drm/imx: only send event on crtc disable if kept disabled
[linux/fpc-iii.git] / tools / perf / builtin-timechart.c
blob775b99833e513541bc7e64909b77e8fb448450b0
1 /*
2 * builtin-timechart.c - make an svg timechart of system activity
4 * (C) Copyright 2009 Intel Corporation
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
15 #include <errno.h>
16 #include <inttypes.h>
17 #include <traceevent/event-parse.h>
19 #include "builtin.h"
21 #include "util/util.h"
23 #include "util/color.h"
24 #include <linux/list.h>
25 #include "util/cache.h"
26 #include "util/evlist.h"
27 #include "util/evsel.h"
28 #include <linux/kernel.h>
29 #include <linux/rbtree.h>
30 #include <linux/time64.h>
31 #include "util/symbol.h"
32 #include "util/thread.h"
33 #include "util/callchain.h"
35 #include "perf.h"
36 #include "util/header.h"
37 #include <subcmd/parse-options.h>
38 #include "util/parse-events.h"
39 #include "util/event.h"
40 #include "util/session.h"
41 #include "util/svghelper.h"
42 #include "util/tool.h"
43 #include "util/data.h"
44 #include "util/debug.h"
46 #ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
47 FILE *open_memstream(char **ptr, size_t *sizeloc);
48 #endif
50 #define SUPPORT_OLD_POWER_EVENTS 1
51 #define PWR_EVENT_EXIT -1
53 struct per_pid;
54 struct power_event;
55 struct wake_event;
57 struct timechart {
58 struct perf_tool tool;
59 struct per_pid *all_data;
60 struct power_event *power_events;
61 struct wake_event *wake_events;
62 int proc_num;
63 unsigned int numcpus;
64 u64 min_freq, /* Lowest CPU frequency seen */
65 max_freq, /* Highest CPU frequency seen */
66 turbo_frequency,
67 first_time, last_time;
68 bool power_only,
69 tasks_only,
70 with_backtrace,
71 topology;
72 bool force;
73 /* IO related settings */
74 bool io_only,
75 skip_eagain;
76 u64 io_events;
77 u64 min_time,
78 merge_dist;
81 struct per_pidcomm;
82 struct cpu_sample;
83 struct io_sample;
86 * Datastructure layout:
87 * We keep an list of "pid"s, matching the kernels notion of a task struct.
88 * Each "pid" entry, has a list of "comm"s.
89 * this is because we want to track different programs different, while
90 * exec will reuse the original pid (by design).
91 * Each comm has a list of samples that will be used to draw
92 * final graph.
95 struct per_pid {
96 struct per_pid *next;
98 int pid;
99 int ppid;
101 u64 start_time;
102 u64 end_time;
103 u64 total_time;
104 u64 total_bytes;
105 int display;
107 struct per_pidcomm *all;
108 struct per_pidcomm *current;
112 struct per_pidcomm {
113 struct per_pidcomm *next;
115 u64 start_time;
116 u64 end_time;
117 u64 total_time;
118 u64 max_bytes;
119 u64 total_bytes;
121 int Y;
122 int display;
124 long state;
125 u64 state_since;
127 char *comm;
129 struct cpu_sample *samples;
130 struct io_sample *io_samples;
133 struct sample_wrapper {
134 struct sample_wrapper *next;
136 u64 timestamp;
137 unsigned char data[0];
140 #define TYPE_NONE 0
141 #define TYPE_RUNNING 1
142 #define TYPE_WAITING 2
143 #define TYPE_BLOCKED 3
145 struct cpu_sample {
146 struct cpu_sample *next;
148 u64 start_time;
149 u64 end_time;
150 int type;
151 int cpu;
152 const char *backtrace;
155 enum {
156 IOTYPE_READ,
157 IOTYPE_WRITE,
158 IOTYPE_SYNC,
159 IOTYPE_TX,
160 IOTYPE_RX,
161 IOTYPE_POLL,
164 struct io_sample {
165 struct io_sample *next;
167 u64 start_time;
168 u64 end_time;
169 u64 bytes;
170 int type;
171 int fd;
172 int err;
173 int merges;
176 #define CSTATE 1
177 #define PSTATE 2
179 struct power_event {
180 struct power_event *next;
181 int type;
182 int state;
183 u64 start_time;
184 u64 end_time;
185 int cpu;
188 struct wake_event {
189 struct wake_event *next;
190 int waker;
191 int wakee;
192 u64 time;
193 const char *backtrace;
196 struct process_filter {
197 char *name;
198 int pid;
199 struct process_filter *next;
202 static struct process_filter *process_filter;
205 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
207 struct per_pid *cursor = tchart->all_data;
209 while (cursor) {
210 if (cursor->pid == pid)
211 return cursor;
212 cursor = cursor->next;
214 cursor = zalloc(sizeof(*cursor));
215 assert(cursor != NULL);
216 cursor->pid = pid;
217 cursor->next = tchart->all_data;
218 tchart->all_data = cursor;
219 return cursor;
222 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
224 struct per_pid *p;
225 struct per_pidcomm *c;
226 p = find_create_pid(tchart, pid);
227 c = p->all;
228 while (c) {
229 if (c->comm && strcmp(c->comm, comm) == 0) {
230 p->current = c;
231 return;
233 if (!c->comm) {
234 c->comm = strdup(comm);
235 p->current = c;
236 return;
238 c = c->next;
240 c = zalloc(sizeof(*c));
241 assert(c != NULL);
242 c->comm = strdup(comm);
243 p->current = c;
244 c->next = p->all;
245 p->all = c;
248 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
250 struct per_pid *p, *pp;
251 p = find_create_pid(tchart, pid);
252 pp = find_create_pid(tchart, ppid);
253 p->ppid = ppid;
254 if (pp->current && pp->current->comm && !p->current)
255 pid_set_comm(tchart, pid, pp->current->comm);
257 p->start_time = timestamp;
258 if (p->current && !p->current->start_time) {
259 p->current->start_time = timestamp;
260 p->current->state_since = timestamp;
264 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
266 struct per_pid *p;
267 p = find_create_pid(tchart, pid);
268 p->end_time = timestamp;
269 if (p->current)
270 p->current->end_time = timestamp;
273 static void pid_put_sample(struct timechart *tchart, int pid, int type,
274 unsigned int cpu, u64 start, u64 end,
275 const char *backtrace)
277 struct per_pid *p;
278 struct per_pidcomm *c;
279 struct cpu_sample *sample;
281 p = find_create_pid(tchart, pid);
282 c = p->current;
283 if (!c) {
284 c = zalloc(sizeof(*c));
285 assert(c != NULL);
286 p->current = c;
287 c->next = p->all;
288 p->all = c;
291 sample = zalloc(sizeof(*sample));
292 assert(sample != NULL);
293 sample->start_time = start;
294 sample->end_time = end;
295 sample->type = type;
296 sample->next = c->samples;
297 sample->cpu = cpu;
298 sample->backtrace = backtrace;
299 c->samples = sample;
301 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
302 c->total_time += (end-start);
303 p->total_time += (end-start);
306 if (c->start_time == 0 || c->start_time > start)
307 c->start_time = start;
308 if (p->start_time == 0 || p->start_time > start)
309 p->start_time = start;
312 #define MAX_CPUS 4096
314 static u64 cpus_cstate_start_times[MAX_CPUS];
315 static int cpus_cstate_state[MAX_CPUS];
316 static u64 cpus_pstate_start_times[MAX_CPUS];
317 static u64 cpus_pstate_state[MAX_CPUS];
319 static int process_comm_event(struct perf_tool *tool,
320 union perf_event *event,
321 struct perf_sample *sample __maybe_unused,
322 struct machine *machine __maybe_unused)
324 struct timechart *tchart = container_of(tool, struct timechart, tool);
325 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
326 return 0;
329 static int process_fork_event(struct perf_tool *tool,
330 union perf_event *event,
331 struct perf_sample *sample __maybe_unused,
332 struct machine *machine __maybe_unused)
334 struct timechart *tchart = container_of(tool, struct timechart, tool);
335 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
336 return 0;
339 static int process_exit_event(struct perf_tool *tool,
340 union perf_event *event,
341 struct perf_sample *sample __maybe_unused,
342 struct machine *machine __maybe_unused)
344 struct timechart *tchart = container_of(tool, struct timechart, tool);
345 pid_exit(tchart, event->fork.pid, event->fork.time);
346 return 0;
349 #ifdef SUPPORT_OLD_POWER_EVENTS
350 static int use_old_power_events;
351 #endif
353 static void c_state_start(int cpu, u64 timestamp, int state)
355 cpus_cstate_start_times[cpu] = timestamp;
356 cpus_cstate_state[cpu] = state;
359 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
361 struct power_event *pwr = zalloc(sizeof(*pwr));
363 if (!pwr)
364 return;
366 pwr->state = cpus_cstate_state[cpu];
367 pwr->start_time = cpus_cstate_start_times[cpu];
368 pwr->end_time = timestamp;
369 pwr->cpu = cpu;
370 pwr->type = CSTATE;
371 pwr->next = tchart->power_events;
373 tchart->power_events = pwr;
376 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
378 struct power_event *pwr;
380 if (new_freq > 8000000) /* detect invalid data */
381 return;
383 pwr = zalloc(sizeof(*pwr));
384 if (!pwr)
385 return;
387 pwr->state = cpus_pstate_state[cpu];
388 pwr->start_time = cpus_pstate_start_times[cpu];
389 pwr->end_time = timestamp;
390 pwr->cpu = cpu;
391 pwr->type = PSTATE;
392 pwr->next = tchart->power_events;
394 if (!pwr->start_time)
395 pwr->start_time = tchart->first_time;
397 tchart->power_events = pwr;
399 cpus_pstate_state[cpu] = new_freq;
400 cpus_pstate_start_times[cpu] = timestamp;
402 if ((u64)new_freq > tchart->max_freq)
403 tchart->max_freq = new_freq;
405 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
406 tchart->min_freq = new_freq;
408 if (new_freq == tchart->max_freq - 1000)
409 tchart->turbo_frequency = tchart->max_freq;
412 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
413 int waker, int wakee, u8 flags, const char *backtrace)
415 struct per_pid *p;
416 struct wake_event *we = zalloc(sizeof(*we));
418 if (!we)
419 return;
421 we->time = timestamp;
422 we->waker = waker;
423 we->backtrace = backtrace;
425 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
426 we->waker = -1;
428 we->wakee = wakee;
429 we->next = tchart->wake_events;
430 tchart->wake_events = we;
431 p = find_create_pid(tchart, we->wakee);
433 if (p && p->current && p->current->state == TYPE_NONE) {
434 p->current->state_since = timestamp;
435 p->current->state = TYPE_WAITING;
437 if (p && p->current && p->current->state == TYPE_BLOCKED) {
438 pid_put_sample(tchart, p->pid, p->current->state, cpu,
439 p->current->state_since, timestamp, NULL);
440 p->current->state_since = timestamp;
441 p->current->state = TYPE_WAITING;
445 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
446 int prev_pid, int next_pid, u64 prev_state,
447 const char *backtrace)
449 struct per_pid *p = NULL, *prev_p;
451 prev_p = find_create_pid(tchart, prev_pid);
453 p = find_create_pid(tchart, next_pid);
455 if (prev_p->current && prev_p->current->state != TYPE_NONE)
456 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
457 prev_p->current->state_since, timestamp,
458 backtrace);
459 if (p && p->current) {
460 if (p->current->state != TYPE_NONE)
461 pid_put_sample(tchart, next_pid, p->current->state, cpu,
462 p->current->state_since, timestamp,
463 backtrace);
465 p->current->state_since = timestamp;
466 p->current->state = TYPE_RUNNING;
469 if (prev_p->current) {
470 prev_p->current->state = TYPE_NONE;
471 prev_p->current->state_since = timestamp;
472 if (prev_state & 2)
473 prev_p->current->state = TYPE_BLOCKED;
474 if (prev_state == 0)
475 prev_p->current->state = TYPE_WAITING;
479 static const char *cat_backtrace(union perf_event *event,
480 struct perf_sample *sample,
481 struct machine *machine)
483 struct addr_location al;
484 unsigned int i;
485 char *p = NULL;
486 size_t p_len;
487 u8 cpumode = PERF_RECORD_MISC_USER;
488 struct addr_location tal;
489 struct ip_callchain *chain = sample->callchain;
490 FILE *f = open_memstream(&p, &p_len);
492 if (!f) {
493 perror("open_memstream error");
494 return NULL;
497 if (!chain)
498 goto exit;
500 if (machine__resolve(machine, &al, sample) < 0) {
501 fprintf(stderr, "problem processing %d event, skipping it.\n",
502 event->header.type);
503 goto exit;
506 for (i = 0; i < chain->nr; i++) {
507 u64 ip;
509 if (callchain_param.order == ORDER_CALLEE)
510 ip = chain->ips[i];
511 else
512 ip = chain->ips[chain->nr - i - 1];
514 if (ip >= PERF_CONTEXT_MAX) {
515 switch (ip) {
516 case PERF_CONTEXT_HV:
517 cpumode = PERF_RECORD_MISC_HYPERVISOR;
518 break;
519 case PERF_CONTEXT_KERNEL:
520 cpumode = PERF_RECORD_MISC_KERNEL;
521 break;
522 case PERF_CONTEXT_USER:
523 cpumode = PERF_RECORD_MISC_USER;
524 break;
525 default:
526 pr_debug("invalid callchain context: "
527 "%"PRId64"\n", (s64) ip);
530 * It seems the callchain is corrupted.
531 * Discard all.
533 zfree(&p);
534 goto exit_put;
536 continue;
539 tal.filtered = 0;
540 if (thread__find_symbol(al.thread, cpumode, ip, &tal))
541 fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
542 else
543 fprintf(f, "..... %016" PRIx64 "\n", ip);
545 exit_put:
546 addr_location__put(&al);
547 exit:
548 fclose(f);
550 return p;
553 typedef int (*tracepoint_handler)(struct timechart *tchart,
554 struct perf_evsel *evsel,
555 struct perf_sample *sample,
556 const char *backtrace);
558 static int process_sample_event(struct perf_tool *tool,
559 union perf_event *event,
560 struct perf_sample *sample,
561 struct perf_evsel *evsel,
562 struct machine *machine)
564 struct timechart *tchart = container_of(tool, struct timechart, tool);
566 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
567 if (!tchart->first_time || tchart->first_time > sample->time)
568 tchart->first_time = sample->time;
569 if (tchart->last_time < sample->time)
570 tchart->last_time = sample->time;
573 if (evsel->handler != NULL) {
574 tracepoint_handler f = evsel->handler;
575 return f(tchart, evsel, sample,
576 cat_backtrace(event, sample, machine));
579 return 0;
582 static int
583 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
584 struct perf_evsel *evsel,
585 struct perf_sample *sample,
586 const char *backtrace __maybe_unused)
588 u32 state = perf_evsel__intval(evsel, sample, "state");
589 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
591 if (state == (u32)PWR_EVENT_EXIT)
592 c_state_end(tchart, cpu_id, sample->time);
593 else
594 c_state_start(cpu_id, sample->time, state);
595 return 0;
598 static int
599 process_sample_cpu_frequency(struct timechart *tchart,
600 struct perf_evsel *evsel,
601 struct perf_sample *sample,
602 const char *backtrace __maybe_unused)
604 u32 state = perf_evsel__intval(evsel, sample, "state");
605 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
607 p_state_change(tchart, cpu_id, sample->time, state);
608 return 0;
611 static int
612 process_sample_sched_wakeup(struct timechart *tchart,
613 struct perf_evsel *evsel,
614 struct perf_sample *sample,
615 const char *backtrace)
617 u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
618 int waker = perf_evsel__intval(evsel, sample, "common_pid");
619 int wakee = perf_evsel__intval(evsel, sample, "pid");
621 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
622 return 0;
625 static int
626 process_sample_sched_switch(struct timechart *tchart,
627 struct perf_evsel *evsel,
628 struct perf_sample *sample,
629 const char *backtrace)
631 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
632 int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
633 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
635 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
636 prev_state, backtrace);
637 return 0;
640 #ifdef SUPPORT_OLD_POWER_EVENTS
641 static int
642 process_sample_power_start(struct timechart *tchart __maybe_unused,
643 struct perf_evsel *evsel,
644 struct perf_sample *sample,
645 const char *backtrace __maybe_unused)
647 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
648 u64 value = perf_evsel__intval(evsel, sample, "value");
650 c_state_start(cpu_id, sample->time, value);
651 return 0;
654 static int
655 process_sample_power_end(struct timechart *tchart,
656 struct perf_evsel *evsel __maybe_unused,
657 struct perf_sample *sample,
658 const char *backtrace __maybe_unused)
660 c_state_end(tchart, sample->cpu, sample->time);
661 return 0;
664 static int
665 process_sample_power_frequency(struct timechart *tchart,
666 struct perf_evsel *evsel,
667 struct perf_sample *sample,
668 const char *backtrace __maybe_unused)
670 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
671 u64 value = perf_evsel__intval(evsel, sample, "value");
673 p_state_change(tchart, cpu_id, sample->time, value);
674 return 0;
676 #endif /* SUPPORT_OLD_POWER_EVENTS */
679 * After the last sample we need to wrap up the current C/P state
680 * and close out each CPU for these.
682 static void end_sample_processing(struct timechart *tchart)
684 u64 cpu;
685 struct power_event *pwr;
687 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
688 /* C state */
689 #if 0
690 pwr = zalloc(sizeof(*pwr));
691 if (!pwr)
692 return;
694 pwr->state = cpus_cstate_state[cpu];
695 pwr->start_time = cpus_cstate_start_times[cpu];
696 pwr->end_time = tchart->last_time;
697 pwr->cpu = cpu;
698 pwr->type = CSTATE;
699 pwr->next = tchart->power_events;
701 tchart->power_events = pwr;
702 #endif
703 /* P state */
705 pwr = zalloc(sizeof(*pwr));
706 if (!pwr)
707 return;
709 pwr->state = cpus_pstate_state[cpu];
710 pwr->start_time = cpus_pstate_start_times[cpu];
711 pwr->end_time = tchart->last_time;
712 pwr->cpu = cpu;
713 pwr->type = PSTATE;
714 pwr->next = tchart->power_events;
716 if (!pwr->start_time)
717 pwr->start_time = tchart->first_time;
718 if (!pwr->state)
719 pwr->state = tchart->min_freq;
720 tchart->power_events = pwr;
724 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
725 u64 start, int fd)
727 struct per_pid *p = find_create_pid(tchart, pid);
728 struct per_pidcomm *c = p->current;
729 struct io_sample *sample;
730 struct io_sample *prev;
732 if (!c) {
733 c = zalloc(sizeof(*c));
734 if (!c)
735 return -ENOMEM;
736 p->current = c;
737 c->next = p->all;
738 p->all = c;
741 prev = c->io_samples;
743 if (prev && prev->start_time && !prev->end_time) {
744 pr_warning("Skip invalid start event: "
745 "previous event already started!\n");
747 /* remove previous event that has been started,
748 * we are not sure we will ever get an end for it */
749 c->io_samples = prev->next;
750 free(prev);
751 return 0;
754 sample = zalloc(sizeof(*sample));
755 if (!sample)
756 return -ENOMEM;
757 sample->start_time = start;
758 sample->type = type;
759 sample->fd = fd;
760 sample->next = c->io_samples;
761 c->io_samples = sample;
763 if (c->start_time == 0 || c->start_time > start)
764 c->start_time = start;
766 return 0;
769 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
770 u64 end, long ret)
772 struct per_pid *p = find_create_pid(tchart, pid);
773 struct per_pidcomm *c = p->current;
774 struct io_sample *sample, *prev;
776 if (!c) {
777 pr_warning("Invalid pidcomm!\n");
778 return -1;
781 sample = c->io_samples;
783 if (!sample) /* skip partially captured events */
784 return 0;
786 if (sample->end_time) {
787 pr_warning("Skip invalid end event: "
788 "previous event already ended!\n");
789 return 0;
792 if (sample->type != type) {
793 pr_warning("Skip invalid end event: invalid event type!\n");
794 return 0;
797 sample->end_time = end;
798 prev = sample->next;
800 /* we want to be able to see small and fast transfers, so make them
801 * at least min_time long, but don't overlap them */
802 if (sample->end_time - sample->start_time < tchart->min_time)
803 sample->end_time = sample->start_time + tchart->min_time;
804 if (prev && sample->start_time < prev->end_time) {
805 if (prev->err) /* try to make errors more visible */
806 sample->start_time = prev->end_time;
807 else
808 prev->end_time = sample->start_time;
811 if (ret < 0) {
812 sample->err = ret;
813 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
814 type == IOTYPE_TX || type == IOTYPE_RX) {
816 if ((u64)ret > c->max_bytes)
817 c->max_bytes = ret;
819 c->total_bytes += ret;
820 p->total_bytes += ret;
821 sample->bytes = ret;
824 /* merge two requests to make svg smaller and render-friendly */
825 if (prev &&
826 prev->type == sample->type &&
827 prev->err == sample->err &&
828 prev->fd == sample->fd &&
829 prev->end_time + tchart->merge_dist >= sample->start_time) {
831 sample->bytes += prev->bytes;
832 sample->merges += prev->merges + 1;
834 sample->start_time = prev->start_time;
835 sample->next = prev->next;
836 free(prev);
838 if (!sample->err && sample->bytes > c->max_bytes)
839 c->max_bytes = sample->bytes;
842 tchart->io_events++;
844 return 0;
847 static int
848 process_enter_read(struct timechart *tchart,
849 struct perf_evsel *evsel,
850 struct perf_sample *sample)
852 long fd = perf_evsel__intval(evsel, sample, "fd");
853 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
854 sample->time, fd);
857 static int
858 process_exit_read(struct timechart *tchart,
859 struct perf_evsel *evsel,
860 struct perf_sample *sample)
862 long ret = perf_evsel__intval(evsel, sample, "ret");
863 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
864 sample->time, ret);
867 static int
868 process_enter_write(struct timechart *tchart,
869 struct perf_evsel *evsel,
870 struct perf_sample *sample)
872 long fd = perf_evsel__intval(evsel, sample, "fd");
873 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
874 sample->time, fd);
877 static int
878 process_exit_write(struct timechart *tchart,
879 struct perf_evsel *evsel,
880 struct perf_sample *sample)
882 long ret = perf_evsel__intval(evsel, sample, "ret");
883 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
884 sample->time, ret);
887 static int
888 process_enter_sync(struct timechart *tchart,
889 struct perf_evsel *evsel,
890 struct perf_sample *sample)
892 long fd = perf_evsel__intval(evsel, sample, "fd");
893 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
894 sample->time, fd);
897 static int
898 process_exit_sync(struct timechart *tchart,
899 struct perf_evsel *evsel,
900 struct perf_sample *sample)
902 long ret = perf_evsel__intval(evsel, sample, "ret");
903 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
904 sample->time, ret);
907 static int
908 process_enter_tx(struct timechart *tchart,
909 struct perf_evsel *evsel,
910 struct perf_sample *sample)
912 long fd = perf_evsel__intval(evsel, sample, "fd");
913 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
914 sample->time, fd);
917 static int
918 process_exit_tx(struct timechart *tchart,
919 struct perf_evsel *evsel,
920 struct perf_sample *sample)
922 long ret = perf_evsel__intval(evsel, sample, "ret");
923 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
924 sample->time, ret);
927 static int
928 process_enter_rx(struct timechart *tchart,
929 struct perf_evsel *evsel,
930 struct perf_sample *sample)
932 long fd = perf_evsel__intval(evsel, sample, "fd");
933 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
934 sample->time, fd);
937 static int
938 process_exit_rx(struct timechart *tchart,
939 struct perf_evsel *evsel,
940 struct perf_sample *sample)
942 long ret = perf_evsel__intval(evsel, sample, "ret");
943 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
944 sample->time, ret);
947 static int
948 process_enter_poll(struct timechart *tchart,
949 struct perf_evsel *evsel,
950 struct perf_sample *sample)
952 long fd = perf_evsel__intval(evsel, sample, "fd");
953 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
954 sample->time, fd);
957 static int
958 process_exit_poll(struct timechart *tchart,
959 struct perf_evsel *evsel,
960 struct perf_sample *sample)
962 long ret = perf_evsel__intval(evsel, sample, "ret");
963 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
964 sample->time, ret);
968 * Sort the pid datastructure
970 static void sort_pids(struct timechart *tchart)
972 struct per_pid *new_list, *p, *cursor, *prev;
973 /* sort by ppid first, then by pid, lowest to highest */
975 new_list = NULL;
977 while (tchart->all_data) {
978 p = tchart->all_data;
979 tchart->all_data = p->next;
980 p->next = NULL;
982 if (new_list == NULL) {
983 new_list = p;
984 p->next = NULL;
985 continue;
987 prev = NULL;
988 cursor = new_list;
989 while (cursor) {
990 if (cursor->ppid > p->ppid ||
991 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
992 /* must insert before */
993 if (prev) {
994 p->next = prev->next;
995 prev->next = p;
996 cursor = NULL;
997 continue;
998 } else {
999 p->next = new_list;
1000 new_list = p;
1001 cursor = NULL;
1002 continue;
1006 prev = cursor;
1007 cursor = cursor->next;
1008 if (!cursor)
1009 prev->next = p;
1012 tchart->all_data = new_list;
1016 static void draw_c_p_states(struct timechart *tchart)
1018 struct power_event *pwr;
1019 pwr = tchart->power_events;
1022 * two pass drawing so that the P state bars are on top of the C state blocks
1024 while (pwr) {
1025 if (pwr->type == CSTATE)
1026 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1027 pwr = pwr->next;
1030 pwr = tchart->power_events;
1031 while (pwr) {
1032 if (pwr->type == PSTATE) {
1033 if (!pwr->state)
1034 pwr->state = tchart->min_freq;
1035 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1037 pwr = pwr->next;
1041 static void draw_wakeups(struct timechart *tchart)
1043 struct wake_event *we;
1044 struct per_pid *p;
1045 struct per_pidcomm *c;
1047 we = tchart->wake_events;
1048 while (we) {
1049 int from = 0, to = 0;
1050 char *task_from = NULL, *task_to = NULL;
1052 /* locate the column of the waker and wakee */
1053 p = tchart->all_data;
1054 while (p) {
1055 if (p->pid == we->waker || p->pid == we->wakee) {
1056 c = p->all;
1057 while (c) {
1058 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1059 if (p->pid == we->waker && !from) {
1060 from = c->Y;
1061 task_from = strdup(c->comm);
1063 if (p->pid == we->wakee && !to) {
1064 to = c->Y;
1065 task_to = strdup(c->comm);
1068 c = c->next;
1070 c = p->all;
1071 while (c) {
1072 if (p->pid == we->waker && !from) {
1073 from = c->Y;
1074 task_from = strdup(c->comm);
1076 if (p->pid == we->wakee && !to) {
1077 to = c->Y;
1078 task_to = strdup(c->comm);
1080 c = c->next;
1083 p = p->next;
1086 if (!task_from) {
1087 task_from = malloc(40);
1088 sprintf(task_from, "[%i]", we->waker);
1090 if (!task_to) {
1091 task_to = malloc(40);
1092 sprintf(task_to, "[%i]", we->wakee);
1095 if (we->waker == -1)
1096 svg_interrupt(we->time, to, we->backtrace);
1097 else if (from && to && abs(from - to) == 1)
1098 svg_wakeline(we->time, from, to, we->backtrace);
1099 else
1100 svg_partial_wakeline(we->time, from, task_from, to,
1101 task_to, we->backtrace);
1102 we = we->next;
1104 free(task_from);
1105 free(task_to);
1109 static void draw_cpu_usage(struct timechart *tchart)
1111 struct per_pid *p;
1112 struct per_pidcomm *c;
1113 struct cpu_sample *sample;
1114 p = tchart->all_data;
1115 while (p) {
1116 c = p->all;
1117 while (c) {
1118 sample = c->samples;
1119 while (sample) {
1120 if (sample->type == TYPE_RUNNING) {
1121 svg_process(sample->cpu,
1122 sample->start_time,
1123 sample->end_time,
1124 p->pid,
1125 c->comm,
1126 sample->backtrace);
1129 sample = sample->next;
1131 c = c->next;
1133 p = p->next;
1137 static void draw_io_bars(struct timechart *tchart)
1139 const char *suf;
1140 double bytes;
1141 char comm[256];
1142 struct per_pid *p;
1143 struct per_pidcomm *c;
1144 struct io_sample *sample;
1145 int Y = 1;
1147 p = tchart->all_data;
1148 while (p) {
1149 c = p->all;
1150 while (c) {
1151 if (!c->display) {
1152 c->Y = 0;
1153 c = c->next;
1154 continue;
1157 svg_box(Y, c->start_time, c->end_time, "process3");
1158 sample = c->io_samples;
1159 for (sample = c->io_samples; sample; sample = sample->next) {
1160 double h = (double)sample->bytes / c->max_bytes;
1162 if (tchart->skip_eagain &&
1163 sample->err == -EAGAIN)
1164 continue;
1166 if (sample->err)
1167 h = 1;
1169 if (sample->type == IOTYPE_SYNC)
1170 svg_fbox(Y,
1171 sample->start_time,
1172 sample->end_time,
1174 sample->err ? "error" : "sync",
1175 sample->fd,
1176 sample->err,
1177 sample->merges);
1178 else if (sample->type == IOTYPE_POLL)
1179 svg_fbox(Y,
1180 sample->start_time,
1181 sample->end_time,
1183 sample->err ? "error" : "poll",
1184 sample->fd,
1185 sample->err,
1186 sample->merges);
1187 else if (sample->type == IOTYPE_READ)
1188 svg_ubox(Y,
1189 sample->start_time,
1190 sample->end_time,
1192 sample->err ? "error" : "disk",
1193 sample->fd,
1194 sample->err,
1195 sample->merges);
1196 else if (sample->type == IOTYPE_WRITE)
1197 svg_lbox(Y,
1198 sample->start_time,
1199 sample->end_time,
1201 sample->err ? "error" : "disk",
1202 sample->fd,
1203 sample->err,
1204 sample->merges);
1205 else if (sample->type == IOTYPE_RX)
1206 svg_ubox(Y,
1207 sample->start_time,
1208 sample->end_time,
1210 sample->err ? "error" : "net",
1211 sample->fd,
1212 sample->err,
1213 sample->merges);
1214 else if (sample->type == IOTYPE_TX)
1215 svg_lbox(Y,
1216 sample->start_time,
1217 sample->end_time,
1219 sample->err ? "error" : "net",
1220 sample->fd,
1221 sample->err,
1222 sample->merges);
1225 suf = "";
1226 bytes = c->total_bytes;
1227 if (bytes > 1024) {
1228 bytes = bytes / 1024;
1229 suf = "K";
1231 if (bytes > 1024) {
1232 bytes = bytes / 1024;
1233 suf = "M";
1235 if (bytes > 1024) {
1236 bytes = bytes / 1024;
1237 suf = "G";
1241 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1242 svg_text(Y, c->start_time, comm);
1244 c->Y = Y;
1245 Y++;
1246 c = c->next;
1248 p = p->next;
1252 static void draw_process_bars(struct timechart *tchart)
1254 struct per_pid *p;
1255 struct per_pidcomm *c;
1256 struct cpu_sample *sample;
1257 int Y = 0;
1259 Y = 2 * tchart->numcpus + 2;
1261 p = tchart->all_data;
1262 while (p) {
1263 c = p->all;
1264 while (c) {
1265 if (!c->display) {
1266 c->Y = 0;
1267 c = c->next;
1268 continue;
1271 svg_box(Y, c->start_time, c->end_time, "process");
1272 sample = c->samples;
1273 while (sample) {
1274 if (sample->type == TYPE_RUNNING)
1275 svg_running(Y, sample->cpu,
1276 sample->start_time,
1277 sample->end_time,
1278 sample->backtrace);
1279 if (sample->type == TYPE_BLOCKED)
1280 svg_blocked(Y, sample->cpu,
1281 sample->start_time,
1282 sample->end_time,
1283 sample->backtrace);
1284 if (sample->type == TYPE_WAITING)
1285 svg_waiting(Y, sample->cpu,
1286 sample->start_time,
1287 sample->end_time,
1288 sample->backtrace);
1289 sample = sample->next;
1292 if (c->comm) {
1293 char comm[256];
1294 if (c->total_time > 5000000000) /* 5 seconds */
1295 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1296 else
1297 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1299 svg_text(Y, c->start_time, comm);
1301 c->Y = Y;
1302 Y++;
1303 c = c->next;
1305 p = p->next;
1309 static void add_process_filter(const char *string)
1311 int pid = strtoull(string, NULL, 10);
1312 struct process_filter *filt = malloc(sizeof(*filt));
1314 if (!filt)
1315 return;
1317 filt->name = strdup(string);
1318 filt->pid = pid;
1319 filt->next = process_filter;
1321 process_filter = filt;
1324 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1326 struct process_filter *filt;
1327 if (!process_filter)
1328 return 1;
1330 filt = process_filter;
1331 while (filt) {
1332 if (filt->pid && p->pid == filt->pid)
1333 return 1;
1334 if (strcmp(filt->name, c->comm) == 0)
1335 return 1;
1336 filt = filt->next;
1338 return 0;
1341 static int determine_display_tasks_filtered(struct timechart *tchart)
1343 struct per_pid *p;
1344 struct per_pidcomm *c;
1345 int count = 0;
1347 p = tchart->all_data;
1348 while (p) {
1349 p->display = 0;
1350 if (p->start_time == 1)
1351 p->start_time = tchart->first_time;
1353 /* no exit marker, task kept running to the end */
1354 if (p->end_time == 0)
1355 p->end_time = tchart->last_time;
1357 c = p->all;
1359 while (c) {
1360 c->display = 0;
1362 if (c->start_time == 1)
1363 c->start_time = tchart->first_time;
1365 if (passes_filter(p, c)) {
1366 c->display = 1;
1367 p->display = 1;
1368 count++;
1371 if (c->end_time == 0)
1372 c->end_time = tchart->last_time;
1374 c = c->next;
1376 p = p->next;
1378 return count;
1381 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1383 struct per_pid *p;
1384 struct per_pidcomm *c;
1385 int count = 0;
1387 p = tchart->all_data;
1388 while (p) {
1389 p->display = 0;
1390 if (p->start_time == 1)
1391 p->start_time = tchart->first_time;
1393 /* no exit marker, task kept running to the end */
1394 if (p->end_time == 0)
1395 p->end_time = tchart->last_time;
1396 if (p->total_time >= threshold)
1397 p->display = 1;
1399 c = p->all;
1401 while (c) {
1402 c->display = 0;
1404 if (c->start_time == 1)
1405 c->start_time = tchart->first_time;
1407 if (c->total_time >= threshold) {
1408 c->display = 1;
1409 count++;
1412 if (c->end_time == 0)
1413 c->end_time = tchart->last_time;
1415 c = c->next;
1417 p = p->next;
1419 return count;
1422 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1424 struct per_pid *p;
1425 struct per_pidcomm *c;
1426 int count = 0;
1428 p = timechart->all_data;
1429 while (p) {
1430 /* no exit marker, task kept running to the end */
1431 if (p->end_time == 0)
1432 p->end_time = timechart->last_time;
1434 c = p->all;
1436 while (c) {
1437 c->display = 0;
1439 if (c->total_bytes >= threshold) {
1440 c->display = 1;
1441 count++;
1444 if (c->end_time == 0)
1445 c->end_time = timechart->last_time;
1447 c = c->next;
1449 p = p->next;
1451 return count;
1454 #define BYTES_THRESH (1 * 1024 * 1024)
1455 #define TIME_THRESH 10000000
1457 static void write_svg_file(struct timechart *tchart, const char *filename)
1459 u64 i;
1460 int count;
1461 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1463 if (tchart->power_only)
1464 tchart->proc_num = 0;
1466 /* We'd like to show at least proc_num tasks;
1467 * be less picky if we have fewer */
1468 do {
1469 if (process_filter)
1470 count = determine_display_tasks_filtered(tchart);
1471 else if (tchart->io_events)
1472 count = determine_display_io_tasks(tchart, thresh);
1473 else
1474 count = determine_display_tasks(tchart, thresh);
1475 thresh /= 10;
1476 } while (!process_filter && thresh && count < tchart->proc_num);
1478 if (!tchart->proc_num)
1479 count = 0;
1481 if (tchart->io_events) {
1482 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1484 svg_time_grid(0.5);
1485 svg_io_legenda();
1487 draw_io_bars(tchart);
1488 } else {
1489 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1491 svg_time_grid(0);
1493 svg_legenda();
1495 for (i = 0; i < tchart->numcpus; i++)
1496 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1498 draw_cpu_usage(tchart);
1499 if (tchart->proc_num)
1500 draw_process_bars(tchart);
1501 if (!tchart->tasks_only)
1502 draw_c_p_states(tchart);
1503 if (tchart->proc_num)
1504 draw_wakeups(tchart);
1507 svg_close();
1510 static int process_header(struct perf_file_section *section __maybe_unused,
1511 struct perf_header *ph,
1512 int feat,
1513 int fd __maybe_unused,
1514 void *data)
1516 struct timechart *tchart = data;
1518 switch (feat) {
1519 case HEADER_NRCPUS:
1520 tchart->numcpus = ph->env.nr_cpus_avail;
1521 break;
1523 case HEADER_CPU_TOPOLOGY:
1524 if (!tchart->topology)
1525 break;
1527 if (svg_build_topology_map(ph->env.sibling_cores,
1528 ph->env.nr_sibling_cores,
1529 ph->env.sibling_threads,
1530 ph->env.nr_sibling_threads))
1531 fprintf(stderr, "problem building topology\n");
1532 break;
1534 default:
1535 break;
1538 return 0;
1541 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1543 const struct perf_evsel_str_handler power_tracepoints[] = {
1544 { "power:cpu_idle", process_sample_cpu_idle },
1545 { "power:cpu_frequency", process_sample_cpu_frequency },
1546 { "sched:sched_wakeup", process_sample_sched_wakeup },
1547 { "sched:sched_switch", process_sample_sched_switch },
1548 #ifdef SUPPORT_OLD_POWER_EVENTS
1549 { "power:power_start", process_sample_power_start },
1550 { "power:power_end", process_sample_power_end },
1551 { "power:power_frequency", process_sample_power_frequency },
1552 #endif
1554 { "syscalls:sys_enter_read", process_enter_read },
1555 { "syscalls:sys_enter_pread64", process_enter_read },
1556 { "syscalls:sys_enter_readv", process_enter_read },
1557 { "syscalls:sys_enter_preadv", process_enter_read },
1558 { "syscalls:sys_enter_write", process_enter_write },
1559 { "syscalls:sys_enter_pwrite64", process_enter_write },
1560 { "syscalls:sys_enter_writev", process_enter_write },
1561 { "syscalls:sys_enter_pwritev", process_enter_write },
1562 { "syscalls:sys_enter_sync", process_enter_sync },
1563 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1564 { "syscalls:sys_enter_fsync", process_enter_sync },
1565 { "syscalls:sys_enter_msync", process_enter_sync },
1566 { "syscalls:sys_enter_recvfrom", process_enter_rx },
1567 { "syscalls:sys_enter_recvmmsg", process_enter_rx },
1568 { "syscalls:sys_enter_recvmsg", process_enter_rx },
1569 { "syscalls:sys_enter_sendto", process_enter_tx },
1570 { "syscalls:sys_enter_sendmsg", process_enter_tx },
1571 { "syscalls:sys_enter_sendmmsg", process_enter_tx },
1572 { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1573 { "syscalls:sys_enter_epoll_wait", process_enter_poll },
1574 { "syscalls:sys_enter_poll", process_enter_poll },
1575 { "syscalls:sys_enter_ppoll", process_enter_poll },
1576 { "syscalls:sys_enter_pselect6", process_enter_poll },
1577 { "syscalls:sys_enter_select", process_enter_poll },
1579 { "syscalls:sys_exit_read", process_exit_read },
1580 { "syscalls:sys_exit_pread64", process_exit_read },
1581 { "syscalls:sys_exit_readv", process_exit_read },
1582 { "syscalls:sys_exit_preadv", process_exit_read },
1583 { "syscalls:sys_exit_write", process_exit_write },
1584 { "syscalls:sys_exit_pwrite64", process_exit_write },
1585 { "syscalls:sys_exit_writev", process_exit_write },
1586 { "syscalls:sys_exit_pwritev", process_exit_write },
1587 { "syscalls:sys_exit_sync", process_exit_sync },
1588 { "syscalls:sys_exit_sync_file_range", process_exit_sync },
1589 { "syscalls:sys_exit_fsync", process_exit_sync },
1590 { "syscalls:sys_exit_msync", process_exit_sync },
1591 { "syscalls:sys_exit_recvfrom", process_exit_rx },
1592 { "syscalls:sys_exit_recvmmsg", process_exit_rx },
1593 { "syscalls:sys_exit_recvmsg", process_exit_rx },
1594 { "syscalls:sys_exit_sendto", process_exit_tx },
1595 { "syscalls:sys_exit_sendmsg", process_exit_tx },
1596 { "syscalls:sys_exit_sendmmsg", process_exit_tx },
1597 { "syscalls:sys_exit_epoll_pwait", process_exit_poll },
1598 { "syscalls:sys_exit_epoll_wait", process_exit_poll },
1599 { "syscalls:sys_exit_poll", process_exit_poll },
1600 { "syscalls:sys_exit_ppoll", process_exit_poll },
1601 { "syscalls:sys_exit_pselect6", process_exit_poll },
1602 { "syscalls:sys_exit_select", process_exit_poll },
1604 struct perf_data data = {
1605 .file = {
1606 .path = input_name,
1608 .mode = PERF_DATA_MODE_READ,
1609 .force = tchart->force,
1612 struct perf_session *session = perf_session__new(&data, false,
1613 &tchart->tool);
1614 int ret = -EINVAL;
1616 if (session == NULL)
1617 return -1;
1619 symbol__init(&session->header.env);
1621 (void)perf_header__process_sections(&session->header,
1622 perf_data__fd(session->data),
1623 tchart,
1624 process_header);
1626 if (!perf_session__has_traces(session, "timechart record"))
1627 goto out_delete;
1629 if (perf_session__set_tracepoints_handlers(session,
1630 power_tracepoints)) {
1631 pr_err("Initializing session tracepoint handlers failed\n");
1632 goto out_delete;
1635 ret = perf_session__process_events(session);
1636 if (ret)
1637 goto out_delete;
1639 end_sample_processing(tchart);
1641 sort_pids(tchart);
1643 write_svg_file(tchart, output_name);
1645 pr_info("Written %2.1f seconds of trace to %s.\n",
1646 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1647 out_delete:
1648 perf_session__delete(session);
1649 return ret;
1652 static int timechart__io_record(int argc, const char **argv)
1654 unsigned int rec_argc, i;
1655 const char **rec_argv;
1656 const char **p;
1657 char *filter = NULL;
1659 const char * const common_args[] = {
1660 "record", "-a", "-R", "-c", "1",
1662 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1664 const char * const disk_events[] = {
1665 "syscalls:sys_enter_read",
1666 "syscalls:sys_enter_pread64",
1667 "syscalls:sys_enter_readv",
1668 "syscalls:sys_enter_preadv",
1669 "syscalls:sys_enter_write",
1670 "syscalls:sys_enter_pwrite64",
1671 "syscalls:sys_enter_writev",
1672 "syscalls:sys_enter_pwritev",
1673 "syscalls:sys_enter_sync",
1674 "syscalls:sys_enter_sync_file_range",
1675 "syscalls:sys_enter_fsync",
1676 "syscalls:sys_enter_msync",
1678 "syscalls:sys_exit_read",
1679 "syscalls:sys_exit_pread64",
1680 "syscalls:sys_exit_readv",
1681 "syscalls:sys_exit_preadv",
1682 "syscalls:sys_exit_write",
1683 "syscalls:sys_exit_pwrite64",
1684 "syscalls:sys_exit_writev",
1685 "syscalls:sys_exit_pwritev",
1686 "syscalls:sys_exit_sync",
1687 "syscalls:sys_exit_sync_file_range",
1688 "syscalls:sys_exit_fsync",
1689 "syscalls:sys_exit_msync",
1691 unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1693 const char * const net_events[] = {
1694 "syscalls:sys_enter_recvfrom",
1695 "syscalls:sys_enter_recvmmsg",
1696 "syscalls:sys_enter_recvmsg",
1697 "syscalls:sys_enter_sendto",
1698 "syscalls:sys_enter_sendmsg",
1699 "syscalls:sys_enter_sendmmsg",
1701 "syscalls:sys_exit_recvfrom",
1702 "syscalls:sys_exit_recvmmsg",
1703 "syscalls:sys_exit_recvmsg",
1704 "syscalls:sys_exit_sendto",
1705 "syscalls:sys_exit_sendmsg",
1706 "syscalls:sys_exit_sendmmsg",
1708 unsigned int net_events_nr = ARRAY_SIZE(net_events);
1710 const char * const poll_events[] = {
1711 "syscalls:sys_enter_epoll_pwait",
1712 "syscalls:sys_enter_epoll_wait",
1713 "syscalls:sys_enter_poll",
1714 "syscalls:sys_enter_ppoll",
1715 "syscalls:sys_enter_pselect6",
1716 "syscalls:sys_enter_select",
1718 "syscalls:sys_exit_epoll_pwait",
1719 "syscalls:sys_exit_epoll_wait",
1720 "syscalls:sys_exit_poll",
1721 "syscalls:sys_exit_ppoll",
1722 "syscalls:sys_exit_pselect6",
1723 "syscalls:sys_exit_select",
1725 unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1727 rec_argc = common_args_nr +
1728 disk_events_nr * 4 +
1729 net_events_nr * 4 +
1730 poll_events_nr * 4 +
1731 argc;
1732 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1734 if (rec_argv == NULL)
1735 return -ENOMEM;
1737 if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1738 free(rec_argv);
1739 return -ENOMEM;
1742 p = rec_argv;
1743 for (i = 0; i < common_args_nr; i++)
1744 *p++ = strdup(common_args[i]);
1746 for (i = 0; i < disk_events_nr; i++) {
1747 if (!is_valid_tracepoint(disk_events[i])) {
1748 rec_argc -= 4;
1749 continue;
1752 *p++ = "-e";
1753 *p++ = strdup(disk_events[i]);
1754 *p++ = "--filter";
1755 *p++ = filter;
1757 for (i = 0; i < net_events_nr; i++) {
1758 if (!is_valid_tracepoint(net_events[i])) {
1759 rec_argc -= 4;
1760 continue;
1763 *p++ = "-e";
1764 *p++ = strdup(net_events[i]);
1765 *p++ = "--filter";
1766 *p++ = filter;
1768 for (i = 0; i < poll_events_nr; i++) {
1769 if (!is_valid_tracepoint(poll_events[i])) {
1770 rec_argc -= 4;
1771 continue;
1774 *p++ = "-e";
1775 *p++ = strdup(poll_events[i]);
1776 *p++ = "--filter";
1777 *p++ = filter;
1780 for (i = 0; i < (unsigned int)argc; i++)
1781 *p++ = argv[i];
1783 return cmd_record(rec_argc, rec_argv);
1787 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1789 unsigned int rec_argc, i, j;
1790 const char **rec_argv;
1791 const char **p;
1792 unsigned int record_elems;
1794 const char * const common_args[] = {
1795 "record", "-a", "-R", "-c", "1",
1797 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1799 const char * const backtrace_args[] = {
1800 "-g",
1802 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1804 const char * const power_args[] = {
1805 "-e", "power:cpu_frequency",
1806 "-e", "power:cpu_idle",
1808 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1810 const char * const old_power_args[] = {
1811 #ifdef SUPPORT_OLD_POWER_EVENTS
1812 "-e", "power:power_start",
1813 "-e", "power:power_end",
1814 "-e", "power:power_frequency",
1815 #endif
1817 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1819 const char * const tasks_args[] = {
1820 "-e", "sched:sched_wakeup",
1821 "-e", "sched:sched_switch",
1823 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1825 #ifdef SUPPORT_OLD_POWER_EVENTS
1826 if (!is_valid_tracepoint("power:cpu_idle") &&
1827 is_valid_tracepoint("power:power_start")) {
1828 use_old_power_events = 1;
1829 power_args_nr = 0;
1830 } else {
1831 old_power_args_nr = 0;
1833 #endif
1835 if (tchart->power_only)
1836 tasks_args_nr = 0;
1838 if (tchart->tasks_only) {
1839 power_args_nr = 0;
1840 old_power_args_nr = 0;
1843 if (!tchart->with_backtrace)
1844 backtrace_args_no = 0;
1846 record_elems = common_args_nr + tasks_args_nr +
1847 power_args_nr + old_power_args_nr + backtrace_args_no;
1849 rec_argc = record_elems + argc;
1850 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1852 if (rec_argv == NULL)
1853 return -ENOMEM;
1855 p = rec_argv;
1856 for (i = 0; i < common_args_nr; i++)
1857 *p++ = strdup(common_args[i]);
1859 for (i = 0; i < backtrace_args_no; i++)
1860 *p++ = strdup(backtrace_args[i]);
1862 for (i = 0; i < tasks_args_nr; i++)
1863 *p++ = strdup(tasks_args[i]);
1865 for (i = 0; i < power_args_nr; i++)
1866 *p++ = strdup(power_args[i]);
1868 for (i = 0; i < old_power_args_nr; i++)
1869 *p++ = strdup(old_power_args[i]);
1871 for (j = 0; j < (unsigned int)argc; j++)
1872 *p++ = argv[j];
1874 return cmd_record(rec_argc, rec_argv);
1877 static int
1878 parse_process(const struct option *opt __maybe_unused, const char *arg,
1879 int __maybe_unused unset)
1881 if (arg)
1882 add_process_filter(arg);
1883 return 0;
1886 static int
1887 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1888 int __maybe_unused unset)
1890 unsigned long duration = strtoul(arg, NULL, 0);
1892 if (svg_highlight || svg_highlight_name)
1893 return -1;
1895 if (duration)
1896 svg_highlight = duration;
1897 else
1898 svg_highlight_name = strdup(arg);
1900 return 0;
1903 static int
1904 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1906 char unit = 'n';
1907 u64 *value = opt->value;
1909 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1910 switch (unit) {
1911 case 'm':
1912 *value *= NSEC_PER_MSEC;
1913 break;
1914 case 'u':
1915 *value *= NSEC_PER_USEC;
1916 break;
1917 case 'n':
1918 break;
1919 default:
1920 return -1;
1924 return 0;
1927 int cmd_timechart(int argc, const char **argv)
1929 struct timechart tchart = {
1930 .tool = {
1931 .comm = process_comm_event,
1932 .fork = process_fork_event,
1933 .exit = process_exit_event,
1934 .sample = process_sample_event,
1935 .ordered_events = true,
1937 .proc_num = 15,
1938 .min_time = NSEC_PER_MSEC,
1939 .merge_dist = 1000,
1941 const char *output_name = "output.svg";
1942 const struct option timechart_common_options[] = {
1943 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1944 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1945 OPT_END()
1947 const struct option timechart_options[] = {
1948 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1949 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1950 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1951 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1952 "highlight tasks. Pass duration in ns or process name.",
1953 parse_highlight),
1954 OPT_CALLBACK('p', "process", NULL, "process",
1955 "process selector. Pass a pid or process name.",
1956 parse_process),
1957 OPT_CALLBACK(0, "symfs", NULL, "directory",
1958 "Look for files with symbols relative to this directory",
1959 symbol__config_symfs),
1960 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1961 "min. number of tasks to print"),
1962 OPT_BOOLEAN('t', "topology", &tchart.topology,
1963 "sort CPUs according to topology"),
1964 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1965 "skip EAGAIN errors"),
1966 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1967 "all IO faster than min-time will visually appear longer",
1968 parse_time),
1969 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1970 "merge events that are merge-dist us apart",
1971 parse_time),
1972 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1973 OPT_PARENT(timechart_common_options),
1975 const char * const timechart_subcommands[] = { "record", NULL };
1976 const char *timechart_usage[] = {
1977 "perf timechart [<options>] {record}",
1978 NULL
1980 const struct option timechart_record_options[] = {
1981 OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1982 "record only IO data"),
1983 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1984 OPT_PARENT(timechart_common_options),
1986 const char * const timechart_record_usage[] = {
1987 "perf timechart record [<options>]",
1988 NULL
1990 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1991 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1993 if (tchart.power_only && tchart.tasks_only) {
1994 pr_err("-P and -T options cannot be used at the same time.\n");
1995 return -1;
1998 if (argc && !strncmp(argv[0], "rec", 3)) {
1999 argc = parse_options(argc, argv, timechart_record_options,
2000 timechart_record_usage,
2001 PARSE_OPT_STOP_AT_NON_OPTION);
2003 if (tchart.power_only && tchart.tasks_only) {
2004 pr_err("-P and -T options cannot be used at the same time.\n");
2005 return -1;
2008 if (tchart.io_only)
2009 return timechart__io_record(argc, argv);
2010 else
2011 return timechart__record(&tchart, argc, argv);
2012 } else if (argc)
2013 usage_with_options(timechart_usage, timechart_options);
2015 setup_pager();
2017 return __cmd_timechart(&tchart, output_name);