2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
37 static struct vfsmount
*shm_mnt
;
41 * This virtual memory filesystem is heavily based on the ramfs. It
42 * extends ramfs by the ability to use swap and honor resource limits
43 * which makes it a completely usable filesystem.
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
74 #include <asm/uaccess.h>
75 #include <asm/pgtable.h>
79 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
80 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90 * inode->i_private (with i_mutex making sure that it has only one user at
91 * a time): we would prefer not to enlarge the shmem inode just for that.
94 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
95 pgoff_t start
; /* start of range currently being fallocated */
96 pgoff_t next
; /* the next page offset to be fallocated */
97 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
98 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
102 static unsigned long shmem_default_max_blocks(void)
104 return totalram_pages
/ 2;
107 static unsigned long shmem_default_max_inodes(void)
109 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
113 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
114 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
115 struct shmem_inode_info
*info
, pgoff_t index
);
116 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
117 struct page
**pagep
, enum sgp_type sgp
,
118 gfp_t gfp
, struct mm_struct
*fault_mm
, int *fault_type
);
120 int shmem_getpage(struct inode
*inode
, pgoff_t index
,
121 struct page
**pagep
, enum sgp_type sgp
)
123 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
124 mapping_gfp_mask(inode
->i_mapping
), NULL
, NULL
);
127 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
129 return sb
->s_fs_info
;
133 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134 * for shared memory and for shared anonymous (/dev/zero) mappings
135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136 * consistent with the pre-accounting of private mappings ...
138 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
140 return (flags
& VM_NORESERVE
) ?
141 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
144 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
146 if (!(flags
& VM_NORESERVE
))
147 vm_unacct_memory(VM_ACCT(size
));
150 static inline int shmem_reacct_size(unsigned long flags
,
151 loff_t oldsize
, loff_t newsize
)
153 if (!(flags
& VM_NORESERVE
)) {
154 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
155 return security_vm_enough_memory_mm(current
->mm
,
156 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
157 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
158 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
164 * ... whereas tmpfs objects are accounted incrementally as
165 * pages are allocated, in order to allow large sparse files.
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
169 static inline int shmem_acct_block(unsigned long flags
, long pages
)
171 if (!(flags
& VM_NORESERVE
))
174 return security_vm_enough_memory_mm(current
->mm
,
175 pages
* VM_ACCT(PAGE_SIZE
));
178 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
180 if (flags
& VM_NORESERVE
)
181 vm_unacct_memory(pages
* VM_ACCT(PAGE_SIZE
));
184 static const struct super_operations shmem_ops
;
185 static const struct address_space_operations shmem_aops
;
186 static const struct file_operations shmem_file_operations
;
187 static const struct inode_operations shmem_inode_operations
;
188 static const struct inode_operations shmem_dir_inode_operations
;
189 static const struct inode_operations shmem_special_inode_operations
;
190 static const struct vm_operations_struct shmem_vm_ops
;
191 static struct file_system_type shmem_fs_type
;
193 static LIST_HEAD(shmem_swaplist
);
194 static DEFINE_MUTEX(shmem_swaplist_mutex
);
196 static int shmem_reserve_inode(struct super_block
*sb
)
198 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
199 if (sbinfo
->max_inodes
) {
200 spin_lock(&sbinfo
->stat_lock
);
201 if (!sbinfo
->free_inodes
) {
202 spin_unlock(&sbinfo
->stat_lock
);
205 sbinfo
->free_inodes
--;
206 spin_unlock(&sbinfo
->stat_lock
);
211 static void shmem_free_inode(struct super_block
*sb
)
213 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
214 if (sbinfo
->max_inodes
) {
215 spin_lock(&sbinfo
->stat_lock
);
216 sbinfo
->free_inodes
++;
217 spin_unlock(&sbinfo
->stat_lock
);
222 * shmem_recalc_inode - recalculate the block usage of an inode
223 * @inode: inode to recalc
225 * We have to calculate the free blocks since the mm can drop
226 * undirtied hole pages behind our back.
228 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
229 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
231 * It has to be called with the spinlock held.
233 static void shmem_recalc_inode(struct inode
*inode
)
235 struct shmem_inode_info
*info
= SHMEM_I(inode
);
238 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
240 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
241 if (sbinfo
->max_blocks
)
242 percpu_counter_add(&sbinfo
->used_blocks
, -freed
);
243 info
->alloced
-= freed
;
244 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
245 shmem_unacct_blocks(info
->flags
, freed
);
249 bool shmem_charge(struct inode
*inode
, long pages
)
251 struct shmem_inode_info
*info
= SHMEM_I(inode
);
252 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
255 if (shmem_acct_block(info
->flags
, pages
))
257 spin_lock_irqsave(&info
->lock
, flags
);
258 info
->alloced
+= pages
;
259 inode
->i_blocks
+= pages
* BLOCKS_PER_PAGE
;
260 shmem_recalc_inode(inode
);
261 spin_unlock_irqrestore(&info
->lock
, flags
);
262 inode
->i_mapping
->nrpages
+= pages
;
264 if (!sbinfo
->max_blocks
)
266 if (percpu_counter_compare(&sbinfo
->used_blocks
,
267 sbinfo
->max_blocks
- pages
) > 0) {
268 inode
->i_mapping
->nrpages
-= pages
;
269 spin_lock_irqsave(&info
->lock
, flags
);
270 info
->alloced
-= pages
;
271 shmem_recalc_inode(inode
);
272 spin_unlock_irqrestore(&info
->lock
, flags
);
273 shmem_unacct_blocks(info
->flags
, pages
);
276 percpu_counter_add(&sbinfo
->used_blocks
, pages
);
280 void shmem_uncharge(struct inode
*inode
, long pages
)
282 struct shmem_inode_info
*info
= SHMEM_I(inode
);
283 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
286 spin_lock_irqsave(&info
->lock
, flags
);
287 info
->alloced
-= pages
;
288 inode
->i_blocks
-= pages
* BLOCKS_PER_PAGE
;
289 shmem_recalc_inode(inode
);
290 spin_unlock_irqrestore(&info
->lock
, flags
);
292 if (sbinfo
->max_blocks
)
293 percpu_counter_sub(&sbinfo
->used_blocks
, pages
);
294 shmem_unacct_blocks(info
->flags
, pages
);
298 * Replace item expected in radix tree by a new item, while holding tree lock.
300 static int shmem_radix_tree_replace(struct address_space
*mapping
,
301 pgoff_t index
, void *expected
, void *replacement
)
306 VM_BUG_ON(!expected
);
307 VM_BUG_ON(!replacement
);
308 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
, index
);
311 item
= radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
);
312 if (item
!= expected
)
314 radix_tree_replace_slot(pslot
, replacement
);
319 * Sometimes, before we decide whether to proceed or to fail, we must check
320 * that an entry was not already brought back from swap by a racing thread.
322 * Checking page is not enough: by the time a SwapCache page is locked, it
323 * might be reused, and again be SwapCache, using the same swap as before.
325 static bool shmem_confirm_swap(struct address_space
*mapping
,
326 pgoff_t index
, swp_entry_t swap
)
331 item
= radix_tree_lookup(&mapping
->page_tree
, index
);
333 return item
== swp_to_radix_entry(swap
);
337 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
340 * disables huge pages for the mount;
342 * enables huge pages for the mount;
343 * SHMEM_HUGE_WITHIN_SIZE:
344 * only allocate huge pages if the page will be fully within i_size,
345 * also respect fadvise()/madvise() hints;
347 * only allocate huge pages if requested with fadvise()/madvise();
350 #define SHMEM_HUGE_NEVER 0
351 #define SHMEM_HUGE_ALWAYS 1
352 #define SHMEM_HUGE_WITHIN_SIZE 2
353 #define SHMEM_HUGE_ADVISE 3
357 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
360 * disables huge on shm_mnt and all mounts, for emergency use;
362 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
365 #define SHMEM_HUGE_DENY (-1)
366 #define SHMEM_HUGE_FORCE (-2)
368 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
369 /* ifdef here to avoid bloating shmem.o when not necessary */
371 int shmem_huge __read_mostly
;
373 static int shmem_parse_huge(const char *str
)
375 if (!strcmp(str
, "never"))
376 return SHMEM_HUGE_NEVER
;
377 if (!strcmp(str
, "always"))
378 return SHMEM_HUGE_ALWAYS
;
379 if (!strcmp(str
, "within_size"))
380 return SHMEM_HUGE_WITHIN_SIZE
;
381 if (!strcmp(str
, "advise"))
382 return SHMEM_HUGE_ADVISE
;
383 if (!strcmp(str
, "deny"))
384 return SHMEM_HUGE_DENY
;
385 if (!strcmp(str
, "force"))
386 return SHMEM_HUGE_FORCE
;
390 static const char *shmem_format_huge(int huge
)
393 case SHMEM_HUGE_NEVER
:
395 case SHMEM_HUGE_ALWAYS
:
397 case SHMEM_HUGE_WITHIN_SIZE
:
398 return "within_size";
399 case SHMEM_HUGE_ADVISE
:
401 case SHMEM_HUGE_DENY
:
403 case SHMEM_HUGE_FORCE
:
411 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
412 struct shrink_control
*sc
, unsigned long nr_to_split
)
414 LIST_HEAD(list
), *pos
, *next
;
415 LIST_HEAD(to_remove
);
417 struct shmem_inode_info
*info
;
419 unsigned long batch
= sc
? sc
->nr_to_scan
: 128;
420 int removed
= 0, split
= 0;
422 if (list_empty(&sbinfo
->shrinklist
))
425 spin_lock(&sbinfo
->shrinklist_lock
);
426 list_for_each_safe(pos
, next
, &sbinfo
->shrinklist
) {
427 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
430 inode
= igrab(&info
->vfs_inode
);
432 /* inode is about to be evicted */
434 list_del_init(&info
->shrinklist
);
439 /* Check if there's anything to gain */
440 if (round_up(inode
->i_size
, PAGE_SIZE
) ==
441 round_up(inode
->i_size
, HPAGE_PMD_SIZE
)) {
442 list_move(&info
->shrinklist
, &to_remove
);
447 list_move(&info
->shrinklist
, &list
);
452 spin_unlock(&sbinfo
->shrinklist_lock
);
454 list_for_each_safe(pos
, next
, &to_remove
) {
455 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
456 inode
= &info
->vfs_inode
;
457 list_del_init(&info
->shrinklist
);
461 list_for_each_safe(pos
, next
, &list
) {
464 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
465 inode
= &info
->vfs_inode
;
467 if (nr_to_split
&& split
>= nr_to_split
) {
472 page
= find_lock_page(inode
->i_mapping
,
473 (inode
->i_size
& HPAGE_PMD_MASK
) >> PAGE_SHIFT
);
477 if (!PageTransHuge(page
)) {
483 ret
= split_huge_page(page
);
488 /* split failed: leave it on the list */
495 list_del_init(&info
->shrinklist
);
500 spin_lock(&sbinfo
->shrinklist_lock
);
501 list_splice_tail(&list
, &sbinfo
->shrinklist
);
502 sbinfo
->shrinklist_len
-= removed
;
503 spin_unlock(&sbinfo
->shrinklist_lock
);
508 static long shmem_unused_huge_scan(struct super_block
*sb
,
509 struct shrink_control
*sc
)
511 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
513 if (!READ_ONCE(sbinfo
->shrinklist_len
))
516 return shmem_unused_huge_shrink(sbinfo
, sc
, 0);
519 static long shmem_unused_huge_count(struct super_block
*sb
,
520 struct shrink_control
*sc
)
522 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
523 return READ_ONCE(sbinfo
->shrinklist_len
);
525 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
527 #define shmem_huge SHMEM_HUGE_DENY
529 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
530 struct shrink_control
*sc
, unsigned long nr_to_split
)
534 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
537 * Like add_to_page_cache_locked, but error if expected item has gone.
539 static int shmem_add_to_page_cache(struct page
*page
,
540 struct address_space
*mapping
,
541 pgoff_t index
, void *expected
)
543 int error
, nr
= hpage_nr_pages(page
);
545 VM_BUG_ON_PAGE(PageTail(page
), page
);
546 VM_BUG_ON_PAGE(index
!= round_down(index
, nr
), page
);
547 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
548 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
549 VM_BUG_ON(expected
&& PageTransHuge(page
));
551 page_ref_add(page
, nr
);
552 page
->mapping
= mapping
;
555 spin_lock_irq(&mapping
->tree_lock
);
556 if (PageTransHuge(page
)) {
557 void __rcu
**results
;
562 if (radix_tree_gang_lookup_slot(&mapping
->page_tree
,
563 &results
, &idx
, index
, 1) &&
564 idx
< index
+ HPAGE_PMD_NR
) {
569 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
570 error
= radix_tree_insert(&mapping
->page_tree
,
571 index
+ i
, page
+ i
);
574 count_vm_event(THP_FILE_ALLOC
);
576 } else if (!expected
) {
577 error
= radix_tree_insert(&mapping
->page_tree
, index
, page
);
579 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
584 mapping
->nrpages
+= nr
;
585 if (PageTransHuge(page
))
586 __inc_node_page_state(page
, NR_SHMEM_THPS
);
587 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, nr
);
588 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, nr
);
589 spin_unlock_irq(&mapping
->tree_lock
);
591 page
->mapping
= NULL
;
592 spin_unlock_irq(&mapping
->tree_lock
);
593 page_ref_sub(page
, nr
);
599 * Like delete_from_page_cache, but substitutes swap for page.
601 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
603 struct address_space
*mapping
= page
->mapping
;
606 VM_BUG_ON_PAGE(PageCompound(page
), page
);
608 spin_lock_irq(&mapping
->tree_lock
);
609 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
610 page
->mapping
= NULL
;
612 __dec_node_page_state(page
, NR_FILE_PAGES
);
613 __dec_node_page_state(page
, NR_SHMEM
);
614 spin_unlock_irq(&mapping
->tree_lock
);
620 * Remove swap entry from radix tree, free the swap and its page cache.
622 static int shmem_free_swap(struct address_space
*mapping
,
623 pgoff_t index
, void *radswap
)
627 spin_lock_irq(&mapping
->tree_lock
);
628 old
= radix_tree_delete_item(&mapping
->page_tree
, index
, radswap
);
629 spin_unlock_irq(&mapping
->tree_lock
);
632 free_swap_and_cache(radix_to_swp_entry(radswap
));
637 * Determine (in bytes) how many of the shmem object's pages mapped by the
638 * given offsets are swapped out.
640 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
641 * as long as the inode doesn't go away and racy results are not a problem.
643 unsigned long shmem_partial_swap_usage(struct address_space
*mapping
,
644 pgoff_t start
, pgoff_t end
)
646 struct radix_tree_iter iter
;
649 unsigned long swapped
= 0;
653 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
654 if (iter
.index
>= end
)
657 page
= radix_tree_deref_slot(slot
);
659 if (radix_tree_deref_retry(page
)) {
660 slot
= radix_tree_iter_retry(&iter
);
664 if (radix_tree_exceptional_entry(page
))
667 if (need_resched()) {
669 slot
= radix_tree_iter_next(&iter
);
675 return swapped
<< PAGE_SHIFT
;
679 * Determine (in bytes) how many of the shmem object's pages mapped by the
680 * given vma is swapped out.
682 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
683 * as long as the inode doesn't go away and racy results are not a problem.
685 unsigned long shmem_swap_usage(struct vm_area_struct
*vma
)
687 struct inode
*inode
= file_inode(vma
->vm_file
);
688 struct shmem_inode_info
*info
= SHMEM_I(inode
);
689 struct address_space
*mapping
= inode
->i_mapping
;
690 unsigned long swapped
;
692 /* Be careful as we don't hold info->lock */
693 swapped
= READ_ONCE(info
->swapped
);
696 * The easier cases are when the shmem object has nothing in swap, or
697 * the vma maps it whole. Then we can simply use the stats that we
703 if (!vma
->vm_pgoff
&& vma
->vm_end
- vma
->vm_start
>= inode
->i_size
)
704 return swapped
<< PAGE_SHIFT
;
706 /* Here comes the more involved part */
707 return shmem_partial_swap_usage(mapping
,
708 linear_page_index(vma
, vma
->vm_start
),
709 linear_page_index(vma
, vma
->vm_end
));
713 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
715 void shmem_unlock_mapping(struct address_space
*mapping
)
718 pgoff_t indices
[PAGEVEC_SIZE
];
721 pagevec_init(&pvec
, 0);
723 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
725 while (!mapping_unevictable(mapping
)) {
727 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
728 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
730 pvec
.nr
= find_get_entries(mapping
, index
,
731 PAGEVEC_SIZE
, pvec
.pages
, indices
);
734 index
= indices
[pvec
.nr
- 1] + 1;
735 pagevec_remove_exceptionals(&pvec
);
736 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
737 pagevec_release(&pvec
);
743 * Remove range of pages and swap entries from radix tree, and free them.
744 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
746 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
749 struct address_space
*mapping
= inode
->i_mapping
;
750 struct shmem_inode_info
*info
= SHMEM_I(inode
);
751 pgoff_t start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
752 pgoff_t end
= (lend
+ 1) >> PAGE_SHIFT
;
753 unsigned int partial_start
= lstart
& (PAGE_SIZE
- 1);
754 unsigned int partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
756 pgoff_t indices
[PAGEVEC_SIZE
];
757 long nr_swaps_freed
= 0;
762 end
= -1; /* unsigned, so actually very big */
764 pagevec_init(&pvec
, 0);
766 while (index
< end
) {
767 pvec
.nr
= find_get_entries(mapping
, index
,
768 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
769 pvec
.pages
, indices
);
772 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
773 struct page
*page
= pvec
.pages
[i
];
779 if (radix_tree_exceptional_entry(page
)) {
782 nr_swaps_freed
+= !shmem_free_swap(mapping
,
787 VM_BUG_ON_PAGE(page_to_pgoff(page
) != index
, page
);
789 if (!trylock_page(page
))
792 if (PageTransTail(page
)) {
793 /* Middle of THP: zero out the page */
794 clear_highpage(page
);
797 } else if (PageTransHuge(page
)) {
798 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
800 * Range ends in the middle of THP:
803 clear_highpage(page
);
807 index
+= HPAGE_PMD_NR
- 1;
808 i
+= HPAGE_PMD_NR
- 1;
811 if (!unfalloc
|| !PageUptodate(page
)) {
812 VM_BUG_ON_PAGE(PageTail(page
), page
);
813 if (page_mapping(page
) == mapping
) {
814 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
815 truncate_inode_page(mapping
, page
);
820 pagevec_remove_exceptionals(&pvec
);
821 pagevec_release(&pvec
);
827 struct page
*page
= NULL
;
828 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
);
830 unsigned int top
= PAGE_SIZE
;
835 zero_user_segment(page
, partial_start
, top
);
836 set_page_dirty(page
);
842 struct page
*page
= NULL
;
843 shmem_getpage(inode
, end
, &page
, SGP_READ
);
845 zero_user_segment(page
, 0, partial_end
);
846 set_page_dirty(page
);
855 while (index
< end
) {
858 pvec
.nr
= find_get_entries(mapping
, index
,
859 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
860 pvec
.pages
, indices
);
862 /* If all gone or hole-punch or unfalloc, we're done */
863 if (index
== start
|| end
!= -1)
865 /* But if truncating, restart to make sure all gone */
869 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
870 struct page
*page
= pvec
.pages
[i
];
876 if (radix_tree_exceptional_entry(page
)) {
879 if (shmem_free_swap(mapping
, index
, page
)) {
880 /* Swap was replaced by page: retry */
890 if (PageTransTail(page
)) {
891 /* Middle of THP: zero out the page */
892 clear_highpage(page
);
895 * Partial thp truncate due 'start' in middle
896 * of THP: don't need to look on these pages
897 * again on !pvec.nr restart.
899 if (index
!= round_down(end
, HPAGE_PMD_NR
))
902 } else if (PageTransHuge(page
)) {
903 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
905 * Range ends in the middle of THP:
908 clear_highpage(page
);
912 index
+= HPAGE_PMD_NR
- 1;
913 i
+= HPAGE_PMD_NR
- 1;
916 if (!unfalloc
|| !PageUptodate(page
)) {
917 VM_BUG_ON_PAGE(PageTail(page
), page
);
918 if (page_mapping(page
) == mapping
) {
919 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
920 truncate_inode_page(mapping
, page
);
922 /* Page was replaced by swap: retry */
930 pagevec_remove_exceptionals(&pvec
);
931 pagevec_release(&pvec
);
935 spin_lock_irq(&info
->lock
);
936 info
->swapped
-= nr_swaps_freed
;
937 shmem_recalc_inode(inode
);
938 spin_unlock_irq(&info
->lock
);
941 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
943 shmem_undo_range(inode
, lstart
, lend
, false);
944 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
946 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
948 static int shmem_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
951 struct inode
*inode
= dentry
->d_inode
;
952 struct shmem_inode_info
*info
= SHMEM_I(inode
);
954 if (info
->alloced
- info
->swapped
!= inode
->i_mapping
->nrpages
) {
955 spin_lock_irq(&info
->lock
);
956 shmem_recalc_inode(inode
);
957 spin_unlock_irq(&info
->lock
);
959 generic_fillattr(inode
, stat
);
963 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
965 struct inode
*inode
= d_inode(dentry
);
966 struct shmem_inode_info
*info
= SHMEM_I(inode
);
967 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
970 error
= setattr_prepare(dentry
, attr
);
974 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
975 loff_t oldsize
= inode
->i_size
;
976 loff_t newsize
= attr
->ia_size
;
978 /* protected by i_mutex */
979 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
980 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
983 if (newsize
!= oldsize
) {
984 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
988 i_size_write(inode
, newsize
);
989 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
991 if (newsize
<= oldsize
) {
992 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
993 if (oldsize
> holebegin
)
994 unmap_mapping_range(inode
->i_mapping
,
997 shmem_truncate_range(inode
,
998 newsize
, (loff_t
)-1);
999 /* unmap again to remove racily COWed private pages */
1000 if (oldsize
> holebegin
)
1001 unmap_mapping_range(inode
->i_mapping
,
1005 * Part of the huge page can be beyond i_size: subject
1006 * to shrink under memory pressure.
1008 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
1009 spin_lock(&sbinfo
->shrinklist_lock
);
1010 if (list_empty(&info
->shrinklist
)) {
1011 list_add_tail(&info
->shrinklist
,
1012 &sbinfo
->shrinklist
);
1013 sbinfo
->shrinklist_len
++;
1015 spin_unlock(&sbinfo
->shrinklist_lock
);
1020 setattr_copy(inode
, attr
);
1021 if (attr
->ia_valid
& ATTR_MODE
)
1022 error
= posix_acl_chmod(inode
, inode
->i_mode
);
1026 static void shmem_evict_inode(struct inode
*inode
)
1028 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1029 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1031 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
1032 shmem_unacct_size(info
->flags
, inode
->i_size
);
1034 shmem_truncate_range(inode
, 0, (loff_t
)-1);
1035 if (!list_empty(&info
->shrinklist
)) {
1036 spin_lock(&sbinfo
->shrinklist_lock
);
1037 if (!list_empty(&info
->shrinklist
)) {
1038 list_del_init(&info
->shrinklist
);
1039 sbinfo
->shrinklist_len
--;
1041 spin_unlock(&sbinfo
->shrinklist_lock
);
1043 if (!list_empty(&info
->swaplist
)) {
1044 mutex_lock(&shmem_swaplist_mutex
);
1045 list_del_init(&info
->swaplist
);
1046 mutex_unlock(&shmem_swaplist_mutex
);
1050 simple_xattrs_free(&info
->xattrs
);
1051 WARN_ON(inode
->i_blocks
);
1052 shmem_free_inode(inode
->i_sb
);
1057 * If swap found in inode, free it and move page from swapcache to filecache.
1059 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
1060 swp_entry_t swap
, struct page
**pagep
)
1062 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
1068 radswap
= swp_to_radix_entry(swap
);
1069 index
= radix_tree_locate_item(&mapping
->page_tree
, radswap
);
1071 return -EAGAIN
; /* tell shmem_unuse we found nothing */
1074 * Move _head_ to start search for next from here.
1075 * But be careful: shmem_evict_inode checks list_empty without taking
1076 * mutex, and there's an instant in list_move_tail when info->swaplist
1077 * would appear empty, if it were the only one on shmem_swaplist.
1079 if (shmem_swaplist
.next
!= &info
->swaplist
)
1080 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
1082 gfp
= mapping_gfp_mask(mapping
);
1083 if (shmem_should_replace_page(*pagep
, gfp
)) {
1084 mutex_unlock(&shmem_swaplist_mutex
);
1085 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
1086 mutex_lock(&shmem_swaplist_mutex
);
1088 * We needed to drop mutex to make that restrictive page
1089 * allocation, but the inode might have been freed while we
1090 * dropped it: although a racing shmem_evict_inode() cannot
1091 * complete without emptying the radix_tree, our page lock
1092 * on this swapcache page is not enough to prevent that -
1093 * free_swap_and_cache() of our swap entry will only
1094 * trylock_page(), removing swap from radix_tree whatever.
1096 * We must not proceed to shmem_add_to_page_cache() if the
1097 * inode has been freed, but of course we cannot rely on
1098 * inode or mapping or info to check that. However, we can
1099 * safely check if our swap entry is still in use (and here
1100 * it can't have got reused for another page): if it's still
1101 * in use, then the inode cannot have been freed yet, and we
1102 * can safely proceed (if it's no longer in use, that tells
1103 * nothing about the inode, but we don't need to unuse swap).
1105 if (!page_swapcount(*pagep
))
1110 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1111 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1112 * beneath us (pagelock doesn't help until the page is in pagecache).
1115 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
1117 if (error
!= -ENOMEM
) {
1119 * Truncation and eviction use free_swap_and_cache(), which
1120 * only does trylock page: if we raced, best clean up here.
1122 delete_from_swap_cache(*pagep
);
1123 set_page_dirty(*pagep
);
1125 spin_lock_irq(&info
->lock
);
1127 spin_unlock_irq(&info
->lock
);
1135 * Search through swapped inodes to find and replace swap by page.
1137 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
1139 struct list_head
*this, *next
;
1140 struct shmem_inode_info
*info
;
1141 struct mem_cgroup
*memcg
;
1145 * There's a faint possibility that swap page was replaced before
1146 * caller locked it: caller will come back later with the right page.
1148 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
1152 * Charge page using GFP_KERNEL while we can wait, before taking
1153 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1154 * Charged back to the user (not to caller) when swap account is used.
1156 error
= mem_cgroup_try_charge(page
, current
->mm
, GFP_KERNEL
, &memcg
,
1160 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1163 mutex_lock(&shmem_swaplist_mutex
);
1164 list_for_each_safe(this, next
, &shmem_swaplist
) {
1165 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
1167 error
= shmem_unuse_inode(info
, swap
, &page
);
1169 list_del_init(&info
->swaplist
);
1171 if (error
!= -EAGAIN
)
1173 /* found nothing in this: move on to search the next */
1175 mutex_unlock(&shmem_swaplist_mutex
);
1178 if (error
!= -ENOMEM
)
1180 mem_cgroup_cancel_charge(page
, memcg
, false);
1182 mem_cgroup_commit_charge(page
, memcg
, true, false);
1190 * Move the page from the page cache to the swap cache.
1192 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1194 struct shmem_inode_info
*info
;
1195 struct address_space
*mapping
;
1196 struct inode
*inode
;
1200 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1201 BUG_ON(!PageLocked(page
));
1202 mapping
= page
->mapping
;
1203 index
= page
->index
;
1204 inode
= mapping
->host
;
1205 info
= SHMEM_I(inode
);
1206 if (info
->flags
& VM_LOCKED
)
1208 if (!total_swap_pages
)
1212 * Our capabilities prevent regular writeback or sync from ever calling
1213 * shmem_writepage; but a stacking filesystem might use ->writepage of
1214 * its underlying filesystem, in which case tmpfs should write out to
1215 * swap only in response to memory pressure, and not for the writeback
1218 if (!wbc
->for_reclaim
) {
1219 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1224 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1225 * value into swapfile.c, the only way we can correctly account for a
1226 * fallocated page arriving here is now to initialize it and write it.
1228 * That's okay for a page already fallocated earlier, but if we have
1229 * not yet completed the fallocation, then (a) we want to keep track
1230 * of this page in case we have to undo it, and (b) it may not be a
1231 * good idea to continue anyway, once we're pushing into swap. So
1232 * reactivate the page, and let shmem_fallocate() quit when too many.
1234 if (!PageUptodate(page
)) {
1235 if (inode
->i_private
) {
1236 struct shmem_falloc
*shmem_falloc
;
1237 spin_lock(&inode
->i_lock
);
1238 shmem_falloc
= inode
->i_private
;
1240 !shmem_falloc
->waitq
&&
1241 index
>= shmem_falloc
->start
&&
1242 index
< shmem_falloc
->next
)
1243 shmem_falloc
->nr_unswapped
++;
1245 shmem_falloc
= NULL
;
1246 spin_unlock(&inode
->i_lock
);
1250 clear_highpage(page
);
1251 flush_dcache_page(page
);
1252 SetPageUptodate(page
);
1255 swap
= get_swap_page();
1259 if (mem_cgroup_try_charge_swap(page
, swap
))
1263 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1264 * if it's not already there. Do it now before the page is
1265 * moved to swap cache, when its pagelock no longer protects
1266 * the inode from eviction. But don't unlock the mutex until
1267 * we've incremented swapped, because shmem_unuse_inode() will
1268 * prune a !swapped inode from the swaplist under this mutex.
1270 mutex_lock(&shmem_swaplist_mutex
);
1271 if (list_empty(&info
->swaplist
))
1272 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
1274 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1275 spin_lock_irq(&info
->lock
);
1276 shmem_recalc_inode(inode
);
1278 spin_unlock_irq(&info
->lock
);
1280 swap_shmem_alloc(swap
);
1281 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
1283 mutex_unlock(&shmem_swaplist_mutex
);
1284 BUG_ON(page_mapped(page
));
1285 swap_writepage(page
, wbc
);
1289 mutex_unlock(&shmem_swaplist_mutex
);
1291 swapcache_free(swap
);
1293 set_page_dirty(page
);
1294 if (wbc
->for_reclaim
)
1295 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1300 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1301 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1305 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1306 return; /* show nothing */
1308 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
1310 seq_printf(seq
, ",mpol=%s", buffer
);
1313 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1315 struct mempolicy
*mpol
= NULL
;
1317 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1318 mpol
= sbinfo
->mpol
;
1320 spin_unlock(&sbinfo
->stat_lock
);
1324 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1325 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1328 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1332 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1334 #define vm_policy vm_private_data
1337 static void shmem_pseudo_vma_init(struct vm_area_struct
*vma
,
1338 struct shmem_inode_info
*info
, pgoff_t index
)
1340 /* Create a pseudo vma that just contains the policy */
1342 /* Bias interleave by inode number to distribute better across nodes */
1343 vma
->vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
1345 vma
->vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
1348 static void shmem_pseudo_vma_destroy(struct vm_area_struct
*vma
)
1350 /* Drop reference taken by mpol_shared_policy_lookup() */
1351 mpol_cond_put(vma
->vm_policy
);
1354 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
1355 struct shmem_inode_info
*info
, pgoff_t index
)
1357 struct vm_area_struct pvma
;
1360 shmem_pseudo_vma_init(&pvma
, info
, index
);
1361 page
= swapin_readahead(swap
, gfp
, &pvma
, 0);
1362 shmem_pseudo_vma_destroy(&pvma
);
1367 static struct page
*shmem_alloc_hugepage(gfp_t gfp
,
1368 struct shmem_inode_info
*info
, pgoff_t index
)
1370 struct vm_area_struct pvma
;
1371 struct inode
*inode
= &info
->vfs_inode
;
1372 struct address_space
*mapping
= inode
->i_mapping
;
1373 pgoff_t idx
, hindex
;
1374 void __rcu
**results
;
1377 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1380 hindex
= round_down(index
, HPAGE_PMD_NR
);
1382 if (radix_tree_gang_lookup_slot(&mapping
->page_tree
, &results
, &idx
,
1383 hindex
, 1) && idx
< hindex
+ HPAGE_PMD_NR
) {
1389 shmem_pseudo_vma_init(&pvma
, info
, hindex
);
1390 page
= alloc_pages_vma(gfp
| __GFP_COMP
| __GFP_NORETRY
| __GFP_NOWARN
,
1391 HPAGE_PMD_ORDER
, &pvma
, 0, numa_node_id(), true);
1392 shmem_pseudo_vma_destroy(&pvma
);
1394 prep_transhuge_page(page
);
1398 static struct page
*shmem_alloc_page(gfp_t gfp
,
1399 struct shmem_inode_info
*info
, pgoff_t index
)
1401 struct vm_area_struct pvma
;
1404 shmem_pseudo_vma_init(&pvma
, info
, index
);
1405 page
= alloc_page_vma(gfp
, &pvma
, 0);
1406 shmem_pseudo_vma_destroy(&pvma
);
1411 static struct page
*shmem_alloc_and_acct_page(gfp_t gfp
,
1412 struct shmem_inode_info
*info
, struct shmem_sb_info
*sbinfo
,
1413 pgoff_t index
, bool huge
)
1419 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1421 nr
= huge
? HPAGE_PMD_NR
: 1;
1423 if (shmem_acct_block(info
->flags
, nr
))
1425 if (sbinfo
->max_blocks
) {
1426 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1427 sbinfo
->max_blocks
- nr
) > 0)
1429 percpu_counter_add(&sbinfo
->used_blocks
, nr
);
1433 page
= shmem_alloc_hugepage(gfp
, info
, index
);
1435 page
= shmem_alloc_page(gfp
, info
, index
);
1437 __SetPageLocked(page
);
1438 __SetPageSwapBacked(page
);
1443 if (sbinfo
->max_blocks
)
1444 percpu_counter_add(&sbinfo
->used_blocks
, -nr
);
1446 shmem_unacct_blocks(info
->flags
, nr
);
1448 return ERR_PTR(err
);
1452 * When a page is moved from swapcache to shmem filecache (either by the
1453 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1454 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1455 * ignorance of the mapping it belongs to. If that mapping has special
1456 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1457 * we may need to copy to a suitable page before moving to filecache.
1459 * In a future release, this may well be extended to respect cpuset and
1460 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1461 * but for now it is a simple matter of zone.
1463 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
1465 return page_zonenum(page
) > gfp_zone(gfp
);
1468 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
1469 struct shmem_inode_info
*info
, pgoff_t index
)
1471 struct page
*oldpage
, *newpage
;
1472 struct address_space
*swap_mapping
;
1477 swap_index
= page_private(oldpage
);
1478 swap_mapping
= page_mapping(oldpage
);
1481 * We have arrived here because our zones are constrained, so don't
1482 * limit chance of success by further cpuset and node constraints.
1484 gfp
&= ~GFP_CONSTRAINT_MASK
;
1485 newpage
= shmem_alloc_page(gfp
, info
, index
);
1490 copy_highpage(newpage
, oldpage
);
1491 flush_dcache_page(newpage
);
1493 __SetPageLocked(newpage
);
1494 __SetPageSwapBacked(newpage
);
1495 SetPageUptodate(newpage
);
1496 set_page_private(newpage
, swap_index
);
1497 SetPageSwapCache(newpage
);
1500 * Our caller will very soon move newpage out of swapcache, but it's
1501 * a nice clean interface for us to replace oldpage by newpage there.
1503 spin_lock_irq(&swap_mapping
->tree_lock
);
1504 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1507 __inc_node_page_state(newpage
, NR_FILE_PAGES
);
1508 __dec_node_page_state(oldpage
, NR_FILE_PAGES
);
1510 spin_unlock_irq(&swap_mapping
->tree_lock
);
1512 if (unlikely(error
)) {
1514 * Is this possible? I think not, now that our callers check
1515 * both PageSwapCache and page_private after getting page lock;
1516 * but be defensive. Reverse old to newpage for clear and free.
1520 mem_cgroup_migrate(oldpage
, newpage
);
1521 lru_cache_add_anon(newpage
);
1525 ClearPageSwapCache(oldpage
);
1526 set_page_private(oldpage
, 0);
1528 unlock_page(oldpage
);
1535 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1537 * If we allocate a new one we do not mark it dirty. That's up to the
1538 * vm. If we swap it in we mark it dirty since we also free the swap
1539 * entry since a page cannot live in both the swap and page cache.
1541 * fault_mm and fault_type are only supplied by shmem_fault:
1542 * otherwise they are NULL.
1544 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1545 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
,
1546 struct mm_struct
*fault_mm
, int *fault_type
)
1548 struct address_space
*mapping
= inode
->i_mapping
;
1549 struct shmem_inode_info
*info
;
1550 struct shmem_sb_info
*sbinfo
;
1551 struct mm_struct
*charge_mm
;
1552 struct mem_cgroup
*memcg
;
1555 enum sgp_type sgp_huge
= sgp
;
1556 pgoff_t hindex
= index
;
1561 if (index
> (MAX_LFS_FILESIZE
>> PAGE_SHIFT
))
1563 if (sgp
== SGP_NOHUGE
|| sgp
== SGP_HUGE
)
1567 page
= find_lock_entry(mapping
, index
);
1568 if (radix_tree_exceptional_entry(page
)) {
1569 swap
= radix_to_swp_entry(page
);
1573 if (sgp
<= SGP_CACHE
&&
1574 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1579 if (page
&& sgp
== SGP_WRITE
)
1580 mark_page_accessed(page
);
1582 /* fallocated page? */
1583 if (page
&& !PageUptodate(page
)) {
1584 if (sgp
!= SGP_READ
)
1590 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1596 * Fast cache lookup did not find it:
1597 * bring it back from swap or allocate.
1599 info
= SHMEM_I(inode
);
1600 sbinfo
= SHMEM_SB(inode
->i_sb
);
1601 charge_mm
= fault_mm
? : current
->mm
;
1604 /* Look it up and read it in.. */
1605 page
= lookup_swap_cache(swap
);
1607 /* Or update major stats only when swapin succeeds?? */
1609 *fault_type
|= VM_FAULT_MAJOR
;
1610 count_vm_event(PGMAJFAULT
);
1611 mem_cgroup_count_vm_event(fault_mm
, PGMAJFAULT
);
1613 /* Here we actually start the io */
1614 page
= shmem_swapin(swap
, gfp
, info
, index
);
1621 /* We have to do this with page locked to prevent races */
1623 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1624 !shmem_confirm_swap(mapping
, index
, swap
)) {
1625 error
= -EEXIST
; /* try again */
1628 if (!PageUptodate(page
)) {
1632 wait_on_page_writeback(page
);
1634 if (shmem_should_replace_page(page
, gfp
)) {
1635 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1640 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1643 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1644 swp_to_radix_entry(swap
));
1646 * We already confirmed swap under page lock, and make
1647 * no memory allocation here, so usually no possibility
1648 * of error; but free_swap_and_cache() only trylocks a
1649 * page, so it is just possible that the entry has been
1650 * truncated or holepunched since swap was confirmed.
1651 * shmem_undo_range() will have done some of the
1652 * unaccounting, now delete_from_swap_cache() will do
1654 * Reset swap.val? No, leave it so "failed" goes back to
1655 * "repeat": reading a hole and writing should succeed.
1658 mem_cgroup_cancel_charge(page
, memcg
, false);
1659 delete_from_swap_cache(page
);
1665 mem_cgroup_commit_charge(page
, memcg
, true, false);
1667 spin_lock_irq(&info
->lock
);
1669 shmem_recalc_inode(inode
);
1670 spin_unlock_irq(&info
->lock
);
1672 if (sgp
== SGP_WRITE
)
1673 mark_page_accessed(page
);
1675 delete_from_swap_cache(page
);
1676 set_page_dirty(page
);
1680 /* shmem_symlink() */
1681 if (mapping
->a_ops
!= &shmem_aops
)
1683 if (shmem_huge
== SHMEM_HUGE_DENY
|| sgp_huge
== SGP_NOHUGE
)
1685 if (shmem_huge
== SHMEM_HUGE_FORCE
)
1687 switch (sbinfo
->huge
) {
1690 case SHMEM_HUGE_NEVER
:
1692 case SHMEM_HUGE_WITHIN_SIZE
:
1693 off
= round_up(index
, HPAGE_PMD_NR
);
1694 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
1695 if (i_size
>= HPAGE_PMD_SIZE
&&
1696 i_size
>> PAGE_SHIFT
>= off
)
1699 case SHMEM_HUGE_ADVISE
:
1700 if (sgp_huge
== SGP_HUGE
)
1702 /* TODO: implement fadvise() hints */
1707 page
= shmem_alloc_and_acct_page(gfp
, info
, sbinfo
,
1710 alloc_nohuge
: page
= shmem_alloc_and_acct_page(gfp
, info
, sbinfo
,
1715 error
= PTR_ERR(page
);
1717 if (error
!= -ENOSPC
)
1720 * Try to reclaim some spece by splitting a huge page
1721 * beyond i_size on the filesystem.
1725 ret
= shmem_unused_huge_shrink(sbinfo
, NULL
, 1);
1726 if (ret
== SHRINK_STOP
)
1734 if (PageTransHuge(page
))
1735 hindex
= round_down(index
, HPAGE_PMD_NR
);
1739 if (sgp
== SGP_WRITE
)
1740 __SetPageReferenced(page
);
1742 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1743 PageTransHuge(page
));
1746 error
= radix_tree_maybe_preload_order(gfp
& GFP_RECLAIM_MASK
,
1747 compound_order(page
));
1749 error
= shmem_add_to_page_cache(page
, mapping
, hindex
,
1751 radix_tree_preload_end();
1754 mem_cgroup_cancel_charge(page
, memcg
,
1755 PageTransHuge(page
));
1758 mem_cgroup_commit_charge(page
, memcg
, false,
1759 PageTransHuge(page
));
1760 lru_cache_add_anon(page
);
1762 spin_lock_irq(&info
->lock
);
1763 info
->alloced
+= 1 << compound_order(page
);
1764 inode
->i_blocks
+= BLOCKS_PER_PAGE
<< compound_order(page
);
1765 shmem_recalc_inode(inode
);
1766 spin_unlock_irq(&info
->lock
);
1769 if (PageTransHuge(page
) &&
1770 DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
) <
1771 hindex
+ HPAGE_PMD_NR
- 1) {
1773 * Part of the huge page is beyond i_size: subject
1774 * to shrink under memory pressure.
1776 spin_lock(&sbinfo
->shrinklist_lock
);
1777 if (list_empty(&info
->shrinklist
)) {
1778 list_add_tail(&info
->shrinklist
,
1779 &sbinfo
->shrinklist
);
1780 sbinfo
->shrinklist_len
++;
1782 spin_unlock(&sbinfo
->shrinklist_lock
);
1786 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1788 if (sgp
== SGP_FALLOC
)
1792 * Let SGP_WRITE caller clear ends if write does not fill page;
1793 * but SGP_FALLOC on a page fallocated earlier must initialize
1794 * it now, lest undo on failure cancel our earlier guarantee.
1796 if (sgp
!= SGP_WRITE
&& !PageUptodate(page
)) {
1797 struct page
*head
= compound_head(page
);
1800 for (i
= 0; i
< (1 << compound_order(head
)); i
++) {
1801 clear_highpage(head
+ i
);
1802 flush_dcache_page(head
+ i
);
1804 SetPageUptodate(head
);
1808 /* Perhaps the file has been truncated since we checked */
1809 if (sgp
<= SGP_CACHE
&&
1810 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1812 ClearPageDirty(page
);
1813 delete_from_page_cache(page
);
1814 spin_lock_irq(&info
->lock
);
1815 shmem_recalc_inode(inode
);
1816 spin_unlock_irq(&info
->lock
);
1821 *pagep
= page
+ index
- hindex
;
1828 if (sbinfo
->max_blocks
)
1829 percpu_counter_sub(&sbinfo
->used_blocks
,
1830 1 << compound_order(page
));
1831 shmem_unacct_blocks(info
->flags
, 1 << compound_order(page
));
1833 if (PageTransHuge(page
)) {
1839 if (swap
.val
&& !shmem_confirm_swap(mapping
, index
, swap
))
1846 if (error
== -ENOSPC
&& !once
++) {
1847 info
= SHMEM_I(inode
);
1848 spin_lock_irq(&info
->lock
);
1849 shmem_recalc_inode(inode
);
1850 spin_unlock_irq(&info
->lock
);
1853 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1859 * This is like autoremove_wake_function, but it removes the wait queue
1860 * entry unconditionally - even if something else had already woken the
1863 static int synchronous_wake_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
1865 int ret
= default_wake_function(wait
, mode
, sync
, key
);
1866 list_del_init(&wait
->task_list
);
1870 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1872 struct inode
*inode
= file_inode(vma
->vm_file
);
1873 gfp_t gfp
= mapping_gfp_mask(inode
->i_mapping
);
1876 int ret
= VM_FAULT_LOCKED
;
1879 * Trinity finds that probing a hole which tmpfs is punching can
1880 * prevent the hole-punch from ever completing: which in turn
1881 * locks writers out with its hold on i_mutex. So refrain from
1882 * faulting pages into the hole while it's being punched. Although
1883 * shmem_undo_range() does remove the additions, it may be unable to
1884 * keep up, as each new page needs its own unmap_mapping_range() call,
1885 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1887 * It does not matter if we sometimes reach this check just before the
1888 * hole-punch begins, so that one fault then races with the punch:
1889 * we just need to make racing faults a rare case.
1891 * The implementation below would be much simpler if we just used a
1892 * standard mutex or completion: but we cannot take i_mutex in fault,
1893 * and bloating every shmem inode for this unlikely case would be sad.
1895 if (unlikely(inode
->i_private
)) {
1896 struct shmem_falloc
*shmem_falloc
;
1898 spin_lock(&inode
->i_lock
);
1899 shmem_falloc
= inode
->i_private
;
1901 shmem_falloc
->waitq
&&
1902 vmf
->pgoff
>= shmem_falloc
->start
&&
1903 vmf
->pgoff
< shmem_falloc
->next
) {
1904 wait_queue_head_t
*shmem_falloc_waitq
;
1905 DEFINE_WAIT_FUNC(shmem_fault_wait
, synchronous_wake_function
);
1907 ret
= VM_FAULT_NOPAGE
;
1908 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1909 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1910 /* It's polite to up mmap_sem if we can */
1911 up_read(&vma
->vm_mm
->mmap_sem
);
1912 ret
= VM_FAULT_RETRY
;
1915 shmem_falloc_waitq
= shmem_falloc
->waitq
;
1916 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
1917 TASK_UNINTERRUPTIBLE
);
1918 spin_unlock(&inode
->i_lock
);
1922 * shmem_falloc_waitq points into the shmem_fallocate()
1923 * stack of the hole-punching task: shmem_falloc_waitq
1924 * is usually invalid by the time we reach here, but
1925 * finish_wait() does not dereference it in that case;
1926 * though i_lock needed lest racing with wake_up_all().
1928 spin_lock(&inode
->i_lock
);
1929 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
1930 spin_unlock(&inode
->i_lock
);
1933 spin_unlock(&inode
->i_lock
);
1937 if (vma
->vm_flags
& VM_HUGEPAGE
)
1939 else if (vma
->vm_flags
& VM_NOHUGEPAGE
)
1942 error
= shmem_getpage_gfp(inode
, vmf
->pgoff
, &vmf
->page
, sgp
,
1943 gfp
, vma
->vm_mm
, &ret
);
1945 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1949 unsigned long shmem_get_unmapped_area(struct file
*file
,
1950 unsigned long uaddr
, unsigned long len
,
1951 unsigned long pgoff
, unsigned long flags
)
1953 unsigned long (*get_area
)(struct file
*,
1954 unsigned long, unsigned long, unsigned long, unsigned long);
1956 unsigned long offset
;
1957 unsigned long inflated_len
;
1958 unsigned long inflated_addr
;
1959 unsigned long inflated_offset
;
1961 if (len
> TASK_SIZE
)
1964 get_area
= current
->mm
->get_unmapped_area
;
1965 addr
= get_area(file
, uaddr
, len
, pgoff
, flags
);
1967 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1969 if (IS_ERR_VALUE(addr
))
1971 if (addr
& ~PAGE_MASK
)
1973 if (addr
> TASK_SIZE
- len
)
1976 if (shmem_huge
== SHMEM_HUGE_DENY
)
1978 if (len
< HPAGE_PMD_SIZE
)
1980 if (flags
& MAP_FIXED
)
1983 * Our priority is to support MAP_SHARED mapped hugely;
1984 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
1985 * But if caller specified an address hint, respect that as before.
1990 if (shmem_huge
!= SHMEM_HUGE_FORCE
) {
1991 struct super_block
*sb
;
1994 VM_BUG_ON(file
->f_op
!= &shmem_file_operations
);
1995 sb
= file_inode(file
)->i_sb
;
1998 * Called directly from mm/mmap.c, or drivers/char/mem.c
1999 * for "/dev/zero", to create a shared anonymous object.
2001 if (IS_ERR(shm_mnt
))
2003 sb
= shm_mnt
->mnt_sb
;
2005 if (SHMEM_SB(sb
)->huge
== SHMEM_HUGE_NEVER
)
2009 offset
= (pgoff
<< PAGE_SHIFT
) & (HPAGE_PMD_SIZE
-1);
2010 if (offset
&& offset
+ len
< 2 * HPAGE_PMD_SIZE
)
2012 if ((addr
& (HPAGE_PMD_SIZE
-1)) == offset
)
2015 inflated_len
= len
+ HPAGE_PMD_SIZE
- PAGE_SIZE
;
2016 if (inflated_len
> TASK_SIZE
)
2018 if (inflated_len
< len
)
2021 inflated_addr
= get_area(NULL
, 0, inflated_len
, 0, flags
);
2022 if (IS_ERR_VALUE(inflated_addr
))
2024 if (inflated_addr
& ~PAGE_MASK
)
2027 inflated_offset
= inflated_addr
& (HPAGE_PMD_SIZE
-1);
2028 inflated_addr
+= offset
- inflated_offset
;
2029 if (inflated_offset
> offset
)
2030 inflated_addr
+= HPAGE_PMD_SIZE
;
2032 if (inflated_addr
> TASK_SIZE
- len
)
2034 return inflated_addr
;
2038 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
2040 struct inode
*inode
= file_inode(vma
->vm_file
);
2041 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
2044 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
2047 struct inode
*inode
= file_inode(vma
->vm_file
);
2050 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2051 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
2055 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2057 struct inode
*inode
= file_inode(file
);
2058 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2059 int retval
= -ENOMEM
;
2061 spin_lock_irq(&info
->lock
);
2062 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
2063 if (!user_shm_lock(inode
->i_size
, user
))
2065 info
->flags
|= VM_LOCKED
;
2066 mapping_set_unevictable(file
->f_mapping
);
2068 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
2069 user_shm_unlock(inode
->i_size
, user
);
2070 info
->flags
&= ~VM_LOCKED
;
2071 mapping_clear_unevictable(file
->f_mapping
);
2076 spin_unlock_irq(&info
->lock
);
2080 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2082 file_accessed(file
);
2083 vma
->vm_ops
= &shmem_vm_ops
;
2084 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
2085 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
2086 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
2087 khugepaged_enter(vma
, vma
->vm_flags
);
2092 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
2093 umode_t mode
, dev_t dev
, unsigned long flags
)
2095 struct inode
*inode
;
2096 struct shmem_inode_info
*info
;
2097 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2099 if (shmem_reserve_inode(sb
))
2102 inode
= new_inode(sb
);
2104 inode
->i_ino
= get_next_ino();
2105 inode_init_owner(inode
, dir
, mode
);
2106 inode
->i_blocks
= 0;
2107 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2108 inode
->i_generation
= get_seconds();
2109 info
= SHMEM_I(inode
);
2110 memset(info
, 0, (char *)inode
- (char *)info
);
2111 spin_lock_init(&info
->lock
);
2112 info
->seals
= F_SEAL_SEAL
;
2113 info
->flags
= flags
& VM_NORESERVE
;
2114 INIT_LIST_HEAD(&info
->shrinklist
);
2115 INIT_LIST_HEAD(&info
->swaplist
);
2116 simple_xattrs_init(&info
->xattrs
);
2117 cache_no_acl(inode
);
2119 switch (mode
& S_IFMT
) {
2121 inode
->i_op
= &shmem_special_inode_operations
;
2122 init_special_inode(inode
, mode
, dev
);
2125 inode
->i_mapping
->a_ops
= &shmem_aops
;
2126 inode
->i_op
= &shmem_inode_operations
;
2127 inode
->i_fop
= &shmem_file_operations
;
2128 mpol_shared_policy_init(&info
->policy
,
2129 shmem_get_sbmpol(sbinfo
));
2133 /* Some things misbehave if size == 0 on a directory */
2134 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
2135 inode
->i_op
= &shmem_dir_inode_operations
;
2136 inode
->i_fop
= &simple_dir_operations
;
2140 * Must not load anything in the rbtree,
2141 * mpol_free_shared_policy will not be called.
2143 mpol_shared_policy_init(&info
->policy
, NULL
);
2147 shmem_free_inode(sb
);
2151 bool shmem_mapping(struct address_space
*mapping
)
2156 return mapping
->host
->i_sb
->s_op
== &shmem_ops
;
2160 static const struct inode_operations shmem_symlink_inode_operations
;
2161 static const struct inode_operations shmem_short_symlink_operations
;
2163 #ifdef CONFIG_TMPFS_XATTR
2164 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
2166 #define shmem_initxattrs NULL
2170 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
2171 loff_t pos
, unsigned len
, unsigned flags
,
2172 struct page
**pagep
, void **fsdata
)
2174 struct inode
*inode
= mapping
->host
;
2175 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2176 pgoff_t index
= pos
>> PAGE_SHIFT
;
2178 /* i_mutex is held by caller */
2179 if (unlikely(info
->seals
)) {
2180 if (info
->seals
& F_SEAL_WRITE
)
2182 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
2186 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
);
2190 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
2191 loff_t pos
, unsigned len
, unsigned copied
,
2192 struct page
*page
, void *fsdata
)
2194 struct inode
*inode
= mapping
->host
;
2196 if (pos
+ copied
> inode
->i_size
)
2197 i_size_write(inode
, pos
+ copied
);
2199 if (!PageUptodate(page
)) {
2200 struct page
*head
= compound_head(page
);
2201 if (PageTransCompound(page
)) {
2204 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2205 if (head
+ i
== page
)
2207 clear_highpage(head
+ i
);
2208 flush_dcache_page(head
+ i
);
2211 if (copied
< PAGE_SIZE
) {
2212 unsigned from
= pos
& (PAGE_SIZE
- 1);
2213 zero_user_segments(page
, 0, from
,
2214 from
+ copied
, PAGE_SIZE
);
2216 SetPageUptodate(head
);
2218 set_page_dirty(page
);
2225 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
2227 struct file
*file
= iocb
->ki_filp
;
2228 struct inode
*inode
= file_inode(file
);
2229 struct address_space
*mapping
= inode
->i_mapping
;
2231 unsigned long offset
;
2232 enum sgp_type sgp
= SGP_READ
;
2235 loff_t
*ppos
= &iocb
->ki_pos
;
2238 * Might this read be for a stacking filesystem? Then when reading
2239 * holes of a sparse file, we actually need to allocate those pages,
2240 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2242 if (!iter_is_iovec(to
))
2245 index
= *ppos
>> PAGE_SHIFT
;
2246 offset
= *ppos
& ~PAGE_MASK
;
2249 struct page
*page
= NULL
;
2251 unsigned long nr
, ret
;
2252 loff_t i_size
= i_size_read(inode
);
2254 end_index
= i_size
>> PAGE_SHIFT
;
2255 if (index
> end_index
)
2257 if (index
== end_index
) {
2258 nr
= i_size
& ~PAGE_MASK
;
2263 error
= shmem_getpage(inode
, index
, &page
, sgp
);
2265 if (error
== -EINVAL
)
2270 if (sgp
== SGP_CACHE
)
2271 set_page_dirty(page
);
2276 * We must evaluate after, since reads (unlike writes)
2277 * are called without i_mutex protection against truncate
2280 i_size
= i_size_read(inode
);
2281 end_index
= i_size
>> PAGE_SHIFT
;
2282 if (index
== end_index
) {
2283 nr
= i_size
& ~PAGE_MASK
;
2294 * If users can be writing to this page using arbitrary
2295 * virtual addresses, take care about potential aliasing
2296 * before reading the page on the kernel side.
2298 if (mapping_writably_mapped(mapping
))
2299 flush_dcache_page(page
);
2301 * Mark the page accessed if we read the beginning.
2304 mark_page_accessed(page
);
2306 page
= ZERO_PAGE(0);
2311 * Ok, we have the page, and it's up-to-date, so
2312 * now we can copy it to user space...
2314 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
2317 index
+= offset
>> PAGE_SHIFT
;
2318 offset
&= ~PAGE_MASK
;
2321 if (!iov_iter_count(to
))
2330 *ppos
= ((loff_t
) index
<< PAGE_SHIFT
) + offset
;
2331 file_accessed(file
);
2332 return retval
? retval
: error
;
2336 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2338 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
2339 pgoff_t index
, pgoff_t end
, int whence
)
2342 struct pagevec pvec
;
2343 pgoff_t indices
[PAGEVEC_SIZE
];
2347 pagevec_init(&pvec
, 0);
2348 pvec
.nr
= 1; /* start small: we may be there already */
2350 pvec
.nr
= find_get_entries(mapping
, index
,
2351 pvec
.nr
, pvec
.pages
, indices
);
2353 if (whence
== SEEK_DATA
)
2357 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
2358 if (index
< indices
[i
]) {
2359 if (whence
== SEEK_HOLE
) {
2365 page
= pvec
.pages
[i
];
2366 if (page
&& !radix_tree_exceptional_entry(page
)) {
2367 if (!PageUptodate(page
))
2371 (page
&& whence
== SEEK_DATA
) ||
2372 (!page
&& whence
== SEEK_HOLE
)) {
2377 pagevec_remove_exceptionals(&pvec
);
2378 pagevec_release(&pvec
);
2379 pvec
.nr
= PAGEVEC_SIZE
;
2385 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2387 struct address_space
*mapping
= file
->f_mapping
;
2388 struct inode
*inode
= mapping
->host
;
2392 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
2393 return generic_file_llseek_size(file
, offset
, whence
,
2394 MAX_LFS_FILESIZE
, i_size_read(inode
));
2396 /* We're holding i_mutex so we can access i_size directly */
2400 else if (offset
>= inode
->i_size
)
2403 start
= offset
>> PAGE_SHIFT
;
2404 end
= (inode
->i_size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2405 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
2406 new_offset
<<= PAGE_SHIFT
;
2407 if (new_offset
> offset
) {
2408 if (new_offset
< inode
->i_size
)
2409 offset
= new_offset
;
2410 else if (whence
== SEEK_DATA
)
2413 offset
= inode
->i_size
;
2418 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
2419 inode_unlock(inode
);
2424 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2425 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2427 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2428 #define LAST_SCAN 4 /* about 150ms max */
2430 static void shmem_tag_pins(struct address_space
*mapping
)
2432 struct radix_tree_iter iter
;
2441 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
2442 page
= radix_tree_deref_slot(slot
);
2443 if (!page
|| radix_tree_exception(page
)) {
2444 if (radix_tree_deref_retry(page
)) {
2445 slot
= radix_tree_iter_retry(&iter
);
2448 } else if (page_count(page
) - page_mapcount(page
) > 1) {
2449 spin_lock_irq(&mapping
->tree_lock
);
2450 radix_tree_tag_set(&mapping
->page_tree
, iter
.index
,
2452 spin_unlock_irq(&mapping
->tree_lock
);
2455 if (need_resched()) {
2457 slot
= radix_tree_iter_next(&iter
);
2464 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2465 * via get_user_pages(), drivers might have some pending I/O without any active
2466 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2467 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2468 * them to be dropped.
2469 * The caller must guarantee that no new user will acquire writable references
2470 * to those pages to avoid races.
2472 static int shmem_wait_for_pins(struct address_space
*mapping
)
2474 struct radix_tree_iter iter
;
2480 shmem_tag_pins(mapping
);
2483 for (scan
= 0; scan
<= LAST_SCAN
; scan
++) {
2484 if (!radix_tree_tagged(&mapping
->page_tree
, SHMEM_TAG_PINNED
))
2488 lru_add_drain_all();
2489 else if (schedule_timeout_killable((HZ
<< scan
) / 200))
2494 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
,
2495 start
, SHMEM_TAG_PINNED
) {
2497 page
= radix_tree_deref_slot(slot
);
2498 if (radix_tree_exception(page
)) {
2499 if (radix_tree_deref_retry(page
)) {
2500 slot
= radix_tree_iter_retry(&iter
);
2508 page_count(page
) - page_mapcount(page
) != 1) {
2509 if (scan
< LAST_SCAN
)
2510 goto continue_resched
;
2513 * On the last scan, we clean up all those tags
2514 * we inserted; but make a note that we still
2515 * found pages pinned.
2520 spin_lock_irq(&mapping
->tree_lock
);
2521 radix_tree_tag_clear(&mapping
->page_tree
,
2522 iter
.index
, SHMEM_TAG_PINNED
);
2523 spin_unlock_irq(&mapping
->tree_lock
);
2525 if (need_resched()) {
2527 slot
= radix_tree_iter_next(&iter
);
2536 #define F_ALL_SEALS (F_SEAL_SEAL | \
2541 int shmem_add_seals(struct file
*file
, unsigned int seals
)
2543 struct inode
*inode
= file_inode(file
);
2544 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2549 * Sealing allows multiple parties to share a shmem-file but restrict
2550 * access to a specific subset of file operations. Seals can only be
2551 * added, but never removed. This way, mutually untrusted parties can
2552 * share common memory regions with a well-defined policy. A malicious
2553 * peer can thus never perform unwanted operations on a shared object.
2555 * Seals are only supported on special shmem-files and always affect
2556 * the whole underlying inode. Once a seal is set, it may prevent some
2557 * kinds of access to the file. Currently, the following seals are
2559 * SEAL_SEAL: Prevent further seals from being set on this file
2560 * SEAL_SHRINK: Prevent the file from shrinking
2561 * SEAL_GROW: Prevent the file from growing
2562 * SEAL_WRITE: Prevent write access to the file
2564 * As we don't require any trust relationship between two parties, we
2565 * must prevent seals from being removed. Therefore, sealing a file
2566 * only adds a given set of seals to the file, it never touches
2567 * existing seals. Furthermore, the "setting seals"-operation can be
2568 * sealed itself, which basically prevents any further seal from being
2571 * Semantics of sealing are only defined on volatile files. Only
2572 * anonymous shmem files support sealing. More importantly, seals are
2573 * never written to disk. Therefore, there's no plan to support it on
2577 if (file
->f_op
!= &shmem_file_operations
)
2579 if (!(file
->f_mode
& FMODE_WRITE
))
2581 if (seals
& ~(unsigned int)F_ALL_SEALS
)
2586 if (info
->seals
& F_SEAL_SEAL
) {
2591 if ((seals
& F_SEAL_WRITE
) && !(info
->seals
& F_SEAL_WRITE
)) {
2592 error
= mapping_deny_writable(file
->f_mapping
);
2596 error
= shmem_wait_for_pins(file
->f_mapping
);
2598 mapping_allow_writable(file
->f_mapping
);
2603 info
->seals
|= seals
;
2607 inode_unlock(inode
);
2610 EXPORT_SYMBOL_GPL(shmem_add_seals
);
2612 int shmem_get_seals(struct file
*file
)
2614 if (file
->f_op
!= &shmem_file_operations
)
2617 return SHMEM_I(file_inode(file
))->seals
;
2619 EXPORT_SYMBOL_GPL(shmem_get_seals
);
2621 long shmem_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2627 /* disallow upper 32bit */
2631 error
= shmem_add_seals(file
, arg
);
2634 error
= shmem_get_seals(file
);
2644 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2647 struct inode
*inode
= file_inode(file
);
2648 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2649 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2650 struct shmem_falloc shmem_falloc
;
2651 pgoff_t start
, index
, end
;
2654 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2659 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2660 struct address_space
*mapping
= file
->f_mapping
;
2661 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2662 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2663 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2665 /* protected by i_mutex */
2666 if (info
->seals
& F_SEAL_WRITE
) {
2671 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2672 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2673 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2674 spin_lock(&inode
->i_lock
);
2675 inode
->i_private
= &shmem_falloc
;
2676 spin_unlock(&inode
->i_lock
);
2678 if ((u64
)unmap_end
> (u64
)unmap_start
)
2679 unmap_mapping_range(mapping
, unmap_start
,
2680 1 + unmap_end
- unmap_start
, 0);
2681 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2682 /* No need to unmap again: hole-punching leaves COWed pages */
2684 spin_lock(&inode
->i_lock
);
2685 inode
->i_private
= NULL
;
2686 wake_up_all(&shmem_falloc_waitq
);
2687 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq
.task_list
));
2688 spin_unlock(&inode
->i_lock
);
2693 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2694 error
= inode_newsize_ok(inode
, offset
+ len
);
2698 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2703 start
= offset
>> PAGE_SHIFT
;
2704 end
= (offset
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2705 /* Try to avoid a swapstorm if len is impossible to satisfy */
2706 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2711 shmem_falloc
.waitq
= NULL
;
2712 shmem_falloc
.start
= start
;
2713 shmem_falloc
.next
= start
;
2714 shmem_falloc
.nr_falloced
= 0;
2715 shmem_falloc
.nr_unswapped
= 0;
2716 spin_lock(&inode
->i_lock
);
2717 inode
->i_private
= &shmem_falloc
;
2718 spin_unlock(&inode
->i_lock
);
2720 for (index
= start
; index
< end
; index
++) {
2724 * Good, the fallocate(2) manpage permits EINTR: we may have
2725 * been interrupted because we are using up too much memory.
2727 if (signal_pending(current
))
2729 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2732 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
);
2734 /* Remove the !PageUptodate pages we added */
2735 if (index
> start
) {
2736 shmem_undo_range(inode
,
2737 (loff_t
)start
<< PAGE_SHIFT
,
2738 ((loff_t
)index
<< PAGE_SHIFT
) - 1, true);
2744 * Inform shmem_writepage() how far we have reached.
2745 * No need for lock or barrier: we have the page lock.
2747 shmem_falloc
.next
++;
2748 if (!PageUptodate(page
))
2749 shmem_falloc
.nr_falloced
++;
2752 * If !PageUptodate, leave it that way so that freeable pages
2753 * can be recognized if we need to rollback on error later.
2754 * But set_page_dirty so that memory pressure will swap rather
2755 * than free the pages we are allocating (and SGP_CACHE pages
2756 * might still be clean: we now need to mark those dirty too).
2758 set_page_dirty(page
);
2764 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2765 i_size_write(inode
, offset
+ len
);
2766 inode
->i_ctime
= current_time(inode
);
2768 spin_lock(&inode
->i_lock
);
2769 inode
->i_private
= NULL
;
2770 spin_unlock(&inode
->i_lock
);
2772 inode_unlock(inode
);
2776 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2778 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2780 buf
->f_type
= TMPFS_MAGIC
;
2781 buf
->f_bsize
= PAGE_SIZE
;
2782 buf
->f_namelen
= NAME_MAX
;
2783 if (sbinfo
->max_blocks
) {
2784 buf
->f_blocks
= sbinfo
->max_blocks
;
2786 buf
->f_bfree
= sbinfo
->max_blocks
-
2787 percpu_counter_sum(&sbinfo
->used_blocks
);
2789 if (sbinfo
->max_inodes
) {
2790 buf
->f_files
= sbinfo
->max_inodes
;
2791 buf
->f_ffree
= sbinfo
->free_inodes
;
2793 /* else leave those fields 0 like simple_statfs */
2798 * File creation. Allocate an inode, and we're done..
2801 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2803 struct inode
*inode
;
2804 int error
= -ENOSPC
;
2806 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2808 error
= simple_acl_create(dir
, inode
);
2811 error
= security_inode_init_security(inode
, dir
,
2813 shmem_initxattrs
, NULL
);
2814 if (error
&& error
!= -EOPNOTSUPP
)
2818 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2819 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
2820 d_instantiate(dentry
, inode
);
2821 dget(dentry
); /* Extra count - pin the dentry in core */
2830 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2832 struct inode
*inode
;
2833 int error
= -ENOSPC
;
2835 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2837 error
= security_inode_init_security(inode
, dir
,
2839 shmem_initxattrs
, NULL
);
2840 if (error
&& error
!= -EOPNOTSUPP
)
2842 error
= simple_acl_create(dir
, inode
);
2845 d_tmpfile(dentry
, inode
);
2853 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2857 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
2863 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
2866 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
2872 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2874 struct inode
*inode
= d_inode(old_dentry
);
2878 * No ordinary (disk based) filesystem counts links as inodes;
2879 * but each new link needs a new dentry, pinning lowmem, and
2880 * tmpfs dentries cannot be pruned until they are unlinked.
2882 ret
= shmem_reserve_inode(inode
->i_sb
);
2886 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2887 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2889 ihold(inode
); /* New dentry reference */
2890 dget(dentry
); /* Extra pinning count for the created dentry */
2891 d_instantiate(dentry
, inode
);
2896 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2898 struct inode
*inode
= d_inode(dentry
);
2900 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2901 shmem_free_inode(inode
->i_sb
);
2903 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2904 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2906 dput(dentry
); /* Undo the count from "create" - this does all the work */
2910 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2912 if (!simple_empty(dentry
))
2915 drop_nlink(d_inode(dentry
));
2917 return shmem_unlink(dir
, dentry
);
2920 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2922 bool old_is_dir
= d_is_dir(old_dentry
);
2923 bool new_is_dir
= d_is_dir(new_dentry
);
2925 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
2927 drop_nlink(old_dir
);
2930 drop_nlink(new_dir
);
2934 old_dir
->i_ctime
= old_dir
->i_mtime
=
2935 new_dir
->i_ctime
= new_dir
->i_mtime
=
2936 d_inode(old_dentry
)->i_ctime
=
2937 d_inode(new_dentry
)->i_ctime
= current_time(old_dir
);
2942 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
2944 struct dentry
*whiteout
;
2947 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
2951 error
= shmem_mknod(old_dir
, whiteout
,
2952 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
2958 * Cheat and hash the whiteout while the old dentry is still in
2959 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2961 * d_lookup() will consistently find one of them at this point,
2962 * not sure which one, but that isn't even important.
2969 * The VFS layer already does all the dentry stuff for rename,
2970 * we just have to decrement the usage count for the target if
2971 * it exists so that the VFS layer correctly free's it when it
2974 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
2976 struct inode
*inode
= d_inode(old_dentry
);
2977 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
2979 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
2982 if (flags
& RENAME_EXCHANGE
)
2983 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
2985 if (!simple_empty(new_dentry
))
2988 if (flags
& RENAME_WHITEOUT
) {
2991 error
= shmem_whiteout(old_dir
, old_dentry
);
2996 if (d_really_is_positive(new_dentry
)) {
2997 (void) shmem_unlink(new_dir
, new_dentry
);
2998 if (they_are_dirs
) {
2999 drop_nlink(d_inode(new_dentry
));
3000 drop_nlink(old_dir
);
3002 } else if (they_are_dirs
) {
3003 drop_nlink(old_dir
);
3007 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
3008 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
3009 old_dir
->i_ctime
= old_dir
->i_mtime
=
3010 new_dir
->i_ctime
= new_dir
->i_mtime
=
3011 inode
->i_ctime
= current_time(old_dir
);
3015 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
3019 struct inode
*inode
;
3021 struct shmem_inode_info
*info
;
3023 len
= strlen(symname
) + 1;
3024 if (len
> PAGE_SIZE
)
3025 return -ENAMETOOLONG
;
3027 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
3031 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
3032 shmem_initxattrs
, NULL
);
3034 if (error
!= -EOPNOTSUPP
) {
3041 info
= SHMEM_I(inode
);
3042 inode
->i_size
= len
-1;
3043 if (len
<= SHORT_SYMLINK_LEN
) {
3044 inode
->i_link
= kmemdup(symname
, len
, GFP_KERNEL
);
3045 if (!inode
->i_link
) {
3049 inode
->i_op
= &shmem_short_symlink_operations
;
3051 inode_nohighmem(inode
);
3052 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
);
3057 inode
->i_mapping
->a_ops
= &shmem_aops
;
3058 inode
->i_op
= &shmem_symlink_inode_operations
;
3059 memcpy(page_address(page
), symname
, len
);
3060 SetPageUptodate(page
);
3061 set_page_dirty(page
);
3065 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3066 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3067 d_instantiate(dentry
, inode
);
3072 static void shmem_put_link(void *arg
)
3074 mark_page_accessed(arg
);
3078 static const char *shmem_get_link(struct dentry
*dentry
,
3079 struct inode
*inode
,
3080 struct delayed_call
*done
)
3082 struct page
*page
= NULL
;
3085 page
= find_get_page(inode
->i_mapping
, 0);
3087 return ERR_PTR(-ECHILD
);
3088 if (!PageUptodate(page
)) {
3090 return ERR_PTR(-ECHILD
);
3093 error
= shmem_getpage(inode
, 0, &page
, SGP_READ
);
3095 return ERR_PTR(error
);
3098 set_delayed_call(done
, shmem_put_link
, page
);
3099 return page_address(page
);
3102 #ifdef CONFIG_TMPFS_XATTR
3104 * Superblocks without xattr inode operations may get some security.* xattr
3105 * support from the LSM "for free". As soon as we have any other xattrs
3106 * like ACLs, we also need to implement the security.* handlers at
3107 * filesystem level, though.
3111 * Callback for security_inode_init_security() for acquiring xattrs.
3113 static int shmem_initxattrs(struct inode
*inode
,
3114 const struct xattr
*xattr_array
,
3117 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3118 const struct xattr
*xattr
;
3119 struct simple_xattr
*new_xattr
;
3122 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
3123 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
3127 len
= strlen(xattr
->name
) + 1;
3128 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
3130 if (!new_xattr
->name
) {
3135 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
3136 XATTR_SECURITY_PREFIX_LEN
);
3137 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
3140 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
3146 static int shmem_xattr_handler_get(const struct xattr_handler
*handler
,
3147 struct dentry
*unused
, struct inode
*inode
,
3148 const char *name
, void *buffer
, size_t size
)
3150 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3152 name
= xattr_full_name(handler
, name
);
3153 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
3156 static int shmem_xattr_handler_set(const struct xattr_handler
*handler
,
3157 struct dentry
*unused
, struct inode
*inode
,
3158 const char *name
, const void *value
,
3159 size_t size
, int flags
)
3161 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3163 name
= xattr_full_name(handler
, name
);
3164 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
3167 static const struct xattr_handler shmem_security_xattr_handler
= {
3168 .prefix
= XATTR_SECURITY_PREFIX
,
3169 .get
= shmem_xattr_handler_get
,
3170 .set
= shmem_xattr_handler_set
,
3173 static const struct xattr_handler shmem_trusted_xattr_handler
= {
3174 .prefix
= XATTR_TRUSTED_PREFIX
,
3175 .get
= shmem_xattr_handler_get
,
3176 .set
= shmem_xattr_handler_set
,
3179 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
3180 #ifdef CONFIG_TMPFS_POSIX_ACL
3181 &posix_acl_access_xattr_handler
,
3182 &posix_acl_default_xattr_handler
,
3184 &shmem_security_xattr_handler
,
3185 &shmem_trusted_xattr_handler
,
3189 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
3191 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
3192 return simple_xattr_list(d_inode(dentry
), &info
->xattrs
, buffer
, size
);
3194 #endif /* CONFIG_TMPFS_XATTR */
3196 static const struct inode_operations shmem_short_symlink_operations
= {
3197 .readlink
= generic_readlink
,
3198 .get_link
= simple_get_link
,
3199 #ifdef CONFIG_TMPFS_XATTR
3200 .listxattr
= shmem_listxattr
,
3204 static const struct inode_operations shmem_symlink_inode_operations
= {
3205 .readlink
= generic_readlink
,
3206 .get_link
= shmem_get_link
,
3207 #ifdef CONFIG_TMPFS_XATTR
3208 .listxattr
= shmem_listxattr
,
3212 static struct dentry
*shmem_get_parent(struct dentry
*child
)
3214 return ERR_PTR(-ESTALE
);
3217 static int shmem_match(struct inode
*ino
, void *vfh
)
3221 inum
= (inum
<< 32) | fh
[1];
3222 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
3225 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
3226 struct fid
*fid
, int fh_len
, int fh_type
)
3228 struct inode
*inode
;
3229 struct dentry
*dentry
= NULL
;
3236 inum
= (inum
<< 32) | fid
->raw
[1];
3238 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
3239 shmem_match
, fid
->raw
);
3241 dentry
= d_find_alias(inode
);
3248 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
3249 struct inode
*parent
)
3253 return FILEID_INVALID
;
3256 if (inode_unhashed(inode
)) {
3257 /* Unfortunately insert_inode_hash is not idempotent,
3258 * so as we hash inodes here rather than at creation
3259 * time, we need a lock to ensure we only try
3262 static DEFINE_SPINLOCK(lock
);
3264 if (inode_unhashed(inode
))
3265 __insert_inode_hash(inode
,
3266 inode
->i_ino
+ inode
->i_generation
);
3270 fh
[0] = inode
->i_generation
;
3271 fh
[1] = inode
->i_ino
;
3272 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
3278 static const struct export_operations shmem_export_ops
= {
3279 .get_parent
= shmem_get_parent
,
3280 .encode_fh
= shmem_encode_fh
,
3281 .fh_to_dentry
= shmem_fh_to_dentry
,
3284 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
3287 char *this_char
, *value
, *rest
;
3288 struct mempolicy
*mpol
= NULL
;
3292 while (options
!= NULL
) {
3293 this_char
= options
;
3296 * NUL-terminate this option: unfortunately,
3297 * mount options form a comma-separated list,
3298 * but mpol's nodelist may also contain commas.
3300 options
= strchr(options
, ',');
3301 if (options
== NULL
)
3304 if (!isdigit(*options
)) {
3311 if ((value
= strchr(this_char
,'=')) != NULL
) {
3314 pr_err("tmpfs: No value for mount option '%s'\n",
3319 if (!strcmp(this_char
,"size")) {
3320 unsigned long long size
;
3321 size
= memparse(value
,&rest
);
3323 size
<<= PAGE_SHIFT
;
3324 size
*= totalram_pages
;
3330 sbinfo
->max_blocks
=
3331 DIV_ROUND_UP(size
, PAGE_SIZE
);
3332 } else if (!strcmp(this_char
,"nr_blocks")) {
3333 sbinfo
->max_blocks
= memparse(value
, &rest
);
3336 } else if (!strcmp(this_char
,"nr_inodes")) {
3337 sbinfo
->max_inodes
= memparse(value
, &rest
);
3340 } else if (!strcmp(this_char
,"mode")) {
3343 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
3346 } else if (!strcmp(this_char
,"uid")) {
3349 uid
= simple_strtoul(value
, &rest
, 0);
3352 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
3353 if (!uid_valid(sbinfo
->uid
))
3355 } else if (!strcmp(this_char
,"gid")) {
3358 gid
= simple_strtoul(value
, &rest
, 0);
3361 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
3362 if (!gid_valid(sbinfo
->gid
))
3364 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3365 } else if (!strcmp(this_char
, "huge")) {
3367 huge
= shmem_parse_huge(value
);
3370 if (!has_transparent_hugepage() &&
3371 huge
!= SHMEM_HUGE_NEVER
)
3373 sbinfo
->huge
= huge
;
3376 } else if (!strcmp(this_char
,"mpol")) {
3379 if (mpol_parse_str(value
, &mpol
))
3383 pr_err("tmpfs: Bad mount option %s\n", this_char
);
3387 sbinfo
->mpol
= mpol
;
3391 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3399 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
3401 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3402 struct shmem_sb_info config
= *sbinfo
;
3403 unsigned long inodes
;
3404 int error
= -EINVAL
;
3407 if (shmem_parse_options(data
, &config
, true))
3410 spin_lock(&sbinfo
->stat_lock
);
3411 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
3412 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
3414 if (config
.max_inodes
< inodes
)
3417 * Those tests disallow limited->unlimited while any are in use;
3418 * but we must separately disallow unlimited->limited, because
3419 * in that case we have no record of how much is already in use.
3421 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
3423 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
3427 sbinfo
->huge
= config
.huge
;
3428 sbinfo
->max_blocks
= config
.max_blocks
;
3429 sbinfo
->max_inodes
= config
.max_inodes
;
3430 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
3433 * Preserve previous mempolicy unless mpol remount option was specified.
3436 mpol_put(sbinfo
->mpol
);
3437 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
3440 spin_unlock(&sbinfo
->stat_lock
);
3444 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
3446 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
3448 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
3449 seq_printf(seq
, ",size=%luk",
3450 sbinfo
->max_blocks
<< (PAGE_SHIFT
- 10));
3451 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
3452 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
3453 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
3454 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
3455 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
3456 seq_printf(seq
, ",uid=%u",
3457 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
3458 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
3459 seq_printf(seq
, ",gid=%u",
3460 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
3461 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3462 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3464 seq_printf(seq
, ",huge=%s", shmem_format_huge(sbinfo
->huge
));
3466 shmem_show_mpol(seq
, sbinfo
->mpol
);
3470 #define MFD_NAME_PREFIX "memfd:"
3471 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3472 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3474 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3476 SYSCALL_DEFINE2(memfd_create
,
3477 const char __user
*, uname
,
3478 unsigned int, flags
)
3480 struct shmem_inode_info
*info
;
3486 if (flags
& ~(unsigned int)MFD_ALL_FLAGS
)
3489 /* length includes terminating zero */
3490 len
= strnlen_user(uname
, MFD_NAME_MAX_LEN
+ 1);
3493 if (len
> MFD_NAME_MAX_LEN
+ 1)
3496 name
= kmalloc(len
+ MFD_NAME_PREFIX_LEN
, GFP_TEMPORARY
);
3500 strcpy(name
, MFD_NAME_PREFIX
);
3501 if (copy_from_user(&name
[MFD_NAME_PREFIX_LEN
], uname
, len
)) {
3506 /* terminating-zero may have changed after strnlen_user() returned */
3507 if (name
[len
+ MFD_NAME_PREFIX_LEN
- 1]) {
3512 fd
= get_unused_fd_flags((flags
& MFD_CLOEXEC
) ? O_CLOEXEC
: 0);
3518 file
= shmem_file_setup(name
, 0, VM_NORESERVE
);
3520 error
= PTR_ERR(file
);
3523 info
= SHMEM_I(file_inode(file
));
3524 file
->f_mode
|= FMODE_LSEEK
| FMODE_PREAD
| FMODE_PWRITE
;
3525 file
->f_flags
|= O_RDWR
| O_LARGEFILE
;
3526 if (flags
& MFD_ALLOW_SEALING
)
3527 info
->seals
&= ~F_SEAL_SEAL
;
3529 fd_install(fd
, file
);
3540 #endif /* CONFIG_TMPFS */
3542 static void shmem_put_super(struct super_block
*sb
)
3544 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3546 percpu_counter_destroy(&sbinfo
->used_blocks
);
3547 mpol_put(sbinfo
->mpol
);
3549 sb
->s_fs_info
= NULL
;
3552 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
3554 struct inode
*inode
;
3555 struct shmem_sb_info
*sbinfo
;
3558 /* Round up to L1_CACHE_BYTES to resist false sharing */
3559 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3560 L1_CACHE_BYTES
), GFP_KERNEL
);
3564 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
3565 sbinfo
->uid
= current_fsuid();
3566 sbinfo
->gid
= current_fsgid();
3567 sb
->s_fs_info
= sbinfo
;
3571 * Per default we only allow half of the physical ram per
3572 * tmpfs instance, limiting inodes to one per page of lowmem;
3573 * but the internal instance is left unlimited.
3575 if (!(sb
->s_flags
& MS_KERNMOUNT
)) {
3576 sbinfo
->max_blocks
= shmem_default_max_blocks();
3577 sbinfo
->max_inodes
= shmem_default_max_inodes();
3578 if (shmem_parse_options(data
, sbinfo
, false)) {
3583 sb
->s_flags
|= MS_NOUSER
;
3585 sb
->s_export_op
= &shmem_export_ops
;
3586 sb
->s_flags
|= MS_NOSEC
;
3588 sb
->s_flags
|= MS_NOUSER
;
3591 spin_lock_init(&sbinfo
->stat_lock
);
3592 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3594 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3595 spin_lock_init(&sbinfo
->shrinklist_lock
);
3596 INIT_LIST_HEAD(&sbinfo
->shrinklist
);
3598 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3599 sb
->s_blocksize
= PAGE_SIZE
;
3600 sb
->s_blocksize_bits
= PAGE_SHIFT
;
3601 sb
->s_magic
= TMPFS_MAGIC
;
3602 sb
->s_op
= &shmem_ops
;
3603 sb
->s_time_gran
= 1;
3604 #ifdef CONFIG_TMPFS_XATTR
3605 sb
->s_xattr
= shmem_xattr_handlers
;
3607 #ifdef CONFIG_TMPFS_POSIX_ACL
3608 sb
->s_flags
|= MS_POSIXACL
;
3611 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3614 inode
->i_uid
= sbinfo
->uid
;
3615 inode
->i_gid
= sbinfo
->gid
;
3616 sb
->s_root
= d_make_root(inode
);
3622 shmem_put_super(sb
);
3626 static struct kmem_cache
*shmem_inode_cachep
;
3628 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3630 struct shmem_inode_info
*info
;
3631 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3634 return &info
->vfs_inode
;
3637 static void shmem_destroy_callback(struct rcu_head
*head
)
3639 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
3640 if (S_ISLNK(inode
->i_mode
))
3641 kfree(inode
->i_link
);
3642 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3645 static void shmem_destroy_inode(struct inode
*inode
)
3647 if (S_ISREG(inode
->i_mode
))
3648 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3649 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
3652 static void shmem_init_inode(void *foo
)
3654 struct shmem_inode_info
*info
= foo
;
3655 inode_init_once(&info
->vfs_inode
);
3658 static int shmem_init_inodecache(void)
3660 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3661 sizeof(struct shmem_inode_info
),
3662 0, SLAB_PANIC
|SLAB_ACCOUNT
, shmem_init_inode
);
3666 static void shmem_destroy_inodecache(void)
3668 kmem_cache_destroy(shmem_inode_cachep
);
3671 static const struct address_space_operations shmem_aops
= {
3672 .writepage
= shmem_writepage
,
3673 .set_page_dirty
= __set_page_dirty_no_writeback
,
3675 .write_begin
= shmem_write_begin
,
3676 .write_end
= shmem_write_end
,
3678 #ifdef CONFIG_MIGRATION
3679 .migratepage
= migrate_page
,
3681 .error_remove_page
= generic_error_remove_page
,
3684 static const struct file_operations shmem_file_operations
= {
3686 .get_unmapped_area
= shmem_get_unmapped_area
,
3688 .llseek
= shmem_file_llseek
,
3689 .read_iter
= shmem_file_read_iter
,
3690 .write_iter
= generic_file_write_iter
,
3691 .fsync
= noop_fsync
,
3692 .splice_read
= generic_file_splice_read
,
3693 .splice_write
= iter_file_splice_write
,
3694 .fallocate
= shmem_fallocate
,
3698 static const struct inode_operations shmem_inode_operations
= {
3699 .getattr
= shmem_getattr
,
3700 .setattr
= shmem_setattr
,
3701 #ifdef CONFIG_TMPFS_XATTR
3702 .listxattr
= shmem_listxattr
,
3703 .set_acl
= simple_set_acl
,
3707 static const struct inode_operations shmem_dir_inode_operations
= {
3709 .create
= shmem_create
,
3710 .lookup
= simple_lookup
,
3712 .unlink
= shmem_unlink
,
3713 .symlink
= shmem_symlink
,
3714 .mkdir
= shmem_mkdir
,
3715 .rmdir
= shmem_rmdir
,
3716 .mknod
= shmem_mknod
,
3717 .rename
= shmem_rename2
,
3718 .tmpfile
= shmem_tmpfile
,
3720 #ifdef CONFIG_TMPFS_XATTR
3721 .listxattr
= shmem_listxattr
,
3723 #ifdef CONFIG_TMPFS_POSIX_ACL
3724 .setattr
= shmem_setattr
,
3725 .set_acl
= simple_set_acl
,
3729 static const struct inode_operations shmem_special_inode_operations
= {
3730 #ifdef CONFIG_TMPFS_XATTR
3731 .listxattr
= shmem_listxattr
,
3733 #ifdef CONFIG_TMPFS_POSIX_ACL
3734 .setattr
= shmem_setattr
,
3735 .set_acl
= simple_set_acl
,
3739 static const struct super_operations shmem_ops
= {
3740 .alloc_inode
= shmem_alloc_inode
,
3741 .destroy_inode
= shmem_destroy_inode
,
3743 .statfs
= shmem_statfs
,
3744 .remount_fs
= shmem_remount_fs
,
3745 .show_options
= shmem_show_options
,
3747 .evict_inode
= shmem_evict_inode
,
3748 .drop_inode
= generic_delete_inode
,
3749 .put_super
= shmem_put_super
,
3750 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3751 .nr_cached_objects
= shmem_unused_huge_count
,
3752 .free_cached_objects
= shmem_unused_huge_scan
,
3756 static const struct vm_operations_struct shmem_vm_ops
= {
3757 .fault
= shmem_fault
,
3758 .map_pages
= filemap_map_pages
,
3760 .set_policy
= shmem_set_policy
,
3761 .get_policy
= shmem_get_policy
,
3765 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
3766 int flags
, const char *dev_name
, void *data
)
3768 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
3771 static struct file_system_type shmem_fs_type
= {
3772 .owner
= THIS_MODULE
,
3774 .mount
= shmem_mount
,
3775 .kill_sb
= kill_litter_super
,
3776 .fs_flags
= FS_USERNS_MOUNT
,
3779 int __init
shmem_init(void)
3783 /* If rootfs called this, don't re-init */
3784 if (shmem_inode_cachep
)
3787 error
= shmem_init_inodecache();
3791 error
= register_filesystem(&shmem_fs_type
);
3793 pr_err("Could not register tmpfs\n");
3797 shm_mnt
= kern_mount(&shmem_fs_type
);
3798 if (IS_ERR(shm_mnt
)) {
3799 error
= PTR_ERR(shm_mnt
);
3800 pr_err("Could not kern_mount tmpfs\n");
3804 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3805 if (has_transparent_hugepage() && shmem_huge
< SHMEM_HUGE_DENY
)
3806 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3808 shmem_huge
= 0; /* just in case it was patched */
3813 unregister_filesystem(&shmem_fs_type
);
3815 shmem_destroy_inodecache();
3817 shm_mnt
= ERR_PTR(error
);
3821 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3822 static ssize_t
shmem_enabled_show(struct kobject
*kobj
,
3823 struct kobj_attribute
*attr
, char *buf
)
3827 SHMEM_HUGE_WITHIN_SIZE
,
3835 for (i
= 0, count
= 0; i
< ARRAY_SIZE(values
); i
++) {
3836 const char *fmt
= shmem_huge
== values
[i
] ? "[%s] " : "%s ";
3838 count
+= sprintf(buf
+ count
, fmt
,
3839 shmem_format_huge(values
[i
]));
3841 buf
[count
- 1] = '\n';
3845 static ssize_t
shmem_enabled_store(struct kobject
*kobj
,
3846 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
3851 if (count
+ 1 > sizeof(tmp
))
3853 memcpy(tmp
, buf
, count
);
3855 if (count
&& tmp
[count
- 1] == '\n')
3856 tmp
[count
- 1] = '\0';
3858 huge
= shmem_parse_huge(tmp
);
3859 if (huge
== -EINVAL
)
3861 if (!has_transparent_hugepage() &&
3862 huge
!= SHMEM_HUGE_NEVER
&& huge
!= SHMEM_HUGE_DENY
)
3866 if (shmem_huge
< SHMEM_HUGE_DENY
)
3867 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3871 struct kobj_attribute shmem_enabled_attr
=
3872 __ATTR(shmem_enabled
, 0644, shmem_enabled_show
, shmem_enabled_store
);
3873 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3875 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3876 bool shmem_huge_enabled(struct vm_area_struct
*vma
)
3878 struct inode
*inode
= file_inode(vma
->vm_file
);
3879 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
3883 if (shmem_huge
== SHMEM_HUGE_FORCE
)
3885 if (shmem_huge
== SHMEM_HUGE_DENY
)
3887 switch (sbinfo
->huge
) {
3888 case SHMEM_HUGE_NEVER
:
3890 case SHMEM_HUGE_ALWAYS
:
3892 case SHMEM_HUGE_WITHIN_SIZE
:
3893 off
= round_up(vma
->vm_pgoff
, HPAGE_PMD_NR
);
3894 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
3895 if (i_size
>= HPAGE_PMD_SIZE
&&
3896 i_size
>> PAGE_SHIFT
>= off
)
3898 case SHMEM_HUGE_ADVISE
:
3899 /* TODO: implement fadvise() hints */
3900 return (vma
->vm_flags
& VM_HUGEPAGE
);
3906 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3908 #else /* !CONFIG_SHMEM */
3911 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3913 * This is intended for small system where the benefits of the full
3914 * shmem code (swap-backed and resource-limited) are outweighed by
3915 * their complexity. On systems without swap this code should be
3916 * effectively equivalent, but much lighter weight.
3919 static struct file_system_type shmem_fs_type
= {
3921 .mount
= ramfs_mount
,
3922 .kill_sb
= kill_litter_super
,
3923 .fs_flags
= FS_USERNS_MOUNT
,
3926 int __init
shmem_init(void)
3928 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
3930 shm_mnt
= kern_mount(&shmem_fs_type
);
3931 BUG_ON(IS_ERR(shm_mnt
));
3936 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
3941 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
3946 void shmem_unlock_mapping(struct address_space
*mapping
)
3951 unsigned long shmem_get_unmapped_area(struct file
*file
,
3952 unsigned long addr
, unsigned long len
,
3953 unsigned long pgoff
, unsigned long flags
)
3955 return current
->mm
->get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
3959 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
3961 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
3963 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
3965 #define shmem_vm_ops generic_file_vm_ops
3966 #define shmem_file_operations ramfs_file_operations
3967 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3968 #define shmem_acct_size(flags, size) 0
3969 #define shmem_unacct_size(flags, size) do {} while (0)
3971 #endif /* CONFIG_SHMEM */
3975 static const struct dentry_operations anon_ops
= {
3976 .d_dname
= simple_dname
3979 static struct file
*__shmem_file_setup(const char *name
, loff_t size
,
3980 unsigned long flags
, unsigned int i_flags
)
3983 struct inode
*inode
;
3985 struct super_block
*sb
;
3988 if (IS_ERR(shm_mnt
))
3989 return ERR_CAST(shm_mnt
);
3991 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
3992 return ERR_PTR(-EINVAL
);
3994 if (shmem_acct_size(flags
, size
))
3995 return ERR_PTR(-ENOMEM
);
3997 res
= ERR_PTR(-ENOMEM
);
3999 this.len
= strlen(name
);
4000 this.hash
= 0; /* will go */
4001 sb
= shm_mnt
->mnt_sb
;
4002 path
.mnt
= mntget(shm_mnt
);
4003 path
.dentry
= d_alloc_pseudo(sb
, &this);
4006 d_set_d_op(path
.dentry
, &anon_ops
);
4008 res
= ERR_PTR(-ENOSPC
);
4009 inode
= shmem_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
4013 inode
->i_flags
|= i_flags
;
4014 d_instantiate(path
.dentry
, inode
);
4015 inode
->i_size
= size
;
4016 clear_nlink(inode
); /* It is unlinked */
4017 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
4021 res
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
4022 &shmem_file_operations
);
4029 shmem_unacct_size(flags
, size
);
4036 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4037 * kernel internal. There will be NO LSM permission checks against the
4038 * underlying inode. So users of this interface must do LSM checks at a
4039 * higher layer. The users are the big_key and shm implementations. LSM
4040 * checks are provided at the key or shm level rather than the inode.
4041 * @name: name for dentry (to be seen in /proc/<pid>/maps
4042 * @size: size to be set for the file
4043 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4045 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4047 return __shmem_file_setup(name
, size
, flags
, S_PRIVATE
);
4051 * shmem_file_setup - get an unlinked file living in tmpfs
4052 * @name: name for dentry (to be seen in /proc/<pid>/maps
4053 * @size: size to be set for the file
4054 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4056 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4058 return __shmem_file_setup(name
, size
, flags
, 0);
4060 EXPORT_SYMBOL_GPL(shmem_file_setup
);
4063 * shmem_zero_setup - setup a shared anonymous mapping
4064 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4066 int shmem_zero_setup(struct vm_area_struct
*vma
)
4069 loff_t size
= vma
->vm_end
- vma
->vm_start
;
4072 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4073 * between XFS directory reading and selinux: since this file is only
4074 * accessible to the user through its mapping, use S_PRIVATE flag to
4075 * bypass file security, in the same way as shmem_kernel_file_setup().
4077 file
= __shmem_file_setup("dev/zero", size
, vma
->vm_flags
, S_PRIVATE
);
4079 return PTR_ERR(file
);
4083 vma
->vm_file
= file
;
4084 vma
->vm_ops
= &shmem_vm_ops
;
4086 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
4087 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
4088 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
4089 khugepaged_enter(vma
, vma
->vm_flags
);
4096 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4097 * @mapping: the page's address_space
4098 * @index: the page index
4099 * @gfp: the page allocator flags to use if allocating
4101 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4102 * with any new page allocations done using the specified allocation flags.
4103 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4104 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4105 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4107 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4108 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4110 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
4111 pgoff_t index
, gfp_t gfp
)
4114 struct inode
*inode
= mapping
->host
;
4118 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
4119 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
,
4122 page
= ERR_PTR(error
);
4128 * The tiny !SHMEM case uses ramfs without swap
4130 return read_cache_page_gfp(mapping
, index
, gfp
);
4133 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);