3 * Helper functions for bitmap.h.
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
17 #include <asm/uaccess.h>
20 * bitmaps provide an array of bits, implemented using an an
21 * array of unsigned longs. The number of valid bits in a
22 * given bitmap does _not_ need to be an exact multiple of
25 * The possible unused bits in the last, partially used word
26 * of a bitmap are 'don't care'. The implementation makes
27 * no particular effort to keep them zero. It ensures that
28 * their value will not affect the results of any operation.
29 * The bitmap operations that return Boolean (bitmap_empty,
30 * for example) or scalar (bitmap_weight, for example) results
31 * carefully filter out these unused bits from impacting their
34 * These operations actually hold to a slightly stronger rule:
35 * if you don't input any bitmaps to these ops that have some
36 * unused bits set, then they won't output any set unused bits
39 * The byte ordering of bitmaps is more natural on little
40 * endian architectures. See the big-endian headers
41 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
42 * for the best explanations of this ordering.
45 int __bitmap_empty(const unsigned long *bitmap
, unsigned int bits
)
47 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
48 for (k
= 0; k
< lim
; ++k
)
52 if (bits
% BITS_PER_LONG
)
53 if (bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
))
58 EXPORT_SYMBOL(__bitmap_empty
);
60 int __bitmap_full(const unsigned long *bitmap
, unsigned int bits
)
62 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
63 for (k
= 0; k
< lim
; ++k
)
67 if (bits
% BITS_PER_LONG
)
68 if (~bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
))
73 EXPORT_SYMBOL(__bitmap_full
);
75 int __bitmap_equal(const unsigned long *bitmap1
,
76 const unsigned long *bitmap2
, unsigned int bits
)
78 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
79 for (k
= 0; k
< lim
; ++k
)
80 if (bitmap1
[k
] != bitmap2
[k
])
83 if (bits
% BITS_PER_LONG
)
84 if ((bitmap1
[k
] ^ bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
89 EXPORT_SYMBOL(__bitmap_equal
);
91 void __bitmap_complement(unsigned long *dst
, const unsigned long *src
, unsigned int bits
)
93 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
94 for (k
= 0; k
< lim
; ++k
)
97 if (bits
% BITS_PER_LONG
)
100 EXPORT_SYMBOL(__bitmap_complement
);
103 * __bitmap_shift_right - logical right shift of the bits in a bitmap
104 * @dst : destination bitmap
105 * @src : source bitmap
106 * @shift : shift by this many bits
107 * @bits : bitmap size, in bits
109 * Shifting right (dividing) means moving bits in the MS -> LS bit
110 * direction. Zeros are fed into the vacated MS positions and the
111 * LS bits shifted off the bottom are lost.
113 void __bitmap_shift_right(unsigned long *dst
,
114 const unsigned long *src
, int shift
, int bits
)
116 int k
, lim
= BITS_TO_LONGS(bits
), left
= bits
% BITS_PER_LONG
;
117 int off
= shift
/BITS_PER_LONG
, rem
= shift
% BITS_PER_LONG
;
118 unsigned long mask
= (1UL << left
) - 1;
119 for (k
= 0; off
+ k
< lim
; ++k
) {
120 unsigned long upper
, lower
;
123 * If shift is not word aligned, take lower rem bits of
124 * word above and make them the top rem bits of result.
126 if (!rem
|| off
+ k
+ 1 >= lim
)
129 upper
= src
[off
+ k
+ 1];
130 if (off
+ k
+ 1 == lim
- 1 && left
)
133 lower
= src
[off
+ k
];
134 if (left
&& off
+ k
== lim
- 1)
136 dst
[k
] = lower
>> rem
;
138 dst
[k
] |= upper
<< (BITS_PER_LONG
- rem
);
139 if (left
&& k
== lim
- 1)
143 memset(&dst
[lim
- off
], 0, off
*sizeof(unsigned long));
145 EXPORT_SYMBOL(__bitmap_shift_right
);
149 * __bitmap_shift_left - logical left shift of the bits in a bitmap
150 * @dst : destination bitmap
151 * @src : source bitmap
152 * @shift : shift by this many bits
153 * @bits : bitmap size, in bits
155 * Shifting left (multiplying) means moving bits in the LS -> MS
156 * direction. Zeros are fed into the vacated LS bit positions
157 * and those MS bits shifted off the top are lost.
160 void __bitmap_shift_left(unsigned long *dst
,
161 const unsigned long *src
, int shift
, int bits
)
163 int k
, lim
= BITS_TO_LONGS(bits
), left
= bits
% BITS_PER_LONG
;
164 int off
= shift
/BITS_PER_LONG
, rem
= shift
% BITS_PER_LONG
;
165 for (k
= lim
- off
- 1; k
>= 0; --k
) {
166 unsigned long upper
, lower
;
169 * If shift is not word aligned, take upper rem bits of
170 * word below and make them the bottom rem bits of result.
177 if (left
&& k
== lim
- 1)
178 upper
&= (1UL << left
) - 1;
179 dst
[k
+ off
] = upper
<< rem
;
181 dst
[k
+ off
] |= lower
>> (BITS_PER_LONG
- rem
);
182 if (left
&& k
+ off
== lim
- 1)
183 dst
[k
+ off
] &= (1UL << left
) - 1;
186 memset(dst
, 0, off
*sizeof(unsigned long));
188 EXPORT_SYMBOL(__bitmap_shift_left
);
190 int __bitmap_and(unsigned long *dst
, const unsigned long *bitmap1
,
191 const unsigned long *bitmap2
, unsigned int bits
)
194 unsigned int lim
= bits
/BITS_PER_LONG
;
195 unsigned long result
= 0;
197 for (k
= 0; k
< lim
; k
++)
198 result
|= (dst
[k
] = bitmap1
[k
] & bitmap2
[k
]);
199 if (bits
% BITS_PER_LONG
)
200 result
|= (dst
[k
] = bitmap1
[k
] & bitmap2
[k
] &
201 BITMAP_LAST_WORD_MASK(bits
));
204 EXPORT_SYMBOL(__bitmap_and
);
206 void __bitmap_or(unsigned long *dst
, const unsigned long *bitmap1
,
207 const unsigned long *bitmap2
, unsigned int bits
)
210 unsigned int nr
= BITS_TO_LONGS(bits
);
212 for (k
= 0; k
< nr
; k
++)
213 dst
[k
] = bitmap1
[k
] | bitmap2
[k
];
215 EXPORT_SYMBOL(__bitmap_or
);
217 void __bitmap_xor(unsigned long *dst
, const unsigned long *bitmap1
,
218 const unsigned long *bitmap2
, unsigned int bits
)
221 unsigned int nr
= BITS_TO_LONGS(bits
);
223 for (k
= 0; k
< nr
; k
++)
224 dst
[k
] = bitmap1
[k
] ^ bitmap2
[k
];
226 EXPORT_SYMBOL(__bitmap_xor
);
228 int __bitmap_andnot(unsigned long *dst
, const unsigned long *bitmap1
,
229 const unsigned long *bitmap2
, unsigned int bits
)
232 unsigned int lim
= bits
/BITS_PER_LONG
;
233 unsigned long result
= 0;
235 for (k
= 0; k
< lim
; k
++)
236 result
|= (dst
[k
] = bitmap1
[k
] & ~bitmap2
[k
]);
237 if (bits
% BITS_PER_LONG
)
238 result
|= (dst
[k
] = bitmap1
[k
] & ~bitmap2
[k
] &
239 BITMAP_LAST_WORD_MASK(bits
));
242 EXPORT_SYMBOL(__bitmap_andnot
);
244 int __bitmap_intersects(const unsigned long *bitmap1
,
245 const unsigned long *bitmap2
, unsigned int bits
)
247 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
248 for (k
= 0; k
< lim
; ++k
)
249 if (bitmap1
[k
] & bitmap2
[k
])
252 if (bits
% BITS_PER_LONG
)
253 if ((bitmap1
[k
] & bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
257 EXPORT_SYMBOL(__bitmap_intersects
);
259 int __bitmap_subset(const unsigned long *bitmap1
,
260 const unsigned long *bitmap2
, unsigned int bits
)
262 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
263 for (k
= 0; k
< lim
; ++k
)
264 if (bitmap1
[k
] & ~bitmap2
[k
])
267 if (bits
% BITS_PER_LONG
)
268 if ((bitmap1
[k
] & ~bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
272 EXPORT_SYMBOL(__bitmap_subset
);
274 int __bitmap_weight(const unsigned long *bitmap
, unsigned int bits
)
276 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
279 for (k
= 0; k
< lim
; k
++)
280 w
+= hweight_long(bitmap
[k
]);
282 if (bits
% BITS_PER_LONG
)
283 w
+= hweight_long(bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
));
287 EXPORT_SYMBOL(__bitmap_weight
);
289 void bitmap_set(unsigned long *map
, unsigned int start
, int len
)
291 unsigned long *p
= map
+ BIT_WORD(start
);
292 const unsigned int size
= start
+ len
;
293 int bits_to_set
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
294 unsigned long mask_to_set
= BITMAP_FIRST_WORD_MASK(start
);
296 while (len
- bits_to_set
>= 0) {
299 bits_to_set
= BITS_PER_LONG
;
304 mask_to_set
&= BITMAP_LAST_WORD_MASK(size
);
308 EXPORT_SYMBOL(bitmap_set
);
310 void bitmap_clear(unsigned long *map
, unsigned int start
, int len
)
312 unsigned long *p
= map
+ BIT_WORD(start
);
313 const unsigned int size
= start
+ len
;
314 int bits_to_clear
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
315 unsigned long mask_to_clear
= BITMAP_FIRST_WORD_MASK(start
);
317 while (len
- bits_to_clear
>= 0) {
318 *p
&= ~mask_to_clear
;
319 len
-= bits_to_clear
;
320 bits_to_clear
= BITS_PER_LONG
;
321 mask_to_clear
= ~0UL;
325 mask_to_clear
&= BITMAP_LAST_WORD_MASK(size
);
326 *p
&= ~mask_to_clear
;
329 EXPORT_SYMBOL(bitmap_clear
);
332 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
333 * @map: The address to base the search on
334 * @size: The bitmap size in bits
335 * @start: The bitnumber to start searching at
336 * @nr: The number of zeroed bits we're looking for
337 * @align_mask: Alignment mask for zero area
338 * @align_offset: Alignment offset for zero area.
340 * The @align_mask should be one less than a power of 2; the effect is that
341 * the bit offset of all zero areas this function finds plus @align_offset
342 * is multiple of that power of 2.
344 unsigned long bitmap_find_next_zero_area_off(unsigned long *map
,
348 unsigned long align_mask
,
349 unsigned long align_offset
)
351 unsigned long index
, end
, i
;
353 index
= find_next_zero_bit(map
, size
, start
);
355 /* Align allocation */
356 index
= __ALIGN_MASK(index
+ align_offset
, align_mask
) - align_offset
;
361 i
= find_next_bit(map
, end
, index
);
368 EXPORT_SYMBOL(bitmap_find_next_zero_area_off
);
371 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
372 * second version by Paul Jackson, third by Joe Korty.
376 #define nbits_to_hold_value(val) fls(val)
377 #define BASEDEC 10 /* fancier cpuset lists input in decimal */
380 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
381 * @buf: byte buffer into which string is placed
382 * @buflen: reserved size of @buf, in bytes
383 * @maskp: pointer to bitmap to convert
384 * @nmaskbits: size of bitmap, in bits
386 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
387 * comma-separated sets of eight digits per set. Returns the number of
388 * characters which were written to *buf, excluding the trailing \0.
390 int bitmap_scnprintf(char *buf
, unsigned int buflen
,
391 const unsigned long *maskp
, int nmaskbits
)
393 int i
, word
, bit
, len
= 0;
395 const char *sep
= "";
399 chunksz
= nmaskbits
& (CHUNKSZ
- 1);
403 i
= ALIGN(nmaskbits
, CHUNKSZ
) - CHUNKSZ
;
404 for (; i
>= 0; i
-= CHUNKSZ
) {
405 chunkmask
= ((1ULL << chunksz
) - 1);
406 word
= i
/ BITS_PER_LONG
;
407 bit
= i
% BITS_PER_LONG
;
408 val
= (maskp
[word
] >> bit
) & chunkmask
;
409 len
+= scnprintf(buf
+len
, buflen
-len
, "%s%0*lx", sep
,
416 EXPORT_SYMBOL(bitmap_scnprintf
);
419 * __bitmap_parse - convert an ASCII hex string into a bitmap.
420 * @buf: pointer to buffer containing string.
421 * @buflen: buffer size in bytes. If string is smaller than this
422 * then it must be terminated with a \0.
423 * @is_user: location of buffer, 0 indicates kernel space
424 * @maskp: pointer to bitmap array that will contain result.
425 * @nmaskbits: size of bitmap, in bits.
427 * Commas group hex digits into chunks. Each chunk defines exactly 32
428 * bits of the resultant bitmask. No chunk may specify a value larger
429 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
430 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
431 * characters and for grouping errors such as "1,,5", ",44", "," and "".
432 * Leading and trailing whitespace accepted, but not embedded whitespace.
434 int __bitmap_parse(const char *buf
, unsigned int buflen
,
435 int is_user
, unsigned long *maskp
,
438 int c
, old_c
, totaldigits
, ndigits
, nchunks
, nbits
;
440 const char __user __force
*ubuf
= (const char __user __force
*)buf
;
442 bitmap_zero(maskp
, nmaskbits
);
444 nchunks
= nbits
= totaldigits
= c
= 0;
448 /* Get the next chunk of the bitmap */
452 if (__get_user(c
, ubuf
++))
462 * If the last character was a space and the current
463 * character isn't '\0', we've got embedded whitespace.
464 * This is a no-no, so throw an error.
466 if (totaldigits
&& c
&& isspace(old_c
))
469 /* A '\0' or a ',' signal the end of the chunk */
470 if (c
== '\0' || c
== ',')
477 * Make sure there are at least 4 free bits in 'chunk'.
478 * If not, this hexdigit will overflow 'chunk', so
481 if (chunk
& ~((1UL << (CHUNKSZ
- 4)) - 1))
484 chunk
= (chunk
<< 4) | hex_to_bin(c
);
485 ndigits
++; totaldigits
++;
489 if (nchunks
== 0 && chunk
== 0)
492 __bitmap_shift_left(maskp
, maskp
, CHUNKSZ
, nmaskbits
);
495 nbits
+= (nchunks
== 1) ? nbits_to_hold_value(chunk
) : CHUNKSZ
;
496 if (nbits
> nmaskbits
)
498 } while (buflen
&& c
== ',');
502 EXPORT_SYMBOL(__bitmap_parse
);
505 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
507 * @ubuf: pointer to user buffer containing string.
508 * @ulen: buffer size in bytes. If string is smaller than this
509 * then it must be terminated with a \0.
510 * @maskp: pointer to bitmap array that will contain result.
511 * @nmaskbits: size of bitmap, in bits.
513 * Wrapper for __bitmap_parse(), providing it with user buffer.
515 * We cannot have this as an inline function in bitmap.h because it needs
516 * linux/uaccess.h to get the access_ok() declaration and this causes
517 * cyclic dependencies.
519 int bitmap_parse_user(const char __user
*ubuf
,
520 unsigned int ulen
, unsigned long *maskp
,
523 if (!access_ok(VERIFY_READ
, ubuf
, ulen
))
525 return __bitmap_parse((const char __force
*)ubuf
,
526 ulen
, 1, maskp
, nmaskbits
);
529 EXPORT_SYMBOL(bitmap_parse_user
);
532 * bscnl_emit(buf, buflen, rbot, rtop, bp)
534 * Helper routine for bitmap_scnlistprintf(). Write decimal number
535 * or range to buf, suppressing output past buf+buflen, with optional
536 * comma-prefix. Return len of what was written to *buf, excluding the
539 static inline int bscnl_emit(char *buf
, int buflen
, int rbot
, int rtop
, int len
)
542 len
+= scnprintf(buf
+ len
, buflen
- len
, ",");
544 len
+= scnprintf(buf
+ len
, buflen
- len
, "%d", rbot
);
546 len
+= scnprintf(buf
+ len
, buflen
- len
, "%d-%d", rbot
, rtop
);
551 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
552 * @buf: byte buffer into which string is placed
553 * @buflen: reserved size of @buf, in bytes
554 * @maskp: pointer to bitmap to convert
555 * @nmaskbits: size of bitmap, in bits
557 * Output format is a comma-separated list of decimal numbers and
558 * ranges. Consecutively set bits are shown as two hyphen-separated
559 * decimal numbers, the smallest and largest bit numbers set in
560 * the range. Output format is compatible with the format
561 * accepted as input by bitmap_parselist().
563 * The return value is the number of characters which were written to *buf
564 * excluding the trailing '\0', as per ISO C99's scnprintf.
566 int bitmap_scnlistprintf(char *buf
, unsigned int buflen
,
567 const unsigned long *maskp
, int nmaskbits
)
570 /* current bit is 'cur', most recently seen range is [rbot, rtop] */
577 rbot
= cur
= find_first_bit(maskp
, nmaskbits
);
578 while (cur
< nmaskbits
) {
580 cur
= find_next_bit(maskp
, nmaskbits
, cur
+1);
581 if (cur
>= nmaskbits
|| cur
> rtop
+ 1) {
582 len
= bscnl_emit(buf
, buflen
, rbot
, rtop
, len
);
588 EXPORT_SYMBOL(bitmap_scnlistprintf
);
591 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
592 * @list: indicates whether the bitmap must be list
593 * @buf: page aligned buffer into which string is placed
594 * @maskp: pointer to bitmap to convert
595 * @nmaskbits: size of bitmap, in bits
597 * Output format is a comma-separated list of decimal numbers and
598 * ranges if list is specified or hex digits grouped into comma-separated
599 * sets of 8 digits/set. Returns the number of characters written to buf.
601 int bitmap_print_to_pagebuf(bool list
, char *buf
, const unsigned long *maskp
,
604 ptrdiff_t len
= PTR_ALIGN(buf
+ PAGE_SIZE
- 1, PAGE_SIZE
) - buf
- 2;
608 n
= list
? bitmap_scnlistprintf(buf
, len
, maskp
, nmaskbits
) :
609 bitmap_scnprintf(buf
, len
, maskp
, nmaskbits
);
615 EXPORT_SYMBOL(bitmap_print_to_pagebuf
);
618 * __bitmap_parselist - convert list format ASCII string to bitmap
619 * @buf: read nul-terminated user string from this buffer
620 * @buflen: buffer size in bytes. If string is smaller than this
621 * then it must be terminated with a \0.
622 * @is_user: location of buffer, 0 indicates kernel space
623 * @maskp: write resulting mask here
624 * @nmaskbits: number of bits in mask to be written
626 * Input format is a comma-separated list of decimal numbers and
627 * ranges. Consecutively set bits are shown as two hyphen-separated
628 * decimal numbers, the smallest and largest bit numbers set in
631 * Returns 0 on success, -errno on invalid input strings.
633 * %-EINVAL: second number in range smaller than first
634 * %-EINVAL: invalid character in string
635 * %-ERANGE: bit number specified too large for mask
637 static int __bitmap_parselist(const char *buf
, unsigned int buflen
,
638 int is_user
, unsigned long *maskp
,
642 int c
, old_c
, totaldigits
;
643 const char __user __force
*ubuf
= (const char __user __force
*)buf
;
644 int exp_digit
, in_range
;
647 bitmap_zero(maskp
, nmaskbits
);
653 /* Get the next cpu# or a range of cpu#'s */
657 if (__get_user(c
, ubuf
++))
666 * If the last character was a space and the current
667 * character isn't '\0', we've got embedded whitespace.
668 * This is a no-no, so throw an error.
670 if (totaldigits
&& c
&& isspace(old_c
))
673 /* A '\0' or a ',' signal the end of a cpu# or range */
674 if (c
== '\0' || c
== ',')
678 if (exp_digit
|| in_range
)
689 b
= b
* 10 + (c
- '0');
703 } while (buflen
&& c
== ',');
707 int bitmap_parselist(const char *bp
, unsigned long *maskp
, int nmaskbits
)
709 char *nl
= strchrnul(bp
, '\n');
712 return __bitmap_parselist(bp
, len
, 0, maskp
, nmaskbits
);
714 EXPORT_SYMBOL(bitmap_parselist
);
718 * bitmap_parselist_user()
720 * @ubuf: pointer to user buffer containing string.
721 * @ulen: buffer size in bytes. If string is smaller than this
722 * then it must be terminated with a \0.
723 * @maskp: pointer to bitmap array that will contain result.
724 * @nmaskbits: size of bitmap, in bits.
726 * Wrapper for bitmap_parselist(), providing it with user buffer.
728 * We cannot have this as an inline function in bitmap.h because it needs
729 * linux/uaccess.h to get the access_ok() declaration and this causes
730 * cyclic dependencies.
732 int bitmap_parselist_user(const char __user
*ubuf
,
733 unsigned int ulen
, unsigned long *maskp
,
736 if (!access_ok(VERIFY_READ
, ubuf
, ulen
))
738 return __bitmap_parselist((const char __force
*)ubuf
,
739 ulen
, 1, maskp
, nmaskbits
);
741 EXPORT_SYMBOL(bitmap_parselist_user
);
745 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
746 * @buf: pointer to a bitmap
747 * @pos: a bit position in @buf (0 <= @pos < @bits)
748 * @bits: number of valid bit positions in @buf
750 * Map the bit at position @pos in @buf (of length @bits) to the
751 * ordinal of which set bit it is. If it is not set or if @pos
752 * is not a valid bit position, map to -1.
754 * If for example, just bits 4 through 7 are set in @buf, then @pos
755 * values 4 through 7 will get mapped to 0 through 3, respectively,
756 * and other @pos values will get mapped to -1. When @pos value 7
757 * gets mapped to (returns) @ord value 3 in this example, that means
758 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
760 * The bit positions 0 through @bits are valid positions in @buf.
762 static int bitmap_pos_to_ord(const unsigned long *buf
, int pos
, int bits
)
766 if (pos
< 0 || pos
>= bits
|| !test_bit(pos
, buf
))
769 i
= find_first_bit(buf
, bits
);
772 i
= find_next_bit(buf
, bits
, i
+ 1);
781 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
782 * @buf: pointer to bitmap
783 * @ord: ordinal bit position (n-th set bit, n >= 0)
784 * @bits: number of valid bit positions in @buf
786 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
787 * Value of @ord should be in range 0 <= @ord < weight(buf), else
788 * results are undefined.
790 * If for example, just bits 4 through 7 are set in @buf, then @ord
791 * values 0 through 3 will get mapped to 4 through 7, respectively,
792 * and all other @ord values return undefined values. When @ord value 3
793 * gets mapped to (returns) @pos value 7 in this example, that means
794 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
796 * The bit positions 0 through @bits are valid positions in @buf.
798 int bitmap_ord_to_pos(const unsigned long *buf
, int ord
, int bits
)
802 if (ord
>= 0 && ord
< bits
) {
805 for (i
= find_first_bit(buf
, bits
);
807 i
= find_next_bit(buf
, bits
, i
+ 1))
809 if (i
< bits
&& ord
== 0)
817 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
818 * @dst: remapped result
819 * @src: subset to be remapped
820 * @old: defines domain of map
821 * @new: defines range of map
822 * @bits: number of bits in each of these bitmaps
824 * Let @old and @new define a mapping of bit positions, such that
825 * whatever position is held by the n-th set bit in @old is mapped
826 * to the n-th set bit in @new. In the more general case, allowing
827 * for the possibility that the weight 'w' of @new is less than the
828 * weight of @old, map the position of the n-th set bit in @old to
829 * the position of the m-th set bit in @new, where m == n % w.
831 * If either of the @old and @new bitmaps are empty, or if @src and
832 * @dst point to the same location, then this routine copies @src
835 * The positions of unset bits in @old are mapped to themselves
836 * (the identify map).
838 * Apply the above specified mapping to @src, placing the result in
839 * @dst, clearing any bits previously set in @dst.
841 * For example, lets say that @old has bits 4 through 7 set, and
842 * @new has bits 12 through 15 set. This defines the mapping of bit
843 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
844 * bit positions unchanged. So if say @src comes into this routine
845 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
848 void bitmap_remap(unsigned long *dst
, const unsigned long *src
,
849 const unsigned long *old
, const unsigned long *new,
854 if (dst
== src
) /* following doesn't handle inplace remaps */
856 bitmap_zero(dst
, bits
);
858 w
= bitmap_weight(new, bits
);
859 for_each_set_bit(oldbit
, src
, bits
) {
860 int n
= bitmap_pos_to_ord(old
, oldbit
, bits
);
863 set_bit(oldbit
, dst
); /* identity map */
865 set_bit(bitmap_ord_to_pos(new, n
% w
, bits
), dst
);
868 EXPORT_SYMBOL(bitmap_remap
);
871 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
872 * @oldbit: bit position to be mapped
873 * @old: defines domain of map
874 * @new: defines range of map
875 * @bits: number of bits in each of these bitmaps
877 * Let @old and @new define a mapping of bit positions, such that
878 * whatever position is held by the n-th set bit in @old is mapped
879 * to the n-th set bit in @new. In the more general case, allowing
880 * for the possibility that the weight 'w' of @new is less than the
881 * weight of @old, map the position of the n-th set bit in @old to
882 * the position of the m-th set bit in @new, where m == n % w.
884 * The positions of unset bits in @old are mapped to themselves
885 * (the identify map).
887 * Apply the above specified mapping to bit position @oldbit, returning
888 * the new bit position.
890 * For example, lets say that @old has bits 4 through 7 set, and
891 * @new has bits 12 through 15 set. This defines the mapping of bit
892 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
893 * bit positions unchanged. So if say @oldbit is 5, then this routine
896 int bitmap_bitremap(int oldbit
, const unsigned long *old
,
897 const unsigned long *new, int bits
)
899 int w
= bitmap_weight(new, bits
);
900 int n
= bitmap_pos_to_ord(old
, oldbit
, bits
);
904 return bitmap_ord_to_pos(new, n
% w
, bits
);
906 EXPORT_SYMBOL(bitmap_bitremap
);
909 * bitmap_onto - translate one bitmap relative to another
910 * @dst: resulting translated bitmap
911 * @orig: original untranslated bitmap
912 * @relmap: bitmap relative to which translated
913 * @bits: number of bits in each of these bitmaps
915 * Set the n-th bit of @dst iff there exists some m such that the
916 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
917 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
918 * (If you understood the previous sentence the first time your
919 * read it, you're overqualified for your current job.)
921 * In other words, @orig is mapped onto (surjectively) @dst,
922 * using the map { <n, m> | the n-th bit of @relmap is the
923 * m-th set bit of @relmap }.
925 * Any set bits in @orig above bit number W, where W is the
926 * weight of (number of set bits in) @relmap are mapped nowhere.
927 * In particular, if for all bits m set in @orig, m >= W, then
928 * @dst will end up empty. In situations where the possibility
929 * of such an empty result is not desired, one way to avoid it is
930 * to use the bitmap_fold() operator, below, to first fold the
931 * @orig bitmap over itself so that all its set bits x are in the
932 * range 0 <= x < W. The bitmap_fold() operator does this by
933 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
935 * Example [1] for bitmap_onto():
936 * Let's say @relmap has bits 30-39 set, and @orig has bits
937 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
938 * @dst will have bits 31, 33, 35, 37 and 39 set.
940 * When bit 0 is set in @orig, it means turn on the bit in
941 * @dst corresponding to whatever is the first bit (if any)
942 * that is turned on in @relmap. Since bit 0 was off in the
943 * above example, we leave off that bit (bit 30) in @dst.
945 * When bit 1 is set in @orig (as in the above example), it
946 * means turn on the bit in @dst corresponding to whatever
947 * is the second bit that is turned on in @relmap. The second
948 * bit in @relmap that was turned on in the above example was
949 * bit 31, so we turned on bit 31 in @dst.
951 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
952 * because they were the 4th, 6th, 8th and 10th set bits
953 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
954 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
956 * When bit 11 is set in @orig, it means turn on the bit in
957 * @dst corresponding to whatever is the twelfth bit that is
958 * turned on in @relmap. In the above example, there were
959 * only ten bits turned on in @relmap (30..39), so that bit
960 * 11 was set in @orig had no affect on @dst.
962 * Example [2] for bitmap_fold() + bitmap_onto():
963 * Let's say @relmap has these ten bits set:
964 * 40 41 42 43 45 48 53 61 74 95
965 * (for the curious, that's 40 plus the first ten terms of the
966 * Fibonacci sequence.)
968 * Further lets say we use the following code, invoking
969 * bitmap_fold() then bitmap_onto, as suggested above to
970 * avoid the possibility of an empty @dst result:
972 * unsigned long *tmp; // a temporary bitmap's bits
974 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
975 * bitmap_onto(dst, tmp, relmap, bits);
977 * Then this table shows what various values of @dst would be, for
978 * various @orig's. I list the zero-based positions of each set bit.
979 * The tmp column shows the intermediate result, as computed by
980 * using bitmap_fold() to fold the @orig bitmap modulo ten
981 * (the weight of @relmap).
988 * 1 3 5 7 1 3 5 7 41 43 48 61
989 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
990 * 0 9 18 27 0 9 8 7 40 61 74 95
992 * 0 11 22 33 0 1 2 3 40 41 42 43
993 * 0 12 24 36 0 2 4 6 40 42 45 53
994 * 78 102 211 1 2 8 41 42 74 (*)
996 * (*) For these marked lines, if we hadn't first done bitmap_fold()
997 * into tmp, then the @dst result would have been empty.
999 * If either of @orig or @relmap is empty (no set bits), then @dst
1000 * will be returned empty.
1002 * If (as explained above) the only set bits in @orig are in positions
1003 * m where m >= W, (where W is the weight of @relmap) then @dst will
1004 * once again be returned empty.
1006 * All bits in @dst not set by the above rule are cleared.
1008 void bitmap_onto(unsigned long *dst
, const unsigned long *orig
,
1009 const unsigned long *relmap
, int bits
)
1011 int n
, m
; /* same meaning as in above comment */
1013 if (dst
== orig
) /* following doesn't handle inplace mappings */
1015 bitmap_zero(dst
, bits
);
1018 * The following code is a more efficient, but less
1019 * obvious, equivalent to the loop:
1020 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
1021 * n = bitmap_ord_to_pos(orig, m, bits);
1022 * if (test_bit(m, orig))
1028 for_each_set_bit(n
, relmap
, bits
) {
1029 /* m == bitmap_pos_to_ord(relmap, n, bits) */
1030 if (test_bit(m
, orig
))
1035 EXPORT_SYMBOL(bitmap_onto
);
1038 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1039 * @dst: resulting smaller bitmap
1040 * @orig: original larger bitmap
1041 * @sz: specified size
1042 * @bits: number of bits in each of these bitmaps
1044 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1045 * Clear all other bits in @dst. See further the comment and
1046 * Example [2] for bitmap_onto() for why and how to use this.
1048 void bitmap_fold(unsigned long *dst
, const unsigned long *orig
,
1053 if (dst
== orig
) /* following doesn't handle inplace mappings */
1055 bitmap_zero(dst
, bits
);
1057 for_each_set_bit(oldbit
, orig
, bits
)
1058 set_bit(oldbit
% sz
, dst
);
1060 EXPORT_SYMBOL(bitmap_fold
);
1063 * Common code for bitmap_*_region() routines.
1064 * bitmap: array of unsigned longs corresponding to the bitmap
1065 * pos: the beginning of the region
1066 * order: region size (log base 2 of number of bits)
1067 * reg_op: operation(s) to perform on that region of bitmap
1069 * Can set, verify and/or release a region of bits in a bitmap,
1070 * depending on which combination of REG_OP_* flag bits is set.
1072 * A region of a bitmap is a sequence of bits in the bitmap, of
1073 * some size '1 << order' (a power of two), aligned to that same
1074 * '1 << order' power of two.
1076 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1077 * Returns 0 in all other cases and reg_ops.
1081 REG_OP_ISFREE
, /* true if region is all zero bits */
1082 REG_OP_ALLOC
, /* set all bits in region */
1083 REG_OP_RELEASE
, /* clear all bits in region */
1086 static int __reg_op(unsigned long *bitmap
, unsigned int pos
, int order
, int reg_op
)
1088 int nbits_reg
; /* number of bits in region */
1089 int index
; /* index first long of region in bitmap */
1090 int offset
; /* bit offset region in bitmap[index] */
1091 int nlongs_reg
; /* num longs spanned by region in bitmap */
1092 int nbitsinlong
; /* num bits of region in each spanned long */
1093 unsigned long mask
; /* bitmask for one long of region */
1094 int i
; /* scans bitmap by longs */
1095 int ret
= 0; /* return value */
1098 * Either nlongs_reg == 1 (for small orders that fit in one long)
1099 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1101 nbits_reg
= 1 << order
;
1102 index
= pos
/ BITS_PER_LONG
;
1103 offset
= pos
- (index
* BITS_PER_LONG
);
1104 nlongs_reg
= BITS_TO_LONGS(nbits_reg
);
1105 nbitsinlong
= min(nbits_reg
, BITS_PER_LONG
);
1108 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1109 * overflows if nbitsinlong == BITS_PER_LONG.
1111 mask
= (1UL << (nbitsinlong
- 1));
1117 for (i
= 0; i
< nlongs_reg
; i
++) {
1118 if (bitmap
[index
+ i
] & mask
)
1121 ret
= 1; /* all bits in region free (zero) */
1125 for (i
= 0; i
< nlongs_reg
; i
++)
1126 bitmap
[index
+ i
] |= mask
;
1129 case REG_OP_RELEASE
:
1130 for (i
= 0; i
< nlongs_reg
; i
++)
1131 bitmap
[index
+ i
] &= ~mask
;
1139 * bitmap_find_free_region - find a contiguous aligned mem region
1140 * @bitmap: array of unsigned longs corresponding to the bitmap
1141 * @bits: number of bits in the bitmap
1142 * @order: region size (log base 2 of number of bits) to find
1144 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1145 * allocate them (set them to one). Only consider regions of length
1146 * a power (@order) of two, aligned to that power of two, which
1147 * makes the search algorithm much faster.
1149 * Return the bit offset in bitmap of the allocated region,
1150 * or -errno on failure.
1152 int bitmap_find_free_region(unsigned long *bitmap
, unsigned int bits
, int order
)
1154 unsigned int pos
, end
; /* scans bitmap by regions of size order */
1156 for (pos
= 0 ; (end
= pos
+ (1U << order
)) <= bits
; pos
= end
) {
1157 if (!__reg_op(bitmap
, pos
, order
, REG_OP_ISFREE
))
1159 __reg_op(bitmap
, pos
, order
, REG_OP_ALLOC
);
1164 EXPORT_SYMBOL(bitmap_find_free_region
);
1167 * bitmap_release_region - release allocated bitmap region
1168 * @bitmap: array of unsigned longs corresponding to the bitmap
1169 * @pos: beginning of bit region to release
1170 * @order: region size (log base 2 of number of bits) to release
1172 * This is the complement to __bitmap_find_free_region() and releases
1173 * the found region (by clearing it in the bitmap).
1177 void bitmap_release_region(unsigned long *bitmap
, unsigned int pos
, int order
)
1179 __reg_op(bitmap
, pos
, order
, REG_OP_RELEASE
);
1181 EXPORT_SYMBOL(bitmap_release_region
);
1184 * bitmap_allocate_region - allocate bitmap region
1185 * @bitmap: array of unsigned longs corresponding to the bitmap
1186 * @pos: beginning of bit region to allocate
1187 * @order: region size (log base 2 of number of bits) to allocate
1189 * Allocate (set bits in) a specified region of a bitmap.
1191 * Return 0 on success, or %-EBUSY if specified region wasn't
1192 * free (not all bits were zero).
1194 int bitmap_allocate_region(unsigned long *bitmap
, unsigned int pos
, int order
)
1196 if (!__reg_op(bitmap
, pos
, order
, REG_OP_ISFREE
))
1198 return __reg_op(bitmap
, pos
, order
, REG_OP_ALLOC
);
1200 EXPORT_SYMBOL(bitmap_allocate_region
);
1203 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1204 * @dst: destination buffer
1205 * @src: bitmap to copy
1206 * @nbits: number of bits in the bitmap
1208 * Require nbits % BITS_PER_LONG == 0.
1210 void bitmap_copy_le(void *dst
, const unsigned long *src
, int nbits
)
1212 unsigned long *d
= dst
;
1215 for (i
= 0; i
< nbits
/BITS_PER_LONG
; i
++) {
1216 if (BITS_PER_LONG
== 64)
1217 d
[i
] = cpu_to_le64(src
[i
]);
1219 d
[i
] = cpu_to_le32(src
[i
]);
1222 EXPORT_SYMBOL(bitmap_copy_le
);