staging: comedi: ni_mio_common: fix AO timer off-by-one regression
[linux/fpc-iii.git] / mm / shmem.c
blobd99cfb6eb03a343f7ef0987b2f540327d1a02c31
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
37 static struct vfsmount *shm_mnt;
39 #ifdef CONFIG_SHMEM
41 * This virtual memory filesystem is heavily based on the ramfs. It
42 * extends ramfs by the ability to use swap and honor resource limits
43 * which makes it a completely usable filesystem.
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
74 #include <asm/uaccess.h>
75 #include <asm/pgtable.h>
77 #include "internal.h"
79 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
80 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90 * inode->i_private (with i_mutex making sure that it has only one user at
91 * a time): we would prefer not to enlarge the shmem inode just for that.
93 struct shmem_falloc {
94 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
95 pgoff_t start; /* start of range currently being fallocated */
96 pgoff_t next; /* the next page offset to be fallocated */
97 pgoff_t nr_falloced; /* how many new pages have been fallocated */
98 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
104 return totalram_pages / 2;
107 static unsigned long shmem_default_max_inodes(void)
109 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
111 #endif
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117 struct page **pagep, enum sgp_type sgp,
118 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
120 int shmem_getpage(struct inode *inode, pgoff_t index,
121 struct page **pagep, enum sgp_type sgp)
123 return shmem_getpage_gfp(inode, index, pagep, sgp,
124 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
127 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129 return sb->s_fs_info;
133 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134 * for shared memory and for shared anonymous (/dev/zero) mappings
135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136 * consistent with the pre-accounting of private mappings ...
138 static inline int shmem_acct_size(unsigned long flags, loff_t size)
140 return (flags & VM_NORESERVE) ?
141 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146 if (!(flags & VM_NORESERVE))
147 vm_unacct_memory(VM_ACCT(size));
150 static inline int shmem_reacct_size(unsigned long flags,
151 loff_t oldsize, loff_t newsize)
153 if (!(flags & VM_NORESERVE)) {
154 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155 return security_vm_enough_memory_mm(current->mm,
156 VM_ACCT(newsize) - VM_ACCT(oldsize));
157 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
160 return 0;
164 * ... whereas tmpfs objects are accounted incrementally as
165 * pages are allocated, in order to allow large sparse files.
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
169 static inline int shmem_acct_block(unsigned long flags, long pages)
171 if (!(flags & VM_NORESERVE))
172 return 0;
174 return security_vm_enough_memory_mm(current->mm,
175 pages * VM_ACCT(PAGE_SIZE));
178 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
180 if (flags & VM_NORESERVE)
181 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
184 static const struct super_operations shmem_ops;
185 static const struct address_space_operations shmem_aops;
186 static const struct file_operations shmem_file_operations;
187 static const struct inode_operations shmem_inode_operations;
188 static const struct inode_operations shmem_dir_inode_operations;
189 static const struct inode_operations shmem_special_inode_operations;
190 static const struct vm_operations_struct shmem_vm_ops;
191 static struct file_system_type shmem_fs_type;
193 static LIST_HEAD(shmem_swaplist);
194 static DEFINE_MUTEX(shmem_swaplist_mutex);
196 static int shmem_reserve_inode(struct super_block *sb)
198 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
199 if (sbinfo->max_inodes) {
200 spin_lock(&sbinfo->stat_lock);
201 if (!sbinfo->free_inodes) {
202 spin_unlock(&sbinfo->stat_lock);
203 return -ENOSPC;
205 sbinfo->free_inodes--;
206 spin_unlock(&sbinfo->stat_lock);
208 return 0;
211 static void shmem_free_inode(struct super_block *sb)
213 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
214 if (sbinfo->max_inodes) {
215 spin_lock(&sbinfo->stat_lock);
216 sbinfo->free_inodes++;
217 spin_unlock(&sbinfo->stat_lock);
222 * shmem_recalc_inode - recalculate the block usage of an inode
223 * @inode: inode to recalc
225 * We have to calculate the free blocks since the mm can drop
226 * undirtied hole pages behind our back.
228 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
229 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
231 * It has to be called with the spinlock held.
233 static void shmem_recalc_inode(struct inode *inode)
235 struct shmem_inode_info *info = SHMEM_I(inode);
236 long freed;
238 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
239 if (freed > 0) {
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241 if (sbinfo->max_blocks)
242 percpu_counter_add(&sbinfo->used_blocks, -freed);
243 info->alloced -= freed;
244 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
245 shmem_unacct_blocks(info->flags, freed);
249 bool shmem_charge(struct inode *inode, long pages)
251 struct shmem_inode_info *info = SHMEM_I(inode);
252 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253 unsigned long flags;
255 if (shmem_acct_block(info->flags, pages))
256 return false;
257 spin_lock_irqsave(&info->lock, flags);
258 info->alloced += pages;
259 inode->i_blocks += pages * BLOCKS_PER_PAGE;
260 shmem_recalc_inode(inode);
261 spin_unlock_irqrestore(&info->lock, flags);
262 inode->i_mapping->nrpages += pages;
264 if (!sbinfo->max_blocks)
265 return true;
266 if (percpu_counter_compare(&sbinfo->used_blocks,
267 sbinfo->max_blocks - pages) > 0) {
268 inode->i_mapping->nrpages -= pages;
269 spin_lock_irqsave(&info->lock, flags);
270 info->alloced -= pages;
271 shmem_recalc_inode(inode);
272 spin_unlock_irqrestore(&info->lock, flags);
273 shmem_unacct_blocks(info->flags, pages);
274 return false;
276 percpu_counter_add(&sbinfo->used_blocks, pages);
277 return true;
280 void shmem_uncharge(struct inode *inode, long pages)
282 struct shmem_inode_info *info = SHMEM_I(inode);
283 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
284 unsigned long flags;
286 spin_lock_irqsave(&info->lock, flags);
287 info->alloced -= pages;
288 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
289 shmem_recalc_inode(inode);
290 spin_unlock_irqrestore(&info->lock, flags);
292 if (sbinfo->max_blocks)
293 percpu_counter_sub(&sbinfo->used_blocks, pages);
294 shmem_unacct_blocks(info->flags, pages);
298 * Replace item expected in radix tree by a new item, while holding tree lock.
300 static int shmem_radix_tree_replace(struct address_space *mapping,
301 pgoff_t index, void *expected, void *replacement)
303 void **pslot;
304 void *item;
306 VM_BUG_ON(!expected);
307 VM_BUG_ON(!replacement);
308 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
309 if (!pslot)
310 return -ENOENT;
311 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
312 if (item != expected)
313 return -ENOENT;
314 radix_tree_replace_slot(pslot, replacement);
315 return 0;
319 * Sometimes, before we decide whether to proceed or to fail, we must check
320 * that an entry was not already brought back from swap by a racing thread.
322 * Checking page is not enough: by the time a SwapCache page is locked, it
323 * might be reused, and again be SwapCache, using the same swap as before.
325 static bool shmem_confirm_swap(struct address_space *mapping,
326 pgoff_t index, swp_entry_t swap)
328 void *item;
330 rcu_read_lock();
331 item = radix_tree_lookup(&mapping->page_tree, index);
332 rcu_read_unlock();
333 return item == swp_to_radix_entry(swap);
337 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
339 * SHMEM_HUGE_NEVER:
340 * disables huge pages for the mount;
341 * SHMEM_HUGE_ALWAYS:
342 * enables huge pages for the mount;
343 * SHMEM_HUGE_WITHIN_SIZE:
344 * only allocate huge pages if the page will be fully within i_size,
345 * also respect fadvise()/madvise() hints;
346 * SHMEM_HUGE_ADVISE:
347 * only allocate huge pages if requested with fadvise()/madvise();
350 #define SHMEM_HUGE_NEVER 0
351 #define SHMEM_HUGE_ALWAYS 1
352 #define SHMEM_HUGE_WITHIN_SIZE 2
353 #define SHMEM_HUGE_ADVISE 3
356 * Special values.
357 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
359 * SHMEM_HUGE_DENY:
360 * disables huge on shm_mnt and all mounts, for emergency use;
361 * SHMEM_HUGE_FORCE:
362 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
365 #define SHMEM_HUGE_DENY (-1)
366 #define SHMEM_HUGE_FORCE (-2)
368 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
369 /* ifdef here to avoid bloating shmem.o when not necessary */
371 int shmem_huge __read_mostly;
373 static int shmem_parse_huge(const char *str)
375 if (!strcmp(str, "never"))
376 return SHMEM_HUGE_NEVER;
377 if (!strcmp(str, "always"))
378 return SHMEM_HUGE_ALWAYS;
379 if (!strcmp(str, "within_size"))
380 return SHMEM_HUGE_WITHIN_SIZE;
381 if (!strcmp(str, "advise"))
382 return SHMEM_HUGE_ADVISE;
383 if (!strcmp(str, "deny"))
384 return SHMEM_HUGE_DENY;
385 if (!strcmp(str, "force"))
386 return SHMEM_HUGE_FORCE;
387 return -EINVAL;
390 static const char *shmem_format_huge(int huge)
392 switch (huge) {
393 case SHMEM_HUGE_NEVER:
394 return "never";
395 case SHMEM_HUGE_ALWAYS:
396 return "always";
397 case SHMEM_HUGE_WITHIN_SIZE:
398 return "within_size";
399 case SHMEM_HUGE_ADVISE:
400 return "advise";
401 case SHMEM_HUGE_DENY:
402 return "deny";
403 case SHMEM_HUGE_FORCE:
404 return "force";
405 default:
406 VM_BUG_ON(1);
407 return "bad_val";
411 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
412 struct shrink_control *sc, unsigned long nr_to_split)
414 LIST_HEAD(list), *pos, *next;
415 LIST_HEAD(to_remove);
416 struct inode *inode;
417 struct shmem_inode_info *info;
418 struct page *page;
419 unsigned long batch = sc ? sc->nr_to_scan : 128;
420 int removed = 0, split = 0;
422 if (list_empty(&sbinfo->shrinklist))
423 return SHRINK_STOP;
425 spin_lock(&sbinfo->shrinklist_lock);
426 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
427 info = list_entry(pos, struct shmem_inode_info, shrinklist);
429 /* pin the inode */
430 inode = igrab(&info->vfs_inode);
432 /* inode is about to be evicted */
433 if (!inode) {
434 list_del_init(&info->shrinklist);
435 removed++;
436 goto next;
439 /* Check if there's anything to gain */
440 if (round_up(inode->i_size, PAGE_SIZE) ==
441 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
442 list_move(&info->shrinklist, &to_remove);
443 removed++;
444 goto next;
447 list_move(&info->shrinklist, &list);
448 next:
449 if (!--batch)
450 break;
452 spin_unlock(&sbinfo->shrinklist_lock);
454 list_for_each_safe(pos, next, &to_remove) {
455 info = list_entry(pos, struct shmem_inode_info, shrinklist);
456 inode = &info->vfs_inode;
457 list_del_init(&info->shrinklist);
458 iput(inode);
461 list_for_each_safe(pos, next, &list) {
462 int ret;
464 info = list_entry(pos, struct shmem_inode_info, shrinklist);
465 inode = &info->vfs_inode;
467 if (nr_to_split && split >= nr_to_split) {
468 iput(inode);
469 continue;
472 page = find_lock_page(inode->i_mapping,
473 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
474 if (!page)
475 goto drop;
477 if (!PageTransHuge(page)) {
478 unlock_page(page);
479 put_page(page);
480 goto drop;
483 ret = split_huge_page(page);
484 unlock_page(page);
485 put_page(page);
487 if (ret) {
488 /* split failed: leave it on the list */
489 iput(inode);
490 continue;
493 split++;
494 drop:
495 list_del_init(&info->shrinklist);
496 removed++;
497 iput(inode);
500 spin_lock(&sbinfo->shrinklist_lock);
501 list_splice_tail(&list, &sbinfo->shrinklist);
502 sbinfo->shrinklist_len -= removed;
503 spin_unlock(&sbinfo->shrinklist_lock);
505 return split;
508 static long shmem_unused_huge_scan(struct super_block *sb,
509 struct shrink_control *sc)
511 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
513 if (!READ_ONCE(sbinfo->shrinklist_len))
514 return SHRINK_STOP;
516 return shmem_unused_huge_shrink(sbinfo, sc, 0);
519 static long shmem_unused_huge_count(struct super_block *sb,
520 struct shrink_control *sc)
522 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
523 return READ_ONCE(sbinfo->shrinklist_len);
525 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
527 #define shmem_huge SHMEM_HUGE_DENY
529 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
530 struct shrink_control *sc, unsigned long nr_to_split)
532 return 0;
534 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
537 * Like add_to_page_cache_locked, but error if expected item has gone.
539 static int shmem_add_to_page_cache(struct page *page,
540 struct address_space *mapping,
541 pgoff_t index, void *expected)
543 int error, nr = hpage_nr_pages(page);
545 VM_BUG_ON_PAGE(PageTail(page), page);
546 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
547 VM_BUG_ON_PAGE(!PageLocked(page), page);
548 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
549 VM_BUG_ON(expected && PageTransHuge(page));
551 page_ref_add(page, nr);
552 page->mapping = mapping;
553 page->index = index;
555 spin_lock_irq(&mapping->tree_lock);
556 if (PageTransHuge(page)) {
557 void __rcu **results;
558 pgoff_t idx;
559 int i;
561 error = 0;
562 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
563 &results, &idx, index, 1) &&
564 idx < index + HPAGE_PMD_NR) {
565 error = -EEXIST;
568 if (!error) {
569 for (i = 0; i < HPAGE_PMD_NR; i++) {
570 error = radix_tree_insert(&mapping->page_tree,
571 index + i, page + i);
572 VM_BUG_ON(error);
574 count_vm_event(THP_FILE_ALLOC);
576 } else if (!expected) {
577 error = radix_tree_insert(&mapping->page_tree, index, page);
578 } else {
579 error = shmem_radix_tree_replace(mapping, index, expected,
580 page);
583 if (!error) {
584 mapping->nrpages += nr;
585 if (PageTransHuge(page))
586 __inc_node_page_state(page, NR_SHMEM_THPS);
587 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
588 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
589 spin_unlock_irq(&mapping->tree_lock);
590 } else {
591 page->mapping = NULL;
592 spin_unlock_irq(&mapping->tree_lock);
593 page_ref_sub(page, nr);
595 return error;
599 * Like delete_from_page_cache, but substitutes swap for page.
601 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
603 struct address_space *mapping = page->mapping;
604 int error;
606 VM_BUG_ON_PAGE(PageCompound(page), page);
608 spin_lock_irq(&mapping->tree_lock);
609 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
610 page->mapping = NULL;
611 mapping->nrpages--;
612 __dec_node_page_state(page, NR_FILE_PAGES);
613 __dec_node_page_state(page, NR_SHMEM);
614 spin_unlock_irq(&mapping->tree_lock);
615 put_page(page);
616 BUG_ON(error);
620 * Remove swap entry from radix tree, free the swap and its page cache.
622 static int shmem_free_swap(struct address_space *mapping,
623 pgoff_t index, void *radswap)
625 void *old;
627 spin_lock_irq(&mapping->tree_lock);
628 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
629 spin_unlock_irq(&mapping->tree_lock);
630 if (old != radswap)
631 return -ENOENT;
632 free_swap_and_cache(radix_to_swp_entry(radswap));
633 return 0;
637 * Determine (in bytes) how many of the shmem object's pages mapped by the
638 * given offsets are swapped out.
640 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
641 * as long as the inode doesn't go away and racy results are not a problem.
643 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
644 pgoff_t start, pgoff_t end)
646 struct radix_tree_iter iter;
647 void **slot;
648 struct page *page;
649 unsigned long swapped = 0;
651 rcu_read_lock();
653 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
654 if (iter.index >= end)
655 break;
657 page = radix_tree_deref_slot(slot);
659 if (radix_tree_deref_retry(page)) {
660 slot = radix_tree_iter_retry(&iter);
661 continue;
664 if (radix_tree_exceptional_entry(page))
665 swapped++;
667 if (need_resched()) {
668 cond_resched_rcu();
669 slot = radix_tree_iter_next(&iter);
673 rcu_read_unlock();
675 return swapped << PAGE_SHIFT;
679 * Determine (in bytes) how many of the shmem object's pages mapped by the
680 * given vma is swapped out.
682 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
683 * as long as the inode doesn't go away and racy results are not a problem.
685 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
687 struct inode *inode = file_inode(vma->vm_file);
688 struct shmem_inode_info *info = SHMEM_I(inode);
689 struct address_space *mapping = inode->i_mapping;
690 unsigned long swapped;
692 /* Be careful as we don't hold info->lock */
693 swapped = READ_ONCE(info->swapped);
696 * The easier cases are when the shmem object has nothing in swap, or
697 * the vma maps it whole. Then we can simply use the stats that we
698 * already track.
700 if (!swapped)
701 return 0;
703 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
704 return swapped << PAGE_SHIFT;
706 /* Here comes the more involved part */
707 return shmem_partial_swap_usage(mapping,
708 linear_page_index(vma, vma->vm_start),
709 linear_page_index(vma, vma->vm_end));
713 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
715 void shmem_unlock_mapping(struct address_space *mapping)
717 struct pagevec pvec;
718 pgoff_t indices[PAGEVEC_SIZE];
719 pgoff_t index = 0;
721 pagevec_init(&pvec, 0);
723 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
725 while (!mapping_unevictable(mapping)) {
727 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
728 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
730 pvec.nr = find_get_entries(mapping, index,
731 PAGEVEC_SIZE, pvec.pages, indices);
732 if (!pvec.nr)
733 break;
734 index = indices[pvec.nr - 1] + 1;
735 pagevec_remove_exceptionals(&pvec);
736 check_move_unevictable_pages(pvec.pages, pvec.nr);
737 pagevec_release(&pvec);
738 cond_resched();
743 * Remove range of pages and swap entries from radix tree, and free them.
744 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
746 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
747 bool unfalloc)
749 struct address_space *mapping = inode->i_mapping;
750 struct shmem_inode_info *info = SHMEM_I(inode);
751 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
752 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
753 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
754 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
755 struct pagevec pvec;
756 pgoff_t indices[PAGEVEC_SIZE];
757 long nr_swaps_freed = 0;
758 pgoff_t index;
759 int i;
761 if (lend == -1)
762 end = -1; /* unsigned, so actually very big */
764 pagevec_init(&pvec, 0);
765 index = start;
766 while (index < end) {
767 pvec.nr = find_get_entries(mapping, index,
768 min(end - index, (pgoff_t)PAGEVEC_SIZE),
769 pvec.pages, indices);
770 if (!pvec.nr)
771 break;
772 for (i = 0; i < pagevec_count(&pvec); i++) {
773 struct page *page = pvec.pages[i];
775 index = indices[i];
776 if (index >= end)
777 break;
779 if (radix_tree_exceptional_entry(page)) {
780 if (unfalloc)
781 continue;
782 nr_swaps_freed += !shmem_free_swap(mapping,
783 index, page);
784 continue;
787 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
789 if (!trylock_page(page))
790 continue;
792 if (PageTransTail(page)) {
793 /* Middle of THP: zero out the page */
794 clear_highpage(page);
795 unlock_page(page);
796 continue;
797 } else if (PageTransHuge(page)) {
798 if (index == round_down(end, HPAGE_PMD_NR)) {
800 * Range ends in the middle of THP:
801 * zero out the page
803 clear_highpage(page);
804 unlock_page(page);
805 continue;
807 index += HPAGE_PMD_NR - 1;
808 i += HPAGE_PMD_NR - 1;
811 if (!unfalloc || !PageUptodate(page)) {
812 VM_BUG_ON_PAGE(PageTail(page), page);
813 if (page_mapping(page) == mapping) {
814 VM_BUG_ON_PAGE(PageWriteback(page), page);
815 truncate_inode_page(mapping, page);
818 unlock_page(page);
820 pagevec_remove_exceptionals(&pvec);
821 pagevec_release(&pvec);
822 cond_resched();
823 index++;
826 if (partial_start) {
827 struct page *page = NULL;
828 shmem_getpage(inode, start - 1, &page, SGP_READ);
829 if (page) {
830 unsigned int top = PAGE_SIZE;
831 if (start > end) {
832 top = partial_end;
833 partial_end = 0;
835 zero_user_segment(page, partial_start, top);
836 set_page_dirty(page);
837 unlock_page(page);
838 put_page(page);
841 if (partial_end) {
842 struct page *page = NULL;
843 shmem_getpage(inode, end, &page, SGP_READ);
844 if (page) {
845 zero_user_segment(page, 0, partial_end);
846 set_page_dirty(page);
847 unlock_page(page);
848 put_page(page);
851 if (start >= end)
852 return;
854 index = start;
855 while (index < end) {
856 cond_resched();
858 pvec.nr = find_get_entries(mapping, index,
859 min(end - index, (pgoff_t)PAGEVEC_SIZE),
860 pvec.pages, indices);
861 if (!pvec.nr) {
862 /* If all gone or hole-punch or unfalloc, we're done */
863 if (index == start || end != -1)
864 break;
865 /* But if truncating, restart to make sure all gone */
866 index = start;
867 continue;
869 for (i = 0; i < pagevec_count(&pvec); i++) {
870 struct page *page = pvec.pages[i];
872 index = indices[i];
873 if (index >= end)
874 break;
876 if (radix_tree_exceptional_entry(page)) {
877 if (unfalloc)
878 continue;
879 if (shmem_free_swap(mapping, index, page)) {
880 /* Swap was replaced by page: retry */
881 index--;
882 break;
884 nr_swaps_freed++;
885 continue;
888 lock_page(page);
890 if (PageTransTail(page)) {
891 /* Middle of THP: zero out the page */
892 clear_highpage(page);
893 unlock_page(page);
895 * Partial thp truncate due 'start' in middle
896 * of THP: don't need to look on these pages
897 * again on !pvec.nr restart.
899 if (index != round_down(end, HPAGE_PMD_NR))
900 start++;
901 continue;
902 } else if (PageTransHuge(page)) {
903 if (index == round_down(end, HPAGE_PMD_NR)) {
905 * Range ends in the middle of THP:
906 * zero out the page
908 clear_highpage(page);
909 unlock_page(page);
910 continue;
912 index += HPAGE_PMD_NR - 1;
913 i += HPAGE_PMD_NR - 1;
916 if (!unfalloc || !PageUptodate(page)) {
917 VM_BUG_ON_PAGE(PageTail(page), page);
918 if (page_mapping(page) == mapping) {
919 VM_BUG_ON_PAGE(PageWriteback(page), page);
920 truncate_inode_page(mapping, page);
921 } else {
922 /* Page was replaced by swap: retry */
923 unlock_page(page);
924 index--;
925 break;
928 unlock_page(page);
930 pagevec_remove_exceptionals(&pvec);
931 pagevec_release(&pvec);
932 index++;
935 spin_lock_irq(&info->lock);
936 info->swapped -= nr_swaps_freed;
937 shmem_recalc_inode(inode);
938 spin_unlock_irq(&info->lock);
941 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
943 shmem_undo_range(inode, lstart, lend, false);
944 inode->i_ctime = inode->i_mtime = current_time(inode);
946 EXPORT_SYMBOL_GPL(shmem_truncate_range);
948 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
949 struct kstat *stat)
951 struct inode *inode = dentry->d_inode;
952 struct shmem_inode_info *info = SHMEM_I(inode);
954 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
955 spin_lock_irq(&info->lock);
956 shmem_recalc_inode(inode);
957 spin_unlock_irq(&info->lock);
959 generic_fillattr(inode, stat);
960 return 0;
963 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
965 struct inode *inode = d_inode(dentry);
966 struct shmem_inode_info *info = SHMEM_I(inode);
967 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
968 int error;
970 error = setattr_prepare(dentry, attr);
971 if (error)
972 return error;
974 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
975 loff_t oldsize = inode->i_size;
976 loff_t newsize = attr->ia_size;
978 /* protected by i_mutex */
979 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
980 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
981 return -EPERM;
983 if (newsize != oldsize) {
984 error = shmem_reacct_size(SHMEM_I(inode)->flags,
985 oldsize, newsize);
986 if (error)
987 return error;
988 i_size_write(inode, newsize);
989 inode->i_ctime = inode->i_mtime = current_time(inode);
991 if (newsize <= oldsize) {
992 loff_t holebegin = round_up(newsize, PAGE_SIZE);
993 if (oldsize > holebegin)
994 unmap_mapping_range(inode->i_mapping,
995 holebegin, 0, 1);
996 if (info->alloced)
997 shmem_truncate_range(inode,
998 newsize, (loff_t)-1);
999 /* unmap again to remove racily COWed private pages */
1000 if (oldsize > holebegin)
1001 unmap_mapping_range(inode->i_mapping,
1002 holebegin, 0, 1);
1005 * Part of the huge page can be beyond i_size: subject
1006 * to shrink under memory pressure.
1008 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1009 spin_lock(&sbinfo->shrinklist_lock);
1010 if (list_empty(&info->shrinklist)) {
1011 list_add_tail(&info->shrinklist,
1012 &sbinfo->shrinklist);
1013 sbinfo->shrinklist_len++;
1015 spin_unlock(&sbinfo->shrinklist_lock);
1020 setattr_copy(inode, attr);
1021 if (attr->ia_valid & ATTR_MODE)
1022 error = posix_acl_chmod(inode, inode->i_mode);
1023 return error;
1026 static void shmem_evict_inode(struct inode *inode)
1028 struct shmem_inode_info *info = SHMEM_I(inode);
1029 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1031 if (inode->i_mapping->a_ops == &shmem_aops) {
1032 shmem_unacct_size(info->flags, inode->i_size);
1033 inode->i_size = 0;
1034 shmem_truncate_range(inode, 0, (loff_t)-1);
1035 if (!list_empty(&info->shrinklist)) {
1036 spin_lock(&sbinfo->shrinklist_lock);
1037 if (!list_empty(&info->shrinklist)) {
1038 list_del_init(&info->shrinklist);
1039 sbinfo->shrinklist_len--;
1041 spin_unlock(&sbinfo->shrinklist_lock);
1043 if (!list_empty(&info->swaplist)) {
1044 mutex_lock(&shmem_swaplist_mutex);
1045 list_del_init(&info->swaplist);
1046 mutex_unlock(&shmem_swaplist_mutex);
1050 simple_xattrs_free(&info->xattrs);
1051 WARN_ON(inode->i_blocks);
1052 shmem_free_inode(inode->i_sb);
1053 clear_inode(inode);
1057 * If swap found in inode, free it and move page from swapcache to filecache.
1059 static int shmem_unuse_inode(struct shmem_inode_info *info,
1060 swp_entry_t swap, struct page **pagep)
1062 struct address_space *mapping = info->vfs_inode.i_mapping;
1063 void *radswap;
1064 pgoff_t index;
1065 gfp_t gfp;
1066 int error = 0;
1068 radswap = swp_to_radix_entry(swap);
1069 index = radix_tree_locate_item(&mapping->page_tree, radswap);
1070 if (index == -1)
1071 return -EAGAIN; /* tell shmem_unuse we found nothing */
1074 * Move _head_ to start search for next from here.
1075 * But be careful: shmem_evict_inode checks list_empty without taking
1076 * mutex, and there's an instant in list_move_tail when info->swaplist
1077 * would appear empty, if it were the only one on shmem_swaplist.
1079 if (shmem_swaplist.next != &info->swaplist)
1080 list_move_tail(&shmem_swaplist, &info->swaplist);
1082 gfp = mapping_gfp_mask(mapping);
1083 if (shmem_should_replace_page(*pagep, gfp)) {
1084 mutex_unlock(&shmem_swaplist_mutex);
1085 error = shmem_replace_page(pagep, gfp, info, index);
1086 mutex_lock(&shmem_swaplist_mutex);
1088 * We needed to drop mutex to make that restrictive page
1089 * allocation, but the inode might have been freed while we
1090 * dropped it: although a racing shmem_evict_inode() cannot
1091 * complete without emptying the radix_tree, our page lock
1092 * on this swapcache page is not enough to prevent that -
1093 * free_swap_and_cache() of our swap entry will only
1094 * trylock_page(), removing swap from radix_tree whatever.
1096 * We must not proceed to shmem_add_to_page_cache() if the
1097 * inode has been freed, but of course we cannot rely on
1098 * inode or mapping or info to check that. However, we can
1099 * safely check if our swap entry is still in use (and here
1100 * it can't have got reused for another page): if it's still
1101 * in use, then the inode cannot have been freed yet, and we
1102 * can safely proceed (if it's no longer in use, that tells
1103 * nothing about the inode, but we don't need to unuse swap).
1105 if (!page_swapcount(*pagep))
1106 error = -ENOENT;
1110 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1111 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1112 * beneath us (pagelock doesn't help until the page is in pagecache).
1114 if (!error)
1115 error = shmem_add_to_page_cache(*pagep, mapping, index,
1116 radswap);
1117 if (error != -ENOMEM) {
1119 * Truncation and eviction use free_swap_and_cache(), which
1120 * only does trylock page: if we raced, best clean up here.
1122 delete_from_swap_cache(*pagep);
1123 set_page_dirty(*pagep);
1124 if (!error) {
1125 spin_lock_irq(&info->lock);
1126 info->swapped--;
1127 spin_unlock_irq(&info->lock);
1128 swap_free(swap);
1131 return error;
1135 * Search through swapped inodes to find and replace swap by page.
1137 int shmem_unuse(swp_entry_t swap, struct page *page)
1139 struct list_head *this, *next;
1140 struct shmem_inode_info *info;
1141 struct mem_cgroup *memcg;
1142 int error = 0;
1145 * There's a faint possibility that swap page was replaced before
1146 * caller locked it: caller will come back later with the right page.
1148 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1149 goto out;
1152 * Charge page using GFP_KERNEL while we can wait, before taking
1153 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1154 * Charged back to the user (not to caller) when swap account is used.
1156 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1157 false);
1158 if (error)
1159 goto out;
1160 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1161 error = -EAGAIN;
1163 mutex_lock(&shmem_swaplist_mutex);
1164 list_for_each_safe(this, next, &shmem_swaplist) {
1165 info = list_entry(this, struct shmem_inode_info, swaplist);
1166 if (info->swapped)
1167 error = shmem_unuse_inode(info, swap, &page);
1168 else
1169 list_del_init(&info->swaplist);
1170 cond_resched();
1171 if (error != -EAGAIN)
1172 break;
1173 /* found nothing in this: move on to search the next */
1175 mutex_unlock(&shmem_swaplist_mutex);
1177 if (error) {
1178 if (error != -ENOMEM)
1179 error = 0;
1180 mem_cgroup_cancel_charge(page, memcg, false);
1181 } else
1182 mem_cgroup_commit_charge(page, memcg, true, false);
1183 out:
1184 unlock_page(page);
1185 put_page(page);
1186 return error;
1190 * Move the page from the page cache to the swap cache.
1192 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1194 struct shmem_inode_info *info;
1195 struct address_space *mapping;
1196 struct inode *inode;
1197 swp_entry_t swap;
1198 pgoff_t index;
1200 VM_BUG_ON_PAGE(PageCompound(page), page);
1201 BUG_ON(!PageLocked(page));
1202 mapping = page->mapping;
1203 index = page->index;
1204 inode = mapping->host;
1205 info = SHMEM_I(inode);
1206 if (info->flags & VM_LOCKED)
1207 goto redirty;
1208 if (!total_swap_pages)
1209 goto redirty;
1212 * Our capabilities prevent regular writeback or sync from ever calling
1213 * shmem_writepage; but a stacking filesystem might use ->writepage of
1214 * its underlying filesystem, in which case tmpfs should write out to
1215 * swap only in response to memory pressure, and not for the writeback
1216 * threads or sync.
1218 if (!wbc->for_reclaim) {
1219 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1220 goto redirty;
1224 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1225 * value into swapfile.c, the only way we can correctly account for a
1226 * fallocated page arriving here is now to initialize it and write it.
1228 * That's okay for a page already fallocated earlier, but if we have
1229 * not yet completed the fallocation, then (a) we want to keep track
1230 * of this page in case we have to undo it, and (b) it may not be a
1231 * good idea to continue anyway, once we're pushing into swap. So
1232 * reactivate the page, and let shmem_fallocate() quit when too many.
1234 if (!PageUptodate(page)) {
1235 if (inode->i_private) {
1236 struct shmem_falloc *shmem_falloc;
1237 spin_lock(&inode->i_lock);
1238 shmem_falloc = inode->i_private;
1239 if (shmem_falloc &&
1240 !shmem_falloc->waitq &&
1241 index >= shmem_falloc->start &&
1242 index < shmem_falloc->next)
1243 shmem_falloc->nr_unswapped++;
1244 else
1245 shmem_falloc = NULL;
1246 spin_unlock(&inode->i_lock);
1247 if (shmem_falloc)
1248 goto redirty;
1250 clear_highpage(page);
1251 flush_dcache_page(page);
1252 SetPageUptodate(page);
1255 swap = get_swap_page();
1256 if (!swap.val)
1257 goto redirty;
1259 if (mem_cgroup_try_charge_swap(page, swap))
1260 goto free_swap;
1263 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1264 * if it's not already there. Do it now before the page is
1265 * moved to swap cache, when its pagelock no longer protects
1266 * the inode from eviction. But don't unlock the mutex until
1267 * we've incremented swapped, because shmem_unuse_inode() will
1268 * prune a !swapped inode from the swaplist under this mutex.
1270 mutex_lock(&shmem_swaplist_mutex);
1271 if (list_empty(&info->swaplist))
1272 list_add_tail(&info->swaplist, &shmem_swaplist);
1274 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1275 spin_lock_irq(&info->lock);
1276 shmem_recalc_inode(inode);
1277 info->swapped++;
1278 spin_unlock_irq(&info->lock);
1280 swap_shmem_alloc(swap);
1281 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1283 mutex_unlock(&shmem_swaplist_mutex);
1284 BUG_ON(page_mapped(page));
1285 swap_writepage(page, wbc);
1286 return 0;
1289 mutex_unlock(&shmem_swaplist_mutex);
1290 free_swap:
1291 swapcache_free(swap);
1292 redirty:
1293 set_page_dirty(page);
1294 if (wbc->for_reclaim)
1295 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1296 unlock_page(page);
1297 return 0;
1300 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1301 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1303 char buffer[64];
1305 if (!mpol || mpol->mode == MPOL_DEFAULT)
1306 return; /* show nothing */
1308 mpol_to_str(buffer, sizeof(buffer), mpol);
1310 seq_printf(seq, ",mpol=%s", buffer);
1313 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1315 struct mempolicy *mpol = NULL;
1316 if (sbinfo->mpol) {
1317 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1318 mpol = sbinfo->mpol;
1319 mpol_get(mpol);
1320 spin_unlock(&sbinfo->stat_lock);
1322 return mpol;
1324 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1325 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1328 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1330 return NULL;
1332 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1333 #ifndef CONFIG_NUMA
1334 #define vm_policy vm_private_data
1335 #endif
1337 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1338 struct shmem_inode_info *info, pgoff_t index)
1340 /* Create a pseudo vma that just contains the policy */
1341 vma->vm_start = 0;
1342 /* Bias interleave by inode number to distribute better across nodes */
1343 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1344 vma->vm_ops = NULL;
1345 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1348 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1350 /* Drop reference taken by mpol_shared_policy_lookup() */
1351 mpol_cond_put(vma->vm_policy);
1354 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1355 struct shmem_inode_info *info, pgoff_t index)
1357 struct vm_area_struct pvma;
1358 struct page *page;
1360 shmem_pseudo_vma_init(&pvma, info, index);
1361 page = swapin_readahead(swap, gfp, &pvma, 0);
1362 shmem_pseudo_vma_destroy(&pvma);
1364 return page;
1367 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1368 struct shmem_inode_info *info, pgoff_t index)
1370 struct vm_area_struct pvma;
1371 struct inode *inode = &info->vfs_inode;
1372 struct address_space *mapping = inode->i_mapping;
1373 pgoff_t idx, hindex;
1374 void __rcu **results;
1375 struct page *page;
1377 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1378 return NULL;
1380 hindex = round_down(index, HPAGE_PMD_NR);
1381 rcu_read_lock();
1382 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1383 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1384 rcu_read_unlock();
1385 return NULL;
1387 rcu_read_unlock();
1389 shmem_pseudo_vma_init(&pvma, info, hindex);
1390 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1391 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1392 shmem_pseudo_vma_destroy(&pvma);
1393 if (page)
1394 prep_transhuge_page(page);
1395 return page;
1398 static struct page *shmem_alloc_page(gfp_t gfp,
1399 struct shmem_inode_info *info, pgoff_t index)
1401 struct vm_area_struct pvma;
1402 struct page *page;
1404 shmem_pseudo_vma_init(&pvma, info, index);
1405 page = alloc_page_vma(gfp, &pvma, 0);
1406 shmem_pseudo_vma_destroy(&pvma);
1408 return page;
1411 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1412 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1413 pgoff_t index, bool huge)
1415 struct page *page;
1416 int nr;
1417 int err = -ENOSPC;
1419 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1420 huge = false;
1421 nr = huge ? HPAGE_PMD_NR : 1;
1423 if (shmem_acct_block(info->flags, nr))
1424 goto failed;
1425 if (sbinfo->max_blocks) {
1426 if (percpu_counter_compare(&sbinfo->used_blocks,
1427 sbinfo->max_blocks - nr) > 0)
1428 goto unacct;
1429 percpu_counter_add(&sbinfo->used_blocks, nr);
1432 if (huge)
1433 page = shmem_alloc_hugepage(gfp, info, index);
1434 else
1435 page = shmem_alloc_page(gfp, info, index);
1436 if (page) {
1437 __SetPageLocked(page);
1438 __SetPageSwapBacked(page);
1439 return page;
1442 err = -ENOMEM;
1443 if (sbinfo->max_blocks)
1444 percpu_counter_add(&sbinfo->used_blocks, -nr);
1445 unacct:
1446 shmem_unacct_blocks(info->flags, nr);
1447 failed:
1448 return ERR_PTR(err);
1452 * When a page is moved from swapcache to shmem filecache (either by the
1453 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1454 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1455 * ignorance of the mapping it belongs to. If that mapping has special
1456 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1457 * we may need to copy to a suitable page before moving to filecache.
1459 * In a future release, this may well be extended to respect cpuset and
1460 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1461 * but for now it is a simple matter of zone.
1463 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1465 return page_zonenum(page) > gfp_zone(gfp);
1468 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1469 struct shmem_inode_info *info, pgoff_t index)
1471 struct page *oldpage, *newpage;
1472 struct address_space *swap_mapping;
1473 pgoff_t swap_index;
1474 int error;
1476 oldpage = *pagep;
1477 swap_index = page_private(oldpage);
1478 swap_mapping = page_mapping(oldpage);
1481 * We have arrived here because our zones are constrained, so don't
1482 * limit chance of success by further cpuset and node constraints.
1484 gfp &= ~GFP_CONSTRAINT_MASK;
1485 newpage = shmem_alloc_page(gfp, info, index);
1486 if (!newpage)
1487 return -ENOMEM;
1489 get_page(newpage);
1490 copy_highpage(newpage, oldpage);
1491 flush_dcache_page(newpage);
1493 __SetPageLocked(newpage);
1494 __SetPageSwapBacked(newpage);
1495 SetPageUptodate(newpage);
1496 set_page_private(newpage, swap_index);
1497 SetPageSwapCache(newpage);
1500 * Our caller will very soon move newpage out of swapcache, but it's
1501 * a nice clean interface for us to replace oldpage by newpage there.
1503 spin_lock_irq(&swap_mapping->tree_lock);
1504 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1505 newpage);
1506 if (!error) {
1507 __inc_node_page_state(newpage, NR_FILE_PAGES);
1508 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1510 spin_unlock_irq(&swap_mapping->tree_lock);
1512 if (unlikely(error)) {
1514 * Is this possible? I think not, now that our callers check
1515 * both PageSwapCache and page_private after getting page lock;
1516 * but be defensive. Reverse old to newpage for clear and free.
1518 oldpage = newpage;
1519 } else {
1520 mem_cgroup_migrate(oldpage, newpage);
1521 lru_cache_add_anon(newpage);
1522 *pagep = newpage;
1525 ClearPageSwapCache(oldpage);
1526 set_page_private(oldpage, 0);
1528 unlock_page(oldpage);
1529 put_page(oldpage);
1530 put_page(oldpage);
1531 return error;
1535 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1537 * If we allocate a new one we do not mark it dirty. That's up to the
1538 * vm. If we swap it in we mark it dirty since we also free the swap
1539 * entry since a page cannot live in both the swap and page cache.
1541 * fault_mm and fault_type are only supplied by shmem_fault:
1542 * otherwise they are NULL.
1544 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1545 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1546 struct mm_struct *fault_mm, int *fault_type)
1548 struct address_space *mapping = inode->i_mapping;
1549 struct shmem_inode_info *info;
1550 struct shmem_sb_info *sbinfo;
1551 struct mm_struct *charge_mm;
1552 struct mem_cgroup *memcg;
1553 struct page *page;
1554 swp_entry_t swap;
1555 enum sgp_type sgp_huge = sgp;
1556 pgoff_t hindex = index;
1557 int error;
1558 int once = 0;
1559 int alloced = 0;
1561 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1562 return -EFBIG;
1563 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1564 sgp = SGP_CACHE;
1565 repeat:
1566 swap.val = 0;
1567 page = find_lock_entry(mapping, index);
1568 if (radix_tree_exceptional_entry(page)) {
1569 swap = radix_to_swp_entry(page);
1570 page = NULL;
1573 if (sgp <= SGP_CACHE &&
1574 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1575 error = -EINVAL;
1576 goto unlock;
1579 if (page && sgp == SGP_WRITE)
1580 mark_page_accessed(page);
1582 /* fallocated page? */
1583 if (page && !PageUptodate(page)) {
1584 if (sgp != SGP_READ)
1585 goto clear;
1586 unlock_page(page);
1587 put_page(page);
1588 page = NULL;
1590 if (page || (sgp == SGP_READ && !swap.val)) {
1591 *pagep = page;
1592 return 0;
1596 * Fast cache lookup did not find it:
1597 * bring it back from swap or allocate.
1599 info = SHMEM_I(inode);
1600 sbinfo = SHMEM_SB(inode->i_sb);
1601 charge_mm = fault_mm ? : current->mm;
1603 if (swap.val) {
1604 /* Look it up and read it in.. */
1605 page = lookup_swap_cache(swap);
1606 if (!page) {
1607 /* Or update major stats only when swapin succeeds?? */
1608 if (fault_type) {
1609 *fault_type |= VM_FAULT_MAJOR;
1610 count_vm_event(PGMAJFAULT);
1611 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1613 /* Here we actually start the io */
1614 page = shmem_swapin(swap, gfp, info, index);
1615 if (!page) {
1616 error = -ENOMEM;
1617 goto failed;
1621 /* We have to do this with page locked to prevent races */
1622 lock_page(page);
1623 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1624 !shmem_confirm_swap(mapping, index, swap)) {
1625 error = -EEXIST; /* try again */
1626 goto unlock;
1628 if (!PageUptodate(page)) {
1629 error = -EIO;
1630 goto failed;
1632 wait_on_page_writeback(page);
1634 if (shmem_should_replace_page(page, gfp)) {
1635 error = shmem_replace_page(&page, gfp, info, index);
1636 if (error)
1637 goto failed;
1640 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1641 false);
1642 if (!error) {
1643 error = shmem_add_to_page_cache(page, mapping, index,
1644 swp_to_radix_entry(swap));
1646 * We already confirmed swap under page lock, and make
1647 * no memory allocation here, so usually no possibility
1648 * of error; but free_swap_and_cache() only trylocks a
1649 * page, so it is just possible that the entry has been
1650 * truncated or holepunched since swap was confirmed.
1651 * shmem_undo_range() will have done some of the
1652 * unaccounting, now delete_from_swap_cache() will do
1653 * the rest.
1654 * Reset swap.val? No, leave it so "failed" goes back to
1655 * "repeat": reading a hole and writing should succeed.
1657 if (error) {
1658 mem_cgroup_cancel_charge(page, memcg, false);
1659 delete_from_swap_cache(page);
1662 if (error)
1663 goto failed;
1665 mem_cgroup_commit_charge(page, memcg, true, false);
1667 spin_lock_irq(&info->lock);
1668 info->swapped--;
1669 shmem_recalc_inode(inode);
1670 spin_unlock_irq(&info->lock);
1672 if (sgp == SGP_WRITE)
1673 mark_page_accessed(page);
1675 delete_from_swap_cache(page);
1676 set_page_dirty(page);
1677 swap_free(swap);
1679 } else {
1680 /* shmem_symlink() */
1681 if (mapping->a_ops != &shmem_aops)
1682 goto alloc_nohuge;
1683 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1684 goto alloc_nohuge;
1685 if (shmem_huge == SHMEM_HUGE_FORCE)
1686 goto alloc_huge;
1687 switch (sbinfo->huge) {
1688 loff_t i_size;
1689 pgoff_t off;
1690 case SHMEM_HUGE_NEVER:
1691 goto alloc_nohuge;
1692 case SHMEM_HUGE_WITHIN_SIZE:
1693 off = round_up(index, HPAGE_PMD_NR);
1694 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1695 if (i_size >= HPAGE_PMD_SIZE &&
1696 i_size >> PAGE_SHIFT >= off)
1697 goto alloc_huge;
1698 /* fallthrough */
1699 case SHMEM_HUGE_ADVISE:
1700 if (sgp_huge == SGP_HUGE)
1701 goto alloc_huge;
1702 /* TODO: implement fadvise() hints */
1703 goto alloc_nohuge;
1706 alloc_huge:
1707 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1708 index, true);
1709 if (IS_ERR(page)) {
1710 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1711 index, false);
1713 if (IS_ERR(page)) {
1714 int retry = 5;
1715 error = PTR_ERR(page);
1716 page = NULL;
1717 if (error != -ENOSPC)
1718 goto failed;
1720 * Try to reclaim some spece by splitting a huge page
1721 * beyond i_size on the filesystem.
1723 while (retry--) {
1724 int ret;
1725 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1726 if (ret == SHRINK_STOP)
1727 break;
1728 if (ret)
1729 goto alloc_nohuge;
1731 goto failed;
1734 if (PageTransHuge(page))
1735 hindex = round_down(index, HPAGE_PMD_NR);
1736 else
1737 hindex = index;
1739 if (sgp == SGP_WRITE)
1740 __SetPageReferenced(page);
1742 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1743 PageTransHuge(page));
1744 if (error)
1745 goto unacct;
1746 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1747 compound_order(page));
1748 if (!error) {
1749 error = shmem_add_to_page_cache(page, mapping, hindex,
1750 NULL);
1751 radix_tree_preload_end();
1753 if (error) {
1754 mem_cgroup_cancel_charge(page, memcg,
1755 PageTransHuge(page));
1756 goto unacct;
1758 mem_cgroup_commit_charge(page, memcg, false,
1759 PageTransHuge(page));
1760 lru_cache_add_anon(page);
1762 spin_lock_irq(&info->lock);
1763 info->alloced += 1 << compound_order(page);
1764 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1765 shmem_recalc_inode(inode);
1766 spin_unlock_irq(&info->lock);
1767 alloced = true;
1769 if (PageTransHuge(page) &&
1770 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1771 hindex + HPAGE_PMD_NR - 1) {
1773 * Part of the huge page is beyond i_size: subject
1774 * to shrink under memory pressure.
1776 spin_lock(&sbinfo->shrinklist_lock);
1777 if (list_empty(&info->shrinklist)) {
1778 list_add_tail(&info->shrinklist,
1779 &sbinfo->shrinklist);
1780 sbinfo->shrinklist_len++;
1782 spin_unlock(&sbinfo->shrinklist_lock);
1786 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1788 if (sgp == SGP_FALLOC)
1789 sgp = SGP_WRITE;
1790 clear:
1792 * Let SGP_WRITE caller clear ends if write does not fill page;
1793 * but SGP_FALLOC on a page fallocated earlier must initialize
1794 * it now, lest undo on failure cancel our earlier guarantee.
1796 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1797 struct page *head = compound_head(page);
1798 int i;
1800 for (i = 0; i < (1 << compound_order(head)); i++) {
1801 clear_highpage(head + i);
1802 flush_dcache_page(head + i);
1804 SetPageUptodate(head);
1808 /* Perhaps the file has been truncated since we checked */
1809 if (sgp <= SGP_CACHE &&
1810 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1811 if (alloced) {
1812 ClearPageDirty(page);
1813 delete_from_page_cache(page);
1814 spin_lock_irq(&info->lock);
1815 shmem_recalc_inode(inode);
1816 spin_unlock_irq(&info->lock);
1818 error = -EINVAL;
1819 goto unlock;
1821 *pagep = page + index - hindex;
1822 return 0;
1825 * Error recovery.
1827 unacct:
1828 if (sbinfo->max_blocks)
1829 percpu_counter_sub(&sbinfo->used_blocks,
1830 1 << compound_order(page));
1831 shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1833 if (PageTransHuge(page)) {
1834 unlock_page(page);
1835 put_page(page);
1836 goto alloc_nohuge;
1838 failed:
1839 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1840 error = -EEXIST;
1841 unlock:
1842 if (page) {
1843 unlock_page(page);
1844 put_page(page);
1846 if (error == -ENOSPC && !once++) {
1847 info = SHMEM_I(inode);
1848 spin_lock_irq(&info->lock);
1849 shmem_recalc_inode(inode);
1850 spin_unlock_irq(&info->lock);
1851 goto repeat;
1853 if (error == -EEXIST) /* from above or from radix_tree_insert */
1854 goto repeat;
1855 return error;
1859 * This is like autoremove_wake_function, but it removes the wait queue
1860 * entry unconditionally - even if something else had already woken the
1861 * target.
1863 static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1865 int ret = default_wake_function(wait, mode, sync, key);
1866 list_del_init(&wait->task_list);
1867 return ret;
1870 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1872 struct inode *inode = file_inode(vma->vm_file);
1873 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1874 enum sgp_type sgp;
1875 int error;
1876 int ret = VM_FAULT_LOCKED;
1879 * Trinity finds that probing a hole which tmpfs is punching can
1880 * prevent the hole-punch from ever completing: which in turn
1881 * locks writers out with its hold on i_mutex. So refrain from
1882 * faulting pages into the hole while it's being punched. Although
1883 * shmem_undo_range() does remove the additions, it may be unable to
1884 * keep up, as each new page needs its own unmap_mapping_range() call,
1885 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1887 * It does not matter if we sometimes reach this check just before the
1888 * hole-punch begins, so that one fault then races with the punch:
1889 * we just need to make racing faults a rare case.
1891 * The implementation below would be much simpler if we just used a
1892 * standard mutex or completion: but we cannot take i_mutex in fault,
1893 * and bloating every shmem inode for this unlikely case would be sad.
1895 if (unlikely(inode->i_private)) {
1896 struct shmem_falloc *shmem_falloc;
1898 spin_lock(&inode->i_lock);
1899 shmem_falloc = inode->i_private;
1900 if (shmem_falloc &&
1901 shmem_falloc->waitq &&
1902 vmf->pgoff >= shmem_falloc->start &&
1903 vmf->pgoff < shmem_falloc->next) {
1904 wait_queue_head_t *shmem_falloc_waitq;
1905 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1907 ret = VM_FAULT_NOPAGE;
1908 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1909 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1910 /* It's polite to up mmap_sem if we can */
1911 up_read(&vma->vm_mm->mmap_sem);
1912 ret = VM_FAULT_RETRY;
1915 shmem_falloc_waitq = shmem_falloc->waitq;
1916 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1917 TASK_UNINTERRUPTIBLE);
1918 spin_unlock(&inode->i_lock);
1919 schedule();
1922 * shmem_falloc_waitq points into the shmem_fallocate()
1923 * stack of the hole-punching task: shmem_falloc_waitq
1924 * is usually invalid by the time we reach here, but
1925 * finish_wait() does not dereference it in that case;
1926 * though i_lock needed lest racing with wake_up_all().
1928 spin_lock(&inode->i_lock);
1929 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1930 spin_unlock(&inode->i_lock);
1931 return ret;
1933 spin_unlock(&inode->i_lock);
1936 sgp = SGP_CACHE;
1937 if (vma->vm_flags & VM_HUGEPAGE)
1938 sgp = SGP_HUGE;
1939 else if (vma->vm_flags & VM_NOHUGEPAGE)
1940 sgp = SGP_NOHUGE;
1942 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1943 gfp, vma->vm_mm, &ret);
1944 if (error)
1945 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1946 return ret;
1949 unsigned long shmem_get_unmapped_area(struct file *file,
1950 unsigned long uaddr, unsigned long len,
1951 unsigned long pgoff, unsigned long flags)
1953 unsigned long (*get_area)(struct file *,
1954 unsigned long, unsigned long, unsigned long, unsigned long);
1955 unsigned long addr;
1956 unsigned long offset;
1957 unsigned long inflated_len;
1958 unsigned long inflated_addr;
1959 unsigned long inflated_offset;
1961 if (len > TASK_SIZE)
1962 return -ENOMEM;
1964 get_area = current->mm->get_unmapped_area;
1965 addr = get_area(file, uaddr, len, pgoff, flags);
1967 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1968 return addr;
1969 if (IS_ERR_VALUE(addr))
1970 return addr;
1971 if (addr & ~PAGE_MASK)
1972 return addr;
1973 if (addr > TASK_SIZE - len)
1974 return addr;
1976 if (shmem_huge == SHMEM_HUGE_DENY)
1977 return addr;
1978 if (len < HPAGE_PMD_SIZE)
1979 return addr;
1980 if (flags & MAP_FIXED)
1981 return addr;
1983 * Our priority is to support MAP_SHARED mapped hugely;
1984 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
1985 * But if caller specified an address hint, respect that as before.
1987 if (uaddr)
1988 return addr;
1990 if (shmem_huge != SHMEM_HUGE_FORCE) {
1991 struct super_block *sb;
1993 if (file) {
1994 VM_BUG_ON(file->f_op != &shmem_file_operations);
1995 sb = file_inode(file)->i_sb;
1996 } else {
1998 * Called directly from mm/mmap.c, or drivers/char/mem.c
1999 * for "/dev/zero", to create a shared anonymous object.
2001 if (IS_ERR(shm_mnt))
2002 return addr;
2003 sb = shm_mnt->mnt_sb;
2005 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2006 return addr;
2009 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2010 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2011 return addr;
2012 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2013 return addr;
2015 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2016 if (inflated_len > TASK_SIZE)
2017 return addr;
2018 if (inflated_len < len)
2019 return addr;
2021 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2022 if (IS_ERR_VALUE(inflated_addr))
2023 return addr;
2024 if (inflated_addr & ~PAGE_MASK)
2025 return addr;
2027 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2028 inflated_addr += offset - inflated_offset;
2029 if (inflated_offset > offset)
2030 inflated_addr += HPAGE_PMD_SIZE;
2032 if (inflated_addr > TASK_SIZE - len)
2033 return addr;
2034 return inflated_addr;
2037 #ifdef CONFIG_NUMA
2038 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2040 struct inode *inode = file_inode(vma->vm_file);
2041 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2044 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2045 unsigned long addr)
2047 struct inode *inode = file_inode(vma->vm_file);
2048 pgoff_t index;
2050 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2051 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2053 #endif
2055 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2057 struct inode *inode = file_inode(file);
2058 struct shmem_inode_info *info = SHMEM_I(inode);
2059 int retval = -ENOMEM;
2061 spin_lock_irq(&info->lock);
2062 if (lock && !(info->flags & VM_LOCKED)) {
2063 if (!user_shm_lock(inode->i_size, user))
2064 goto out_nomem;
2065 info->flags |= VM_LOCKED;
2066 mapping_set_unevictable(file->f_mapping);
2068 if (!lock && (info->flags & VM_LOCKED) && user) {
2069 user_shm_unlock(inode->i_size, user);
2070 info->flags &= ~VM_LOCKED;
2071 mapping_clear_unevictable(file->f_mapping);
2073 retval = 0;
2075 out_nomem:
2076 spin_unlock_irq(&info->lock);
2077 return retval;
2080 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2082 file_accessed(file);
2083 vma->vm_ops = &shmem_vm_ops;
2084 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2085 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2086 (vma->vm_end & HPAGE_PMD_MASK)) {
2087 khugepaged_enter(vma, vma->vm_flags);
2089 return 0;
2092 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2093 umode_t mode, dev_t dev, unsigned long flags)
2095 struct inode *inode;
2096 struct shmem_inode_info *info;
2097 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2099 if (shmem_reserve_inode(sb))
2100 return NULL;
2102 inode = new_inode(sb);
2103 if (inode) {
2104 inode->i_ino = get_next_ino();
2105 inode_init_owner(inode, dir, mode);
2106 inode->i_blocks = 0;
2107 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2108 inode->i_generation = get_seconds();
2109 info = SHMEM_I(inode);
2110 memset(info, 0, (char *)inode - (char *)info);
2111 spin_lock_init(&info->lock);
2112 info->seals = F_SEAL_SEAL;
2113 info->flags = flags & VM_NORESERVE;
2114 INIT_LIST_HEAD(&info->shrinklist);
2115 INIT_LIST_HEAD(&info->swaplist);
2116 simple_xattrs_init(&info->xattrs);
2117 cache_no_acl(inode);
2119 switch (mode & S_IFMT) {
2120 default:
2121 inode->i_op = &shmem_special_inode_operations;
2122 init_special_inode(inode, mode, dev);
2123 break;
2124 case S_IFREG:
2125 inode->i_mapping->a_ops = &shmem_aops;
2126 inode->i_op = &shmem_inode_operations;
2127 inode->i_fop = &shmem_file_operations;
2128 mpol_shared_policy_init(&info->policy,
2129 shmem_get_sbmpol(sbinfo));
2130 break;
2131 case S_IFDIR:
2132 inc_nlink(inode);
2133 /* Some things misbehave if size == 0 on a directory */
2134 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2135 inode->i_op = &shmem_dir_inode_operations;
2136 inode->i_fop = &simple_dir_operations;
2137 break;
2138 case S_IFLNK:
2140 * Must not load anything in the rbtree,
2141 * mpol_free_shared_policy will not be called.
2143 mpol_shared_policy_init(&info->policy, NULL);
2144 break;
2146 } else
2147 shmem_free_inode(sb);
2148 return inode;
2151 bool shmem_mapping(struct address_space *mapping)
2153 if (!mapping->host)
2154 return false;
2156 return mapping->host->i_sb->s_op == &shmem_ops;
2159 #ifdef CONFIG_TMPFS
2160 static const struct inode_operations shmem_symlink_inode_operations;
2161 static const struct inode_operations shmem_short_symlink_operations;
2163 #ifdef CONFIG_TMPFS_XATTR
2164 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2165 #else
2166 #define shmem_initxattrs NULL
2167 #endif
2169 static int
2170 shmem_write_begin(struct file *file, struct address_space *mapping,
2171 loff_t pos, unsigned len, unsigned flags,
2172 struct page **pagep, void **fsdata)
2174 struct inode *inode = mapping->host;
2175 struct shmem_inode_info *info = SHMEM_I(inode);
2176 pgoff_t index = pos >> PAGE_SHIFT;
2178 /* i_mutex is held by caller */
2179 if (unlikely(info->seals)) {
2180 if (info->seals & F_SEAL_WRITE)
2181 return -EPERM;
2182 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2183 return -EPERM;
2186 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2189 static int
2190 shmem_write_end(struct file *file, struct address_space *mapping,
2191 loff_t pos, unsigned len, unsigned copied,
2192 struct page *page, void *fsdata)
2194 struct inode *inode = mapping->host;
2196 if (pos + copied > inode->i_size)
2197 i_size_write(inode, pos + copied);
2199 if (!PageUptodate(page)) {
2200 struct page *head = compound_head(page);
2201 if (PageTransCompound(page)) {
2202 int i;
2204 for (i = 0; i < HPAGE_PMD_NR; i++) {
2205 if (head + i == page)
2206 continue;
2207 clear_highpage(head + i);
2208 flush_dcache_page(head + i);
2211 if (copied < PAGE_SIZE) {
2212 unsigned from = pos & (PAGE_SIZE - 1);
2213 zero_user_segments(page, 0, from,
2214 from + copied, PAGE_SIZE);
2216 SetPageUptodate(head);
2218 set_page_dirty(page);
2219 unlock_page(page);
2220 put_page(page);
2222 return copied;
2225 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2227 struct file *file = iocb->ki_filp;
2228 struct inode *inode = file_inode(file);
2229 struct address_space *mapping = inode->i_mapping;
2230 pgoff_t index;
2231 unsigned long offset;
2232 enum sgp_type sgp = SGP_READ;
2233 int error = 0;
2234 ssize_t retval = 0;
2235 loff_t *ppos = &iocb->ki_pos;
2238 * Might this read be for a stacking filesystem? Then when reading
2239 * holes of a sparse file, we actually need to allocate those pages,
2240 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2242 if (!iter_is_iovec(to))
2243 sgp = SGP_CACHE;
2245 index = *ppos >> PAGE_SHIFT;
2246 offset = *ppos & ~PAGE_MASK;
2248 for (;;) {
2249 struct page *page = NULL;
2250 pgoff_t end_index;
2251 unsigned long nr, ret;
2252 loff_t i_size = i_size_read(inode);
2254 end_index = i_size >> PAGE_SHIFT;
2255 if (index > end_index)
2256 break;
2257 if (index == end_index) {
2258 nr = i_size & ~PAGE_MASK;
2259 if (nr <= offset)
2260 break;
2263 error = shmem_getpage(inode, index, &page, sgp);
2264 if (error) {
2265 if (error == -EINVAL)
2266 error = 0;
2267 break;
2269 if (page) {
2270 if (sgp == SGP_CACHE)
2271 set_page_dirty(page);
2272 unlock_page(page);
2276 * We must evaluate after, since reads (unlike writes)
2277 * are called without i_mutex protection against truncate
2279 nr = PAGE_SIZE;
2280 i_size = i_size_read(inode);
2281 end_index = i_size >> PAGE_SHIFT;
2282 if (index == end_index) {
2283 nr = i_size & ~PAGE_MASK;
2284 if (nr <= offset) {
2285 if (page)
2286 put_page(page);
2287 break;
2290 nr -= offset;
2292 if (page) {
2294 * If users can be writing to this page using arbitrary
2295 * virtual addresses, take care about potential aliasing
2296 * before reading the page on the kernel side.
2298 if (mapping_writably_mapped(mapping))
2299 flush_dcache_page(page);
2301 * Mark the page accessed if we read the beginning.
2303 if (!offset)
2304 mark_page_accessed(page);
2305 } else {
2306 page = ZERO_PAGE(0);
2307 get_page(page);
2311 * Ok, we have the page, and it's up-to-date, so
2312 * now we can copy it to user space...
2314 ret = copy_page_to_iter(page, offset, nr, to);
2315 retval += ret;
2316 offset += ret;
2317 index += offset >> PAGE_SHIFT;
2318 offset &= ~PAGE_MASK;
2320 put_page(page);
2321 if (!iov_iter_count(to))
2322 break;
2323 if (ret < nr) {
2324 error = -EFAULT;
2325 break;
2327 cond_resched();
2330 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2331 file_accessed(file);
2332 return retval ? retval : error;
2336 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2338 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2339 pgoff_t index, pgoff_t end, int whence)
2341 struct page *page;
2342 struct pagevec pvec;
2343 pgoff_t indices[PAGEVEC_SIZE];
2344 bool done = false;
2345 int i;
2347 pagevec_init(&pvec, 0);
2348 pvec.nr = 1; /* start small: we may be there already */
2349 while (!done) {
2350 pvec.nr = find_get_entries(mapping, index,
2351 pvec.nr, pvec.pages, indices);
2352 if (!pvec.nr) {
2353 if (whence == SEEK_DATA)
2354 index = end;
2355 break;
2357 for (i = 0; i < pvec.nr; i++, index++) {
2358 if (index < indices[i]) {
2359 if (whence == SEEK_HOLE) {
2360 done = true;
2361 break;
2363 index = indices[i];
2365 page = pvec.pages[i];
2366 if (page && !radix_tree_exceptional_entry(page)) {
2367 if (!PageUptodate(page))
2368 page = NULL;
2370 if (index >= end ||
2371 (page && whence == SEEK_DATA) ||
2372 (!page && whence == SEEK_HOLE)) {
2373 done = true;
2374 break;
2377 pagevec_remove_exceptionals(&pvec);
2378 pagevec_release(&pvec);
2379 pvec.nr = PAGEVEC_SIZE;
2380 cond_resched();
2382 return index;
2385 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2387 struct address_space *mapping = file->f_mapping;
2388 struct inode *inode = mapping->host;
2389 pgoff_t start, end;
2390 loff_t new_offset;
2392 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2393 return generic_file_llseek_size(file, offset, whence,
2394 MAX_LFS_FILESIZE, i_size_read(inode));
2395 inode_lock(inode);
2396 /* We're holding i_mutex so we can access i_size directly */
2398 if (offset < 0)
2399 offset = -EINVAL;
2400 else if (offset >= inode->i_size)
2401 offset = -ENXIO;
2402 else {
2403 start = offset >> PAGE_SHIFT;
2404 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2405 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2406 new_offset <<= PAGE_SHIFT;
2407 if (new_offset > offset) {
2408 if (new_offset < inode->i_size)
2409 offset = new_offset;
2410 else if (whence == SEEK_DATA)
2411 offset = -ENXIO;
2412 else
2413 offset = inode->i_size;
2417 if (offset >= 0)
2418 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2419 inode_unlock(inode);
2420 return offset;
2424 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2425 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2427 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2428 #define LAST_SCAN 4 /* about 150ms max */
2430 static void shmem_tag_pins(struct address_space *mapping)
2432 struct radix_tree_iter iter;
2433 void **slot;
2434 pgoff_t start;
2435 struct page *page;
2437 lru_add_drain();
2438 start = 0;
2439 rcu_read_lock();
2441 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2442 page = radix_tree_deref_slot(slot);
2443 if (!page || radix_tree_exception(page)) {
2444 if (radix_tree_deref_retry(page)) {
2445 slot = radix_tree_iter_retry(&iter);
2446 continue;
2448 } else if (page_count(page) - page_mapcount(page) > 1) {
2449 spin_lock_irq(&mapping->tree_lock);
2450 radix_tree_tag_set(&mapping->page_tree, iter.index,
2451 SHMEM_TAG_PINNED);
2452 spin_unlock_irq(&mapping->tree_lock);
2455 if (need_resched()) {
2456 cond_resched_rcu();
2457 slot = radix_tree_iter_next(&iter);
2460 rcu_read_unlock();
2464 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2465 * via get_user_pages(), drivers might have some pending I/O without any active
2466 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2467 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2468 * them to be dropped.
2469 * The caller must guarantee that no new user will acquire writable references
2470 * to those pages to avoid races.
2472 static int shmem_wait_for_pins(struct address_space *mapping)
2474 struct radix_tree_iter iter;
2475 void **slot;
2476 pgoff_t start;
2477 struct page *page;
2478 int error, scan;
2480 shmem_tag_pins(mapping);
2482 error = 0;
2483 for (scan = 0; scan <= LAST_SCAN; scan++) {
2484 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2485 break;
2487 if (!scan)
2488 lru_add_drain_all();
2489 else if (schedule_timeout_killable((HZ << scan) / 200))
2490 scan = LAST_SCAN;
2492 start = 0;
2493 rcu_read_lock();
2494 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2495 start, SHMEM_TAG_PINNED) {
2497 page = radix_tree_deref_slot(slot);
2498 if (radix_tree_exception(page)) {
2499 if (radix_tree_deref_retry(page)) {
2500 slot = radix_tree_iter_retry(&iter);
2501 continue;
2504 page = NULL;
2507 if (page &&
2508 page_count(page) - page_mapcount(page) != 1) {
2509 if (scan < LAST_SCAN)
2510 goto continue_resched;
2513 * On the last scan, we clean up all those tags
2514 * we inserted; but make a note that we still
2515 * found pages pinned.
2517 error = -EBUSY;
2520 spin_lock_irq(&mapping->tree_lock);
2521 radix_tree_tag_clear(&mapping->page_tree,
2522 iter.index, SHMEM_TAG_PINNED);
2523 spin_unlock_irq(&mapping->tree_lock);
2524 continue_resched:
2525 if (need_resched()) {
2526 cond_resched_rcu();
2527 slot = radix_tree_iter_next(&iter);
2530 rcu_read_unlock();
2533 return error;
2536 #define F_ALL_SEALS (F_SEAL_SEAL | \
2537 F_SEAL_SHRINK | \
2538 F_SEAL_GROW | \
2539 F_SEAL_WRITE)
2541 int shmem_add_seals(struct file *file, unsigned int seals)
2543 struct inode *inode = file_inode(file);
2544 struct shmem_inode_info *info = SHMEM_I(inode);
2545 int error;
2548 * SEALING
2549 * Sealing allows multiple parties to share a shmem-file but restrict
2550 * access to a specific subset of file operations. Seals can only be
2551 * added, but never removed. This way, mutually untrusted parties can
2552 * share common memory regions with a well-defined policy. A malicious
2553 * peer can thus never perform unwanted operations on a shared object.
2555 * Seals are only supported on special shmem-files and always affect
2556 * the whole underlying inode. Once a seal is set, it may prevent some
2557 * kinds of access to the file. Currently, the following seals are
2558 * defined:
2559 * SEAL_SEAL: Prevent further seals from being set on this file
2560 * SEAL_SHRINK: Prevent the file from shrinking
2561 * SEAL_GROW: Prevent the file from growing
2562 * SEAL_WRITE: Prevent write access to the file
2564 * As we don't require any trust relationship between two parties, we
2565 * must prevent seals from being removed. Therefore, sealing a file
2566 * only adds a given set of seals to the file, it never touches
2567 * existing seals. Furthermore, the "setting seals"-operation can be
2568 * sealed itself, which basically prevents any further seal from being
2569 * added.
2571 * Semantics of sealing are only defined on volatile files. Only
2572 * anonymous shmem files support sealing. More importantly, seals are
2573 * never written to disk. Therefore, there's no plan to support it on
2574 * other file types.
2577 if (file->f_op != &shmem_file_operations)
2578 return -EINVAL;
2579 if (!(file->f_mode & FMODE_WRITE))
2580 return -EPERM;
2581 if (seals & ~(unsigned int)F_ALL_SEALS)
2582 return -EINVAL;
2584 inode_lock(inode);
2586 if (info->seals & F_SEAL_SEAL) {
2587 error = -EPERM;
2588 goto unlock;
2591 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2592 error = mapping_deny_writable(file->f_mapping);
2593 if (error)
2594 goto unlock;
2596 error = shmem_wait_for_pins(file->f_mapping);
2597 if (error) {
2598 mapping_allow_writable(file->f_mapping);
2599 goto unlock;
2603 info->seals |= seals;
2604 error = 0;
2606 unlock:
2607 inode_unlock(inode);
2608 return error;
2610 EXPORT_SYMBOL_GPL(shmem_add_seals);
2612 int shmem_get_seals(struct file *file)
2614 if (file->f_op != &shmem_file_operations)
2615 return -EINVAL;
2617 return SHMEM_I(file_inode(file))->seals;
2619 EXPORT_SYMBOL_GPL(shmem_get_seals);
2621 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2623 long error;
2625 switch (cmd) {
2626 case F_ADD_SEALS:
2627 /* disallow upper 32bit */
2628 if (arg > UINT_MAX)
2629 return -EINVAL;
2631 error = shmem_add_seals(file, arg);
2632 break;
2633 case F_GET_SEALS:
2634 error = shmem_get_seals(file);
2635 break;
2636 default:
2637 error = -EINVAL;
2638 break;
2641 return error;
2644 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2645 loff_t len)
2647 struct inode *inode = file_inode(file);
2648 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2649 struct shmem_inode_info *info = SHMEM_I(inode);
2650 struct shmem_falloc shmem_falloc;
2651 pgoff_t start, index, end;
2652 int error;
2654 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2655 return -EOPNOTSUPP;
2657 inode_lock(inode);
2659 if (mode & FALLOC_FL_PUNCH_HOLE) {
2660 struct address_space *mapping = file->f_mapping;
2661 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2662 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2663 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2665 /* protected by i_mutex */
2666 if (info->seals & F_SEAL_WRITE) {
2667 error = -EPERM;
2668 goto out;
2671 shmem_falloc.waitq = &shmem_falloc_waitq;
2672 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2673 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2674 spin_lock(&inode->i_lock);
2675 inode->i_private = &shmem_falloc;
2676 spin_unlock(&inode->i_lock);
2678 if ((u64)unmap_end > (u64)unmap_start)
2679 unmap_mapping_range(mapping, unmap_start,
2680 1 + unmap_end - unmap_start, 0);
2681 shmem_truncate_range(inode, offset, offset + len - 1);
2682 /* No need to unmap again: hole-punching leaves COWed pages */
2684 spin_lock(&inode->i_lock);
2685 inode->i_private = NULL;
2686 wake_up_all(&shmem_falloc_waitq);
2687 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
2688 spin_unlock(&inode->i_lock);
2689 error = 0;
2690 goto out;
2693 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2694 error = inode_newsize_ok(inode, offset + len);
2695 if (error)
2696 goto out;
2698 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2699 error = -EPERM;
2700 goto out;
2703 start = offset >> PAGE_SHIFT;
2704 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2705 /* Try to avoid a swapstorm if len is impossible to satisfy */
2706 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2707 error = -ENOSPC;
2708 goto out;
2711 shmem_falloc.waitq = NULL;
2712 shmem_falloc.start = start;
2713 shmem_falloc.next = start;
2714 shmem_falloc.nr_falloced = 0;
2715 shmem_falloc.nr_unswapped = 0;
2716 spin_lock(&inode->i_lock);
2717 inode->i_private = &shmem_falloc;
2718 spin_unlock(&inode->i_lock);
2720 for (index = start; index < end; index++) {
2721 struct page *page;
2724 * Good, the fallocate(2) manpage permits EINTR: we may have
2725 * been interrupted because we are using up too much memory.
2727 if (signal_pending(current))
2728 error = -EINTR;
2729 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2730 error = -ENOMEM;
2731 else
2732 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2733 if (error) {
2734 /* Remove the !PageUptodate pages we added */
2735 if (index > start) {
2736 shmem_undo_range(inode,
2737 (loff_t)start << PAGE_SHIFT,
2738 ((loff_t)index << PAGE_SHIFT) - 1, true);
2740 goto undone;
2744 * Inform shmem_writepage() how far we have reached.
2745 * No need for lock or barrier: we have the page lock.
2747 shmem_falloc.next++;
2748 if (!PageUptodate(page))
2749 shmem_falloc.nr_falloced++;
2752 * If !PageUptodate, leave it that way so that freeable pages
2753 * can be recognized if we need to rollback on error later.
2754 * But set_page_dirty so that memory pressure will swap rather
2755 * than free the pages we are allocating (and SGP_CACHE pages
2756 * might still be clean: we now need to mark those dirty too).
2758 set_page_dirty(page);
2759 unlock_page(page);
2760 put_page(page);
2761 cond_resched();
2764 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2765 i_size_write(inode, offset + len);
2766 inode->i_ctime = current_time(inode);
2767 undone:
2768 spin_lock(&inode->i_lock);
2769 inode->i_private = NULL;
2770 spin_unlock(&inode->i_lock);
2771 out:
2772 inode_unlock(inode);
2773 return error;
2776 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2778 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2780 buf->f_type = TMPFS_MAGIC;
2781 buf->f_bsize = PAGE_SIZE;
2782 buf->f_namelen = NAME_MAX;
2783 if (sbinfo->max_blocks) {
2784 buf->f_blocks = sbinfo->max_blocks;
2785 buf->f_bavail =
2786 buf->f_bfree = sbinfo->max_blocks -
2787 percpu_counter_sum(&sbinfo->used_blocks);
2789 if (sbinfo->max_inodes) {
2790 buf->f_files = sbinfo->max_inodes;
2791 buf->f_ffree = sbinfo->free_inodes;
2793 /* else leave those fields 0 like simple_statfs */
2794 return 0;
2798 * File creation. Allocate an inode, and we're done..
2800 static int
2801 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2803 struct inode *inode;
2804 int error = -ENOSPC;
2806 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2807 if (inode) {
2808 error = simple_acl_create(dir, inode);
2809 if (error)
2810 goto out_iput;
2811 error = security_inode_init_security(inode, dir,
2812 &dentry->d_name,
2813 shmem_initxattrs, NULL);
2814 if (error && error != -EOPNOTSUPP)
2815 goto out_iput;
2817 error = 0;
2818 dir->i_size += BOGO_DIRENT_SIZE;
2819 dir->i_ctime = dir->i_mtime = current_time(dir);
2820 d_instantiate(dentry, inode);
2821 dget(dentry); /* Extra count - pin the dentry in core */
2823 return error;
2824 out_iput:
2825 iput(inode);
2826 return error;
2829 static int
2830 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2832 struct inode *inode;
2833 int error = -ENOSPC;
2835 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2836 if (inode) {
2837 error = security_inode_init_security(inode, dir,
2838 NULL,
2839 shmem_initxattrs, NULL);
2840 if (error && error != -EOPNOTSUPP)
2841 goto out_iput;
2842 error = simple_acl_create(dir, inode);
2843 if (error)
2844 goto out_iput;
2845 d_tmpfile(dentry, inode);
2847 return error;
2848 out_iput:
2849 iput(inode);
2850 return error;
2853 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2855 int error;
2857 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2858 return error;
2859 inc_nlink(dir);
2860 return 0;
2863 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2864 bool excl)
2866 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2870 * Link a file..
2872 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2874 struct inode *inode = d_inode(old_dentry);
2875 int ret;
2878 * No ordinary (disk based) filesystem counts links as inodes;
2879 * but each new link needs a new dentry, pinning lowmem, and
2880 * tmpfs dentries cannot be pruned until they are unlinked.
2882 ret = shmem_reserve_inode(inode->i_sb);
2883 if (ret)
2884 goto out;
2886 dir->i_size += BOGO_DIRENT_SIZE;
2887 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2888 inc_nlink(inode);
2889 ihold(inode); /* New dentry reference */
2890 dget(dentry); /* Extra pinning count for the created dentry */
2891 d_instantiate(dentry, inode);
2892 out:
2893 return ret;
2896 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2898 struct inode *inode = d_inode(dentry);
2900 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2901 shmem_free_inode(inode->i_sb);
2903 dir->i_size -= BOGO_DIRENT_SIZE;
2904 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2905 drop_nlink(inode);
2906 dput(dentry); /* Undo the count from "create" - this does all the work */
2907 return 0;
2910 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2912 if (!simple_empty(dentry))
2913 return -ENOTEMPTY;
2915 drop_nlink(d_inode(dentry));
2916 drop_nlink(dir);
2917 return shmem_unlink(dir, dentry);
2920 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2922 bool old_is_dir = d_is_dir(old_dentry);
2923 bool new_is_dir = d_is_dir(new_dentry);
2925 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2926 if (old_is_dir) {
2927 drop_nlink(old_dir);
2928 inc_nlink(new_dir);
2929 } else {
2930 drop_nlink(new_dir);
2931 inc_nlink(old_dir);
2934 old_dir->i_ctime = old_dir->i_mtime =
2935 new_dir->i_ctime = new_dir->i_mtime =
2936 d_inode(old_dentry)->i_ctime =
2937 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2939 return 0;
2942 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2944 struct dentry *whiteout;
2945 int error;
2947 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2948 if (!whiteout)
2949 return -ENOMEM;
2951 error = shmem_mknod(old_dir, whiteout,
2952 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2953 dput(whiteout);
2954 if (error)
2955 return error;
2958 * Cheat and hash the whiteout while the old dentry is still in
2959 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2961 * d_lookup() will consistently find one of them at this point,
2962 * not sure which one, but that isn't even important.
2964 d_rehash(whiteout);
2965 return 0;
2969 * The VFS layer already does all the dentry stuff for rename,
2970 * we just have to decrement the usage count for the target if
2971 * it exists so that the VFS layer correctly free's it when it
2972 * gets overwritten.
2974 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2976 struct inode *inode = d_inode(old_dentry);
2977 int they_are_dirs = S_ISDIR(inode->i_mode);
2979 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2980 return -EINVAL;
2982 if (flags & RENAME_EXCHANGE)
2983 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2985 if (!simple_empty(new_dentry))
2986 return -ENOTEMPTY;
2988 if (flags & RENAME_WHITEOUT) {
2989 int error;
2991 error = shmem_whiteout(old_dir, old_dentry);
2992 if (error)
2993 return error;
2996 if (d_really_is_positive(new_dentry)) {
2997 (void) shmem_unlink(new_dir, new_dentry);
2998 if (they_are_dirs) {
2999 drop_nlink(d_inode(new_dentry));
3000 drop_nlink(old_dir);
3002 } else if (they_are_dirs) {
3003 drop_nlink(old_dir);
3004 inc_nlink(new_dir);
3007 old_dir->i_size -= BOGO_DIRENT_SIZE;
3008 new_dir->i_size += BOGO_DIRENT_SIZE;
3009 old_dir->i_ctime = old_dir->i_mtime =
3010 new_dir->i_ctime = new_dir->i_mtime =
3011 inode->i_ctime = current_time(old_dir);
3012 return 0;
3015 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3017 int error;
3018 int len;
3019 struct inode *inode;
3020 struct page *page;
3021 struct shmem_inode_info *info;
3023 len = strlen(symname) + 1;
3024 if (len > PAGE_SIZE)
3025 return -ENAMETOOLONG;
3027 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3028 if (!inode)
3029 return -ENOSPC;
3031 error = security_inode_init_security(inode, dir, &dentry->d_name,
3032 shmem_initxattrs, NULL);
3033 if (error) {
3034 if (error != -EOPNOTSUPP) {
3035 iput(inode);
3036 return error;
3038 error = 0;
3041 info = SHMEM_I(inode);
3042 inode->i_size = len-1;
3043 if (len <= SHORT_SYMLINK_LEN) {
3044 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3045 if (!inode->i_link) {
3046 iput(inode);
3047 return -ENOMEM;
3049 inode->i_op = &shmem_short_symlink_operations;
3050 } else {
3051 inode_nohighmem(inode);
3052 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3053 if (error) {
3054 iput(inode);
3055 return error;
3057 inode->i_mapping->a_ops = &shmem_aops;
3058 inode->i_op = &shmem_symlink_inode_operations;
3059 memcpy(page_address(page), symname, len);
3060 SetPageUptodate(page);
3061 set_page_dirty(page);
3062 unlock_page(page);
3063 put_page(page);
3065 dir->i_size += BOGO_DIRENT_SIZE;
3066 dir->i_ctime = dir->i_mtime = current_time(dir);
3067 d_instantiate(dentry, inode);
3068 dget(dentry);
3069 return 0;
3072 static void shmem_put_link(void *arg)
3074 mark_page_accessed(arg);
3075 put_page(arg);
3078 static const char *shmem_get_link(struct dentry *dentry,
3079 struct inode *inode,
3080 struct delayed_call *done)
3082 struct page *page = NULL;
3083 int error;
3084 if (!dentry) {
3085 page = find_get_page(inode->i_mapping, 0);
3086 if (!page)
3087 return ERR_PTR(-ECHILD);
3088 if (!PageUptodate(page)) {
3089 put_page(page);
3090 return ERR_PTR(-ECHILD);
3092 } else {
3093 error = shmem_getpage(inode, 0, &page, SGP_READ);
3094 if (error)
3095 return ERR_PTR(error);
3096 unlock_page(page);
3098 set_delayed_call(done, shmem_put_link, page);
3099 return page_address(page);
3102 #ifdef CONFIG_TMPFS_XATTR
3104 * Superblocks without xattr inode operations may get some security.* xattr
3105 * support from the LSM "for free". As soon as we have any other xattrs
3106 * like ACLs, we also need to implement the security.* handlers at
3107 * filesystem level, though.
3111 * Callback for security_inode_init_security() for acquiring xattrs.
3113 static int shmem_initxattrs(struct inode *inode,
3114 const struct xattr *xattr_array,
3115 void *fs_info)
3117 struct shmem_inode_info *info = SHMEM_I(inode);
3118 const struct xattr *xattr;
3119 struct simple_xattr *new_xattr;
3120 size_t len;
3122 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3123 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3124 if (!new_xattr)
3125 return -ENOMEM;
3127 len = strlen(xattr->name) + 1;
3128 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3129 GFP_KERNEL);
3130 if (!new_xattr->name) {
3131 kfree(new_xattr);
3132 return -ENOMEM;
3135 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3136 XATTR_SECURITY_PREFIX_LEN);
3137 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3138 xattr->name, len);
3140 simple_xattr_list_add(&info->xattrs, new_xattr);
3143 return 0;
3146 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3147 struct dentry *unused, struct inode *inode,
3148 const char *name, void *buffer, size_t size)
3150 struct shmem_inode_info *info = SHMEM_I(inode);
3152 name = xattr_full_name(handler, name);
3153 return simple_xattr_get(&info->xattrs, name, buffer, size);
3156 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3157 struct dentry *unused, struct inode *inode,
3158 const char *name, const void *value,
3159 size_t size, int flags)
3161 struct shmem_inode_info *info = SHMEM_I(inode);
3163 name = xattr_full_name(handler, name);
3164 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3167 static const struct xattr_handler shmem_security_xattr_handler = {
3168 .prefix = XATTR_SECURITY_PREFIX,
3169 .get = shmem_xattr_handler_get,
3170 .set = shmem_xattr_handler_set,
3173 static const struct xattr_handler shmem_trusted_xattr_handler = {
3174 .prefix = XATTR_TRUSTED_PREFIX,
3175 .get = shmem_xattr_handler_get,
3176 .set = shmem_xattr_handler_set,
3179 static const struct xattr_handler *shmem_xattr_handlers[] = {
3180 #ifdef CONFIG_TMPFS_POSIX_ACL
3181 &posix_acl_access_xattr_handler,
3182 &posix_acl_default_xattr_handler,
3183 #endif
3184 &shmem_security_xattr_handler,
3185 &shmem_trusted_xattr_handler,
3186 NULL
3189 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3191 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3192 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3194 #endif /* CONFIG_TMPFS_XATTR */
3196 static const struct inode_operations shmem_short_symlink_operations = {
3197 .readlink = generic_readlink,
3198 .get_link = simple_get_link,
3199 #ifdef CONFIG_TMPFS_XATTR
3200 .listxattr = shmem_listxattr,
3201 #endif
3204 static const struct inode_operations shmem_symlink_inode_operations = {
3205 .readlink = generic_readlink,
3206 .get_link = shmem_get_link,
3207 #ifdef CONFIG_TMPFS_XATTR
3208 .listxattr = shmem_listxattr,
3209 #endif
3212 static struct dentry *shmem_get_parent(struct dentry *child)
3214 return ERR_PTR(-ESTALE);
3217 static int shmem_match(struct inode *ino, void *vfh)
3219 __u32 *fh = vfh;
3220 __u64 inum = fh[2];
3221 inum = (inum << 32) | fh[1];
3222 return ino->i_ino == inum && fh[0] == ino->i_generation;
3225 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3226 struct fid *fid, int fh_len, int fh_type)
3228 struct inode *inode;
3229 struct dentry *dentry = NULL;
3230 u64 inum;
3232 if (fh_len < 3)
3233 return NULL;
3235 inum = fid->raw[2];
3236 inum = (inum << 32) | fid->raw[1];
3238 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3239 shmem_match, fid->raw);
3240 if (inode) {
3241 dentry = d_find_alias(inode);
3242 iput(inode);
3245 return dentry;
3248 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3249 struct inode *parent)
3251 if (*len < 3) {
3252 *len = 3;
3253 return FILEID_INVALID;
3256 if (inode_unhashed(inode)) {
3257 /* Unfortunately insert_inode_hash is not idempotent,
3258 * so as we hash inodes here rather than at creation
3259 * time, we need a lock to ensure we only try
3260 * to do it once
3262 static DEFINE_SPINLOCK(lock);
3263 spin_lock(&lock);
3264 if (inode_unhashed(inode))
3265 __insert_inode_hash(inode,
3266 inode->i_ino + inode->i_generation);
3267 spin_unlock(&lock);
3270 fh[0] = inode->i_generation;
3271 fh[1] = inode->i_ino;
3272 fh[2] = ((__u64)inode->i_ino) >> 32;
3274 *len = 3;
3275 return 1;
3278 static const struct export_operations shmem_export_ops = {
3279 .get_parent = shmem_get_parent,
3280 .encode_fh = shmem_encode_fh,
3281 .fh_to_dentry = shmem_fh_to_dentry,
3284 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3285 bool remount)
3287 char *this_char, *value, *rest;
3288 struct mempolicy *mpol = NULL;
3289 uid_t uid;
3290 gid_t gid;
3292 while (options != NULL) {
3293 this_char = options;
3294 for (;;) {
3296 * NUL-terminate this option: unfortunately,
3297 * mount options form a comma-separated list,
3298 * but mpol's nodelist may also contain commas.
3300 options = strchr(options, ',');
3301 if (options == NULL)
3302 break;
3303 options++;
3304 if (!isdigit(*options)) {
3305 options[-1] = '\0';
3306 break;
3309 if (!*this_char)
3310 continue;
3311 if ((value = strchr(this_char,'=')) != NULL) {
3312 *value++ = 0;
3313 } else {
3314 pr_err("tmpfs: No value for mount option '%s'\n",
3315 this_char);
3316 goto error;
3319 if (!strcmp(this_char,"size")) {
3320 unsigned long long size;
3321 size = memparse(value,&rest);
3322 if (*rest == '%') {
3323 size <<= PAGE_SHIFT;
3324 size *= totalram_pages;
3325 do_div(size, 100);
3326 rest++;
3328 if (*rest)
3329 goto bad_val;
3330 sbinfo->max_blocks =
3331 DIV_ROUND_UP(size, PAGE_SIZE);
3332 } else if (!strcmp(this_char,"nr_blocks")) {
3333 sbinfo->max_blocks = memparse(value, &rest);
3334 if (*rest)
3335 goto bad_val;
3336 } else if (!strcmp(this_char,"nr_inodes")) {
3337 sbinfo->max_inodes = memparse(value, &rest);
3338 if (*rest)
3339 goto bad_val;
3340 } else if (!strcmp(this_char,"mode")) {
3341 if (remount)
3342 continue;
3343 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3344 if (*rest)
3345 goto bad_val;
3346 } else if (!strcmp(this_char,"uid")) {
3347 if (remount)
3348 continue;
3349 uid = simple_strtoul(value, &rest, 0);
3350 if (*rest)
3351 goto bad_val;
3352 sbinfo->uid = make_kuid(current_user_ns(), uid);
3353 if (!uid_valid(sbinfo->uid))
3354 goto bad_val;
3355 } else if (!strcmp(this_char,"gid")) {
3356 if (remount)
3357 continue;
3358 gid = simple_strtoul(value, &rest, 0);
3359 if (*rest)
3360 goto bad_val;
3361 sbinfo->gid = make_kgid(current_user_ns(), gid);
3362 if (!gid_valid(sbinfo->gid))
3363 goto bad_val;
3364 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3365 } else if (!strcmp(this_char, "huge")) {
3366 int huge;
3367 huge = shmem_parse_huge(value);
3368 if (huge < 0)
3369 goto bad_val;
3370 if (!has_transparent_hugepage() &&
3371 huge != SHMEM_HUGE_NEVER)
3372 goto bad_val;
3373 sbinfo->huge = huge;
3374 #endif
3375 #ifdef CONFIG_NUMA
3376 } else if (!strcmp(this_char,"mpol")) {
3377 mpol_put(mpol);
3378 mpol = NULL;
3379 if (mpol_parse_str(value, &mpol))
3380 goto bad_val;
3381 #endif
3382 } else {
3383 pr_err("tmpfs: Bad mount option %s\n", this_char);
3384 goto error;
3387 sbinfo->mpol = mpol;
3388 return 0;
3390 bad_val:
3391 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3392 value, this_char);
3393 error:
3394 mpol_put(mpol);
3395 return 1;
3399 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3401 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3402 struct shmem_sb_info config = *sbinfo;
3403 unsigned long inodes;
3404 int error = -EINVAL;
3406 config.mpol = NULL;
3407 if (shmem_parse_options(data, &config, true))
3408 return error;
3410 spin_lock(&sbinfo->stat_lock);
3411 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3412 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3413 goto out;
3414 if (config.max_inodes < inodes)
3415 goto out;
3417 * Those tests disallow limited->unlimited while any are in use;
3418 * but we must separately disallow unlimited->limited, because
3419 * in that case we have no record of how much is already in use.
3421 if (config.max_blocks && !sbinfo->max_blocks)
3422 goto out;
3423 if (config.max_inodes && !sbinfo->max_inodes)
3424 goto out;
3426 error = 0;
3427 sbinfo->huge = config.huge;
3428 sbinfo->max_blocks = config.max_blocks;
3429 sbinfo->max_inodes = config.max_inodes;
3430 sbinfo->free_inodes = config.max_inodes - inodes;
3433 * Preserve previous mempolicy unless mpol remount option was specified.
3435 if (config.mpol) {
3436 mpol_put(sbinfo->mpol);
3437 sbinfo->mpol = config.mpol; /* transfers initial ref */
3439 out:
3440 spin_unlock(&sbinfo->stat_lock);
3441 return error;
3444 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3446 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3448 if (sbinfo->max_blocks != shmem_default_max_blocks())
3449 seq_printf(seq, ",size=%luk",
3450 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3451 if (sbinfo->max_inodes != shmem_default_max_inodes())
3452 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3453 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3454 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3455 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3456 seq_printf(seq, ",uid=%u",
3457 from_kuid_munged(&init_user_ns, sbinfo->uid));
3458 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3459 seq_printf(seq, ",gid=%u",
3460 from_kgid_munged(&init_user_ns, sbinfo->gid));
3461 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3462 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3463 if (sbinfo->huge)
3464 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3465 #endif
3466 shmem_show_mpol(seq, sbinfo->mpol);
3467 return 0;
3470 #define MFD_NAME_PREFIX "memfd:"
3471 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3472 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3474 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3476 SYSCALL_DEFINE2(memfd_create,
3477 const char __user *, uname,
3478 unsigned int, flags)
3480 struct shmem_inode_info *info;
3481 struct file *file;
3482 int fd, error;
3483 char *name;
3484 long len;
3486 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3487 return -EINVAL;
3489 /* length includes terminating zero */
3490 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3491 if (len <= 0)
3492 return -EFAULT;
3493 if (len > MFD_NAME_MAX_LEN + 1)
3494 return -EINVAL;
3496 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3497 if (!name)
3498 return -ENOMEM;
3500 strcpy(name, MFD_NAME_PREFIX);
3501 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3502 error = -EFAULT;
3503 goto err_name;
3506 /* terminating-zero may have changed after strnlen_user() returned */
3507 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3508 error = -EFAULT;
3509 goto err_name;
3512 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3513 if (fd < 0) {
3514 error = fd;
3515 goto err_name;
3518 file = shmem_file_setup(name, 0, VM_NORESERVE);
3519 if (IS_ERR(file)) {
3520 error = PTR_ERR(file);
3521 goto err_fd;
3523 info = SHMEM_I(file_inode(file));
3524 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3525 file->f_flags |= O_RDWR | O_LARGEFILE;
3526 if (flags & MFD_ALLOW_SEALING)
3527 info->seals &= ~F_SEAL_SEAL;
3529 fd_install(fd, file);
3530 kfree(name);
3531 return fd;
3533 err_fd:
3534 put_unused_fd(fd);
3535 err_name:
3536 kfree(name);
3537 return error;
3540 #endif /* CONFIG_TMPFS */
3542 static void shmem_put_super(struct super_block *sb)
3544 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3546 percpu_counter_destroy(&sbinfo->used_blocks);
3547 mpol_put(sbinfo->mpol);
3548 kfree(sbinfo);
3549 sb->s_fs_info = NULL;
3552 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3554 struct inode *inode;
3555 struct shmem_sb_info *sbinfo;
3556 int err = -ENOMEM;
3558 /* Round up to L1_CACHE_BYTES to resist false sharing */
3559 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3560 L1_CACHE_BYTES), GFP_KERNEL);
3561 if (!sbinfo)
3562 return -ENOMEM;
3564 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3565 sbinfo->uid = current_fsuid();
3566 sbinfo->gid = current_fsgid();
3567 sb->s_fs_info = sbinfo;
3569 #ifdef CONFIG_TMPFS
3571 * Per default we only allow half of the physical ram per
3572 * tmpfs instance, limiting inodes to one per page of lowmem;
3573 * but the internal instance is left unlimited.
3575 if (!(sb->s_flags & MS_KERNMOUNT)) {
3576 sbinfo->max_blocks = shmem_default_max_blocks();
3577 sbinfo->max_inodes = shmem_default_max_inodes();
3578 if (shmem_parse_options(data, sbinfo, false)) {
3579 err = -EINVAL;
3580 goto failed;
3582 } else {
3583 sb->s_flags |= MS_NOUSER;
3585 sb->s_export_op = &shmem_export_ops;
3586 sb->s_flags |= MS_NOSEC;
3587 #else
3588 sb->s_flags |= MS_NOUSER;
3589 #endif
3591 spin_lock_init(&sbinfo->stat_lock);
3592 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3593 goto failed;
3594 sbinfo->free_inodes = sbinfo->max_inodes;
3595 spin_lock_init(&sbinfo->shrinklist_lock);
3596 INIT_LIST_HEAD(&sbinfo->shrinklist);
3598 sb->s_maxbytes = MAX_LFS_FILESIZE;
3599 sb->s_blocksize = PAGE_SIZE;
3600 sb->s_blocksize_bits = PAGE_SHIFT;
3601 sb->s_magic = TMPFS_MAGIC;
3602 sb->s_op = &shmem_ops;
3603 sb->s_time_gran = 1;
3604 #ifdef CONFIG_TMPFS_XATTR
3605 sb->s_xattr = shmem_xattr_handlers;
3606 #endif
3607 #ifdef CONFIG_TMPFS_POSIX_ACL
3608 sb->s_flags |= MS_POSIXACL;
3609 #endif
3611 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3612 if (!inode)
3613 goto failed;
3614 inode->i_uid = sbinfo->uid;
3615 inode->i_gid = sbinfo->gid;
3616 sb->s_root = d_make_root(inode);
3617 if (!sb->s_root)
3618 goto failed;
3619 return 0;
3621 failed:
3622 shmem_put_super(sb);
3623 return err;
3626 static struct kmem_cache *shmem_inode_cachep;
3628 static struct inode *shmem_alloc_inode(struct super_block *sb)
3630 struct shmem_inode_info *info;
3631 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3632 if (!info)
3633 return NULL;
3634 return &info->vfs_inode;
3637 static void shmem_destroy_callback(struct rcu_head *head)
3639 struct inode *inode = container_of(head, struct inode, i_rcu);
3640 if (S_ISLNK(inode->i_mode))
3641 kfree(inode->i_link);
3642 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3645 static void shmem_destroy_inode(struct inode *inode)
3647 if (S_ISREG(inode->i_mode))
3648 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3649 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3652 static void shmem_init_inode(void *foo)
3654 struct shmem_inode_info *info = foo;
3655 inode_init_once(&info->vfs_inode);
3658 static int shmem_init_inodecache(void)
3660 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3661 sizeof(struct shmem_inode_info),
3662 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3663 return 0;
3666 static void shmem_destroy_inodecache(void)
3668 kmem_cache_destroy(shmem_inode_cachep);
3671 static const struct address_space_operations shmem_aops = {
3672 .writepage = shmem_writepage,
3673 .set_page_dirty = __set_page_dirty_no_writeback,
3674 #ifdef CONFIG_TMPFS
3675 .write_begin = shmem_write_begin,
3676 .write_end = shmem_write_end,
3677 #endif
3678 #ifdef CONFIG_MIGRATION
3679 .migratepage = migrate_page,
3680 #endif
3681 .error_remove_page = generic_error_remove_page,
3684 static const struct file_operations shmem_file_operations = {
3685 .mmap = shmem_mmap,
3686 .get_unmapped_area = shmem_get_unmapped_area,
3687 #ifdef CONFIG_TMPFS
3688 .llseek = shmem_file_llseek,
3689 .read_iter = shmem_file_read_iter,
3690 .write_iter = generic_file_write_iter,
3691 .fsync = noop_fsync,
3692 .splice_read = generic_file_splice_read,
3693 .splice_write = iter_file_splice_write,
3694 .fallocate = shmem_fallocate,
3695 #endif
3698 static const struct inode_operations shmem_inode_operations = {
3699 .getattr = shmem_getattr,
3700 .setattr = shmem_setattr,
3701 #ifdef CONFIG_TMPFS_XATTR
3702 .listxattr = shmem_listxattr,
3703 .set_acl = simple_set_acl,
3704 #endif
3707 static const struct inode_operations shmem_dir_inode_operations = {
3708 #ifdef CONFIG_TMPFS
3709 .create = shmem_create,
3710 .lookup = simple_lookup,
3711 .link = shmem_link,
3712 .unlink = shmem_unlink,
3713 .symlink = shmem_symlink,
3714 .mkdir = shmem_mkdir,
3715 .rmdir = shmem_rmdir,
3716 .mknod = shmem_mknod,
3717 .rename = shmem_rename2,
3718 .tmpfile = shmem_tmpfile,
3719 #endif
3720 #ifdef CONFIG_TMPFS_XATTR
3721 .listxattr = shmem_listxattr,
3722 #endif
3723 #ifdef CONFIG_TMPFS_POSIX_ACL
3724 .setattr = shmem_setattr,
3725 .set_acl = simple_set_acl,
3726 #endif
3729 static const struct inode_operations shmem_special_inode_operations = {
3730 #ifdef CONFIG_TMPFS_XATTR
3731 .listxattr = shmem_listxattr,
3732 #endif
3733 #ifdef CONFIG_TMPFS_POSIX_ACL
3734 .setattr = shmem_setattr,
3735 .set_acl = simple_set_acl,
3736 #endif
3739 static const struct super_operations shmem_ops = {
3740 .alloc_inode = shmem_alloc_inode,
3741 .destroy_inode = shmem_destroy_inode,
3742 #ifdef CONFIG_TMPFS
3743 .statfs = shmem_statfs,
3744 .remount_fs = shmem_remount_fs,
3745 .show_options = shmem_show_options,
3746 #endif
3747 .evict_inode = shmem_evict_inode,
3748 .drop_inode = generic_delete_inode,
3749 .put_super = shmem_put_super,
3750 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3751 .nr_cached_objects = shmem_unused_huge_count,
3752 .free_cached_objects = shmem_unused_huge_scan,
3753 #endif
3756 static const struct vm_operations_struct shmem_vm_ops = {
3757 .fault = shmem_fault,
3758 .map_pages = filemap_map_pages,
3759 #ifdef CONFIG_NUMA
3760 .set_policy = shmem_set_policy,
3761 .get_policy = shmem_get_policy,
3762 #endif
3765 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3766 int flags, const char *dev_name, void *data)
3768 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3771 static struct file_system_type shmem_fs_type = {
3772 .owner = THIS_MODULE,
3773 .name = "tmpfs",
3774 .mount = shmem_mount,
3775 .kill_sb = kill_litter_super,
3776 .fs_flags = FS_USERNS_MOUNT,
3779 int __init shmem_init(void)
3781 int error;
3783 /* If rootfs called this, don't re-init */
3784 if (shmem_inode_cachep)
3785 return 0;
3787 error = shmem_init_inodecache();
3788 if (error)
3789 goto out3;
3791 error = register_filesystem(&shmem_fs_type);
3792 if (error) {
3793 pr_err("Could not register tmpfs\n");
3794 goto out2;
3797 shm_mnt = kern_mount(&shmem_fs_type);
3798 if (IS_ERR(shm_mnt)) {
3799 error = PTR_ERR(shm_mnt);
3800 pr_err("Could not kern_mount tmpfs\n");
3801 goto out1;
3804 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3805 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3806 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3807 else
3808 shmem_huge = 0; /* just in case it was patched */
3809 #endif
3810 return 0;
3812 out1:
3813 unregister_filesystem(&shmem_fs_type);
3814 out2:
3815 shmem_destroy_inodecache();
3816 out3:
3817 shm_mnt = ERR_PTR(error);
3818 return error;
3821 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3822 static ssize_t shmem_enabled_show(struct kobject *kobj,
3823 struct kobj_attribute *attr, char *buf)
3825 int values[] = {
3826 SHMEM_HUGE_ALWAYS,
3827 SHMEM_HUGE_WITHIN_SIZE,
3828 SHMEM_HUGE_ADVISE,
3829 SHMEM_HUGE_NEVER,
3830 SHMEM_HUGE_DENY,
3831 SHMEM_HUGE_FORCE,
3833 int i, count;
3835 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3836 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3838 count += sprintf(buf + count, fmt,
3839 shmem_format_huge(values[i]));
3841 buf[count - 1] = '\n';
3842 return count;
3845 static ssize_t shmem_enabled_store(struct kobject *kobj,
3846 struct kobj_attribute *attr, const char *buf, size_t count)
3848 char tmp[16];
3849 int huge;
3851 if (count + 1 > sizeof(tmp))
3852 return -EINVAL;
3853 memcpy(tmp, buf, count);
3854 tmp[count] = '\0';
3855 if (count && tmp[count - 1] == '\n')
3856 tmp[count - 1] = '\0';
3858 huge = shmem_parse_huge(tmp);
3859 if (huge == -EINVAL)
3860 return -EINVAL;
3861 if (!has_transparent_hugepage() &&
3862 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3863 return -EINVAL;
3865 shmem_huge = huge;
3866 if (shmem_huge < SHMEM_HUGE_DENY)
3867 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3868 return count;
3871 struct kobj_attribute shmem_enabled_attr =
3872 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3873 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3875 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3876 bool shmem_huge_enabled(struct vm_area_struct *vma)
3878 struct inode *inode = file_inode(vma->vm_file);
3879 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3880 loff_t i_size;
3881 pgoff_t off;
3883 if (shmem_huge == SHMEM_HUGE_FORCE)
3884 return true;
3885 if (shmem_huge == SHMEM_HUGE_DENY)
3886 return false;
3887 switch (sbinfo->huge) {
3888 case SHMEM_HUGE_NEVER:
3889 return false;
3890 case SHMEM_HUGE_ALWAYS:
3891 return true;
3892 case SHMEM_HUGE_WITHIN_SIZE:
3893 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3894 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3895 if (i_size >= HPAGE_PMD_SIZE &&
3896 i_size >> PAGE_SHIFT >= off)
3897 return true;
3898 case SHMEM_HUGE_ADVISE:
3899 /* TODO: implement fadvise() hints */
3900 return (vma->vm_flags & VM_HUGEPAGE);
3901 default:
3902 VM_BUG_ON(1);
3903 return false;
3906 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3908 #else /* !CONFIG_SHMEM */
3911 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3913 * This is intended for small system where the benefits of the full
3914 * shmem code (swap-backed and resource-limited) are outweighed by
3915 * their complexity. On systems without swap this code should be
3916 * effectively equivalent, but much lighter weight.
3919 static struct file_system_type shmem_fs_type = {
3920 .name = "tmpfs",
3921 .mount = ramfs_mount,
3922 .kill_sb = kill_litter_super,
3923 .fs_flags = FS_USERNS_MOUNT,
3926 int __init shmem_init(void)
3928 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3930 shm_mnt = kern_mount(&shmem_fs_type);
3931 BUG_ON(IS_ERR(shm_mnt));
3933 return 0;
3936 int shmem_unuse(swp_entry_t swap, struct page *page)
3938 return 0;
3941 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3943 return 0;
3946 void shmem_unlock_mapping(struct address_space *mapping)
3950 #ifdef CONFIG_MMU
3951 unsigned long shmem_get_unmapped_area(struct file *file,
3952 unsigned long addr, unsigned long len,
3953 unsigned long pgoff, unsigned long flags)
3955 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3957 #endif
3959 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3961 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3963 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3965 #define shmem_vm_ops generic_file_vm_ops
3966 #define shmem_file_operations ramfs_file_operations
3967 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3968 #define shmem_acct_size(flags, size) 0
3969 #define shmem_unacct_size(flags, size) do {} while (0)
3971 #endif /* CONFIG_SHMEM */
3973 /* common code */
3975 static const struct dentry_operations anon_ops = {
3976 .d_dname = simple_dname
3979 static struct file *__shmem_file_setup(const char *name, loff_t size,
3980 unsigned long flags, unsigned int i_flags)
3982 struct file *res;
3983 struct inode *inode;
3984 struct path path;
3985 struct super_block *sb;
3986 struct qstr this;
3988 if (IS_ERR(shm_mnt))
3989 return ERR_CAST(shm_mnt);
3991 if (size < 0 || size > MAX_LFS_FILESIZE)
3992 return ERR_PTR(-EINVAL);
3994 if (shmem_acct_size(flags, size))
3995 return ERR_PTR(-ENOMEM);
3997 res = ERR_PTR(-ENOMEM);
3998 this.name = name;
3999 this.len = strlen(name);
4000 this.hash = 0; /* will go */
4001 sb = shm_mnt->mnt_sb;
4002 path.mnt = mntget(shm_mnt);
4003 path.dentry = d_alloc_pseudo(sb, &this);
4004 if (!path.dentry)
4005 goto put_memory;
4006 d_set_d_op(path.dentry, &anon_ops);
4008 res = ERR_PTR(-ENOSPC);
4009 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4010 if (!inode)
4011 goto put_memory;
4013 inode->i_flags |= i_flags;
4014 d_instantiate(path.dentry, inode);
4015 inode->i_size = size;
4016 clear_nlink(inode); /* It is unlinked */
4017 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4018 if (IS_ERR(res))
4019 goto put_path;
4021 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4022 &shmem_file_operations);
4023 if (IS_ERR(res))
4024 goto put_path;
4026 return res;
4028 put_memory:
4029 shmem_unacct_size(flags, size);
4030 put_path:
4031 path_put(&path);
4032 return res;
4036 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4037 * kernel internal. There will be NO LSM permission checks against the
4038 * underlying inode. So users of this interface must do LSM checks at a
4039 * higher layer. The users are the big_key and shm implementations. LSM
4040 * checks are provided at the key or shm level rather than the inode.
4041 * @name: name for dentry (to be seen in /proc/<pid>/maps
4042 * @size: size to be set for the file
4043 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4045 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4047 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4051 * shmem_file_setup - get an unlinked file living in tmpfs
4052 * @name: name for dentry (to be seen in /proc/<pid>/maps
4053 * @size: size to be set for the file
4054 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4056 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4058 return __shmem_file_setup(name, size, flags, 0);
4060 EXPORT_SYMBOL_GPL(shmem_file_setup);
4063 * shmem_zero_setup - setup a shared anonymous mapping
4064 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4066 int shmem_zero_setup(struct vm_area_struct *vma)
4068 struct file *file;
4069 loff_t size = vma->vm_end - vma->vm_start;
4072 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4073 * between XFS directory reading and selinux: since this file is only
4074 * accessible to the user through its mapping, use S_PRIVATE flag to
4075 * bypass file security, in the same way as shmem_kernel_file_setup().
4077 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4078 if (IS_ERR(file))
4079 return PTR_ERR(file);
4081 if (vma->vm_file)
4082 fput(vma->vm_file);
4083 vma->vm_file = file;
4084 vma->vm_ops = &shmem_vm_ops;
4086 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4087 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4088 (vma->vm_end & HPAGE_PMD_MASK)) {
4089 khugepaged_enter(vma, vma->vm_flags);
4092 return 0;
4096 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4097 * @mapping: the page's address_space
4098 * @index: the page index
4099 * @gfp: the page allocator flags to use if allocating
4101 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4102 * with any new page allocations done using the specified allocation flags.
4103 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4104 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4105 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4107 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4108 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4110 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4111 pgoff_t index, gfp_t gfp)
4113 #ifdef CONFIG_SHMEM
4114 struct inode *inode = mapping->host;
4115 struct page *page;
4116 int error;
4118 BUG_ON(mapping->a_ops != &shmem_aops);
4119 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4120 gfp, NULL, NULL);
4121 if (error)
4122 page = ERR_PTR(error);
4123 else
4124 unlock_page(page);
4125 return page;
4126 #else
4128 * The tiny !SHMEM case uses ramfs without swap
4130 return read_cache_page_gfp(mapping, index, gfp);
4131 #endif
4133 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);