Merge tag 'gcc-plugins-v4.12-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / mm / migrate.c
blob89a0a1707f4c67deb77dc466cb6f5c2ecfe19051
1 /*
2 * Memory Migration functionality - linux/mm/migrate.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/page_owner.h>
43 #include <linux/sched/mm.h>
45 #include <asm/tlbflush.h>
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/migrate.h>
50 #include "internal.h"
53 * migrate_prep() needs to be called before we start compiling a list of pages
54 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
55 * undesirable, use migrate_prep_local()
57 int migrate_prep(void)
60 * Clear the LRU lists so pages can be isolated.
61 * Note that pages may be moved off the LRU after we have
62 * drained them. Those pages will fail to migrate like other
63 * pages that may be busy.
65 lru_add_drain_all();
67 return 0;
70 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
71 int migrate_prep_local(void)
73 lru_add_drain();
75 return 0;
78 int isolate_movable_page(struct page *page, isolate_mode_t mode)
80 struct address_space *mapping;
83 * Avoid burning cycles with pages that are yet under __free_pages(),
84 * or just got freed under us.
86 * In case we 'win' a race for a movable page being freed under us and
87 * raise its refcount preventing __free_pages() from doing its job
88 * the put_page() at the end of this block will take care of
89 * release this page, thus avoiding a nasty leakage.
91 if (unlikely(!get_page_unless_zero(page)))
92 goto out;
95 * Check PageMovable before holding a PG_lock because page's owner
96 * assumes anybody doesn't touch PG_lock of newly allocated page
97 * so unconditionally grapping the lock ruins page's owner side.
99 if (unlikely(!__PageMovable(page)))
100 goto out_putpage;
102 * As movable pages are not isolated from LRU lists, concurrent
103 * compaction threads can race against page migration functions
104 * as well as race against the releasing a page.
106 * In order to avoid having an already isolated movable page
107 * being (wrongly) re-isolated while it is under migration,
108 * or to avoid attempting to isolate pages being released,
109 * lets be sure we have the page lock
110 * before proceeding with the movable page isolation steps.
112 if (unlikely(!trylock_page(page)))
113 goto out_putpage;
115 if (!PageMovable(page) || PageIsolated(page))
116 goto out_no_isolated;
118 mapping = page_mapping(page);
119 VM_BUG_ON_PAGE(!mapping, page);
121 if (!mapping->a_ops->isolate_page(page, mode))
122 goto out_no_isolated;
124 /* Driver shouldn't use PG_isolated bit of page->flags */
125 WARN_ON_ONCE(PageIsolated(page));
126 __SetPageIsolated(page);
127 unlock_page(page);
129 return 0;
131 out_no_isolated:
132 unlock_page(page);
133 out_putpage:
134 put_page(page);
135 out:
136 return -EBUSY;
139 /* It should be called on page which is PG_movable */
140 void putback_movable_page(struct page *page)
142 struct address_space *mapping;
144 VM_BUG_ON_PAGE(!PageLocked(page), page);
145 VM_BUG_ON_PAGE(!PageMovable(page), page);
146 VM_BUG_ON_PAGE(!PageIsolated(page), page);
148 mapping = page_mapping(page);
149 mapping->a_ops->putback_page(page);
150 __ClearPageIsolated(page);
154 * Put previously isolated pages back onto the appropriate lists
155 * from where they were once taken off for compaction/migration.
157 * This function shall be used whenever the isolated pageset has been
158 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
159 * and isolate_huge_page().
161 void putback_movable_pages(struct list_head *l)
163 struct page *page;
164 struct page *page2;
166 list_for_each_entry_safe(page, page2, l, lru) {
167 if (unlikely(PageHuge(page))) {
168 putback_active_hugepage(page);
169 continue;
171 list_del(&page->lru);
173 * We isolated non-lru movable page so here we can use
174 * __PageMovable because LRU page's mapping cannot have
175 * PAGE_MAPPING_MOVABLE.
177 if (unlikely(__PageMovable(page))) {
178 VM_BUG_ON_PAGE(!PageIsolated(page), page);
179 lock_page(page);
180 if (PageMovable(page))
181 putback_movable_page(page);
182 else
183 __ClearPageIsolated(page);
184 unlock_page(page);
185 put_page(page);
186 } else {
187 dec_node_page_state(page, NR_ISOLATED_ANON +
188 page_is_file_cache(page));
189 putback_lru_page(page);
195 * Restore a potential migration pte to a working pte entry
197 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
198 unsigned long addr, void *old)
200 struct page_vma_mapped_walk pvmw = {
201 .page = old,
202 .vma = vma,
203 .address = addr,
204 .flags = PVMW_SYNC | PVMW_MIGRATION,
206 struct page *new;
207 pte_t pte;
208 swp_entry_t entry;
210 VM_BUG_ON_PAGE(PageTail(page), page);
211 while (page_vma_mapped_walk(&pvmw)) {
212 if (PageKsm(page))
213 new = page;
214 else
215 new = page - pvmw.page->index +
216 linear_page_index(vma, pvmw.address);
218 get_page(new);
219 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
220 if (pte_swp_soft_dirty(*pvmw.pte))
221 pte = pte_mksoft_dirty(pte);
224 * Recheck VMA as permissions can change since migration started
226 entry = pte_to_swp_entry(*pvmw.pte);
227 if (is_write_migration_entry(entry))
228 pte = maybe_mkwrite(pte, vma);
230 #ifdef CONFIG_HUGETLB_PAGE
231 if (PageHuge(new)) {
232 pte = pte_mkhuge(pte);
233 pte = arch_make_huge_pte(pte, vma, new, 0);
235 #endif
236 flush_dcache_page(new);
237 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
239 if (PageHuge(new)) {
240 if (PageAnon(new))
241 hugepage_add_anon_rmap(new, vma, pvmw.address);
242 else
243 page_dup_rmap(new, true);
244 } else if (PageAnon(new))
245 page_add_anon_rmap(new, vma, pvmw.address, false);
246 else
247 page_add_file_rmap(new, false);
249 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
250 mlock_vma_page(new);
252 /* No need to invalidate - it was non-present before */
253 update_mmu_cache(vma, pvmw.address, pvmw.pte);
256 return true;
260 * Get rid of all migration entries and replace them by
261 * references to the indicated page.
263 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
265 struct rmap_walk_control rwc = {
266 .rmap_one = remove_migration_pte,
267 .arg = old,
270 if (locked)
271 rmap_walk_locked(new, &rwc);
272 else
273 rmap_walk(new, &rwc);
277 * Something used the pte of a page under migration. We need to
278 * get to the page and wait until migration is finished.
279 * When we return from this function the fault will be retried.
281 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
282 spinlock_t *ptl)
284 pte_t pte;
285 swp_entry_t entry;
286 struct page *page;
288 spin_lock(ptl);
289 pte = *ptep;
290 if (!is_swap_pte(pte))
291 goto out;
293 entry = pte_to_swp_entry(pte);
294 if (!is_migration_entry(entry))
295 goto out;
297 page = migration_entry_to_page(entry);
300 * Once radix-tree replacement of page migration started, page_count
301 * *must* be zero. And, we don't want to call wait_on_page_locked()
302 * against a page without get_page().
303 * So, we use get_page_unless_zero(), here. Even failed, page fault
304 * will occur again.
306 if (!get_page_unless_zero(page))
307 goto out;
308 pte_unmap_unlock(ptep, ptl);
309 wait_on_page_locked(page);
310 put_page(page);
311 return;
312 out:
313 pte_unmap_unlock(ptep, ptl);
316 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
317 unsigned long address)
319 spinlock_t *ptl = pte_lockptr(mm, pmd);
320 pte_t *ptep = pte_offset_map(pmd, address);
321 __migration_entry_wait(mm, ptep, ptl);
324 void migration_entry_wait_huge(struct vm_area_struct *vma,
325 struct mm_struct *mm, pte_t *pte)
327 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
328 __migration_entry_wait(mm, pte, ptl);
331 #ifdef CONFIG_BLOCK
332 /* Returns true if all buffers are successfully locked */
333 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
334 enum migrate_mode mode)
336 struct buffer_head *bh = head;
338 /* Simple case, sync compaction */
339 if (mode != MIGRATE_ASYNC) {
340 do {
341 get_bh(bh);
342 lock_buffer(bh);
343 bh = bh->b_this_page;
345 } while (bh != head);
347 return true;
350 /* async case, we cannot block on lock_buffer so use trylock_buffer */
351 do {
352 get_bh(bh);
353 if (!trylock_buffer(bh)) {
355 * We failed to lock the buffer and cannot stall in
356 * async migration. Release the taken locks
358 struct buffer_head *failed_bh = bh;
359 put_bh(failed_bh);
360 bh = head;
361 while (bh != failed_bh) {
362 unlock_buffer(bh);
363 put_bh(bh);
364 bh = bh->b_this_page;
366 return false;
369 bh = bh->b_this_page;
370 } while (bh != head);
371 return true;
373 #else
374 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
375 enum migrate_mode mode)
377 return true;
379 #endif /* CONFIG_BLOCK */
382 * Replace the page in the mapping.
384 * The number of remaining references must be:
385 * 1 for anonymous pages without a mapping
386 * 2 for pages with a mapping
387 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
389 int migrate_page_move_mapping(struct address_space *mapping,
390 struct page *newpage, struct page *page,
391 struct buffer_head *head, enum migrate_mode mode,
392 int extra_count)
394 struct zone *oldzone, *newzone;
395 int dirty;
396 int expected_count = 1 + extra_count;
397 void **pslot;
399 if (!mapping) {
400 /* Anonymous page without mapping */
401 if (page_count(page) != expected_count)
402 return -EAGAIN;
404 /* No turning back from here */
405 newpage->index = page->index;
406 newpage->mapping = page->mapping;
407 if (PageSwapBacked(page))
408 __SetPageSwapBacked(newpage);
410 return MIGRATEPAGE_SUCCESS;
413 oldzone = page_zone(page);
414 newzone = page_zone(newpage);
416 spin_lock_irq(&mapping->tree_lock);
418 pslot = radix_tree_lookup_slot(&mapping->page_tree,
419 page_index(page));
421 expected_count += 1 + page_has_private(page);
422 if (page_count(page) != expected_count ||
423 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
424 spin_unlock_irq(&mapping->tree_lock);
425 return -EAGAIN;
428 if (!page_ref_freeze(page, expected_count)) {
429 spin_unlock_irq(&mapping->tree_lock);
430 return -EAGAIN;
434 * In the async migration case of moving a page with buffers, lock the
435 * buffers using trylock before the mapping is moved. If the mapping
436 * was moved, we later failed to lock the buffers and could not move
437 * the mapping back due to an elevated page count, we would have to
438 * block waiting on other references to be dropped.
440 if (mode == MIGRATE_ASYNC && head &&
441 !buffer_migrate_lock_buffers(head, mode)) {
442 page_ref_unfreeze(page, expected_count);
443 spin_unlock_irq(&mapping->tree_lock);
444 return -EAGAIN;
448 * Now we know that no one else is looking at the page:
449 * no turning back from here.
451 newpage->index = page->index;
452 newpage->mapping = page->mapping;
453 get_page(newpage); /* add cache reference */
454 if (PageSwapBacked(page)) {
455 __SetPageSwapBacked(newpage);
456 if (PageSwapCache(page)) {
457 SetPageSwapCache(newpage);
458 set_page_private(newpage, page_private(page));
460 } else {
461 VM_BUG_ON_PAGE(PageSwapCache(page), page);
464 /* Move dirty while page refs frozen and newpage not yet exposed */
465 dirty = PageDirty(page);
466 if (dirty) {
467 ClearPageDirty(page);
468 SetPageDirty(newpage);
471 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
474 * Drop cache reference from old page by unfreezing
475 * to one less reference.
476 * We know this isn't the last reference.
478 page_ref_unfreeze(page, expected_count - 1);
480 spin_unlock(&mapping->tree_lock);
481 /* Leave irq disabled to prevent preemption while updating stats */
484 * If moved to a different zone then also account
485 * the page for that zone. Other VM counters will be
486 * taken care of when we establish references to the
487 * new page and drop references to the old page.
489 * Note that anonymous pages are accounted for
490 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
491 * are mapped to swap space.
493 if (newzone != oldzone) {
494 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
495 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
496 if (PageSwapBacked(page) && !PageSwapCache(page)) {
497 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
498 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
500 if (dirty && mapping_cap_account_dirty(mapping)) {
501 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
502 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
503 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
504 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
507 local_irq_enable();
509 return MIGRATEPAGE_SUCCESS;
511 EXPORT_SYMBOL(migrate_page_move_mapping);
514 * The expected number of remaining references is the same as that
515 * of migrate_page_move_mapping().
517 int migrate_huge_page_move_mapping(struct address_space *mapping,
518 struct page *newpage, struct page *page)
520 int expected_count;
521 void **pslot;
523 spin_lock_irq(&mapping->tree_lock);
525 pslot = radix_tree_lookup_slot(&mapping->page_tree,
526 page_index(page));
528 expected_count = 2 + page_has_private(page);
529 if (page_count(page) != expected_count ||
530 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
531 spin_unlock_irq(&mapping->tree_lock);
532 return -EAGAIN;
535 if (!page_ref_freeze(page, expected_count)) {
536 spin_unlock_irq(&mapping->tree_lock);
537 return -EAGAIN;
540 newpage->index = page->index;
541 newpage->mapping = page->mapping;
543 get_page(newpage);
545 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
547 page_ref_unfreeze(page, expected_count - 1);
549 spin_unlock_irq(&mapping->tree_lock);
551 return MIGRATEPAGE_SUCCESS;
555 * Gigantic pages are so large that we do not guarantee that page++ pointer
556 * arithmetic will work across the entire page. We need something more
557 * specialized.
559 static void __copy_gigantic_page(struct page *dst, struct page *src,
560 int nr_pages)
562 int i;
563 struct page *dst_base = dst;
564 struct page *src_base = src;
566 for (i = 0; i < nr_pages; ) {
567 cond_resched();
568 copy_highpage(dst, src);
570 i++;
571 dst = mem_map_next(dst, dst_base, i);
572 src = mem_map_next(src, src_base, i);
576 static void copy_huge_page(struct page *dst, struct page *src)
578 int i;
579 int nr_pages;
581 if (PageHuge(src)) {
582 /* hugetlbfs page */
583 struct hstate *h = page_hstate(src);
584 nr_pages = pages_per_huge_page(h);
586 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
587 __copy_gigantic_page(dst, src, nr_pages);
588 return;
590 } else {
591 /* thp page */
592 BUG_ON(!PageTransHuge(src));
593 nr_pages = hpage_nr_pages(src);
596 for (i = 0; i < nr_pages; i++) {
597 cond_resched();
598 copy_highpage(dst + i, src + i);
603 * Copy the page to its new location
605 void migrate_page_copy(struct page *newpage, struct page *page)
607 int cpupid;
609 if (PageHuge(page) || PageTransHuge(page))
610 copy_huge_page(newpage, page);
611 else
612 copy_highpage(newpage, page);
614 if (PageError(page))
615 SetPageError(newpage);
616 if (PageReferenced(page))
617 SetPageReferenced(newpage);
618 if (PageUptodate(page))
619 SetPageUptodate(newpage);
620 if (TestClearPageActive(page)) {
621 VM_BUG_ON_PAGE(PageUnevictable(page), page);
622 SetPageActive(newpage);
623 } else if (TestClearPageUnevictable(page))
624 SetPageUnevictable(newpage);
625 if (PageChecked(page))
626 SetPageChecked(newpage);
627 if (PageMappedToDisk(page))
628 SetPageMappedToDisk(newpage);
630 /* Move dirty on pages not done by migrate_page_move_mapping() */
631 if (PageDirty(page))
632 SetPageDirty(newpage);
634 if (page_is_young(page))
635 set_page_young(newpage);
636 if (page_is_idle(page))
637 set_page_idle(newpage);
640 * Copy NUMA information to the new page, to prevent over-eager
641 * future migrations of this same page.
643 cpupid = page_cpupid_xchg_last(page, -1);
644 page_cpupid_xchg_last(newpage, cpupid);
646 ksm_migrate_page(newpage, page);
648 * Please do not reorder this without considering how mm/ksm.c's
649 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
651 if (PageSwapCache(page))
652 ClearPageSwapCache(page);
653 ClearPagePrivate(page);
654 set_page_private(page, 0);
657 * If any waiters have accumulated on the new page then
658 * wake them up.
660 if (PageWriteback(newpage))
661 end_page_writeback(newpage);
663 copy_page_owner(page, newpage);
665 mem_cgroup_migrate(page, newpage);
667 EXPORT_SYMBOL(migrate_page_copy);
669 /************************************************************
670 * Migration functions
671 ***********************************************************/
674 * Common logic to directly migrate a single LRU page suitable for
675 * pages that do not use PagePrivate/PagePrivate2.
677 * Pages are locked upon entry and exit.
679 int migrate_page(struct address_space *mapping,
680 struct page *newpage, struct page *page,
681 enum migrate_mode mode)
683 int rc;
685 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
687 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
689 if (rc != MIGRATEPAGE_SUCCESS)
690 return rc;
692 migrate_page_copy(newpage, page);
693 return MIGRATEPAGE_SUCCESS;
695 EXPORT_SYMBOL(migrate_page);
697 #ifdef CONFIG_BLOCK
699 * Migration function for pages with buffers. This function can only be used
700 * if the underlying filesystem guarantees that no other references to "page"
701 * exist.
703 int buffer_migrate_page(struct address_space *mapping,
704 struct page *newpage, struct page *page, enum migrate_mode mode)
706 struct buffer_head *bh, *head;
707 int rc;
709 if (!page_has_buffers(page))
710 return migrate_page(mapping, newpage, page, mode);
712 head = page_buffers(page);
714 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
716 if (rc != MIGRATEPAGE_SUCCESS)
717 return rc;
720 * In the async case, migrate_page_move_mapping locked the buffers
721 * with an IRQ-safe spinlock held. In the sync case, the buffers
722 * need to be locked now
724 if (mode != MIGRATE_ASYNC)
725 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
727 ClearPagePrivate(page);
728 set_page_private(newpage, page_private(page));
729 set_page_private(page, 0);
730 put_page(page);
731 get_page(newpage);
733 bh = head;
734 do {
735 set_bh_page(bh, newpage, bh_offset(bh));
736 bh = bh->b_this_page;
738 } while (bh != head);
740 SetPagePrivate(newpage);
742 migrate_page_copy(newpage, page);
744 bh = head;
745 do {
746 unlock_buffer(bh);
747 put_bh(bh);
748 bh = bh->b_this_page;
750 } while (bh != head);
752 return MIGRATEPAGE_SUCCESS;
754 EXPORT_SYMBOL(buffer_migrate_page);
755 #endif
758 * Writeback a page to clean the dirty state
760 static int writeout(struct address_space *mapping, struct page *page)
762 struct writeback_control wbc = {
763 .sync_mode = WB_SYNC_NONE,
764 .nr_to_write = 1,
765 .range_start = 0,
766 .range_end = LLONG_MAX,
767 .for_reclaim = 1
769 int rc;
771 if (!mapping->a_ops->writepage)
772 /* No write method for the address space */
773 return -EINVAL;
775 if (!clear_page_dirty_for_io(page))
776 /* Someone else already triggered a write */
777 return -EAGAIN;
780 * A dirty page may imply that the underlying filesystem has
781 * the page on some queue. So the page must be clean for
782 * migration. Writeout may mean we loose the lock and the
783 * page state is no longer what we checked for earlier.
784 * At this point we know that the migration attempt cannot
785 * be successful.
787 remove_migration_ptes(page, page, false);
789 rc = mapping->a_ops->writepage(page, &wbc);
791 if (rc != AOP_WRITEPAGE_ACTIVATE)
792 /* unlocked. Relock */
793 lock_page(page);
795 return (rc < 0) ? -EIO : -EAGAIN;
799 * Default handling if a filesystem does not provide a migration function.
801 static int fallback_migrate_page(struct address_space *mapping,
802 struct page *newpage, struct page *page, enum migrate_mode mode)
804 if (PageDirty(page)) {
805 /* Only writeback pages in full synchronous migration */
806 if (mode != MIGRATE_SYNC)
807 return -EBUSY;
808 return writeout(mapping, page);
812 * Buffers may be managed in a filesystem specific way.
813 * We must have no buffers or drop them.
815 if (page_has_private(page) &&
816 !try_to_release_page(page, GFP_KERNEL))
817 return -EAGAIN;
819 return migrate_page(mapping, newpage, page, mode);
823 * Move a page to a newly allocated page
824 * The page is locked and all ptes have been successfully removed.
826 * The new page will have replaced the old page if this function
827 * is successful.
829 * Return value:
830 * < 0 - error code
831 * MIGRATEPAGE_SUCCESS - success
833 static int move_to_new_page(struct page *newpage, struct page *page,
834 enum migrate_mode mode)
836 struct address_space *mapping;
837 int rc = -EAGAIN;
838 bool is_lru = !__PageMovable(page);
840 VM_BUG_ON_PAGE(!PageLocked(page), page);
841 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
843 mapping = page_mapping(page);
845 if (likely(is_lru)) {
846 if (!mapping)
847 rc = migrate_page(mapping, newpage, page, mode);
848 else if (mapping->a_ops->migratepage)
850 * Most pages have a mapping and most filesystems
851 * provide a migratepage callback. Anonymous pages
852 * are part of swap space which also has its own
853 * migratepage callback. This is the most common path
854 * for page migration.
856 rc = mapping->a_ops->migratepage(mapping, newpage,
857 page, mode);
858 else
859 rc = fallback_migrate_page(mapping, newpage,
860 page, mode);
861 } else {
863 * In case of non-lru page, it could be released after
864 * isolation step. In that case, we shouldn't try migration.
866 VM_BUG_ON_PAGE(!PageIsolated(page), page);
867 if (!PageMovable(page)) {
868 rc = MIGRATEPAGE_SUCCESS;
869 __ClearPageIsolated(page);
870 goto out;
873 rc = mapping->a_ops->migratepage(mapping, newpage,
874 page, mode);
875 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
876 !PageIsolated(page));
880 * When successful, old pagecache page->mapping must be cleared before
881 * page is freed; but stats require that PageAnon be left as PageAnon.
883 if (rc == MIGRATEPAGE_SUCCESS) {
884 if (__PageMovable(page)) {
885 VM_BUG_ON_PAGE(!PageIsolated(page), page);
888 * We clear PG_movable under page_lock so any compactor
889 * cannot try to migrate this page.
891 __ClearPageIsolated(page);
895 * Anonymous and movable page->mapping will be cleard by
896 * free_pages_prepare so don't reset it here for keeping
897 * the type to work PageAnon, for example.
899 if (!PageMappingFlags(page))
900 page->mapping = NULL;
902 out:
903 return rc;
906 static int __unmap_and_move(struct page *page, struct page *newpage,
907 int force, enum migrate_mode mode)
909 int rc = -EAGAIN;
910 int page_was_mapped = 0;
911 struct anon_vma *anon_vma = NULL;
912 bool is_lru = !__PageMovable(page);
914 if (!trylock_page(page)) {
915 if (!force || mode == MIGRATE_ASYNC)
916 goto out;
919 * It's not safe for direct compaction to call lock_page.
920 * For example, during page readahead pages are added locked
921 * to the LRU. Later, when the IO completes the pages are
922 * marked uptodate and unlocked. However, the queueing
923 * could be merging multiple pages for one bio (e.g.
924 * mpage_readpages). If an allocation happens for the
925 * second or third page, the process can end up locking
926 * the same page twice and deadlocking. Rather than
927 * trying to be clever about what pages can be locked,
928 * avoid the use of lock_page for direct compaction
929 * altogether.
931 if (current->flags & PF_MEMALLOC)
932 goto out;
934 lock_page(page);
937 if (PageWriteback(page)) {
939 * Only in the case of a full synchronous migration is it
940 * necessary to wait for PageWriteback. In the async case,
941 * the retry loop is too short and in the sync-light case,
942 * the overhead of stalling is too much
944 if (mode != MIGRATE_SYNC) {
945 rc = -EBUSY;
946 goto out_unlock;
948 if (!force)
949 goto out_unlock;
950 wait_on_page_writeback(page);
954 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
955 * we cannot notice that anon_vma is freed while we migrates a page.
956 * This get_anon_vma() delays freeing anon_vma pointer until the end
957 * of migration. File cache pages are no problem because of page_lock()
958 * File Caches may use write_page() or lock_page() in migration, then,
959 * just care Anon page here.
961 * Only page_get_anon_vma() understands the subtleties of
962 * getting a hold on an anon_vma from outside one of its mms.
963 * But if we cannot get anon_vma, then we won't need it anyway,
964 * because that implies that the anon page is no longer mapped
965 * (and cannot be remapped so long as we hold the page lock).
967 if (PageAnon(page) && !PageKsm(page))
968 anon_vma = page_get_anon_vma(page);
971 * Block others from accessing the new page when we get around to
972 * establishing additional references. We are usually the only one
973 * holding a reference to newpage at this point. We used to have a BUG
974 * here if trylock_page(newpage) fails, but would like to allow for
975 * cases where there might be a race with the previous use of newpage.
976 * This is much like races on refcount of oldpage: just don't BUG().
978 if (unlikely(!trylock_page(newpage)))
979 goto out_unlock;
981 if (unlikely(!is_lru)) {
982 rc = move_to_new_page(newpage, page, mode);
983 goto out_unlock_both;
987 * Corner case handling:
988 * 1. When a new swap-cache page is read into, it is added to the LRU
989 * and treated as swapcache but it has no rmap yet.
990 * Calling try_to_unmap() against a page->mapping==NULL page will
991 * trigger a BUG. So handle it here.
992 * 2. An orphaned page (see truncate_complete_page) might have
993 * fs-private metadata. The page can be picked up due to memory
994 * offlining. Everywhere else except page reclaim, the page is
995 * invisible to the vm, so the page can not be migrated. So try to
996 * free the metadata, so the page can be freed.
998 if (!page->mapping) {
999 VM_BUG_ON_PAGE(PageAnon(page), page);
1000 if (page_has_private(page)) {
1001 try_to_free_buffers(page);
1002 goto out_unlock_both;
1004 } else if (page_mapped(page)) {
1005 /* Establish migration ptes */
1006 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1007 page);
1008 try_to_unmap(page,
1009 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1010 page_was_mapped = 1;
1013 if (!page_mapped(page))
1014 rc = move_to_new_page(newpage, page, mode);
1016 if (page_was_mapped)
1017 remove_migration_ptes(page,
1018 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1020 out_unlock_both:
1021 unlock_page(newpage);
1022 out_unlock:
1023 /* Drop an anon_vma reference if we took one */
1024 if (anon_vma)
1025 put_anon_vma(anon_vma);
1026 unlock_page(page);
1027 out:
1029 * If migration is successful, decrease refcount of the newpage
1030 * which will not free the page because new page owner increased
1031 * refcounter. As well, if it is LRU page, add the page to LRU
1032 * list in here.
1034 if (rc == MIGRATEPAGE_SUCCESS) {
1035 if (unlikely(__PageMovable(newpage)))
1036 put_page(newpage);
1037 else
1038 putback_lru_page(newpage);
1041 return rc;
1045 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1046 * around it.
1048 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1049 #define ICE_noinline noinline
1050 #else
1051 #define ICE_noinline
1052 #endif
1055 * Obtain the lock on page, remove all ptes and migrate the page
1056 * to the newly allocated page in newpage.
1058 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1059 free_page_t put_new_page,
1060 unsigned long private, struct page *page,
1061 int force, enum migrate_mode mode,
1062 enum migrate_reason reason)
1064 int rc = MIGRATEPAGE_SUCCESS;
1065 int *result = NULL;
1066 struct page *newpage;
1068 newpage = get_new_page(page, private, &result);
1069 if (!newpage)
1070 return -ENOMEM;
1072 if (page_count(page) == 1) {
1073 /* page was freed from under us. So we are done. */
1074 ClearPageActive(page);
1075 ClearPageUnevictable(page);
1076 if (unlikely(__PageMovable(page))) {
1077 lock_page(page);
1078 if (!PageMovable(page))
1079 __ClearPageIsolated(page);
1080 unlock_page(page);
1082 if (put_new_page)
1083 put_new_page(newpage, private);
1084 else
1085 put_page(newpage);
1086 goto out;
1089 if (unlikely(PageTransHuge(page))) {
1090 lock_page(page);
1091 rc = split_huge_page(page);
1092 unlock_page(page);
1093 if (rc)
1094 goto out;
1097 rc = __unmap_and_move(page, newpage, force, mode);
1098 if (rc == MIGRATEPAGE_SUCCESS)
1099 set_page_owner_migrate_reason(newpage, reason);
1101 out:
1102 if (rc != -EAGAIN) {
1104 * A page that has been migrated has all references
1105 * removed and will be freed. A page that has not been
1106 * migrated will have kepts its references and be
1107 * restored.
1109 list_del(&page->lru);
1112 * Compaction can migrate also non-LRU pages which are
1113 * not accounted to NR_ISOLATED_*. They can be recognized
1114 * as __PageMovable
1116 if (likely(!__PageMovable(page)))
1117 dec_node_page_state(page, NR_ISOLATED_ANON +
1118 page_is_file_cache(page));
1122 * If migration is successful, releases reference grabbed during
1123 * isolation. Otherwise, restore the page to right list unless
1124 * we want to retry.
1126 if (rc == MIGRATEPAGE_SUCCESS) {
1127 put_page(page);
1128 if (reason == MR_MEMORY_FAILURE) {
1130 * Set PG_HWPoison on just freed page
1131 * intentionally. Although it's rather weird,
1132 * it's how HWPoison flag works at the moment.
1134 if (!test_set_page_hwpoison(page))
1135 num_poisoned_pages_inc();
1137 } else {
1138 if (rc != -EAGAIN) {
1139 if (likely(!__PageMovable(page))) {
1140 putback_lru_page(page);
1141 goto put_new;
1144 lock_page(page);
1145 if (PageMovable(page))
1146 putback_movable_page(page);
1147 else
1148 __ClearPageIsolated(page);
1149 unlock_page(page);
1150 put_page(page);
1152 put_new:
1153 if (put_new_page)
1154 put_new_page(newpage, private);
1155 else
1156 put_page(newpage);
1159 if (result) {
1160 if (rc)
1161 *result = rc;
1162 else
1163 *result = page_to_nid(newpage);
1165 return rc;
1169 * Counterpart of unmap_and_move_page() for hugepage migration.
1171 * This function doesn't wait the completion of hugepage I/O
1172 * because there is no race between I/O and migration for hugepage.
1173 * Note that currently hugepage I/O occurs only in direct I/O
1174 * where no lock is held and PG_writeback is irrelevant,
1175 * and writeback status of all subpages are counted in the reference
1176 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1177 * under direct I/O, the reference of the head page is 512 and a bit more.)
1178 * This means that when we try to migrate hugepage whose subpages are
1179 * doing direct I/O, some references remain after try_to_unmap() and
1180 * hugepage migration fails without data corruption.
1182 * There is also no race when direct I/O is issued on the page under migration,
1183 * because then pte is replaced with migration swap entry and direct I/O code
1184 * will wait in the page fault for migration to complete.
1186 static int unmap_and_move_huge_page(new_page_t get_new_page,
1187 free_page_t put_new_page, unsigned long private,
1188 struct page *hpage, int force,
1189 enum migrate_mode mode, int reason)
1191 int rc = -EAGAIN;
1192 int *result = NULL;
1193 int page_was_mapped = 0;
1194 struct page *new_hpage;
1195 struct anon_vma *anon_vma = NULL;
1198 * Movability of hugepages depends on architectures and hugepage size.
1199 * This check is necessary because some callers of hugepage migration
1200 * like soft offline and memory hotremove don't walk through page
1201 * tables or check whether the hugepage is pmd-based or not before
1202 * kicking migration.
1204 if (!hugepage_migration_supported(page_hstate(hpage))) {
1205 putback_active_hugepage(hpage);
1206 return -ENOSYS;
1209 new_hpage = get_new_page(hpage, private, &result);
1210 if (!new_hpage)
1211 return -ENOMEM;
1213 if (!trylock_page(hpage)) {
1214 if (!force || mode != MIGRATE_SYNC)
1215 goto out;
1216 lock_page(hpage);
1219 if (PageAnon(hpage))
1220 anon_vma = page_get_anon_vma(hpage);
1222 if (unlikely(!trylock_page(new_hpage)))
1223 goto put_anon;
1225 if (page_mapped(hpage)) {
1226 try_to_unmap(hpage,
1227 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1228 page_was_mapped = 1;
1231 if (!page_mapped(hpage))
1232 rc = move_to_new_page(new_hpage, hpage, mode);
1234 if (page_was_mapped)
1235 remove_migration_ptes(hpage,
1236 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1238 unlock_page(new_hpage);
1240 put_anon:
1241 if (anon_vma)
1242 put_anon_vma(anon_vma);
1244 if (rc == MIGRATEPAGE_SUCCESS) {
1245 hugetlb_cgroup_migrate(hpage, new_hpage);
1246 put_new_page = NULL;
1247 set_page_owner_migrate_reason(new_hpage, reason);
1250 unlock_page(hpage);
1251 out:
1252 if (rc != -EAGAIN)
1253 putback_active_hugepage(hpage);
1256 * If migration was not successful and there's a freeing callback, use
1257 * it. Otherwise, put_page() will drop the reference grabbed during
1258 * isolation.
1260 if (put_new_page)
1261 put_new_page(new_hpage, private);
1262 else
1263 putback_active_hugepage(new_hpage);
1265 if (result) {
1266 if (rc)
1267 *result = rc;
1268 else
1269 *result = page_to_nid(new_hpage);
1271 return rc;
1275 * migrate_pages - migrate the pages specified in a list, to the free pages
1276 * supplied as the target for the page migration
1278 * @from: The list of pages to be migrated.
1279 * @get_new_page: The function used to allocate free pages to be used
1280 * as the target of the page migration.
1281 * @put_new_page: The function used to free target pages if migration
1282 * fails, or NULL if no special handling is necessary.
1283 * @private: Private data to be passed on to get_new_page()
1284 * @mode: The migration mode that specifies the constraints for
1285 * page migration, if any.
1286 * @reason: The reason for page migration.
1288 * The function returns after 10 attempts or if no pages are movable any more
1289 * because the list has become empty or no retryable pages exist any more.
1290 * The caller should call putback_movable_pages() to return pages to the LRU
1291 * or free list only if ret != 0.
1293 * Returns the number of pages that were not migrated, or an error code.
1295 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1296 free_page_t put_new_page, unsigned long private,
1297 enum migrate_mode mode, int reason)
1299 int retry = 1;
1300 int nr_failed = 0;
1301 int nr_succeeded = 0;
1302 int pass = 0;
1303 struct page *page;
1304 struct page *page2;
1305 int swapwrite = current->flags & PF_SWAPWRITE;
1306 int rc;
1308 if (!swapwrite)
1309 current->flags |= PF_SWAPWRITE;
1311 for(pass = 0; pass < 10 && retry; pass++) {
1312 retry = 0;
1314 list_for_each_entry_safe(page, page2, from, lru) {
1315 cond_resched();
1317 if (PageHuge(page))
1318 rc = unmap_and_move_huge_page(get_new_page,
1319 put_new_page, private, page,
1320 pass > 2, mode, reason);
1321 else
1322 rc = unmap_and_move(get_new_page, put_new_page,
1323 private, page, pass > 2, mode,
1324 reason);
1326 switch(rc) {
1327 case -ENOMEM:
1328 nr_failed++;
1329 goto out;
1330 case -EAGAIN:
1331 retry++;
1332 break;
1333 case MIGRATEPAGE_SUCCESS:
1334 nr_succeeded++;
1335 break;
1336 default:
1338 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1339 * unlike -EAGAIN case, the failed page is
1340 * removed from migration page list and not
1341 * retried in the next outer loop.
1343 nr_failed++;
1344 break;
1348 nr_failed += retry;
1349 rc = nr_failed;
1350 out:
1351 if (nr_succeeded)
1352 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1353 if (nr_failed)
1354 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1355 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1357 if (!swapwrite)
1358 current->flags &= ~PF_SWAPWRITE;
1360 return rc;
1363 #ifdef CONFIG_NUMA
1365 * Move a list of individual pages
1367 struct page_to_node {
1368 unsigned long addr;
1369 struct page *page;
1370 int node;
1371 int status;
1374 static struct page *new_page_node(struct page *p, unsigned long private,
1375 int **result)
1377 struct page_to_node *pm = (struct page_to_node *)private;
1379 while (pm->node != MAX_NUMNODES && pm->page != p)
1380 pm++;
1382 if (pm->node == MAX_NUMNODES)
1383 return NULL;
1385 *result = &pm->status;
1387 if (PageHuge(p))
1388 return alloc_huge_page_node(page_hstate(compound_head(p)),
1389 pm->node);
1390 else
1391 return __alloc_pages_node(pm->node,
1392 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1396 * Move a set of pages as indicated in the pm array. The addr
1397 * field must be set to the virtual address of the page to be moved
1398 * and the node number must contain a valid target node.
1399 * The pm array ends with node = MAX_NUMNODES.
1401 static int do_move_page_to_node_array(struct mm_struct *mm,
1402 struct page_to_node *pm,
1403 int migrate_all)
1405 int err;
1406 struct page_to_node *pp;
1407 LIST_HEAD(pagelist);
1409 down_read(&mm->mmap_sem);
1412 * Build a list of pages to migrate
1414 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1415 struct vm_area_struct *vma;
1416 struct page *page;
1418 err = -EFAULT;
1419 vma = find_vma(mm, pp->addr);
1420 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1421 goto set_status;
1423 /* FOLL_DUMP to ignore special (like zero) pages */
1424 page = follow_page(vma, pp->addr,
1425 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1427 err = PTR_ERR(page);
1428 if (IS_ERR(page))
1429 goto set_status;
1431 err = -ENOENT;
1432 if (!page)
1433 goto set_status;
1435 pp->page = page;
1436 err = page_to_nid(page);
1438 if (err == pp->node)
1440 * Node already in the right place
1442 goto put_and_set;
1444 err = -EACCES;
1445 if (page_mapcount(page) > 1 &&
1446 !migrate_all)
1447 goto put_and_set;
1449 if (PageHuge(page)) {
1450 if (PageHead(page))
1451 isolate_huge_page(page, &pagelist);
1452 goto put_and_set;
1455 err = isolate_lru_page(page);
1456 if (!err) {
1457 list_add_tail(&page->lru, &pagelist);
1458 inc_node_page_state(page, NR_ISOLATED_ANON +
1459 page_is_file_cache(page));
1461 put_and_set:
1463 * Either remove the duplicate refcount from
1464 * isolate_lru_page() or drop the page ref if it was
1465 * not isolated.
1467 put_page(page);
1468 set_status:
1469 pp->status = err;
1472 err = 0;
1473 if (!list_empty(&pagelist)) {
1474 err = migrate_pages(&pagelist, new_page_node, NULL,
1475 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1476 if (err)
1477 putback_movable_pages(&pagelist);
1480 up_read(&mm->mmap_sem);
1481 return err;
1485 * Migrate an array of page address onto an array of nodes and fill
1486 * the corresponding array of status.
1488 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1489 unsigned long nr_pages,
1490 const void __user * __user *pages,
1491 const int __user *nodes,
1492 int __user *status, int flags)
1494 struct page_to_node *pm;
1495 unsigned long chunk_nr_pages;
1496 unsigned long chunk_start;
1497 int err;
1499 err = -ENOMEM;
1500 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1501 if (!pm)
1502 goto out;
1504 migrate_prep();
1507 * Store a chunk of page_to_node array in a page,
1508 * but keep the last one as a marker
1510 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1512 for (chunk_start = 0;
1513 chunk_start < nr_pages;
1514 chunk_start += chunk_nr_pages) {
1515 int j;
1517 if (chunk_start + chunk_nr_pages > nr_pages)
1518 chunk_nr_pages = nr_pages - chunk_start;
1520 /* fill the chunk pm with addrs and nodes from user-space */
1521 for (j = 0; j < chunk_nr_pages; j++) {
1522 const void __user *p;
1523 int node;
1525 err = -EFAULT;
1526 if (get_user(p, pages + j + chunk_start))
1527 goto out_pm;
1528 pm[j].addr = (unsigned long) p;
1530 if (get_user(node, nodes + j + chunk_start))
1531 goto out_pm;
1533 err = -ENODEV;
1534 if (node < 0 || node >= MAX_NUMNODES)
1535 goto out_pm;
1537 if (!node_state(node, N_MEMORY))
1538 goto out_pm;
1540 err = -EACCES;
1541 if (!node_isset(node, task_nodes))
1542 goto out_pm;
1544 pm[j].node = node;
1547 /* End marker for this chunk */
1548 pm[chunk_nr_pages].node = MAX_NUMNODES;
1550 /* Migrate this chunk */
1551 err = do_move_page_to_node_array(mm, pm,
1552 flags & MPOL_MF_MOVE_ALL);
1553 if (err < 0)
1554 goto out_pm;
1556 /* Return status information */
1557 for (j = 0; j < chunk_nr_pages; j++)
1558 if (put_user(pm[j].status, status + j + chunk_start)) {
1559 err = -EFAULT;
1560 goto out_pm;
1563 err = 0;
1565 out_pm:
1566 free_page((unsigned long)pm);
1567 out:
1568 return err;
1572 * Determine the nodes of an array of pages and store it in an array of status.
1574 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1575 const void __user **pages, int *status)
1577 unsigned long i;
1579 down_read(&mm->mmap_sem);
1581 for (i = 0; i < nr_pages; i++) {
1582 unsigned long addr = (unsigned long)(*pages);
1583 struct vm_area_struct *vma;
1584 struct page *page;
1585 int err = -EFAULT;
1587 vma = find_vma(mm, addr);
1588 if (!vma || addr < vma->vm_start)
1589 goto set_status;
1591 /* FOLL_DUMP to ignore special (like zero) pages */
1592 page = follow_page(vma, addr, FOLL_DUMP);
1594 err = PTR_ERR(page);
1595 if (IS_ERR(page))
1596 goto set_status;
1598 err = page ? page_to_nid(page) : -ENOENT;
1599 set_status:
1600 *status = err;
1602 pages++;
1603 status++;
1606 up_read(&mm->mmap_sem);
1610 * Determine the nodes of a user array of pages and store it in
1611 * a user array of status.
1613 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1614 const void __user * __user *pages,
1615 int __user *status)
1617 #define DO_PAGES_STAT_CHUNK_NR 16
1618 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1619 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1621 while (nr_pages) {
1622 unsigned long chunk_nr;
1624 chunk_nr = nr_pages;
1625 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1626 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1628 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1629 break;
1631 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1633 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1634 break;
1636 pages += chunk_nr;
1637 status += chunk_nr;
1638 nr_pages -= chunk_nr;
1640 return nr_pages ? -EFAULT : 0;
1644 * Move a list of pages in the address space of the currently executing
1645 * process.
1647 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1648 const void __user * __user *, pages,
1649 const int __user *, nodes,
1650 int __user *, status, int, flags)
1652 const struct cred *cred = current_cred(), *tcred;
1653 struct task_struct *task;
1654 struct mm_struct *mm;
1655 int err;
1656 nodemask_t task_nodes;
1658 /* Check flags */
1659 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1660 return -EINVAL;
1662 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1663 return -EPERM;
1665 /* Find the mm_struct */
1666 rcu_read_lock();
1667 task = pid ? find_task_by_vpid(pid) : current;
1668 if (!task) {
1669 rcu_read_unlock();
1670 return -ESRCH;
1672 get_task_struct(task);
1675 * Check if this process has the right to modify the specified
1676 * process. The right exists if the process has administrative
1677 * capabilities, superuser privileges or the same
1678 * userid as the target process.
1680 tcred = __task_cred(task);
1681 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1682 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1683 !capable(CAP_SYS_NICE)) {
1684 rcu_read_unlock();
1685 err = -EPERM;
1686 goto out;
1688 rcu_read_unlock();
1690 err = security_task_movememory(task);
1691 if (err)
1692 goto out;
1694 task_nodes = cpuset_mems_allowed(task);
1695 mm = get_task_mm(task);
1696 put_task_struct(task);
1698 if (!mm)
1699 return -EINVAL;
1701 if (nodes)
1702 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1703 nodes, status, flags);
1704 else
1705 err = do_pages_stat(mm, nr_pages, pages, status);
1707 mmput(mm);
1708 return err;
1710 out:
1711 put_task_struct(task);
1712 return err;
1715 #ifdef CONFIG_NUMA_BALANCING
1717 * Returns true if this is a safe migration target node for misplaced NUMA
1718 * pages. Currently it only checks the watermarks which crude
1720 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1721 unsigned long nr_migrate_pages)
1723 int z;
1725 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1726 struct zone *zone = pgdat->node_zones + z;
1728 if (!populated_zone(zone))
1729 continue;
1731 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1732 if (!zone_watermark_ok(zone, 0,
1733 high_wmark_pages(zone) +
1734 nr_migrate_pages,
1735 0, 0))
1736 continue;
1737 return true;
1739 return false;
1742 static struct page *alloc_misplaced_dst_page(struct page *page,
1743 unsigned long data,
1744 int **result)
1746 int nid = (int) data;
1747 struct page *newpage;
1749 newpage = __alloc_pages_node(nid,
1750 (GFP_HIGHUSER_MOVABLE |
1751 __GFP_THISNODE | __GFP_NOMEMALLOC |
1752 __GFP_NORETRY | __GFP_NOWARN) &
1753 ~__GFP_RECLAIM, 0);
1755 return newpage;
1759 * page migration rate limiting control.
1760 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1761 * window of time. Default here says do not migrate more than 1280M per second.
1763 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1764 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1766 /* Returns true if the node is migrate rate-limited after the update */
1767 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1768 unsigned long nr_pages)
1771 * Rate-limit the amount of data that is being migrated to a node.
1772 * Optimal placement is no good if the memory bus is saturated and
1773 * all the time is being spent migrating!
1775 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1776 spin_lock(&pgdat->numabalancing_migrate_lock);
1777 pgdat->numabalancing_migrate_nr_pages = 0;
1778 pgdat->numabalancing_migrate_next_window = jiffies +
1779 msecs_to_jiffies(migrate_interval_millisecs);
1780 spin_unlock(&pgdat->numabalancing_migrate_lock);
1782 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1783 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1784 nr_pages);
1785 return true;
1789 * This is an unlocked non-atomic update so errors are possible.
1790 * The consequences are failing to migrate when we potentiall should
1791 * have which is not severe enough to warrant locking. If it is ever
1792 * a problem, it can be converted to a per-cpu counter.
1794 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1795 return false;
1798 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1800 int page_lru;
1802 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1804 /* Avoid migrating to a node that is nearly full */
1805 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1806 return 0;
1808 if (isolate_lru_page(page))
1809 return 0;
1812 * migrate_misplaced_transhuge_page() skips page migration's usual
1813 * check on page_count(), so we must do it here, now that the page
1814 * has been isolated: a GUP pin, or any other pin, prevents migration.
1815 * The expected page count is 3: 1 for page's mapcount and 1 for the
1816 * caller's pin and 1 for the reference taken by isolate_lru_page().
1818 if (PageTransHuge(page) && page_count(page) != 3) {
1819 putback_lru_page(page);
1820 return 0;
1823 page_lru = page_is_file_cache(page);
1824 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1825 hpage_nr_pages(page));
1828 * Isolating the page has taken another reference, so the
1829 * caller's reference can be safely dropped without the page
1830 * disappearing underneath us during migration.
1832 put_page(page);
1833 return 1;
1836 bool pmd_trans_migrating(pmd_t pmd)
1838 struct page *page = pmd_page(pmd);
1839 return PageLocked(page);
1843 * Attempt to migrate a misplaced page to the specified destination
1844 * node. Caller is expected to have an elevated reference count on
1845 * the page that will be dropped by this function before returning.
1847 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1848 int node)
1850 pg_data_t *pgdat = NODE_DATA(node);
1851 int isolated;
1852 int nr_remaining;
1853 LIST_HEAD(migratepages);
1856 * Don't migrate file pages that are mapped in multiple processes
1857 * with execute permissions as they are probably shared libraries.
1859 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1860 (vma->vm_flags & VM_EXEC))
1861 goto out;
1864 * Rate-limit the amount of data that is being migrated to a node.
1865 * Optimal placement is no good if the memory bus is saturated and
1866 * all the time is being spent migrating!
1868 if (numamigrate_update_ratelimit(pgdat, 1))
1869 goto out;
1871 isolated = numamigrate_isolate_page(pgdat, page);
1872 if (!isolated)
1873 goto out;
1875 list_add(&page->lru, &migratepages);
1876 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1877 NULL, node, MIGRATE_ASYNC,
1878 MR_NUMA_MISPLACED);
1879 if (nr_remaining) {
1880 if (!list_empty(&migratepages)) {
1881 list_del(&page->lru);
1882 dec_node_page_state(page, NR_ISOLATED_ANON +
1883 page_is_file_cache(page));
1884 putback_lru_page(page);
1886 isolated = 0;
1887 } else
1888 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1889 BUG_ON(!list_empty(&migratepages));
1890 return isolated;
1892 out:
1893 put_page(page);
1894 return 0;
1896 #endif /* CONFIG_NUMA_BALANCING */
1898 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1900 * Migrates a THP to a given target node. page must be locked and is unlocked
1901 * before returning.
1903 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1904 struct vm_area_struct *vma,
1905 pmd_t *pmd, pmd_t entry,
1906 unsigned long address,
1907 struct page *page, int node)
1909 spinlock_t *ptl;
1910 pg_data_t *pgdat = NODE_DATA(node);
1911 int isolated = 0;
1912 struct page *new_page = NULL;
1913 int page_lru = page_is_file_cache(page);
1914 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1915 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1916 pmd_t orig_entry;
1919 * Rate-limit the amount of data that is being migrated to a node.
1920 * Optimal placement is no good if the memory bus is saturated and
1921 * all the time is being spent migrating!
1923 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1924 goto out_dropref;
1926 new_page = alloc_pages_node(node,
1927 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1928 HPAGE_PMD_ORDER);
1929 if (!new_page)
1930 goto out_fail;
1931 prep_transhuge_page(new_page);
1933 isolated = numamigrate_isolate_page(pgdat, page);
1934 if (!isolated) {
1935 put_page(new_page);
1936 goto out_fail;
1939 * We are not sure a pending tlb flush here is for a huge page
1940 * mapping or not. Hence use the tlb range variant
1942 if (mm_tlb_flush_pending(mm))
1943 flush_tlb_range(vma, mmun_start, mmun_end);
1945 /* Prepare a page as a migration target */
1946 __SetPageLocked(new_page);
1947 if (PageSwapBacked(page))
1948 __SetPageSwapBacked(new_page);
1950 /* anon mapping, we can simply copy page->mapping to the new page: */
1951 new_page->mapping = page->mapping;
1952 new_page->index = page->index;
1953 migrate_page_copy(new_page, page);
1954 WARN_ON(PageLRU(new_page));
1956 /* Recheck the target PMD */
1957 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1958 ptl = pmd_lock(mm, pmd);
1959 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1960 fail_putback:
1961 spin_unlock(ptl);
1962 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1964 /* Reverse changes made by migrate_page_copy() */
1965 if (TestClearPageActive(new_page))
1966 SetPageActive(page);
1967 if (TestClearPageUnevictable(new_page))
1968 SetPageUnevictable(page);
1970 unlock_page(new_page);
1971 put_page(new_page); /* Free it */
1973 /* Retake the callers reference and putback on LRU */
1974 get_page(page);
1975 putback_lru_page(page);
1976 mod_node_page_state(page_pgdat(page),
1977 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1979 goto out_unlock;
1982 orig_entry = *pmd;
1983 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1984 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1987 * Clear the old entry under pagetable lock and establish the new PTE.
1988 * Any parallel GUP will either observe the old page blocking on the
1989 * page lock, block on the page table lock or observe the new page.
1990 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1991 * guarantee the copy is visible before the pagetable update.
1993 flush_cache_range(vma, mmun_start, mmun_end);
1994 page_add_anon_rmap(new_page, vma, mmun_start, true);
1995 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1996 set_pmd_at(mm, mmun_start, pmd, entry);
1997 update_mmu_cache_pmd(vma, address, &entry);
1999 if (page_count(page) != 2) {
2000 set_pmd_at(mm, mmun_start, pmd, orig_entry);
2001 flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2002 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2003 update_mmu_cache_pmd(vma, address, &entry);
2004 page_remove_rmap(new_page, true);
2005 goto fail_putback;
2008 mlock_migrate_page(new_page, page);
2009 page_remove_rmap(page, true);
2010 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2012 spin_unlock(ptl);
2013 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2015 /* Take an "isolate" reference and put new page on the LRU. */
2016 get_page(new_page);
2017 putback_lru_page(new_page);
2019 unlock_page(new_page);
2020 unlock_page(page);
2021 put_page(page); /* Drop the rmap reference */
2022 put_page(page); /* Drop the LRU isolation reference */
2024 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2025 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2027 mod_node_page_state(page_pgdat(page),
2028 NR_ISOLATED_ANON + page_lru,
2029 -HPAGE_PMD_NR);
2030 return isolated;
2032 out_fail:
2033 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2034 out_dropref:
2035 ptl = pmd_lock(mm, pmd);
2036 if (pmd_same(*pmd, entry)) {
2037 entry = pmd_modify(entry, vma->vm_page_prot);
2038 set_pmd_at(mm, mmun_start, pmd, entry);
2039 update_mmu_cache_pmd(vma, address, &entry);
2041 spin_unlock(ptl);
2043 out_unlock:
2044 unlock_page(page);
2045 put_page(page);
2046 return 0;
2048 #endif /* CONFIG_NUMA_BALANCING */
2050 #endif /* CONFIG_NUMA */