bnxt_en: Reset rings if ring reservation fails during open()
[linux/fpc-iii.git] / fs / namei.c
blob327844fedf3d2e44bca1f5e986442f3993fb3e39
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
8 /*
9 * Some corrections by tytso.
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 #include <linux/build_bug.h>
44 #include "internal.h"
45 #include "mount.h"
47 /* [Feb-1997 T. Schoebel-Theuer]
48 * Fundamental changes in the pathname lookup mechanisms (namei)
49 * were necessary because of omirr. The reason is that omirr needs
50 * to know the _real_ pathname, not the user-supplied one, in case
51 * of symlinks (and also when transname replacements occur).
53 * The new code replaces the old recursive symlink resolution with
54 * an iterative one (in case of non-nested symlink chains). It does
55 * this with calls to <fs>_follow_link().
56 * As a side effect, dir_namei(), _namei() and follow_link() are now
57 * replaced with a single function lookup_dentry() that can handle all
58 * the special cases of the former code.
60 * With the new dcache, the pathname is stored at each inode, at least as
61 * long as the refcount of the inode is positive. As a side effect, the
62 * size of the dcache depends on the inode cache and thus is dynamic.
64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65 * resolution to correspond with current state of the code.
67 * Note that the symlink resolution is not *completely* iterative.
68 * There is still a significant amount of tail- and mid- recursion in
69 * the algorithm. Also, note that <fs>_readlink() is not used in
70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71 * may return different results than <fs>_follow_link(). Many virtual
72 * filesystems (including /proc) exhibit this behavior.
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77 * and the name already exists in form of a symlink, try to create the new
78 * name indicated by the symlink. The old code always complained that the
79 * name already exists, due to not following the symlink even if its target
80 * is nonexistent. The new semantics affects also mknod() and link() when
81 * the name is a symlink pointing to a non-existent name.
83 * I don't know which semantics is the right one, since I have no access
84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86 * "old" one. Personally, I think the new semantics is much more logical.
87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88 * file does succeed in both HP-UX and SunOs, but not in Solaris
89 * and in the old Linux semantics.
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93 * semantics. See the comments in "open_namei" and "do_link" below.
95 * [10-Sep-98 Alan Modra] Another symlink change.
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99 * inside the path - always follow.
100 * in the last component in creation/removal/renaming - never follow.
101 * if LOOKUP_FOLLOW passed - follow.
102 * if the pathname has trailing slashes - follow.
103 * otherwise - don't follow.
104 * (applied in that order).
106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108 * During the 2.4 we need to fix the userland stuff depending on it -
109 * hopefully we will be able to get rid of that wart in 2.5. So far only
110 * XEmacs seems to be relying on it...
113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
115 * any extra contention...
118 /* In order to reduce some races, while at the same time doing additional
119 * checking and hopefully speeding things up, we copy filenames to the
120 * kernel data space before using them..
122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123 * PATH_MAX includes the nul terminator --RR.
126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
128 struct filename *
129 getname_flags(const char __user *filename, int flags, int *empty)
131 struct filename *result;
132 char *kname;
133 int len;
134 BUILD_BUG_ON(offsetof(struct filename, iname) % sizeof(long) != 0);
136 result = audit_reusename(filename);
137 if (result)
138 return result;
140 result = __getname();
141 if (unlikely(!result))
142 return ERR_PTR(-ENOMEM);
145 * First, try to embed the struct filename inside the names_cache
146 * allocation
148 kname = (char *)result->iname;
149 result->name = kname;
151 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
152 if (unlikely(len < 0)) {
153 __putname(result);
154 return ERR_PTR(len);
158 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
159 * separate struct filename so we can dedicate the entire
160 * names_cache allocation for the pathname, and re-do the copy from
161 * userland.
163 if (unlikely(len == EMBEDDED_NAME_MAX)) {
164 const size_t size = offsetof(struct filename, iname[1]);
165 kname = (char *)result;
168 * size is chosen that way we to guarantee that
169 * result->iname[0] is within the same object and that
170 * kname can't be equal to result->iname, no matter what.
172 result = kzalloc(size, GFP_KERNEL);
173 if (unlikely(!result)) {
174 __putname(kname);
175 return ERR_PTR(-ENOMEM);
177 result->name = kname;
178 len = strncpy_from_user(kname, filename, PATH_MAX);
179 if (unlikely(len < 0)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(len);
184 if (unlikely(len == PATH_MAX)) {
185 __putname(kname);
186 kfree(result);
187 return ERR_PTR(-ENAMETOOLONG);
191 result->refcnt = 1;
192 /* The empty path is special. */
193 if (unlikely(!len)) {
194 if (empty)
195 *empty = 1;
196 if (!(flags & LOOKUP_EMPTY)) {
197 putname(result);
198 return ERR_PTR(-ENOENT);
202 result->uptr = filename;
203 result->aname = NULL;
204 audit_getname(result);
205 return result;
208 struct filename *
209 getname(const char __user * filename)
211 return getname_flags(filename, 0, NULL);
214 struct filename *
215 getname_kernel(const char * filename)
217 struct filename *result;
218 int len = strlen(filename) + 1;
220 result = __getname();
221 if (unlikely(!result))
222 return ERR_PTR(-ENOMEM);
224 if (len <= EMBEDDED_NAME_MAX) {
225 result->name = (char *)result->iname;
226 } else if (len <= PATH_MAX) {
227 const size_t size = offsetof(struct filename, iname[1]);
228 struct filename *tmp;
230 tmp = kmalloc(size, GFP_KERNEL);
231 if (unlikely(!tmp)) {
232 __putname(result);
233 return ERR_PTR(-ENOMEM);
235 tmp->name = (char *)result;
236 result = tmp;
237 } else {
238 __putname(result);
239 return ERR_PTR(-ENAMETOOLONG);
241 memcpy((char *)result->name, filename, len);
242 result->uptr = NULL;
243 result->aname = NULL;
244 result->refcnt = 1;
245 audit_getname(result);
247 return result;
250 void putname(struct filename *name)
252 BUG_ON(name->refcnt <= 0);
254 if (--name->refcnt > 0)
255 return;
257 if (name->name != name->iname) {
258 __putname(name->name);
259 kfree(name);
260 } else
261 __putname(name);
264 static int check_acl(struct inode *inode, int mask)
266 #ifdef CONFIG_FS_POSIX_ACL
267 struct posix_acl *acl;
269 if (mask & MAY_NOT_BLOCK) {
270 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
271 if (!acl)
272 return -EAGAIN;
273 /* no ->get_acl() calls in RCU mode... */
274 if (is_uncached_acl(acl))
275 return -ECHILD;
276 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
279 acl = get_acl(inode, ACL_TYPE_ACCESS);
280 if (IS_ERR(acl))
281 return PTR_ERR(acl);
282 if (acl) {
283 int error = posix_acl_permission(inode, acl, mask);
284 posix_acl_release(acl);
285 return error;
287 #endif
289 return -EAGAIN;
293 * This does the basic permission checking
295 static int acl_permission_check(struct inode *inode, int mask)
297 unsigned int mode = inode->i_mode;
299 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
300 mode >>= 6;
301 else {
302 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
303 int error = check_acl(inode, mask);
304 if (error != -EAGAIN)
305 return error;
308 if (in_group_p(inode->i_gid))
309 mode >>= 3;
313 * If the DACs are ok we don't need any capability check.
315 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
316 return 0;
317 return -EACCES;
321 * generic_permission - check for access rights on a Posix-like filesystem
322 * @inode: inode to check access rights for
323 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
325 * Used to check for read/write/execute permissions on a file.
326 * We use "fsuid" for this, letting us set arbitrary permissions
327 * for filesystem access without changing the "normal" uids which
328 * are used for other things.
330 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
331 * request cannot be satisfied (eg. requires blocking or too much complexity).
332 * It would then be called again in ref-walk mode.
334 int generic_permission(struct inode *inode, int mask)
336 int ret;
339 * Do the basic permission checks.
341 ret = acl_permission_check(inode, mask);
342 if (ret != -EACCES)
343 return ret;
345 if (S_ISDIR(inode->i_mode)) {
346 /* DACs are overridable for directories */
347 if (!(mask & MAY_WRITE))
348 if (capable_wrt_inode_uidgid(inode,
349 CAP_DAC_READ_SEARCH))
350 return 0;
351 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
352 return 0;
353 return -EACCES;
357 * Searching includes executable on directories, else just read.
359 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
360 if (mask == MAY_READ)
361 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
362 return 0;
364 * Read/write DACs are always overridable.
365 * Executable DACs are overridable when there is
366 * at least one exec bit set.
368 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
369 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
370 return 0;
372 return -EACCES;
374 EXPORT_SYMBOL(generic_permission);
377 * We _really_ want to just do "generic_permission()" without
378 * even looking at the inode->i_op values. So we keep a cache
379 * flag in inode->i_opflags, that says "this has not special
380 * permission function, use the fast case".
382 static inline int do_inode_permission(struct inode *inode, int mask)
384 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
385 if (likely(inode->i_op->permission))
386 return inode->i_op->permission(inode, mask);
388 /* This gets set once for the inode lifetime */
389 spin_lock(&inode->i_lock);
390 inode->i_opflags |= IOP_FASTPERM;
391 spin_unlock(&inode->i_lock);
393 return generic_permission(inode, mask);
397 * sb_permission - Check superblock-level permissions
398 * @sb: Superblock of inode to check permission on
399 * @inode: Inode to check permission on
400 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
402 * Separate out file-system wide checks from inode-specific permission checks.
404 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
406 if (unlikely(mask & MAY_WRITE)) {
407 umode_t mode = inode->i_mode;
409 /* Nobody gets write access to a read-only fs. */
410 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
411 return -EROFS;
413 return 0;
417 * inode_permission - Check for access rights to a given inode
418 * @inode: Inode to check permission on
419 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
421 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
422 * this, letting us set arbitrary permissions for filesystem access without
423 * changing the "normal" UIDs which are used for other things.
425 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
427 int inode_permission(struct inode *inode, int mask)
429 int retval;
431 retval = sb_permission(inode->i_sb, inode, mask);
432 if (retval)
433 return retval;
435 if (unlikely(mask & MAY_WRITE)) {
437 * Nobody gets write access to an immutable file.
439 if (IS_IMMUTABLE(inode))
440 return -EPERM;
443 * Updating mtime will likely cause i_uid and i_gid to be
444 * written back improperly if their true value is unknown
445 * to the vfs.
447 if (HAS_UNMAPPED_ID(inode))
448 return -EACCES;
451 retval = do_inode_permission(inode, mask);
452 if (retval)
453 return retval;
455 retval = devcgroup_inode_permission(inode, mask);
456 if (retval)
457 return retval;
459 return security_inode_permission(inode, mask);
461 EXPORT_SYMBOL(inode_permission);
464 * path_get - get a reference to a path
465 * @path: path to get the reference to
467 * Given a path increment the reference count to the dentry and the vfsmount.
469 void path_get(const struct path *path)
471 mntget(path->mnt);
472 dget(path->dentry);
474 EXPORT_SYMBOL(path_get);
477 * path_put - put a reference to a path
478 * @path: path to put the reference to
480 * Given a path decrement the reference count to the dentry and the vfsmount.
482 void path_put(const struct path *path)
484 dput(path->dentry);
485 mntput(path->mnt);
487 EXPORT_SYMBOL(path_put);
489 #define EMBEDDED_LEVELS 2
490 struct nameidata {
491 struct path path;
492 struct qstr last;
493 struct path root;
494 struct inode *inode; /* path.dentry.d_inode */
495 unsigned int flags;
496 unsigned seq, m_seq;
497 int last_type;
498 unsigned depth;
499 int total_link_count;
500 struct saved {
501 struct path link;
502 struct delayed_call done;
503 const char *name;
504 unsigned seq;
505 } *stack, internal[EMBEDDED_LEVELS];
506 struct filename *name;
507 struct nameidata *saved;
508 struct inode *link_inode;
509 unsigned root_seq;
510 int dfd;
511 } __randomize_layout;
513 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
515 struct nameidata *old = current->nameidata;
516 p->stack = p->internal;
517 p->dfd = dfd;
518 p->name = name;
519 p->total_link_count = old ? old->total_link_count : 0;
520 p->saved = old;
521 current->nameidata = p;
524 static void restore_nameidata(void)
526 struct nameidata *now = current->nameidata, *old = now->saved;
528 current->nameidata = old;
529 if (old)
530 old->total_link_count = now->total_link_count;
531 if (now->stack != now->internal)
532 kfree(now->stack);
535 static int __nd_alloc_stack(struct nameidata *nd)
537 struct saved *p;
539 if (nd->flags & LOOKUP_RCU) {
540 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
541 GFP_ATOMIC);
542 if (unlikely(!p))
543 return -ECHILD;
544 } else {
545 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
546 GFP_KERNEL);
547 if (unlikely(!p))
548 return -ENOMEM;
550 memcpy(p, nd->internal, sizeof(nd->internal));
551 nd->stack = p;
552 return 0;
556 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
557 * @path: nameidate to verify
559 * Rename can sometimes move a file or directory outside of a bind
560 * mount, path_connected allows those cases to be detected.
562 static bool path_connected(const struct path *path)
564 struct vfsmount *mnt = path->mnt;
565 struct super_block *sb = mnt->mnt_sb;
567 /* Bind mounts and multi-root filesystems can have disconnected paths */
568 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
569 return true;
571 return is_subdir(path->dentry, mnt->mnt_root);
574 static inline int nd_alloc_stack(struct nameidata *nd)
576 if (likely(nd->depth != EMBEDDED_LEVELS))
577 return 0;
578 if (likely(nd->stack != nd->internal))
579 return 0;
580 return __nd_alloc_stack(nd);
583 static void drop_links(struct nameidata *nd)
585 int i = nd->depth;
586 while (i--) {
587 struct saved *last = nd->stack + i;
588 do_delayed_call(&last->done);
589 clear_delayed_call(&last->done);
593 static void terminate_walk(struct nameidata *nd)
595 drop_links(nd);
596 if (!(nd->flags & LOOKUP_RCU)) {
597 int i;
598 path_put(&nd->path);
599 for (i = 0; i < nd->depth; i++)
600 path_put(&nd->stack[i].link);
601 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
602 path_put(&nd->root);
603 nd->root.mnt = NULL;
605 } else {
606 nd->flags &= ~LOOKUP_RCU;
607 if (!(nd->flags & LOOKUP_ROOT))
608 nd->root.mnt = NULL;
609 rcu_read_unlock();
611 nd->depth = 0;
614 /* path_put is needed afterwards regardless of success or failure */
615 static bool legitimize_path(struct nameidata *nd,
616 struct path *path, unsigned seq)
618 int res = __legitimize_mnt(path->mnt, nd->m_seq);
619 if (unlikely(res)) {
620 if (res > 0)
621 path->mnt = NULL;
622 path->dentry = NULL;
623 return false;
625 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
626 path->dentry = NULL;
627 return false;
629 return !read_seqcount_retry(&path->dentry->d_seq, seq);
632 static bool legitimize_links(struct nameidata *nd)
634 int i;
635 for (i = 0; i < nd->depth; i++) {
636 struct saved *last = nd->stack + i;
637 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
638 drop_links(nd);
639 nd->depth = i + 1;
640 return false;
643 return true;
647 * Path walking has 2 modes, rcu-walk and ref-walk (see
648 * Documentation/filesystems/path-lookup.txt). In situations when we can't
649 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
650 * normal reference counts on dentries and vfsmounts to transition to ref-walk
651 * mode. Refcounts are grabbed at the last known good point before rcu-walk
652 * got stuck, so ref-walk may continue from there. If this is not successful
653 * (eg. a seqcount has changed), then failure is returned and it's up to caller
654 * to restart the path walk from the beginning in ref-walk mode.
658 * unlazy_walk - try to switch to ref-walk mode.
659 * @nd: nameidata pathwalk data
660 * Returns: 0 on success, -ECHILD on failure
662 * unlazy_walk attempts to legitimize the current nd->path and nd->root
663 * for ref-walk mode.
664 * Must be called from rcu-walk context.
665 * Nothing should touch nameidata between unlazy_walk() failure and
666 * terminate_walk().
668 static int unlazy_walk(struct nameidata *nd)
670 struct dentry *parent = nd->path.dentry;
672 BUG_ON(!(nd->flags & LOOKUP_RCU));
674 nd->flags &= ~LOOKUP_RCU;
675 if (unlikely(!legitimize_links(nd)))
676 goto out2;
677 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
678 goto out1;
679 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
680 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
681 goto out;
683 rcu_read_unlock();
684 BUG_ON(nd->inode != parent->d_inode);
685 return 0;
687 out2:
688 nd->path.mnt = NULL;
689 nd->path.dentry = NULL;
690 out1:
691 if (!(nd->flags & LOOKUP_ROOT))
692 nd->root.mnt = NULL;
693 out:
694 rcu_read_unlock();
695 return -ECHILD;
699 * unlazy_child - try to switch to ref-walk mode.
700 * @nd: nameidata pathwalk data
701 * @dentry: child of nd->path.dentry
702 * @seq: seq number to check dentry against
703 * Returns: 0 on success, -ECHILD on failure
705 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
706 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
707 * @nd. Must be called from rcu-walk context.
708 * Nothing should touch nameidata between unlazy_child() failure and
709 * terminate_walk().
711 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
713 BUG_ON(!(nd->flags & LOOKUP_RCU));
715 nd->flags &= ~LOOKUP_RCU;
716 if (unlikely(!legitimize_links(nd)))
717 goto out2;
718 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
719 goto out2;
720 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
721 goto out1;
724 * We need to move both the parent and the dentry from the RCU domain
725 * to be properly refcounted. And the sequence number in the dentry
726 * validates *both* dentry counters, since we checked the sequence
727 * number of the parent after we got the child sequence number. So we
728 * know the parent must still be valid if the child sequence number is
730 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
731 goto out;
732 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
733 rcu_read_unlock();
734 dput(dentry);
735 goto drop_root_mnt;
738 * Sequence counts matched. Now make sure that the root is
739 * still valid and get it if required.
741 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
742 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
743 rcu_read_unlock();
744 dput(dentry);
745 return -ECHILD;
749 rcu_read_unlock();
750 return 0;
752 out2:
753 nd->path.mnt = NULL;
754 out1:
755 nd->path.dentry = NULL;
756 out:
757 rcu_read_unlock();
758 drop_root_mnt:
759 if (!(nd->flags & LOOKUP_ROOT))
760 nd->root.mnt = NULL;
761 return -ECHILD;
764 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
766 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
767 return dentry->d_op->d_revalidate(dentry, flags);
768 else
769 return 1;
773 * complete_walk - successful completion of path walk
774 * @nd: pointer nameidata
776 * If we had been in RCU mode, drop out of it and legitimize nd->path.
777 * Revalidate the final result, unless we'd already done that during
778 * the path walk or the filesystem doesn't ask for it. Return 0 on
779 * success, -error on failure. In case of failure caller does not
780 * need to drop nd->path.
782 static int complete_walk(struct nameidata *nd)
784 struct dentry *dentry = nd->path.dentry;
785 int status;
787 if (nd->flags & LOOKUP_RCU) {
788 if (!(nd->flags & LOOKUP_ROOT))
789 nd->root.mnt = NULL;
790 if (unlikely(unlazy_walk(nd)))
791 return -ECHILD;
794 if (likely(!(nd->flags & LOOKUP_JUMPED)))
795 return 0;
797 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
798 return 0;
800 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
801 if (status > 0)
802 return 0;
804 if (!status)
805 status = -ESTALE;
807 return status;
810 static void set_root(struct nameidata *nd)
812 struct fs_struct *fs = current->fs;
814 if (nd->flags & LOOKUP_RCU) {
815 unsigned seq;
817 do {
818 seq = read_seqcount_begin(&fs->seq);
819 nd->root = fs->root;
820 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
821 } while (read_seqcount_retry(&fs->seq, seq));
822 } else {
823 get_fs_root(fs, &nd->root);
827 static void path_put_conditional(struct path *path, struct nameidata *nd)
829 dput(path->dentry);
830 if (path->mnt != nd->path.mnt)
831 mntput(path->mnt);
834 static inline void path_to_nameidata(const struct path *path,
835 struct nameidata *nd)
837 if (!(nd->flags & LOOKUP_RCU)) {
838 dput(nd->path.dentry);
839 if (nd->path.mnt != path->mnt)
840 mntput(nd->path.mnt);
842 nd->path.mnt = path->mnt;
843 nd->path.dentry = path->dentry;
846 static int nd_jump_root(struct nameidata *nd)
848 if (nd->flags & LOOKUP_RCU) {
849 struct dentry *d;
850 nd->path = nd->root;
851 d = nd->path.dentry;
852 nd->inode = d->d_inode;
853 nd->seq = nd->root_seq;
854 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
855 return -ECHILD;
856 } else {
857 path_put(&nd->path);
858 nd->path = nd->root;
859 path_get(&nd->path);
860 nd->inode = nd->path.dentry->d_inode;
862 nd->flags |= LOOKUP_JUMPED;
863 return 0;
867 * Helper to directly jump to a known parsed path from ->get_link,
868 * caller must have taken a reference to path beforehand.
870 void nd_jump_link(struct path *path)
872 struct nameidata *nd = current->nameidata;
873 path_put(&nd->path);
875 nd->path = *path;
876 nd->inode = nd->path.dentry->d_inode;
877 nd->flags |= LOOKUP_JUMPED;
880 static inline void put_link(struct nameidata *nd)
882 struct saved *last = nd->stack + --nd->depth;
883 do_delayed_call(&last->done);
884 if (!(nd->flags & LOOKUP_RCU))
885 path_put(&last->link);
888 int sysctl_protected_symlinks __read_mostly = 0;
889 int sysctl_protected_hardlinks __read_mostly = 0;
890 int sysctl_protected_fifos __read_mostly;
891 int sysctl_protected_regular __read_mostly;
894 * may_follow_link - Check symlink following for unsafe situations
895 * @nd: nameidata pathwalk data
897 * In the case of the sysctl_protected_symlinks sysctl being enabled,
898 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
899 * in a sticky world-writable directory. This is to protect privileged
900 * processes from failing races against path names that may change out
901 * from under them by way of other users creating malicious symlinks.
902 * It will permit symlinks to be followed only when outside a sticky
903 * world-writable directory, or when the uid of the symlink and follower
904 * match, or when the directory owner matches the symlink's owner.
906 * Returns 0 if following the symlink is allowed, -ve on error.
908 static inline int may_follow_link(struct nameidata *nd)
910 const struct inode *inode;
911 const struct inode *parent;
912 kuid_t puid;
914 if (!sysctl_protected_symlinks)
915 return 0;
917 /* Allowed if owner and follower match. */
918 inode = nd->link_inode;
919 if (uid_eq(current_cred()->fsuid, inode->i_uid))
920 return 0;
922 /* Allowed if parent directory not sticky and world-writable. */
923 parent = nd->inode;
924 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
925 return 0;
927 /* Allowed if parent directory and link owner match. */
928 puid = parent->i_uid;
929 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
930 return 0;
932 if (nd->flags & LOOKUP_RCU)
933 return -ECHILD;
935 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
936 audit_log_link_denied("follow_link");
937 return -EACCES;
941 * safe_hardlink_source - Check for safe hardlink conditions
942 * @inode: the source inode to hardlink from
944 * Return false if at least one of the following conditions:
945 * - inode is not a regular file
946 * - inode is setuid
947 * - inode is setgid and group-exec
948 * - access failure for read and write
950 * Otherwise returns true.
952 static bool safe_hardlink_source(struct inode *inode)
954 umode_t mode = inode->i_mode;
956 /* Special files should not get pinned to the filesystem. */
957 if (!S_ISREG(mode))
958 return false;
960 /* Setuid files should not get pinned to the filesystem. */
961 if (mode & S_ISUID)
962 return false;
964 /* Executable setgid files should not get pinned to the filesystem. */
965 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
966 return false;
968 /* Hardlinking to unreadable or unwritable sources is dangerous. */
969 if (inode_permission(inode, MAY_READ | MAY_WRITE))
970 return false;
972 return true;
976 * may_linkat - Check permissions for creating a hardlink
977 * @link: the source to hardlink from
979 * Block hardlink when all of:
980 * - sysctl_protected_hardlinks enabled
981 * - fsuid does not match inode
982 * - hardlink source is unsafe (see safe_hardlink_source() above)
983 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
985 * Returns 0 if successful, -ve on error.
987 static int may_linkat(struct path *link)
989 struct inode *inode = link->dentry->d_inode;
991 /* Inode writeback is not safe when the uid or gid are invalid. */
992 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
993 return -EOVERFLOW;
995 if (!sysctl_protected_hardlinks)
996 return 0;
998 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
999 * otherwise, it must be a safe source.
1001 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1002 return 0;
1004 audit_log_link_denied("linkat");
1005 return -EPERM;
1009 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1010 * should be allowed, or not, on files that already
1011 * exist.
1012 * @dir_mode: mode bits of directory
1013 * @dir_uid: owner of directory
1014 * @inode: the inode of the file to open
1016 * Block an O_CREAT open of a FIFO (or a regular file) when:
1017 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1018 * - the file already exists
1019 * - we are in a sticky directory
1020 * - we don't own the file
1021 * - the owner of the directory doesn't own the file
1022 * - the directory is world writable
1023 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1024 * the directory doesn't have to be world writable: being group writable will
1025 * be enough.
1027 * Returns 0 if the open is allowed, -ve on error.
1029 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1030 struct inode * const inode)
1032 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1033 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1034 likely(!(dir_mode & S_ISVTX)) ||
1035 uid_eq(inode->i_uid, dir_uid) ||
1036 uid_eq(current_fsuid(), inode->i_uid))
1037 return 0;
1039 if (likely(dir_mode & 0002) ||
1040 (dir_mode & 0020 &&
1041 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1042 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1043 return -EACCES;
1045 return 0;
1048 static __always_inline
1049 const char *get_link(struct nameidata *nd)
1051 struct saved *last = nd->stack + nd->depth - 1;
1052 struct dentry *dentry = last->link.dentry;
1053 struct inode *inode = nd->link_inode;
1054 int error;
1055 const char *res;
1057 if (!(nd->flags & LOOKUP_RCU)) {
1058 touch_atime(&last->link);
1059 cond_resched();
1060 } else if (atime_needs_update(&last->link, inode)) {
1061 if (unlikely(unlazy_walk(nd)))
1062 return ERR_PTR(-ECHILD);
1063 touch_atime(&last->link);
1066 error = security_inode_follow_link(dentry, inode,
1067 nd->flags & LOOKUP_RCU);
1068 if (unlikely(error))
1069 return ERR_PTR(error);
1071 nd->last_type = LAST_BIND;
1072 res = inode->i_link;
1073 if (!res) {
1074 const char * (*get)(struct dentry *, struct inode *,
1075 struct delayed_call *);
1076 get = inode->i_op->get_link;
1077 if (nd->flags & LOOKUP_RCU) {
1078 res = get(NULL, inode, &last->done);
1079 if (res == ERR_PTR(-ECHILD)) {
1080 if (unlikely(unlazy_walk(nd)))
1081 return ERR_PTR(-ECHILD);
1082 res = get(dentry, inode, &last->done);
1084 } else {
1085 res = get(dentry, inode, &last->done);
1087 if (IS_ERR_OR_NULL(res))
1088 return res;
1090 if (*res == '/') {
1091 if (!nd->root.mnt)
1092 set_root(nd);
1093 if (unlikely(nd_jump_root(nd)))
1094 return ERR_PTR(-ECHILD);
1095 while (unlikely(*++res == '/'))
1098 if (!*res)
1099 res = NULL;
1100 return res;
1104 * follow_up - Find the mountpoint of path's vfsmount
1106 * Given a path, find the mountpoint of its source file system.
1107 * Replace @path with the path of the mountpoint in the parent mount.
1108 * Up is towards /.
1110 * Return 1 if we went up a level and 0 if we were already at the
1111 * root.
1113 int follow_up(struct path *path)
1115 struct mount *mnt = real_mount(path->mnt);
1116 struct mount *parent;
1117 struct dentry *mountpoint;
1119 read_seqlock_excl(&mount_lock);
1120 parent = mnt->mnt_parent;
1121 if (parent == mnt) {
1122 read_sequnlock_excl(&mount_lock);
1123 return 0;
1125 mntget(&parent->mnt);
1126 mountpoint = dget(mnt->mnt_mountpoint);
1127 read_sequnlock_excl(&mount_lock);
1128 dput(path->dentry);
1129 path->dentry = mountpoint;
1130 mntput(path->mnt);
1131 path->mnt = &parent->mnt;
1132 return 1;
1134 EXPORT_SYMBOL(follow_up);
1137 * Perform an automount
1138 * - return -EISDIR to tell follow_managed() to stop and return the path we
1139 * were called with.
1141 static int follow_automount(struct path *path, struct nameidata *nd,
1142 bool *need_mntput)
1144 struct vfsmount *mnt;
1145 int err;
1147 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1148 return -EREMOTE;
1150 /* We don't want to mount if someone's just doing a stat -
1151 * unless they're stat'ing a directory and appended a '/' to
1152 * the name.
1154 * We do, however, want to mount if someone wants to open or
1155 * create a file of any type under the mountpoint, wants to
1156 * traverse through the mountpoint or wants to open the
1157 * mounted directory. Also, autofs may mark negative dentries
1158 * as being automount points. These will need the attentions
1159 * of the daemon to instantiate them before they can be used.
1161 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1162 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1163 path->dentry->d_inode)
1164 return -EISDIR;
1166 nd->total_link_count++;
1167 if (nd->total_link_count >= 40)
1168 return -ELOOP;
1170 mnt = path->dentry->d_op->d_automount(path);
1171 if (IS_ERR(mnt)) {
1173 * The filesystem is allowed to return -EISDIR here to indicate
1174 * it doesn't want to automount. For instance, autofs would do
1175 * this so that its userspace daemon can mount on this dentry.
1177 * However, we can only permit this if it's a terminal point in
1178 * the path being looked up; if it wasn't then the remainder of
1179 * the path is inaccessible and we should say so.
1181 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1182 return -EREMOTE;
1183 return PTR_ERR(mnt);
1186 if (!mnt) /* mount collision */
1187 return 0;
1189 if (!*need_mntput) {
1190 /* lock_mount() may release path->mnt on error */
1191 mntget(path->mnt);
1192 *need_mntput = true;
1194 err = finish_automount(mnt, path);
1196 switch (err) {
1197 case -EBUSY:
1198 /* Someone else made a mount here whilst we were busy */
1199 return 0;
1200 case 0:
1201 path_put(path);
1202 path->mnt = mnt;
1203 path->dentry = dget(mnt->mnt_root);
1204 return 0;
1205 default:
1206 return err;
1212 * Handle a dentry that is managed in some way.
1213 * - Flagged for transit management (autofs)
1214 * - Flagged as mountpoint
1215 * - Flagged as automount point
1217 * This may only be called in refwalk mode.
1219 * Serialization is taken care of in namespace.c
1221 static int follow_managed(struct path *path, struct nameidata *nd)
1223 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1224 unsigned managed;
1225 bool need_mntput = false;
1226 int ret = 0;
1228 /* Given that we're not holding a lock here, we retain the value in a
1229 * local variable for each dentry as we look at it so that we don't see
1230 * the components of that value change under us */
1231 while (managed = READ_ONCE(path->dentry->d_flags),
1232 managed &= DCACHE_MANAGED_DENTRY,
1233 unlikely(managed != 0)) {
1234 /* Allow the filesystem to manage the transit without i_mutex
1235 * being held. */
1236 if (managed & DCACHE_MANAGE_TRANSIT) {
1237 BUG_ON(!path->dentry->d_op);
1238 BUG_ON(!path->dentry->d_op->d_manage);
1239 ret = path->dentry->d_op->d_manage(path, false);
1240 if (ret < 0)
1241 break;
1244 /* Transit to a mounted filesystem. */
1245 if (managed & DCACHE_MOUNTED) {
1246 struct vfsmount *mounted = lookup_mnt(path);
1247 if (mounted) {
1248 dput(path->dentry);
1249 if (need_mntput)
1250 mntput(path->mnt);
1251 path->mnt = mounted;
1252 path->dentry = dget(mounted->mnt_root);
1253 need_mntput = true;
1254 continue;
1257 /* Something is mounted on this dentry in another
1258 * namespace and/or whatever was mounted there in this
1259 * namespace got unmounted before lookup_mnt() could
1260 * get it */
1263 /* Handle an automount point */
1264 if (managed & DCACHE_NEED_AUTOMOUNT) {
1265 ret = follow_automount(path, nd, &need_mntput);
1266 if (ret < 0)
1267 break;
1268 continue;
1271 /* We didn't change the current path point */
1272 break;
1275 if (need_mntput && path->mnt == mnt)
1276 mntput(path->mnt);
1277 if (ret == -EISDIR || !ret)
1278 ret = 1;
1279 if (need_mntput)
1280 nd->flags |= LOOKUP_JUMPED;
1281 if (unlikely(ret < 0))
1282 path_put_conditional(path, nd);
1283 return ret;
1286 int follow_down_one(struct path *path)
1288 struct vfsmount *mounted;
1290 mounted = lookup_mnt(path);
1291 if (mounted) {
1292 dput(path->dentry);
1293 mntput(path->mnt);
1294 path->mnt = mounted;
1295 path->dentry = dget(mounted->mnt_root);
1296 return 1;
1298 return 0;
1300 EXPORT_SYMBOL(follow_down_one);
1302 static inline int managed_dentry_rcu(const struct path *path)
1304 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1305 path->dentry->d_op->d_manage(path, true) : 0;
1309 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1310 * we meet a managed dentry that would need blocking.
1312 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1313 struct inode **inode, unsigned *seqp)
1315 for (;;) {
1316 struct mount *mounted;
1318 * Don't forget we might have a non-mountpoint managed dentry
1319 * that wants to block transit.
1321 switch (managed_dentry_rcu(path)) {
1322 case -ECHILD:
1323 default:
1324 return false;
1325 case -EISDIR:
1326 return true;
1327 case 0:
1328 break;
1331 if (!d_mountpoint(path->dentry))
1332 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1334 mounted = __lookup_mnt(path->mnt, path->dentry);
1335 if (!mounted)
1336 break;
1337 path->mnt = &mounted->mnt;
1338 path->dentry = mounted->mnt.mnt_root;
1339 nd->flags |= LOOKUP_JUMPED;
1340 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1342 * Update the inode too. We don't need to re-check the
1343 * dentry sequence number here after this d_inode read,
1344 * because a mount-point is always pinned.
1346 *inode = path->dentry->d_inode;
1348 return !read_seqretry(&mount_lock, nd->m_seq) &&
1349 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1352 static int follow_dotdot_rcu(struct nameidata *nd)
1354 struct inode *inode = nd->inode;
1356 while (1) {
1357 if (path_equal(&nd->path, &nd->root))
1358 break;
1359 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1360 struct dentry *old = nd->path.dentry;
1361 struct dentry *parent = old->d_parent;
1362 unsigned seq;
1364 inode = parent->d_inode;
1365 seq = read_seqcount_begin(&parent->d_seq);
1366 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1367 return -ECHILD;
1368 nd->path.dentry = parent;
1369 nd->seq = seq;
1370 if (unlikely(!path_connected(&nd->path)))
1371 return -ECHILD;
1372 break;
1373 } else {
1374 struct mount *mnt = real_mount(nd->path.mnt);
1375 struct mount *mparent = mnt->mnt_parent;
1376 struct dentry *mountpoint = mnt->mnt_mountpoint;
1377 struct inode *inode2 = mountpoint->d_inode;
1378 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1379 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1380 return -ECHILD;
1381 if (&mparent->mnt == nd->path.mnt)
1382 break;
1383 /* we know that mountpoint was pinned */
1384 nd->path.dentry = mountpoint;
1385 nd->path.mnt = &mparent->mnt;
1386 inode = inode2;
1387 nd->seq = seq;
1390 while (unlikely(d_mountpoint(nd->path.dentry))) {
1391 struct mount *mounted;
1392 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1393 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1394 return -ECHILD;
1395 if (!mounted)
1396 break;
1397 nd->path.mnt = &mounted->mnt;
1398 nd->path.dentry = mounted->mnt.mnt_root;
1399 inode = nd->path.dentry->d_inode;
1400 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1402 nd->inode = inode;
1403 return 0;
1407 * Follow down to the covering mount currently visible to userspace. At each
1408 * point, the filesystem owning that dentry may be queried as to whether the
1409 * caller is permitted to proceed or not.
1411 int follow_down(struct path *path)
1413 unsigned managed;
1414 int ret;
1416 while (managed = READ_ONCE(path->dentry->d_flags),
1417 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1418 /* Allow the filesystem to manage the transit without i_mutex
1419 * being held.
1421 * We indicate to the filesystem if someone is trying to mount
1422 * something here. This gives autofs the chance to deny anyone
1423 * other than its daemon the right to mount on its
1424 * superstructure.
1426 * The filesystem may sleep at this point.
1428 if (managed & DCACHE_MANAGE_TRANSIT) {
1429 BUG_ON(!path->dentry->d_op);
1430 BUG_ON(!path->dentry->d_op->d_manage);
1431 ret = path->dentry->d_op->d_manage(path, false);
1432 if (ret < 0)
1433 return ret == -EISDIR ? 0 : ret;
1436 /* Transit to a mounted filesystem. */
1437 if (managed & DCACHE_MOUNTED) {
1438 struct vfsmount *mounted = lookup_mnt(path);
1439 if (!mounted)
1440 break;
1441 dput(path->dentry);
1442 mntput(path->mnt);
1443 path->mnt = mounted;
1444 path->dentry = dget(mounted->mnt_root);
1445 continue;
1448 /* Don't handle automount points here */
1449 break;
1451 return 0;
1453 EXPORT_SYMBOL(follow_down);
1456 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1458 static void follow_mount(struct path *path)
1460 while (d_mountpoint(path->dentry)) {
1461 struct vfsmount *mounted = lookup_mnt(path);
1462 if (!mounted)
1463 break;
1464 dput(path->dentry);
1465 mntput(path->mnt);
1466 path->mnt = mounted;
1467 path->dentry = dget(mounted->mnt_root);
1471 static int path_parent_directory(struct path *path)
1473 struct dentry *old = path->dentry;
1474 /* rare case of legitimate dget_parent()... */
1475 path->dentry = dget_parent(path->dentry);
1476 dput(old);
1477 if (unlikely(!path_connected(path)))
1478 return -ENOENT;
1479 return 0;
1482 static int follow_dotdot(struct nameidata *nd)
1484 while(1) {
1485 if (path_equal(&nd->path, &nd->root))
1486 break;
1487 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1488 int ret = path_parent_directory(&nd->path);
1489 if (ret)
1490 return ret;
1491 break;
1493 if (!follow_up(&nd->path))
1494 break;
1496 follow_mount(&nd->path);
1497 nd->inode = nd->path.dentry->d_inode;
1498 return 0;
1502 * This looks up the name in dcache and possibly revalidates the found dentry.
1503 * NULL is returned if the dentry does not exist in the cache.
1505 static struct dentry *lookup_dcache(const struct qstr *name,
1506 struct dentry *dir,
1507 unsigned int flags)
1509 struct dentry *dentry = d_lookup(dir, name);
1510 if (dentry) {
1511 int error = d_revalidate(dentry, flags);
1512 if (unlikely(error <= 0)) {
1513 if (!error)
1514 d_invalidate(dentry);
1515 dput(dentry);
1516 return ERR_PTR(error);
1519 return dentry;
1523 * Parent directory has inode locked exclusive. This is one
1524 * and only case when ->lookup() gets called on non in-lookup
1525 * dentries - as the matter of fact, this only gets called
1526 * when directory is guaranteed to have no in-lookup children
1527 * at all.
1529 static struct dentry *__lookup_hash(const struct qstr *name,
1530 struct dentry *base, unsigned int flags)
1532 struct dentry *dentry = lookup_dcache(name, base, flags);
1533 struct dentry *old;
1534 struct inode *dir = base->d_inode;
1536 if (dentry)
1537 return dentry;
1539 /* Don't create child dentry for a dead directory. */
1540 if (unlikely(IS_DEADDIR(dir)))
1541 return ERR_PTR(-ENOENT);
1543 dentry = d_alloc(base, name);
1544 if (unlikely(!dentry))
1545 return ERR_PTR(-ENOMEM);
1547 old = dir->i_op->lookup(dir, dentry, flags);
1548 if (unlikely(old)) {
1549 dput(dentry);
1550 dentry = old;
1552 return dentry;
1555 static int lookup_fast(struct nameidata *nd,
1556 struct path *path, struct inode **inode,
1557 unsigned *seqp)
1559 struct vfsmount *mnt = nd->path.mnt;
1560 struct dentry *dentry, *parent = nd->path.dentry;
1561 int status = 1;
1562 int err;
1565 * Rename seqlock is not required here because in the off chance
1566 * of a false negative due to a concurrent rename, the caller is
1567 * going to fall back to non-racy lookup.
1569 if (nd->flags & LOOKUP_RCU) {
1570 unsigned seq;
1571 bool negative;
1572 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1573 if (unlikely(!dentry)) {
1574 if (unlazy_walk(nd))
1575 return -ECHILD;
1576 return 0;
1580 * This sequence count validates that the inode matches
1581 * the dentry name information from lookup.
1583 *inode = d_backing_inode(dentry);
1584 negative = d_is_negative(dentry);
1585 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1586 return -ECHILD;
1589 * This sequence count validates that the parent had no
1590 * changes while we did the lookup of the dentry above.
1592 * The memory barrier in read_seqcount_begin of child is
1593 * enough, we can use __read_seqcount_retry here.
1595 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1596 return -ECHILD;
1598 *seqp = seq;
1599 status = d_revalidate(dentry, nd->flags);
1600 if (likely(status > 0)) {
1602 * Note: do negative dentry check after revalidation in
1603 * case that drops it.
1605 if (unlikely(negative))
1606 return -ENOENT;
1607 path->mnt = mnt;
1608 path->dentry = dentry;
1609 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1610 return 1;
1612 if (unlazy_child(nd, dentry, seq))
1613 return -ECHILD;
1614 if (unlikely(status == -ECHILD))
1615 /* we'd been told to redo it in non-rcu mode */
1616 status = d_revalidate(dentry, nd->flags);
1617 } else {
1618 dentry = __d_lookup(parent, &nd->last);
1619 if (unlikely(!dentry))
1620 return 0;
1621 status = d_revalidate(dentry, nd->flags);
1623 if (unlikely(status <= 0)) {
1624 if (!status)
1625 d_invalidate(dentry);
1626 dput(dentry);
1627 return status;
1629 if (unlikely(d_is_negative(dentry))) {
1630 dput(dentry);
1631 return -ENOENT;
1634 path->mnt = mnt;
1635 path->dentry = dentry;
1636 err = follow_managed(path, nd);
1637 if (likely(err > 0))
1638 *inode = d_backing_inode(path->dentry);
1639 return err;
1642 /* Fast lookup failed, do it the slow way */
1643 static struct dentry *__lookup_slow(const struct qstr *name,
1644 struct dentry *dir,
1645 unsigned int flags)
1647 struct dentry *dentry, *old;
1648 struct inode *inode = dir->d_inode;
1649 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1651 /* Don't go there if it's already dead */
1652 if (unlikely(IS_DEADDIR(inode)))
1653 return ERR_PTR(-ENOENT);
1654 again:
1655 dentry = d_alloc_parallel(dir, name, &wq);
1656 if (IS_ERR(dentry))
1657 return dentry;
1658 if (unlikely(!d_in_lookup(dentry))) {
1659 if (!(flags & LOOKUP_NO_REVAL)) {
1660 int error = d_revalidate(dentry, flags);
1661 if (unlikely(error <= 0)) {
1662 if (!error) {
1663 d_invalidate(dentry);
1664 dput(dentry);
1665 goto again;
1667 dput(dentry);
1668 dentry = ERR_PTR(error);
1671 } else {
1672 old = inode->i_op->lookup(inode, dentry, flags);
1673 d_lookup_done(dentry);
1674 if (unlikely(old)) {
1675 dput(dentry);
1676 dentry = old;
1679 return dentry;
1682 static struct dentry *lookup_slow(const struct qstr *name,
1683 struct dentry *dir,
1684 unsigned int flags)
1686 struct inode *inode = dir->d_inode;
1687 struct dentry *res;
1688 inode_lock_shared(inode);
1689 res = __lookup_slow(name, dir, flags);
1690 inode_unlock_shared(inode);
1691 return res;
1694 static inline int may_lookup(struct nameidata *nd)
1696 if (nd->flags & LOOKUP_RCU) {
1697 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1698 if (err != -ECHILD)
1699 return err;
1700 if (unlazy_walk(nd))
1701 return -ECHILD;
1703 return inode_permission(nd->inode, MAY_EXEC);
1706 static inline int handle_dots(struct nameidata *nd, int type)
1708 if (type == LAST_DOTDOT) {
1709 if (!nd->root.mnt)
1710 set_root(nd);
1711 if (nd->flags & LOOKUP_RCU) {
1712 return follow_dotdot_rcu(nd);
1713 } else
1714 return follow_dotdot(nd);
1716 return 0;
1719 static int pick_link(struct nameidata *nd, struct path *link,
1720 struct inode *inode, unsigned seq)
1722 int error;
1723 struct saved *last;
1724 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1725 path_to_nameidata(link, nd);
1726 return -ELOOP;
1728 if (!(nd->flags & LOOKUP_RCU)) {
1729 if (link->mnt == nd->path.mnt)
1730 mntget(link->mnt);
1732 error = nd_alloc_stack(nd);
1733 if (unlikely(error)) {
1734 if (error == -ECHILD) {
1735 if (unlikely(!legitimize_path(nd, link, seq))) {
1736 drop_links(nd);
1737 nd->depth = 0;
1738 nd->flags &= ~LOOKUP_RCU;
1739 nd->path.mnt = NULL;
1740 nd->path.dentry = NULL;
1741 if (!(nd->flags & LOOKUP_ROOT))
1742 nd->root.mnt = NULL;
1743 rcu_read_unlock();
1744 } else if (likely(unlazy_walk(nd)) == 0)
1745 error = nd_alloc_stack(nd);
1747 if (error) {
1748 path_put(link);
1749 return error;
1753 last = nd->stack + nd->depth++;
1754 last->link = *link;
1755 clear_delayed_call(&last->done);
1756 nd->link_inode = inode;
1757 last->seq = seq;
1758 return 1;
1761 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1764 * Do we need to follow links? We _really_ want to be able
1765 * to do this check without having to look at inode->i_op,
1766 * so we keep a cache of "no, this doesn't need follow_link"
1767 * for the common case.
1769 static inline int step_into(struct nameidata *nd, struct path *path,
1770 int flags, struct inode *inode, unsigned seq)
1772 if (!(flags & WALK_MORE) && nd->depth)
1773 put_link(nd);
1774 if (likely(!d_is_symlink(path->dentry)) ||
1775 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1776 /* not a symlink or should not follow */
1777 path_to_nameidata(path, nd);
1778 nd->inode = inode;
1779 nd->seq = seq;
1780 return 0;
1782 /* make sure that d_is_symlink above matches inode */
1783 if (nd->flags & LOOKUP_RCU) {
1784 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1785 return -ECHILD;
1787 return pick_link(nd, path, inode, seq);
1790 static int walk_component(struct nameidata *nd, int flags)
1792 struct path path;
1793 struct inode *inode;
1794 unsigned seq;
1795 int err;
1797 * "." and ".." are special - ".." especially so because it has
1798 * to be able to know about the current root directory and
1799 * parent relationships.
1801 if (unlikely(nd->last_type != LAST_NORM)) {
1802 err = handle_dots(nd, nd->last_type);
1803 if (!(flags & WALK_MORE) && nd->depth)
1804 put_link(nd);
1805 return err;
1807 err = lookup_fast(nd, &path, &inode, &seq);
1808 if (unlikely(err <= 0)) {
1809 if (err < 0)
1810 return err;
1811 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1812 nd->flags);
1813 if (IS_ERR(path.dentry))
1814 return PTR_ERR(path.dentry);
1816 path.mnt = nd->path.mnt;
1817 err = follow_managed(&path, nd);
1818 if (unlikely(err < 0))
1819 return err;
1821 if (unlikely(d_is_negative(path.dentry))) {
1822 path_to_nameidata(&path, nd);
1823 return -ENOENT;
1826 seq = 0; /* we are already out of RCU mode */
1827 inode = d_backing_inode(path.dentry);
1830 return step_into(nd, &path, flags, inode, seq);
1834 * We can do the critical dentry name comparison and hashing
1835 * operations one word at a time, but we are limited to:
1837 * - Architectures with fast unaligned word accesses. We could
1838 * do a "get_unaligned()" if this helps and is sufficiently
1839 * fast.
1841 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1842 * do not trap on the (extremely unlikely) case of a page
1843 * crossing operation.
1845 * - Furthermore, we need an efficient 64-bit compile for the
1846 * 64-bit case in order to generate the "number of bytes in
1847 * the final mask". Again, that could be replaced with a
1848 * efficient population count instruction or similar.
1850 #ifdef CONFIG_DCACHE_WORD_ACCESS
1852 #include <asm/word-at-a-time.h>
1854 #ifdef HASH_MIX
1856 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1858 #elif defined(CONFIG_64BIT)
1860 * Register pressure in the mixing function is an issue, particularly
1861 * on 32-bit x86, but almost any function requires one state value and
1862 * one temporary. Instead, use a function designed for two state values
1863 * and no temporaries.
1865 * This function cannot create a collision in only two iterations, so
1866 * we have two iterations to achieve avalanche. In those two iterations,
1867 * we have six layers of mixing, which is enough to spread one bit's
1868 * influence out to 2^6 = 64 state bits.
1870 * Rotate constants are scored by considering either 64 one-bit input
1871 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1872 * probability of that delta causing a change to each of the 128 output
1873 * bits, using a sample of random initial states.
1875 * The Shannon entropy of the computed probabilities is then summed
1876 * to produce a score. Ideally, any input change has a 50% chance of
1877 * toggling any given output bit.
1879 * Mixing scores (in bits) for (12,45):
1880 * Input delta: 1-bit 2-bit
1881 * 1 round: 713.3 42542.6
1882 * 2 rounds: 2753.7 140389.8
1883 * 3 rounds: 5954.1 233458.2
1884 * 4 rounds: 7862.6 256672.2
1885 * Perfect: 8192 258048
1886 * (64*128) (64*63/2 * 128)
1888 #define HASH_MIX(x, y, a) \
1889 ( x ^= (a), \
1890 y ^= x, x = rol64(x,12),\
1891 x += y, y = rol64(y,45),\
1892 y *= 9 )
1895 * Fold two longs into one 32-bit hash value. This must be fast, but
1896 * latency isn't quite as critical, as there is a fair bit of additional
1897 * work done before the hash value is used.
1899 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1901 y ^= x * GOLDEN_RATIO_64;
1902 y *= GOLDEN_RATIO_64;
1903 return y >> 32;
1906 #else /* 32-bit case */
1909 * Mixing scores (in bits) for (7,20):
1910 * Input delta: 1-bit 2-bit
1911 * 1 round: 330.3 9201.6
1912 * 2 rounds: 1246.4 25475.4
1913 * 3 rounds: 1907.1 31295.1
1914 * 4 rounds: 2042.3 31718.6
1915 * Perfect: 2048 31744
1916 * (32*64) (32*31/2 * 64)
1918 #define HASH_MIX(x, y, a) \
1919 ( x ^= (a), \
1920 y ^= x, x = rol32(x, 7),\
1921 x += y, y = rol32(y,20),\
1922 y *= 9 )
1924 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1926 /* Use arch-optimized multiply if one exists */
1927 return __hash_32(y ^ __hash_32(x));
1930 #endif
1933 * Return the hash of a string of known length. This is carfully
1934 * designed to match hash_name(), which is the more critical function.
1935 * In particular, we must end by hashing a final word containing 0..7
1936 * payload bytes, to match the way that hash_name() iterates until it
1937 * finds the delimiter after the name.
1939 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1941 unsigned long a, x = 0, y = (unsigned long)salt;
1943 for (;;) {
1944 if (!len)
1945 goto done;
1946 a = load_unaligned_zeropad(name);
1947 if (len < sizeof(unsigned long))
1948 break;
1949 HASH_MIX(x, y, a);
1950 name += sizeof(unsigned long);
1951 len -= sizeof(unsigned long);
1953 x ^= a & bytemask_from_count(len);
1954 done:
1955 return fold_hash(x, y);
1957 EXPORT_SYMBOL(full_name_hash);
1959 /* Return the "hash_len" (hash and length) of a null-terminated string */
1960 u64 hashlen_string(const void *salt, const char *name)
1962 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1963 unsigned long adata, mask, len;
1964 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1966 len = 0;
1967 goto inside;
1969 do {
1970 HASH_MIX(x, y, a);
1971 len += sizeof(unsigned long);
1972 inside:
1973 a = load_unaligned_zeropad(name+len);
1974 } while (!has_zero(a, &adata, &constants));
1976 adata = prep_zero_mask(a, adata, &constants);
1977 mask = create_zero_mask(adata);
1978 x ^= a & zero_bytemask(mask);
1980 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1982 EXPORT_SYMBOL(hashlen_string);
1985 * Calculate the length and hash of the path component, and
1986 * return the "hash_len" as the result.
1988 static inline u64 hash_name(const void *salt, const char *name)
1990 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1991 unsigned long adata, bdata, mask, len;
1992 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1994 len = 0;
1995 goto inside;
1997 do {
1998 HASH_MIX(x, y, a);
1999 len += sizeof(unsigned long);
2000 inside:
2001 a = load_unaligned_zeropad(name+len);
2002 b = a ^ REPEAT_BYTE('/');
2003 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2005 adata = prep_zero_mask(a, adata, &constants);
2006 bdata = prep_zero_mask(b, bdata, &constants);
2007 mask = create_zero_mask(adata | bdata);
2008 x ^= a & zero_bytemask(mask);
2010 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2013 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2015 /* Return the hash of a string of known length */
2016 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2018 unsigned long hash = init_name_hash(salt);
2019 while (len--)
2020 hash = partial_name_hash((unsigned char)*name++, hash);
2021 return end_name_hash(hash);
2023 EXPORT_SYMBOL(full_name_hash);
2025 /* Return the "hash_len" (hash and length) of a null-terminated string */
2026 u64 hashlen_string(const void *salt, const char *name)
2028 unsigned long hash = init_name_hash(salt);
2029 unsigned long len = 0, c;
2031 c = (unsigned char)*name;
2032 while (c) {
2033 len++;
2034 hash = partial_name_hash(c, hash);
2035 c = (unsigned char)name[len];
2037 return hashlen_create(end_name_hash(hash), len);
2039 EXPORT_SYMBOL(hashlen_string);
2042 * We know there's a real path component here of at least
2043 * one character.
2045 static inline u64 hash_name(const void *salt, const char *name)
2047 unsigned long hash = init_name_hash(salt);
2048 unsigned long len = 0, c;
2050 c = (unsigned char)*name;
2051 do {
2052 len++;
2053 hash = partial_name_hash(c, hash);
2054 c = (unsigned char)name[len];
2055 } while (c && c != '/');
2056 return hashlen_create(end_name_hash(hash), len);
2059 #endif
2062 * Name resolution.
2063 * This is the basic name resolution function, turning a pathname into
2064 * the final dentry. We expect 'base' to be positive and a directory.
2066 * Returns 0 and nd will have valid dentry and mnt on success.
2067 * Returns error and drops reference to input namei data on failure.
2069 static int link_path_walk(const char *name, struct nameidata *nd)
2071 int err;
2073 if (IS_ERR(name))
2074 return PTR_ERR(name);
2075 while (*name=='/')
2076 name++;
2077 if (!*name)
2078 return 0;
2080 /* At this point we know we have a real path component. */
2081 for(;;) {
2082 u64 hash_len;
2083 int type;
2085 err = may_lookup(nd);
2086 if (err)
2087 return err;
2089 hash_len = hash_name(nd->path.dentry, name);
2091 type = LAST_NORM;
2092 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2093 case 2:
2094 if (name[1] == '.') {
2095 type = LAST_DOTDOT;
2096 nd->flags |= LOOKUP_JUMPED;
2098 break;
2099 case 1:
2100 type = LAST_DOT;
2102 if (likely(type == LAST_NORM)) {
2103 struct dentry *parent = nd->path.dentry;
2104 nd->flags &= ~LOOKUP_JUMPED;
2105 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2106 struct qstr this = { { .hash_len = hash_len }, .name = name };
2107 err = parent->d_op->d_hash(parent, &this);
2108 if (err < 0)
2109 return err;
2110 hash_len = this.hash_len;
2111 name = this.name;
2115 nd->last.hash_len = hash_len;
2116 nd->last.name = name;
2117 nd->last_type = type;
2119 name += hashlen_len(hash_len);
2120 if (!*name)
2121 goto OK;
2123 * If it wasn't NUL, we know it was '/'. Skip that
2124 * slash, and continue until no more slashes.
2126 do {
2127 name++;
2128 } while (unlikely(*name == '/'));
2129 if (unlikely(!*name)) {
2131 /* pathname body, done */
2132 if (!nd->depth)
2133 return 0;
2134 name = nd->stack[nd->depth - 1].name;
2135 /* trailing symlink, done */
2136 if (!name)
2137 return 0;
2138 /* last component of nested symlink */
2139 err = walk_component(nd, WALK_FOLLOW);
2140 } else {
2141 /* not the last component */
2142 err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2144 if (err < 0)
2145 return err;
2147 if (err) {
2148 const char *s = get_link(nd);
2150 if (IS_ERR(s))
2151 return PTR_ERR(s);
2152 err = 0;
2153 if (unlikely(!s)) {
2154 /* jumped */
2155 put_link(nd);
2156 } else {
2157 nd->stack[nd->depth - 1].name = name;
2158 name = s;
2159 continue;
2162 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2163 if (nd->flags & LOOKUP_RCU) {
2164 if (unlazy_walk(nd))
2165 return -ECHILD;
2167 return -ENOTDIR;
2172 /* must be paired with terminate_walk() */
2173 static const char *path_init(struct nameidata *nd, unsigned flags)
2175 const char *s = nd->name->name;
2177 if (!*s)
2178 flags &= ~LOOKUP_RCU;
2179 if (flags & LOOKUP_RCU)
2180 rcu_read_lock();
2182 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2183 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2184 nd->depth = 0;
2185 if (flags & LOOKUP_ROOT) {
2186 struct dentry *root = nd->root.dentry;
2187 struct inode *inode = root->d_inode;
2188 if (*s && unlikely(!d_can_lookup(root)))
2189 return ERR_PTR(-ENOTDIR);
2190 nd->path = nd->root;
2191 nd->inode = inode;
2192 if (flags & LOOKUP_RCU) {
2193 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2194 nd->root_seq = nd->seq;
2195 nd->m_seq = read_seqbegin(&mount_lock);
2196 } else {
2197 path_get(&nd->path);
2199 return s;
2202 nd->root.mnt = NULL;
2203 nd->path.mnt = NULL;
2204 nd->path.dentry = NULL;
2206 nd->m_seq = read_seqbegin(&mount_lock);
2207 if (*s == '/') {
2208 set_root(nd);
2209 if (likely(!nd_jump_root(nd)))
2210 return s;
2211 return ERR_PTR(-ECHILD);
2212 } else if (nd->dfd == AT_FDCWD) {
2213 if (flags & LOOKUP_RCU) {
2214 struct fs_struct *fs = current->fs;
2215 unsigned seq;
2217 do {
2218 seq = read_seqcount_begin(&fs->seq);
2219 nd->path = fs->pwd;
2220 nd->inode = nd->path.dentry->d_inode;
2221 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2222 } while (read_seqcount_retry(&fs->seq, seq));
2223 } else {
2224 get_fs_pwd(current->fs, &nd->path);
2225 nd->inode = nd->path.dentry->d_inode;
2227 return s;
2228 } else {
2229 /* Caller must check execute permissions on the starting path component */
2230 struct fd f = fdget_raw(nd->dfd);
2231 struct dentry *dentry;
2233 if (!f.file)
2234 return ERR_PTR(-EBADF);
2236 dentry = f.file->f_path.dentry;
2238 if (*s && unlikely(!d_can_lookup(dentry))) {
2239 fdput(f);
2240 return ERR_PTR(-ENOTDIR);
2243 nd->path = f.file->f_path;
2244 if (flags & LOOKUP_RCU) {
2245 nd->inode = nd->path.dentry->d_inode;
2246 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2247 } else {
2248 path_get(&nd->path);
2249 nd->inode = nd->path.dentry->d_inode;
2251 fdput(f);
2252 return s;
2256 static const char *trailing_symlink(struct nameidata *nd)
2258 const char *s;
2259 int error = may_follow_link(nd);
2260 if (unlikely(error))
2261 return ERR_PTR(error);
2262 nd->flags |= LOOKUP_PARENT;
2263 nd->stack[0].name = NULL;
2264 s = get_link(nd);
2265 return s ? s : "";
2268 static inline int lookup_last(struct nameidata *nd)
2270 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2271 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2273 nd->flags &= ~LOOKUP_PARENT;
2274 return walk_component(nd, 0);
2277 static int handle_lookup_down(struct nameidata *nd)
2279 struct path path = nd->path;
2280 struct inode *inode = nd->inode;
2281 unsigned seq = nd->seq;
2282 int err;
2284 if (nd->flags & LOOKUP_RCU) {
2286 * don't bother with unlazy_walk on failure - we are
2287 * at the very beginning of walk, so we lose nothing
2288 * if we simply redo everything in non-RCU mode
2290 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2291 return -ECHILD;
2292 } else {
2293 dget(path.dentry);
2294 err = follow_managed(&path, nd);
2295 if (unlikely(err < 0))
2296 return err;
2297 inode = d_backing_inode(path.dentry);
2298 seq = 0;
2300 path_to_nameidata(&path, nd);
2301 nd->inode = inode;
2302 nd->seq = seq;
2303 return 0;
2306 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2307 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2309 const char *s = path_init(nd, flags);
2310 int err;
2312 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2313 err = handle_lookup_down(nd);
2314 if (unlikely(err < 0))
2315 s = ERR_PTR(err);
2318 while (!(err = link_path_walk(s, nd))
2319 && ((err = lookup_last(nd)) > 0)) {
2320 s = trailing_symlink(nd);
2322 if (!err)
2323 err = complete_walk(nd);
2325 if (!err && nd->flags & LOOKUP_DIRECTORY)
2326 if (!d_can_lookup(nd->path.dentry))
2327 err = -ENOTDIR;
2328 if (!err) {
2329 *path = nd->path;
2330 nd->path.mnt = NULL;
2331 nd->path.dentry = NULL;
2333 terminate_walk(nd);
2334 return err;
2337 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2338 struct path *path, struct path *root)
2340 int retval;
2341 struct nameidata nd;
2342 if (IS_ERR(name))
2343 return PTR_ERR(name);
2344 if (unlikely(root)) {
2345 nd.root = *root;
2346 flags |= LOOKUP_ROOT;
2348 set_nameidata(&nd, dfd, name);
2349 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2350 if (unlikely(retval == -ECHILD))
2351 retval = path_lookupat(&nd, flags, path);
2352 if (unlikely(retval == -ESTALE))
2353 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2355 if (likely(!retval))
2356 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2357 restore_nameidata();
2358 putname(name);
2359 return retval;
2362 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2363 static int path_parentat(struct nameidata *nd, unsigned flags,
2364 struct path *parent)
2366 const char *s = path_init(nd, flags);
2367 int err = link_path_walk(s, nd);
2368 if (!err)
2369 err = complete_walk(nd);
2370 if (!err) {
2371 *parent = nd->path;
2372 nd->path.mnt = NULL;
2373 nd->path.dentry = NULL;
2375 terminate_walk(nd);
2376 return err;
2379 static struct filename *filename_parentat(int dfd, struct filename *name,
2380 unsigned int flags, struct path *parent,
2381 struct qstr *last, int *type)
2383 int retval;
2384 struct nameidata nd;
2386 if (IS_ERR(name))
2387 return name;
2388 set_nameidata(&nd, dfd, name);
2389 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2390 if (unlikely(retval == -ECHILD))
2391 retval = path_parentat(&nd, flags, parent);
2392 if (unlikely(retval == -ESTALE))
2393 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2394 if (likely(!retval)) {
2395 *last = nd.last;
2396 *type = nd.last_type;
2397 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2398 } else {
2399 putname(name);
2400 name = ERR_PTR(retval);
2402 restore_nameidata();
2403 return name;
2406 /* does lookup, returns the object with parent locked */
2407 struct dentry *kern_path_locked(const char *name, struct path *path)
2409 struct filename *filename;
2410 struct dentry *d;
2411 struct qstr last;
2412 int type;
2414 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2415 &last, &type);
2416 if (IS_ERR(filename))
2417 return ERR_CAST(filename);
2418 if (unlikely(type != LAST_NORM)) {
2419 path_put(path);
2420 putname(filename);
2421 return ERR_PTR(-EINVAL);
2423 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2424 d = __lookup_hash(&last, path->dentry, 0);
2425 if (IS_ERR(d)) {
2426 inode_unlock(path->dentry->d_inode);
2427 path_put(path);
2429 putname(filename);
2430 return d;
2433 int kern_path(const char *name, unsigned int flags, struct path *path)
2435 return filename_lookup(AT_FDCWD, getname_kernel(name),
2436 flags, path, NULL);
2438 EXPORT_SYMBOL(kern_path);
2441 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2442 * @dentry: pointer to dentry of the base directory
2443 * @mnt: pointer to vfs mount of the base directory
2444 * @name: pointer to file name
2445 * @flags: lookup flags
2446 * @path: pointer to struct path to fill
2448 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2449 const char *name, unsigned int flags,
2450 struct path *path)
2452 struct path root = {.mnt = mnt, .dentry = dentry};
2453 /* the first argument of filename_lookup() is ignored with root */
2454 return filename_lookup(AT_FDCWD, getname_kernel(name),
2455 flags , path, &root);
2457 EXPORT_SYMBOL(vfs_path_lookup);
2459 static int lookup_one_len_common(const char *name, struct dentry *base,
2460 int len, struct qstr *this)
2462 this->name = name;
2463 this->len = len;
2464 this->hash = full_name_hash(base, name, len);
2465 if (!len)
2466 return -EACCES;
2468 if (unlikely(name[0] == '.')) {
2469 if (len < 2 || (len == 2 && name[1] == '.'))
2470 return -EACCES;
2473 while (len--) {
2474 unsigned int c = *(const unsigned char *)name++;
2475 if (c == '/' || c == '\0')
2476 return -EACCES;
2479 * See if the low-level filesystem might want
2480 * to use its own hash..
2482 if (base->d_flags & DCACHE_OP_HASH) {
2483 int err = base->d_op->d_hash(base, this);
2484 if (err < 0)
2485 return err;
2488 return inode_permission(base->d_inode, MAY_EXEC);
2492 * try_lookup_one_len - filesystem helper to lookup single pathname component
2493 * @name: pathname component to lookup
2494 * @base: base directory to lookup from
2495 * @len: maximum length @len should be interpreted to
2497 * Look up a dentry by name in the dcache, returning NULL if it does not
2498 * currently exist. The function does not try to create a dentry.
2500 * Note that this routine is purely a helper for filesystem usage and should
2501 * not be called by generic code.
2503 * The caller must hold base->i_mutex.
2505 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2507 struct qstr this;
2508 int err;
2510 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2512 err = lookup_one_len_common(name, base, len, &this);
2513 if (err)
2514 return ERR_PTR(err);
2516 return lookup_dcache(&this, base, 0);
2518 EXPORT_SYMBOL(try_lookup_one_len);
2521 * lookup_one_len - filesystem helper to lookup single pathname component
2522 * @name: pathname component to lookup
2523 * @base: base directory to lookup from
2524 * @len: maximum length @len should be interpreted to
2526 * Note that this routine is purely a helper for filesystem usage and should
2527 * not be called by generic code.
2529 * The caller must hold base->i_mutex.
2531 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2533 struct dentry *dentry;
2534 struct qstr this;
2535 int err;
2537 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2539 err = lookup_one_len_common(name, base, len, &this);
2540 if (err)
2541 return ERR_PTR(err);
2543 dentry = lookup_dcache(&this, base, 0);
2544 return dentry ? dentry : __lookup_slow(&this, base, 0);
2546 EXPORT_SYMBOL(lookup_one_len);
2549 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2550 * @name: pathname component to lookup
2551 * @base: base directory to lookup from
2552 * @len: maximum length @len should be interpreted to
2554 * Note that this routine is purely a helper for filesystem usage and should
2555 * not be called by generic code.
2557 * Unlike lookup_one_len, it should be called without the parent
2558 * i_mutex held, and will take the i_mutex itself if necessary.
2560 struct dentry *lookup_one_len_unlocked(const char *name,
2561 struct dentry *base, int len)
2563 struct qstr this;
2564 int err;
2565 struct dentry *ret;
2567 err = lookup_one_len_common(name, base, len, &this);
2568 if (err)
2569 return ERR_PTR(err);
2571 ret = lookup_dcache(&this, base, 0);
2572 if (!ret)
2573 ret = lookup_slow(&this, base, 0);
2574 return ret;
2576 EXPORT_SYMBOL(lookup_one_len_unlocked);
2578 #ifdef CONFIG_UNIX98_PTYS
2579 int path_pts(struct path *path)
2581 /* Find something mounted on "pts" in the same directory as
2582 * the input path.
2584 struct dentry *child, *parent;
2585 struct qstr this;
2586 int ret;
2588 ret = path_parent_directory(path);
2589 if (ret)
2590 return ret;
2592 parent = path->dentry;
2593 this.name = "pts";
2594 this.len = 3;
2595 child = d_hash_and_lookup(parent, &this);
2596 if (!child)
2597 return -ENOENT;
2599 path->dentry = child;
2600 dput(parent);
2601 follow_mount(path);
2602 return 0;
2604 #endif
2606 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2607 struct path *path, int *empty)
2609 return filename_lookup(dfd, getname_flags(name, flags, empty),
2610 flags, path, NULL);
2612 EXPORT_SYMBOL(user_path_at_empty);
2615 * mountpoint_last - look up last component for umount
2616 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2618 * This is a special lookup_last function just for umount. In this case, we
2619 * need to resolve the path without doing any revalidation.
2621 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2622 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2623 * in almost all cases, this lookup will be served out of the dcache. The only
2624 * cases where it won't are if nd->last refers to a symlink or the path is
2625 * bogus and it doesn't exist.
2627 * Returns:
2628 * -error: if there was an error during lookup. This includes -ENOENT if the
2629 * lookup found a negative dentry.
2631 * 0: if we successfully resolved nd->last and found it to not to be a
2632 * symlink that needs to be followed.
2634 * 1: if we successfully resolved nd->last and found it to be a symlink
2635 * that needs to be followed.
2637 static int
2638 mountpoint_last(struct nameidata *nd)
2640 int error = 0;
2641 struct dentry *dir = nd->path.dentry;
2642 struct path path;
2644 /* If we're in rcuwalk, drop out of it to handle last component */
2645 if (nd->flags & LOOKUP_RCU) {
2646 if (unlazy_walk(nd))
2647 return -ECHILD;
2650 nd->flags &= ~LOOKUP_PARENT;
2652 if (unlikely(nd->last_type != LAST_NORM)) {
2653 error = handle_dots(nd, nd->last_type);
2654 if (error)
2655 return error;
2656 path.dentry = dget(nd->path.dentry);
2657 } else {
2658 path.dentry = d_lookup(dir, &nd->last);
2659 if (!path.dentry) {
2661 * No cached dentry. Mounted dentries are pinned in the
2662 * cache, so that means that this dentry is probably
2663 * a symlink or the path doesn't actually point
2664 * to a mounted dentry.
2666 path.dentry = lookup_slow(&nd->last, dir,
2667 nd->flags | LOOKUP_NO_REVAL);
2668 if (IS_ERR(path.dentry))
2669 return PTR_ERR(path.dentry);
2672 if (d_is_negative(path.dentry)) {
2673 dput(path.dentry);
2674 return -ENOENT;
2676 path.mnt = nd->path.mnt;
2677 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2681 * path_mountpoint - look up a path to be umounted
2682 * @nd: lookup context
2683 * @flags: lookup flags
2684 * @path: pointer to container for result
2686 * Look up the given name, but don't attempt to revalidate the last component.
2687 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2689 static int
2690 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2692 const char *s = path_init(nd, flags);
2693 int err;
2695 while (!(err = link_path_walk(s, nd)) &&
2696 (err = mountpoint_last(nd)) > 0) {
2697 s = trailing_symlink(nd);
2699 if (!err) {
2700 *path = nd->path;
2701 nd->path.mnt = NULL;
2702 nd->path.dentry = NULL;
2703 follow_mount(path);
2705 terminate_walk(nd);
2706 return err;
2709 static int
2710 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2711 unsigned int flags)
2713 struct nameidata nd;
2714 int error;
2715 if (IS_ERR(name))
2716 return PTR_ERR(name);
2717 set_nameidata(&nd, dfd, name);
2718 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2719 if (unlikely(error == -ECHILD))
2720 error = path_mountpoint(&nd, flags, path);
2721 if (unlikely(error == -ESTALE))
2722 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2723 if (likely(!error))
2724 audit_inode(name, path->dentry, 0);
2725 restore_nameidata();
2726 putname(name);
2727 return error;
2731 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2732 * @dfd: directory file descriptor
2733 * @name: pathname from userland
2734 * @flags: lookup flags
2735 * @path: pointer to container to hold result
2737 * A umount is a special case for path walking. We're not actually interested
2738 * in the inode in this situation, and ESTALE errors can be a problem. We
2739 * simply want track down the dentry and vfsmount attached at the mountpoint
2740 * and avoid revalidating the last component.
2742 * Returns 0 and populates "path" on success.
2745 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2746 struct path *path)
2748 return filename_mountpoint(dfd, getname(name), path, flags);
2752 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2753 unsigned int flags)
2755 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2757 EXPORT_SYMBOL(kern_path_mountpoint);
2759 int __check_sticky(struct inode *dir, struct inode *inode)
2761 kuid_t fsuid = current_fsuid();
2763 if (uid_eq(inode->i_uid, fsuid))
2764 return 0;
2765 if (uid_eq(dir->i_uid, fsuid))
2766 return 0;
2767 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2769 EXPORT_SYMBOL(__check_sticky);
2772 * Check whether we can remove a link victim from directory dir, check
2773 * whether the type of victim is right.
2774 * 1. We can't do it if dir is read-only (done in permission())
2775 * 2. We should have write and exec permissions on dir
2776 * 3. We can't remove anything from append-only dir
2777 * 4. We can't do anything with immutable dir (done in permission())
2778 * 5. If the sticky bit on dir is set we should either
2779 * a. be owner of dir, or
2780 * b. be owner of victim, or
2781 * c. have CAP_FOWNER capability
2782 * 6. If the victim is append-only or immutable we can't do antyhing with
2783 * links pointing to it.
2784 * 7. If the victim has an unknown uid or gid we can't change the inode.
2785 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2786 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2787 * 10. We can't remove a root or mountpoint.
2788 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2789 * nfs_async_unlink().
2791 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2793 struct inode *inode = d_backing_inode(victim);
2794 int error;
2796 if (d_is_negative(victim))
2797 return -ENOENT;
2798 BUG_ON(!inode);
2800 BUG_ON(victim->d_parent->d_inode != dir);
2802 /* Inode writeback is not safe when the uid or gid are invalid. */
2803 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2804 return -EOVERFLOW;
2806 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2808 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2809 if (error)
2810 return error;
2811 if (IS_APPEND(dir))
2812 return -EPERM;
2814 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2815 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2816 return -EPERM;
2817 if (isdir) {
2818 if (!d_is_dir(victim))
2819 return -ENOTDIR;
2820 if (IS_ROOT(victim))
2821 return -EBUSY;
2822 } else if (d_is_dir(victim))
2823 return -EISDIR;
2824 if (IS_DEADDIR(dir))
2825 return -ENOENT;
2826 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2827 return -EBUSY;
2828 return 0;
2831 /* Check whether we can create an object with dentry child in directory
2832 * dir.
2833 * 1. We can't do it if child already exists (open has special treatment for
2834 * this case, but since we are inlined it's OK)
2835 * 2. We can't do it if dir is read-only (done in permission())
2836 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2837 * 4. We should have write and exec permissions on dir
2838 * 5. We can't do it if dir is immutable (done in permission())
2840 static inline int may_create(struct inode *dir, struct dentry *child)
2842 struct user_namespace *s_user_ns;
2843 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2844 if (child->d_inode)
2845 return -EEXIST;
2846 if (IS_DEADDIR(dir))
2847 return -ENOENT;
2848 s_user_ns = dir->i_sb->s_user_ns;
2849 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2850 !kgid_has_mapping(s_user_ns, current_fsgid()))
2851 return -EOVERFLOW;
2852 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2856 * p1 and p2 should be directories on the same fs.
2858 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2860 struct dentry *p;
2862 if (p1 == p2) {
2863 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2864 return NULL;
2867 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2869 p = d_ancestor(p2, p1);
2870 if (p) {
2871 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2872 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2873 return p;
2876 p = d_ancestor(p1, p2);
2877 if (p) {
2878 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2879 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2880 return p;
2883 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2884 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2885 return NULL;
2887 EXPORT_SYMBOL(lock_rename);
2889 void unlock_rename(struct dentry *p1, struct dentry *p2)
2891 inode_unlock(p1->d_inode);
2892 if (p1 != p2) {
2893 inode_unlock(p2->d_inode);
2894 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2897 EXPORT_SYMBOL(unlock_rename);
2899 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2900 bool want_excl)
2902 int error = may_create(dir, dentry);
2903 if (error)
2904 return error;
2906 if (!dir->i_op->create)
2907 return -EACCES; /* shouldn't it be ENOSYS? */
2908 mode &= S_IALLUGO;
2909 mode |= S_IFREG;
2910 error = security_inode_create(dir, dentry, mode);
2911 if (error)
2912 return error;
2913 error = dir->i_op->create(dir, dentry, mode, want_excl);
2914 if (!error)
2915 fsnotify_create(dir, dentry);
2916 return error;
2918 EXPORT_SYMBOL(vfs_create);
2920 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2921 int (*f)(struct dentry *, umode_t, void *),
2922 void *arg)
2924 struct inode *dir = dentry->d_parent->d_inode;
2925 int error = may_create(dir, dentry);
2926 if (error)
2927 return error;
2929 mode &= S_IALLUGO;
2930 mode |= S_IFREG;
2931 error = security_inode_create(dir, dentry, mode);
2932 if (error)
2933 return error;
2934 error = f(dentry, mode, arg);
2935 if (!error)
2936 fsnotify_create(dir, dentry);
2937 return error;
2939 EXPORT_SYMBOL(vfs_mkobj);
2941 bool may_open_dev(const struct path *path)
2943 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2944 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2947 static int may_open(const struct path *path, int acc_mode, int flag)
2949 struct dentry *dentry = path->dentry;
2950 struct inode *inode = dentry->d_inode;
2951 int error;
2953 if (!inode)
2954 return -ENOENT;
2956 switch (inode->i_mode & S_IFMT) {
2957 case S_IFLNK:
2958 return -ELOOP;
2959 case S_IFDIR:
2960 if (acc_mode & MAY_WRITE)
2961 return -EISDIR;
2962 break;
2963 case S_IFBLK:
2964 case S_IFCHR:
2965 if (!may_open_dev(path))
2966 return -EACCES;
2967 /*FALLTHRU*/
2968 case S_IFIFO:
2969 case S_IFSOCK:
2970 flag &= ~O_TRUNC;
2971 break;
2974 error = inode_permission(inode, MAY_OPEN | acc_mode);
2975 if (error)
2976 return error;
2979 * An append-only file must be opened in append mode for writing.
2981 if (IS_APPEND(inode)) {
2982 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2983 return -EPERM;
2984 if (flag & O_TRUNC)
2985 return -EPERM;
2988 /* O_NOATIME can only be set by the owner or superuser */
2989 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2990 return -EPERM;
2992 return 0;
2995 static int handle_truncate(struct file *filp)
2997 const struct path *path = &filp->f_path;
2998 struct inode *inode = path->dentry->d_inode;
2999 int error = get_write_access(inode);
3000 if (error)
3001 return error;
3003 * Refuse to truncate files with mandatory locks held on them.
3005 error = locks_verify_locked(filp);
3006 if (!error)
3007 error = security_path_truncate(path);
3008 if (!error) {
3009 error = do_truncate(path->dentry, 0,
3010 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3011 filp);
3013 put_write_access(inode);
3014 return error;
3017 static inline int open_to_namei_flags(int flag)
3019 if ((flag & O_ACCMODE) == 3)
3020 flag--;
3021 return flag;
3024 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3026 struct user_namespace *s_user_ns;
3027 int error = security_path_mknod(dir, dentry, mode, 0);
3028 if (error)
3029 return error;
3031 s_user_ns = dir->dentry->d_sb->s_user_ns;
3032 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3033 !kgid_has_mapping(s_user_ns, current_fsgid()))
3034 return -EOVERFLOW;
3036 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3037 if (error)
3038 return error;
3040 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3044 * Attempt to atomically look up, create and open a file from a negative
3045 * dentry.
3047 * Returns 0 if successful. The file will have been created and attached to
3048 * @file by the filesystem calling finish_open().
3050 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3051 * be set. The caller will need to perform the open themselves. @path will
3052 * have been updated to point to the new dentry. This may be negative.
3054 * Returns an error code otherwise.
3056 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3057 struct path *path, struct file *file,
3058 const struct open_flags *op,
3059 int open_flag, umode_t mode)
3061 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3062 struct inode *dir = nd->path.dentry->d_inode;
3063 int error;
3065 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3066 open_flag &= ~O_TRUNC;
3068 if (nd->flags & LOOKUP_DIRECTORY)
3069 open_flag |= O_DIRECTORY;
3071 file->f_path.dentry = DENTRY_NOT_SET;
3072 file->f_path.mnt = nd->path.mnt;
3073 error = dir->i_op->atomic_open(dir, dentry, file,
3074 open_to_namei_flags(open_flag), mode);
3075 d_lookup_done(dentry);
3076 if (!error) {
3077 if (file->f_mode & FMODE_OPENED) {
3079 * We didn't have the inode before the open, so check open
3080 * permission here.
3082 int acc_mode = op->acc_mode;
3083 if (file->f_mode & FMODE_CREATED) {
3084 WARN_ON(!(open_flag & O_CREAT));
3085 fsnotify_create(dir, dentry);
3086 acc_mode = 0;
3088 error = may_open(&file->f_path, acc_mode, open_flag);
3089 if (WARN_ON(error > 0))
3090 error = -EINVAL;
3091 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3092 error = -EIO;
3093 } else {
3094 if (file->f_path.dentry) {
3095 dput(dentry);
3096 dentry = file->f_path.dentry;
3098 if (file->f_mode & FMODE_CREATED)
3099 fsnotify_create(dir, dentry);
3100 if (unlikely(d_is_negative(dentry))) {
3101 error = -ENOENT;
3102 } else {
3103 path->dentry = dentry;
3104 path->mnt = nd->path.mnt;
3105 return 0;
3109 dput(dentry);
3110 return error;
3114 * Look up and maybe create and open the last component.
3116 * Must be called with parent locked (exclusive in O_CREAT case).
3118 * Returns 0 on success, that is, if
3119 * the file was successfully atomically created (if necessary) and opened, or
3120 * the file was not completely opened at this time, though lookups and
3121 * creations were performed.
3122 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3123 * In the latter case dentry returned in @path might be negative if O_CREAT
3124 * hadn't been specified.
3126 * An error code is returned on failure.
3128 static int lookup_open(struct nameidata *nd, struct path *path,
3129 struct file *file,
3130 const struct open_flags *op,
3131 bool got_write)
3133 struct dentry *dir = nd->path.dentry;
3134 struct inode *dir_inode = dir->d_inode;
3135 int open_flag = op->open_flag;
3136 struct dentry *dentry;
3137 int error, create_error = 0;
3138 umode_t mode = op->mode;
3139 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3141 if (unlikely(IS_DEADDIR(dir_inode)))
3142 return -ENOENT;
3144 file->f_mode &= ~FMODE_CREATED;
3145 dentry = d_lookup(dir, &nd->last);
3146 for (;;) {
3147 if (!dentry) {
3148 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3149 if (IS_ERR(dentry))
3150 return PTR_ERR(dentry);
3152 if (d_in_lookup(dentry))
3153 break;
3155 error = d_revalidate(dentry, nd->flags);
3156 if (likely(error > 0))
3157 break;
3158 if (error)
3159 goto out_dput;
3160 d_invalidate(dentry);
3161 dput(dentry);
3162 dentry = NULL;
3164 if (dentry->d_inode) {
3165 /* Cached positive dentry: will open in f_op->open */
3166 goto out_no_open;
3170 * Checking write permission is tricky, bacuse we don't know if we are
3171 * going to actually need it: O_CREAT opens should work as long as the
3172 * file exists. But checking existence breaks atomicity. The trick is
3173 * to check access and if not granted clear O_CREAT from the flags.
3175 * Another problem is returing the "right" error value (e.g. for an
3176 * O_EXCL open we want to return EEXIST not EROFS).
3178 if (open_flag & O_CREAT) {
3179 if (!IS_POSIXACL(dir->d_inode))
3180 mode &= ~current_umask();
3181 if (unlikely(!got_write)) {
3182 create_error = -EROFS;
3183 open_flag &= ~O_CREAT;
3184 if (open_flag & (O_EXCL | O_TRUNC))
3185 goto no_open;
3186 /* No side effects, safe to clear O_CREAT */
3187 } else {
3188 create_error = may_o_create(&nd->path, dentry, mode);
3189 if (create_error) {
3190 open_flag &= ~O_CREAT;
3191 if (open_flag & O_EXCL)
3192 goto no_open;
3195 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3196 unlikely(!got_write)) {
3198 * No O_CREATE -> atomicity not a requirement -> fall
3199 * back to lookup + open
3201 goto no_open;
3204 if (dir_inode->i_op->atomic_open) {
3205 error = atomic_open(nd, dentry, path, file, op, open_flag,
3206 mode);
3207 if (unlikely(error == -ENOENT) && create_error)
3208 error = create_error;
3209 return error;
3212 no_open:
3213 if (d_in_lookup(dentry)) {
3214 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3215 nd->flags);
3216 d_lookup_done(dentry);
3217 if (unlikely(res)) {
3218 if (IS_ERR(res)) {
3219 error = PTR_ERR(res);
3220 goto out_dput;
3222 dput(dentry);
3223 dentry = res;
3227 /* Negative dentry, just create the file */
3228 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3229 file->f_mode |= FMODE_CREATED;
3230 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3231 if (!dir_inode->i_op->create) {
3232 error = -EACCES;
3233 goto out_dput;
3235 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3236 open_flag & O_EXCL);
3237 if (error)
3238 goto out_dput;
3239 fsnotify_create(dir_inode, dentry);
3241 if (unlikely(create_error) && !dentry->d_inode) {
3242 error = create_error;
3243 goto out_dput;
3245 out_no_open:
3246 path->dentry = dentry;
3247 path->mnt = nd->path.mnt;
3248 return 0;
3250 out_dput:
3251 dput(dentry);
3252 return error;
3256 * Handle the last step of open()
3258 static int do_last(struct nameidata *nd,
3259 struct file *file, const struct open_flags *op)
3261 struct dentry *dir = nd->path.dentry;
3262 kuid_t dir_uid = nd->inode->i_uid;
3263 umode_t dir_mode = nd->inode->i_mode;
3264 int open_flag = op->open_flag;
3265 bool will_truncate = (open_flag & O_TRUNC) != 0;
3266 bool got_write = false;
3267 int acc_mode = op->acc_mode;
3268 unsigned seq;
3269 struct inode *inode;
3270 struct path path;
3271 int error;
3273 nd->flags &= ~LOOKUP_PARENT;
3274 nd->flags |= op->intent;
3276 if (nd->last_type != LAST_NORM) {
3277 error = handle_dots(nd, nd->last_type);
3278 if (unlikely(error))
3279 return error;
3280 goto finish_open;
3283 if (!(open_flag & O_CREAT)) {
3284 if (nd->last.name[nd->last.len])
3285 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3286 /* we _can_ be in RCU mode here */
3287 error = lookup_fast(nd, &path, &inode, &seq);
3288 if (likely(error > 0))
3289 goto finish_lookup;
3291 if (error < 0)
3292 return error;
3294 BUG_ON(nd->inode != dir->d_inode);
3295 BUG_ON(nd->flags & LOOKUP_RCU);
3296 } else {
3297 /* create side of things */
3299 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3300 * has been cleared when we got to the last component we are
3301 * about to look up
3303 error = complete_walk(nd);
3304 if (error)
3305 return error;
3307 audit_inode(nd->name, dir, LOOKUP_PARENT);
3308 /* trailing slashes? */
3309 if (unlikely(nd->last.name[nd->last.len]))
3310 return -EISDIR;
3313 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3314 error = mnt_want_write(nd->path.mnt);
3315 if (!error)
3316 got_write = true;
3318 * do _not_ fail yet - we might not need that or fail with
3319 * a different error; let lookup_open() decide; we'll be
3320 * dropping this one anyway.
3323 if (open_flag & O_CREAT)
3324 inode_lock(dir->d_inode);
3325 else
3326 inode_lock_shared(dir->d_inode);
3327 error = lookup_open(nd, &path, file, op, got_write);
3328 if (open_flag & O_CREAT)
3329 inode_unlock(dir->d_inode);
3330 else
3331 inode_unlock_shared(dir->d_inode);
3333 if (error)
3334 goto out;
3336 if (file->f_mode & FMODE_OPENED) {
3337 if ((file->f_mode & FMODE_CREATED) ||
3338 !S_ISREG(file_inode(file)->i_mode))
3339 will_truncate = false;
3341 audit_inode(nd->name, file->f_path.dentry, 0);
3342 goto opened;
3345 if (file->f_mode & FMODE_CREATED) {
3346 /* Don't check for write permission, don't truncate */
3347 open_flag &= ~O_TRUNC;
3348 will_truncate = false;
3349 acc_mode = 0;
3350 path_to_nameidata(&path, nd);
3351 goto finish_open_created;
3355 * If atomic_open() acquired write access it is dropped now due to
3356 * possible mount and symlink following (this might be optimized away if
3357 * necessary...)
3359 if (got_write) {
3360 mnt_drop_write(nd->path.mnt);
3361 got_write = false;
3364 error = follow_managed(&path, nd);
3365 if (unlikely(error < 0))
3366 return error;
3368 if (unlikely(d_is_negative(path.dentry))) {
3369 path_to_nameidata(&path, nd);
3370 return -ENOENT;
3374 * create/update audit record if it already exists.
3376 audit_inode(nd->name, path.dentry, 0);
3378 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3379 path_to_nameidata(&path, nd);
3380 return -EEXIST;
3383 seq = 0; /* out of RCU mode, so the value doesn't matter */
3384 inode = d_backing_inode(path.dentry);
3385 finish_lookup:
3386 error = step_into(nd, &path, 0, inode, seq);
3387 if (unlikely(error))
3388 return error;
3389 finish_open:
3390 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3391 error = complete_walk(nd);
3392 if (error)
3393 return error;
3394 audit_inode(nd->name, nd->path.dentry, 0);
3395 if (open_flag & O_CREAT) {
3396 error = -EISDIR;
3397 if (d_is_dir(nd->path.dentry))
3398 goto out;
3399 error = may_create_in_sticky(dir_mode, dir_uid,
3400 d_backing_inode(nd->path.dentry));
3401 if (unlikely(error))
3402 goto out;
3404 error = -ENOTDIR;
3405 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3406 goto out;
3407 if (!d_is_reg(nd->path.dentry))
3408 will_truncate = false;
3410 if (will_truncate) {
3411 error = mnt_want_write(nd->path.mnt);
3412 if (error)
3413 goto out;
3414 got_write = true;
3416 finish_open_created:
3417 error = may_open(&nd->path, acc_mode, open_flag);
3418 if (error)
3419 goto out;
3420 BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3421 error = vfs_open(&nd->path, file);
3422 if (error)
3423 goto out;
3424 opened:
3425 error = ima_file_check(file, op->acc_mode);
3426 if (!error && will_truncate)
3427 error = handle_truncate(file);
3428 out:
3429 if (unlikely(error > 0)) {
3430 WARN_ON(1);
3431 error = -EINVAL;
3433 if (got_write)
3434 mnt_drop_write(nd->path.mnt);
3435 return error;
3438 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3440 struct dentry *child = NULL;
3441 struct inode *dir = dentry->d_inode;
3442 struct inode *inode;
3443 int error;
3445 /* we want directory to be writable */
3446 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3447 if (error)
3448 goto out_err;
3449 error = -EOPNOTSUPP;
3450 if (!dir->i_op->tmpfile)
3451 goto out_err;
3452 error = -ENOMEM;
3453 child = d_alloc(dentry, &slash_name);
3454 if (unlikely(!child))
3455 goto out_err;
3456 error = dir->i_op->tmpfile(dir, child, mode);
3457 if (error)
3458 goto out_err;
3459 error = -ENOENT;
3460 inode = child->d_inode;
3461 if (unlikely(!inode))
3462 goto out_err;
3463 if (!(open_flag & O_EXCL)) {
3464 spin_lock(&inode->i_lock);
3465 inode->i_state |= I_LINKABLE;
3466 spin_unlock(&inode->i_lock);
3468 return child;
3470 out_err:
3471 dput(child);
3472 return ERR_PTR(error);
3474 EXPORT_SYMBOL(vfs_tmpfile);
3476 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3477 const struct open_flags *op,
3478 struct file *file)
3480 struct dentry *child;
3481 struct path path;
3482 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3483 if (unlikely(error))
3484 return error;
3485 error = mnt_want_write(path.mnt);
3486 if (unlikely(error))
3487 goto out;
3488 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3489 error = PTR_ERR(child);
3490 if (IS_ERR(child))
3491 goto out2;
3492 dput(path.dentry);
3493 path.dentry = child;
3494 audit_inode(nd->name, child, 0);
3495 /* Don't check for other permissions, the inode was just created */
3496 error = may_open(&path, 0, op->open_flag);
3497 if (error)
3498 goto out2;
3499 file->f_path.mnt = path.mnt;
3500 error = finish_open(file, child, NULL);
3501 out2:
3502 mnt_drop_write(path.mnt);
3503 out:
3504 path_put(&path);
3505 return error;
3508 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3510 struct path path;
3511 int error = path_lookupat(nd, flags, &path);
3512 if (!error) {
3513 audit_inode(nd->name, path.dentry, 0);
3514 error = vfs_open(&path, file);
3515 path_put(&path);
3517 return error;
3520 static struct file *path_openat(struct nameidata *nd,
3521 const struct open_flags *op, unsigned flags)
3523 struct file *file;
3524 int error;
3526 file = alloc_empty_file(op->open_flag, current_cred());
3527 if (IS_ERR(file))
3528 return file;
3530 if (unlikely(file->f_flags & __O_TMPFILE)) {
3531 error = do_tmpfile(nd, flags, op, file);
3532 } else if (unlikely(file->f_flags & O_PATH)) {
3533 error = do_o_path(nd, flags, file);
3534 } else {
3535 const char *s = path_init(nd, flags);
3536 while (!(error = link_path_walk(s, nd)) &&
3537 (error = do_last(nd, file, op)) > 0) {
3538 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3539 s = trailing_symlink(nd);
3541 terminate_walk(nd);
3543 if (likely(!error)) {
3544 if (likely(file->f_mode & FMODE_OPENED))
3545 return file;
3546 WARN_ON(1);
3547 error = -EINVAL;
3549 fput(file);
3550 if (error == -EOPENSTALE) {
3551 if (flags & LOOKUP_RCU)
3552 error = -ECHILD;
3553 else
3554 error = -ESTALE;
3556 return ERR_PTR(error);
3559 struct file *do_filp_open(int dfd, struct filename *pathname,
3560 const struct open_flags *op)
3562 struct nameidata nd;
3563 int flags = op->lookup_flags;
3564 struct file *filp;
3566 set_nameidata(&nd, dfd, pathname);
3567 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3568 if (unlikely(filp == ERR_PTR(-ECHILD)))
3569 filp = path_openat(&nd, op, flags);
3570 if (unlikely(filp == ERR_PTR(-ESTALE)))
3571 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3572 restore_nameidata();
3573 return filp;
3576 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3577 const char *name, const struct open_flags *op)
3579 struct nameidata nd;
3580 struct file *file;
3581 struct filename *filename;
3582 int flags = op->lookup_flags | LOOKUP_ROOT;
3584 nd.root.mnt = mnt;
3585 nd.root.dentry = dentry;
3587 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3588 return ERR_PTR(-ELOOP);
3590 filename = getname_kernel(name);
3591 if (IS_ERR(filename))
3592 return ERR_CAST(filename);
3594 set_nameidata(&nd, -1, filename);
3595 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3596 if (unlikely(file == ERR_PTR(-ECHILD)))
3597 file = path_openat(&nd, op, flags);
3598 if (unlikely(file == ERR_PTR(-ESTALE)))
3599 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3600 restore_nameidata();
3601 putname(filename);
3602 return file;
3605 static struct dentry *filename_create(int dfd, struct filename *name,
3606 struct path *path, unsigned int lookup_flags)
3608 struct dentry *dentry = ERR_PTR(-EEXIST);
3609 struct qstr last;
3610 int type;
3611 int err2;
3612 int error;
3613 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3616 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3617 * other flags passed in are ignored!
3619 lookup_flags &= LOOKUP_REVAL;
3621 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3622 if (IS_ERR(name))
3623 return ERR_CAST(name);
3626 * Yucky last component or no last component at all?
3627 * (foo/., foo/.., /////)
3629 if (unlikely(type != LAST_NORM))
3630 goto out;
3632 /* don't fail immediately if it's r/o, at least try to report other errors */
3633 err2 = mnt_want_write(path->mnt);
3635 * Do the final lookup.
3637 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3638 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3639 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3640 if (IS_ERR(dentry))
3641 goto unlock;
3643 error = -EEXIST;
3644 if (d_is_positive(dentry))
3645 goto fail;
3648 * Special case - lookup gave negative, but... we had foo/bar/
3649 * From the vfs_mknod() POV we just have a negative dentry -
3650 * all is fine. Let's be bastards - you had / on the end, you've
3651 * been asking for (non-existent) directory. -ENOENT for you.
3653 if (unlikely(!is_dir && last.name[last.len])) {
3654 error = -ENOENT;
3655 goto fail;
3657 if (unlikely(err2)) {
3658 error = err2;
3659 goto fail;
3661 putname(name);
3662 return dentry;
3663 fail:
3664 dput(dentry);
3665 dentry = ERR_PTR(error);
3666 unlock:
3667 inode_unlock(path->dentry->d_inode);
3668 if (!err2)
3669 mnt_drop_write(path->mnt);
3670 out:
3671 path_put(path);
3672 putname(name);
3673 return dentry;
3676 struct dentry *kern_path_create(int dfd, const char *pathname,
3677 struct path *path, unsigned int lookup_flags)
3679 return filename_create(dfd, getname_kernel(pathname),
3680 path, lookup_flags);
3682 EXPORT_SYMBOL(kern_path_create);
3684 void done_path_create(struct path *path, struct dentry *dentry)
3686 dput(dentry);
3687 inode_unlock(path->dentry->d_inode);
3688 mnt_drop_write(path->mnt);
3689 path_put(path);
3691 EXPORT_SYMBOL(done_path_create);
3693 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3694 struct path *path, unsigned int lookup_flags)
3696 return filename_create(dfd, getname(pathname), path, lookup_flags);
3698 EXPORT_SYMBOL(user_path_create);
3700 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3702 int error = may_create(dir, dentry);
3704 if (error)
3705 return error;
3707 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3708 return -EPERM;
3710 if (!dir->i_op->mknod)
3711 return -EPERM;
3713 error = devcgroup_inode_mknod(mode, dev);
3714 if (error)
3715 return error;
3717 error = security_inode_mknod(dir, dentry, mode, dev);
3718 if (error)
3719 return error;
3721 error = dir->i_op->mknod(dir, dentry, mode, dev);
3722 if (!error)
3723 fsnotify_create(dir, dentry);
3724 return error;
3726 EXPORT_SYMBOL(vfs_mknod);
3728 static int may_mknod(umode_t mode)
3730 switch (mode & S_IFMT) {
3731 case S_IFREG:
3732 case S_IFCHR:
3733 case S_IFBLK:
3734 case S_IFIFO:
3735 case S_IFSOCK:
3736 case 0: /* zero mode translates to S_IFREG */
3737 return 0;
3738 case S_IFDIR:
3739 return -EPERM;
3740 default:
3741 return -EINVAL;
3745 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3746 unsigned int dev)
3748 struct dentry *dentry;
3749 struct path path;
3750 int error;
3751 unsigned int lookup_flags = 0;
3753 error = may_mknod(mode);
3754 if (error)
3755 return error;
3756 retry:
3757 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3758 if (IS_ERR(dentry))
3759 return PTR_ERR(dentry);
3761 if (!IS_POSIXACL(path.dentry->d_inode))
3762 mode &= ~current_umask();
3763 error = security_path_mknod(&path, dentry, mode, dev);
3764 if (error)
3765 goto out;
3766 switch (mode & S_IFMT) {
3767 case 0: case S_IFREG:
3768 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3769 if (!error)
3770 ima_post_path_mknod(dentry);
3771 break;
3772 case S_IFCHR: case S_IFBLK:
3773 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3774 new_decode_dev(dev));
3775 break;
3776 case S_IFIFO: case S_IFSOCK:
3777 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3778 break;
3780 out:
3781 done_path_create(&path, dentry);
3782 if (retry_estale(error, lookup_flags)) {
3783 lookup_flags |= LOOKUP_REVAL;
3784 goto retry;
3786 return error;
3789 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3790 unsigned int, dev)
3792 return do_mknodat(dfd, filename, mode, dev);
3795 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3797 return do_mknodat(AT_FDCWD, filename, mode, dev);
3800 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3802 int error = may_create(dir, dentry);
3803 unsigned max_links = dir->i_sb->s_max_links;
3805 if (error)
3806 return error;
3808 if (!dir->i_op->mkdir)
3809 return -EPERM;
3811 mode &= (S_IRWXUGO|S_ISVTX);
3812 error = security_inode_mkdir(dir, dentry, mode);
3813 if (error)
3814 return error;
3816 if (max_links && dir->i_nlink >= max_links)
3817 return -EMLINK;
3819 error = dir->i_op->mkdir(dir, dentry, mode);
3820 if (!error)
3821 fsnotify_mkdir(dir, dentry);
3822 return error;
3824 EXPORT_SYMBOL(vfs_mkdir);
3826 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3828 struct dentry *dentry;
3829 struct path path;
3830 int error;
3831 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3833 retry:
3834 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3835 if (IS_ERR(dentry))
3836 return PTR_ERR(dentry);
3838 if (!IS_POSIXACL(path.dentry->d_inode))
3839 mode &= ~current_umask();
3840 error = security_path_mkdir(&path, dentry, mode);
3841 if (!error)
3842 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3843 done_path_create(&path, dentry);
3844 if (retry_estale(error, lookup_flags)) {
3845 lookup_flags |= LOOKUP_REVAL;
3846 goto retry;
3848 return error;
3851 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3853 return do_mkdirat(dfd, pathname, mode);
3856 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3858 return do_mkdirat(AT_FDCWD, pathname, mode);
3861 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3863 int error = may_delete(dir, dentry, 1);
3865 if (error)
3866 return error;
3868 if (!dir->i_op->rmdir)
3869 return -EPERM;
3871 dget(dentry);
3872 inode_lock(dentry->d_inode);
3874 error = -EBUSY;
3875 if (is_local_mountpoint(dentry))
3876 goto out;
3878 error = security_inode_rmdir(dir, dentry);
3879 if (error)
3880 goto out;
3882 error = dir->i_op->rmdir(dir, dentry);
3883 if (error)
3884 goto out;
3886 shrink_dcache_parent(dentry);
3887 dentry->d_inode->i_flags |= S_DEAD;
3888 dont_mount(dentry);
3889 detach_mounts(dentry);
3891 out:
3892 inode_unlock(dentry->d_inode);
3893 dput(dentry);
3894 if (!error)
3895 d_delete(dentry);
3896 return error;
3898 EXPORT_SYMBOL(vfs_rmdir);
3900 long do_rmdir(int dfd, const char __user *pathname)
3902 int error = 0;
3903 struct filename *name;
3904 struct dentry *dentry;
3905 struct path path;
3906 struct qstr last;
3907 int type;
3908 unsigned int lookup_flags = 0;
3909 retry:
3910 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3911 &path, &last, &type);
3912 if (IS_ERR(name))
3913 return PTR_ERR(name);
3915 switch (type) {
3916 case LAST_DOTDOT:
3917 error = -ENOTEMPTY;
3918 goto exit1;
3919 case LAST_DOT:
3920 error = -EINVAL;
3921 goto exit1;
3922 case LAST_ROOT:
3923 error = -EBUSY;
3924 goto exit1;
3927 error = mnt_want_write(path.mnt);
3928 if (error)
3929 goto exit1;
3931 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3932 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3933 error = PTR_ERR(dentry);
3934 if (IS_ERR(dentry))
3935 goto exit2;
3936 if (!dentry->d_inode) {
3937 error = -ENOENT;
3938 goto exit3;
3940 error = security_path_rmdir(&path, dentry);
3941 if (error)
3942 goto exit3;
3943 error = vfs_rmdir(path.dentry->d_inode, dentry);
3944 exit3:
3945 dput(dentry);
3946 exit2:
3947 inode_unlock(path.dentry->d_inode);
3948 mnt_drop_write(path.mnt);
3949 exit1:
3950 path_put(&path);
3951 putname(name);
3952 if (retry_estale(error, lookup_flags)) {
3953 lookup_flags |= LOOKUP_REVAL;
3954 goto retry;
3956 return error;
3959 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3961 return do_rmdir(AT_FDCWD, pathname);
3965 * vfs_unlink - unlink a filesystem object
3966 * @dir: parent directory
3967 * @dentry: victim
3968 * @delegated_inode: returns victim inode, if the inode is delegated.
3970 * The caller must hold dir->i_mutex.
3972 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3973 * return a reference to the inode in delegated_inode. The caller
3974 * should then break the delegation on that inode and retry. Because
3975 * breaking a delegation may take a long time, the caller should drop
3976 * dir->i_mutex before doing so.
3978 * Alternatively, a caller may pass NULL for delegated_inode. This may
3979 * be appropriate for callers that expect the underlying filesystem not
3980 * to be NFS exported.
3982 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3984 struct inode *target = dentry->d_inode;
3985 int error = may_delete(dir, dentry, 0);
3987 if (error)
3988 return error;
3990 if (!dir->i_op->unlink)
3991 return -EPERM;
3993 inode_lock(target);
3994 if (is_local_mountpoint(dentry))
3995 error = -EBUSY;
3996 else {
3997 error = security_inode_unlink(dir, dentry);
3998 if (!error) {
3999 error = try_break_deleg(target, delegated_inode);
4000 if (error)
4001 goto out;
4002 error = dir->i_op->unlink(dir, dentry);
4003 if (!error) {
4004 dont_mount(dentry);
4005 detach_mounts(dentry);
4009 out:
4010 inode_unlock(target);
4012 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4013 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4014 fsnotify_link_count(target);
4015 d_delete(dentry);
4018 return error;
4020 EXPORT_SYMBOL(vfs_unlink);
4023 * Make sure that the actual truncation of the file will occur outside its
4024 * directory's i_mutex. Truncate can take a long time if there is a lot of
4025 * writeout happening, and we don't want to prevent access to the directory
4026 * while waiting on the I/O.
4028 long do_unlinkat(int dfd, struct filename *name)
4030 int error;
4031 struct dentry *dentry;
4032 struct path path;
4033 struct qstr last;
4034 int type;
4035 struct inode *inode = NULL;
4036 struct inode *delegated_inode = NULL;
4037 unsigned int lookup_flags = 0;
4038 retry:
4039 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4040 if (IS_ERR(name))
4041 return PTR_ERR(name);
4043 error = -EISDIR;
4044 if (type != LAST_NORM)
4045 goto exit1;
4047 error = mnt_want_write(path.mnt);
4048 if (error)
4049 goto exit1;
4050 retry_deleg:
4051 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4052 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4053 error = PTR_ERR(dentry);
4054 if (!IS_ERR(dentry)) {
4055 /* Why not before? Because we want correct error value */
4056 if (last.name[last.len])
4057 goto slashes;
4058 inode = dentry->d_inode;
4059 if (d_is_negative(dentry))
4060 goto slashes;
4061 ihold(inode);
4062 error = security_path_unlink(&path, dentry);
4063 if (error)
4064 goto exit2;
4065 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4066 exit2:
4067 dput(dentry);
4069 inode_unlock(path.dentry->d_inode);
4070 if (inode)
4071 iput(inode); /* truncate the inode here */
4072 inode = NULL;
4073 if (delegated_inode) {
4074 error = break_deleg_wait(&delegated_inode);
4075 if (!error)
4076 goto retry_deleg;
4078 mnt_drop_write(path.mnt);
4079 exit1:
4080 path_put(&path);
4081 if (retry_estale(error, lookup_flags)) {
4082 lookup_flags |= LOOKUP_REVAL;
4083 inode = NULL;
4084 goto retry;
4086 putname(name);
4087 return error;
4089 slashes:
4090 if (d_is_negative(dentry))
4091 error = -ENOENT;
4092 else if (d_is_dir(dentry))
4093 error = -EISDIR;
4094 else
4095 error = -ENOTDIR;
4096 goto exit2;
4099 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4101 if ((flag & ~AT_REMOVEDIR) != 0)
4102 return -EINVAL;
4104 if (flag & AT_REMOVEDIR)
4105 return do_rmdir(dfd, pathname);
4107 return do_unlinkat(dfd, getname(pathname));
4110 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4112 return do_unlinkat(AT_FDCWD, getname(pathname));
4115 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4117 int error = may_create(dir, dentry);
4119 if (error)
4120 return error;
4122 if (!dir->i_op->symlink)
4123 return -EPERM;
4125 error = security_inode_symlink(dir, dentry, oldname);
4126 if (error)
4127 return error;
4129 error = dir->i_op->symlink(dir, dentry, oldname);
4130 if (!error)
4131 fsnotify_create(dir, dentry);
4132 return error;
4134 EXPORT_SYMBOL(vfs_symlink);
4136 long do_symlinkat(const char __user *oldname, int newdfd,
4137 const char __user *newname)
4139 int error;
4140 struct filename *from;
4141 struct dentry *dentry;
4142 struct path path;
4143 unsigned int lookup_flags = 0;
4145 from = getname(oldname);
4146 if (IS_ERR(from))
4147 return PTR_ERR(from);
4148 retry:
4149 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4150 error = PTR_ERR(dentry);
4151 if (IS_ERR(dentry))
4152 goto out_putname;
4154 error = security_path_symlink(&path, dentry, from->name);
4155 if (!error)
4156 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4157 done_path_create(&path, dentry);
4158 if (retry_estale(error, lookup_flags)) {
4159 lookup_flags |= LOOKUP_REVAL;
4160 goto retry;
4162 out_putname:
4163 putname(from);
4164 return error;
4167 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4168 int, newdfd, const char __user *, newname)
4170 return do_symlinkat(oldname, newdfd, newname);
4173 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4175 return do_symlinkat(oldname, AT_FDCWD, newname);
4179 * vfs_link - create a new link
4180 * @old_dentry: object to be linked
4181 * @dir: new parent
4182 * @new_dentry: where to create the new link
4183 * @delegated_inode: returns inode needing a delegation break
4185 * The caller must hold dir->i_mutex
4187 * If vfs_link discovers a delegation on the to-be-linked file in need
4188 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4189 * inode in delegated_inode. The caller should then break the delegation
4190 * and retry. Because breaking a delegation may take a long time, the
4191 * caller should drop the i_mutex before doing so.
4193 * Alternatively, a caller may pass NULL for delegated_inode. This may
4194 * be appropriate for callers that expect the underlying filesystem not
4195 * to be NFS exported.
4197 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4199 struct inode *inode = old_dentry->d_inode;
4200 unsigned max_links = dir->i_sb->s_max_links;
4201 int error;
4203 if (!inode)
4204 return -ENOENT;
4206 error = may_create(dir, new_dentry);
4207 if (error)
4208 return error;
4210 if (dir->i_sb != inode->i_sb)
4211 return -EXDEV;
4214 * A link to an append-only or immutable file cannot be created.
4216 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4217 return -EPERM;
4219 * Updating the link count will likely cause i_uid and i_gid to
4220 * be writen back improperly if their true value is unknown to
4221 * the vfs.
4223 if (HAS_UNMAPPED_ID(inode))
4224 return -EPERM;
4225 if (!dir->i_op->link)
4226 return -EPERM;
4227 if (S_ISDIR(inode->i_mode))
4228 return -EPERM;
4230 error = security_inode_link(old_dentry, dir, new_dentry);
4231 if (error)
4232 return error;
4234 inode_lock(inode);
4235 /* Make sure we don't allow creating hardlink to an unlinked file */
4236 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4237 error = -ENOENT;
4238 else if (max_links && inode->i_nlink >= max_links)
4239 error = -EMLINK;
4240 else {
4241 error = try_break_deleg(inode, delegated_inode);
4242 if (!error)
4243 error = dir->i_op->link(old_dentry, dir, new_dentry);
4246 if (!error && (inode->i_state & I_LINKABLE)) {
4247 spin_lock(&inode->i_lock);
4248 inode->i_state &= ~I_LINKABLE;
4249 spin_unlock(&inode->i_lock);
4251 inode_unlock(inode);
4252 if (!error)
4253 fsnotify_link(dir, inode, new_dentry);
4254 return error;
4256 EXPORT_SYMBOL(vfs_link);
4259 * Hardlinks are often used in delicate situations. We avoid
4260 * security-related surprises by not following symlinks on the
4261 * newname. --KAB
4263 * We don't follow them on the oldname either to be compatible
4264 * with linux 2.0, and to avoid hard-linking to directories
4265 * and other special files. --ADM
4267 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4268 const char __user *newname, int flags)
4270 struct dentry *new_dentry;
4271 struct path old_path, new_path;
4272 struct inode *delegated_inode = NULL;
4273 int how = 0;
4274 int error;
4276 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4277 return -EINVAL;
4279 * To use null names we require CAP_DAC_READ_SEARCH
4280 * This ensures that not everyone will be able to create
4281 * handlink using the passed filedescriptor.
4283 if (flags & AT_EMPTY_PATH) {
4284 if (!capable(CAP_DAC_READ_SEARCH))
4285 return -ENOENT;
4286 how = LOOKUP_EMPTY;
4289 if (flags & AT_SYMLINK_FOLLOW)
4290 how |= LOOKUP_FOLLOW;
4291 retry:
4292 error = user_path_at(olddfd, oldname, how, &old_path);
4293 if (error)
4294 return error;
4296 new_dentry = user_path_create(newdfd, newname, &new_path,
4297 (how & LOOKUP_REVAL));
4298 error = PTR_ERR(new_dentry);
4299 if (IS_ERR(new_dentry))
4300 goto out;
4302 error = -EXDEV;
4303 if (old_path.mnt != new_path.mnt)
4304 goto out_dput;
4305 error = may_linkat(&old_path);
4306 if (unlikely(error))
4307 goto out_dput;
4308 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4309 if (error)
4310 goto out_dput;
4311 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4312 out_dput:
4313 done_path_create(&new_path, new_dentry);
4314 if (delegated_inode) {
4315 error = break_deleg_wait(&delegated_inode);
4316 if (!error) {
4317 path_put(&old_path);
4318 goto retry;
4321 if (retry_estale(error, how)) {
4322 path_put(&old_path);
4323 how |= LOOKUP_REVAL;
4324 goto retry;
4326 out:
4327 path_put(&old_path);
4329 return error;
4332 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4333 int, newdfd, const char __user *, newname, int, flags)
4335 return do_linkat(olddfd, oldname, newdfd, newname, flags);
4338 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4340 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4344 * vfs_rename - rename a filesystem object
4345 * @old_dir: parent of source
4346 * @old_dentry: source
4347 * @new_dir: parent of destination
4348 * @new_dentry: destination
4349 * @delegated_inode: returns an inode needing a delegation break
4350 * @flags: rename flags
4352 * The caller must hold multiple mutexes--see lock_rename()).
4354 * If vfs_rename discovers a delegation in need of breaking at either
4355 * the source or destination, it will return -EWOULDBLOCK and return a
4356 * reference to the inode in delegated_inode. The caller should then
4357 * break the delegation and retry. Because breaking a delegation may
4358 * take a long time, the caller should drop all locks before doing
4359 * so.
4361 * Alternatively, a caller may pass NULL for delegated_inode. This may
4362 * be appropriate for callers that expect the underlying filesystem not
4363 * to be NFS exported.
4365 * The worst of all namespace operations - renaming directory. "Perverted"
4366 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4367 * Problems:
4369 * a) we can get into loop creation.
4370 * b) race potential - two innocent renames can create a loop together.
4371 * That's where 4.4 screws up. Current fix: serialization on
4372 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4373 * story.
4374 * c) we have to lock _four_ objects - parents and victim (if it exists),
4375 * and source (if it is not a directory).
4376 * And that - after we got ->i_mutex on parents (until then we don't know
4377 * whether the target exists). Solution: try to be smart with locking
4378 * order for inodes. We rely on the fact that tree topology may change
4379 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4380 * move will be locked. Thus we can rank directories by the tree
4381 * (ancestors first) and rank all non-directories after them.
4382 * That works since everybody except rename does "lock parent, lookup,
4383 * lock child" and rename is under ->s_vfs_rename_mutex.
4384 * HOWEVER, it relies on the assumption that any object with ->lookup()
4385 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4386 * we'd better make sure that there's no link(2) for them.
4387 * d) conversion from fhandle to dentry may come in the wrong moment - when
4388 * we are removing the target. Solution: we will have to grab ->i_mutex
4389 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4390 * ->i_mutex on parents, which works but leads to some truly excessive
4391 * locking].
4393 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4394 struct inode *new_dir, struct dentry *new_dentry,
4395 struct inode **delegated_inode, unsigned int flags)
4397 int error;
4398 bool is_dir = d_is_dir(old_dentry);
4399 struct inode *source = old_dentry->d_inode;
4400 struct inode *target = new_dentry->d_inode;
4401 bool new_is_dir = false;
4402 unsigned max_links = new_dir->i_sb->s_max_links;
4403 struct name_snapshot old_name;
4405 if (source == target)
4406 return 0;
4408 error = may_delete(old_dir, old_dentry, is_dir);
4409 if (error)
4410 return error;
4412 if (!target) {
4413 error = may_create(new_dir, new_dentry);
4414 } else {
4415 new_is_dir = d_is_dir(new_dentry);
4417 if (!(flags & RENAME_EXCHANGE))
4418 error = may_delete(new_dir, new_dentry, is_dir);
4419 else
4420 error = may_delete(new_dir, new_dentry, new_is_dir);
4422 if (error)
4423 return error;
4425 if (!old_dir->i_op->rename)
4426 return -EPERM;
4429 * If we are going to change the parent - check write permissions,
4430 * we'll need to flip '..'.
4432 if (new_dir != old_dir) {
4433 if (is_dir) {
4434 error = inode_permission(source, MAY_WRITE);
4435 if (error)
4436 return error;
4438 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4439 error = inode_permission(target, MAY_WRITE);
4440 if (error)
4441 return error;
4445 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4446 flags);
4447 if (error)
4448 return error;
4450 take_dentry_name_snapshot(&old_name, old_dentry);
4451 dget(new_dentry);
4452 if (!is_dir || (flags & RENAME_EXCHANGE))
4453 lock_two_nondirectories(source, target);
4454 else if (target)
4455 inode_lock(target);
4457 error = -EBUSY;
4458 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4459 goto out;
4461 if (max_links && new_dir != old_dir) {
4462 error = -EMLINK;
4463 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4464 goto out;
4465 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4466 old_dir->i_nlink >= max_links)
4467 goto out;
4469 if (!is_dir) {
4470 error = try_break_deleg(source, delegated_inode);
4471 if (error)
4472 goto out;
4474 if (target && !new_is_dir) {
4475 error = try_break_deleg(target, delegated_inode);
4476 if (error)
4477 goto out;
4479 error = old_dir->i_op->rename(old_dir, old_dentry,
4480 new_dir, new_dentry, flags);
4481 if (error)
4482 goto out;
4484 if (!(flags & RENAME_EXCHANGE) && target) {
4485 if (is_dir) {
4486 shrink_dcache_parent(new_dentry);
4487 target->i_flags |= S_DEAD;
4489 dont_mount(new_dentry);
4490 detach_mounts(new_dentry);
4492 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4493 if (!(flags & RENAME_EXCHANGE))
4494 d_move(old_dentry, new_dentry);
4495 else
4496 d_exchange(old_dentry, new_dentry);
4498 out:
4499 if (!is_dir || (flags & RENAME_EXCHANGE))
4500 unlock_two_nondirectories(source, target);
4501 else if (target)
4502 inode_unlock(target);
4503 dput(new_dentry);
4504 if (!error) {
4505 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4506 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4507 if (flags & RENAME_EXCHANGE) {
4508 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4509 new_is_dir, NULL, new_dentry);
4512 release_dentry_name_snapshot(&old_name);
4514 return error;
4516 EXPORT_SYMBOL(vfs_rename);
4518 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4519 const char __user *newname, unsigned int flags)
4521 struct dentry *old_dentry, *new_dentry;
4522 struct dentry *trap;
4523 struct path old_path, new_path;
4524 struct qstr old_last, new_last;
4525 int old_type, new_type;
4526 struct inode *delegated_inode = NULL;
4527 struct filename *from;
4528 struct filename *to;
4529 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4530 bool should_retry = false;
4531 int error;
4533 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4534 return -EINVAL;
4536 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4537 (flags & RENAME_EXCHANGE))
4538 return -EINVAL;
4540 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4541 return -EPERM;
4543 if (flags & RENAME_EXCHANGE)
4544 target_flags = 0;
4546 retry:
4547 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4548 &old_path, &old_last, &old_type);
4549 if (IS_ERR(from)) {
4550 error = PTR_ERR(from);
4551 goto exit;
4554 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4555 &new_path, &new_last, &new_type);
4556 if (IS_ERR(to)) {
4557 error = PTR_ERR(to);
4558 goto exit1;
4561 error = -EXDEV;
4562 if (old_path.mnt != new_path.mnt)
4563 goto exit2;
4565 error = -EBUSY;
4566 if (old_type != LAST_NORM)
4567 goto exit2;
4569 if (flags & RENAME_NOREPLACE)
4570 error = -EEXIST;
4571 if (new_type != LAST_NORM)
4572 goto exit2;
4574 error = mnt_want_write(old_path.mnt);
4575 if (error)
4576 goto exit2;
4578 retry_deleg:
4579 trap = lock_rename(new_path.dentry, old_path.dentry);
4581 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4582 error = PTR_ERR(old_dentry);
4583 if (IS_ERR(old_dentry))
4584 goto exit3;
4585 /* source must exist */
4586 error = -ENOENT;
4587 if (d_is_negative(old_dentry))
4588 goto exit4;
4589 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4590 error = PTR_ERR(new_dentry);
4591 if (IS_ERR(new_dentry))
4592 goto exit4;
4593 error = -EEXIST;
4594 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4595 goto exit5;
4596 if (flags & RENAME_EXCHANGE) {
4597 error = -ENOENT;
4598 if (d_is_negative(new_dentry))
4599 goto exit5;
4601 if (!d_is_dir(new_dentry)) {
4602 error = -ENOTDIR;
4603 if (new_last.name[new_last.len])
4604 goto exit5;
4607 /* unless the source is a directory trailing slashes give -ENOTDIR */
4608 if (!d_is_dir(old_dentry)) {
4609 error = -ENOTDIR;
4610 if (old_last.name[old_last.len])
4611 goto exit5;
4612 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4613 goto exit5;
4615 /* source should not be ancestor of target */
4616 error = -EINVAL;
4617 if (old_dentry == trap)
4618 goto exit5;
4619 /* target should not be an ancestor of source */
4620 if (!(flags & RENAME_EXCHANGE))
4621 error = -ENOTEMPTY;
4622 if (new_dentry == trap)
4623 goto exit5;
4625 error = security_path_rename(&old_path, old_dentry,
4626 &new_path, new_dentry, flags);
4627 if (error)
4628 goto exit5;
4629 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4630 new_path.dentry->d_inode, new_dentry,
4631 &delegated_inode, flags);
4632 exit5:
4633 dput(new_dentry);
4634 exit4:
4635 dput(old_dentry);
4636 exit3:
4637 unlock_rename(new_path.dentry, old_path.dentry);
4638 if (delegated_inode) {
4639 error = break_deleg_wait(&delegated_inode);
4640 if (!error)
4641 goto retry_deleg;
4643 mnt_drop_write(old_path.mnt);
4644 exit2:
4645 if (retry_estale(error, lookup_flags))
4646 should_retry = true;
4647 path_put(&new_path);
4648 putname(to);
4649 exit1:
4650 path_put(&old_path);
4651 putname(from);
4652 if (should_retry) {
4653 should_retry = false;
4654 lookup_flags |= LOOKUP_REVAL;
4655 goto retry;
4657 exit:
4658 return error;
4661 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4662 int, newdfd, const char __user *, newname, unsigned int, flags)
4664 return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4667 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4668 int, newdfd, const char __user *, newname)
4670 return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4673 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4675 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4678 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4680 int error = may_create(dir, dentry);
4681 if (error)
4682 return error;
4684 if (!dir->i_op->mknod)
4685 return -EPERM;
4687 return dir->i_op->mknod(dir, dentry,
4688 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4690 EXPORT_SYMBOL(vfs_whiteout);
4692 int readlink_copy(char __user *buffer, int buflen, const char *link)
4694 int len = PTR_ERR(link);
4695 if (IS_ERR(link))
4696 goto out;
4698 len = strlen(link);
4699 if (len > (unsigned) buflen)
4700 len = buflen;
4701 if (copy_to_user(buffer, link, len))
4702 len = -EFAULT;
4703 out:
4704 return len;
4708 * vfs_readlink - copy symlink body into userspace buffer
4709 * @dentry: dentry on which to get symbolic link
4710 * @buffer: user memory pointer
4711 * @buflen: size of buffer
4713 * Does not touch atime. That's up to the caller if necessary
4715 * Does not call security hook.
4717 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4719 struct inode *inode = d_inode(dentry);
4720 DEFINE_DELAYED_CALL(done);
4721 const char *link;
4722 int res;
4724 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4725 if (unlikely(inode->i_op->readlink))
4726 return inode->i_op->readlink(dentry, buffer, buflen);
4728 if (!d_is_symlink(dentry))
4729 return -EINVAL;
4731 spin_lock(&inode->i_lock);
4732 inode->i_opflags |= IOP_DEFAULT_READLINK;
4733 spin_unlock(&inode->i_lock);
4736 link = inode->i_link;
4737 if (!link) {
4738 link = inode->i_op->get_link(dentry, inode, &done);
4739 if (IS_ERR(link))
4740 return PTR_ERR(link);
4742 res = readlink_copy(buffer, buflen, link);
4743 do_delayed_call(&done);
4744 return res;
4746 EXPORT_SYMBOL(vfs_readlink);
4749 * vfs_get_link - get symlink body
4750 * @dentry: dentry on which to get symbolic link
4751 * @done: caller needs to free returned data with this
4753 * Calls security hook and i_op->get_link() on the supplied inode.
4755 * It does not touch atime. That's up to the caller if necessary.
4757 * Does not work on "special" symlinks like /proc/$$/fd/N
4759 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4761 const char *res = ERR_PTR(-EINVAL);
4762 struct inode *inode = d_inode(dentry);
4764 if (d_is_symlink(dentry)) {
4765 res = ERR_PTR(security_inode_readlink(dentry));
4766 if (!res)
4767 res = inode->i_op->get_link(dentry, inode, done);
4769 return res;
4771 EXPORT_SYMBOL(vfs_get_link);
4773 /* get the link contents into pagecache */
4774 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4775 struct delayed_call *callback)
4777 char *kaddr;
4778 struct page *page;
4779 struct address_space *mapping = inode->i_mapping;
4781 if (!dentry) {
4782 page = find_get_page(mapping, 0);
4783 if (!page)
4784 return ERR_PTR(-ECHILD);
4785 if (!PageUptodate(page)) {
4786 put_page(page);
4787 return ERR_PTR(-ECHILD);
4789 } else {
4790 page = read_mapping_page(mapping, 0, NULL);
4791 if (IS_ERR(page))
4792 return (char*)page;
4794 set_delayed_call(callback, page_put_link, page);
4795 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4796 kaddr = page_address(page);
4797 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4798 return kaddr;
4801 EXPORT_SYMBOL(page_get_link);
4803 void page_put_link(void *arg)
4805 put_page(arg);
4807 EXPORT_SYMBOL(page_put_link);
4809 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4811 DEFINE_DELAYED_CALL(done);
4812 int res = readlink_copy(buffer, buflen,
4813 page_get_link(dentry, d_inode(dentry),
4814 &done));
4815 do_delayed_call(&done);
4816 return res;
4818 EXPORT_SYMBOL(page_readlink);
4821 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4823 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4825 struct address_space *mapping = inode->i_mapping;
4826 struct page *page;
4827 void *fsdata;
4828 int err;
4829 unsigned int flags = 0;
4830 if (nofs)
4831 flags |= AOP_FLAG_NOFS;
4833 retry:
4834 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4835 flags, &page, &fsdata);
4836 if (err)
4837 goto fail;
4839 memcpy(page_address(page), symname, len-1);
4841 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4842 page, fsdata);
4843 if (err < 0)
4844 goto fail;
4845 if (err < len-1)
4846 goto retry;
4848 mark_inode_dirty(inode);
4849 return 0;
4850 fail:
4851 return err;
4853 EXPORT_SYMBOL(__page_symlink);
4855 int page_symlink(struct inode *inode, const char *symname, int len)
4857 return __page_symlink(inode, symname, len,
4858 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4860 EXPORT_SYMBOL(page_symlink);
4862 const struct inode_operations page_symlink_inode_operations = {
4863 .get_link = page_get_link,
4865 EXPORT_SYMBOL(page_symlink_inode_operations);