2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/pseudo_fs.h>
56 #include <linux/migrate.h>
57 #include <linux/wait.h>
58 #include <linux/pagemap.h>
61 #define ZSPAGE_MAGIC 0x58
64 * This must be power of 2 and greater than of equal to sizeof(link_free).
65 * These two conditions ensure that any 'struct link_free' itself doesn't
66 * span more than 1 page which avoids complex case of mapping 2 pages simply
67 * to restore link_free pointer values.
72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
75 #define ZS_MAX_ZSPAGE_ORDER 2
76 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
78 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
81 * Object location (<PFN>, <obj_idx>) is encoded as
82 * as single (unsigned long) handle value.
84 * Note that object index <obj_idx> starts from 0.
86 * This is made more complicated by various memory models and PAE.
89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
90 #ifdef MAX_PHYSMEM_BITS
91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
101 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
104 * Memory for allocating for handle keeps object position by
105 * encoding <page, obj_idx> and the encoded value has a room
106 * in least bit(ie, look at obj_to_location).
107 * We use the bit to synchronize between object access by
108 * user and migration.
110 #define HANDLE_PIN_BIT 0
113 * Head in allocated object should have OBJ_ALLOCATED_TAG
114 * to identify the object was allocated or not.
115 * It's okay to add the status bit in the least bit because
116 * header keeps handle which is 4byte-aligned address so we
117 * have room for two bit at least.
119 #define OBJ_ALLOCATED_TAG 1
120 #define OBJ_TAG_BITS 1
121 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
122 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
124 #define FULLNESS_BITS 2
126 #define ISOLATED_BITS 3
127 #define MAGIC_VAL_BITS 8
129 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
130 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
131 #define ZS_MIN_ALLOC_SIZE \
132 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
133 /* each chunk includes extra space to keep handle */
134 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
137 * On systems with 4K page size, this gives 255 size classes! There is a
139 * - Large number of size classes is potentially wasteful as free page are
140 * spread across these classes
141 * - Small number of size classes causes large internal fragmentation
142 * - Probably its better to use specific size classes (empirically
143 * determined). NOTE: all those class sizes must be set as multiple of
144 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
149 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
150 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151 ZS_SIZE_CLASS_DELTA) + 1)
153 enum fullness_group
{
171 struct zs_size_stat
{
172 unsigned long objs
[NR_ZS_STAT_TYPE
];
175 #ifdef CONFIG_ZSMALLOC_STAT
176 static struct dentry
*zs_stat_root
;
179 #ifdef CONFIG_COMPACTION
180 static struct vfsmount
*zsmalloc_mnt
;
184 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
186 * n = number of allocated objects
187 * N = total number of objects zspage can store
188 * f = fullness_threshold_frac
190 * Similarly, we assign zspage to:
191 * ZS_ALMOST_FULL when n > N / f
192 * ZS_EMPTY when n == 0
193 * ZS_FULL when n == N
195 * (see: fix_fullness_group())
197 static const int fullness_threshold_frac
= 4;
198 static size_t huge_class_size
;
202 struct list_head fullness_list
[NR_ZS_FULLNESS
];
204 * Size of objects stored in this class. Must be multiple
209 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
210 int pages_per_zspage
;
213 struct zs_size_stat stats
;
216 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
217 static void SetPageHugeObject(struct page
*page
)
219 SetPageOwnerPriv1(page
);
222 static void ClearPageHugeObject(struct page
*page
)
224 ClearPageOwnerPriv1(page
);
227 static int PageHugeObject(struct page
*page
)
229 return PageOwnerPriv1(page
);
233 * Placed within free objects to form a singly linked list.
234 * For every zspage, zspage->freeobj gives head of this list.
236 * This must be power of 2 and less than or equal to ZS_ALIGN
242 * It's valid for non-allocated object
246 * Handle of allocated object.
248 unsigned long handle
;
255 struct size_class
*size_class
[ZS_SIZE_CLASSES
];
256 struct kmem_cache
*handle_cachep
;
257 struct kmem_cache
*zspage_cachep
;
259 atomic_long_t pages_allocated
;
261 struct zs_pool_stats stats
;
263 /* Compact classes */
264 struct shrinker shrinker
;
266 #ifdef CONFIG_ZSMALLOC_STAT
267 struct dentry
*stat_dentry
;
269 #ifdef CONFIG_COMPACTION
271 struct work_struct free_work
;
272 /* A wait queue for when migration races with async_free_zspage() */
273 struct wait_queue_head migration_wait
;
274 atomic_long_t isolated_pages
;
281 unsigned int fullness
:FULLNESS_BITS
;
282 unsigned int class:CLASS_BITS
+ 1;
283 unsigned int isolated
:ISOLATED_BITS
;
284 unsigned int magic
:MAGIC_VAL_BITS
;
287 unsigned int freeobj
;
288 struct page
*first_page
;
289 struct list_head list
; /* fullness list */
290 #ifdef CONFIG_COMPACTION
295 struct mapping_area
{
296 #ifdef CONFIG_PGTABLE_MAPPING
297 struct vm_struct
*vm
; /* vm area for mapping object that span pages */
299 char *vm_buf
; /* copy buffer for objects that span pages */
301 char *vm_addr
; /* address of kmap_atomic()'ed pages */
302 enum zs_mapmode vm_mm
; /* mapping mode */
305 #ifdef CONFIG_COMPACTION
306 static int zs_register_migration(struct zs_pool
*pool
);
307 static void zs_unregister_migration(struct zs_pool
*pool
);
308 static void migrate_lock_init(struct zspage
*zspage
);
309 static void migrate_read_lock(struct zspage
*zspage
);
310 static void migrate_read_unlock(struct zspage
*zspage
);
311 static void kick_deferred_free(struct zs_pool
*pool
);
312 static void init_deferred_free(struct zs_pool
*pool
);
313 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
);
315 static int zsmalloc_mount(void) { return 0; }
316 static void zsmalloc_unmount(void) {}
317 static int zs_register_migration(struct zs_pool
*pool
) { return 0; }
318 static void zs_unregister_migration(struct zs_pool
*pool
) {}
319 static void migrate_lock_init(struct zspage
*zspage
) {}
320 static void migrate_read_lock(struct zspage
*zspage
) {}
321 static void migrate_read_unlock(struct zspage
*zspage
) {}
322 static void kick_deferred_free(struct zs_pool
*pool
) {}
323 static void init_deferred_free(struct zs_pool
*pool
) {}
324 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
) {}
327 static int create_cache(struct zs_pool
*pool
)
329 pool
->handle_cachep
= kmem_cache_create("zs_handle", ZS_HANDLE_SIZE
,
331 if (!pool
->handle_cachep
)
334 pool
->zspage_cachep
= kmem_cache_create("zspage", sizeof(struct zspage
),
336 if (!pool
->zspage_cachep
) {
337 kmem_cache_destroy(pool
->handle_cachep
);
338 pool
->handle_cachep
= NULL
;
345 static void destroy_cache(struct zs_pool
*pool
)
347 kmem_cache_destroy(pool
->handle_cachep
);
348 kmem_cache_destroy(pool
->zspage_cachep
);
351 static unsigned long cache_alloc_handle(struct zs_pool
*pool
, gfp_t gfp
)
353 return (unsigned long)kmem_cache_alloc(pool
->handle_cachep
,
354 gfp
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
357 static void cache_free_handle(struct zs_pool
*pool
, unsigned long handle
)
359 kmem_cache_free(pool
->handle_cachep
, (void *)handle
);
362 static struct zspage
*cache_alloc_zspage(struct zs_pool
*pool
, gfp_t flags
)
364 return kmem_cache_alloc(pool
->zspage_cachep
,
365 flags
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
368 static void cache_free_zspage(struct zs_pool
*pool
, struct zspage
*zspage
)
370 kmem_cache_free(pool
->zspage_cachep
, zspage
);
373 static void record_obj(unsigned long handle
, unsigned long obj
)
376 * lsb of @obj represents handle lock while other bits
377 * represent object value the handle is pointing so
378 * updating shouldn't do store tearing.
380 WRITE_ONCE(*(unsigned long *)handle
, obj
);
387 static void *zs_zpool_create(const char *name
, gfp_t gfp
,
388 const struct zpool_ops
*zpool_ops
,
392 * Ignore global gfp flags: zs_malloc() may be invoked from
393 * different contexts and its caller must provide a valid
396 return zs_create_pool(name
);
399 static void zs_zpool_destroy(void *pool
)
401 zs_destroy_pool(pool
);
404 static int zs_zpool_malloc(void *pool
, size_t size
, gfp_t gfp
,
405 unsigned long *handle
)
407 *handle
= zs_malloc(pool
, size
, gfp
);
408 return *handle
? 0 : -1;
410 static void zs_zpool_free(void *pool
, unsigned long handle
)
412 zs_free(pool
, handle
);
415 static void *zs_zpool_map(void *pool
, unsigned long handle
,
416 enum zpool_mapmode mm
)
418 enum zs_mapmode zs_mm
;
433 return zs_map_object(pool
, handle
, zs_mm
);
435 static void zs_zpool_unmap(void *pool
, unsigned long handle
)
437 zs_unmap_object(pool
, handle
);
440 static u64
zs_zpool_total_size(void *pool
)
442 return zs_get_total_pages(pool
) << PAGE_SHIFT
;
445 static struct zpool_driver zs_zpool_driver
= {
447 .owner
= THIS_MODULE
,
448 .create
= zs_zpool_create
,
449 .destroy
= zs_zpool_destroy
,
450 .malloc_support_movable
= true,
451 .malloc
= zs_zpool_malloc
,
452 .free
= zs_zpool_free
,
454 .unmap
= zs_zpool_unmap
,
455 .total_size
= zs_zpool_total_size
,
458 MODULE_ALIAS("zpool-zsmalloc");
459 #endif /* CONFIG_ZPOOL */
461 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
462 static DEFINE_PER_CPU(struct mapping_area
, zs_map_area
);
464 static bool is_zspage_isolated(struct zspage
*zspage
)
466 return zspage
->isolated
;
469 static __maybe_unused
int is_first_page(struct page
*page
)
471 return PagePrivate(page
);
474 /* Protected by class->lock */
475 static inline int get_zspage_inuse(struct zspage
*zspage
)
477 return zspage
->inuse
;
481 static inline void mod_zspage_inuse(struct zspage
*zspage
, int val
)
483 zspage
->inuse
+= val
;
486 static inline struct page
*get_first_page(struct zspage
*zspage
)
488 struct page
*first_page
= zspage
->first_page
;
490 VM_BUG_ON_PAGE(!is_first_page(first_page
), first_page
);
494 static inline int get_first_obj_offset(struct page
*page
)
499 static inline void set_first_obj_offset(struct page
*page
, int offset
)
501 page
->units
= offset
;
504 static inline unsigned int get_freeobj(struct zspage
*zspage
)
506 return zspage
->freeobj
;
509 static inline void set_freeobj(struct zspage
*zspage
, unsigned int obj
)
511 zspage
->freeobj
= obj
;
514 static void get_zspage_mapping(struct zspage
*zspage
,
515 unsigned int *class_idx
,
516 enum fullness_group
*fullness
)
518 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
520 *fullness
= zspage
->fullness
;
521 *class_idx
= zspage
->class;
524 static void set_zspage_mapping(struct zspage
*zspage
,
525 unsigned int class_idx
,
526 enum fullness_group fullness
)
528 zspage
->class = class_idx
;
529 zspage
->fullness
= fullness
;
533 * zsmalloc divides the pool into various size classes where each
534 * class maintains a list of zspages where each zspage is divided
535 * into equal sized chunks. Each allocation falls into one of these
536 * classes depending on its size. This function returns index of the
537 * size class which has chunk size big enough to hold the give size.
539 static int get_size_class_index(int size
)
543 if (likely(size
> ZS_MIN_ALLOC_SIZE
))
544 idx
= DIV_ROUND_UP(size
- ZS_MIN_ALLOC_SIZE
,
545 ZS_SIZE_CLASS_DELTA
);
547 return min_t(int, ZS_SIZE_CLASSES
- 1, idx
);
550 /* type can be of enum type zs_stat_type or fullness_group */
551 static inline void zs_stat_inc(struct size_class
*class,
552 int type
, unsigned long cnt
)
554 class->stats
.objs
[type
] += cnt
;
557 /* type can be of enum type zs_stat_type or fullness_group */
558 static inline void zs_stat_dec(struct size_class
*class,
559 int type
, unsigned long cnt
)
561 class->stats
.objs
[type
] -= cnt
;
564 /* type can be of enum type zs_stat_type or fullness_group */
565 static inline unsigned long zs_stat_get(struct size_class
*class,
568 return class->stats
.objs
[type
];
571 #ifdef CONFIG_ZSMALLOC_STAT
573 static void __init
zs_stat_init(void)
575 if (!debugfs_initialized()) {
576 pr_warn("debugfs not available, stat dir not created\n");
580 zs_stat_root
= debugfs_create_dir("zsmalloc", NULL
);
583 static void __exit
zs_stat_exit(void)
585 debugfs_remove_recursive(zs_stat_root
);
588 static unsigned long zs_can_compact(struct size_class
*class);
590 static int zs_stats_size_show(struct seq_file
*s
, void *v
)
593 struct zs_pool
*pool
= s
->private;
594 struct size_class
*class;
596 unsigned long class_almost_full
, class_almost_empty
;
597 unsigned long obj_allocated
, obj_used
, pages_used
, freeable
;
598 unsigned long total_class_almost_full
= 0, total_class_almost_empty
= 0;
599 unsigned long total_objs
= 0, total_used_objs
= 0, total_pages
= 0;
600 unsigned long total_freeable
= 0;
602 seq_printf(s
, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
603 "class", "size", "almost_full", "almost_empty",
604 "obj_allocated", "obj_used", "pages_used",
605 "pages_per_zspage", "freeable");
607 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
608 class = pool
->size_class
[i
];
610 if (class->index
!= i
)
613 spin_lock(&class->lock
);
614 class_almost_full
= zs_stat_get(class, CLASS_ALMOST_FULL
);
615 class_almost_empty
= zs_stat_get(class, CLASS_ALMOST_EMPTY
);
616 obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
617 obj_used
= zs_stat_get(class, OBJ_USED
);
618 freeable
= zs_can_compact(class);
619 spin_unlock(&class->lock
);
621 objs_per_zspage
= class->objs_per_zspage
;
622 pages_used
= obj_allocated
/ objs_per_zspage
*
623 class->pages_per_zspage
;
625 seq_printf(s
, " %5u %5u %11lu %12lu %13lu"
626 " %10lu %10lu %16d %8lu\n",
627 i
, class->size
, class_almost_full
, class_almost_empty
,
628 obj_allocated
, obj_used
, pages_used
,
629 class->pages_per_zspage
, freeable
);
631 total_class_almost_full
+= class_almost_full
;
632 total_class_almost_empty
+= class_almost_empty
;
633 total_objs
+= obj_allocated
;
634 total_used_objs
+= obj_used
;
635 total_pages
+= pages_used
;
636 total_freeable
+= freeable
;
640 seq_printf(s
, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
641 "Total", "", total_class_almost_full
,
642 total_class_almost_empty
, total_objs
,
643 total_used_objs
, total_pages
, "", total_freeable
);
647 DEFINE_SHOW_ATTRIBUTE(zs_stats_size
);
649 static void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
652 pr_warn("no root stat dir, not creating <%s> stat dir\n", name
);
656 pool
->stat_dentry
= debugfs_create_dir(name
, zs_stat_root
);
658 debugfs_create_file("classes", S_IFREG
| 0444, pool
->stat_dentry
, pool
,
659 &zs_stats_size_fops
);
662 static void zs_pool_stat_destroy(struct zs_pool
*pool
)
664 debugfs_remove_recursive(pool
->stat_dentry
);
667 #else /* CONFIG_ZSMALLOC_STAT */
668 static void __init
zs_stat_init(void)
672 static void __exit
zs_stat_exit(void)
676 static inline void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
680 static inline void zs_pool_stat_destroy(struct zs_pool
*pool
)
687 * For each size class, zspages are divided into different groups
688 * depending on how "full" they are. This was done so that we could
689 * easily find empty or nearly empty zspages when we try to shrink
690 * the pool (not yet implemented). This function returns fullness
691 * status of the given page.
693 static enum fullness_group
get_fullness_group(struct size_class
*class,
694 struct zspage
*zspage
)
696 int inuse
, objs_per_zspage
;
697 enum fullness_group fg
;
699 inuse
= get_zspage_inuse(zspage
);
700 objs_per_zspage
= class->objs_per_zspage
;
704 else if (inuse
== objs_per_zspage
)
706 else if (inuse
<= 3 * objs_per_zspage
/ fullness_threshold_frac
)
707 fg
= ZS_ALMOST_EMPTY
;
715 * Each size class maintains various freelists and zspages are assigned
716 * to one of these freelists based on the number of live objects they
717 * have. This functions inserts the given zspage into the freelist
718 * identified by <class, fullness_group>.
720 static void insert_zspage(struct size_class
*class,
721 struct zspage
*zspage
,
722 enum fullness_group fullness
)
726 zs_stat_inc(class, fullness
, 1);
727 head
= list_first_entry_or_null(&class->fullness_list
[fullness
],
728 struct zspage
, list
);
730 * We want to see more ZS_FULL pages and less almost empty/full.
731 * Put pages with higher ->inuse first.
734 if (get_zspage_inuse(zspage
) < get_zspage_inuse(head
)) {
735 list_add(&zspage
->list
, &head
->list
);
739 list_add(&zspage
->list
, &class->fullness_list
[fullness
]);
743 * This function removes the given zspage from the freelist identified
744 * by <class, fullness_group>.
746 static void remove_zspage(struct size_class
*class,
747 struct zspage
*zspage
,
748 enum fullness_group fullness
)
750 VM_BUG_ON(list_empty(&class->fullness_list
[fullness
]));
751 VM_BUG_ON(is_zspage_isolated(zspage
));
753 list_del_init(&zspage
->list
);
754 zs_stat_dec(class, fullness
, 1);
758 * Each size class maintains zspages in different fullness groups depending
759 * on the number of live objects they contain. When allocating or freeing
760 * objects, the fullness status of the page can change, say, from ALMOST_FULL
761 * to ALMOST_EMPTY when freeing an object. This function checks if such
762 * a status change has occurred for the given page and accordingly moves the
763 * page from the freelist of the old fullness group to that of the new
766 static enum fullness_group
fix_fullness_group(struct size_class
*class,
767 struct zspage
*zspage
)
770 enum fullness_group currfg
, newfg
;
772 get_zspage_mapping(zspage
, &class_idx
, &currfg
);
773 newfg
= get_fullness_group(class, zspage
);
777 if (!is_zspage_isolated(zspage
)) {
778 remove_zspage(class, zspage
, currfg
);
779 insert_zspage(class, zspage
, newfg
);
782 set_zspage_mapping(zspage
, class_idx
, newfg
);
789 * We have to decide on how many pages to link together
790 * to form a zspage for each size class. This is important
791 * to reduce wastage due to unusable space left at end of
792 * each zspage which is given as:
793 * wastage = Zp % class_size
794 * usage = Zp - wastage
795 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
797 * For example, for size class of 3/8 * PAGE_SIZE, we should
798 * link together 3 PAGE_SIZE sized pages to form a zspage
799 * since then we can perfectly fit in 8 such objects.
801 static int get_pages_per_zspage(int class_size
)
803 int i
, max_usedpc
= 0;
804 /* zspage order which gives maximum used size per KB */
805 int max_usedpc_order
= 1;
807 for (i
= 1; i
<= ZS_MAX_PAGES_PER_ZSPAGE
; i
++) {
811 zspage_size
= i
* PAGE_SIZE
;
812 waste
= zspage_size
% class_size
;
813 usedpc
= (zspage_size
- waste
) * 100 / zspage_size
;
815 if (usedpc
> max_usedpc
) {
817 max_usedpc_order
= i
;
821 return max_usedpc_order
;
824 static struct zspage
*get_zspage(struct page
*page
)
826 struct zspage
*zspage
= (struct zspage
*)page
->private;
828 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
832 static struct page
*get_next_page(struct page
*page
)
834 if (unlikely(PageHugeObject(page
)))
837 return page
->freelist
;
841 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
842 * @obj: the encoded object value
843 * @page: page object resides in zspage
844 * @obj_idx: object index
846 static void obj_to_location(unsigned long obj
, struct page
**page
,
847 unsigned int *obj_idx
)
849 obj
>>= OBJ_TAG_BITS
;
850 *page
= pfn_to_page(obj
>> OBJ_INDEX_BITS
);
851 *obj_idx
= (obj
& OBJ_INDEX_MASK
);
855 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
856 * @page: page object resides in zspage
857 * @obj_idx: object index
859 static unsigned long location_to_obj(struct page
*page
, unsigned int obj_idx
)
863 obj
= page_to_pfn(page
) << OBJ_INDEX_BITS
;
864 obj
|= obj_idx
& OBJ_INDEX_MASK
;
865 obj
<<= OBJ_TAG_BITS
;
870 static unsigned long handle_to_obj(unsigned long handle
)
872 return *(unsigned long *)handle
;
875 static unsigned long obj_to_head(struct page
*page
, void *obj
)
877 if (unlikely(PageHugeObject(page
))) {
878 VM_BUG_ON_PAGE(!is_first_page(page
), page
);
881 return *(unsigned long *)obj
;
884 static inline int testpin_tag(unsigned long handle
)
886 return bit_spin_is_locked(HANDLE_PIN_BIT
, (unsigned long *)handle
);
889 static inline int trypin_tag(unsigned long handle
)
891 return bit_spin_trylock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
894 static void pin_tag(unsigned long handle
) __acquires(bitlock
)
896 bit_spin_lock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
899 static void unpin_tag(unsigned long handle
) __releases(bitlock
)
901 bit_spin_unlock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
904 static void reset_page(struct page
*page
)
906 __ClearPageMovable(page
);
907 ClearPagePrivate(page
);
908 set_page_private(page
, 0);
909 page_mapcount_reset(page
);
910 ClearPageHugeObject(page
);
911 page
->freelist
= NULL
;
914 static int trylock_zspage(struct zspage
*zspage
)
916 struct page
*cursor
, *fail
;
918 for (cursor
= get_first_page(zspage
); cursor
!= NULL
; cursor
=
919 get_next_page(cursor
)) {
920 if (!trylock_page(cursor
)) {
928 for (cursor
= get_first_page(zspage
); cursor
!= fail
; cursor
=
929 get_next_page(cursor
))
935 static void __free_zspage(struct zs_pool
*pool
, struct size_class
*class,
936 struct zspage
*zspage
)
938 struct page
*page
, *next
;
939 enum fullness_group fg
;
940 unsigned int class_idx
;
942 get_zspage_mapping(zspage
, &class_idx
, &fg
);
944 assert_spin_locked(&class->lock
);
946 VM_BUG_ON(get_zspage_inuse(zspage
));
947 VM_BUG_ON(fg
!= ZS_EMPTY
);
949 next
= page
= get_first_page(zspage
);
951 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
952 next
= get_next_page(page
);
955 dec_zone_page_state(page
, NR_ZSPAGES
);
958 } while (page
!= NULL
);
960 cache_free_zspage(pool
, zspage
);
962 zs_stat_dec(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
963 atomic_long_sub(class->pages_per_zspage
,
964 &pool
->pages_allocated
);
967 static void free_zspage(struct zs_pool
*pool
, struct size_class
*class,
968 struct zspage
*zspage
)
970 VM_BUG_ON(get_zspage_inuse(zspage
));
971 VM_BUG_ON(list_empty(&zspage
->list
));
973 if (!trylock_zspage(zspage
)) {
974 kick_deferred_free(pool
);
978 remove_zspage(class, zspage
, ZS_EMPTY
);
979 __free_zspage(pool
, class, zspage
);
982 /* Initialize a newly allocated zspage */
983 static void init_zspage(struct size_class
*class, struct zspage
*zspage
)
985 unsigned int freeobj
= 1;
986 unsigned long off
= 0;
987 struct page
*page
= get_first_page(zspage
);
990 struct page
*next_page
;
991 struct link_free
*link
;
994 set_first_obj_offset(page
, off
);
996 vaddr
= kmap_atomic(page
);
997 link
= (struct link_free
*)vaddr
+ off
/ sizeof(*link
);
999 while ((off
+= class->size
) < PAGE_SIZE
) {
1000 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1001 link
+= class->size
/ sizeof(*link
);
1005 * We now come to the last (full or partial) object on this
1006 * page, which must point to the first object on the next
1009 next_page
= get_next_page(page
);
1011 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1014 * Reset OBJ_TAG_BITS bit to last link to tell
1015 * whether it's allocated object or not.
1017 link
->next
= -1UL << OBJ_TAG_BITS
;
1019 kunmap_atomic(vaddr
);
1024 set_freeobj(zspage
, 0);
1027 static void create_page_chain(struct size_class
*class, struct zspage
*zspage
,
1028 struct page
*pages
[])
1032 struct page
*prev_page
= NULL
;
1033 int nr_pages
= class->pages_per_zspage
;
1036 * Allocate individual pages and link them together as:
1037 * 1. all pages are linked together using page->freelist
1038 * 2. each sub-page point to zspage using page->private
1040 * we set PG_private to identify the first page (i.e. no other sub-page
1041 * has this flag set).
1043 for (i
= 0; i
< nr_pages
; i
++) {
1045 set_page_private(page
, (unsigned long)zspage
);
1046 page
->freelist
= NULL
;
1048 zspage
->first_page
= page
;
1049 SetPagePrivate(page
);
1050 if (unlikely(class->objs_per_zspage
== 1 &&
1051 class->pages_per_zspage
== 1))
1052 SetPageHugeObject(page
);
1054 prev_page
->freelist
= page
;
1061 * Allocate a zspage for the given size class
1063 static struct zspage
*alloc_zspage(struct zs_pool
*pool
,
1064 struct size_class
*class,
1068 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
];
1069 struct zspage
*zspage
= cache_alloc_zspage(pool
, gfp
);
1074 memset(zspage
, 0, sizeof(struct zspage
));
1075 zspage
->magic
= ZSPAGE_MAGIC
;
1076 migrate_lock_init(zspage
);
1078 for (i
= 0; i
< class->pages_per_zspage
; i
++) {
1081 page
= alloc_page(gfp
);
1084 dec_zone_page_state(pages
[i
], NR_ZSPAGES
);
1085 __free_page(pages
[i
]);
1087 cache_free_zspage(pool
, zspage
);
1091 inc_zone_page_state(page
, NR_ZSPAGES
);
1095 create_page_chain(class, zspage
, pages
);
1096 init_zspage(class, zspage
);
1101 static struct zspage
*find_get_zspage(struct size_class
*class)
1104 struct zspage
*zspage
;
1106 for (i
= ZS_ALMOST_FULL
; i
>= ZS_EMPTY
; i
--) {
1107 zspage
= list_first_entry_or_null(&class->fullness_list
[i
],
1108 struct zspage
, list
);
1116 #ifdef CONFIG_PGTABLE_MAPPING
1117 static inline int __zs_cpu_up(struct mapping_area
*area
)
1120 * Make sure we don't leak memory if a cpu UP notification
1121 * and zs_init() race and both call zs_cpu_up() on the same cpu
1125 area
->vm
= alloc_vm_area(PAGE_SIZE
* 2, NULL
);
1131 static inline void __zs_cpu_down(struct mapping_area
*area
)
1134 free_vm_area(area
->vm
);
1138 static inline void *__zs_map_object(struct mapping_area
*area
,
1139 struct page
*pages
[2], int off
, int size
)
1141 BUG_ON(map_vm_area(area
->vm
, PAGE_KERNEL
, pages
));
1142 area
->vm_addr
= area
->vm
->addr
;
1143 return area
->vm_addr
+ off
;
1146 static inline void __zs_unmap_object(struct mapping_area
*area
,
1147 struct page
*pages
[2], int off
, int size
)
1149 unsigned long addr
= (unsigned long)area
->vm_addr
;
1151 unmap_kernel_range(addr
, PAGE_SIZE
* 2);
1154 #else /* CONFIG_PGTABLE_MAPPING */
1156 static inline int __zs_cpu_up(struct mapping_area
*area
)
1159 * Make sure we don't leak memory if a cpu UP notification
1160 * and zs_init() race and both call zs_cpu_up() on the same cpu
1164 area
->vm_buf
= kmalloc(ZS_MAX_ALLOC_SIZE
, GFP_KERNEL
);
1170 static inline void __zs_cpu_down(struct mapping_area
*area
)
1172 kfree(area
->vm_buf
);
1173 area
->vm_buf
= NULL
;
1176 static void *__zs_map_object(struct mapping_area
*area
,
1177 struct page
*pages
[2], int off
, int size
)
1181 char *buf
= area
->vm_buf
;
1183 /* disable page faults to match kmap_atomic() return conditions */
1184 pagefault_disable();
1186 /* no read fastpath */
1187 if (area
->vm_mm
== ZS_MM_WO
)
1190 sizes
[0] = PAGE_SIZE
- off
;
1191 sizes
[1] = size
- sizes
[0];
1193 /* copy object to per-cpu buffer */
1194 addr
= kmap_atomic(pages
[0]);
1195 memcpy(buf
, addr
+ off
, sizes
[0]);
1196 kunmap_atomic(addr
);
1197 addr
= kmap_atomic(pages
[1]);
1198 memcpy(buf
+ sizes
[0], addr
, sizes
[1]);
1199 kunmap_atomic(addr
);
1201 return area
->vm_buf
;
1204 static void __zs_unmap_object(struct mapping_area
*area
,
1205 struct page
*pages
[2], int off
, int size
)
1211 /* no write fastpath */
1212 if (area
->vm_mm
== ZS_MM_RO
)
1216 buf
= buf
+ ZS_HANDLE_SIZE
;
1217 size
-= ZS_HANDLE_SIZE
;
1218 off
+= ZS_HANDLE_SIZE
;
1220 sizes
[0] = PAGE_SIZE
- off
;
1221 sizes
[1] = size
- sizes
[0];
1223 /* copy per-cpu buffer to object */
1224 addr
= kmap_atomic(pages
[0]);
1225 memcpy(addr
+ off
, buf
, sizes
[0]);
1226 kunmap_atomic(addr
);
1227 addr
= kmap_atomic(pages
[1]);
1228 memcpy(addr
, buf
+ sizes
[0], sizes
[1]);
1229 kunmap_atomic(addr
);
1232 /* enable page faults to match kunmap_atomic() return conditions */
1236 #endif /* CONFIG_PGTABLE_MAPPING */
1238 static int zs_cpu_prepare(unsigned int cpu
)
1240 struct mapping_area
*area
;
1242 area
= &per_cpu(zs_map_area
, cpu
);
1243 return __zs_cpu_up(area
);
1246 static int zs_cpu_dead(unsigned int cpu
)
1248 struct mapping_area
*area
;
1250 area
= &per_cpu(zs_map_area
, cpu
);
1251 __zs_cpu_down(area
);
1255 static bool can_merge(struct size_class
*prev
, int pages_per_zspage
,
1256 int objs_per_zspage
)
1258 if (prev
->pages_per_zspage
== pages_per_zspage
&&
1259 prev
->objs_per_zspage
== objs_per_zspage
)
1265 static bool zspage_full(struct size_class
*class, struct zspage
*zspage
)
1267 return get_zspage_inuse(zspage
) == class->objs_per_zspage
;
1270 unsigned long zs_get_total_pages(struct zs_pool
*pool
)
1272 return atomic_long_read(&pool
->pages_allocated
);
1274 EXPORT_SYMBOL_GPL(zs_get_total_pages
);
1277 * zs_map_object - get address of allocated object from handle.
1278 * @pool: pool from which the object was allocated
1279 * @handle: handle returned from zs_malloc
1280 * @mm: maping mode to use
1282 * Before using an object allocated from zs_malloc, it must be mapped using
1283 * this function. When done with the object, it must be unmapped using
1286 * Only one object can be mapped per cpu at a time. There is no protection
1287 * against nested mappings.
1289 * This function returns with preemption and page faults disabled.
1291 void *zs_map_object(struct zs_pool
*pool
, unsigned long handle
,
1294 struct zspage
*zspage
;
1296 unsigned long obj
, off
;
1297 unsigned int obj_idx
;
1299 unsigned int class_idx
;
1300 enum fullness_group fg
;
1301 struct size_class
*class;
1302 struct mapping_area
*area
;
1303 struct page
*pages
[2];
1307 * Because we use per-cpu mapping areas shared among the
1308 * pools/users, we can't allow mapping in interrupt context
1309 * because it can corrupt another users mappings.
1311 BUG_ON(in_interrupt());
1313 /* From now on, migration cannot move the object */
1316 obj
= handle_to_obj(handle
);
1317 obj_to_location(obj
, &page
, &obj_idx
);
1318 zspage
= get_zspage(page
);
1320 /* migration cannot move any subpage in this zspage */
1321 migrate_read_lock(zspage
);
1323 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1324 class = pool
->size_class
[class_idx
];
1325 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1327 area
= &get_cpu_var(zs_map_area
);
1329 if (off
+ class->size
<= PAGE_SIZE
) {
1330 /* this object is contained entirely within a page */
1331 area
->vm_addr
= kmap_atomic(page
);
1332 ret
= area
->vm_addr
+ off
;
1336 /* this object spans two pages */
1338 pages
[1] = get_next_page(page
);
1341 ret
= __zs_map_object(area
, pages
, off
, class->size
);
1343 if (likely(!PageHugeObject(page
)))
1344 ret
+= ZS_HANDLE_SIZE
;
1348 EXPORT_SYMBOL_GPL(zs_map_object
);
1350 void zs_unmap_object(struct zs_pool
*pool
, unsigned long handle
)
1352 struct zspage
*zspage
;
1354 unsigned long obj
, off
;
1355 unsigned int obj_idx
;
1357 unsigned int class_idx
;
1358 enum fullness_group fg
;
1359 struct size_class
*class;
1360 struct mapping_area
*area
;
1362 obj
= handle_to_obj(handle
);
1363 obj_to_location(obj
, &page
, &obj_idx
);
1364 zspage
= get_zspage(page
);
1365 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1366 class = pool
->size_class
[class_idx
];
1367 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1369 area
= this_cpu_ptr(&zs_map_area
);
1370 if (off
+ class->size
<= PAGE_SIZE
)
1371 kunmap_atomic(area
->vm_addr
);
1373 struct page
*pages
[2];
1376 pages
[1] = get_next_page(page
);
1379 __zs_unmap_object(area
, pages
, off
, class->size
);
1381 put_cpu_var(zs_map_area
);
1383 migrate_read_unlock(zspage
);
1386 EXPORT_SYMBOL_GPL(zs_unmap_object
);
1389 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1390 * zsmalloc &size_class.
1391 * @pool: zsmalloc pool to use
1393 * The function returns the size of the first huge class - any object of equal
1394 * or bigger size will be stored in zspage consisting of a single physical
1397 * Context: Any context.
1399 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1401 size_t zs_huge_class_size(struct zs_pool
*pool
)
1403 return huge_class_size
;
1405 EXPORT_SYMBOL_GPL(zs_huge_class_size
);
1407 static unsigned long obj_malloc(struct size_class
*class,
1408 struct zspage
*zspage
, unsigned long handle
)
1410 int i
, nr_page
, offset
;
1412 struct link_free
*link
;
1414 struct page
*m_page
;
1415 unsigned long m_offset
;
1418 handle
|= OBJ_ALLOCATED_TAG
;
1419 obj
= get_freeobj(zspage
);
1421 offset
= obj
* class->size
;
1422 nr_page
= offset
>> PAGE_SHIFT
;
1423 m_offset
= offset
& ~PAGE_MASK
;
1424 m_page
= get_first_page(zspage
);
1426 for (i
= 0; i
< nr_page
; i
++)
1427 m_page
= get_next_page(m_page
);
1429 vaddr
= kmap_atomic(m_page
);
1430 link
= (struct link_free
*)vaddr
+ m_offset
/ sizeof(*link
);
1431 set_freeobj(zspage
, link
->next
>> OBJ_TAG_BITS
);
1432 if (likely(!PageHugeObject(m_page
)))
1433 /* record handle in the header of allocated chunk */
1434 link
->handle
= handle
;
1436 /* record handle to page->index */
1437 zspage
->first_page
->index
= handle
;
1439 kunmap_atomic(vaddr
);
1440 mod_zspage_inuse(zspage
, 1);
1441 zs_stat_inc(class, OBJ_USED
, 1);
1443 obj
= location_to_obj(m_page
, obj
);
1450 * zs_malloc - Allocate block of given size from pool.
1451 * @pool: pool to allocate from
1452 * @size: size of block to allocate
1453 * @gfp: gfp flags when allocating object
1455 * On success, handle to the allocated object is returned,
1457 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1459 unsigned long zs_malloc(struct zs_pool
*pool
, size_t size
, gfp_t gfp
)
1461 unsigned long handle
, obj
;
1462 struct size_class
*class;
1463 enum fullness_group newfg
;
1464 struct zspage
*zspage
;
1466 if (unlikely(!size
|| size
> ZS_MAX_ALLOC_SIZE
))
1469 handle
= cache_alloc_handle(pool
, gfp
);
1473 /* extra space in chunk to keep the handle */
1474 size
+= ZS_HANDLE_SIZE
;
1475 class = pool
->size_class
[get_size_class_index(size
)];
1477 spin_lock(&class->lock
);
1478 zspage
= find_get_zspage(class);
1479 if (likely(zspage
)) {
1480 obj
= obj_malloc(class, zspage
, handle
);
1481 /* Now move the zspage to another fullness group, if required */
1482 fix_fullness_group(class, zspage
);
1483 record_obj(handle
, obj
);
1484 spin_unlock(&class->lock
);
1489 spin_unlock(&class->lock
);
1491 zspage
= alloc_zspage(pool
, class, gfp
);
1493 cache_free_handle(pool
, handle
);
1497 spin_lock(&class->lock
);
1498 obj
= obj_malloc(class, zspage
, handle
);
1499 newfg
= get_fullness_group(class, zspage
);
1500 insert_zspage(class, zspage
, newfg
);
1501 set_zspage_mapping(zspage
, class->index
, newfg
);
1502 record_obj(handle
, obj
);
1503 atomic_long_add(class->pages_per_zspage
,
1504 &pool
->pages_allocated
);
1505 zs_stat_inc(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
1507 /* We completely set up zspage so mark them as movable */
1508 SetZsPageMovable(pool
, zspage
);
1509 spin_unlock(&class->lock
);
1513 EXPORT_SYMBOL_GPL(zs_malloc
);
1515 static void obj_free(struct size_class
*class, unsigned long obj
)
1517 struct link_free
*link
;
1518 struct zspage
*zspage
;
1519 struct page
*f_page
;
1520 unsigned long f_offset
;
1521 unsigned int f_objidx
;
1524 obj
&= ~OBJ_ALLOCATED_TAG
;
1525 obj_to_location(obj
, &f_page
, &f_objidx
);
1526 f_offset
= (class->size
* f_objidx
) & ~PAGE_MASK
;
1527 zspage
= get_zspage(f_page
);
1529 vaddr
= kmap_atomic(f_page
);
1531 /* Insert this object in containing zspage's freelist */
1532 link
= (struct link_free
*)(vaddr
+ f_offset
);
1533 link
->next
= get_freeobj(zspage
) << OBJ_TAG_BITS
;
1534 kunmap_atomic(vaddr
);
1535 set_freeobj(zspage
, f_objidx
);
1536 mod_zspage_inuse(zspage
, -1);
1537 zs_stat_dec(class, OBJ_USED
, 1);
1540 void zs_free(struct zs_pool
*pool
, unsigned long handle
)
1542 struct zspage
*zspage
;
1543 struct page
*f_page
;
1545 unsigned int f_objidx
;
1547 struct size_class
*class;
1548 enum fullness_group fullness
;
1551 if (unlikely(!handle
))
1555 obj
= handle_to_obj(handle
);
1556 obj_to_location(obj
, &f_page
, &f_objidx
);
1557 zspage
= get_zspage(f_page
);
1559 migrate_read_lock(zspage
);
1561 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1562 class = pool
->size_class
[class_idx
];
1564 spin_lock(&class->lock
);
1565 obj_free(class, obj
);
1566 fullness
= fix_fullness_group(class, zspage
);
1567 if (fullness
!= ZS_EMPTY
) {
1568 migrate_read_unlock(zspage
);
1572 isolated
= is_zspage_isolated(zspage
);
1573 migrate_read_unlock(zspage
);
1574 /* If zspage is isolated, zs_page_putback will free the zspage */
1575 if (likely(!isolated
))
1576 free_zspage(pool
, class, zspage
);
1579 spin_unlock(&class->lock
);
1581 cache_free_handle(pool
, handle
);
1583 EXPORT_SYMBOL_GPL(zs_free
);
1585 static void zs_object_copy(struct size_class
*class, unsigned long dst
,
1588 struct page
*s_page
, *d_page
;
1589 unsigned int s_objidx
, d_objidx
;
1590 unsigned long s_off
, d_off
;
1591 void *s_addr
, *d_addr
;
1592 int s_size
, d_size
, size
;
1595 s_size
= d_size
= class->size
;
1597 obj_to_location(src
, &s_page
, &s_objidx
);
1598 obj_to_location(dst
, &d_page
, &d_objidx
);
1600 s_off
= (class->size
* s_objidx
) & ~PAGE_MASK
;
1601 d_off
= (class->size
* d_objidx
) & ~PAGE_MASK
;
1603 if (s_off
+ class->size
> PAGE_SIZE
)
1604 s_size
= PAGE_SIZE
- s_off
;
1606 if (d_off
+ class->size
> PAGE_SIZE
)
1607 d_size
= PAGE_SIZE
- d_off
;
1609 s_addr
= kmap_atomic(s_page
);
1610 d_addr
= kmap_atomic(d_page
);
1613 size
= min(s_size
, d_size
);
1614 memcpy(d_addr
+ d_off
, s_addr
+ s_off
, size
);
1617 if (written
== class->size
)
1625 if (s_off
>= PAGE_SIZE
) {
1626 kunmap_atomic(d_addr
);
1627 kunmap_atomic(s_addr
);
1628 s_page
= get_next_page(s_page
);
1629 s_addr
= kmap_atomic(s_page
);
1630 d_addr
= kmap_atomic(d_page
);
1631 s_size
= class->size
- written
;
1635 if (d_off
>= PAGE_SIZE
) {
1636 kunmap_atomic(d_addr
);
1637 d_page
= get_next_page(d_page
);
1638 d_addr
= kmap_atomic(d_page
);
1639 d_size
= class->size
- written
;
1644 kunmap_atomic(d_addr
);
1645 kunmap_atomic(s_addr
);
1649 * Find alloced object in zspage from index object and
1652 static unsigned long find_alloced_obj(struct size_class
*class,
1653 struct page
*page
, int *obj_idx
)
1657 int index
= *obj_idx
;
1658 unsigned long handle
= 0;
1659 void *addr
= kmap_atomic(page
);
1661 offset
= get_first_obj_offset(page
);
1662 offset
+= class->size
* index
;
1664 while (offset
< PAGE_SIZE
) {
1665 head
= obj_to_head(page
, addr
+ offset
);
1666 if (head
& OBJ_ALLOCATED_TAG
) {
1667 handle
= head
& ~OBJ_ALLOCATED_TAG
;
1668 if (trypin_tag(handle
))
1673 offset
+= class->size
;
1677 kunmap_atomic(addr
);
1684 struct zs_compact_control
{
1685 /* Source spage for migration which could be a subpage of zspage */
1686 struct page
*s_page
;
1687 /* Destination page for migration which should be a first page
1689 struct page
*d_page
;
1690 /* Starting object index within @s_page which used for live object
1691 * in the subpage. */
1695 static int migrate_zspage(struct zs_pool
*pool
, struct size_class
*class,
1696 struct zs_compact_control
*cc
)
1698 unsigned long used_obj
, free_obj
;
1699 unsigned long handle
;
1700 struct page
*s_page
= cc
->s_page
;
1701 struct page
*d_page
= cc
->d_page
;
1702 int obj_idx
= cc
->obj_idx
;
1706 handle
= find_alloced_obj(class, s_page
, &obj_idx
);
1708 s_page
= get_next_page(s_page
);
1715 /* Stop if there is no more space */
1716 if (zspage_full(class, get_zspage(d_page
))) {
1722 used_obj
= handle_to_obj(handle
);
1723 free_obj
= obj_malloc(class, get_zspage(d_page
), handle
);
1724 zs_object_copy(class, free_obj
, used_obj
);
1727 * record_obj updates handle's value to free_obj and it will
1728 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1729 * breaks synchronization using pin_tag(e,g, zs_free) so
1730 * let's keep the lock bit.
1732 free_obj
|= BIT(HANDLE_PIN_BIT
);
1733 record_obj(handle
, free_obj
);
1735 obj_free(class, used_obj
);
1738 /* Remember last position in this iteration */
1739 cc
->s_page
= s_page
;
1740 cc
->obj_idx
= obj_idx
;
1745 static struct zspage
*isolate_zspage(struct size_class
*class, bool source
)
1748 struct zspage
*zspage
;
1749 enum fullness_group fg
[2] = {ZS_ALMOST_EMPTY
, ZS_ALMOST_FULL
};
1752 fg
[0] = ZS_ALMOST_FULL
;
1753 fg
[1] = ZS_ALMOST_EMPTY
;
1756 for (i
= 0; i
< 2; i
++) {
1757 zspage
= list_first_entry_or_null(&class->fullness_list
[fg
[i
]],
1758 struct zspage
, list
);
1760 VM_BUG_ON(is_zspage_isolated(zspage
));
1761 remove_zspage(class, zspage
, fg
[i
]);
1770 * putback_zspage - add @zspage into right class's fullness list
1771 * @class: destination class
1772 * @zspage: target page
1774 * Return @zspage's fullness_group
1776 static enum fullness_group
putback_zspage(struct size_class
*class,
1777 struct zspage
*zspage
)
1779 enum fullness_group fullness
;
1781 VM_BUG_ON(is_zspage_isolated(zspage
));
1783 fullness
= get_fullness_group(class, zspage
);
1784 insert_zspage(class, zspage
, fullness
);
1785 set_zspage_mapping(zspage
, class->index
, fullness
);
1790 #ifdef CONFIG_COMPACTION
1792 * To prevent zspage destroy during migration, zspage freeing should
1793 * hold locks of all pages in the zspage.
1795 static void lock_zspage(struct zspage
*zspage
)
1797 struct page
*page
= get_first_page(zspage
);
1801 } while ((page
= get_next_page(page
)) != NULL
);
1804 static int zs_init_fs_context(struct fs_context
*fc
)
1806 return init_pseudo(fc
, ZSMALLOC_MAGIC
) ? 0 : -ENOMEM
;
1809 static struct file_system_type zsmalloc_fs
= {
1811 .init_fs_context
= zs_init_fs_context
,
1812 .kill_sb
= kill_anon_super
,
1815 static int zsmalloc_mount(void)
1819 zsmalloc_mnt
= kern_mount(&zsmalloc_fs
);
1820 if (IS_ERR(zsmalloc_mnt
))
1821 ret
= PTR_ERR(zsmalloc_mnt
);
1826 static void zsmalloc_unmount(void)
1828 kern_unmount(zsmalloc_mnt
);
1831 static void migrate_lock_init(struct zspage
*zspage
)
1833 rwlock_init(&zspage
->lock
);
1836 static void migrate_read_lock(struct zspage
*zspage
) __acquires(&zspage
->lock
)
1838 read_lock(&zspage
->lock
);
1841 static void migrate_read_unlock(struct zspage
*zspage
) __releases(&zspage
->lock
)
1843 read_unlock(&zspage
->lock
);
1846 static void migrate_write_lock(struct zspage
*zspage
)
1848 write_lock(&zspage
->lock
);
1851 static void migrate_write_unlock(struct zspage
*zspage
)
1853 write_unlock(&zspage
->lock
);
1856 /* Number of isolated subpage for *page migration* in this zspage */
1857 static void inc_zspage_isolation(struct zspage
*zspage
)
1862 static void dec_zspage_isolation(struct zspage
*zspage
)
1867 static void putback_zspage_deferred(struct zs_pool
*pool
,
1868 struct size_class
*class,
1869 struct zspage
*zspage
)
1871 enum fullness_group fg
;
1873 fg
= putback_zspage(class, zspage
);
1875 schedule_work(&pool
->free_work
);
1879 static inline void zs_pool_dec_isolated(struct zs_pool
*pool
)
1881 VM_BUG_ON(atomic_long_read(&pool
->isolated_pages
) <= 0);
1882 atomic_long_dec(&pool
->isolated_pages
);
1884 * There's no possibility of racing, since wait_for_isolated_drain()
1885 * checks the isolated count under &class->lock after enqueuing
1886 * on migration_wait.
1888 if (atomic_long_read(&pool
->isolated_pages
) == 0 && pool
->destroying
)
1889 wake_up_all(&pool
->migration_wait
);
1892 static void replace_sub_page(struct size_class
*class, struct zspage
*zspage
,
1893 struct page
*newpage
, struct page
*oldpage
)
1896 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
] = {NULL
, };
1899 page
= get_first_page(zspage
);
1901 if (page
== oldpage
)
1902 pages
[idx
] = newpage
;
1906 } while ((page
= get_next_page(page
)) != NULL
);
1908 create_page_chain(class, zspage
, pages
);
1909 set_first_obj_offset(newpage
, get_first_obj_offset(oldpage
));
1910 if (unlikely(PageHugeObject(oldpage
)))
1911 newpage
->index
= oldpage
->index
;
1912 __SetPageMovable(newpage
, page_mapping(oldpage
));
1915 static bool zs_page_isolate(struct page
*page
, isolate_mode_t mode
)
1917 struct zs_pool
*pool
;
1918 struct size_class
*class;
1920 enum fullness_group fullness
;
1921 struct zspage
*zspage
;
1922 struct address_space
*mapping
;
1925 * Page is locked so zspage couldn't be destroyed. For detail, look at
1926 * lock_zspage in free_zspage.
1928 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
1929 VM_BUG_ON_PAGE(PageIsolated(page
), page
);
1931 zspage
= get_zspage(page
);
1934 * Without class lock, fullness could be stale while class_idx is okay
1935 * because class_idx is constant unless page is freed so we should get
1936 * fullness again under class lock.
1938 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1939 mapping
= page_mapping(page
);
1940 pool
= mapping
->private_data
;
1941 class = pool
->size_class
[class_idx
];
1943 spin_lock(&class->lock
);
1944 if (get_zspage_inuse(zspage
) == 0) {
1945 spin_unlock(&class->lock
);
1949 /* zspage is isolated for object migration */
1950 if (list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1951 spin_unlock(&class->lock
);
1956 * If this is first time isolation for the zspage, isolate zspage from
1957 * size_class to prevent further object allocation from the zspage.
1959 if (!list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1960 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1961 atomic_long_inc(&pool
->isolated_pages
);
1962 remove_zspage(class, zspage
, fullness
);
1965 inc_zspage_isolation(zspage
);
1966 spin_unlock(&class->lock
);
1971 static int zs_page_migrate(struct address_space
*mapping
, struct page
*newpage
,
1972 struct page
*page
, enum migrate_mode mode
)
1974 struct zs_pool
*pool
;
1975 struct size_class
*class;
1977 enum fullness_group fullness
;
1978 struct zspage
*zspage
;
1980 void *s_addr
, *d_addr
, *addr
;
1982 unsigned long handle
, head
;
1983 unsigned long old_obj
, new_obj
;
1984 unsigned int obj_idx
;
1988 * We cannot support the _NO_COPY case here, because copy needs to
1989 * happen under the zs lock, which does not work with
1990 * MIGRATE_SYNC_NO_COPY workflow.
1992 if (mode
== MIGRATE_SYNC_NO_COPY
)
1995 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
1996 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
1998 zspage
= get_zspage(page
);
2000 /* Concurrent compactor cannot migrate any subpage in zspage */
2001 migrate_write_lock(zspage
);
2002 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
2003 pool
= mapping
->private_data
;
2004 class = pool
->size_class
[class_idx
];
2005 offset
= get_first_obj_offset(page
);
2007 spin_lock(&class->lock
);
2008 if (!get_zspage_inuse(zspage
)) {
2010 * Set "offset" to end of the page so that every loops
2011 * skips unnecessary object scanning.
2017 s_addr
= kmap_atomic(page
);
2018 while (pos
< PAGE_SIZE
) {
2019 head
= obj_to_head(page
, s_addr
+ pos
);
2020 if (head
& OBJ_ALLOCATED_TAG
) {
2021 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2022 if (!trypin_tag(handle
))
2029 * Here, any user cannot access all objects in the zspage so let's move.
2031 d_addr
= kmap_atomic(newpage
);
2032 memcpy(d_addr
, s_addr
, PAGE_SIZE
);
2033 kunmap_atomic(d_addr
);
2035 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2036 addr
+= class->size
) {
2037 head
= obj_to_head(page
, addr
);
2038 if (head
& OBJ_ALLOCATED_TAG
) {
2039 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2040 if (!testpin_tag(handle
))
2043 old_obj
= handle_to_obj(handle
);
2044 obj_to_location(old_obj
, &dummy
, &obj_idx
);
2045 new_obj
= (unsigned long)location_to_obj(newpage
,
2047 new_obj
|= BIT(HANDLE_PIN_BIT
);
2048 record_obj(handle
, new_obj
);
2052 replace_sub_page(class, zspage
, newpage
, page
);
2055 dec_zspage_isolation(zspage
);
2058 * Page migration is done so let's putback isolated zspage to
2059 * the list if @page is final isolated subpage in the zspage.
2061 if (!is_zspage_isolated(zspage
)) {
2063 * We cannot race with zs_destroy_pool() here because we wait
2064 * for isolation to hit zero before we start destroying.
2065 * Also, we ensure that everyone can see pool->destroying before
2068 putback_zspage_deferred(pool
, class, zspage
);
2069 zs_pool_dec_isolated(pool
);
2072 if (page_zone(newpage
) != page_zone(page
)) {
2073 dec_zone_page_state(page
, NR_ZSPAGES
);
2074 inc_zone_page_state(newpage
, NR_ZSPAGES
);
2081 ret
= MIGRATEPAGE_SUCCESS
;
2083 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2084 addr
+= class->size
) {
2085 head
= obj_to_head(page
, addr
);
2086 if (head
& OBJ_ALLOCATED_TAG
) {
2087 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2088 if (!testpin_tag(handle
))
2093 kunmap_atomic(s_addr
);
2094 spin_unlock(&class->lock
);
2095 migrate_write_unlock(zspage
);
2100 static void zs_page_putback(struct page
*page
)
2102 struct zs_pool
*pool
;
2103 struct size_class
*class;
2105 enum fullness_group fg
;
2106 struct address_space
*mapping
;
2107 struct zspage
*zspage
;
2109 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
2110 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
2112 zspage
= get_zspage(page
);
2113 get_zspage_mapping(zspage
, &class_idx
, &fg
);
2114 mapping
= page_mapping(page
);
2115 pool
= mapping
->private_data
;
2116 class = pool
->size_class
[class_idx
];
2118 spin_lock(&class->lock
);
2119 dec_zspage_isolation(zspage
);
2120 if (!is_zspage_isolated(zspage
)) {
2122 * Due to page_lock, we cannot free zspage immediately
2125 putback_zspage_deferred(pool
, class, zspage
);
2126 zs_pool_dec_isolated(pool
);
2128 spin_unlock(&class->lock
);
2131 static const struct address_space_operations zsmalloc_aops
= {
2132 .isolate_page
= zs_page_isolate
,
2133 .migratepage
= zs_page_migrate
,
2134 .putback_page
= zs_page_putback
,
2137 static int zs_register_migration(struct zs_pool
*pool
)
2139 pool
->inode
= alloc_anon_inode(zsmalloc_mnt
->mnt_sb
);
2140 if (IS_ERR(pool
->inode
)) {
2145 pool
->inode
->i_mapping
->private_data
= pool
;
2146 pool
->inode
->i_mapping
->a_ops
= &zsmalloc_aops
;
2150 static bool pool_isolated_are_drained(struct zs_pool
*pool
)
2152 return atomic_long_read(&pool
->isolated_pages
) == 0;
2155 /* Function for resolving migration */
2156 static void wait_for_isolated_drain(struct zs_pool
*pool
)
2160 * We're in the process of destroying the pool, so there are no
2161 * active allocations. zs_page_isolate() fails for completely free
2162 * zspages, so we need only wait for the zs_pool's isolated
2163 * count to hit zero.
2165 wait_event(pool
->migration_wait
,
2166 pool_isolated_are_drained(pool
));
2169 static void zs_unregister_migration(struct zs_pool
*pool
)
2171 pool
->destroying
= true;
2173 * We need a memory barrier here to ensure global visibility of
2174 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2175 * case we don't care, or it will be > 0 and pool->destroying will
2176 * ensure that we wake up once isolation hits 0.
2179 wait_for_isolated_drain(pool
); /* This can block */
2180 flush_work(&pool
->free_work
);
2185 * Caller should hold page_lock of all pages in the zspage
2186 * In here, we cannot use zspage meta data.
2188 static void async_free_zspage(struct work_struct
*work
)
2191 struct size_class
*class;
2192 unsigned int class_idx
;
2193 enum fullness_group fullness
;
2194 struct zspage
*zspage
, *tmp
;
2195 LIST_HEAD(free_pages
);
2196 struct zs_pool
*pool
= container_of(work
, struct zs_pool
,
2199 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
2200 class = pool
->size_class
[i
];
2201 if (class->index
!= i
)
2204 spin_lock(&class->lock
);
2205 list_splice_init(&class->fullness_list
[ZS_EMPTY
], &free_pages
);
2206 spin_unlock(&class->lock
);
2210 list_for_each_entry_safe(zspage
, tmp
, &free_pages
, list
) {
2211 list_del(&zspage
->list
);
2212 lock_zspage(zspage
);
2214 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
2215 VM_BUG_ON(fullness
!= ZS_EMPTY
);
2216 class = pool
->size_class
[class_idx
];
2217 spin_lock(&class->lock
);
2218 __free_zspage(pool
, pool
->size_class
[class_idx
], zspage
);
2219 spin_unlock(&class->lock
);
2223 static void kick_deferred_free(struct zs_pool
*pool
)
2225 schedule_work(&pool
->free_work
);
2228 static void init_deferred_free(struct zs_pool
*pool
)
2230 INIT_WORK(&pool
->free_work
, async_free_zspage
);
2233 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
)
2235 struct page
*page
= get_first_page(zspage
);
2238 WARN_ON(!trylock_page(page
));
2239 __SetPageMovable(page
, pool
->inode
->i_mapping
);
2241 } while ((page
= get_next_page(page
)) != NULL
);
2247 * Based on the number of unused allocated objects calculate
2248 * and return the number of pages that we can free.
2250 static unsigned long zs_can_compact(struct size_class
*class)
2252 unsigned long obj_wasted
;
2253 unsigned long obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
2254 unsigned long obj_used
= zs_stat_get(class, OBJ_USED
);
2256 if (obj_allocated
<= obj_used
)
2259 obj_wasted
= obj_allocated
- obj_used
;
2260 obj_wasted
/= class->objs_per_zspage
;
2262 return obj_wasted
* class->pages_per_zspage
;
2265 static void __zs_compact(struct zs_pool
*pool
, struct size_class
*class)
2267 struct zs_compact_control cc
;
2268 struct zspage
*src_zspage
;
2269 struct zspage
*dst_zspage
= NULL
;
2271 spin_lock(&class->lock
);
2272 while ((src_zspage
= isolate_zspage(class, true))) {
2274 if (!zs_can_compact(class))
2278 cc
.s_page
= get_first_page(src_zspage
);
2280 while ((dst_zspage
= isolate_zspage(class, false))) {
2281 cc
.d_page
= get_first_page(dst_zspage
);
2283 * If there is no more space in dst_page, resched
2284 * and see if anyone had allocated another zspage.
2286 if (!migrate_zspage(pool
, class, &cc
))
2289 putback_zspage(class, dst_zspage
);
2292 /* Stop if we couldn't find slot */
2293 if (dst_zspage
== NULL
)
2296 putback_zspage(class, dst_zspage
);
2297 if (putback_zspage(class, src_zspage
) == ZS_EMPTY
) {
2298 free_zspage(pool
, class, src_zspage
);
2299 pool
->stats
.pages_compacted
+= class->pages_per_zspage
;
2301 spin_unlock(&class->lock
);
2303 spin_lock(&class->lock
);
2307 putback_zspage(class, src_zspage
);
2309 spin_unlock(&class->lock
);
2312 unsigned long zs_compact(struct zs_pool
*pool
)
2315 struct size_class
*class;
2317 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2318 class = pool
->size_class
[i
];
2321 if (class->index
!= i
)
2323 __zs_compact(pool
, class);
2326 return pool
->stats
.pages_compacted
;
2328 EXPORT_SYMBOL_GPL(zs_compact
);
2330 void zs_pool_stats(struct zs_pool
*pool
, struct zs_pool_stats
*stats
)
2332 memcpy(stats
, &pool
->stats
, sizeof(struct zs_pool_stats
));
2334 EXPORT_SYMBOL_GPL(zs_pool_stats
);
2336 static unsigned long zs_shrinker_scan(struct shrinker
*shrinker
,
2337 struct shrink_control
*sc
)
2339 unsigned long pages_freed
;
2340 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2343 pages_freed
= pool
->stats
.pages_compacted
;
2345 * Compact classes and calculate compaction delta.
2346 * Can run concurrently with a manually triggered
2347 * (by user) compaction.
2349 pages_freed
= zs_compact(pool
) - pages_freed
;
2351 return pages_freed
? pages_freed
: SHRINK_STOP
;
2354 static unsigned long zs_shrinker_count(struct shrinker
*shrinker
,
2355 struct shrink_control
*sc
)
2358 struct size_class
*class;
2359 unsigned long pages_to_free
= 0;
2360 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2363 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2364 class = pool
->size_class
[i
];
2367 if (class->index
!= i
)
2370 pages_to_free
+= zs_can_compact(class);
2373 return pages_to_free
;
2376 static void zs_unregister_shrinker(struct zs_pool
*pool
)
2378 unregister_shrinker(&pool
->shrinker
);
2381 static int zs_register_shrinker(struct zs_pool
*pool
)
2383 pool
->shrinker
.scan_objects
= zs_shrinker_scan
;
2384 pool
->shrinker
.count_objects
= zs_shrinker_count
;
2385 pool
->shrinker
.batch
= 0;
2386 pool
->shrinker
.seeks
= DEFAULT_SEEKS
;
2388 return register_shrinker(&pool
->shrinker
);
2392 * zs_create_pool - Creates an allocation pool to work from.
2393 * @name: pool name to be created
2395 * This function must be called before anything when using
2396 * the zsmalloc allocator.
2398 * On success, a pointer to the newly created pool is returned,
2401 struct zs_pool
*zs_create_pool(const char *name
)
2404 struct zs_pool
*pool
;
2405 struct size_class
*prev_class
= NULL
;
2407 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
2411 init_deferred_free(pool
);
2413 pool
->name
= kstrdup(name
, GFP_KERNEL
);
2417 #ifdef CONFIG_COMPACTION
2418 init_waitqueue_head(&pool
->migration_wait
);
2421 if (create_cache(pool
))
2425 * Iterate reversely, because, size of size_class that we want to use
2426 * for merging should be larger or equal to current size.
2428 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2430 int pages_per_zspage
;
2431 int objs_per_zspage
;
2432 struct size_class
*class;
2435 size
= ZS_MIN_ALLOC_SIZE
+ i
* ZS_SIZE_CLASS_DELTA
;
2436 if (size
> ZS_MAX_ALLOC_SIZE
)
2437 size
= ZS_MAX_ALLOC_SIZE
;
2438 pages_per_zspage
= get_pages_per_zspage(size
);
2439 objs_per_zspage
= pages_per_zspage
* PAGE_SIZE
/ size
;
2442 * We iterate from biggest down to smallest classes,
2443 * so huge_class_size holds the size of the first huge
2444 * class. Any object bigger than or equal to that will
2445 * endup in the huge class.
2447 if (pages_per_zspage
!= 1 && objs_per_zspage
!= 1 &&
2449 huge_class_size
= size
;
2451 * The object uses ZS_HANDLE_SIZE bytes to store the
2452 * handle. We need to subtract it, because zs_malloc()
2453 * unconditionally adds handle size before it performs
2454 * size class search - so object may be smaller than
2455 * huge class size, yet it still can end up in the huge
2456 * class because it grows by ZS_HANDLE_SIZE extra bytes
2457 * right before class lookup.
2459 huge_class_size
-= (ZS_HANDLE_SIZE
- 1);
2463 * size_class is used for normal zsmalloc operation such
2464 * as alloc/free for that size. Although it is natural that we
2465 * have one size_class for each size, there is a chance that we
2466 * can get more memory utilization if we use one size_class for
2467 * many different sizes whose size_class have same
2468 * characteristics. So, we makes size_class point to
2469 * previous size_class if possible.
2472 if (can_merge(prev_class
, pages_per_zspage
, objs_per_zspage
)) {
2473 pool
->size_class
[i
] = prev_class
;
2478 class = kzalloc(sizeof(struct size_class
), GFP_KERNEL
);
2484 class->pages_per_zspage
= pages_per_zspage
;
2485 class->objs_per_zspage
= objs_per_zspage
;
2486 spin_lock_init(&class->lock
);
2487 pool
->size_class
[i
] = class;
2488 for (fullness
= ZS_EMPTY
; fullness
< NR_ZS_FULLNESS
;
2490 INIT_LIST_HEAD(&class->fullness_list
[fullness
]);
2495 /* debug only, don't abort if it fails */
2496 zs_pool_stat_create(pool
, name
);
2498 if (zs_register_migration(pool
))
2502 * Not critical since shrinker is only used to trigger internal
2503 * defragmentation of the pool which is pretty optional thing. If
2504 * registration fails we still can use the pool normally and user can
2505 * trigger compaction manually. Thus, ignore return code.
2507 zs_register_shrinker(pool
);
2512 zs_destroy_pool(pool
);
2515 EXPORT_SYMBOL_GPL(zs_create_pool
);
2517 void zs_destroy_pool(struct zs_pool
*pool
)
2521 zs_unregister_shrinker(pool
);
2522 zs_unregister_migration(pool
);
2523 zs_pool_stat_destroy(pool
);
2525 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
2527 struct size_class
*class = pool
->size_class
[i
];
2532 if (class->index
!= i
)
2535 for (fg
= ZS_EMPTY
; fg
< NR_ZS_FULLNESS
; fg
++) {
2536 if (!list_empty(&class->fullness_list
[fg
])) {
2537 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2544 destroy_cache(pool
);
2548 EXPORT_SYMBOL_GPL(zs_destroy_pool
);
2550 static int __init
zs_init(void)
2554 ret
= zsmalloc_mount();
2558 ret
= cpuhp_setup_state(CPUHP_MM_ZS_PREPARE
, "mm/zsmalloc:prepare",
2559 zs_cpu_prepare
, zs_cpu_dead
);
2564 zpool_register_driver(&zs_zpool_driver
);
2577 static void __exit
zs_exit(void)
2580 zpool_unregister_driver(&zs_zpool_driver
);
2583 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE
);
2588 module_init(zs_init
);
2589 module_exit(zs_exit
);
2591 MODULE_LICENSE("Dual BSD/GPL");
2592 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");