(pfn
- nr_free
, nr_free
);
1513 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1514 * by performing it only once every pageblock_nr_pages.
1515 * Return number of pages initialized.
1517 static unsigned long __init
deferred_init_pages(int nid
, int zid
,
1519 unsigned long end_pfn
)
1521 struct mminit_pfnnid_cache nid_init_state
= { };
1522 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1523 unsigned long nr_pages
= 0;
1524 struct page
*page
= NULL
;
1526 for (; pfn
< end_pfn
; pfn
++) {
1527 if (!deferred_pfn_valid(nid
, pfn
, &nid_init_state
)) {
1530 } else if (!page
|| !(pfn
& nr_pgmask
)) {
1531 page
= pfn_to_page(pfn
);
1532 touch_nmi_watchdog();
1536 __init_single_page(page
, pfn
, zid
, nid
);
1542 /* Initialise remaining memory on a node */
1543 static int __init
deferred_init_memmap(void *data
)
1545 pg_data_t
*pgdat
= data
;
1546 int nid
= pgdat
->node_id
;
1547 unsigned long start
= jiffies
;
1548 unsigned long nr_pages
= 0;
1549 unsigned long spfn
, epfn
, first_init_pfn
, flags
;
1550 phys_addr_t spa
, epa
;
1553 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1556 /* Bind memory initialisation thread to a local node if possible */
1557 if (!cpumask_empty(cpumask
))
1558 set_cpus_allowed_ptr(current
, cpumask
);
1560 pgdat_resize_lock(pgdat
, &flags
);
1561 first_init_pfn
= pgdat
->first_deferred_pfn
;
1562 if (first_init_pfn
== ULONG_MAX
) {
1563 pgdat_resize_unlock(pgdat
, &flags
);
1564 pgdat_init_report_one_done();
1568 /* Sanity check boundaries */
1569 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1570 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1571 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1573 /* Only the highest zone is deferred so find it */
1574 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1575 zone
= pgdat
->node_zones
+ zid
;
1576 if (first_init_pfn
< zone_end_pfn(zone
))
1579 first_init_pfn
= max(zone
->zone_start_pfn
, first_init_pfn
);
1582 * Initialize and free pages. We do it in two loops: first we initialize
1583 * struct page, than free to buddy allocator, because while we are
1584 * freeing pages we can access pages that are ahead (computing buddy
1585 * page in __free_one_page()).
1587 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1588 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1589 epfn
= min_t(unsigned long, zone_end_pfn(zone
), PFN_DOWN(epa
));
1590 nr_pages
+= deferred_init_pages(nid
, zid
, spfn
, epfn
);
1592 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1593 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1594 epfn
= min_t(unsigned long, zone_end_pfn(zone
), PFN_DOWN(epa
));
1595 deferred_free_pages(nid
, zid
, spfn
, epfn
);
1597 pgdat_resize_unlock(pgdat
, &flags
);
1599 /* Sanity check that the next zone really is unpopulated */
1600 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1602 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1603 jiffies_to_msecs(jiffies
- start
));
1605 pgdat_init_report_one_done();
1610 * During boot we initialize deferred pages on-demand, as needed, but once
1611 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1612 * and we can permanently disable that path.
1614 static DEFINE_STATIC_KEY_TRUE(deferred_pages
);
1617 * If this zone has deferred pages, try to grow it by initializing enough
1618 * deferred pages to satisfy the allocation specified by order, rounded up to
1619 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1620 * of SECTION_SIZE bytes by initializing struct pages in increments of
1621 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1623 * Return true when zone was grown, otherwise return false. We return true even
1624 * when we grow less than requested, to let the caller decide if there are
1625 * enough pages to satisfy the allocation.
1627 * Note: We use noinline because this function is needed only during boot, and
1628 * it is called from a __ref function _deferred_grow_zone. This way we are
1629 * making sure that it is not inlined into permanent text section.
1631 static noinline
bool __init
1632 deferred_grow_zone(struct zone
*zone
, unsigned int order
)
1634 int zid
= zone_idx(zone
);
1635 int nid
= zone_to_nid(zone
);
1636 pg_data_t
*pgdat
= NODE_DATA(nid
);
1637 unsigned long nr_pages_needed
= ALIGN(1 << order
, PAGES_PER_SECTION
);
1638 unsigned long nr_pages
= 0;
1639 unsigned long first_init_pfn
, spfn
, epfn
, t
, flags
;
1640 unsigned long first_deferred_pfn
= pgdat
->first_deferred_pfn
;
1641 phys_addr_t spa
, epa
;
1644 /* Only the last zone may have deferred pages */
1645 if (zone_end_pfn(zone
) != pgdat_end_pfn(pgdat
))
1648 pgdat_resize_lock(pgdat
, &flags
);
1651 * If deferred pages have been initialized while we were waiting for
1652 * the lock, return true, as the zone was grown. The caller will retry
1653 * this zone. We won't return to this function since the caller also
1654 * has this static branch.
1656 if (!static_branch_unlikely(&deferred_pages
)) {
1657 pgdat_resize_unlock(pgdat
, &flags
);
1662 * If someone grew this zone while we were waiting for spinlock, return
1663 * true, as there might be enough pages already.
1665 if (first_deferred_pfn
!= pgdat
->first_deferred_pfn
) {
1666 pgdat_resize_unlock(pgdat
, &flags
);
1670 first_init_pfn
= max(zone
->zone_start_pfn
, first_deferred_pfn
);
1672 if (first_init_pfn
>= pgdat_end_pfn(pgdat
)) {
1673 pgdat_resize_unlock(pgdat
, &flags
);
1677 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1678 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1679 epfn
= min_t(unsigned long, zone_end_pfn(zone
), PFN_DOWN(epa
));
1681 while (spfn
< epfn
&& nr_pages
< nr_pages_needed
) {
1682 t
= ALIGN(spfn
+ PAGES_PER_SECTION
, PAGES_PER_SECTION
);
1683 first_deferred_pfn
= min(t
, epfn
);
1684 nr_pages
+= deferred_init_pages(nid
, zid
, spfn
,
1685 first_deferred_pfn
);
1686 spfn
= first_deferred_pfn
;
1689 if (nr_pages
>= nr_pages_needed
)
1693 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1694 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1695 epfn
= min_t(unsigned long, first_deferred_pfn
, PFN_DOWN(epa
));
1696 deferred_free_pages(nid
, zid
, spfn
, epfn
);
1698 if (first_deferred_pfn
== epfn
)
1701 pgdat
->first_deferred_pfn
= first_deferred_pfn
;
1702 pgdat_resize_unlock(pgdat
, &flags
);
1704 return nr_pages
> 0;
1708 * deferred_grow_zone() is __init, but it is called from
1709 * get_page_from_freelist() during early boot until deferred_pages permanently
1710 * disables this call. This is why we have refdata wrapper to avoid warning,
1711 * and to ensure that the function body gets unloaded.
1714 _deferred_grow_zone(struct zone
*zone
, unsigned int order
)
1716 return deferred_grow_zone(zone
, order
);
1719 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1721 void __init
page_alloc_init_late(void)
1725 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1728 /* There will be num_node_state(N_MEMORY) threads */
1729 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1730 for_each_node_state(nid
, N_MEMORY
) {
1731 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1734 /* Block until all are initialised */
1735 wait_for_completion(&pgdat_init_all_done_comp
);
1738 * We initialized the rest of the deferred pages. Permanently disable
1739 * on-demand struct page initialization.
1741 static_branch_disable(&deferred_pages
);
1743 /* Reinit limits that are based on free pages after the kernel is up */
1744 files_maxfiles_init();
1746 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1747 /* Discard memblock private memory */
1751 for_each_populated_zone(zone
)
1752 set_zone_contiguous(zone
);
1756 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1757 void __init
init_cma_reserved_pageblock(struct page
*page
)
1759 unsigned i
= pageblock_nr_pages
;
1760 struct page
*p
= page
;
1763 __ClearPageReserved(p
);
1764 set_page_count(p
, 0);
1767 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1769 if (pageblock_order
>= MAX_ORDER
) {
1770 i
= pageblock_nr_pages
;
1773 set_page_refcounted(p
);
1774 __free_pages(p
, MAX_ORDER
- 1);
1775 p
+= MAX_ORDER_NR_PAGES
;
1776 } while (i
-= MAX_ORDER_NR_PAGES
);
1778 set_page_refcounted(page
);
1779 __free_pages(page
, pageblock_order
);
1782 adjust_managed_page_count(page
, pageblock_nr_pages
);
1787 * The order of subdivision here is critical for the IO subsystem.
1788 * Please do not alter this order without good reasons and regression
1789 * testing. Specifically, as large blocks of memory are subdivided,
1790 * the order in which smaller blocks are delivered depends on the order
1791 * they're subdivided in this function. This is the primary factor
1792 * influencing the order in which pages are delivered to the IO
1793 * subsystem according to empirical testing, and this is also justified
1794 * by considering the behavior of a buddy system containing a single
1795 * large block of memory acted on by a series of small allocations.
1796 * This behavior is a critical factor in sglist merging's success.
1800 static inline void expand(struct zone
*zone
, struct page
*page
,
1801 int low
, int high
, struct free_area
*area
,
1804 unsigned long size
= 1 << high
;
1806 while (high
> low
) {
1810 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1813 * Mark as guard pages (or page), that will allow to
1814 * merge back to allocator when buddy will be freed.
1815 * Corresponding page table entries will not be touched,
1816 * pages will stay not present in virtual address space
1818 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
1821 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1823 set_page_order(&page
[size
], high
);
1827 static void check_new_page_bad(struct page
*page
)
1829 const char *bad_reason
= NULL
;
1830 unsigned long bad_flags
= 0;
1832 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1833 bad_reason
= "nonzero mapcount";
1834 if (unlikely(page
->mapping
!= NULL
))
1835 bad_reason
= "non-NULL mapping";
1836 if (unlikely(page_ref_count(page
) != 0))
1837 bad_reason
= "nonzero _count";
1838 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1839 bad_reason
= "HWPoisoned (hardware-corrupted)";
1840 bad_flags
= __PG_HWPOISON
;
1841 /* Don't complain about hwpoisoned pages */
1842 page_mapcount_reset(page
); /* remove PageBuddy */
1845 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1846 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1847 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1850 if (unlikely(page
->mem_cgroup
))
1851 bad_reason
= "page still charged to cgroup";
1853 bad_page(page
, bad_reason
, bad_flags
);
1857 * This page is about to be returned from the page allocator
1859 static inline int check_new_page(struct page
*page
)
1861 if (likely(page_expected_state(page
,
1862 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
1865 check_new_page_bad(page
);
1869 static inline bool free_pages_prezeroed(void)
1871 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
1872 page_poisoning_enabled();
1875 #ifdef CONFIG_DEBUG_VM
1876 static bool check_pcp_refill(struct page
*page
)
1881 static bool check_new_pcp(struct page
*page
)
1883 return check_new_page(page
);
1886 static bool check_pcp_refill(struct page
*page
)
1888 return check_new_page(page
);
1890 static bool check_new_pcp(struct page
*page
)
1894 #endif /* CONFIG_DEBUG_VM */
1896 static bool check_new_pages(struct page
*page
, unsigned int order
)
1899 for (i
= 0; i
< (1 << order
); i
++) {
1900 struct page
*p
= page
+ i
;
1902 if (unlikely(check_new_page(p
)))
1909 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
1912 set_page_private(page
, 0);
1913 set_page_refcounted(page
);
1915 arch_alloc_page(page
, order
);
1916 kernel_map_pages(page
, 1 << order
, 1);
1917 kernel_poison_pages(page
, 1 << order
, 1);
1918 kasan_alloc_pages(page
, order
);
1919 set_page_owner(page
, order
, gfp_flags
);
1922 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1923 unsigned int alloc_flags
)
1927 post_alloc_hook(page
, order
, gfp_flags
);
1929 if (!free_pages_prezeroed() && (gfp_flags
& __GFP_ZERO
))
1930 for (i
= 0; i
< (1 << order
); i
++)
1931 clear_highpage(page
+ i
);
1933 if (order
&& (gfp_flags
& __GFP_COMP
))
1934 prep_compound_page(page
, order
);
1937 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1938 * allocate the page. The expectation is that the caller is taking
1939 * steps that will free more memory. The caller should avoid the page
1940 * being used for !PFMEMALLOC purposes.
1942 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1943 set_page_pfmemalloc(page
);
1945 clear_page_pfmemalloc(page
);
1949 * Go through the free lists for the given migratetype and remove
1950 * the smallest available page from the freelists
1952 static __always_inline
1953 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1956 unsigned int current_order
;
1957 struct free_area
*area
;
1960 /* Find a page of the appropriate size in the preferred list */
1961 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1962 area
= &(zone
->free_area
[current_order
]);
1963 page
= list_first_entry_or_null(&area
->free_list
[migratetype
],
1967 list_del(&page
->lru
);
1968 rmv_page_order(page
);
1970 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1971 set_pcppage_migratetype(page
, migratetype
);
1980 * This array describes the order lists are fallen back to when
1981 * the free lists for the desirable migrate type are depleted
1983 static int fallbacks
[MIGRATE_TYPES
][4] = {
1984 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1985 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1986 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
1988 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
1990 #ifdef CONFIG_MEMORY_ISOLATION
1991 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
1996 static __always_inline
struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1999 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
2002 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
2003 unsigned int order
) { return NULL
; }
2007 * Move the free pages in a range to the free lists of the requested type.
2008 * Note that start_page and end_pages are not aligned on a pageblock
2009 * boundary. If alignment is required, use move_freepages_block()
2011 static int move_freepages(struct zone
*zone
,
2012 struct page
*start_page
, struct page
*end_page
,
2013 int migratetype
, int *num_movable
)
2017 int pages_moved
= 0;
2019 #ifndef CONFIG_HOLES_IN_ZONE
2021 * page_zone is not safe to call in this context when
2022 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2023 * anyway as we check zone boundaries in move_freepages_block().
2024 * Remove at a later date when no bug reports exist related to
2025 * grouping pages by mobility
2027 VM_BUG_ON(pfn_valid(page_to_pfn(start_page
)) &&
2028 pfn_valid(page_to_pfn(end_page
)) &&
2029 page_zone(start_page
) != page_zone(end_page
));
2031 for (page
= start_page
; page
<= end_page
;) {
2032 if (!pfn_valid_within(page_to_pfn(page
))) {
2037 /* Make sure we are not inadvertently changing nodes */
2038 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
2040 if (!PageBuddy(page
)) {
2042 * We assume that pages that could be isolated for
2043 * migration are movable. But we don't actually try
2044 * isolating, as that would be expensive.
2047 (PageLRU(page
) || __PageMovable(page
)))
2054 order
= page_order(page
);
2055 list_move(&page
->lru
,
2056 &zone
->free_area
[order
].free_list
[migratetype
]);
2058 pages_moved
+= 1 << order
;
2064 int move_freepages_block(struct zone
*zone
, struct page
*page
,
2065 int migratetype
, int *num_movable
)
2067 unsigned long start_pfn
, end_pfn
;
2068 struct page
*start_page
, *end_page
;
2073 start_pfn
= page_to_pfn(page
);
2074 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
2075 start_page
= pfn_to_page(start_pfn
);
2076 end_page
= start_page
+ pageblock_nr_pages
- 1;
2077 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
2079 /* Do not cross zone boundaries */
2080 if (!zone_spans_pfn(zone
, start_pfn
))
2082 if (!zone_spans_pfn(zone
, end_pfn
))
2085 return move_freepages(zone
, start_page
, end_page
, migratetype
,
2089 static void change_pageblock_range(struct page
*pageblock_page
,
2090 int start_order
, int migratetype
)
2092 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
2094 while (nr_pageblocks
--) {
2095 set_pageblock_migratetype(pageblock_page
, migratetype
);
2096 pageblock_page
+= pageblock_nr_pages
;
2101 * When we are falling back to another migratetype during allocation, try to
2102 * steal extra free pages from the same pageblocks to satisfy further
2103 * allocations, instead of polluting multiple pageblocks.
2105 * If we are stealing a relatively large buddy page, it is likely there will
2106 * be more free pages in the pageblock, so try to steal them all. For
2107 * reclaimable and unmovable allocations, we steal regardless of page size,
2108 * as fragmentation caused by those allocations polluting movable pageblocks
2109 * is worse than movable allocations stealing from unmovable and reclaimable
2112 static bool can_steal_fallback(unsigned int order
, int start_mt
)
2115 * Leaving this order check is intended, although there is
2116 * relaxed order check in next check. The reason is that
2117 * we can actually steal whole pageblock if this condition met,
2118 * but, below check doesn't guarantee it and that is just heuristic
2119 * so could be changed anytime.
2121 if (order
>= pageblock_order
)
2124 if (order
>= pageblock_order
/ 2 ||
2125 start_mt
== MIGRATE_RECLAIMABLE
||
2126 start_mt
== MIGRATE_UNMOVABLE
||
2127 page_group_by_mobility_disabled
)
2134 * This function implements actual steal behaviour. If order is large enough,
2135 * we can steal whole pageblock. If not, we first move freepages in this
2136 * pageblock to our migratetype and determine how many already-allocated pages
2137 * are there in the pageblock with a compatible migratetype. If at least half
2138 * of pages are free or compatible, we can change migratetype of the pageblock
2139 * itself, so pages freed in the future will be put on the correct free list.
2141 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
2142 int start_type
, bool whole_block
)
2144 unsigned int current_order
= page_order(page
);
2145 struct free_area
*area
;
2146 int free_pages
, movable_pages
, alike_pages
;
2149 old_block_type
= get_pageblock_migratetype(page
);
2152 * This can happen due to races and we want to prevent broken
2153 * highatomic accounting.
2155 if (is_migrate_highatomic(old_block_type
))
2158 /* Take ownership for orders >= pageblock_order */
2159 if (current_order
>= pageblock_order
) {
2160 change_pageblock_range(page
, current_order
, start_type
);
2164 /* We are not allowed to try stealing from the whole block */
2168 free_pages
= move_freepages_block(zone
, page
, start_type
,
2171 * Determine how many pages are compatible with our allocation.
2172 * For movable allocation, it's the number of movable pages which
2173 * we just obtained. For other types it's a bit more tricky.
2175 if (start_type
== MIGRATE_MOVABLE
) {
2176 alike_pages
= movable_pages
;
2179 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2180 * to MOVABLE pageblock, consider all non-movable pages as
2181 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2182 * vice versa, be conservative since we can't distinguish the
2183 * exact migratetype of non-movable pages.
2185 if (old_block_type
== MIGRATE_MOVABLE
)
2186 alike_pages
= pageblock_nr_pages
2187 - (free_pages
+ movable_pages
);
2192 /* moving whole block can fail due to zone boundary conditions */
2197 * If a sufficient number of pages in the block are either free or of
2198 * comparable migratability as our allocation, claim the whole block.
2200 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
2201 page_group_by_mobility_disabled
)
2202 set_pageblock_migratetype(page
, start_type
);
2207 area
= &zone
->free_area
[current_order
];
2208 list_move(&page
->lru
, &area
->free_list
[start_type
]);
2212 * Check whether there is a suitable fallback freepage with requested order.
2213 * If only_stealable is true, this function returns fallback_mt only if
2214 * we can steal other freepages all together. This would help to reduce
2215 * fragmentation due to mixed migratetype pages in one pageblock.
2217 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2218 int migratetype
, bool only_stealable
, bool *can_steal
)
2223 if (area
->nr_free
== 0)
2228 fallback_mt
= fallbacks
[migratetype
][i
];
2229 if (fallback_mt
== MIGRATE_TYPES
)
2232 if (list_empty(&area
->free_list
[fallback_mt
]))
2235 if (can_steal_fallback(order
, migratetype
))
2238 if (!only_stealable
)
2249 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2250 * there are no empty page blocks that contain a page with a suitable order
2252 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2253 unsigned int alloc_order
)
2256 unsigned long max_managed
, flags
;
2259 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2260 * Check is race-prone but harmless.
2262 max_managed
= (zone
->managed_pages
/ 100) + pageblock_nr_pages
;
2263 if (zone
->nr_reserved_highatomic
>= max_managed
)
2266 spin_lock_irqsave(&zone
->lock
, flags
);
2268 /* Recheck the nr_reserved_highatomic limit under the lock */
2269 if (zone
->nr_reserved_highatomic
>= max_managed
)
2273 mt
= get_pageblock_migratetype(page
);
2274 if (!is_migrate_highatomic(mt
) && !is_migrate_isolate(mt
)
2275 && !is_migrate_cma(mt
)) {
2276 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2277 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2278 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
, NULL
);
2282 spin_unlock_irqrestore(&zone
->lock
, flags
);
2286 * Used when an allocation is about to fail under memory pressure. This
2287 * potentially hurts the reliability of high-order allocations when under
2288 * intense memory pressure but failed atomic allocations should be easier
2289 * to recover from than an OOM.
2291 * If @force is true, try to unreserve a pageblock even though highatomic
2292 * pageblock is exhausted.
2294 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2297 struct zonelist
*zonelist
= ac
->zonelist
;
2298 unsigned long flags
;
2305 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2308 * Preserve at least one pageblock unless memory pressure
2311 if (!force
&& zone
->nr_reserved_highatomic
<=
2315 spin_lock_irqsave(&zone
->lock
, flags
);
2316 for (order
= 0; order
< MAX_ORDER
; order
++) {
2317 struct free_area
*area
= &(zone
->free_area
[order
]);
2319 page
= list_first_entry_or_null(
2320 &area
->free_list
[MIGRATE_HIGHATOMIC
],
2326 * In page freeing path, migratetype change is racy so
2327 * we can counter several free pages in a pageblock
2328 * in this loop althoug we changed the pageblock type
2329 * from highatomic to ac->migratetype. So we should
2330 * adjust the count once.
2332 if (is_migrate_highatomic_page(page
)) {
2334 * It should never happen but changes to
2335 * locking could inadvertently allow a per-cpu
2336 * drain to add pages to MIGRATE_HIGHATOMIC
2337 * while unreserving so be safe and watch for
2340 zone
->nr_reserved_highatomic
-= min(
2342 zone
->nr_reserved_highatomic
);
2346 * Convert to ac->migratetype and avoid the normal
2347 * pageblock stealing heuristics. Minimally, the caller
2348 * is doing the work and needs the pages. More
2349 * importantly, if the block was always converted to
2350 * MIGRATE_UNMOVABLE or another type then the number
2351 * of pageblocks that cannot be completely freed
2354 set_pageblock_migratetype(page
, ac
->migratetype
);
2355 ret
= move_freepages_block(zone
, page
, ac
->migratetype
,
2358 spin_unlock_irqrestore(&zone
->lock
, flags
);
2362 spin_unlock_irqrestore(&zone
->lock
, flags
);
2369 * Try finding a free buddy page on the fallback list and put it on the free
2370 * list of requested migratetype, possibly along with other pages from the same
2371 * block, depending on fragmentation avoidance heuristics. Returns true if
2372 * fallback was found so that __rmqueue_smallest() can grab it.
2374 * The use of signed ints for order and current_order is a deliberate
2375 * deviation from the rest of this file, to make the for loop
2376 * condition simpler.
2378 static __always_inline
bool
2379 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
2381 struct free_area
*area
;
2388 * Find the largest available free page in the other list. This roughly
2389 * approximates finding the pageblock with the most free pages, which
2390 * would be too costly to do exactly.
2392 for (current_order
= MAX_ORDER
- 1; current_order
>= order
;
2394 area
= &(zone
->free_area
[current_order
]);
2395 fallback_mt
= find_suitable_fallback(area
, current_order
,
2396 start_migratetype
, false, &can_steal
);
2397 if (fallback_mt
== -1)
2401 * We cannot steal all free pages from the pageblock and the
2402 * requested migratetype is movable. In that case it's better to
2403 * steal and split the smallest available page instead of the
2404 * largest available page, because even if the next movable
2405 * allocation falls back into a different pageblock than this
2406 * one, it won't cause permanent fragmentation.
2408 if (!can_steal
&& start_migratetype
== MIGRATE_MOVABLE
2409 && current_order
> order
)
2418 for (current_order
= order
; current_order
< MAX_ORDER
;
2420 area
= &(zone
->free_area
[current_order
]);
2421 fallback_mt
= find_suitable_fallback(area
, current_order
,
2422 start_migratetype
, false, &can_steal
);
2423 if (fallback_mt
!= -1)
2428 * This should not happen - we already found a suitable fallback
2429 * when looking for the largest page.
2431 VM_BUG_ON(current_order
== MAX_ORDER
);
2434 page
= list_first_entry(&area
->free_list
[fallback_mt
],
2437 steal_suitable_fallback(zone
, page
, start_migratetype
, can_steal
);
2439 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2440 start_migratetype
, fallback_mt
);
2447 * Do the hard work of removing an element from the buddy allocator.
2448 * Call me with the zone->lock already held.
2450 static __always_inline
struct page
*
2451 __rmqueue(struct zone
*zone
, unsigned int order
, int migratetype
)
2456 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2457 if (unlikely(!page
)) {
2458 if (migratetype
== MIGRATE_MOVABLE
)
2459 page
= __rmqueue_cma_fallback(zone
, order
);
2461 if (!page
&& __rmqueue_fallback(zone
, order
, migratetype
))
2465 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2470 * Obtain a specified number of elements from the buddy allocator, all under
2471 * a single hold of the lock, for efficiency. Add them to the supplied list.
2472 * Returns the number of new pages which were placed at *list.
2474 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2475 unsigned long count
, struct list_head
*list
,
2480 spin_lock(&zone
->lock
);
2481 for (i
= 0; i
< count
; ++i
) {
2482 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
2483 if (unlikely(page
== NULL
))
2486 if (unlikely(check_pcp_refill(page
)))
2490 * Split buddy pages returned by expand() are received here in
2491 * physical page order. The page is added to the tail of
2492 * caller's list. From the callers perspective, the linked list
2493 * is ordered by page number under some conditions. This is
2494 * useful for IO devices that can forward direction from the
2495 * head, thus also in the physical page order. This is useful
2496 * for IO devices that can merge IO requests if the physical
2497 * pages are ordered properly.
2499 list_add_tail(&page
->lru
, list
);
2501 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2502 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2507 * i pages were removed from the buddy list even if some leak due
2508 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2509 * on i. Do not confuse with 'alloced' which is the number of
2510 * pages added to the pcp list.
2512 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2513 spin_unlock(&zone
->lock
);
2519 * Called from the vmstat counter updater to drain pagesets of this
2520 * currently executing processor on remote nodes after they have
2523 * Note that this function must be called with the thread pinned to
2524 * a single processor.
2526 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2528 unsigned long flags
;
2529 int to_drain
, batch
;
2531 local_irq_save(flags
);
2532 batch
= READ_ONCE(pcp
->batch
);
2533 to_drain
= min(pcp
->count
, batch
);
2535 free_pcppages_bulk(zone
, to_drain
, pcp
);
2536 local_irq_restore(flags
);
2541 * Drain pcplists of the indicated processor and zone.
2543 * The processor must either be the current processor and the
2544 * thread pinned to the current processor or a processor that
2547 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2549 unsigned long flags
;
2550 struct per_cpu_pageset
*pset
;
2551 struct per_cpu_pages
*pcp
;
2553 local_irq_save(flags
);
2554 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2558 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2559 local_irq_restore(flags
);
2563 * Drain pcplists of all zones on the indicated processor.
2565 * The processor must either be the current processor and the
2566 * thread pinned to the current processor or a processor that
2569 static void drain_pages(unsigned int cpu
)
2573 for_each_populated_zone(zone
) {
2574 drain_pages_zone(cpu
, zone
);
2579 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2581 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2582 * the single zone's pages.
2584 void drain_local_pages(struct zone
*zone
)
2586 int cpu
= smp_processor_id();
2589 drain_pages_zone(cpu
, zone
);
2594 static void drain_local_pages_wq(struct work_struct
*work
)
2597 * drain_all_pages doesn't use proper cpu hotplug protection so
2598 * we can race with cpu offline when the WQ can move this from
2599 * a cpu pinned worker to an unbound one. We can operate on a different
2600 * cpu which is allright but we also have to make sure to not move to
2604 drain_local_pages(NULL
);
2609 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2611 * When zone parameter is non-NULL, spill just the single zone's pages.
2613 * Note that this can be extremely slow as the draining happens in a workqueue.
2615 void drain_all_pages(struct zone
*zone
)
2620 * Allocate in the BSS so we wont require allocation in
2621 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2623 static cpumask_t cpus_with_pcps
;
2626 * Make sure nobody triggers this path before mm_percpu_wq is fully
2629 if (WARN_ON_ONCE(!mm_percpu_wq
))
2633 * Do not drain if one is already in progress unless it's specific to
2634 * a zone. Such callers are primarily CMA and memory hotplug and need
2635 * the drain to be complete when the call returns.
2637 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
2640 mutex_lock(&pcpu_drain_mutex
);
2644 * We don't care about racing with CPU hotplug event
2645 * as offline notification will cause the notified
2646 * cpu to drain that CPU pcps and on_each_cpu_mask
2647 * disables preemption as part of its processing
2649 for_each_online_cpu(cpu
) {
2650 struct per_cpu_pageset
*pcp
;
2652 bool has_pcps
= false;
2655 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2659 for_each_populated_zone(z
) {
2660 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2661 if (pcp
->pcp
.count
) {
2669 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2671 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2674 for_each_cpu(cpu
, &cpus_with_pcps
) {
2675 struct work_struct
*work
= per_cpu_ptr(&pcpu_drain
, cpu
);
2676 INIT_WORK(work
, drain_local_pages_wq
);
2677 queue_work_on(cpu
, mm_percpu_wq
, work
);
2679 for_each_cpu(cpu
, &cpus_with_pcps
)
2680 flush_work(per_cpu_ptr(&pcpu_drain
, cpu
));
2682 mutex_unlock(&pcpu_drain_mutex
);
2685 #ifdef CONFIG_HIBERNATION
2688 * Touch the watchdog for every WD_PAGE_COUNT pages.
2690 #define WD_PAGE_COUNT (128*1024)
2692 void mark_free_pages(struct zone
*zone
)
2694 unsigned long pfn
, max_zone_pfn
, page_count
= WD_PAGE_COUNT
;
2695 unsigned long flags
;
2696 unsigned int order
, t
;
2699 if (zone_is_empty(zone
))
2702 spin_lock_irqsave(&zone
->lock
, flags
);
2704 max_zone_pfn
= zone_end_pfn(zone
);
2705 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2706 if (pfn_valid(pfn
)) {
2707 page
= pfn_to_page(pfn
);
2709 if (!--page_count
) {
2710 touch_nmi_watchdog();
2711 page_count
= WD_PAGE_COUNT
;
2714 if (page_zone(page
) != zone
)
2717 if (!swsusp_page_is_forbidden(page
))
2718 swsusp_unset_page_free(page
);
2721 for_each_migratetype_order(order
, t
) {
2722 list_for_each_entry(page
,
2723 &zone
->free_area
[order
].free_list
[t
], lru
) {
2726 pfn
= page_to_pfn(page
);
2727 for (i
= 0; i
< (1UL << order
); i
++) {
2728 if (!--page_count
) {
2729 touch_nmi_watchdog();
2730 page_count
= WD_PAGE_COUNT
;
2732 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2736 spin_unlock_irqrestore(&zone
->lock
, flags
);
2738 #endif /* CONFIG_PM */
2740 static bool free_unref_page_prepare(struct page
*page
, unsigned long pfn
)
2744 if (!free_pcp_prepare(page
))
2747 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2748 set_pcppage_migratetype(page
, migratetype
);
2752 static void free_unref_page_commit(struct page
*page
, unsigned long pfn
)
2754 struct zone
*zone
= page_zone(page
);
2755 struct per_cpu_pages
*pcp
;
2758 migratetype
= get_pcppage_migratetype(page
);
2759 __count_vm_event(PGFREE
);
2762 * We only track unmovable, reclaimable and movable on pcp lists.
2763 * Free ISOLATE pages back to the allocator because they are being
2764 * offlined but treat HIGHATOMIC as movable pages so we can get those
2765 * areas back if necessary. Otherwise, we may have to free
2766 * excessively into the page allocator
2768 if (migratetype
>= MIGRATE_PCPTYPES
) {
2769 if (unlikely(is_migrate_isolate(migratetype
))) {
2770 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2773 migratetype
= MIGRATE_MOVABLE
;
2776 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2777 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2779 if (pcp
->count
>= pcp
->high
) {
2780 unsigned long batch
= READ_ONCE(pcp
->batch
);
2781 free_pcppages_bulk(zone
, batch
, pcp
);
2786 * Free a 0-order page
2788 void free_unref_page(struct page
*page
)
2790 unsigned long flags
;
2791 unsigned long pfn
= page_to_pfn(page
);
2793 if (!free_unref_page_prepare(page
, pfn
))
2796 local_irq_save(flags
);
2797 free_unref_page_commit(page
, pfn
);
2798 local_irq_restore(flags
);
2802 * Free a list of 0-order pages
2804 void free_unref_page_list(struct list_head
*list
)
2806 struct page
*page
, *next
;
2807 unsigned long flags
, pfn
;
2808 int batch_count
= 0;
2810 /* Prepare pages for freeing */
2811 list_for_each_entry_safe(page
, next
, list
, lru
) {
2812 pfn
= page_to_pfn(page
);
2813 if (!free_unref_page_prepare(page
, pfn
))
2814 list_del(&page
->lru
);
2815 set_page_private(page
, pfn
);
2818 local_irq_save(flags
);
2819 list_for_each_entry_safe(page
, next
, list
, lru
) {
2820 unsigned long pfn
= page_private(page
);
2822 set_page_private(page
, 0);
2823 trace_mm_page_free_batched(page
);
2824 free_unref_page_commit(page
, pfn
);
2827 * Guard against excessive IRQ disabled times when we get
2828 * a large list of pages to free.
2830 if (++batch_count
== SWAP_CLUSTER_MAX
) {
2831 local_irq_restore(flags
);
2833 local_irq_save(flags
);
2836 local_irq_restore(flags
);
2840 * split_page takes a non-compound higher-order page, and splits it into
2841 * n (1<<order) sub-pages: page[0..n]
2842 * Each sub-page must be freed individually.
2844 * Note: this is probably too low level an operation for use in drivers.
2845 * Please consult with lkml before using this in your driver.
2847 void split_page(struct page
*page
, unsigned int order
)
2851 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2852 VM_BUG_ON_PAGE(!page_count(page
), page
);
2854 for (i
= 1; i
< (1 << order
); i
++)
2855 set_page_refcounted(page
+ i
);
2856 split_page_owner(page
, order
);
2858 EXPORT_SYMBOL_GPL(split_page
);
2860 int __isolate_free_page(struct page
*page
, unsigned int order
)
2862 unsigned long watermark
;
2866 BUG_ON(!PageBuddy(page
));
2868 zone
= page_zone(page
);
2869 mt
= get_pageblock_migratetype(page
);
2871 if (!is_migrate_isolate(mt
)) {
2873 * Obey watermarks as if the page was being allocated. We can
2874 * emulate a high-order watermark check with a raised order-0
2875 * watermark, because we already know our high-order page
2878 watermark
= min_wmark_pages(zone
) + (1UL << order
);
2879 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
2882 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
2885 /* Remove page from free list */
2886 list_del(&page
->lru
);
2887 zone
->free_area
[order
].nr_free
--;
2888 rmv_page_order(page
);
2891 * Set the pageblock if the isolated page is at least half of a
2894 if (order
>= pageblock_order
- 1) {
2895 struct page
*endpage
= page
+ (1 << order
) - 1;
2896 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2897 int mt
= get_pageblock_migratetype(page
);
2898 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
)
2899 && !is_migrate_highatomic(mt
))
2900 set_pageblock_migratetype(page
,
2906 return 1UL << order
;
2910 * Update NUMA hit/miss statistics
2912 * Must be called with interrupts disabled.
2914 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
2917 enum numa_stat_item local_stat
= NUMA_LOCAL
;
2919 /* skip numa counters update if numa stats is disabled */
2920 if (!static_branch_likely(&vm_numa_stat_key
))
2923 if (zone_to_nid(z
) != numa_node_id())
2924 local_stat
= NUMA_OTHER
;
2926 if (zone_to_nid(z
) == zone_to_nid(preferred_zone
))
2927 __inc_numa_state(z
, NUMA_HIT
);
2929 __inc_numa_state(z
, NUMA_MISS
);
2930 __inc_numa_state(preferred_zone
, NUMA_FOREIGN
);
2932 __inc_numa_state(z
, local_stat
);
2936 /* Remove page from the per-cpu list, caller must protect the list */
2937 static struct page
*__rmqueue_pcplist(struct zone
*zone
, int migratetype
,
2938 struct per_cpu_pages
*pcp
,
2939 struct list_head
*list
)
2944 if (list_empty(list
)) {
2945 pcp
->count
+= rmqueue_bulk(zone
, 0,
2948 if (unlikely(list_empty(list
)))
2952 page
= list_first_entry(list
, struct page
, lru
);
2953 list_del(&page
->lru
);
2955 } while (check_new_pcp(page
));
2960 /* Lock and remove page from the per-cpu list */
2961 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
2962 struct zone
*zone
, unsigned int order
,
2963 gfp_t gfp_flags
, int migratetype
)
2965 struct per_cpu_pages
*pcp
;
2966 struct list_head
*list
;
2968 unsigned long flags
;
2970 local_irq_save(flags
);
2971 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2972 list
= &pcp
->lists
[migratetype
];
2973 page
= __rmqueue_pcplist(zone
, migratetype
, pcp
, list
);
2975 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2976 zone_statistics(preferred_zone
, zone
);
2978 local_irq_restore(flags
);
2983 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2986 struct page
*rmqueue(struct zone
*preferred_zone
,
2987 struct zone
*zone
, unsigned int order
,
2988 gfp_t gfp_flags
, unsigned int alloc_flags
,
2991 unsigned long flags
;
2994 if (likely(order
== 0)) {
2995 page
= rmqueue_pcplist(preferred_zone
, zone
, order
,
2996 gfp_flags
, migratetype
);
3001 * We most definitely don't want callers attempting to
3002 * allocate greater than order-1 page units with __GFP_NOFAIL.
3004 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
3005 spin_lock_irqsave(&zone
->lock
, flags
);
3009 if (alloc_flags
& ALLOC_HARDER
) {
3010 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
3012 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
3015 page
= __rmqueue(zone
, order
, migratetype
);
3016 } while (page
&& check_new_pages(page
, order
));
3017 spin_unlock(&zone
->lock
);
3020 __mod_zone_freepage_state(zone
, -(1 << order
),
3021 get_pcppage_migratetype(page
));
3023 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
3024 zone_statistics(preferred_zone
, zone
);
3025 local_irq_restore(flags
);
3028 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
3032 local_irq_restore(flags
);
3036 #ifdef CONFIG_FAIL_PAGE_ALLOC
3039 struct fault_attr attr
;
3041 bool ignore_gfp_highmem
;
3042 bool ignore_gfp_reclaim
;
3044 } fail_page_alloc
= {
3045 .attr
= FAULT_ATTR_INITIALIZER
,
3046 .ignore_gfp_reclaim
= true,
3047 .ignore_gfp_highmem
= true,
3051 static int __init
setup_fail_page_alloc(char *str
)
3053 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
3055 __setup("fail_page_alloc=", setup_fail_page_alloc
);
3057 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3059 if (order
< fail_page_alloc
.min_order
)
3061 if (gfp_mask
& __GFP_NOFAIL
)
3063 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
3065 if (fail_page_alloc
.ignore_gfp_reclaim
&&
3066 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
3069 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
3072 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3074 static int __init
fail_page_alloc_debugfs(void)
3076 umode_t mode
= S_IFREG
| 0600;
3079 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
3080 &fail_page_alloc
.attr
);
3082 return PTR_ERR(dir
);
3084 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
3085 &fail_page_alloc
.ignore_gfp_reclaim
))
3087 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
3088 &fail_page_alloc
.ignore_gfp_highmem
))
3090 if (!debugfs_create_u32("min-order", mode
, dir
,
3091 &fail_page_alloc
.min_order
))
3096 debugfs_remove_recursive(dir
);
3101 late_initcall(fail_page_alloc_debugfs
);
3103 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3105 #else /* CONFIG_FAIL_PAGE_ALLOC */
3107 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3112 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3115 * Return true if free base pages are above 'mark'. For high-order checks it
3116 * will return true of the order-0 watermark is reached and there is at least
3117 * one free page of a suitable size. Checking now avoids taking the zone lock
3118 * to check in the allocation paths if no pages are free.
3120 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3121 int classzone_idx
, unsigned int alloc_flags
,
3126 const bool alloc_harder
= (alloc_flags
& (ALLOC_HARDER
|ALLOC_OOM
));
3128 /* free_pages may go negative - that's OK */
3129 free_pages
-= (1 << order
) - 1;
3131 if (alloc_flags
& ALLOC_HIGH
)
3135 * If the caller does not have rights to ALLOC_HARDER then subtract
3136 * the high-atomic reserves. This will over-estimate the size of the
3137 * atomic reserve but it avoids a search.
3139 if (likely(!alloc_harder
)) {
3140 free_pages
-= z
->nr_reserved_highatomic
;
3143 * OOM victims can try even harder than normal ALLOC_HARDER
3144 * users on the grounds that it's definitely going to be in
3145 * the exit path shortly and free memory. Any allocation it
3146 * makes during the free path will be small and short-lived.
3148 if (alloc_flags
& ALLOC_OOM
)
3156 /* If allocation can't use CMA areas don't use free CMA pages */
3157 if (!(alloc_flags
& ALLOC_CMA
))
3158 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3162 * Check watermarks for an order-0 allocation request. If these
3163 * are not met, then a high-order request also cannot go ahead
3164 * even if a suitable page happened to be free.
3166 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
3169 /* If this is an order-0 request then the watermark is fine */
3173 /* For a high-order request, check at least one suitable page is free */
3174 for (o
= order
; o
< MAX_ORDER
; o
++) {
3175 struct free_area
*area
= &z
->free_area
[o
];
3181 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
3182 if (!list_empty(&area
->free_list
[mt
]))
3187 if ((alloc_flags
& ALLOC_CMA
) &&
3188 !list_empty(&area
->free_list
[MIGRATE_CMA
])) {
3193 !list_empty(&area
->free_list
[MIGRATE_HIGHATOMIC
]))
3199 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3200 int classzone_idx
, unsigned int alloc_flags
)
3202 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3203 zone_page_state(z
, NR_FREE_PAGES
));
3206 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
3207 unsigned long mark
, int classzone_idx
, unsigned int alloc_flags
)
3209 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3213 /* If allocation can't use CMA areas don't use free CMA pages */
3214 if (!(alloc_flags
& ALLOC_CMA
))
3215 cma_pages
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3219 * Fast check for order-0 only. If this fails then the reserves
3220 * need to be calculated. There is a corner case where the check
3221 * passes but only the high-order atomic reserve are free. If
3222 * the caller is !atomic then it'll uselessly search the free
3223 * list. That corner case is then slower but it is harmless.
3225 if (!order
&& (free_pages
- cma_pages
) > mark
+ z
->lowmem_reserve
[classzone_idx
])
3228 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3232 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
3233 unsigned long mark
, int classzone_idx
)
3235 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3237 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
3238 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
3240 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
3245 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3247 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
3250 #else /* CONFIG_NUMA */
3251 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3255 #endif /* CONFIG_NUMA */
3258 * get_page_from_freelist goes through the zonelist trying to allocate
3261 static struct page
*
3262 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3263 const struct alloc_context
*ac
)
3265 struct zoneref
*z
= ac
->preferred_zoneref
;
3267 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
3270 * Scan zonelist, looking for a zone with enough free.
3271 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3273 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3278 if (cpusets_enabled() &&
3279 (alloc_flags
& ALLOC_CPUSET
) &&
3280 !__cpuset_zone_allowed(zone
, gfp_mask
))
3283 * When allocating a page cache page for writing, we
3284 * want to get it from a node that is within its dirty
3285 * limit, such that no single node holds more than its
3286 * proportional share of globally allowed dirty pages.
3287 * The dirty limits take into account the node's
3288 * lowmem reserves and high watermark so that kswapd
3289 * should be able to balance it without having to
3290 * write pages from its LRU list.
3292 * XXX: For now, allow allocations to potentially
3293 * exceed the per-node dirty limit in the slowpath
3294 * (spread_dirty_pages unset) before going into reclaim,
3295 * which is important when on a NUMA setup the allowed
3296 * nodes are together not big enough to reach the
3297 * global limit. The proper fix for these situations
3298 * will require awareness of nodes in the
3299 * dirty-throttling and the flusher threads.
3301 if (ac
->spread_dirty_pages
) {
3302 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
3305 if (!node_dirty_ok(zone
->zone_pgdat
)) {
3306 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
3311 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
3312 if (!zone_watermark_fast(zone
, order
, mark
,
3313 ac_classzone_idx(ac
), alloc_flags
)) {
3316 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3318 * Watermark failed for this zone, but see if we can
3319 * grow this zone if it contains deferred pages.
3321 if (static_branch_unlikely(&deferred_pages
)) {
3322 if (_deferred_grow_zone(zone
, order
))
3326 /* Checked here to keep the fast path fast */
3327 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3328 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3331 if (node_reclaim_mode
== 0 ||
3332 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
3335 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3337 case NODE_RECLAIM_NOSCAN
:
3340 case NODE_RECLAIM_FULL
:
3341 /* scanned but unreclaimable */
3344 /* did we reclaim enough */
3345 if (zone_watermark_ok(zone
, order
, mark
,
3346 ac_classzone_idx(ac
), alloc_flags
))
3354 page
= rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
3355 gfp_mask
, alloc_flags
, ac
->migratetype
);
3357 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3360 * If this is a high-order atomic allocation then check
3361 * if the pageblock should be reserved for the future
3363 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
3364 reserve_highatomic_pageblock(page
, zone
, order
);
3368 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3369 /* Try again if zone has deferred pages */
3370 if (static_branch_unlikely(&deferred_pages
)) {
3371 if (_deferred_grow_zone(zone
, order
))
3381 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3383 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3384 static DEFINE_RATELIMIT_STATE(show_mem_rs
, HZ
, 1);
3386 if (!__ratelimit(&show_mem_rs
))
3390 * This documents exceptions given to allocations in certain
3391 * contexts that are allowed to allocate outside current's set
3394 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3395 if (tsk_is_oom_victim(current
) ||
3396 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3397 filter
&= ~SHOW_MEM_FILTER_NODES
;
3398 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3399 filter
&= ~SHOW_MEM_FILTER_NODES
;
3401 show_mem(filter
, nodemask
);
3404 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3406 struct va_format vaf
;
3408 static DEFINE_RATELIMIT_STATE(nopage_rs
, DEFAULT_RATELIMIT_INTERVAL
,
3409 DEFAULT_RATELIMIT_BURST
);
3411 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
3414 va_start(args
, fmt
);
3417 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3418 current
->comm
, &vaf
, gfp_mask
, &gfp_mask
,
3419 nodemask_pr_args(nodemask
));
3422 cpuset_print_current_mems_allowed();
3425 warn_alloc_show_mem(gfp_mask
, nodemask
);
3428 static inline struct page
*
3429 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
3430 unsigned int alloc_flags
,
3431 const struct alloc_context
*ac
)
3435 page
= get_page_from_freelist(gfp_mask
, order
,
3436 alloc_flags
|ALLOC_CPUSET
, ac
);
3438 * fallback to ignore cpuset restriction if our nodes
3442 page
= get_page_from_freelist(gfp_mask
, order
,
3448 static inline struct page
*
3449 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3450 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3452 struct oom_control oc
= {
3453 .zonelist
= ac
->zonelist
,
3454 .nodemask
= ac
->nodemask
,
3456 .gfp_mask
= gfp_mask
,
3461 *did_some_progress
= 0;
3464 * Acquire the oom lock. If that fails, somebody else is
3465 * making progress for us.
3467 if (!mutex_trylock(&oom_lock
)) {
3468 *did_some_progress
= 1;
3469 schedule_timeout_uninterruptible(1);
3474 * Go through the zonelist yet one more time, keep very high watermark
3475 * here, this is only to catch a parallel oom killing, we must fail if
3476 * we're still under heavy pressure. But make sure that this reclaim
3477 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3478 * allocation which will never fail due to oom_lock already held.
3480 page
= get_page_from_freelist((gfp_mask
| __GFP_HARDWALL
) &
3481 ~__GFP_DIRECT_RECLAIM
, order
,
3482 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3486 /* Coredumps can quickly deplete all memory reserves */
3487 if (current
->flags
& PF_DUMPCORE
)
3489 /* The OOM killer will not help higher order allocs */
3490 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3493 * We have already exhausted all our reclaim opportunities without any
3494 * success so it is time to admit defeat. We will skip the OOM killer
3495 * because it is very likely that the caller has a more reasonable
3496 * fallback than shooting a random task.
3498 if (gfp_mask
& __GFP_RETRY_MAYFAIL
)
3500 /* The OOM killer does not needlessly kill tasks for lowmem */
3501 if (ac
->high_zoneidx
< ZONE_NORMAL
)
3503 if (pm_suspended_storage())
3506 * XXX: GFP_NOFS allocations should rather fail than rely on
3507 * other request to make a forward progress.
3508 * We are in an unfortunate situation where out_of_memory cannot
3509 * do much for this context but let's try it to at least get
3510 * access to memory reserved if the current task is killed (see
3511 * out_of_memory). Once filesystems are ready to handle allocation
3512 * failures more gracefully we should just bail out here.
3515 /* The OOM killer may not free memory on a specific node */
3516 if (gfp_mask
& __GFP_THISNODE
)
3519 /* Exhausted what can be done so it's blame time */
3520 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3521 *did_some_progress
= 1;
3524 * Help non-failing allocations by giving them access to memory
3527 if (gfp_mask
& __GFP_NOFAIL
)
3528 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
3529 ALLOC_NO_WATERMARKS
, ac
);
3532 mutex_unlock(&oom_lock
);
3537 * Maximum number of compaction retries wit a progress before OOM
3538 * killer is consider as the only way to move forward.
3540 #define MAX_COMPACT_RETRIES 16
3542 #ifdef CONFIG_COMPACTION
3543 /* Try memory compaction for high-order allocations before reclaim */
3544 static struct page
*
3545 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3546 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3547 enum compact_priority prio
, enum compact_result
*compact_result
)
3550 unsigned long pflags
;
3551 unsigned int noreclaim_flag
;
3556 psi_memstall_enter(&pflags
);
3557 noreclaim_flag
= memalloc_noreclaim_save();
3559 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3562 memalloc_noreclaim_restore(noreclaim_flag
);
3563 psi_memstall_leave(&pflags
);
3565 if (*compact_result
<= COMPACT_INACTIVE
)
3569 * At least in one zone compaction wasn't deferred or skipped, so let's
3570 * count a compaction stall
3572 count_vm_event(COMPACTSTALL
);
3574 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3577 struct zone
*zone
= page_zone(page
);
3579 zone
->compact_blockskip_flush
= false;
3580 compaction_defer_reset(zone
, order
, true);
3581 count_vm_event(COMPACTSUCCESS
);
3586 * It's bad if compaction run occurs and fails. The most likely reason
3587 * is that pages exist, but not enough to satisfy watermarks.
3589 count_vm_event(COMPACTFAIL
);
3597 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3598 enum compact_result compact_result
,
3599 enum compact_priority
*compact_priority
,
3600 int *compaction_retries
)
3602 int max_retries
= MAX_COMPACT_RETRIES
;
3605 int retries
= *compaction_retries
;
3606 enum compact_priority priority
= *compact_priority
;
3611 if (compaction_made_progress(compact_result
))
3612 (*compaction_retries
)++;
3615 * compaction considers all the zone as desperately out of memory
3616 * so it doesn't really make much sense to retry except when the
3617 * failure could be caused by insufficient priority
3619 if (compaction_failed(compact_result
))
3620 goto check_priority
;
3623 * make sure the compaction wasn't deferred or didn't bail out early
3624 * due to locks contention before we declare that we should give up.
3625 * But do not retry if the given zonelist is not suitable for
3628 if (compaction_withdrawn(compact_result
)) {
3629 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3634 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3635 * costly ones because they are de facto nofail and invoke OOM
3636 * killer to move on while costly can fail and users are ready
3637 * to cope with that. 1/4 retries is rather arbitrary but we
3638 * would need much more detailed feedback from compaction to
3639 * make a better decision.
3641 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3643 if (*compaction_retries
<= max_retries
) {
3649 * Make sure there are attempts at the highest priority if we exhausted
3650 * all retries or failed at the lower priorities.
3653 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
3654 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
3656 if (*compact_priority
> min_priority
) {
3657 (*compact_priority
)--;
3658 *compaction_retries
= 0;
3662 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
3666 static inline struct page
*
3667 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3668 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3669 enum compact_priority prio
, enum compact_result
*compact_result
)
3671 *compact_result
= COMPACT_SKIPPED
;
3676 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
3677 enum compact_result compact_result
,
3678 enum compact_priority
*compact_priority
,
3679 int *compaction_retries
)
3684 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
3688 * There are setups with compaction disabled which would prefer to loop
3689 * inside the allocator rather than hit the oom killer prematurely.
3690 * Let's give them a good hope and keep retrying while the order-0
3691 * watermarks are OK.
3693 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3695 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
3696 ac_classzone_idx(ac
), alloc_flags
))
3701 #endif /* CONFIG_COMPACTION */
3703 #ifdef CONFIG_LOCKDEP
3704 static struct lockdep_map __fs_reclaim_map
=
3705 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map
);
3707 static bool __need_fs_reclaim(gfp_t gfp_mask
)
3709 gfp_mask
= current_gfp_context(gfp_mask
);
3711 /* no reclaim without waiting on it */
3712 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3715 /* this guy won't enter reclaim */
3716 if (current
->flags
& PF_MEMALLOC
)
3719 /* We're only interested __GFP_FS allocations for now */
3720 if (!(gfp_mask
& __GFP_FS
))
3723 if (gfp_mask
& __GFP_NOLOCKDEP
)
3729 void __fs_reclaim_acquire(void)
3731 lock_map_acquire(&__fs_reclaim_map
);
3734 void __fs_reclaim_release(void)
3736 lock_map_release(&__fs_reclaim_map
);
3739 void fs_reclaim_acquire(gfp_t gfp_mask
)
3741 if (__need_fs_reclaim(gfp_mask
))
3742 __fs_reclaim_acquire();
3744 EXPORT_SYMBOL_GPL(fs_reclaim_acquire
);
3746 void fs_reclaim_release(gfp_t gfp_mask
)
3748 if (__need_fs_reclaim(gfp_mask
))
3749 __fs_reclaim_release();
3751 EXPORT_SYMBOL_GPL(fs_reclaim_release
);
3754 /* Perform direct synchronous page reclaim */
3756 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
3757 const struct alloc_context
*ac
)
3759 struct reclaim_state reclaim_state
;
3761 unsigned int noreclaim_flag
;
3762 unsigned long pflags
;
3766 /* We now go into synchronous reclaim */
3767 cpuset_memory_pressure_bump();
3768 psi_memstall_enter(&pflags
);
3769 fs_reclaim_acquire(gfp_mask
);
3770 noreclaim_flag
= memalloc_noreclaim_save();
3771 reclaim_state
.reclaimed_slab
= 0;
3772 current
->reclaim_state
= &reclaim_state
;
3774 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
3777 current
->reclaim_state
= NULL
;
3778 memalloc_noreclaim_restore(noreclaim_flag
);
3779 fs_reclaim_release(gfp_mask
);
3780 psi_memstall_leave(&pflags
);
3787 /* The really slow allocator path where we enter direct reclaim */
3788 static inline struct page
*
3789 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
3790 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3791 unsigned long *did_some_progress
)
3793 struct page
*page
= NULL
;
3794 bool drained
= false;
3796 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
3797 if (unlikely(!(*did_some_progress
)))
3801 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3804 * If an allocation failed after direct reclaim, it could be because
3805 * pages are pinned on the per-cpu lists or in high alloc reserves.
3806 * Shrink them them and try again
3808 if (!page
&& !drained
) {
3809 unreserve_highatomic_pageblock(ac
, false);
3810 drain_all_pages(NULL
);
3818 static void wake_all_kswapds(unsigned int order
, gfp_t gfp_mask
,
3819 const struct alloc_context
*ac
)
3823 pg_data_t
*last_pgdat
= NULL
;
3824 enum zone_type high_zoneidx
= ac
->high_zoneidx
;
3826 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, high_zoneidx
,
3828 if (last_pgdat
!= zone
->zone_pgdat
)
3829 wakeup_kswapd(zone
, gfp_mask
, order
, high_zoneidx
);
3830 last_pgdat
= zone
->zone_pgdat
;
3834 static inline unsigned int
3835 gfp_to_alloc_flags(gfp_t gfp_mask
)
3837 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
3839 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3840 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
3843 * The caller may dip into page reserves a bit more if the caller
3844 * cannot run direct reclaim, or if the caller has realtime scheduling
3845 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3846 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3848 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
3850 if (gfp_mask
& __GFP_ATOMIC
) {
3852 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3853 * if it can't schedule.
3855 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3856 alloc_flags
|= ALLOC_HARDER
;
3858 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3859 * comment for __cpuset_node_allowed().
3861 alloc_flags
&= ~ALLOC_CPUSET
;
3862 } else if (unlikely(rt_task(current
)) && !in_interrupt())
3863 alloc_flags
|= ALLOC_HARDER
;
3866 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3867 alloc_flags
|= ALLOC_CMA
;
3872 static bool oom_reserves_allowed(struct task_struct
*tsk
)
3874 if (!tsk_is_oom_victim(tsk
))
3878 * !MMU doesn't have oom reaper so give access to memory reserves
3879 * only to the thread with TIF_MEMDIE set
3881 if (!IS_ENABLED(CONFIG_MMU
) && !test_thread_flag(TIF_MEMDIE
))
3888 * Distinguish requests which really need access to full memory
3889 * reserves from oom victims which can live with a portion of it
3891 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask
)
3893 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
3895 if (gfp_mask
& __GFP_MEMALLOC
)
3896 return ALLOC_NO_WATERMARKS
;
3897 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
3898 return ALLOC_NO_WATERMARKS
;
3899 if (!in_interrupt()) {
3900 if (current
->flags
& PF_MEMALLOC
)
3901 return ALLOC_NO_WATERMARKS
;
3902 else if (oom_reserves_allowed(current
))
3909 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
3911 return !!__gfp_pfmemalloc_flags(gfp_mask
);
3915 * Checks whether it makes sense to retry the reclaim to make a forward progress
3916 * for the given allocation request.
3918 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3919 * without success, or when we couldn't even meet the watermark if we
3920 * reclaimed all remaining pages on the LRU lists.
3922 * Returns true if a retry is viable or false to enter the oom path.
3925 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
3926 struct alloc_context
*ac
, int alloc_flags
,
3927 bool did_some_progress
, int *no_progress_loops
)
3934 * Costly allocations might have made a progress but this doesn't mean
3935 * their order will become available due to high fragmentation so
3936 * always increment the no progress counter for them
3938 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
3939 *no_progress_loops
= 0;
3941 (*no_progress_loops
)++;
3944 * Make sure we converge to OOM if we cannot make any progress
3945 * several times in the row.
3947 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
) {
3948 /* Before OOM, exhaust highatomic_reserve */
3949 return unreserve_highatomic_pageblock(ac
, true);
3953 * Keep reclaiming pages while there is a chance this will lead
3954 * somewhere. If none of the target zones can satisfy our allocation
3955 * request even if all reclaimable pages are considered then we are
3956 * screwed and have to go OOM.
3958 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3960 unsigned long available
;
3961 unsigned long reclaimable
;
3962 unsigned long min_wmark
= min_wmark_pages(zone
);
3965 available
= reclaimable
= zone_reclaimable_pages(zone
);
3966 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
3969 * Would the allocation succeed if we reclaimed all
3970 * reclaimable pages?
3972 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
3973 ac_classzone_idx(ac
), alloc_flags
, available
);
3974 trace_reclaim_retry_zone(z
, order
, reclaimable
,
3975 available
, min_wmark
, *no_progress_loops
, wmark
);
3978 * If we didn't make any progress and have a lot of
3979 * dirty + writeback pages then we should wait for
3980 * an IO to complete to slow down the reclaim and
3981 * prevent from pre mature OOM
3983 if (!did_some_progress
) {
3984 unsigned long write_pending
;
3986 write_pending
= zone_page_state_snapshot(zone
,
3987 NR_ZONE_WRITE_PENDING
);
3989 if (2 * write_pending
> reclaimable
) {
3990 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
4002 * Memory allocation/reclaim might be called from a WQ context and the
4003 * current implementation of the WQ concurrency control doesn't
4004 * recognize that a particular WQ is congested if the worker thread is
4005 * looping without ever sleeping. Therefore we have to do a short sleep
4006 * here rather than calling cond_resched().
4008 if (current
->flags
& PF_WQ_WORKER
)
4009 schedule_timeout_uninterruptible(1);
4016 check_retry_cpuset(int cpuset_mems_cookie
, struct alloc_context
*ac
)
4019 * It's possible that cpuset's mems_allowed and the nodemask from
4020 * mempolicy don't intersect. This should be normally dealt with by
4021 * policy_nodemask(), but it's possible to race with cpuset update in
4022 * such a way the check therein was true, and then it became false
4023 * before we got our cpuset_mems_cookie here.
4024 * This assumes that for all allocations, ac->nodemask can come only
4025 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4026 * when it does not intersect with the cpuset restrictions) or the
4027 * caller can deal with a violated nodemask.
4029 if (cpusets_enabled() && ac
->nodemask
&&
4030 !cpuset_nodemask_valid_mems_allowed(ac
->nodemask
)) {
4031 ac
->nodemask
= NULL
;
4036 * When updating a task's mems_allowed or mempolicy nodemask, it is
4037 * possible to race with parallel threads in such a way that our
4038 * allocation can fail while the mask is being updated. If we are about
4039 * to fail, check if the cpuset changed during allocation and if so,
4042 if (read_mems_allowed_retry(cpuset_mems_cookie
))
4048 static inline struct page
*
4049 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
4050 struct alloc_context
*ac
)
4052 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
4053 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
4054 struct page
*page
= NULL
;
4055 unsigned int alloc_flags
;
4056 unsigned long did_some_progress
;
4057 enum compact_priority compact_priority
;
4058 enum compact_result compact_result
;
4059 int compaction_retries
;
4060 int no_progress_loops
;
4061 unsigned int cpuset_mems_cookie
;
4065 * We also sanity check to catch abuse of atomic reserves being used by
4066 * callers that are not in atomic context.
4068 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
4069 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
4070 gfp_mask
&= ~__GFP_ATOMIC
;
4073 compaction_retries
= 0;
4074 no_progress_loops
= 0;
4075 compact_priority
= DEF_COMPACT_PRIORITY
;
4076 cpuset_mems_cookie
= read_mems_allowed_begin();
4079 * The fast path uses conservative alloc_flags to succeed only until
4080 * kswapd needs to be woken up, and to avoid the cost of setting up
4081 * alloc_flags precisely. So we do that now.
4083 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
4086 * We need to recalculate the starting point for the zonelist iterator
4087 * because we might have used different nodemask in the fast path, or
4088 * there was a cpuset modification and we are retrying - otherwise we
4089 * could end up iterating over non-eligible zones endlessly.
4091 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4092 ac
->high_zoneidx
, ac
->nodemask
);
4093 if (!ac
->preferred_zoneref
->zone
)
4096 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
4097 wake_all_kswapds(order
, gfp_mask
, ac
);
4100 * The adjusted alloc_flags might result in immediate success, so try
4103 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4108 * For costly allocations, try direct compaction first, as it's likely
4109 * that we have enough base pages and don't need to reclaim. For non-
4110 * movable high-order allocations, do that as well, as compaction will
4111 * try prevent permanent fragmentation by migrating from blocks of the
4113 * Don't try this for allocations that are allowed to ignore
4114 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4116 if (can_direct_reclaim
&&
4118 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
4119 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
4120 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
4122 INIT_COMPACT_PRIORITY
,
4128 * Checks for costly allocations with __GFP_NORETRY, which
4129 * includes THP page fault allocations
4131 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
4133 * If compaction is deferred for high-order allocations,
4134 * it is because sync compaction recently failed. If
4135 * this is the case and the caller requested a THP
4136 * allocation, we do not want to heavily disrupt the
4137 * system, so we fail the allocation instead of entering
4140 if (compact_result
== COMPACT_DEFERRED
)
4144 * Looks like reclaim/compaction is worth trying, but
4145 * sync compaction could be very expensive, so keep
4146 * using async compaction.
4148 compact_priority
= INIT_COMPACT_PRIORITY
;
4153 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4154 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
4155 wake_all_kswapds(order
, gfp_mask
, ac
);
4157 reserve_flags
= __gfp_pfmemalloc_flags(gfp_mask
);
4159 alloc_flags
= reserve_flags
;
4162 * Reset the nodemask and zonelist iterators if memory policies can be
4163 * ignored. These allocations are high priority and system rather than
4166 if (!(alloc_flags
& ALLOC_CPUSET
) || reserve_flags
) {
4167 ac
->nodemask
= NULL
;
4168 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4169 ac
->high_zoneidx
, ac
->nodemask
);
4172 /* Attempt with potentially adjusted zonelist and alloc_flags */
4173 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4177 /* Caller is not willing to reclaim, we can't balance anything */
4178 if (!can_direct_reclaim
)
4181 /* Avoid recursion of direct reclaim */
4182 if (current
->flags
& PF_MEMALLOC
)
4185 /* Try direct reclaim and then allocating */
4186 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
4187 &did_some_progress
);
4191 /* Try direct compaction and then allocating */
4192 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
4193 compact_priority
, &compact_result
);
4197 /* Do not loop if specifically requested */
4198 if (gfp_mask
& __GFP_NORETRY
)
4202 * Do not retry costly high order allocations unless they are
4203 * __GFP_RETRY_MAYFAIL
4205 if (costly_order
&& !(gfp_mask
& __GFP_RETRY_MAYFAIL
))
4208 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
4209 did_some_progress
> 0, &no_progress_loops
))
4213 * It doesn't make any sense to retry for the compaction if the order-0
4214 * reclaim is not able to make any progress because the current
4215 * implementation of the compaction depends on the sufficient amount
4216 * of free memory (see __compaction_suitable)
4218 if (did_some_progress
> 0 &&
4219 should_compact_retry(ac
, order
, alloc_flags
,
4220 compact_result
, &compact_priority
,
4221 &compaction_retries
))
4225 /* Deal with possible cpuset update races before we start OOM killing */
4226 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4229 /* Reclaim has failed us, start killing things */
4230 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
4234 /* Avoid allocations with no watermarks from looping endlessly */
4235 if (tsk_is_oom_victim(current
) &&
4236 (alloc_flags
== ALLOC_OOM
||
4237 (gfp_mask
& __GFP_NOMEMALLOC
)))
4240 /* Retry as long as the OOM killer is making progress */
4241 if (did_some_progress
) {
4242 no_progress_loops
= 0;
4247 /* Deal with possible cpuset update races before we fail */
4248 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4252 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4255 if (gfp_mask
& __GFP_NOFAIL
) {
4257 * All existing users of the __GFP_NOFAIL are blockable, so warn
4258 * of any new users that actually require GFP_NOWAIT
4260 if (WARN_ON_ONCE(!can_direct_reclaim
))
4264 * PF_MEMALLOC request from this context is rather bizarre
4265 * because we cannot reclaim anything and only can loop waiting
4266 * for somebody to do a work for us
4268 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
4271 * non failing costly orders are a hard requirement which we
4272 * are not prepared for much so let's warn about these users
4273 * so that we can identify them and convert them to something
4276 WARN_ON_ONCE(order
> PAGE_ALLOC_COSTLY_ORDER
);
4279 * Help non-failing allocations by giving them access to memory
4280 * reserves but do not use ALLOC_NO_WATERMARKS because this
4281 * could deplete whole memory reserves which would just make
4282 * the situation worse
4284 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_HARDER
, ac
);
4292 warn_alloc(gfp_mask
, ac
->nodemask
,
4293 "page allocation failure: order:%u", order
);
4298 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
4299 int preferred_nid
, nodemask_t
*nodemask
,
4300 struct alloc_context
*ac
, gfp_t
*alloc_mask
,
4301 unsigned int *alloc_flags
)
4303 ac
->high_zoneidx
= gfp_zone(gfp_mask
);
4304 ac
->zonelist
= node_zonelist(preferred_nid
, gfp_mask
);
4305 ac
->nodemask
= nodemask
;
4306 ac
->migratetype
= gfpflags_to_migratetype(gfp_mask
);
4308 if (cpusets_enabled()) {
4309 *alloc_mask
|= __GFP_HARDWALL
;
4311 ac
->nodemask
= &cpuset_current_mems_allowed
;
4313 *alloc_flags
|= ALLOC_CPUSET
;
4316 fs_reclaim_acquire(gfp_mask
);
4317 fs_reclaim_release(gfp_mask
);
4319 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
4321 if (should_fail_alloc_page(gfp_mask
, order
))
4324 if (IS_ENABLED(CONFIG_CMA
) && ac
->migratetype
== MIGRATE_MOVABLE
)
4325 *alloc_flags
|= ALLOC_CMA
;
4330 /* Determine whether to spread dirty pages and what the first usable zone */
4331 static inline void finalise_ac(gfp_t gfp_mask
, struct alloc_context
*ac
)
4333 /* Dirty zone balancing only done in the fast path */
4334 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
4337 * The preferred zone is used for statistics but crucially it is
4338 * also used as the starting point for the zonelist iterator. It
4339 * may get reset for allocations that ignore memory policies.
4341 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4342 ac
->high_zoneidx
, ac
->nodemask
);
4346 * This is the 'heart' of the zoned buddy allocator.
4349 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
, int preferred_nid
,
4350 nodemask_t
*nodemask
)
4353 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4354 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
4355 struct alloc_context ac
= { };
4358 * There are several places where we assume that the order value is sane
4359 * so bail out early if the request is out of bound.
4361 if (unlikely(order
>= MAX_ORDER
)) {
4362 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
4366 gfp_mask
&= gfp_allowed_mask
;
4367 alloc_mask
= gfp_mask
;
4368 if (!prepare_alloc_pages(gfp_mask
, order
, preferred_nid
, nodemask
, &ac
, &alloc_mask
, &alloc_flags
))
4371 finalise_ac(gfp_mask
, &ac
);
4373 /* First allocation attempt */
4374 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
4379 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4380 * resp. GFP_NOIO which has to be inherited for all allocation requests
4381 * from a particular context which has been marked by
4382 * memalloc_no{fs,io}_{save,restore}.
4384 alloc_mask
= current_gfp_context(gfp_mask
);
4385 ac
.spread_dirty_pages
= false;
4388 * Restore the original nodemask if it was potentially replaced with
4389 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4391 if (unlikely(ac
.nodemask
!= nodemask
))
4392 ac
.nodemask
= nodemask
;
4394 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
4397 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
4398 unlikely(memcg_kmem_charge(page
, gfp_mask
, order
) != 0)) {
4399 __free_pages(page
, order
);
4403 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
4407 EXPORT_SYMBOL(__alloc_pages_nodemask
);
4410 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4411 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4412 * you need to access high mem.
4414 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
4418 page
= alloc_pages(gfp_mask
& ~__GFP_HIGHMEM
, order
);
4421 return (unsigned long) page_address(page
);
4423 EXPORT_SYMBOL(__get_free_pages
);
4425 unsigned long get_zeroed_page(gfp_t gfp_mask
)
4427 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
4429 EXPORT_SYMBOL(get_zeroed_page
);
4431 void __free_pages(struct page
*page
, unsigned int order
)
4433 if (put_page_testzero(page
)) {
4435 free_unref_page(page
);
4437 __free_pages_ok(page
, order
);
4441 EXPORT_SYMBOL(__free_pages
);
4443 void free_pages(unsigned long addr
, unsigned int order
)
4446 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4447 __free_pages(virt_to_page((void *)addr
), order
);
4451 EXPORT_SYMBOL(free_pages
);
4455 * An arbitrary-length arbitrary-offset area of memory which resides
4456 * within a 0 or higher order page. Multiple fragments within that page
4457 * are individually refcounted, in the page's reference counter.
4459 * The page_frag functions below provide a simple allocation framework for
4460 * page fragments. This is used by the network stack and network device
4461 * drivers to provide a backing region of memory for use as either an
4462 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4464 static struct page
*__page_frag_cache_refill(struct page_frag_cache
*nc
,
4467 struct page
*page
= NULL
;
4468 gfp_t gfp
= gfp_mask
;
4470 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4471 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
4473 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
4474 PAGE_FRAG_CACHE_MAX_ORDER
);
4475 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
4477 if (unlikely(!page
))
4478 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
4480 nc
->va
= page
? page_address(page
) : NULL
;
4485 void __page_frag_cache_drain(struct page
*page
, unsigned int count
)
4487 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
4489 if (page_ref_sub_and_test(page
, count
)) {
4490 unsigned int order
= compound_order(page
);
4493 free_unref_page(page
);
4495 __free_pages_ok(page
, order
);
4498 EXPORT_SYMBOL(__page_frag_cache_drain
);
4500 void *page_frag_alloc(struct page_frag_cache
*nc
,
4501 unsigned int fragsz
, gfp_t gfp_mask
)
4503 unsigned int size
= PAGE_SIZE
;
4507 if (unlikely(!nc
->va
)) {
4509 page
= __page_frag_cache_refill(nc
, gfp_mask
);
4513 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4514 /* if size can vary use size else just use PAGE_SIZE */
4517 /* Even if we own the page, we do not use atomic_set().
4518 * This would break get_page_unless_zero() users.
4520 page_ref_add(page
, size
- 1);
4522 /* reset page count bias and offset to start of new frag */
4523 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
4524 nc
->pagecnt_bias
= size
;
4528 offset
= nc
->offset
- fragsz
;
4529 if (unlikely(offset
< 0)) {
4530 page
= virt_to_page(nc
->va
);
4532 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
4535 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4536 /* if size can vary use size else just use PAGE_SIZE */
4539 /* OK, page count is 0, we can safely set it */
4540 set_page_count(page
, size
);
4542 /* reset page count bias and offset to start of new frag */
4543 nc
->pagecnt_bias
= size
;
4544 offset
= size
- fragsz
;
4548 nc
->offset
= offset
;
4550 return nc
->va
+ offset
;
4552 EXPORT_SYMBOL(page_frag_alloc
);
4555 * Frees a page fragment allocated out of either a compound or order 0 page.
4557 void page_frag_free(void *addr
)
4559 struct page
*page
= virt_to_head_page(addr
);
4561 if (unlikely(put_page_testzero(page
)))
4562 __free_pages_ok(page
, compound_order(page
));
4564 EXPORT_SYMBOL(page_frag_free
);
4566 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4570 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
4571 unsigned long used
= addr
+ PAGE_ALIGN(size
);
4573 split_page(virt_to_page((void *)addr
), order
);
4574 while (used
< alloc_end
) {
4579 return (void *)addr
;
4583 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4584 * @size: the number of bytes to allocate
4585 * @gfp_mask: GFP flags for the allocation
4587 * This function is similar to alloc_pages(), except that it allocates the
4588 * minimum number of pages to satisfy the request. alloc_pages() can only
4589 * allocate memory in power-of-two pages.
4591 * This function is also limited by MAX_ORDER.
4593 * Memory allocated by this function must be released by free_pages_exact().
4595 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
4597 unsigned int order
= get_order(size
);
4600 addr
= __get_free_pages(gfp_mask
, order
);
4601 return make_alloc_exact(addr
, order
, size
);
4603 EXPORT_SYMBOL(alloc_pages_exact
);
4606 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4608 * @nid: the preferred node ID where memory should be allocated
4609 * @size: the number of bytes to allocate
4610 * @gfp_mask: GFP flags for the allocation
4612 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4615 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
4617 unsigned int order
= get_order(size
);
4618 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
4621 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
4625 * free_pages_exact - release memory allocated via alloc_pages_exact()
4626 * @virt: the value returned by alloc_pages_exact.
4627 * @size: size of allocation, same value as passed to alloc_pages_exact().
4629 * Release the memory allocated by a previous call to alloc_pages_exact.
4631 void free_pages_exact(void *virt
, size_t size
)
4633 unsigned long addr
= (unsigned long)virt
;
4634 unsigned long end
= addr
+ PAGE_ALIGN(size
);
4636 while (addr
< end
) {
4641 EXPORT_SYMBOL(free_pages_exact
);
4644 * nr_free_zone_pages - count number of pages beyond high watermark
4645 * @offset: The zone index of the highest zone
4647 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4648 * high watermark within all zones at or below a given zone index. For each
4649 * zone, the number of pages is calculated as:
4651 * nr_free_zone_pages = managed_pages - high_pages
4653 static unsigned long nr_free_zone_pages(int offset
)
4658 /* Just pick one node, since fallback list is circular */
4659 unsigned long sum
= 0;
4661 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
4663 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
4664 unsigned long size
= zone
->managed_pages
;
4665 unsigned long high
= high_wmark_pages(zone
);
4674 * nr_free_buffer_pages - count number of pages beyond high watermark
4676 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4677 * watermark within ZONE_DMA and ZONE_NORMAL.
4679 unsigned long nr_free_buffer_pages(void)
4681 return nr_free_zone_pages(gfp_zone(GFP_USER
));
4683 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
4686 * nr_free_pagecache_pages - count number of pages beyond high watermark
4688 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4689 * high watermark within all zones.
4691 unsigned long nr_free_pagecache_pages(void)
4693 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
4696 static inline void show_node(struct zone
*zone
)
4698 if (IS_ENABLED(CONFIG_NUMA
))
4699 printk("Node %d ", zone_to_nid(zone
));
4702 long si_mem_available(void)
4705 unsigned long pagecache
;
4706 unsigned long wmark_low
= 0;
4707 unsigned long pages
[NR_LRU_LISTS
];
4708 unsigned long reclaimable
;
4712 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
4713 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
4716 wmark_low
+= zone
->watermark
[WMARK_LOW
];
4719 * Estimate the amount of memory available for userspace allocations,
4720 * without causing swapping.
4722 available
= global_zone_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
4725 * Not all the page cache can be freed, otherwise the system will
4726 * start swapping. Assume at least half of the page cache, or the
4727 * low watermark worth of cache, needs to stay.
4729 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
4730 pagecache
-= min(pagecache
/ 2, wmark_low
);
4731 available
+= pagecache
;
4734 * Part of the reclaimable slab and other kernel memory consists of
4735 * items that are in use, and cannot be freed. Cap this estimate at the
4738 reclaimable
= global_node_page_state(NR_SLAB_RECLAIMABLE
) +
4739 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE
);
4740 available
+= reclaimable
- min(reclaimable
/ 2, wmark_low
);
4746 EXPORT_SYMBOL_GPL(si_mem_available
);
4748 void si_meminfo(struct sysinfo
*val
)
4750 val
->totalram
= totalram_pages
;
4751 val
->sharedram
= global_node_page_state(NR_SHMEM
);
4752 val
->freeram
= global_zone_page_state(NR_FREE_PAGES
);
4753 val
->bufferram
= nr_blockdev_pages();
4754 val
->totalhigh
= totalhigh_pages
;
4755 val
->freehigh
= nr_free_highpages();
4756 val
->mem_unit
= PAGE_SIZE
;
4759 EXPORT_SYMBOL(si_meminfo
);
4762 void si_meminfo_node(struct sysinfo
*val
, int nid
)
4764 int zone_type
; /* needs to be signed */
4765 unsigned long managed_pages
= 0;
4766 unsigned long managed_highpages
= 0;
4767 unsigned long free_highpages
= 0;
4768 pg_data_t
*pgdat
= NODE_DATA(nid
);
4770 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
4771 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
4772 val
->totalram
= managed_pages
;
4773 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
4774 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
4775 #ifdef CONFIG_HIGHMEM
4776 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
4777 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4779 if (is_highmem(zone
)) {
4780 managed_highpages
+= zone
->managed_pages
;
4781 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
4784 val
->totalhigh
= managed_highpages
;
4785 val
->freehigh
= free_highpages
;
4787 val
->totalhigh
= managed_highpages
;
4788 val
->freehigh
= free_highpages
;
4790 val
->mem_unit
= PAGE_SIZE
;
4795 * Determine whether the node should be displayed or not, depending on whether
4796 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4798 static bool show_mem_node_skip(unsigned int flags
, int nid
, nodemask_t
*nodemask
)
4800 if (!(flags
& SHOW_MEM_FILTER_NODES
))
4804 * no node mask - aka implicit memory numa policy. Do not bother with
4805 * the synchronization - read_mems_allowed_begin - because we do not
4806 * have to be precise here.
4809 nodemask
= &cpuset_current_mems_allowed
;
4811 return !node_isset(nid
, *nodemask
);
4814 #define K(x) ((x) << (PAGE_SHIFT-10))
4816 static void show_migration_types(unsigned char type
)
4818 static const char types
[MIGRATE_TYPES
] = {
4819 [MIGRATE_UNMOVABLE
] = 'U',
4820 [MIGRATE_MOVABLE
] = 'M',
4821 [MIGRATE_RECLAIMABLE
] = 'E',
4822 [MIGRATE_HIGHATOMIC
] = 'H',
4824 [MIGRATE_CMA
] = 'C',
4826 #ifdef CONFIG_MEMORY_ISOLATION
4827 [MIGRATE_ISOLATE
] = 'I',
4830 char tmp
[MIGRATE_TYPES
+ 1];
4834 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
4835 if (type
& (1 << i
))
4840 printk(KERN_CONT
"(%s) ", tmp
);
4844 * Show free area list (used inside shift_scroll-lock stuff)
4845 * We also calculate the percentage fragmentation. We do this by counting the
4846 * memory on each free list with the exception of the first item on the list.
4849 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4852 void show_free_areas(unsigned int filter
, nodemask_t
*nodemask
)
4854 unsigned long free_pcp
= 0;
4859 for_each_populated_zone(zone
) {
4860 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4863 for_each_online_cpu(cpu
)
4864 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4867 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4868 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4869 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4870 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4871 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4872 " free:%lu free_pcp:%lu free_cma:%lu\n",
4873 global_node_page_state(NR_ACTIVE_ANON
),
4874 global_node_page_state(NR_INACTIVE_ANON
),
4875 global_node_page_state(NR_ISOLATED_ANON
),
4876 global_node_page_state(NR_ACTIVE_FILE
),
4877 global_node_page_state(NR_INACTIVE_FILE
),
4878 global_node_page_state(NR_ISOLATED_FILE
),
4879 global_node_page_state(NR_UNEVICTABLE
),
4880 global_node_page_state(NR_FILE_DIRTY
),
4881 global_node_page_state(NR_WRITEBACK
),
4882 global_node_page_state(NR_UNSTABLE_NFS
),
4883 global_node_page_state(NR_SLAB_RECLAIMABLE
),
4884 global_node_page_state(NR_SLAB_UNRECLAIMABLE
),
4885 global_node_page_state(NR_FILE_MAPPED
),
4886 global_node_page_state(NR_SHMEM
),
4887 global_zone_page_state(NR_PAGETABLE
),
4888 global_zone_page_state(NR_BOUNCE
),
4889 global_zone_page_state(NR_FREE_PAGES
),
4891 global_zone_page_state(NR_FREE_CMA_PAGES
));
4893 for_each_online_pgdat(pgdat
) {
4894 if (show_mem_node_skip(filter
, pgdat
->node_id
, nodemask
))
4898 " active_anon:%lukB"
4899 " inactive_anon:%lukB"
4900 " active_file:%lukB"
4901 " inactive_file:%lukB"
4902 " unevictable:%lukB"
4903 " isolated(anon):%lukB"
4904 " isolated(file):%lukB"
4909 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4911 " shmem_pmdmapped: %lukB"
4914 " writeback_tmp:%lukB"
4916 " all_unreclaimable? %s"
4919 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
4920 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
4921 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
4922 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
4923 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
4924 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
4925 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
4926 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
4927 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
4928 K(node_page_state(pgdat
, NR_WRITEBACK
)),
4929 K(node_page_state(pgdat
, NR_SHMEM
)),
4930 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4931 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
4932 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
4934 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
4936 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
4937 K(node_page_state(pgdat
, NR_UNSTABLE_NFS
)),
4938 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
?
4942 for_each_populated_zone(zone
) {
4945 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4949 for_each_online_cpu(cpu
)
4950 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4959 " active_anon:%lukB"
4960 " inactive_anon:%lukB"
4961 " active_file:%lukB"
4962 " inactive_file:%lukB"
4963 " unevictable:%lukB"
4964 " writepending:%lukB"
4968 " kernel_stack:%lukB"
4976 K(zone_page_state(zone
, NR_FREE_PAGES
)),
4977 K(min_wmark_pages(zone
)),
4978 K(low_wmark_pages(zone
)),
4979 K(high_wmark_pages(zone
)),
4980 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
4981 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
4982 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
4983 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
4984 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
4985 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
4986 K(zone
->present_pages
),
4987 K(zone
->managed_pages
),
4988 K(zone_page_state(zone
, NR_MLOCK
)),
4989 zone_page_state(zone
, NR_KERNEL_STACK_KB
),
4990 K(zone_page_state(zone
, NR_PAGETABLE
)),
4991 K(zone_page_state(zone
, NR_BOUNCE
)),
4993 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
4994 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
4995 printk("lowmem_reserve[]:");
4996 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4997 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
4998 printk(KERN_CONT
"\n");
5001 for_each_populated_zone(zone
) {
5003 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
5004 unsigned char types
[MAX_ORDER
];
5006 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5009 printk(KERN_CONT
"%s: ", zone
->name
);
5011 spin_lock_irqsave(&zone
->lock
, flags
);
5012 for (order
= 0; order
< MAX_ORDER
; order
++) {
5013 struct free_area
*area
= &zone
->free_area
[order
];
5016 nr
[order
] = area
->nr_free
;
5017 total
+= nr
[order
] << order
;
5020 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
5021 if (!list_empty(&area
->free_list
[type
]))
5022 types
[order
] |= 1 << type
;
5025 spin_unlock_irqrestore(&zone
->lock
, flags
);
5026 for (order
= 0; order
< MAX_ORDER
; order
++) {
5027 printk(KERN_CONT
"%lu*%lukB ",
5028 nr
[order
], K(1UL) << order
);
5030 show_migration_types(types
[order
]);
5032 printk(KERN_CONT
"= %lukB\n", K(total
));
5035 hugetlb_show_meminfo();
5037 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
5039 show_swap_cache_info();
5042 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
5044 zoneref
->zone
= zone
;
5045 zoneref
->zone_idx
= zone_idx(zone
);
5049 * Builds allocation fallback zone lists.
5051 * Add all populated zones of a node to the zonelist.
5053 static int build_zonerefs_node(pg_data_t
*pgdat
, struct zoneref
*zonerefs
)
5056 enum zone_type zone_type
= MAX_NR_ZONES
;
5061 zone
= pgdat
->node_zones
+ zone_type
;
5062 if (managed_zone(zone
)) {
5063 zoneref_set_zone(zone
, &zonerefs
[nr_zones
++]);
5064 check_highest_zone(zone_type
);
5066 } while (zone_type
);
5073 static int __parse_numa_zonelist_order(char *s
)
5076 * We used to support different zonlists modes but they turned
5077 * out to be just not useful. Let's keep the warning in place
5078 * if somebody still use the cmd line parameter so that we do
5079 * not fail it silently
5081 if (!(*s
== 'd' || *s
== 'D' || *s
== 'n' || *s
== 'N')) {
5082 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s
);
5088 static __init
int setup_numa_zonelist_order(char *s
)
5093 return __parse_numa_zonelist_order(s
);
5095 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
5097 char numa_zonelist_order
[] = "Node";
5100 * sysctl handler for numa_zonelist_order
5102 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
5103 void __user
*buffer
, size_t *length
,
5110 return proc_dostring(table
, write
, buffer
, length
, ppos
);
5111 str
= memdup_user_nul(buffer
, 16);
5113 return PTR_ERR(str
);
5115 ret
= __parse_numa_zonelist_order(str
);
5121 #define MAX_NODE_LOAD (nr_online_nodes)
5122 static int node_load
[MAX_NUMNODES
];
5125 * find_next_best_node - find the next node that should appear in a given node's fallback list
5126 * @node: node whose fallback list we're appending
5127 * @used_node_mask: nodemask_t of already used nodes
5129 * We use a number of factors to determine which is the next node that should
5130 * appear on a given node's fallback list. The node should not have appeared
5131 * already in @node's fallback list, and it should be the next closest node
5132 * according to the distance array (which contains arbitrary distance values
5133 * from each node to each node in the system), and should also prefer nodes
5134 * with no CPUs, since presumably they'll have very little allocation pressure
5135 * on them otherwise.
5136 * It returns -1 if no node is found.
5138 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
5141 int min_val
= INT_MAX
;
5142 int best_node
= NUMA_NO_NODE
;
5143 const struct cpumask
*tmp
= cpumask_of_node(0);
5145 /* Use the local node if we haven't already */
5146 if (!node_isset(node
, *used_node_mask
)) {
5147 node_set(node
, *used_node_mask
);
5151 for_each_node_state(n
, N_MEMORY
) {
5153 /* Don't want a node to appear more than once */
5154 if (node_isset(n
, *used_node_mask
))
5157 /* Use the distance array to find the distance */
5158 val
= node_distance(node
, n
);
5160 /* Penalize nodes under us ("prefer the next node") */
5163 /* Give preference to headless and unused nodes */
5164 tmp
= cpumask_of_node(n
);
5165 if (!cpumask_empty(tmp
))
5166 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
5168 /* Slight preference for less loaded node */
5169 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
5170 val
+= node_load
[n
];
5172 if (val
< min_val
) {
5179 node_set(best_node
, *used_node_mask
);
5186 * Build zonelists ordered by node and zones within node.
5187 * This results in maximum locality--normal zone overflows into local
5188 * DMA zone, if any--but risks exhausting DMA zone.
5190 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int *node_order
,
5193 struct zoneref
*zonerefs
;
5196 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5198 for (i
= 0; i
< nr_nodes
; i
++) {
5201 pg_data_t
*node
= NODE_DATA(node_order
[i
]);
5203 nr_zones
= build_zonerefs_node(node
, zonerefs
);
5204 zonerefs
+= nr_zones
;
5206 zonerefs
->zone
= NULL
;
5207 zonerefs
->zone_idx
= 0;
5211 * Build gfp_thisnode zonelists
5213 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
5215 struct zoneref
*zonerefs
;
5218 zonerefs
= pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
]._zonerefs
;
5219 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5220 zonerefs
+= nr_zones
;
5221 zonerefs
->zone
= NULL
;
5222 zonerefs
->zone_idx
= 0;
5226 * Build zonelists ordered by zone and nodes within zones.
5227 * This results in conserving DMA zone[s] until all Normal memory is
5228 * exhausted, but results in overflowing to remote node while memory
5229 * may still exist in local DMA zone.
5232 static void build_zonelists(pg_data_t
*pgdat
)
5234 static int node_order
[MAX_NUMNODES
];
5235 int node
, load
, nr_nodes
= 0;
5236 nodemask_t used_mask
;
5237 int local_node
, prev_node
;
5239 /* NUMA-aware ordering of nodes */
5240 local_node
= pgdat
->node_id
;
5241 load
= nr_online_nodes
;
5242 prev_node
= local_node
;
5243 nodes_clear(used_mask
);
5245 memset(node_order
, 0, sizeof(node_order
));
5246 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5248 * We don't want to pressure a particular node.
5249 * So adding penalty to the first node in same
5250 * distance group to make it round-robin.
5252 if (node_distance(local_node
, node
) !=
5253 node_distance(local_node
, prev_node
))
5254 node_load
[node
] = load
;
5256 node_order
[nr_nodes
++] = node
;
5261 build_zonelists_in_node_order(pgdat
, node_order
, nr_nodes
);
5262 build_thisnode_zonelists(pgdat
);
5265 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5267 * Return node id of node used for "local" allocations.
5268 * I.e., first node id of first zone in arg node's generic zonelist.
5269 * Used for initializing percpu 'numa_mem', which is used primarily
5270 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5272 int local_memory_node(int node
)
5276 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5277 gfp_zone(GFP_KERNEL
),
5279 return zone_to_nid(z
->zone
);
5283 static void setup_min_unmapped_ratio(void);
5284 static void setup_min_slab_ratio(void);
5285 #else /* CONFIG_NUMA */
5287 static void build_zonelists(pg_data_t
*pgdat
)
5289 int node
, local_node
;
5290 struct zoneref
*zonerefs
;
5293 local_node
= pgdat
->node_id
;
5295 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5296 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5297 zonerefs
+= nr_zones
;
5300 * Now we build the zonelist so that it contains the zones
5301 * of all the other nodes.
5302 * We don't want to pressure a particular node, so when
5303 * building the zones for node N, we make sure that the
5304 * zones coming right after the local ones are those from
5305 * node N+1 (modulo N)
5307 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
5308 if (!node_online(node
))
5310 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5311 zonerefs
+= nr_zones
;
5313 for (node
= 0; node
< local_node
; node
++) {
5314 if (!node_online(node
))
5316 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5317 zonerefs
+= nr_zones
;
5320 zonerefs
->zone
= NULL
;
5321 zonerefs
->zone_idx
= 0;
5324 #endif /* CONFIG_NUMA */
5327 * Boot pageset table. One per cpu which is going to be used for all
5328 * zones and all nodes. The parameters will be set in such a way
5329 * that an item put on a list will immediately be handed over to
5330 * the buddy list. This is safe since pageset manipulation is done
5331 * with interrupts disabled.
5333 * The boot_pagesets must be kept even after bootup is complete for
5334 * unused processors and/or zones. They do play a role for bootstrapping
5335 * hotplugged processors.
5337 * zoneinfo_show() and maybe other functions do
5338 * not check if the processor is online before following the pageset pointer.
5339 * Other parts of the kernel may not check if the zone is available.
5341 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
5342 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
5343 static DEFINE_PER_CPU(struct per_cpu_nodestat
, boot_nodestats
);
5345 static void __build_all_zonelists(void *data
)
5348 int __maybe_unused cpu
;
5349 pg_data_t
*self
= data
;
5350 static DEFINE_SPINLOCK(lock
);
5355 memset(node_load
, 0, sizeof(node_load
));
5359 * This node is hotadded and no memory is yet present. So just
5360 * building zonelists is fine - no need to touch other nodes.
5362 if (self
&& !node_online(self
->node_id
)) {
5363 build_zonelists(self
);
5365 for_each_online_node(nid
) {
5366 pg_data_t
*pgdat
= NODE_DATA(nid
);
5368 build_zonelists(pgdat
);
5371 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5373 * We now know the "local memory node" for each node--
5374 * i.e., the node of the first zone in the generic zonelist.
5375 * Set up numa_mem percpu variable for on-line cpus. During
5376 * boot, only the boot cpu should be on-line; we'll init the
5377 * secondary cpus' numa_mem as they come on-line. During
5378 * node/memory hotplug, we'll fixup all on-line cpus.
5380 for_each_online_cpu(cpu
)
5381 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5388 static noinline
void __init
5389 build_all_zonelists_init(void)
5393 __build_all_zonelists(NULL
);
5396 * Initialize the boot_pagesets that are going to be used
5397 * for bootstrapping processors. The real pagesets for
5398 * each zone will be allocated later when the per cpu
5399 * allocator is available.
5401 * boot_pagesets are used also for bootstrapping offline
5402 * cpus if the system is already booted because the pagesets
5403 * are needed to initialize allocators on a specific cpu too.
5404 * F.e. the percpu allocator needs the page allocator which
5405 * needs the percpu allocator in order to allocate its pagesets
5406 * (a chicken-egg dilemma).
5408 for_each_possible_cpu(cpu
)
5409 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
5411 mminit_verify_zonelist();
5412 cpuset_init_current_mems_allowed();
5416 * unless system_state == SYSTEM_BOOTING.
5418 * __ref due to call of __init annotated helper build_all_zonelists_init
5419 * [protected by SYSTEM_BOOTING].
5421 void __ref
build_all_zonelists(pg_data_t
*pgdat
)
5423 if (system_state
== SYSTEM_BOOTING
) {
5424 build_all_zonelists_init();
5426 __build_all_zonelists(pgdat
);
5427 /* cpuset refresh routine should be here */
5429 vm_total_pages
= nr_free_pagecache_pages();
5431 * Disable grouping by mobility if the number of pages in the
5432 * system is too low to allow the mechanism to work. It would be
5433 * more accurate, but expensive to check per-zone. This check is
5434 * made on memory-hotadd so a system can start with mobility
5435 * disabled and enable it later
5437 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5438 page_group_by_mobility_disabled
= 1;
5440 page_group_by_mobility_disabled
= 0;
5442 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5444 page_group_by_mobility_disabled
? "off" : "on",
5447 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5451 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5452 static bool __meminit
5453 overlap_memmap_init(unsigned long zone
, unsigned long *pfn
)
5455 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5456 static struct memblock_region
*r
;
5458 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5459 if (!r
|| *pfn
>= memblock_region_memory_end_pfn(r
)) {
5460 for_each_memblock(memory
, r
) {
5461 if (*pfn
< memblock_region_memory_end_pfn(r
))
5465 if (*pfn
>= memblock_region_memory_base_pfn(r
) &&
5466 memblock_is_mirror(r
)) {
5467 *pfn
= memblock_region_memory_end_pfn(r
);
5476 * Initially all pages are reserved - free ones are freed
5477 * up by memblock_free_all() once the early boot process is
5478 * done. Non-atomic initialization, single-pass.
5480 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5481 unsigned long start_pfn
, enum memmap_context context
,
5482 struct vmem_altmap
*altmap
)
5484 unsigned long pfn
, end_pfn
= start_pfn
+ size
;
5487 if (highest_memmap_pfn
< end_pfn
- 1)
5488 highest_memmap_pfn
= end_pfn
- 1;
5490 #ifdef CONFIG_ZONE_DEVICE
5492 * Honor reservation requested by the driver for this ZONE_DEVICE
5493 * memory. We limit the total number of pages to initialize to just
5494 * those that might contain the memory mapping. We will defer the
5495 * ZONE_DEVICE page initialization until after we have released
5498 if (zone
== ZONE_DEVICE
) {
5502 if (start_pfn
== altmap
->base_pfn
)
5503 start_pfn
+= altmap
->reserve
;
5504 end_pfn
= altmap
->base_pfn
+ vmem_altmap_offset(altmap
);
5508 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5510 * There can be holes in boot-time mem_map[]s handed to this
5511 * function. They do not exist on hotplugged memory.
5513 if (context
== MEMMAP_EARLY
) {
5514 if (!early_pfn_valid(pfn
))
5516 if (!early_pfn_in_nid(pfn
, nid
))
5518 if (overlap_memmap_init(zone
, &pfn
))
5520 if (defer_init(nid
, pfn
, end_pfn
))
5524 page
= pfn_to_page(pfn
);
5525 __init_single_page(page
, pfn
, zone
, nid
);
5526 if (context
== MEMMAP_HOTPLUG
)
5527 __SetPageReserved(page
);
5530 * Mark the block movable so that blocks are reserved for
5531 * movable at startup. This will force kernel allocations
5532 * to reserve their blocks rather than leaking throughout
5533 * the address space during boot when many long-lived
5534 * kernel allocations are made.
5536 * bitmap is created for zone's valid pfn range. but memmap
5537 * can be created for invalid pages (for alignment)
5538 * check here not to call set_pageblock_migratetype() against
5541 if (!(pfn
& (pageblock_nr_pages
- 1))) {
5542 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5546 #ifdef CONFIG_SPARSEMEM
5548 * If the zone does not span the rest of the section then
5549 * we should at least initialize those pages. Otherwise we
5550 * could blow up on a poisoned page in some paths which depend
5551 * on full sections being initialized (e.g. memory hotplug).
5553 while (end_pfn
% PAGES_PER_SECTION
) {
5554 __init_single_page(pfn_to_page(end_pfn
), end_pfn
, zone
, nid
);
5560 #ifdef CONFIG_ZONE_DEVICE
5561 void __ref
memmap_init_zone_device(struct zone
*zone
,
5562 unsigned long start_pfn
,
5564 struct dev_pagemap
*pgmap
)
5566 unsigned long pfn
, end_pfn
= start_pfn
+ size
;
5567 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
5568 unsigned long zone_idx
= zone_idx(zone
);
5569 unsigned long start
= jiffies
;
5570 int nid
= pgdat
->node_id
;
5572 if (WARN_ON_ONCE(!pgmap
|| !is_dev_zone(zone
)))
5576 * The call to memmap_init_zone should have already taken care
5577 * of the pages reserved for the memmap, so we can just jump to
5578 * the end of that region and start processing the device pages.
5580 if (pgmap
->altmap_valid
) {
5581 struct vmem_altmap
*altmap
= &pgmap
->altmap
;
5583 start_pfn
= altmap
->base_pfn
+ vmem_altmap_offset(altmap
);
5584 size
= end_pfn
- start_pfn
;
5587 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5588 struct page
*page
= pfn_to_page(pfn
);
5590 __init_single_page(page
, pfn
, zone_idx
, nid
);
5593 * Mark page reserved as it will need to wait for onlining
5594 * phase for it to be fully associated with a zone.
5596 * We can use the non-atomic __set_bit operation for setting
5597 * the flag as we are still initializing the pages.
5599 __SetPageReserved(page
);
5602 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5603 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5604 * page is ever freed or placed on a driver-private list.
5606 page
->pgmap
= pgmap
;
5610 * Mark the block movable so that blocks are reserved for
5611 * movable at startup. This will force kernel allocations
5612 * to reserve their blocks rather than leaking throughout
5613 * the address space during boot when many long-lived
5614 * kernel allocations are made.
5616 * bitmap is created for zone's valid pfn range. but memmap
5617 * can be created for invalid pages (for alignment)
5618 * check here not to call set_pageblock_migratetype() against
5621 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5622 * because this is done early in sparse_add_one_section
5624 if (!(pfn
& (pageblock_nr_pages
- 1))) {
5625 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5630 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap
->dev
),
5631 size
, jiffies_to_msecs(jiffies
- start
));
5635 static void __meminit
zone_init_free_lists(struct zone
*zone
)
5637 unsigned int order
, t
;
5638 for_each_migratetype_order(order
, t
) {
5639 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
5640 zone
->free_area
[order
].nr_free
= 0;
5644 void __meminit __weak
memmap_init(unsigned long size
, int nid
,
5645 unsigned long zone
, unsigned long start_pfn
)
5647 memmap_init_zone(size
, nid
, zone
, start_pfn
, MEMMAP_EARLY
, NULL
);
5650 static int zone_batchsize(struct zone
*zone
)
5656 * The per-cpu-pages pools are set to around 1000th of the
5659 batch
= zone
->managed_pages
/ 1024;
5660 /* But no more than a meg. */
5661 if (batch
* PAGE_SIZE
> 1024 * 1024)
5662 batch
= (1024 * 1024) / PAGE_SIZE
;
5663 batch
/= 4; /* We effectively *= 4 below */
5668 * Clamp the batch to a 2^n - 1 value. Having a power
5669 * of 2 value was found to be more likely to have
5670 * suboptimal cache aliasing properties in some cases.
5672 * For example if 2 tasks are alternately allocating
5673 * batches of pages, one task can end up with a lot
5674 * of pages of one half of the possible page colors
5675 * and the other with pages of the other colors.
5677 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
5682 /* The deferral and batching of frees should be suppressed under NOMMU
5685 * The problem is that NOMMU needs to be able to allocate large chunks
5686 * of contiguous memory as there's no hardware page translation to
5687 * assemble apparent contiguous memory from discontiguous pages.
5689 * Queueing large contiguous runs of pages for batching, however,
5690 * causes the pages to actually be freed in smaller chunks. As there
5691 * can be a significant delay between the individual batches being
5692 * recycled, this leads to the once large chunks of space being
5693 * fragmented and becoming unavailable for high-order allocations.
5700 * pcp->high and pcp->batch values are related and dependent on one another:
5701 * ->batch must never be higher then ->high.
5702 * The following function updates them in a safe manner without read side
5705 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5706 * those fields changing asynchronously (acording the the above rule).
5708 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5709 * outside of boot time (or some other assurance that no concurrent updaters
5712 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
5713 unsigned long batch
)
5715 /* start with a fail safe value for batch */
5719 /* Update high, then batch, in order */
5726 /* a companion to pageset_set_high() */
5727 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
5729 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
5732 static void pageset_init(struct per_cpu_pageset
*p
)
5734 struct per_cpu_pages
*pcp
;
5737 memset(p
, 0, sizeof(*p
));
5741 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
5742 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
5745 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
5748 pageset_set_batch(p
, batch
);
5752 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5753 * to the value high for the pageset p.
5755 static void pageset_set_high(struct per_cpu_pageset
*p
,
5758 unsigned long batch
= max(1UL, high
/ 4);
5759 if ((high
/ 4) > (PAGE_SHIFT
* 8))
5760 batch
= PAGE_SHIFT
* 8;
5762 pageset_update(&p
->pcp
, high
, batch
);
5765 static void pageset_set_high_and_batch(struct zone
*zone
,
5766 struct per_cpu_pageset
*pcp
)
5768 if (percpu_pagelist_fraction
)
5769 pageset_set_high(pcp
,
5770 (zone
->managed_pages
/
5771 percpu_pagelist_fraction
));
5773 pageset_set_batch(pcp
, zone_batchsize(zone
));
5776 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
5778 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
5781 pageset_set_high_and_batch(zone
, pcp
);
5784 void __meminit
setup_zone_pageset(struct zone
*zone
)
5787 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
5788 for_each_possible_cpu(cpu
)
5789 zone_pageset_init(zone
, cpu
);
5793 * Allocate per cpu pagesets and initialize them.
5794 * Before this call only boot pagesets were available.
5796 void __init
setup_per_cpu_pageset(void)
5798 struct pglist_data
*pgdat
;
5801 for_each_populated_zone(zone
)
5802 setup_zone_pageset(zone
);
5804 for_each_online_pgdat(pgdat
)
5805 pgdat
->per_cpu_nodestats
=
5806 alloc_percpu(struct per_cpu_nodestat
);
5809 static __meminit
void zone_pcp_init(struct zone
*zone
)
5812 * per cpu subsystem is not up at this point. The following code
5813 * relies on the ability of the linker to provide the
5814 * offset of a (static) per cpu variable into the per cpu area.
5816 zone
->pageset
= &boot_pageset
;
5818 if (populated_zone(zone
))
5819 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
5820 zone
->name
, zone
->present_pages
,
5821 zone_batchsize(zone
));
5824 void __meminit
init_currently_empty_zone(struct zone
*zone
,
5825 unsigned long zone_start_pfn
,
5828 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
5829 int zone_idx
= zone_idx(zone
) + 1;
5831 if (zone_idx
> pgdat
->nr_zones
)
5832 pgdat
->nr_zones
= zone_idx
;
5834 zone
->zone_start_pfn
= zone_start_pfn
;
5836 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
5837 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5839 (unsigned long)zone_idx(zone
),
5840 zone_start_pfn
, (zone_start_pfn
+ size
));
5842 zone_init_free_lists(zone
);
5843 zone
->initialized
= 1;
5846 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5847 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5850 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5852 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
5853 struct mminit_pfnnid_cache
*state
)
5855 unsigned long start_pfn
, end_pfn
;
5858 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
5859 return state
->last_nid
;
5861 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
5863 state
->last_start
= start_pfn
;
5864 state
->last_end
= end_pfn
;
5865 state
->last_nid
= nid
;
5870 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5873 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5874 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5875 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5877 * If an architecture guarantees that all ranges registered contain no holes
5878 * and may be freed, this this function may be used instead of calling
5879 * memblock_free_early_nid() manually.
5881 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
5883 unsigned long start_pfn
, end_pfn
;
5886 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
5887 start_pfn
= min(start_pfn
, max_low_pfn
);
5888 end_pfn
= min(end_pfn
, max_low_pfn
);
5890 if (start_pfn
< end_pfn
)
5891 memblock_free_early_nid(PFN_PHYS(start_pfn
),
5892 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
5898 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5899 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5901 * If an architecture guarantees that all ranges registered contain no holes and may
5902 * be freed, this function may be used instead of calling memory_present() manually.
5904 void __init
sparse_memory_present_with_active_regions(int nid
)
5906 unsigned long start_pfn
, end_pfn
;
5909 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
5910 memory_present(this_nid
, start_pfn
, end_pfn
);
5914 * get_pfn_range_for_nid - Return the start and end page frames for a node
5915 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5916 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5917 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5919 * It returns the start and end page frame of a node based on information
5920 * provided by memblock_set_node(). If called for a node
5921 * with no available memory, a warning is printed and the start and end
5924 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
5925 unsigned long *start_pfn
, unsigned long *end_pfn
)
5927 unsigned long this_start_pfn
, this_end_pfn
;
5933 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
5934 *start_pfn
= min(*start_pfn
, this_start_pfn
);
5935 *end_pfn
= max(*end_pfn
, this_end_pfn
);
5938 if (*start_pfn
== -1UL)
5943 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5944 * assumption is made that zones within a node are ordered in monotonic
5945 * increasing memory addresses so that the "highest" populated zone is used
5947 static void __init
find_usable_zone_for_movable(void)
5950 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
5951 if (zone_index
== ZONE_MOVABLE
)
5954 if (arch_zone_highest_possible_pfn
[zone_index
] >
5955 arch_zone_lowest_possible_pfn
[zone_index
])
5959 VM_BUG_ON(zone_index
== -1);
5960 movable_zone
= zone_index
;
5964 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5965 * because it is sized independent of architecture. Unlike the other zones,
5966 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5967 * in each node depending on the size of each node and how evenly kernelcore
5968 * is distributed. This helper function adjusts the zone ranges
5969 * provided by the architecture for a given node by using the end of the
5970 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5971 * zones within a node are in order of monotonic increases memory addresses
5973 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
5974 unsigned long zone_type
,
5975 unsigned long node_start_pfn
,
5976 unsigned long node_end_pfn
,
5977 unsigned long *zone_start_pfn
,
5978 unsigned long *zone_end_pfn
)
5980 /* Only adjust if ZONE_MOVABLE is on this node */
5981 if (zone_movable_pfn
[nid
]) {
5982 /* Size ZONE_MOVABLE */
5983 if (zone_type
== ZONE_MOVABLE
) {
5984 *zone_start_pfn
= zone_movable_pfn
[nid
];
5985 *zone_end_pfn
= min(node_end_pfn
,
5986 arch_zone_highest_possible_pfn
[movable_zone
]);
5988 /* Adjust for ZONE_MOVABLE starting within this range */
5989 } else if (!mirrored_kernelcore
&&
5990 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
5991 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
5992 *zone_end_pfn
= zone_movable_pfn
[nid
];
5994 /* Check if this whole range is within ZONE_MOVABLE */
5995 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
5996 *zone_start_pfn
= *zone_end_pfn
;
6001 * Return the number of pages a zone spans in a node, including holes
6002 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6004 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
6005 unsigned long zone_type
,
6006 unsigned long node_start_pfn
,
6007 unsigned long node_end_pfn
,
6008 unsigned long *zone_start_pfn
,
6009 unsigned long *zone_end_pfn
,
6010 unsigned long *ignored
)
6012 /* When hotadd a new node from cpu_up(), the node should be empty */
6013 if (!node_start_pfn
&& !node_end_pfn
)
6016 /* Get the start and end of the zone */
6017 *zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
6018 *zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
6019 adjust_zone_range_for_zone_movable(nid
, zone_type
,
6020 node_start_pfn
, node_end_pfn
,
6021 zone_start_pfn
, zone_end_pfn
);
6023 /* Check that this node has pages within the zone's required range */
6024 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
6027 /* Move the zone boundaries inside the node if necessary */
6028 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
6029 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
6031 /* Return the spanned pages */
6032 return *zone_end_pfn
- *zone_start_pfn
;
6036 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6037 * then all holes in the requested range will be accounted for.
6039 unsigned long __meminit
__absent_pages_in_range(int nid
,
6040 unsigned long range_start_pfn
,
6041 unsigned long range_end_pfn
)
6043 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
6044 unsigned long start_pfn
, end_pfn
;
6047 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6048 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
6049 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
6050 nr_absent
-= end_pfn
- start_pfn
;
6056 * absent_pages_in_range - Return number of page frames in holes within a range
6057 * @start_pfn: The start PFN to start searching for holes
6058 * @end_pfn: The end PFN to stop searching for holes
6060 * It returns the number of pages frames in memory holes within a range.
6062 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
6063 unsigned long end_pfn
)
6065 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
6068 /* Return the number of page frames in holes in a zone on a node */
6069 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
6070 unsigned long zone_type
,
6071 unsigned long node_start_pfn
,
6072 unsigned long node_end_pfn
,
6073 unsigned long *ignored
)
6075 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
6076 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
6077 unsigned long zone_start_pfn
, zone_end_pfn
;
6078 unsigned long nr_absent
;
6080 /* When hotadd a new node from cpu_up(), the node should be empty */
6081 if (!node_start_pfn
&& !node_end_pfn
)
6084 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
6085 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
6087 adjust_zone_range_for_zone_movable(nid
, zone_type
,
6088 node_start_pfn
, node_end_pfn
,
6089 &zone_start_pfn
, &zone_end_pfn
);
6090 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
6093 * ZONE_MOVABLE handling.
6094 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6097 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
6098 unsigned long start_pfn
, end_pfn
;
6099 struct memblock_region
*r
;
6101 for_each_memblock(memory
, r
) {
6102 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
6103 zone_start_pfn
, zone_end_pfn
);
6104 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
6105 zone_start_pfn
, zone_end_pfn
);
6107 if (zone_type
== ZONE_MOVABLE
&&
6108 memblock_is_mirror(r
))
6109 nr_absent
+= end_pfn
- start_pfn
;
6111 if (zone_type
== ZONE_NORMAL
&&
6112 !memblock_is_mirror(r
))
6113 nr_absent
+= end_pfn
- start_pfn
;
6120 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6121 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
6122 unsigned long zone_type
,
6123 unsigned long node_start_pfn
,
6124 unsigned long node_end_pfn
,
6125 unsigned long *zone_start_pfn
,
6126 unsigned long *zone_end_pfn
,
6127 unsigned long *zones_size
)
6131 *zone_start_pfn
= node_start_pfn
;
6132 for (zone
= 0; zone
< zone_type
; zone
++)
6133 *zone_start_pfn
+= zones_size
[zone
];
6135 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
6137 return zones_size
[zone_type
];
6140 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
6141 unsigned long zone_type
,
6142 unsigned long node_start_pfn
,
6143 unsigned long node_end_pfn
,
6144 unsigned long *zholes_size
)
6149 return zholes_size
[zone_type
];
6152 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6154 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
6155 unsigned long node_start_pfn
,
6156 unsigned long node_end_pfn
,
6157 unsigned long *zones_size
,
6158 unsigned long *zholes_size
)
6160 unsigned long realtotalpages
= 0, totalpages
= 0;
6163 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6164 struct zone
*zone
= pgdat
->node_zones
+ i
;
6165 unsigned long zone_start_pfn
, zone_end_pfn
;
6166 unsigned long size
, real_size
;
6168 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
6174 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
6175 node_start_pfn
, node_end_pfn
,
6178 zone
->zone_start_pfn
= zone_start_pfn
;
6180 zone
->zone_start_pfn
= 0;
6181 zone
->spanned_pages
= size
;
6182 zone
->present_pages
= real_size
;
6185 realtotalpages
+= real_size
;
6188 pgdat
->node_spanned_pages
= totalpages
;
6189 pgdat
->node_present_pages
= realtotalpages
;
6190 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
6194 #ifndef CONFIG_SPARSEMEM
6196 * Calculate the size of the zone->blockflags rounded to an unsigned long
6197 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6198 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6199 * round what is now in bits to nearest long in bits, then return it in
6202 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
6204 unsigned long usemapsize
;
6206 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
6207 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
6208 usemapsize
= usemapsize
>> pageblock_order
;
6209 usemapsize
*= NR_PAGEBLOCK_BITS
;
6210 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
6212 return usemapsize
/ 8;
6215 static void __ref
setup_usemap(struct pglist_data
*pgdat
,
6217 unsigned long zone_start_pfn
,
6218 unsigned long zonesize
)
6220 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
6221 zone
->pageblock_flags
= NULL
;
6223 zone
->pageblock_flags
=
6224 memblock_alloc_node_nopanic(usemapsize
,
6228 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
6229 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
6230 #endif /* CONFIG_SPARSEMEM */
6232 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6234 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6235 void __init
set_pageblock_order(void)
6239 /* Check that pageblock_nr_pages has not already been setup */
6240 if (pageblock_order
)
6243 if (HPAGE_SHIFT
> PAGE_SHIFT
)
6244 order
= HUGETLB_PAGE_ORDER
;
6246 order
= MAX_ORDER
- 1;
6249 * Assume the largest contiguous order of interest is a huge page.
6250 * This value may be variable depending on boot parameters on IA64 and
6253 pageblock_order
= order
;
6255 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6258 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6259 * is unused as pageblock_order is set at compile-time. See
6260 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6263 void __init
set_pageblock_order(void)
6267 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6269 static unsigned long __init
calc_memmap_size(unsigned long spanned_pages
,
6270 unsigned long present_pages
)
6272 unsigned long pages
= spanned_pages
;
6275 * Provide a more accurate estimation if there are holes within
6276 * the zone and SPARSEMEM is in use. If there are holes within the
6277 * zone, each populated memory region may cost us one or two extra
6278 * memmap pages due to alignment because memmap pages for each
6279 * populated regions may not be naturally aligned on page boundary.
6280 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6282 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
6283 IS_ENABLED(CONFIG_SPARSEMEM
))
6284 pages
= present_pages
;
6286 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
6289 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6290 static void pgdat_init_split_queue(struct pglist_data
*pgdat
)
6292 spin_lock_init(&pgdat
->split_queue_lock
);
6293 INIT_LIST_HEAD(&pgdat
->split_queue
);
6294 pgdat
->split_queue_len
= 0;
6297 static void pgdat_init_split_queue(struct pglist_data
*pgdat
) {}
6300 #ifdef CONFIG_COMPACTION
6301 static void pgdat_init_kcompactd(struct pglist_data
*pgdat
)
6303 init_waitqueue_head(&pgdat
->kcompactd_wait
);
6306 static void pgdat_init_kcompactd(struct pglist_data
*pgdat
) {}
6309 static void __meminit
pgdat_init_internals(struct pglist_data
*pgdat
)
6311 pgdat_resize_init(pgdat
);
6313 pgdat_init_split_queue(pgdat
);
6314 pgdat_init_kcompactd(pgdat
);
6316 init_waitqueue_head(&pgdat
->kswapd_wait
);
6317 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
6319 pgdat_page_ext_init(pgdat
);
6320 spin_lock_init(&pgdat
->lru_lock
);
6321 lruvec_init(node_lruvec(pgdat
));
6324 static void __meminit
zone_init_internals(struct zone
*zone
, enum zone_type idx
, int nid
,
6325 unsigned long remaining_pages
)
6327 zone
->managed_pages
= remaining_pages
;
6328 zone_set_nid(zone
, nid
);
6329 zone
->name
= zone_names
[idx
];
6330 zone
->zone_pgdat
= NODE_DATA(nid
);
6331 spin_lock_init(&zone
->lock
);
6332 zone_seqlock_init(zone
);
6333 zone_pcp_init(zone
);
6337 * Set up the zone data structures
6338 * - init pgdat internals
6339 * - init all zones belonging to this node
6341 * NOTE: this function is only called during memory hotplug
6343 #ifdef CONFIG_MEMORY_HOTPLUG
6344 void __ref
free_area_init_core_hotplug(int nid
)
6347 pg_data_t
*pgdat
= NODE_DATA(nid
);
6349 pgdat_init_internals(pgdat
);
6350 for (z
= 0; z
< MAX_NR_ZONES
; z
++)
6351 zone_init_internals(&pgdat
->node_zones
[z
], z
, nid
, 0);
6356 * Set up the zone data structures:
6357 * - mark all pages reserved
6358 * - mark all memory queues empty
6359 * - clear the memory bitmaps
6361 * NOTE: pgdat should get zeroed by caller.
6362 * NOTE: this function is only called during early init.
6364 static void __init
free_area_init_core(struct pglist_data
*pgdat
)
6367 int nid
= pgdat
->node_id
;
6369 pgdat_init_internals(pgdat
);
6370 pgdat
->per_cpu_nodestats
= &boot_nodestats
;
6372 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6373 struct zone
*zone
= pgdat
->node_zones
+ j
;
6374 unsigned long size
, freesize
, memmap_pages
;
6375 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
6377 size
= zone
->spanned_pages
;
6378 freesize
= zone
->present_pages
;
6381 * Adjust freesize so that it accounts for how much memory
6382 * is used by this zone for memmap. This affects the watermark
6383 * and per-cpu initialisations
6385 memmap_pages
= calc_memmap_size(size
, freesize
);
6386 if (!is_highmem_idx(j
)) {
6387 if (freesize
>= memmap_pages
) {
6388 freesize
-= memmap_pages
;
6391 " %s zone: %lu pages used for memmap\n",
6392 zone_names
[j
], memmap_pages
);
6394 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6395 zone_names
[j
], memmap_pages
, freesize
);
6398 /* Account for reserved pages */
6399 if (j
== 0 && freesize
> dma_reserve
) {
6400 freesize
-= dma_reserve
;
6401 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
6402 zone_names
[0], dma_reserve
);
6405 if (!is_highmem_idx(j
))
6406 nr_kernel_pages
+= freesize
;
6407 /* Charge for highmem memmap if there are enough kernel pages */
6408 else if (nr_kernel_pages
> memmap_pages
* 2)
6409 nr_kernel_pages
-= memmap_pages
;
6410 nr_all_pages
+= freesize
;
6413 * Set an approximate value for lowmem here, it will be adjusted
6414 * when the bootmem allocator frees pages into the buddy system.
6415 * And all highmem pages will be managed by the buddy system.
6417 zone_init_internals(zone
, j
, nid
, freesize
);
6422 set_pageblock_order();
6423 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
6424 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
6425 memmap_init(size
, nid
, j
, zone_start_pfn
);
6429 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6430 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
6432 unsigned long __maybe_unused start
= 0;
6433 unsigned long __maybe_unused offset
= 0;
6435 /* Skip empty nodes */
6436 if (!pgdat
->node_spanned_pages
)
6439 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
6440 offset
= pgdat
->node_start_pfn
- start
;
6441 /* ia64 gets its own node_mem_map, before this, without bootmem */
6442 if (!pgdat
->node_mem_map
) {
6443 unsigned long size
, end
;
6447 * The zone's endpoints aren't required to be MAX_ORDER
6448 * aligned but the node_mem_map endpoints must be in order
6449 * for the buddy allocator to function correctly.
6451 end
= pgdat_end_pfn(pgdat
);
6452 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
6453 size
= (end
- start
) * sizeof(struct page
);
6454 map
= memblock_alloc_node_nopanic(size
, pgdat
->node_id
);
6455 pgdat
->node_mem_map
= map
+ offset
;
6457 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6458 __func__
, pgdat
->node_id
, (unsigned long)pgdat
,
6459 (unsigned long)pgdat
->node_mem_map
);
6460 #ifndef CONFIG_NEED_MULTIPLE_NODES
6462 * With no DISCONTIG, the global mem_map is just set as node 0's
6464 if (pgdat
== NODE_DATA(0)) {
6465 mem_map
= NODE_DATA(0)->node_mem_map
;
6466 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6467 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
6469 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6474 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
) { }
6475 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6477 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6478 static inline void pgdat_set_deferred_range(pg_data_t
*pgdat
)
6481 * We start only with one section of pages, more pages are added as
6482 * needed until the rest of deferred pages are initialized.
6484 pgdat
->static_init_pgcnt
= min_t(unsigned long, PAGES_PER_SECTION
,
6485 pgdat
->node_spanned_pages
);
6486 pgdat
->first_deferred_pfn
= ULONG_MAX
;
6489 static inline void pgdat_set_deferred_range(pg_data_t
*pgdat
) {}
6492 void __init
free_area_init_node(int nid
, unsigned long *zones_size
,
6493 unsigned long node_start_pfn
,
6494 unsigned long *zholes_size
)
6496 pg_data_t
*pgdat
= NODE_DATA(nid
);
6497 unsigned long start_pfn
= 0;
6498 unsigned long end_pfn
= 0;
6500 /* pg_data_t should be reset to zero when it's allocated */
6501 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_classzone_idx
);
6503 pgdat
->node_id
= nid
;
6504 pgdat
->node_start_pfn
= node_start_pfn
;
6505 pgdat
->per_cpu_nodestats
= NULL
;
6506 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6507 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
6508 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
6509 (u64
)start_pfn
<< PAGE_SHIFT
,
6510 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
6512 start_pfn
= node_start_pfn
;
6514 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
6515 zones_size
, zholes_size
);
6517 alloc_node_mem_map(pgdat
);
6518 pgdat_set_deferred_range(pgdat
);
6520 free_area_init_core(pgdat
);
6523 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6525 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6528 static u64
zero_pfn_range(unsigned long spfn
, unsigned long epfn
)
6533 for (pfn
= spfn
; pfn
< epfn
; pfn
++) {
6534 if (!pfn_valid(ALIGN_DOWN(pfn
, pageblock_nr_pages
))) {
6535 pfn
= ALIGN_DOWN(pfn
, pageblock_nr_pages
)
6536 + pageblock_nr_pages
- 1;
6539 mm_zero_struct_page(pfn_to_page(pfn
));
6547 * Only struct pages that are backed by physical memory are zeroed and
6548 * initialized by going through __init_single_page(). But, there are some
6549 * struct pages which are reserved in memblock allocator and their fields
6550 * may be accessed (for example page_to_pfn() on some configuration accesses
6551 * flags). We must explicitly zero those struct pages.
6553 * This function also addresses a similar issue where struct pages are left
6554 * uninitialized because the physical address range is not covered by
6555 * memblock.memory or memblock.reserved. That could happen when memblock
6556 * layout is manually configured via memmap=.
6558 void __init
zero_resv_unavail(void)
6560 phys_addr_t start
, end
;
6562 phys_addr_t next
= 0;
6565 * Loop through unavailable ranges not covered by memblock.memory.
6568 for_each_mem_range(i
, &memblock
.memory
, NULL
,
6569 NUMA_NO_NODE
, MEMBLOCK_NONE
, &start
, &end
, NULL
) {
6571 pgcnt
+= zero_pfn_range(PFN_DOWN(next
), PFN_UP(start
));
6574 pgcnt
+= zero_pfn_range(PFN_DOWN(next
), max_pfn
);
6577 * Struct pages that do not have backing memory. This could be because
6578 * firmware is using some of this memory, or for some other reasons.
6581 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt
);
6583 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6585 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6587 #if MAX_NUMNODES > 1
6589 * Figure out the number of possible node ids.
6591 void __init
setup_nr_node_ids(void)
6593 unsigned int highest
;
6595 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
6596 nr_node_ids
= highest
+ 1;
6601 * node_map_pfn_alignment - determine the maximum internode alignment
6603 * This function should be called after node map is populated and sorted.
6604 * It calculates the maximum power of two alignment which can distinguish
6607 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6608 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6609 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6610 * shifted, 1GiB is enough and this function will indicate so.
6612 * This is used to test whether pfn -> nid mapping of the chosen memory
6613 * model has fine enough granularity to avoid incorrect mapping for the
6614 * populated node map.
6616 * Returns the determined alignment in pfn's. 0 if there is no alignment
6617 * requirement (single node).
6619 unsigned long __init
node_map_pfn_alignment(void)
6621 unsigned long accl_mask
= 0, last_end
= 0;
6622 unsigned long start
, end
, mask
;
6626 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
6627 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
6634 * Start with a mask granular enough to pin-point to the
6635 * start pfn and tick off bits one-by-one until it becomes
6636 * too coarse to separate the current node from the last.
6638 mask
= ~((1 << __ffs(start
)) - 1);
6639 while (mask
&& last_end
<= (start
& (mask
<< 1)))
6642 /* accumulate all internode masks */
6646 /* convert mask to number of pages */
6647 return ~accl_mask
+ 1;
6650 /* Find the lowest pfn for a node */
6651 static unsigned long __init
find_min_pfn_for_node(int nid
)
6653 unsigned long min_pfn
= ULONG_MAX
;
6654 unsigned long start_pfn
;
6657 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
6658 min_pfn
= min(min_pfn
, start_pfn
);
6660 if (min_pfn
== ULONG_MAX
) {
6661 pr_warn("Could not find start_pfn for node %d\n", nid
);
6669 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6671 * It returns the minimum PFN based on information provided via
6672 * memblock_set_node().
6674 unsigned long __init
find_min_pfn_with_active_regions(void)
6676 return find_min_pfn_for_node(MAX_NUMNODES
);
6680 * early_calculate_totalpages()
6681 * Sum pages in active regions for movable zone.
6682 * Populate N_MEMORY for calculating usable_nodes.
6684 static unsigned long __init
early_calculate_totalpages(void)
6686 unsigned long totalpages
= 0;
6687 unsigned long start_pfn
, end_pfn
;
6690 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
6691 unsigned long pages
= end_pfn
- start_pfn
;
6693 totalpages
+= pages
;
6695 node_set_state(nid
, N_MEMORY
);
6701 * Find the PFN the Movable zone begins in each node. Kernel memory
6702 * is spread evenly between nodes as long as the nodes have enough
6703 * memory. When they don't, some nodes will have more kernelcore than
6706 static void __init
find_zone_movable_pfns_for_nodes(void)
6709 unsigned long usable_startpfn
;
6710 unsigned long kernelcore_node
, kernelcore_remaining
;
6711 /* save the state before borrow the nodemask */
6712 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
6713 unsigned long totalpages
= early_calculate_totalpages();
6714 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
6715 struct memblock_region
*r
;
6717 /* Need to find movable_zone earlier when movable_node is specified. */
6718 find_usable_zone_for_movable();
6721 * If movable_node is specified, ignore kernelcore and movablecore
6724 if (movable_node_is_enabled()) {
6725 for_each_memblock(memory
, r
) {
6726 if (!memblock_is_hotpluggable(r
))
6731 usable_startpfn
= PFN_DOWN(r
->base
);
6732 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6733 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6741 * If kernelcore=mirror is specified, ignore movablecore option
6743 if (mirrored_kernelcore
) {
6744 bool mem_below_4gb_not_mirrored
= false;
6746 for_each_memblock(memory
, r
) {
6747 if (memblock_is_mirror(r
))
6752 usable_startpfn
= memblock_region_memory_base_pfn(r
);
6754 if (usable_startpfn
< 0x100000) {
6755 mem_below_4gb_not_mirrored
= true;
6759 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6760 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6764 if (mem_below_4gb_not_mirrored
)
6765 pr_warn("This configuration results in unmirrored kernel memory.");
6771 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6772 * amount of necessary memory.
6774 if (required_kernelcore_percent
)
6775 required_kernelcore
= (totalpages
* 100 * required_kernelcore_percent
) /
6777 if (required_movablecore_percent
)
6778 required_movablecore
= (totalpages
* 100 * required_movablecore_percent
) /
6782 * If movablecore= was specified, calculate what size of
6783 * kernelcore that corresponds so that memory usable for
6784 * any allocation type is evenly spread. If both kernelcore
6785 * and movablecore are specified, then the value of kernelcore
6786 * will be used for required_kernelcore if it's greater than
6787 * what movablecore would have allowed.
6789 if (required_movablecore
) {
6790 unsigned long corepages
;
6793 * Round-up so that ZONE_MOVABLE is at least as large as what
6794 * was requested by the user
6796 required_movablecore
=
6797 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
6798 required_movablecore
= min(totalpages
, required_movablecore
);
6799 corepages
= totalpages
- required_movablecore
;
6801 required_kernelcore
= max(required_kernelcore
, corepages
);
6805 * If kernelcore was not specified or kernelcore size is larger
6806 * than totalpages, there is no ZONE_MOVABLE.
6808 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
6811 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6812 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
6815 /* Spread kernelcore memory as evenly as possible throughout nodes */
6816 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6817 for_each_node_state(nid
, N_MEMORY
) {
6818 unsigned long start_pfn
, end_pfn
;
6821 * Recalculate kernelcore_node if the division per node
6822 * now exceeds what is necessary to satisfy the requested
6823 * amount of memory for the kernel
6825 if (required_kernelcore
< kernelcore_node
)
6826 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6829 * As the map is walked, we track how much memory is usable
6830 * by the kernel using kernelcore_remaining. When it is
6831 * 0, the rest of the node is usable by ZONE_MOVABLE
6833 kernelcore_remaining
= kernelcore_node
;
6835 /* Go through each range of PFNs within this node */
6836 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6837 unsigned long size_pages
;
6839 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
6840 if (start_pfn
>= end_pfn
)
6843 /* Account for what is only usable for kernelcore */
6844 if (start_pfn
< usable_startpfn
) {
6845 unsigned long kernel_pages
;
6846 kernel_pages
= min(end_pfn
, usable_startpfn
)
6849 kernelcore_remaining
-= min(kernel_pages
,
6850 kernelcore_remaining
);
6851 required_kernelcore
-= min(kernel_pages
,
6852 required_kernelcore
);
6854 /* Continue if range is now fully accounted */
6855 if (end_pfn
<= usable_startpfn
) {
6858 * Push zone_movable_pfn to the end so
6859 * that if we have to rebalance
6860 * kernelcore across nodes, we will
6861 * not double account here
6863 zone_movable_pfn
[nid
] = end_pfn
;
6866 start_pfn
= usable_startpfn
;
6870 * The usable PFN range for ZONE_MOVABLE is from
6871 * start_pfn->end_pfn. Calculate size_pages as the
6872 * number of pages used as kernelcore
6874 size_pages
= end_pfn
- start_pfn
;
6875 if (size_pages
> kernelcore_remaining
)
6876 size_pages
= kernelcore_remaining
;
6877 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
6880 * Some kernelcore has been met, update counts and
6881 * break if the kernelcore for this node has been
6884 required_kernelcore
-= min(required_kernelcore
,
6886 kernelcore_remaining
-= size_pages
;
6887 if (!kernelcore_remaining
)
6893 * If there is still required_kernelcore, we do another pass with one
6894 * less node in the count. This will push zone_movable_pfn[nid] further
6895 * along on the nodes that still have memory until kernelcore is
6899 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
6903 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6904 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
6905 zone_movable_pfn
[nid
] =
6906 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
6909 /* restore the node_state */
6910 node_states
[N_MEMORY
] = saved_node_state
;
6913 /* Any regular or high memory on that node ? */
6914 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
6916 enum zone_type zone_type
;
6918 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
6919 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
6920 if (populated_zone(zone
)) {
6921 if (IS_ENABLED(CONFIG_HIGHMEM
))
6922 node_set_state(nid
, N_HIGH_MEMORY
);
6923 if (zone_type
<= ZONE_NORMAL
)
6924 node_set_state(nid
, N_NORMAL_MEMORY
);
6931 * free_area_init_nodes - Initialise all pg_data_t and zone data
6932 * @max_zone_pfn: an array of max PFNs for each zone
6934 * This will call free_area_init_node() for each active node in the system.
6935 * Using the page ranges provided by memblock_set_node(), the size of each
6936 * zone in each node and their holes is calculated. If the maximum PFN
6937 * between two adjacent zones match, it is assumed that the zone is empty.
6938 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6939 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6940 * starts where the previous one ended. For example, ZONE_DMA32 starts
6941 * at arch_max_dma_pfn.
6943 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
6945 unsigned long start_pfn
, end_pfn
;
6948 /* Record where the zone boundaries are */
6949 memset(arch_zone_lowest_possible_pfn
, 0,
6950 sizeof(arch_zone_lowest_possible_pfn
));
6951 memset(arch_zone_highest_possible_pfn
, 0,
6952 sizeof(arch_zone_highest_possible_pfn
));
6954 start_pfn
= find_min_pfn_with_active_regions();
6956 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6957 if (i
== ZONE_MOVABLE
)
6960 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
6961 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
6962 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
6964 start_pfn
= end_pfn
;
6967 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6968 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
6969 find_zone_movable_pfns_for_nodes();
6971 /* Print out the zone ranges */
6972 pr_info("Zone ranges:\n");
6973 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6974 if (i
== ZONE_MOVABLE
)
6976 pr_info(" %-8s ", zone_names
[i
]);
6977 if (arch_zone_lowest_possible_pfn
[i
] ==
6978 arch_zone_highest_possible_pfn
[i
])
6981 pr_cont("[mem %#018Lx-%#018Lx]\n",
6982 (u64
)arch_zone_lowest_possible_pfn
[i
]
6984 ((u64
)arch_zone_highest_possible_pfn
[i
]
6985 << PAGE_SHIFT
) - 1);
6988 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6989 pr_info("Movable zone start for each node\n");
6990 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6991 if (zone_movable_pfn
[i
])
6992 pr_info(" Node %d: %#018Lx\n", i
,
6993 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
6996 /* Print out the early node map */
6997 pr_info("Early memory node ranges\n");
6998 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
6999 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
7000 (u64
)start_pfn
<< PAGE_SHIFT
,
7001 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
7003 /* Initialise every node */
7004 mminit_verify_pageflags_layout();
7005 setup_nr_node_ids();
7006 zero_resv_unavail();
7007 for_each_online_node(nid
) {
7008 pg_data_t
*pgdat
= NODE_DATA(nid
);
7009 free_area_init_node(nid
, NULL
,
7010 find_min_pfn_for_node(nid
), NULL
);
7012 /* Any memory on that node */
7013 if (pgdat
->node_present_pages
)
7014 node_set_state(nid
, N_MEMORY
);
7015 check_for_memory(pgdat
, nid
);
7019 static int __init
cmdline_parse_core(char *p
, unsigned long *core
,
7020 unsigned long *percent
)
7022 unsigned long long coremem
;
7028 /* Value may be a percentage of total memory, otherwise bytes */
7029 coremem
= simple_strtoull(p
, &endptr
, 0);
7030 if (*endptr
== '%') {
7031 /* Paranoid check for percent values greater than 100 */
7032 WARN_ON(coremem
> 100);
7036 coremem
= memparse(p
, &p
);
7037 /* Paranoid check that UL is enough for the coremem value */
7038 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
7040 *core
= coremem
>> PAGE_SHIFT
;
7047 * kernelcore=size sets the amount of memory for use for allocations that
7048 * cannot be reclaimed or migrated.
7050 static int __init
cmdline_parse_kernelcore(char *p
)
7052 /* parse kernelcore=mirror */
7053 if (parse_option_str(p
, "mirror")) {
7054 mirrored_kernelcore
= true;
7058 return cmdline_parse_core(p
, &required_kernelcore
,
7059 &required_kernelcore_percent
);
7063 * movablecore=size sets the amount of memory for use for allocations that
7064 * can be reclaimed or migrated.
7066 static int __init
cmdline_parse_movablecore(char *p
)
7068 return cmdline_parse_core(p
, &required_movablecore
,
7069 &required_movablecore_percent
);
7072 early_param("kernelcore", cmdline_parse_kernelcore
);
7073 early_param("movablecore", cmdline_parse_movablecore
);
7075 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7077 void adjust_managed_page_count(struct page
*page
, long count
)
7079 spin_lock(&managed_page_count_lock
);
7080 page_zone(page
)->managed_pages
+= count
;
7081 totalram_pages
+= count
;
7082 #ifdef CONFIG_HIGHMEM
7083 if (PageHighMem(page
))
7084 totalhigh_pages
+= count
;
7086 spin_unlock(&managed_page_count_lock
);
7088 EXPORT_SYMBOL(adjust_managed_page_count
);
7090 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
7093 unsigned long pages
= 0;
7095 start
= (void *)PAGE_ALIGN((unsigned long)start
);
7096 end
= (void *)((unsigned long)end
& PAGE_MASK
);
7097 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
7098 struct page
*page
= virt_to_page(pos
);
7099 void *direct_map_addr
;
7102 * 'direct_map_addr' might be different from 'pos'
7103 * because some architectures' virt_to_page()
7104 * work with aliases. Getting the direct map
7105 * address ensures that we get a _writeable_
7106 * alias for the memset().
7108 direct_map_addr
= page_address(page
);
7109 if ((unsigned int)poison
<= 0xFF)
7110 memset(direct_map_addr
, poison
, PAGE_SIZE
);
7112 free_reserved_page(page
);
7116 pr_info("Freeing %s memory: %ldK\n",
7117 s
, pages
<< (PAGE_SHIFT
- 10));
7121 EXPORT_SYMBOL(free_reserved_area
);
7123 #ifdef CONFIG_HIGHMEM
7124 void free_highmem_page(struct page
*page
)
7126 __free_reserved_page(page
);
7128 page_zone(page
)->managed_pages
++;
7134 void __init
mem_init_print_info(const char *str
)
7136 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
7137 unsigned long init_code_size
, init_data_size
;
7139 physpages
= get_num_physpages();
7140 codesize
= _etext
- _stext
;
7141 datasize
= _edata
- _sdata
;
7142 rosize
= __end_rodata
- __start_rodata
;
7143 bss_size
= __bss_stop
- __bss_start
;
7144 init_data_size
= __init_end
- __init_begin
;
7145 init_code_size
= _einittext
- _sinittext
;
7148 * Detect special cases and adjust section sizes accordingly:
7149 * 1) .init.* may be embedded into .data sections
7150 * 2) .init.text.* may be out of [__init_begin, __init_end],
7151 * please refer to arch/tile/kernel/vmlinux.lds.S.
7152 * 3) .rodata.* may be embedded into .text or .data sections.
7154 #define adj_init_size(start, end, size, pos, adj) \
7156 if (start <= pos && pos < end && size > adj) \
7160 adj_init_size(__init_begin
, __init_end
, init_data_size
,
7161 _sinittext
, init_code_size
);
7162 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
7163 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
7164 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
7165 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
7167 #undef adj_init_size
7169 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7170 #ifdef CONFIG_HIGHMEM
7174 nr_free_pages() << (PAGE_SHIFT
- 10),
7175 physpages
<< (PAGE_SHIFT
- 10),
7176 codesize
>> 10, datasize
>> 10, rosize
>> 10,
7177 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
7178 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
- 10),
7179 totalcma_pages
<< (PAGE_SHIFT
- 10),
7180 #ifdef CONFIG_HIGHMEM
7181 totalhigh_pages
<< (PAGE_SHIFT
- 10),
7183 str
? ", " : "", str
? str
: "");
7187 * set_dma_reserve - set the specified number of pages reserved in the first zone
7188 * @new_dma_reserve: The number of pages to mark reserved
7190 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7191 * In the DMA zone, a significant percentage may be consumed by kernel image
7192 * and other unfreeable allocations which can skew the watermarks badly. This
7193 * function may optionally be used to account for unfreeable pages in the
7194 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7195 * smaller per-cpu batchsize.
7197 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
7199 dma_reserve
= new_dma_reserve
;
7202 void __init
free_area_init(unsigned long *zones_size
)
7204 zero_resv_unavail();
7205 free_area_init_node(0, zones_size
,
7206 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
7209 static int page_alloc_cpu_dead(unsigned int cpu
)
7212 lru_add_drain_cpu(cpu
);
7216 * Spill the event counters of the dead processor
7217 * into the current processors event counters.
7218 * This artificially elevates the count of the current
7221 vm_events_fold_cpu(cpu
);
7224 * Zero the differential counters of the dead processor
7225 * so that the vm statistics are consistent.
7227 * This is only okay since the processor is dead and cannot
7228 * race with what we are doing.
7230 cpu_vm_stats_fold(cpu
);
7234 void __init
page_alloc_init(void)
7238 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD
,
7239 "mm/page_alloc:dead", NULL
,
7240 page_alloc_cpu_dead
);
7245 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7246 * or min_free_kbytes changes.
7248 static void calculate_totalreserve_pages(void)
7250 struct pglist_data
*pgdat
;
7251 unsigned long reserve_pages
= 0;
7252 enum zone_type i
, j
;
7254 for_each_online_pgdat(pgdat
) {
7256 pgdat
->totalreserve_pages
= 0;
7258 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7259 struct zone
*zone
= pgdat
->node_zones
+ i
;
7262 /* Find valid and maximum lowmem_reserve in the zone */
7263 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
7264 if (zone
->lowmem_reserve
[j
] > max
)
7265 max
= zone
->lowmem_reserve
[j
];
7268 /* we treat the high watermark as reserved pages. */
7269 max
+= high_wmark_pages(zone
);
7271 if (max
> zone
->managed_pages
)
7272 max
= zone
->managed_pages
;
7274 pgdat
->totalreserve_pages
+= max
;
7276 reserve_pages
+= max
;
7279 totalreserve_pages
= reserve_pages
;
7283 * setup_per_zone_lowmem_reserve - called whenever
7284 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7285 * has a correct pages reserved value, so an adequate number of
7286 * pages are left in the zone after a successful __alloc_pages().
7288 static void setup_per_zone_lowmem_reserve(void)
7290 struct pglist_data
*pgdat
;
7291 enum zone_type j
, idx
;
7293 for_each_online_pgdat(pgdat
) {
7294 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
7295 struct zone
*zone
= pgdat
->node_zones
+ j
;
7296 unsigned long managed_pages
= zone
->managed_pages
;
7298 zone
->lowmem_reserve
[j
] = 0;
7302 struct zone
*lower_zone
;
7305 lower_zone
= pgdat
->node_zones
+ idx
;
7307 if (sysctl_lowmem_reserve_ratio
[idx
] < 1) {
7308 sysctl_lowmem_reserve_ratio
[idx
] = 0;
7309 lower_zone
->lowmem_reserve
[j
] = 0;
7311 lower_zone
->lowmem_reserve
[j
] =
7312 managed_pages
/ sysctl_lowmem_reserve_ratio
[idx
];
7314 managed_pages
+= lower_zone
->managed_pages
;
7319 /* update totalreserve_pages */
7320 calculate_totalreserve_pages();
7323 static void __setup_per_zone_wmarks(void)
7325 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
7326 unsigned long lowmem_pages
= 0;
7328 unsigned long flags
;
7330 /* Calculate total number of !ZONE_HIGHMEM pages */
7331 for_each_zone(zone
) {
7332 if (!is_highmem(zone
))
7333 lowmem_pages
+= zone
->managed_pages
;
7336 for_each_zone(zone
) {
7339 spin_lock_irqsave(&zone
->lock
, flags
);
7340 tmp
= (u64
)pages_min
* zone
->managed_pages
;
7341 do_div(tmp
, lowmem_pages
);
7342 if (is_highmem(zone
)) {
7344 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7345 * need highmem pages, so cap pages_min to a small
7348 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7349 * deltas control asynch page reclaim, and so should
7350 * not be capped for highmem.
7352 unsigned long min_pages
;
7354 min_pages
= zone
->managed_pages
/ 1024;
7355 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
7356 zone
->watermark
[WMARK_MIN
] = min_pages
;
7359 * If it's a lowmem zone, reserve a number of pages
7360 * proportionate to the zone's size.
7362 zone
->watermark
[WMARK_MIN
] = tmp
;
7366 * Set the kswapd watermarks distance according to the
7367 * scale factor in proportion to available memory, but
7368 * ensure a minimum size on small systems.
7370 tmp
= max_t(u64
, tmp
>> 2,
7371 mult_frac(zone
->managed_pages
,
7372 watermark_scale_factor
, 10000));
7374 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
7375 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
7377 spin_unlock_irqrestore(&zone
->lock
, flags
);
7380 /* update totalreserve_pages */
7381 calculate_totalreserve_pages();
7385 * setup_per_zone_wmarks - called when min_free_kbytes changes
7386 * or when memory is hot-{added|removed}
7388 * Ensures that the watermark[min,low,high] values for each zone are set
7389 * correctly with respect to min_free_kbytes.
7391 void setup_per_zone_wmarks(void)
7393 static DEFINE_SPINLOCK(lock
);
7396 __setup_per_zone_wmarks();
7401 * Initialise min_free_kbytes.
7403 * For small machines we want it small (128k min). For large machines
7404 * we want it large (64MB max). But it is not linear, because network
7405 * bandwidth does not increase linearly with machine size. We use
7407 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7408 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7424 int __meminit
init_per_zone_wmark_min(void)
7426 unsigned long lowmem_kbytes
;
7427 int new_min_free_kbytes
;
7429 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
7430 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
7432 if (new_min_free_kbytes
> user_min_free_kbytes
) {
7433 min_free_kbytes
= new_min_free_kbytes
;
7434 if (min_free_kbytes
< 128)
7435 min_free_kbytes
= 128;
7436 if (min_free_kbytes
> 65536)
7437 min_free_kbytes
= 65536;
7439 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7440 new_min_free_kbytes
, user_min_free_kbytes
);
7442 setup_per_zone_wmarks();
7443 refresh_zone_stat_thresholds();
7444 setup_per_zone_lowmem_reserve();
7447 setup_min_unmapped_ratio();
7448 setup_min_slab_ratio();
7453 core_initcall(init_per_zone_wmark_min
)
7456 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7457 * that we can call two helper functions whenever min_free_kbytes
7460 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
7461 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7465 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7470 user_min_free_kbytes
= min_free_kbytes
;
7471 setup_per_zone_wmarks();
7476 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7477 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7481 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7486 setup_per_zone_wmarks();
7492 static void setup_min_unmapped_ratio(void)
7497 for_each_online_pgdat(pgdat
)
7498 pgdat
->min_unmapped_pages
= 0;
7501 zone
->zone_pgdat
->min_unmapped_pages
+= (zone
->managed_pages
*
7502 sysctl_min_unmapped_ratio
) / 100;
7506 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7507 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7511 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7515 setup_min_unmapped_ratio();
7520 static void setup_min_slab_ratio(void)
7525 for_each_online_pgdat(pgdat
)
7526 pgdat
->min_slab_pages
= 0;
7529 zone
->zone_pgdat
->min_slab_pages
+= (zone
->managed_pages
*
7530 sysctl_min_slab_ratio
) / 100;
7533 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7534 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7538 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7542 setup_min_slab_ratio();
7549 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7550 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7551 * whenever sysctl_lowmem_reserve_ratio changes.
7553 * The reserve ratio obviously has absolutely no relation with the
7554 * minimum watermarks. The lowmem reserve ratio can only make sense
7555 * if in function of the boot time zone sizes.
7557 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7558 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7560 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7561 setup_per_zone_lowmem_reserve();
7566 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7567 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7568 * pagelist can have before it gets flushed back to buddy allocator.
7570 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
7571 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7574 int old_percpu_pagelist_fraction
;
7577 mutex_lock(&pcp_batch_high_lock
);
7578 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
7580 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7581 if (!write
|| ret
< 0)
7584 /* Sanity checking to avoid pcp imbalance */
7585 if (percpu_pagelist_fraction
&&
7586 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
7587 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
7593 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
7596 for_each_populated_zone(zone
) {
7599 for_each_possible_cpu(cpu
)
7600 pageset_set_high_and_batch(zone
,
7601 per_cpu_ptr(zone
->pageset
, cpu
));
7604 mutex_unlock(&pcp_batch_high_lock
);
7609 int hashdist
= HASHDIST_DEFAULT
;
7611 static int __init
set_hashdist(char *str
)
7615 hashdist
= simple_strtoul(str
, &str
, 0);
7618 __setup("hashdist=", set_hashdist
);
7621 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7623 * Returns the number of pages that arch has reserved but
7624 * is not known to alloc_large_system_hash().
7626 static unsigned long __init
arch_reserved_kernel_pages(void)
7633 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7634 * machines. As memory size is increased the scale is also increased but at
7635 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7636 * quadruples the scale is increased by one, which means the size of hash table
7637 * only doubles, instead of quadrupling as well.
7638 * Because 32-bit systems cannot have large physical memory, where this scaling
7639 * makes sense, it is disabled on such platforms.
7641 #if __BITS_PER_LONG > 32
7642 #define ADAPT_SCALE_BASE (64ul << 30)
7643 #define ADAPT_SCALE_SHIFT 2
7644 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7648 * allocate a large system hash table from bootmem
7649 * - it is assumed that the hash table must contain an exact power-of-2
7650 * quantity of entries
7651 * - limit is the number of hash buckets, not the total allocation size
7653 void *__init
alloc_large_system_hash(const char *tablename
,
7654 unsigned long bucketsize
,
7655 unsigned long numentries
,
7658 unsigned int *_hash_shift
,
7659 unsigned int *_hash_mask
,
7660 unsigned long low_limit
,
7661 unsigned long high_limit
)
7663 unsigned long long max
= high_limit
;
7664 unsigned long log2qty
, size
;
7668 /* allow the kernel cmdline to have a say */
7670 /* round applicable memory size up to nearest megabyte */
7671 numentries
= nr_kernel_pages
;
7672 numentries
-= arch_reserved_kernel_pages();
7674 /* It isn't necessary when PAGE_SIZE >= 1MB */
7675 if (PAGE_SHIFT
< 20)
7676 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
7678 #if __BITS_PER_LONG > 32
7680 unsigned long adapt
;
7682 for (adapt
= ADAPT_SCALE_NPAGES
; adapt
< numentries
;
7683 adapt
<<= ADAPT_SCALE_SHIFT
)
7688 /* limit to 1 bucket per 2^scale bytes of low memory */
7689 if (scale
> PAGE_SHIFT
)
7690 numentries
>>= (scale
- PAGE_SHIFT
);
7692 numentries
<<= (PAGE_SHIFT
- scale
);
7694 /* Make sure we've got at least a 0-order allocation.. */
7695 if (unlikely(flags
& HASH_SMALL
)) {
7696 /* Makes no sense without HASH_EARLY */
7697 WARN_ON(!(flags
& HASH_EARLY
));
7698 if (!(numentries
>> *_hash_shift
)) {
7699 numentries
= 1UL << *_hash_shift
;
7700 BUG_ON(!numentries
);
7702 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
7703 numentries
= PAGE_SIZE
/ bucketsize
;
7705 numentries
= roundup_pow_of_two(numentries
);
7707 /* limit allocation size to 1/16 total memory by default */
7709 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
7710 do_div(max
, bucketsize
);
7712 max
= min(max
, 0x80000000ULL
);
7714 if (numentries
< low_limit
)
7715 numentries
= low_limit
;
7716 if (numentries
> max
)
7719 log2qty
= ilog2(numentries
);
7721 gfp_flags
= (flags
& HASH_ZERO
) ? GFP_ATOMIC
| __GFP_ZERO
: GFP_ATOMIC
;
7723 size
= bucketsize
<< log2qty
;
7724 if (flags
& HASH_EARLY
) {
7725 if (flags
& HASH_ZERO
)
7726 table
= memblock_alloc_nopanic(size
,
7729 table
= memblock_alloc_raw(size
,
7731 } else if (hashdist
) {
7732 table
= __vmalloc(size
, gfp_flags
, PAGE_KERNEL
);
7735 * If bucketsize is not a power-of-two, we may free
7736 * some pages at the end of hash table which
7737 * alloc_pages_exact() automatically does
7739 if (get_order(size
) < MAX_ORDER
) {
7740 table
= alloc_pages_exact(size
, gfp_flags
);
7741 kmemleak_alloc(table
, size
, 1, gfp_flags
);
7744 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
7747 panic("Failed to allocate %s hash table\n", tablename
);
7749 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7750 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
);
7753 *_hash_shift
= log2qty
;
7755 *_hash_mask
= (1 << log2qty
) - 1;
7761 * This function checks whether pageblock includes unmovable pages or not.
7762 * If @count is not zero, it is okay to include less @count unmovable pages
7764 * PageLRU check without isolation or lru_lock could race so that
7765 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7766 * check without lock_page also may miss some movable non-lru pages at
7767 * race condition. So you can't expect this function should be exact.
7769 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
7771 bool skip_hwpoisoned_pages
)
7773 unsigned long pfn
, iter
, found
;
7776 * TODO we could make this much more efficient by not checking every
7777 * page in the range if we know all of them are in MOVABLE_ZONE and
7778 * that the movable zone guarantees that pages are migratable but
7779 * the later is not the case right now unfortunatelly. E.g. movablecore
7780 * can still lead to having bootmem allocations in zone_movable.
7784 * CMA allocations (alloc_contig_range) really need to mark isolate
7785 * CMA pageblocks even when they are not movable in fact so consider
7786 * them movable here.
7788 if (is_migrate_cma(migratetype
) &&
7789 is_migrate_cma(get_pageblock_migratetype(page
)))
7792 pfn
= page_to_pfn(page
);
7793 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
7794 unsigned long check
= pfn
+ iter
;
7796 if (!pfn_valid_within(check
))
7799 page
= pfn_to_page(check
);
7801 if (PageReserved(page
))
7805 * If the zone is movable and we have ruled out all reserved
7806 * pages then it should be reasonably safe to assume the rest
7809 if (zone_idx(zone
) == ZONE_MOVABLE
)
7813 * Hugepages are not in LRU lists, but they're movable.
7814 * We need not scan over tail pages bacause we don't
7815 * handle each tail page individually in migration.
7817 if (PageHuge(page
)) {
7818 struct page
*head
= compound_head(page
);
7819 unsigned int skip_pages
;
7821 if (!hugepage_migration_supported(page_hstate(head
)))
7824 skip_pages
= (1 << compound_order(head
)) - (page
- head
);
7825 iter
+= skip_pages
- 1;
7830 * We can't use page_count without pin a page
7831 * because another CPU can free compound page.
7832 * This check already skips compound tails of THP
7833 * because their page->_refcount is zero at all time.
7835 if (!page_ref_count(page
)) {
7836 if (PageBuddy(page
))
7837 iter
+= (1 << page_order(page
)) - 1;
7842 * The HWPoisoned page may be not in buddy system, and
7843 * page_count() is not 0.
7845 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
7848 if (__PageMovable(page
))
7854 * If there are RECLAIMABLE pages, we need to check
7855 * it. But now, memory offline itself doesn't call
7856 * shrink_node_slabs() and it still to be fixed.
7859 * If the page is not RAM, page_count()should be 0.
7860 * we don't need more check. This is an _used_ not-movable page.
7862 * The problematic thing here is PG_reserved pages. PG_reserved
7863 * is set to both of a memory hole page and a _used_ kernel
7871 WARN_ON_ONCE(zone_idx(zone
) == ZONE_MOVABLE
);
7872 dump_page(pfn_to_page(pfn
+iter
), "unmovable page");
7876 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7878 static unsigned long pfn_max_align_down(unsigned long pfn
)
7880 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7881 pageblock_nr_pages
) - 1);
7884 static unsigned long pfn_max_align_up(unsigned long pfn
)
7886 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7887 pageblock_nr_pages
));
7890 /* [start, end) must belong to a single zone. */
7891 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
7892 unsigned long start
, unsigned long end
)
7894 /* This function is based on compact_zone() from compaction.c. */
7895 unsigned long nr_reclaimed
;
7896 unsigned long pfn
= start
;
7897 unsigned int tries
= 0;
7902 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
7903 if (fatal_signal_pending(current
)) {
7908 if (list_empty(&cc
->migratepages
)) {
7909 cc
->nr_migratepages
= 0;
7910 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
7916 } else if (++tries
== 5) {
7917 ret
= ret
< 0 ? ret
: -EBUSY
;
7921 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
7923 cc
->nr_migratepages
-= nr_reclaimed
;
7925 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
7926 NULL
, 0, cc
->mode
, MR_CONTIG_RANGE
);
7929 putback_movable_pages(&cc
->migratepages
);
7936 * alloc_contig_range() -- tries to allocate given range of pages
7937 * @start: start PFN to allocate
7938 * @end: one-past-the-last PFN to allocate
7939 * @migratetype: migratetype of the underlaying pageblocks (either
7940 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7941 * in range must have the same migratetype and it must
7942 * be either of the two.
7943 * @gfp_mask: GFP mask to use during compaction
7945 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7946 * aligned. The PFN range must belong to a single zone.
7948 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7949 * pageblocks in the range. Once isolated, the pageblocks should not
7950 * be modified by others.
7952 * Returns zero on success or negative error code. On success all
7953 * pages which PFN is in [start, end) are allocated for the caller and
7954 * need to be freed with free_contig_range().
7956 int alloc_contig_range(unsigned long start
, unsigned long end
,
7957 unsigned migratetype
, gfp_t gfp_mask
)
7959 unsigned long outer_start
, outer_end
;
7963 struct compact_control cc
= {
7964 .nr_migratepages
= 0,
7966 .zone
= page_zone(pfn_to_page(start
)),
7967 .mode
= MIGRATE_SYNC
,
7968 .ignore_skip_hint
= true,
7969 .no_set_skip_hint
= true,
7970 .gfp_mask
= current_gfp_context(gfp_mask
),
7972 INIT_LIST_HEAD(&cc
.migratepages
);
7975 * What we do here is we mark all pageblocks in range as
7976 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7977 * have different sizes, and due to the way page allocator
7978 * work, we align the range to biggest of the two pages so
7979 * that page allocator won't try to merge buddies from
7980 * different pageblocks and change MIGRATE_ISOLATE to some
7981 * other migration type.
7983 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7984 * migrate the pages from an unaligned range (ie. pages that
7985 * we are interested in). This will put all the pages in
7986 * range back to page allocator as MIGRATE_ISOLATE.
7988 * When this is done, we take the pages in range from page
7989 * allocator removing them from the buddy system. This way
7990 * page allocator will never consider using them.
7992 * This lets us mark the pageblocks back as
7993 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7994 * aligned range but not in the unaligned, original range are
7995 * put back to page allocator so that buddy can use them.
7998 ret
= start_isolate_page_range(pfn_max_align_down(start
),
7999 pfn_max_align_up(end
), migratetype
,
8005 * In case of -EBUSY, we'd like to know which page causes problem.
8006 * So, just fall through. test_pages_isolated() has a tracepoint
8007 * which will report the busy page.
8009 * It is possible that busy pages could become available before
8010 * the call to test_pages_isolated, and the range will actually be
8011 * allocated. So, if we fall through be sure to clear ret so that
8012 * -EBUSY is not accidentally used or returned to caller.
8014 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
8015 if (ret
&& ret
!= -EBUSY
)
8020 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8021 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8022 * more, all pages in [start, end) are free in page allocator.
8023 * What we are going to do is to allocate all pages from
8024 * [start, end) (that is remove them from page allocator).
8026 * The only problem is that pages at the beginning and at the
8027 * end of interesting range may be not aligned with pages that
8028 * page allocator holds, ie. they can be part of higher order
8029 * pages. Because of this, we reserve the bigger range and
8030 * once this is done free the pages we are not interested in.
8032 * We don't have to hold zone->lock here because the pages are
8033 * isolated thus they won't get removed from buddy.
8036 lru_add_drain_all();
8037 drain_all_pages(cc
.zone
);
8040 outer_start
= start
;
8041 while (!PageBuddy(pfn_to_page(outer_start
))) {
8042 if (++order
>= MAX_ORDER
) {
8043 outer_start
= start
;
8046 outer_start
&= ~0UL << order
;
8049 if (outer_start
!= start
) {
8050 order
= page_order(pfn_to_page(outer_start
));
8053 * outer_start page could be small order buddy page and
8054 * it doesn't include start page. Adjust outer_start
8055 * in this case to report failed page properly
8056 * on tracepoint in test_pages_isolated()
8058 if (outer_start
+ (1UL << order
) <= start
)
8059 outer_start
= start
;
8062 /* Make sure the range is really isolated. */
8063 if (test_pages_isolated(outer_start
, end
, false)) {
8064 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8065 __func__
, outer_start
, end
);
8070 /* Grab isolated pages from freelists. */
8071 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
8077 /* Free head and tail (if any) */
8078 if (start
!= outer_start
)
8079 free_contig_range(outer_start
, start
- outer_start
);
8080 if (end
!= outer_end
)
8081 free_contig_range(end
, outer_end
- end
);
8084 undo_isolate_page_range(pfn_max_align_down(start
),
8085 pfn_max_align_up(end
), migratetype
);
8089 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
8091 unsigned int count
= 0;
8093 for (; nr_pages
--; pfn
++) {
8094 struct page
*page
= pfn_to_page(pfn
);
8096 count
+= page_count(page
) != 1;
8099 WARN(count
!= 0, "%d pages are still in use!\n", count
);
8103 #ifdef CONFIG_MEMORY_HOTPLUG
8105 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8106 * page high values need to be recalulated.
8108 void __meminit
zone_pcp_update(struct zone
*zone
)
8111 mutex_lock(&pcp_batch_high_lock
);
8112 for_each_possible_cpu(cpu
)
8113 pageset_set_high_and_batch(zone
,
8114 per_cpu_ptr(zone
->pageset
, cpu
));
8115 mutex_unlock(&pcp_batch_high_lock
);
8119 void zone_pcp_reset(struct zone
*zone
)
8121 unsigned long flags
;
8123 struct per_cpu_pageset
*pset
;
8125 /* avoid races with drain_pages() */
8126 local_irq_save(flags
);
8127 if (zone
->pageset
!= &boot_pageset
) {
8128 for_each_online_cpu(cpu
) {
8129 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
8130 drain_zonestat(zone
, pset
);
8132 free_percpu(zone
->pageset
);
8133 zone
->pageset
= &boot_pageset
;
8135 local_irq_restore(flags
);
8138 #ifdef CONFIG_MEMORY_HOTREMOVE
8140 * All pages in the range must be in a single zone and isolated
8141 * before calling this.
8144 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
8148 unsigned int order
, i
;
8150 unsigned long flags
;
8151 /* find the first valid pfn */
8152 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
8157 offline_mem_sections(pfn
, end_pfn
);
8158 zone
= page_zone(pfn_to_page(pfn
));
8159 spin_lock_irqsave(&zone
->lock
, flags
);
8161 while (pfn
< end_pfn
) {
8162 if (!pfn_valid(pfn
)) {
8166 page
= pfn_to_page(pfn
);
8168 * The HWPoisoned page may be not in buddy system, and
8169 * page_count() is not 0.
8171 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
8173 SetPageReserved(page
);
8177 BUG_ON(page_count(page
));
8178 BUG_ON(!PageBuddy(page
));
8179 order
= page_order(page
);
8180 #ifdef CONFIG_DEBUG_VM
8181 pr_info("remove from free list %lx %d %lx\n",
8182 pfn
, 1 << order
, end_pfn
);
8184 list_del(&page
->lru
);
8185 rmv_page_order(page
);
8186 zone
->free_area
[order
].nr_free
--;
8187 for (i
= 0; i
< (1 << order
); i
++)
8188 SetPageReserved((page
+i
));
8189 pfn
+= (1 << order
);
8191 spin_unlock_irqrestore(&zone
->lock
, flags
);
8195 bool is_free_buddy_page(struct page
*page
)
8197 struct zone
*zone
= page_zone(page
);
8198 unsigned long pfn
= page_to_pfn(page
);
8199 unsigned long flags
;
8202 spin_lock_irqsave(&zone
->lock
, flags
);
8203 for (order
= 0; order
< MAX_ORDER
; order
++) {
8204 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8206 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
8209 spin_unlock_irqrestore(&zone
->lock
, flags
);
8211 return order
< MAX_ORDER
;
8214 #ifdef CONFIG_MEMORY_FAILURE
8216 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8217 * test is performed under the zone lock to prevent a race against page
8220 bool set_hwpoison_free_buddy_page(struct page
*page
)
8222 struct zone
*zone
= page_zone(page
);
8223 unsigned long pfn
= page_to_pfn(page
);
8224 unsigned long flags
;
8226 bool hwpoisoned
= false;
8228 spin_lock_irqsave(&zone
->lock
, flags
);
8229 for (order
= 0; order
< MAX_ORDER
; order
++) {
8230 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8232 if (PageBuddy(page_head
) && page_order(page_head
) >= order
) {
8233 if (!TestSetPageHWPoison(page
))
8238 spin_unlock_irqrestore(&zone
->lock
, flags
);