2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
45 const struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
46 [BTRFS_RAID_RAID10
] = {
49 .devs_max
= 0, /* 0 == as many as possible */
51 .tolerated_failures
= 1,
55 [BTRFS_RAID_RAID1
] = {
60 .tolerated_failures
= 1,
69 .tolerated_failures
= 0,
73 [BTRFS_RAID_RAID0
] = {
78 .tolerated_failures
= 0,
82 [BTRFS_RAID_SINGLE
] = {
87 .tolerated_failures
= 0,
91 [BTRFS_RAID_RAID5
] = {
96 .tolerated_failures
= 1,
100 [BTRFS_RAID_RAID6
] = {
105 .tolerated_failures
= 2,
111 const u64 btrfs_raid_group
[BTRFS_NR_RAID_TYPES
] = {
112 [BTRFS_RAID_RAID10
] = BTRFS_BLOCK_GROUP_RAID10
,
113 [BTRFS_RAID_RAID1
] = BTRFS_BLOCK_GROUP_RAID1
,
114 [BTRFS_RAID_DUP
] = BTRFS_BLOCK_GROUP_DUP
,
115 [BTRFS_RAID_RAID0
] = BTRFS_BLOCK_GROUP_RAID0
,
116 [BTRFS_RAID_SINGLE
] = 0,
117 [BTRFS_RAID_RAID5
] = BTRFS_BLOCK_GROUP_RAID5
,
118 [BTRFS_RAID_RAID6
] = BTRFS_BLOCK_GROUP_RAID6
,
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
126 const int btrfs_raid_mindev_error
[BTRFS_NR_RAID_TYPES
] = {
127 [BTRFS_RAID_RAID10
] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
,
128 [BTRFS_RAID_RAID1
] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
,
129 [BTRFS_RAID_DUP
] = 0,
130 [BTRFS_RAID_RAID0
] = 0,
131 [BTRFS_RAID_SINGLE
] = 0,
132 [BTRFS_RAID_RAID5
] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
,
133 [BTRFS_RAID_RAID6
] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
,
136 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
137 struct btrfs_root
*root
,
138 struct btrfs_device
*device
);
139 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
);
140 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
144 DEFINE_MUTEX(uuid_mutex
);
145 static LIST_HEAD(fs_uuids
);
146 struct list_head
*btrfs_get_fs_uuids(void)
151 static struct btrfs_fs_devices
*__alloc_fs_devices(void)
153 struct btrfs_fs_devices
*fs_devs
;
155 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_KERNEL
);
157 return ERR_PTR(-ENOMEM
);
159 mutex_init(&fs_devs
->device_list_mutex
);
161 INIT_LIST_HEAD(&fs_devs
->devices
);
162 INIT_LIST_HEAD(&fs_devs
->resized_devices
);
163 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
164 INIT_LIST_HEAD(&fs_devs
->list
);
170 * alloc_fs_devices - allocate struct btrfs_fs_devices
171 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
174 * Return: a pointer to a new &struct btrfs_fs_devices on success;
175 * ERR_PTR() on error. Returned struct is not linked onto any lists and
176 * can be destroyed with kfree() right away.
178 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
)
180 struct btrfs_fs_devices
*fs_devs
;
182 fs_devs
= __alloc_fs_devices();
187 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
189 generate_random_uuid(fs_devs
->fsid
);
194 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
196 struct btrfs_device
*device
;
197 WARN_ON(fs_devices
->opened
);
198 while (!list_empty(&fs_devices
->devices
)) {
199 device
= list_entry(fs_devices
->devices
.next
,
200 struct btrfs_device
, dev_list
);
201 list_del(&device
->dev_list
);
202 rcu_string_free(device
->name
);
208 static void btrfs_kobject_uevent(struct block_device
*bdev
,
209 enum kobject_action action
)
213 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
215 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
217 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
218 &disk_to_dev(bdev
->bd_disk
)->kobj
);
221 void btrfs_cleanup_fs_uuids(void)
223 struct btrfs_fs_devices
*fs_devices
;
225 while (!list_empty(&fs_uuids
)) {
226 fs_devices
= list_entry(fs_uuids
.next
,
227 struct btrfs_fs_devices
, list
);
228 list_del(&fs_devices
->list
);
229 free_fs_devices(fs_devices
);
233 static struct btrfs_device
*__alloc_device(void)
235 struct btrfs_device
*dev
;
237 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
239 return ERR_PTR(-ENOMEM
);
241 INIT_LIST_HEAD(&dev
->dev_list
);
242 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
243 INIT_LIST_HEAD(&dev
->resized_list
);
245 spin_lock_init(&dev
->io_lock
);
247 spin_lock_init(&dev
->reada_lock
);
248 atomic_set(&dev
->reada_in_flight
, 0);
249 atomic_set(&dev
->dev_stats_ccnt
, 0);
250 btrfs_device_data_ordered_init(dev
);
251 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
252 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
257 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
260 struct btrfs_device
*dev
;
262 list_for_each_entry(dev
, head
, dev_list
) {
263 if (dev
->devid
== devid
&&
264 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
271 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
273 struct btrfs_fs_devices
*fs_devices
;
275 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
276 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
283 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
284 int flush
, struct block_device
**bdev
,
285 struct buffer_head
**bh
)
289 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
292 ret
= PTR_ERR(*bdev
);
297 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
298 ret
= set_blocksize(*bdev
, 4096);
300 blkdev_put(*bdev
, flags
);
303 invalidate_bdev(*bdev
);
304 *bh
= btrfs_read_dev_super(*bdev
);
307 blkdev_put(*bdev
, flags
);
319 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
320 struct bio
*head
, struct bio
*tail
)
323 struct bio
*old_head
;
325 old_head
= pending_bios
->head
;
326 pending_bios
->head
= head
;
327 if (pending_bios
->tail
)
328 tail
->bi_next
= old_head
;
330 pending_bios
->tail
= tail
;
334 * we try to collect pending bios for a device so we don't get a large
335 * number of procs sending bios down to the same device. This greatly
336 * improves the schedulers ability to collect and merge the bios.
338 * But, it also turns into a long list of bios to process and that is sure
339 * to eventually make the worker thread block. The solution here is to
340 * make some progress and then put this work struct back at the end of
341 * the list if the block device is congested. This way, multiple devices
342 * can make progress from a single worker thread.
344 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
347 struct backing_dev_info
*bdi
;
348 struct btrfs_fs_info
*fs_info
;
349 struct btrfs_pending_bios
*pending_bios
;
353 unsigned long num_run
;
354 unsigned long batch_run
= 0;
356 unsigned long last_waited
= 0;
358 int sync_pending
= 0;
359 struct blk_plug plug
;
362 * this function runs all the bios we've collected for
363 * a particular device. We don't want to wander off to
364 * another device without first sending all of these down.
365 * So, setup a plug here and finish it off before we return
367 blk_start_plug(&plug
);
369 bdi
= blk_get_backing_dev_info(device
->bdev
);
370 fs_info
= device
->dev_root
->fs_info
;
371 limit
= btrfs_async_submit_limit(fs_info
);
372 limit
= limit
* 2 / 3;
375 spin_lock(&device
->io_lock
);
380 /* take all the bios off the list at once and process them
381 * later on (without the lock held). But, remember the
382 * tail and other pointers so the bios can be properly reinserted
383 * into the list if we hit congestion
385 if (!force_reg
&& device
->pending_sync_bios
.head
) {
386 pending_bios
= &device
->pending_sync_bios
;
389 pending_bios
= &device
->pending_bios
;
393 pending
= pending_bios
->head
;
394 tail
= pending_bios
->tail
;
395 WARN_ON(pending
&& !tail
);
398 * if pending was null this time around, no bios need processing
399 * at all and we can stop. Otherwise it'll loop back up again
400 * and do an additional check so no bios are missed.
402 * device->running_pending is used to synchronize with the
405 if (device
->pending_sync_bios
.head
== NULL
&&
406 device
->pending_bios
.head
== NULL
) {
408 device
->running_pending
= 0;
411 device
->running_pending
= 1;
414 pending_bios
->head
= NULL
;
415 pending_bios
->tail
= NULL
;
417 spin_unlock(&device
->io_lock
);
422 /* we want to work on both lists, but do more bios on the
423 * sync list than the regular list
426 pending_bios
!= &device
->pending_sync_bios
&&
427 device
->pending_sync_bios
.head
) ||
428 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
429 device
->pending_bios
.head
)) {
430 spin_lock(&device
->io_lock
);
431 requeue_list(pending_bios
, pending
, tail
);
436 pending
= pending
->bi_next
;
440 * atomic_dec_return implies a barrier for waitqueue_active
442 if (atomic_dec_return(&fs_info
->nr_async_bios
) < limit
&&
443 waitqueue_active(&fs_info
->async_submit_wait
))
444 wake_up(&fs_info
->async_submit_wait
);
446 BUG_ON(atomic_read(&cur
->__bi_cnt
) == 0);
449 * if we're doing the sync list, record that our
450 * plug has some sync requests on it
452 * If we're doing the regular list and there are
453 * sync requests sitting around, unplug before
456 if (pending_bios
== &device
->pending_sync_bios
) {
458 } else if (sync_pending
) {
459 blk_finish_plug(&plug
);
460 blk_start_plug(&plug
);
464 btrfsic_submit_bio(cur
);
471 * we made progress, there is more work to do and the bdi
472 * is now congested. Back off and let other work structs
475 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
476 fs_info
->fs_devices
->open_devices
> 1) {
477 struct io_context
*ioc
;
479 ioc
= current
->io_context
;
482 * the main goal here is that we don't want to
483 * block if we're going to be able to submit
484 * more requests without blocking.
486 * This code does two great things, it pokes into
487 * the elevator code from a filesystem _and_
488 * it makes assumptions about how batching works.
490 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
491 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
493 ioc
->last_waited
== last_waited
)) {
495 * we want to go through our batch of
496 * requests and stop. So, we copy out
497 * the ioc->last_waited time and test
498 * against it before looping
500 last_waited
= ioc
->last_waited
;
504 spin_lock(&device
->io_lock
);
505 requeue_list(pending_bios
, pending
, tail
);
506 device
->running_pending
= 1;
508 spin_unlock(&device
->io_lock
);
509 btrfs_queue_work(fs_info
->submit_workers
,
513 /* unplug every 64 requests just for good measure */
514 if (batch_run
% 64 == 0) {
515 blk_finish_plug(&plug
);
516 blk_start_plug(&plug
);
525 spin_lock(&device
->io_lock
);
526 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
528 spin_unlock(&device
->io_lock
);
531 blk_finish_plug(&plug
);
534 static void pending_bios_fn(struct btrfs_work
*work
)
536 struct btrfs_device
*device
;
538 device
= container_of(work
, struct btrfs_device
, work
);
539 run_scheduled_bios(device
);
543 void btrfs_free_stale_device(struct btrfs_device
*cur_dev
)
545 struct btrfs_fs_devices
*fs_devs
;
546 struct btrfs_device
*dev
;
551 list_for_each_entry(fs_devs
, &fs_uuids
, list
) {
556 if (fs_devs
->seeding
)
559 list_for_each_entry(dev
, &fs_devs
->devices
, dev_list
) {
567 * Todo: This won't be enough. What if the same device
568 * comes back (with new uuid and) with its mapper path?
569 * But for now, this does help as mostly an admin will
570 * either use mapper or non mapper path throughout.
573 del
= strcmp(rcu_str_deref(dev
->name
),
574 rcu_str_deref(cur_dev
->name
));
581 /* delete the stale device */
582 if (fs_devs
->num_devices
== 1) {
583 btrfs_sysfs_remove_fsid(fs_devs
);
584 list_del(&fs_devs
->list
);
585 free_fs_devices(fs_devs
);
588 fs_devs
->num_devices
--;
589 list_del(&dev
->dev_list
);
590 rcu_string_free(dev
->name
);
599 * Add new device to list of registered devices
602 * 1 - first time device is seen
603 * 0 - device already known
606 static noinline
int device_list_add(const char *path
,
607 struct btrfs_super_block
*disk_super
,
608 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
610 struct btrfs_device
*device
;
611 struct btrfs_fs_devices
*fs_devices
;
612 struct rcu_string
*name
;
614 u64 found_transid
= btrfs_super_generation(disk_super
);
616 fs_devices
= find_fsid(disk_super
->fsid
);
618 fs_devices
= alloc_fs_devices(disk_super
->fsid
);
619 if (IS_ERR(fs_devices
))
620 return PTR_ERR(fs_devices
);
622 list_add(&fs_devices
->list
, &fs_uuids
);
626 device
= __find_device(&fs_devices
->devices
, devid
,
627 disk_super
->dev_item
.uuid
);
631 if (fs_devices
->opened
)
634 device
= btrfs_alloc_device(NULL
, &devid
,
635 disk_super
->dev_item
.uuid
);
636 if (IS_ERR(device
)) {
637 /* we can safely leave the fs_devices entry around */
638 return PTR_ERR(device
);
641 name
= rcu_string_strdup(path
, GFP_NOFS
);
646 rcu_assign_pointer(device
->name
, name
);
648 mutex_lock(&fs_devices
->device_list_mutex
);
649 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
650 fs_devices
->num_devices
++;
651 mutex_unlock(&fs_devices
->device_list_mutex
);
654 device
->fs_devices
= fs_devices
;
655 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
657 * When FS is already mounted.
658 * 1. If you are here and if the device->name is NULL that
659 * means this device was missing at time of FS mount.
660 * 2. If you are here and if the device->name is different
661 * from 'path' that means either
662 * a. The same device disappeared and reappeared with
664 * b. The missing-disk-which-was-replaced, has
667 * We must allow 1 and 2a above. But 2b would be a spurious
670 * Further in case of 1 and 2a above, the disk at 'path'
671 * would have missed some transaction when it was away and
672 * in case of 2a the stale bdev has to be updated as well.
673 * 2b must not be allowed at all time.
677 * For now, we do allow update to btrfs_fs_device through the
678 * btrfs dev scan cli after FS has been mounted. We're still
679 * tracking a problem where systems fail mount by subvolume id
680 * when we reject replacement on a mounted FS.
682 if (!fs_devices
->opened
&& found_transid
< device
->generation
) {
684 * That is if the FS is _not_ mounted and if you
685 * are here, that means there is more than one
686 * disk with same uuid and devid.We keep the one
687 * with larger generation number or the last-in if
688 * generation are equal.
693 name
= rcu_string_strdup(path
, GFP_NOFS
);
696 rcu_string_free(device
->name
);
697 rcu_assign_pointer(device
->name
, name
);
698 if (device
->missing
) {
699 fs_devices
->missing_devices
--;
705 * Unmount does not free the btrfs_device struct but would zero
706 * generation along with most of the other members. So just update
707 * it back. We need it to pick the disk with largest generation
710 if (!fs_devices
->opened
)
711 device
->generation
= found_transid
;
714 * if there is new btrfs on an already registered device,
715 * then remove the stale device entry.
718 btrfs_free_stale_device(device
);
720 *fs_devices_ret
= fs_devices
;
725 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
727 struct btrfs_fs_devices
*fs_devices
;
728 struct btrfs_device
*device
;
729 struct btrfs_device
*orig_dev
;
731 fs_devices
= alloc_fs_devices(orig
->fsid
);
732 if (IS_ERR(fs_devices
))
735 mutex_lock(&orig
->device_list_mutex
);
736 fs_devices
->total_devices
= orig
->total_devices
;
738 /* We have held the volume lock, it is safe to get the devices. */
739 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
740 struct rcu_string
*name
;
742 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
748 * This is ok to do without rcu read locked because we hold the
749 * uuid mutex so nothing we touch in here is going to disappear.
751 if (orig_dev
->name
) {
752 name
= rcu_string_strdup(orig_dev
->name
->str
,
758 rcu_assign_pointer(device
->name
, name
);
761 list_add(&device
->dev_list
, &fs_devices
->devices
);
762 device
->fs_devices
= fs_devices
;
763 fs_devices
->num_devices
++;
765 mutex_unlock(&orig
->device_list_mutex
);
768 mutex_unlock(&orig
->device_list_mutex
);
769 free_fs_devices(fs_devices
);
770 return ERR_PTR(-ENOMEM
);
773 void btrfs_close_extra_devices(struct btrfs_fs_devices
*fs_devices
, int step
)
775 struct btrfs_device
*device
, *next
;
776 struct btrfs_device
*latest_dev
= NULL
;
778 mutex_lock(&uuid_mutex
);
780 /* This is the initialized path, it is safe to release the devices. */
781 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
782 if (device
->in_fs_metadata
) {
783 if (!device
->is_tgtdev_for_dev_replace
&&
785 device
->generation
> latest_dev
->generation
)) {
791 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
793 * In the first step, keep the device which has
794 * the correct fsid and the devid that is used
795 * for the dev_replace procedure.
796 * In the second step, the dev_replace state is
797 * read from the device tree and it is known
798 * whether the procedure is really active or
799 * not, which means whether this device is
800 * used or whether it should be removed.
802 if (step
== 0 || device
->is_tgtdev_for_dev_replace
) {
807 blkdev_put(device
->bdev
, device
->mode
);
809 fs_devices
->open_devices
--;
811 if (device
->writeable
) {
812 list_del_init(&device
->dev_alloc_list
);
813 device
->writeable
= 0;
814 if (!device
->is_tgtdev_for_dev_replace
)
815 fs_devices
->rw_devices
--;
817 list_del_init(&device
->dev_list
);
818 fs_devices
->num_devices
--;
819 rcu_string_free(device
->name
);
823 if (fs_devices
->seed
) {
824 fs_devices
= fs_devices
->seed
;
828 fs_devices
->latest_bdev
= latest_dev
->bdev
;
830 mutex_unlock(&uuid_mutex
);
833 static void __free_device(struct work_struct
*work
)
835 struct btrfs_device
*device
;
837 device
= container_of(work
, struct btrfs_device
, rcu_work
);
838 rcu_string_free(device
->name
);
842 static void free_device(struct rcu_head
*head
)
844 struct btrfs_device
*device
;
846 device
= container_of(head
, struct btrfs_device
, rcu
);
848 INIT_WORK(&device
->rcu_work
, __free_device
);
849 schedule_work(&device
->rcu_work
);
852 static void btrfs_close_bdev(struct btrfs_device
*device
)
854 if (device
->bdev
&& device
->writeable
) {
855 sync_blockdev(device
->bdev
);
856 invalidate_bdev(device
->bdev
);
860 blkdev_put(device
->bdev
, device
->mode
);
863 static void btrfs_prepare_close_one_device(struct btrfs_device
*device
)
865 struct btrfs_fs_devices
*fs_devices
= device
->fs_devices
;
866 struct btrfs_device
*new_device
;
867 struct rcu_string
*name
;
870 fs_devices
->open_devices
--;
872 if (device
->writeable
&&
873 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
874 list_del_init(&device
->dev_alloc_list
);
875 fs_devices
->rw_devices
--;
879 fs_devices
->missing_devices
--;
881 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
883 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
885 /* Safe because we are under uuid_mutex */
887 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
888 BUG_ON(!name
); /* -ENOMEM */
889 rcu_assign_pointer(new_device
->name
, name
);
892 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
893 new_device
->fs_devices
= device
->fs_devices
;
896 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
898 struct btrfs_device
*device
, *tmp
;
899 struct list_head pending_put
;
901 INIT_LIST_HEAD(&pending_put
);
903 if (--fs_devices
->opened
> 0)
906 mutex_lock(&fs_devices
->device_list_mutex
);
907 list_for_each_entry_safe(device
, tmp
, &fs_devices
->devices
, dev_list
) {
908 btrfs_prepare_close_one_device(device
);
909 list_add(&device
->dev_list
, &pending_put
);
911 mutex_unlock(&fs_devices
->device_list_mutex
);
914 * btrfs_show_devname() is using the device_list_mutex,
915 * sometimes call to blkdev_put() leads vfs calling
916 * into this func. So do put outside of device_list_mutex,
919 while (!list_empty(&pending_put
)) {
920 device
= list_first_entry(&pending_put
,
921 struct btrfs_device
, dev_list
);
922 list_del(&device
->dev_list
);
923 btrfs_close_bdev(device
);
924 call_rcu(&device
->rcu
, free_device
);
927 WARN_ON(fs_devices
->open_devices
);
928 WARN_ON(fs_devices
->rw_devices
);
929 fs_devices
->opened
= 0;
930 fs_devices
->seeding
= 0;
935 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
937 struct btrfs_fs_devices
*seed_devices
= NULL
;
940 mutex_lock(&uuid_mutex
);
941 ret
= __btrfs_close_devices(fs_devices
);
942 if (!fs_devices
->opened
) {
943 seed_devices
= fs_devices
->seed
;
944 fs_devices
->seed
= NULL
;
946 mutex_unlock(&uuid_mutex
);
948 while (seed_devices
) {
949 fs_devices
= seed_devices
;
950 seed_devices
= fs_devices
->seed
;
951 __btrfs_close_devices(fs_devices
);
952 free_fs_devices(fs_devices
);
955 * Wait for rcu kworkers under __btrfs_close_devices
956 * to finish all blkdev_puts so device is really
957 * free when umount is done.
963 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
964 fmode_t flags
, void *holder
)
966 struct request_queue
*q
;
967 struct block_device
*bdev
;
968 struct list_head
*head
= &fs_devices
->devices
;
969 struct btrfs_device
*device
;
970 struct btrfs_device
*latest_dev
= NULL
;
971 struct buffer_head
*bh
;
972 struct btrfs_super_block
*disk_super
;
979 list_for_each_entry(device
, head
, dev_list
) {
985 /* Just open everything we can; ignore failures here */
986 if (btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
990 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
991 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
992 if (devid
!= device
->devid
)
995 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
999 device
->generation
= btrfs_super_generation(disk_super
);
1001 device
->generation
> latest_dev
->generation
)
1002 latest_dev
= device
;
1004 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
1005 device
->writeable
= 0;
1007 device
->writeable
= !bdev_read_only(bdev
);
1011 q
= bdev_get_queue(bdev
);
1012 if (blk_queue_discard(q
))
1013 device
->can_discard
= 1;
1015 device
->bdev
= bdev
;
1016 device
->in_fs_metadata
= 0;
1017 device
->mode
= flags
;
1019 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
1020 fs_devices
->rotating
= 1;
1022 fs_devices
->open_devices
++;
1023 if (device
->writeable
&&
1024 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
1025 fs_devices
->rw_devices
++;
1026 list_add(&device
->dev_alloc_list
,
1027 &fs_devices
->alloc_list
);
1034 blkdev_put(bdev
, flags
);
1037 if (fs_devices
->open_devices
== 0) {
1041 fs_devices
->seeding
= seeding
;
1042 fs_devices
->opened
= 1;
1043 fs_devices
->latest_bdev
= latest_dev
->bdev
;
1044 fs_devices
->total_rw_bytes
= 0;
1049 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
1050 fmode_t flags
, void *holder
)
1054 mutex_lock(&uuid_mutex
);
1055 if (fs_devices
->opened
) {
1056 fs_devices
->opened
++;
1059 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
1061 mutex_unlock(&uuid_mutex
);
1065 void btrfs_release_disk_super(struct page
*page
)
1071 int btrfs_read_disk_super(struct block_device
*bdev
, u64 bytenr
,
1072 struct page
**page
, struct btrfs_super_block
**disk_super
)
1077 /* make sure our super fits in the device */
1078 if (bytenr
+ PAGE_SIZE
>= i_size_read(bdev
->bd_inode
))
1081 /* make sure our super fits in the page */
1082 if (sizeof(**disk_super
) > PAGE_SIZE
)
1085 /* make sure our super doesn't straddle pages on disk */
1086 index
= bytenr
>> PAGE_SHIFT
;
1087 if ((bytenr
+ sizeof(**disk_super
) - 1) >> PAGE_SHIFT
!= index
)
1090 /* pull in the page with our super */
1091 *page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
1094 if (IS_ERR_OR_NULL(*page
))
1099 /* align our pointer to the offset of the super block */
1100 *disk_super
= p
+ (bytenr
& ~PAGE_MASK
);
1102 if (btrfs_super_bytenr(*disk_super
) != bytenr
||
1103 btrfs_super_magic(*disk_super
) != BTRFS_MAGIC
) {
1104 btrfs_release_disk_super(*page
);
1108 if ((*disk_super
)->label
[0] &&
1109 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1])
1110 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
1116 * Look for a btrfs signature on a device. This may be called out of the mount path
1117 * and we are not allowed to call set_blocksize during the scan. The superblock
1118 * is read via pagecache
1120 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
1121 struct btrfs_fs_devices
**fs_devices_ret
)
1123 struct btrfs_super_block
*disk_super
;
1124 struct block_device
*bdev
;
1133 * we would like to check all the supers, but that would make
1134 * a btrfs mount succeed after a mkfs from a different FS.
1135 * So, we need to add a special mount option to scan for
1136 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1138 bytenr
= btrfs_sb_offset(0);
1139 flags
|= FMODE_EXCL
;
1140 mutex_lock(&uuid_mutex
);
1142 bdev
= blkdev_get_by_path(path
, flags
, holder
);
1144 ret
= PTR_ERR(bdev
);
1148 if (btrfs_read_disk_super(bdev
, bytenr
, &page
, &disk_super
))
1149 goto error_bdev_put
;
1151 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1152 transid
= btrfs_super_generation(disk_super
);
1153 total_devices
= btrfs_super_num_devices(disk_super
);
1155 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
1157 if (disk_super
->label
[0]) {
1158 pr_info("BTRFS: device label %s ", disk_super
->label
);
1160 pr_info("BTRFS: device fsid %pU ", disk_super
->fsid
);
1163 pr_cont("devid %llu transid %llu %s\n", devid
, transid
, path
);
1166 if (!ret
&& fs_devices_ret
)
1167 (*fs_devices_ret
)->total_devices
= total_devices
;
1169 btrfs_release_disk_super(page
);
1172 blkdev_put(bdev
, flags
);
1174 mutex_unlock(&uuid_mutex
);
1178 /* helper to account the used device space in the range */
1179 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
1180 u64 end
, u64
*length
)
1182 struct btrfs_key key
;
1183 struct btrfs_root
*root
= device
->dev_root
;
1184 struct btrfs_dev_extent
*dev_extent
;
1185 struct btrfs_path
*path
;
1189 struct extent_buffer
*l
;
1193 if (start
>= device
->total_bytes
|| device
->is_tgtdev_for_dev_replace
)
1196 path
= btrfs_alloc_path();
1199 path
->reada
= READA_FORWARD
;
1201 key
.objectid
= device
->devid
;
1203 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1205 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1209 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1216 slot
= path
->slots
[0];
1217 if (slot
>= btrfs_header_nritems(l
)) {
1218 ret
= btrfs_next_leaf(root
, path
);
1226 btrfs_item_key_to_cpu(l
, &key
, slot
);
1228 if (key
.objectid
< device
->devid
)
1231 if (key
.objectid
> device
->devid
)
1234 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1237 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1238 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1240 if (key
.offset
<= start
&& extent_end
> end
) {
1241 *length
= end
- start
+ 1;
1243 } else if (key
.offset
<= start
&& extent_end
> start
)
1244 *length
+= extent_end
- start
;
1245 else if (key
.offset
> start
&& extent_end
<= end
)
1246 *length
+= extent_end
- key
.offset
;
1247 else if (key
.offset
> start
&& key
.offset
<= end
) {
1248 *length
+= end
- key
.offset
+ 1;
1250 } else if (key
.offset
> end
)
1258 btrfs_free_path(path
);
1262 static int contains_pending_extent(struct btrfs_transaction
*transaction
,
1263 struct btrfs_device
*device
,
1264 u64
*start
, u64 len
)
1266 struct btrfs_fs_info
*fs_info
= device
->dev_root
->fs_info
;
1267 struct extent_map
*em
;
1268 struct list_head
*search_list
= &fs_info
->pinned_chunks
;
1270 u64 physical_start
= *start
;
1273 search_list
= &transaction
->pending_chunks
;
1275 list_for_each_entry(em
, search_list
, list
) {
1276 struct map_lookup
*map
;
1279 map
= em
->map_lookup
;
1280 for (i
= 0; i
< map
->num_stripes
; i
++) {
1283 if (map
->stripes
[i
].dev
!= device
)
1285 if (map
->stripes
[i
].physical
>= physical_start
+ len
||
1286 map
->stripes
[i
].physical
+ em
->orig_block_len
<=
1290 * Make sure that while processing the pinned list we do
1291 * not override our *start with a lower value, because
1292 * we can have pinned chunks that fall within this
1293 * device hole and that have lower physical addresses
1294 * than the pending chunks we processed before. If we
1295 * do not take this special care we can end up getting
1296 * 2 pending chunks that start at the same physical
1297 * device offsets because the end offset of a pinned
1298 * chunk can be equal to the start offset of some
1301 end
= map
->stripes
[i
].physical
+ em
->orig_block_len
;
1308 if (search_list
!= &fs_info
->pinned_chunks
) {
1309 search_list
= &fs_info
->pinned_chunks
;
1318 * find_free_dev_extent_start - find free space in the specified device
1319 * @device: the device which we search the free space in
1320 * @num_bytes: the size of the free space that we need
1321 * @search_start: the position from which to begin the search
1322 * @start: store the start of the free space.
1323 * @len: the size of the free space. that we find, or the size
1324 * of the max free space if we don't find suitable free space
1326 * this uses a pretty simple search, the expectation is that it is
1327 * called very infrequently and that a given device has a small number
1330 * @start is used to store the start of the free space if we find. But if we
1331 * don't find suitable free space, it will be used to store the start position
1332 * of the max free space.
1334 * @len is used to store the size of the free space that we find.
1335 * But if we don't find suitable free space, it is used to store the size of
1336 * the max free space.
1338 int find_free_dev_extent_start(struct btrfs_transaction
*transaction
,
1339 struct btrfs_device
*device
, u64 num_bytes
,
1340 u64 search_start
, u64
*start
, u64
*len
)
1342 struct btrfs_key key
;
1343 struct btrfs_root
*root
= device
->dev_root
;
1344 struct btrfs_dev_extent
*dev_extent
;
1345 struct btrfs_path
*path
;
1350 u64 search_end
= device
->total_bytes
;
1353 struct extent_buffer
*l
;
1354 u64 min_search_start
;
1357 * We don't want to overwrite the superblock on the drive nor any area
1358 * used by the boot loader (grub for example), so we make sure to start
1359 * at an offset of at least 1MB.
1361 min_search_start
= max(root
->fs_info
->alloc_start
, 1024ull * 1024);
1362 search_start
= max(search_start
, min_search_start
);
1364 path
= btrfs_alloc_path();
1368 max_hole_start
= search_start
;
1372 if (search_start
>= search_end
|| device
->is_tgtdev_for_dev_replace
) {
1377 path
->reada
= READA_FORWARD
;
1378 path
->search_commit_root
= 1;
1379 path
->skip_locking
= 1;
1381 key
.objectid
= device
->devid
;
1382 key
.offset
= search_start
;
1383 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1385 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1389 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1396 slot
= path
->slots
[0];
1397 if (slot
>= btrfs_header_nritems(l
)) {
1398 ret
= btrfs_next_leaf(root
, path
);
1406 btrfs_item_key_to_cpu(l
, &key
, slot
);
1408 if (key
.objectid
< device
->devid
)
1411 if (key
.objectid
> device
->devid
)
1414 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1417 if (key
.offset
> search_start
) {
1418 hole_size
= key
.offset
- search_start
;
1421 * Have to check before we set max_hole_start, otherwise
1422 * we could end up sending back this offset anyway.
1424 if (contains_pending_extent(transaction
, device
,
1427 if (key
.offset
>= search_start
) {
1428 hole_size
= key
.offset
- search_start
;
1435 if (hole_size
> max_hole_size
) {
1436 max_hole_start
= search_start
;
1437 max_hole_size
= hole_size
;
1441 * If this free space is greater than which we need,
1442 * it must be the max free space that we have found
1443 * until now, so max_hole_start must point to the start
1444 * of this free space and the length of this free space
1445 * is stored in max_hole_size. Thus, we return
1446 * max_hole_start and max_hole_size and go back to the
1449 if (hole_size
>= num_bytes
) {
1455 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1456 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1458 if (extent_end
> search_start
)
1459 search_start
= extent_end
;
1466 * At this point, search_start should be the end of
1467 * allocated dev extents, and when shrinking the device,
1468 * search_end may be smaller than search_start.
1470 if (search_end
> search_start
) {
1471 hole_size
= search_end
- search_start
;
1473 if (contains_pending_extent(transaction
, device
, &search_start
,
1475 btrfs_release_path(path
);
1479 if (hole_size
> max_hole_size
) {
1480 max_hole_start
= search_start
;
1481 max_hole_size
= hole_size
;
1486 if (max_hole_size
< num_bytes
)
1492 btrfs_free_path(path
);
1493 *start
= max_hole_start
;
1495 *len
= max_hole_size
;
1499 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
1500 struct btrfs_device
*device
, u64 num_bytes
,
1501 u64
*start
, u64
*len
)
1503 /* FIXME use last free of some kind */
1504 return find_free_dev_extent_start(trans
->transaction
, device
,
1505 num_bytes
, 0, start
, len
);
1508 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1509 struct btrfs_device
*device
,
1510 u64 start
, u64
*dev_extent_len
)
1513 struct btrfs_path
*path
;
1514 struct btrfs_root
*root
= device
->dev_root
;
1515 struct btrfs_key key
;
1516 struct btrfs_key found_key
;
1517 struct extent_buffer
*leaf
= NULL
;
1518 struct btrfs_dev_extent
*extent
= NULL
;
1520 path
= btrfs_alloc_path();
1524 key
.objectid
= device
->devid
;
1526 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1528 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1530 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1531 BTRFS_DEV_EXTENT_KEY
);
1534 leaf
= path
->nodes
[0];
1535 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1536 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1537 struct btrfs_dev_extent
);
1538 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1539 btrfs_dev_extent_length(leaf
, extent
) < start
);
1541 btrfs_release_path(path
);
1543 } else if (ret
== 0) {
1544 leaf
= path
->nodes
[0];
1545 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1546 struct btrfs_dev_extent
);
1548 btrfs_handle_fs_error(root
->fs_info
, ret
, "Slot search failed");
1552 *dev_extent_len
= btrfs_dev_extent_length(leaf
, extent
);
1554 ret
= btrfs_del_item(trans
, root
, path
);
1556 btrfs_handle_fs_error(root
->fs_info
, ret
,
1557 "Failed to remove dev extent item");
1559 set_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &trans
->transaction
->flags
);
1562 btrfs_free_path(path
);
1566 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1567 struct btrfs_device
*device
,
1568 u64 chunk_tree
, u64 chunk_objectid
,
1569 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1572 struct btrfs_path
*path
;
1573 struct btrfs_root
*root
= device
->dev_root
;
1574 struct btrfs_dev_extent
*extent
;
1575 struct extent_buffer
*leaf
;
1576 struct btrfs_key key
;
1578 WARN_ON(!device
->in_fs_metadata
);
1579 WARN_ON(device
->is_tgtdev_for_dev_replace
);
1580 path
= btrfs_alloc_path();
1584 key
.objectid
= device
->devid
;
1586 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1587 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1592 leaf
= path
->nodes
[0];
1593 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1594 struct btrfs_dev_extent
);
1595 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
1596 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
1597 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1599 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
1600 btrfs_dev_extent_chunk_tree_uuid(extent
), BTRFS_UUID_SIZE
);
1602 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1603 btrfs_mark_buffer_dirty(leaf
);
1605 btrfs_free_path(path
);
1609 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1611 struct extent_map_tree
*em_tree
;
1612 struct extent_map
*em
;
1616 em_tree
= &fs_info
->mapping_tree
.map_tree
;
1617 read_lock(&em_tree
->lock
);
1618 n
= rb_last(&em_tree
->map
);
1620 em
= rb_entry(n
, struct extent_map
, rb_node
);
1621 ret
= em
->start
+ em
->len
;
1623 read_unlock(&em_tree
->lock
);
1628 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1632 struct btrfs_key key
;
1633 struct btrfs_key found_key
;
1634 struct btrfs_path
*path
;
1636 path
= btrfs_alloc_path();
1640 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1641 key
.type
= BTRFS_DEV_ITEM_KEY
;
1642 key
.offset
= (u64
)-1;
1644 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1648 BUG_ON(ret
== 0); /* Corruption */
1650 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1651 BTRFS_DEV_ITEMS_OBJECTID
,
1652 BTRFS_DEV_ITEM_KEY
);
1656 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1658 *devid_ret
= found_key
.offset
+ 1;
1662 btrfs_free_path(path
);
1667 * the device information is stored in the chunk root
1668 * the btrfs_device struct should be fully filled in
1670 static int btrfs_add_device(struct btrfs_trans_handle
*trans
,
1671 struct btrfs_root
*root
,
1672 struct btrfs_device
*device
)
1675 struct btrfs_path
*path
;
1676 struct btrfs_dev_item
*dev_item
;
1677 struct extent_buffer
*leaf
;
1678 struct btrfs_key key
;
1681 root
= root
->fs_info
->chunk_root
;
1683 path
= btrfs_alloc_path();
1687 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1688 key
.type
= BTRFS_DEV_ITEM_KEY
;
1689 key
.offset
= device
->devid
;
1691 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1696 leaf
= path
->nodes
[0];
1697 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1699 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1700 btrfs_set_device_generation(leaf
, dev_item
, 0);
1701 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1702 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1703 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1704 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1705 btrfs_set_device_total_bytes(leaf
, dev_item
,
1706 btrfs_device_get_disk_total_bytes(device
));
1707 btrfs_set_device_bytes_used(leaf
, dev_item
,
1708 btrfs_device_get_bytes_used(device
));
1709 btrfs_set_device_group(leaf
, dev_item
, 0);
1710 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1711 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1712 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1714 ptr
= btrfs_device_uuid(dev_item
);
1715 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1716 ptr
= btrfs_device_fsid(dev_item
);
1717 write_extent_buffer(leaf
, root
->fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
1718 btrfs_mark_buffer_dirty(leaf
);
1722 btrfs_free_path(path
);
1727 * Function to update ctime/mtime for a given device path.
1728 * Mainly used for ctime/mtime based probe like libblkid.
1730 static void update_dev_time(char *path_name
)
1734 filp
= filp_open(path_name
, O_RDWR
, 0);
1737 file_update_time(filp
);
1738 filp_close(filp
, NULL
);
1741 static int btrfs_rm_dev_item(struct btrfs_root
*root
,
1742 struct btrfs_device
*device
)
1745 struct btrfs_path
*path
;
1746 struct btrfs_key key
;
1747 struct btrfs_trans_handle
*trans
;
1749 root
= root
->fs_info
->chunk_root
;
1751 path
= btrfs_alloc_path();
1755 trans
= btrfs_start_transaction(root
, 0);
1756 if (IS_ERR(trans
)) {
1757 btrfs_free_path(path
);
1758 return PTR_ERR(trans
);
1760 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1761 key
.type
= BTRFS_DEV_ITEM_KEY
;
1762 key
.offset
= device
->devid
;
1764 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1773 ret
= btrfs_del_item(trans
, root
, path
);
1777 btrfs_free_path(path
);
1778 btrfs_commit_transaction(trans
, root
);
1783 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1784 * filesystem. It's up to the caller to adjust that number regarding eg. device
1787 static int btrfs_check_raid_min_devices(struct btrfs_fs_info
*fs_info
,
1795 seq
= read_seqbegin(&fs_info
->profiles_lock
);
1797 all_avail
= fs_info
->avail_data_alloc_bits
|
1798 fs_info
->avail_system_alloc_bits
|
1799 fs_info
->avail_metadata_alloc_bits
;
1800 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
1802 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
1803 if (!(all_avail
& btrfs_raid_group
[i
]))
1806 if (num_devices
< btrfs_raid_array
[i
].devs_min
) {
1807 int ret
= btrfs_raid_mindev_error
[i
];
1817 struct btrfs_device
*btrfs_find_next_active_device(struct btrfs_fs_devices
*fs_devs
,
1818 struct btrfs_device
*device
)
1820 struct btrfs_device
*next_device
;
1822 list_for_each_entry(next_device
, &fs_devs
->devices
, dev_list
) {
1823 if (next_device
!= device
&&
1824 !next_device
->missing
&& next_device
->bdev
)
1832 * Helper function to check if the given device is part of s_bdev / latest_bdev
1833 * and replace it with the provided or the next active device, in the context
1834 * where this function called, there should be always be another device (or
1835 * this_dev) which is active.
1837 void btrfs_assign_next_active_device(struct btrfs_fs_info
*fs_info
,
1838 struct btrfs_device
*device
, struct btrfs_device
*this_dev
)
1840 struct btrfs_device
*next_device
;
1843 next_device
= this_dev
;
1845 next_device
= btrfs_find_next_active_device(fs_info
->fs_devices
,
1847 ASSERT(next_device
);
1849 if (fs_info
->sb
->s_bdev
&&
1850 (fs_info
->sb
->s_bdev
== device
->bdev
))
1851 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1853 if (fs_info
->fs_devices
->latest_bdev
== device
->bdev
)
1854 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1857 int btrfs_rm_device(struct btrfs_root
*root
, char *device_path
, u64 devid
)
1859 struct btrfs_device
*device
;
1860 struct btrfs_fs_devices
*cur_devices
;
1863 bool clear_super
= false;
1865 mutex_lock(&uuid_mutex
);
1867 num_devices
= root
->fs_info
->fs_devices
->num_devices
;
1868 btrfs_dev_replace_lock(&root
->fs_info
->dev_replace
, 0);
1869 if (btrfs_dev_replace_is_ongoing(&root
->fs_info
->dev_replace
)) {
1870 WARN_ON(num_devices
< 1);
1873 btrfs_dev_replace_unlock(&root
->fs_info
->dev_replace
, 0);
1875 ret
= btrfs_check_raid_min_devices(root
->fs_info
, num_devices
- 1);
1879 ret
= btrfs_find_device_by_devspec(root
, devid
, device_path
,
1884 if (device
->is_tgtdev_for_dev_replace
) {
1885 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
1889 if (device
->writeable
&& root
->fs_info
->fs_devices
->rw_devices
== 1) {
1890 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
1894 if (device
->writeable
) {
1896 list_del_init(&device
->dev_alloc_list
);
1897 device
->fs_devices
->rw_devices
--;
1898 unlock_chunks(root
);
1902 mutex_unlock(&uuid_mutex
);
1903 ret
= btrfs_shrink_device(device
, 0);
1904 mutex_lock(&uuid_mutex
);
1909 * TODO: the superblock still includes this device in its num_devices
1910 * counter although write_all_supers() is not locked out. This
1911 * could give a filesystem state which requires a degraded mount.
1913 ret
= btrfs_rm_dev_item(root
->fs_info
->chunk_root
, device
);
1917 device
->in_fs_metadata
= 0;
1918 btrfs_scrub_cancel_dev(root
->fs_info
, device
);
1921 * the device list mutex makes sure that we don't change
1922 * the device list while someone else is writing out all
1923 * the device supers. Whoever is writing all supers, should
1924 * lock the device list mutex before getting the number of
1925 * devices in the super block (super_copy). Conversely,
1926 * whoever updates the number of devices in the super block
1927 * (super_copy) should hold the device list mutex.
1930 cur_devices
= device
->fs_devices
;
1931 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1932 list_del_rcu(&device
->dev_list
);
1934 device
->fs_devices
->num_devices
--;
1935 device
->fs_devices
->total_devices
--;
1937 if (device
->missing
)
1938 device
->fs_devices
->missing_devices
--;
1940 btrfs_assign_next_active_device(root
->fs_info
, device
, NULL
);
1943 device
->fs_devices
->open_devices
--;
1944 /* remove sysfs entry */
1945 btrfs_sysfs_rm_device_link(root
->fs_info
->fs_devices
, device
);
1948 num_devices
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
1949 btrfs_set_super_num_devices(root
->fs_info
->super_copy
, num_devices
);
1950 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1953 * at this point, the device is zero sized and detached from
1954 * the devices list. All that's left is to zero out the old
1955 * supers and free the device.
1957 if (device
->writeable
)
1958 btrfs_scratch_superblocks(device
->bdev
, device
->name
->str
);
1960 btrfs_close_bdev(device
);
1961 call_rcu(&device
->rcu
, free_device
);
1963 if (cur_devices
->open_devices
== 0) {
1964 struct btrfs_fs_devices
*fs_devices
;
1965 fs_devices
= root
->fs_info
->fs_devices
;
1966 while (fs_devices
) {
1967 if (fs_devices
->seed
== cur_devices
) {
1968 fs_devices
->seed
= cur_devices
->seed
;
1971 fs_devices
= fs_devices
->seed
;
1973 cur_devices
->seed
= NULL
;
1974 __btrfs_close_devices(cur_devices
);
1975 free_fs_devices(cur_devices
);
1978 root
->fs_info
->num_tolerated_disk_barrier_failures
=
1979 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
1982 mutex_unlock(&uuid_mutex
);
1986 if (device
->writeable
) {
1988 list_add(&device
->dev_alloc_list
,
1989 &root
->fs_info
->fs_devices
->alloc_list
);
1990 device
->fs_devices
->rw_devices
++;
1991 unlock_chunks(root
);
1996 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info
*fs_info
,
1997 struct btrfs_device
*srcdev
)
1999 struct btrfs_fs_devices
*fs_devices
;
2001 WARN_ON(!mutex_is_locked(&fs_info
->fs_devices
->device_list_mutex
));
2004 * in case of fs with no seed, srcdev->fs_devices will point
2005 * to fs_devices of fs_info. However when the dev being replaced is
2006 * a seed dev it will point to the seed's local fs_devices. In short
2007 * srcdev will have its correct fs_devices in both the cases.
2009 fs_devices
= srcdev
->fs_devices
;
2011 list_del_rcu(&srcdev
->dev_list
);
2012 list_del_rcu(&srcdev
->dev_alloc_list
);
2013 fs_devices
->num_devices
--;
2014 if (srcdev
->missing
)
2015 fs_devices
->missing_devices
--;
2017 if (srcdev
->writeable
)
2018 fs_devices
->rw_devices
--;
2021 fs_devices
->open_devices
--;
2024 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info
*fs_info
,
2025 struct btrfs_device
*srcdev
)
2027 struct btrfs_fs_devices
*fs_devices
= srcdev
->fs_devices
;
2029 if (srcdev
->writeable
) {
2030 /* zero out the old super if it is writable */
2031 btrfs_scratch_superblocks(srcdev
->bdev
, srcdev
->name
->str
);
2034 btrfs_close_bdev(srcdev
);
2036 call_rcu(&srcdev
->rcu
, free_device
);
2039 * unless fs_devices is seed fs, num_devices shouldn't go
2042 BUG_ON(!fs_devices
->num_devices
&& !fs_devices
->seeding
);
2044 /* if this is no devs we rather delete the fs_devices */
2045 if (!fs_devices
->num_devices
) {
2046 struct btrfs_fs_devices
*tmp_fs_devices
;
2048 tmp_fs_devices
= fs_info
->fs_devices
;
2049 while (tmp_fs_devices
) {
2050 if (tmp_fs_devices
->seed
== fs_devices
) {
2051 tmp_fs_devices
->seed
= fs_devices
->seed
;
2054 tmp_fs_devices
= tmp_fs_devices
->seed
;
2056 fs_devices
->seed
= NULL
;
2057 __btrfs_close_devices(fs_devices
);
2058 free_fs_devices(fs_devices
);
2062 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
2063 struct btrfs_device
*tgtdev
)
2065 mutex_lock(&uuid_mutex
);
2067 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2069 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, tgtdev
);
2072 fs_info
->fs_devices
->open_devices
--;
2074 fs_info
->fs_devices
->num_devices
--;
2076 btrfs_assign_next_active_device(fs_info
, tgtdev
, NULL
);
2078 list_del_rcu(&tgtdev
->dev_list
);
2080 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2081 mutex_unlock(&uuid_mutex
);
2084 * The update_dev_time() with in btrfs_scratch_superblocks()
2085 * may lead to a call to btrfs_show_devname() which will try
2086 * to hold device_list_mutex. And here this device
2087 * is already out of device list, so we don't have to hold
2088 * the device_list_mutex lock.
2090 btrfs_scratch_superblocks(tgtdev
->bdev
, tgtdev
->name
->str
);
2092 btrfs_close_bdev(tgtdev
);
2093 call_rcu(&tgtdev
->rcu
, free_device
);
2096 static int btrfs_find_device_by_path(struct btrfs_root
*root
, char *device_path
,
2097 struct btrfs_device
**device
)
2100 struct btrfs_super_block
*disk_super
;
2103 struct block_device
*bdev
;
2104 struct buffer_head
*bh
;
2107 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
2108 root
->fs_info
->bdev_holder
, 0, &bdev
, &bh
);
2111 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
2112 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
2113 dev_uuid
= disk_super
->dev_item
.uuid
;
2114 *device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
2119 blkdev_put(bdev
, FMODE_READ
);
2123 int btrfs_find_device_missing_or_by_path(struct btrfs_root
*root
,
2125 struct btrfs_device
**device
)
2128 if (strcmp(device_path
, "missing") == 0) {
2129 struct list_head
*devices
;
2130 struct btrfs_device
*tmp
;
2132 devices
= &root
->fs_info
->fs_devices
->devices
;
2134 * It is safe to read the devices since the volume_mutex
2135 * is held by the caller.
2137 list_for_each_entry(tmp
, devices
, dev_list
) {
2138 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
2145 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
2149 return btrfs_find_device_by_path(root
, device_path
, device
);
2154 * Lookup a device given by device id, or the path if the id is 0.
2156 int btrfs_find_device_by_devspec(struct btrfs_root
*root
, u64 devid
,
2158 struct btrfs_device
**device
)
2164 *device
= btrfs_find_device(root
->fs_info
, devid
, NULL
,
2169 if (!devpath
|| !devpath
[0])
2172 ret
= btrfs_find_device_missing_or_by_path(root
, devpath
,
2179 * does all the dirty work required for changing file system's UUID.
2181 static int btrfs_prepare_sprout(struct btrfs_root
*root
)
2183 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2184 struct btrfs_fs_devices
*old_devices
;
2185 struct btrfs_fs_devices
*seed_devices
;
2186 struct btrfs_super_block
*disk_super
= root
->fs_info
->super_copy
;
2187 struct btrfs_device
*device
;
2190 BUG_ON(!mutex_is_locked(&uuid_mutex
));
2191 if (!fs_devices
->seeding
)
2194 seed_devices
= __alloc_fs_devices();
2195 if (IS_ERR(seed_devices
))
2196 return PTR_ERR(seed_devices
);
2198 old_devices
= clone_fs_devices(fs_devices
);
2199 if (IS_ERR(old_devices
)) {
2200 kfree(seed_devices
);
2201 return PTR_ERR(old_devices
);
2204 list_add(&old_devices
->list
, &fs_uuids
);
2206 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
2207 seed_devices
->opened
= 1;
2208 INIT_LIST_HEAD(&seed_devices
->devices
);
2209 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
2210 mutex_init(&seed_devices
->device_list_mutex
);
2212 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2213 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
2215 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
)
2216 device
->fs_devices
= seed_devices
;
2219 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
2220 unlock_chunks(root
);
2222 fs_devices
->seeding
= 0;
2223 fs_devices
->num_devices
= 0;
2224 fs_devices
->open_devices
= 0;
2225 fs_devices
->missing_devices
= 0;
2226 fs_devices
->rotating
= 0;
2227 fs_devices
->seed
= seed_devices
;
2229 generate_random_uuid(fs_devices
->fsid
);
2230 memcpy(root
->fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2231 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2232 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2234 super_flags
= btrfs_super_flags(disk_super
) &
2235 ~BTRFS_SUPER_FLAG_SEEDING
;
2236 btrfs_set_super_flags(disk_super
, super_flags
);
2242 * Store the expected generation for seed devices in device items.
2244 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
2245 struct btrfs_root
*root
)
2247 struct btrfs_path
*path
;
2248 struct extent_buffer
*leaf
;
2249 struct btrfs_dev_item
*dev_item
;
2250 struct btrfs_device
*device
;
2251 struct btrfs_key key
;
2252 u8 fs_uuid
[BTRFS_UUID_SIZE
];
2253 u8 dev_uuid
[BTRFS_UUID_SIZE
];
2257 path
= btrfs_alloc_path();
2261 root
= root
->fs_info
->chunk_root
;
2262 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2264 key
.type
= BTRFS_DEV_ITEM_KEY
;
2267 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2271 leaf
= path
->nodes
[0];
2273 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2274 ret
= btrfs_next_leaf(root
, path
);
2279 leaf
= path
->nodes
[0];
2280 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2281 btrfs_release_path(path
);
2285 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2286 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2287 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2290 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2291 struct btrfs_dev_item
);
2292 devid
= btrfs_device_id(leaf
, dev_item
);
2293 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2295 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2297 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
2299 BUG_ON(!device
); /* Logic error */
2301 if (device
->fs_devices
->seeding
) {
2302 btrfs_set_device_generation(leaf
, dev_item
,
2303 device
->generation
);
2304 btrfs_mark_buffer_dirty(leaf
);
2312 btrfs_free_path(path
);
2316 int btrfs_init_new_device(struct btrfs_root
*root
, char *device_path
)
2318 struct request_queue
*q
;
2319 struct btrfs_trans_handle
*trans
;
2320 struct btrfs_device
*device
;
2321 struct block_device
*bdev
;
2322 struct list_head
*devices
;
2323 struct super_block
*sb
= root
->fs_info
->sb
;
2324 struct rcu_string
*name
;
2326 int seeding_dev
= 0;
2329 if ((sb
->s_flags
& MS_RDONLY
) && !root
->fs_info
->fs_devices
->seeding
)
2332 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2333 root
->fs_info
->bdev_holder
);
2335 return PTR_ERR(bdev
);
2337 if (root
->fs_info
->fs_devices
->seeding
) {
2339 down_write(&sb
->s_umount
);
2340 mutex_lock(&uuid_mutex
);
2343 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2345 devices
= &root
->fs_info
->fs_devices
->devices
;
2347 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2348 list_for_each_entry(device
, devices
, dev_list
) {
2349 if (device
->bdev
== bdev
) {
2352 &root
->fs_info
->fs_devices
->device_list_mutex
);
2356 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2358 device
= btrfs_alloc_device(root
->fs_info
, NULL
, NULL
);
2359 if (IS_ERR(device
)) {
2360 /* we can safely leave the fs_devices entry around */
2361 ret
= PTR_ERR(device
);
2365 name
= rcu_string_strdup(device_path
, GFP_KERNEL
);
2371 rcu_assign_pointer(device
->name
, name
);
2373 trans
= btrfs_start_transaction(root
, 0);
2374 if (IS_ERR(trans
)) {
2375 rcu_string_free(device
->name
);
2377 ret
= PTR_ERR(trans
);
2381 q
= bdev_get_queue(bdev
);
2382 if (blk_queue_discard(q
))
2383 device
->can_discard
= 1;
2384 device
->writeable
= 1;
2385 device
->generation
= trans
->transid
;
2386 device
->io_width
= root
->sectorsize
;
2387 device
->io_align
= root
->sectorsize
;
2388 device
->sector_size
= root
->sectorsize
;
2389 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
2390 device
->disk_total_bytes
= device
->total_bytes
;
2391 device
->commit_total_bytes
= device
->total_bytes
;
2392 device
->dev_root
= root
->fs_info
->dev_root
;
2393 device
->bdev
= bdev
;
2394 device
->in_fs_metadata
= 1;
2395 device
->is_tgtdev_for_dev_replace
= 0;
2396 device
->mode
= FMODE_EXCL
;
2397 device
->dev_stats_valid
= 1;
2398 set_blocksize(device
->bdev
, 4096);
2401 sb
->s_flags
&= ~MS_RDONLY
;
2402 ret
= btrfs_prepare_sprout(root
);
2403 BUG_ON(ret
); /* -ENOMEM */
2406 device
->fs_devices
= root
->fs_info
->fs_devices
;
2408 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2410 list_add_rcu(&device
->dev_list
, &root
->fs_info
->fs_devices
->devices
);
2411 list_add(&device
->dev_alloc_list
,
2412 &root
->fs_info
->fs_devices
->alloc_list
);
2413 root
->fs_info
->fs_devices
->num_devices
++;
2414 root
->fs_info
->fs_devices
->open_devices
++;
2415 root
->fs_info
->fs_devices
->rw_devices
++;
2416 root
->fs_info
->fs_devices
->total_devices
++;
2417 root
->fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2419 spin_lock(&root
->fs_info
->free_chunk_lock
);
2420 root
->fs_info
->free_chunk_space
+= device
->total_bytes
;
2421 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2423 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
2424 root
->fs_info
->fs_devices
->rotating
= 1;
2426 tmp
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
2427 btrfs_set_super_total_bytes(root
->fs_info
->super_copy
,
2428 tmp
+ device
->total_bytes
);
2430 tmp
= btrfs_super_num_devices(root
->fs_info
->super_copy
);
2431 btrfs_set_super_num_devices(root
->fs_info
->super_copy
,
2434 /* add sysfs device entry */
2435 btrfs_sysfs_add_device_link(root
->fs_info
->fs_devices
, device
);
2438 * we've got more storage, clear any full flags on the space
2441 btrfs_clear_space_info_full(root
->fs_info
);
2443 unlock_chunks(root
);
2444 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2448 ret
= init_first_rw_device(trans
, root
, device
);
2449 unlock_chunks(root
);
2451 btrfs_abort_transaction(trans
, ret
);
2456 ret
= btrfs_add_device(trans
, root
, device
);
2458 btrfs_abort_transaction(trans
, ret
);
2463 char fsid_buf
[BTRFS_UUID_UNPARSED_SIZE
];
2465 ret
= btrfs_finish_sprout(trans
, root
);
2467 btrfs_abort_transaction(trans
, ret
);
2471 /* Sprouting would change fsid of the mounted root,
2472 * so rename the fsid on the sysfs
2474 snprintf(fsid_buf
, BTRFS_UUID_UNPARSED_SIZE
, "%pU",
2475 root
->fs_info
->fsid
);
2476 if (kobject_rename(&root
->fs_info
->fs_devices
->fsid_kobj
,
2478 btrfs_warn(root
->fs_info
,
2479 "sysfs: failed to create fsid for sprout");
2482 root
->fs_info
->num_tolerated_disk_barrier_failures
=
2483 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
2484 ret
= btrfs_commit_transaction(trans
, root
);
2487 mutex_unlock(&uuid_mutex
);
2488 up_write(&sb
->s_umount
);
2490 if (ret
) /* transaction commit */
2493 ret
= btrfs_relocate_sys_chunks(root
);
2495 btrfs_handle_fs_error(root
->fs_info
, ret
,
2496 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2497 trans
= btrfs_attach_transaction(root
);
2498 if (IS_ERR(trans
)) {
2499 if (PTR_ERR(trans
) == -ENOENT
)
2501 return PTR_ERR(trans
);
2503 ret
= btrfs_commit_transaction(trans
, root
);
2506 /* Update ctime/mtime for libblkid */
2507 update_dev_time(device_path
);
2511 btrfs_end_transaction(trans
, root
);
2512 rcu_string_free(device
->name
);
2513 btrfs_sysfs_rm_device_link(root
->fs_info
->fs_devices
, device
);
2516 blkdev_put(bdev
, FMODE_EXCL
);
2518 mutex_unlock(&uuid_mutex
);
2519 up_write(&sb
->s_umount
);
2524 int btrfs_init_dev_replace_tgtdev(struct btrfs_root
*root
, char *device_path
,
2525 struct btrfs_device
*srcdev
,
2526 struct btrfs_device
**device_out
)
2528 struct request_queue
*q
;
2529 struct btrfs_device
*device
;
2530 struct block_device
*bdev
;
2531 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2532 struct list_head
*devices
;
2533 struct rcu_string
*name
;
2534 u64 devid
= BTRFS_DEV_REPLACE_DEVID
;
2538 if (fs_info
->fs_devices
->seeding
) {
2539 btrfs_err(fs_info
, "the filesystem is a seed filesystem!");
2543 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2544 fs_info
->bdev_holder
);
2546 btrfs_err(fs_info
, "target device %s is invalid!", device_path
);
2547 return PTR_ERR(bdev
);
2550 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2552 devices
= &fs_info
->fs_devices
->devices
;
2553 list_for_each_entry(device
, devices
, dev_list
) {
2554 if (device
->bdev
== bdev
) {
2556 "target device is in the filesystem!");
2563 if (i_size_read(bdev
->bd_inode
) <
2564 btrfs_device_get_total_bytes(srcdev
)) {
2566 "target device is smaller than source device!");
2572 device
= btrfs_alloc_device(NULL
, &devid
, NULL
);
2573 if (IS_ERR(device
)) {
2574 ret
= PTR_ERR(device
);
2578 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2584 rcu_assign_pointer(device
->name
, name
);
2586 q
= bdev_get_queue(bdev
);
2587 if (blk_queue_discard(q
))
2588 device
->can_discard
= 1;
2589 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2590 device
->writeable
= 1;
2591 device
->generation
= 0;
2592 device
->io_width
= root
->sectorsize
;
2593 device
->io_align
= root
->sectorsize
;
2594 device
->sector_size
= root
->sectorsize
;
2595 device
->total_bytes
= btrfs_device_get_total_bytes(srcdev
);
2596 device
->disk_total_bytes
= btrfs_device_get_disk_total_bytes(srcdev
);
2597 device
->bytes_used
= btrfs_device_get_bytes_used(srcdev
);
2598 ASSERT(list_empty(&srcdev
->resized_list
));
2599 device
->commit_total_bytes
= srcdev
->commit_total_bytes
;
2600 device
->commit_bytes_used
= device
->bytes_used
;
2601 device
->dev_root
= fs_info
->dev_root
;
2602 device
->bdev
= bdev
;
2603 device
->in_fs_metadata
= 1;
2604 device
->is_tgtdev_for_dev_replace
= 1;
2605 device
->mode
= FMODE_EXCL
;
2606 device
->dev_stats_valid
= 1;
2607 set_blocksize(device
->bdev
, 4096);
2608 device
->fs_devices
= fs_info
->fs_devices
;
2609 list_add(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2610 fs_info
->fs_devices
->num_devices
++;
2611 fs_info
->fs_devices
->open_devices
++;
2612 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2614 *device_out
= device
;
2618 blkdev_put(bdev
, FMODE_EXCL
);
2622 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info
*fs_info
,
2623 struct btrfs_device
*tgtdev
)
2625 WARN_ON(fs_info
->fs_devices
->rw_devices
== 0);
2626 tgtdev
->io_width
= fs_info
->dev_root
->sectorsize
;
2627 tgtdev
->io_align
= fs_info
->dev_root
->sectorsize
;
2628 tgtdev
->sector_size
= fs_info
->dev_root
->sectorsize
;
2629 tgtdev
->dev_root
= fs_info
->dev_root
;
2630 tgtdev
->in_fs_metadata
= 1;
2633 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2634 struct btrfs_device
*device
)
2637 struct btrfs_path
*path
;
2638 struct btrfs_root
*root
;
2639 struct btrfs_dev_item
*dev_item
;
2640 struct extent_buffer
*leaf
;
2641 struct btrfs_key key
;
2643 root
= device
->dev_root
->fs_info
->chunk_root
;
2645 path
= btrfs_alloc_path();
2649 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2650 key
.type
= BTRFS_DEV_ITEM_KEY
;
2651 key
.offset
= device
->devid
;
2653 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2662 leaf
= path
->nodes
[0];
2663 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2665 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2666 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2667 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2668 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2669 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2670 btrfs_set_device_total_bytes(leaf
, dev_item
,
2671 btrfs_device_get_disk_total_bytes(device
));
2672 btrfs_set_device_bytes_used(leaf
, dev_item
,
2673 btrfs_device_get_bytes_used(device
));
2674 btrfs_mark_buffer_dirty(leaf
);
2677 btrfs_free_path(path
);
2681 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2682 struct btrfs_device
*device
, u64 new_size
)
2684 struct btrfs_super_block
*super_copy
=
2685 device
->dev_root
->fs_info
->super_copy
;
2686 struct btrfs_fs_devices
*fs_devices
;
2690 if (!device
->writeable
)
2693 lock_chunks(device
->dev_root
);
2694 old_total
= btrfs_super_total_bytes(super_copy
);
2695 diff
= new_size
- device
->total_bytes
;
2697 if (new_size
<= device
->total_bytes
||
2698 device
->is_tgtdev_for_dev_replace
) {
2699 unlock_chunks(device
->dev_root
);
2703 fs_devices
= device
->dev_root
->fs_info
->fs_devices
;
2705 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
2706 device
->fs_devices
->total_rw_bytes
+= diff
;
2708 btrfs_device_set_total_bytes(device
, new_size
);
2709 btrfs_device_set_disk_total_bytes(device
, new_size
);
2710 btrfs_clear_space_info_full(device
->dev_root
->fs_info
);
2711 if (list_empty(&device
->resized_list
))
2712 list_add_tail(&device
->resized_list
,
2713 &fs_devices
->resized_devices
);
2714 unlock_chunks(device
->dev_root
);
2716 return btrfs_update_device(trans
, device
);
2719 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
2720 struct btrfs_root
*root
, u64 chunk_objectid
,
2724 struct btrfs_path
*path
;
2725 struct btrfs_key key
;
2727 root
= root
->fs_info
->chunk_root
;
2728 path
= btrfs_alloc_path();
2732 key
.objectid
= chunk_objectid
;
2733 key
.offset
= chunk_offset
;
2734 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2736 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2739 else if (ret
> 0) { /* Logic error or corruption */
2740 btrfs_handle_fs_error(root
->fs_info
, -ENOENT
,
2741 "Failed lookup while freeing chunk.");
2746 ret
= btrfs_del_item(trans
, root
, path
);
2748 btrfs_handle_fs_error(root
->fs_info
, ret
,
2749 "Failed to delete chunk item.");
2751 btrfs_free_path(path
);
2755 static int btrfs_del_sys_chunk(struct btrfs_root
*root
, u64 chunk_objectid
, u64
2758 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
2759 struct btrfs_disk_key
*disk_key
;
2760 struct btrfs_chunk
*chunk
;
2767 struct btrfs_key key
;
2770 array_size
= btrfs_super_sys_array_size(super_copy
);
2772 ptr
= super_copy
->sys_chunk_array
;
2775 while (cur
< array_size
) {
2776 disk_key
= (struct btrfs_disk_key
*)ptr
;
2777 btrfs_disk_key_to_cpu(&key
, disk_key
);
2779 len
= sizeof(*disk_key
);
2781 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2782 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2783 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2784 len
+= btrfs_chunk_item_size(num_stripes
);
2789 if (key
.objectid
== chunk_objectid
&&
2790 key
.offset
== chunk_offset
) {
2791 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2793 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2799 unlock_chunks(root
);
2803 int btrfs_remove_chunk(struct btrfs_trans_handle
*trans
,
2804 struct btrfs_root
*root
, u64 chunk_offset
)
2806 struct extent_map_tree
*em_tree
;
2807 struct extent_map
*em
;
2808 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2809 struct map_lookup
*map
;
2810 u64 dev_extent_len
= 0;
2811 u64 chunk_objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2813 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2816 root
= root
->fs_info
->chunk_root
;
2817 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
2819 read_lock(&em_tree
->lock
);
2820 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
2821 read_unlock(&em_tree
->lock
);
2823 if (!em
|| em
->start
> chunk_offset
||
2824 em
->start
+ em
->len
< chunk_offset
) {
2826 * This is a logic error, but we don't want to just rely on the
2827 * user having built with ASSERT enabled, so if ASSERT doesn't
2828 * do anything we still error out.
2832 free_extent_map(em
);
2835 map
= em
->map_lookup
;
2836 lock_chunks(root
->fs_info
->chunk_root
);
2837 check_system_chunk(trans
, extent_root
, map
->type
);
2838 unlock_chunks(root
->fs_info
->chunk_root
);
2841 * Take the device list mutex to prevent races with the final phase of
2842 * a device replace operation that replaces the device object associated
2843 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2845 mutex_lock(&fs_devices
->device_list_mutex
);
2846 for (i
= 0; i
< map
->num_stripes
; i
++) {
2847 struct btrfs_device
*device
= map
->stripes
[i
].dev
;
2848 ret
= btrfs_free_dev_extent(trans
, device
,
2849 map
->stripes
[i
].physical
,
2852 mutex_unlock(&fs_devices
->device_list_mutex
);
2853 btrfs_abort_transaction(trans
, ret
);
2857 if (device
->bytes_used
> 0) {
2859 btrfs_device_set_bytes_used(device
,
2860 device
->bytes_used
- dev_extent_len
);
2861 spin_lock(&root
->fs_info
->free_chunk_lock
);
2862 root
->fs_info
->free_chunk_space
+= dev_extent_len
;
2863 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2864 btrfs_clear_space_info_full(root
->fs_info
);
2865 unlock_chunks(root
);
2868 if (map
->stripes
[i
].dev
) {
2869 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
2871 mutex_unlock(&fs_devices
->device_list_mutex
);
2872 btrfs_abort_transaction(trans
, ret
);
2877 mutex_unlock(&fs_devices
->device_list_mutex
);
2879 ret
= btrfs_free_chunk(trans
, root
, chunk_objectid
, chunk_offset
);
2881 btrfs_abort_transaction(trans
, ret
);
2885 trace_btrfs_chunk_free(root
, map
, chunk_offset
, em
->len
);
2887 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2888 ret
= btrfs_del_sys_chunk(root
, chunk_objectid
, chunk_offset
);
2890 btrfs_abort_transaction(trans
, ret
);
2895 ret
= btrfs_remove_block_group(trans
, extent_root
, chunk_offset
, em
);
2897 btrfs_abort_transaction(trans
, ret
);
2903 free_extent_map(em
);
2907 static int btrfs_relocate_chunk(struct btrfs_root
*root
, u64 chunk_offset
)
2909 struct btrfs_root
*extent_root
;
2910 struct btrfs_trans_handle
*trans
;
2913 root
= root
->fs_info
->chunk_root
;
2914 extent_root
= root
->fs_info
->extent_root
;
2917 * Prevent races with automatic removal of unused block groups.
2918 * After we relocate and before we remove the chunk with offset
2919 * chunk_offset, automatic removal of the block group can kick in,
2920 * resulting in a failure when calling btrfs_remove_chunk() below.
2922 * Make sure to acquire this mutex before doing a tree search (dev
2923 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2924 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2925 * we release the path used to search the chunk/dev tree and before
2926 * the current task acquires this mutex and calls us.
2928 ASSERT(mutex_is_locked(&root
->fs_info
->delete_unused_bgs_mutex
));
2930 ret
= btrfs_can_relocate(extent_root
, chunk_offset
);
2934 /* step one, relocate all the extents inside this chunk */
2935 btrfs_scrub_pause(root
);
2936 ret
= btrfs_relocate_block_group(extent_root
, chunk_offset
);
2937 btrfs_scrub_continue(root
);
2941 trans
= btrfs_start_trans_remove_block_group(root
->fs_info
,
2943 if (IS_ERR(trans
)) {
2944 ret
= PTR_ERR(trans
);
2945 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
2950 * step two, delete the device extents and the
2951 * chunk tree entries
2953 ret
= btrfs_remove_chunk(trans
, root
, chunk_offset
);
2954 btrfs_end_transaction(trans
, extent_root
);
2958 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
)
2960 struct btrfs_root
*chunk_root
= root
->fs_info
->chunk_root
;
2961 struct btrfs_path
*path
;
2962 struct extent_buffer
*leaf
;
2963 struct btrfs_chunk
*chunk
;
2964 struct btrfs_key key
;
2965 struct btrfs_key found_key
;
2967 bool retried
= false;
2971 path
= btrfs_alloc_path();
2976 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2977 key
.offset
= (u64
)-1;
2978 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2981 mutex_lock(&root
->fs_info
->delete_unused_bgs_mutex
);
2982 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2984 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
2987 BUG_ON(ret
== 0); /* Corruption */
2989 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
2992 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
2998 leaf
= path
->nodes
[0];
2999 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3001 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
3002 struct btrfs_chunk
);
3003 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3004 btrfs_release_path(path
);
3006 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
3007 ret
= btrfs_relocate_chunk(chunk_root
,
3014 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
3016 if (found_key
.offset
== 0)
3018 key
.offset
= found_key
.offset
- 1;
3021 if (failed
&& !retried
) {
3025 } else if (WARN_ON(failed
&& retried
)) {
3029 btrfs_free_path(path
);
3033 static int insert_balance_item(struct btrfs_root
*root
,
3034 struct btrfs_balance_control
*bctl
)
3036 struct btrfs_trans_handle
*trans
;
3037 struct btrfs_balance_item
*item
;
3038 struct btrfs_disk_balance_args disk_bargs
;
3039 struct btrfs_path
*path
;
3040 struct extent_buffer
*leaf
;
3041 struct btrfs_key key
;
3044 path
= btrfs_alloc_path();
3048 trans
= btrfs_start_transaction(root
, 0);
3049 if (IS_ERR(trans
)) {
3050 btrfs_free_path(path
);
3051 return PTR_ERR(trans
);
3054 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3055 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3058 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
3063 leaf
= path
->nodes
[0];
3064 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3066 memset_extent_buffer(leaf
, 0, (unsigned long)item
, sizeof(*item
));
3068 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
3069 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
3070 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
3071 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
3072 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
3073 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
3075 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
3077 btrfs_mark_buffer_dirty(leaf
);
3079 btrfs_free_path(path
);
3080 err
= btrfs_commit_transaction(trans
, root
);
3086 static int del_balance_item(struct btrfs_root
*root
)
3088 struct btrfs_trans_handle
*trans
;
3089 struct btrfs_path
*path
;
3090 struct btrfs_key key
;
3093 path
= btrfs_alloc_path();
3097 trans
= btrfs_start_transaction(root
, 0);
3098 if (IS_ERR(trans
)) {
3099 btrfs_free_path(path
);
3100 return PTR_ERR(trans
);
3103 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3104 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3107 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3115 ret
= btrfs_del_item(trans
, root
, path
);
3117 btrfs_free_path(path
);
3118 err
= btrfs_commit_transaction(trans
, root
);
3125 * This is a heuristic used to reduce the number of chunks balanced on
3126 * resume after balance was interrupted.
3128 static void update_balance_args(struct btrfs_balance_control
*bctl
)
3131 * Turn on soft mode for chunk types that were being converted.
3133 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3134 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3135 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3136 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3137 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3138 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3141 * Turn on usage filter if is not already used. The idea is
3142 * that chunks that we have already balanced should be
3143 * reasonably full. Don't do it for chunks that are being
3144 * converted - that will keep us from relocating unconverted
3145 * (albeit full) chunks.
3147 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3148 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3149 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3150 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3151 bctl
->data
.usage
= 90;
3153 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3154 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3155 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3156 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3157 bctl
->sys
.usage
= 90;
3159 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3160 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3161 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3162 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3163 bctl
->meta
.usage
= 90;
3168 * Should be called with both balance and volume mutexes held to
3169 * serialize other volume operations (add_dev/rm_dev/resize) with
3170 * restriper. Same goes for unset_balance_control.
3172 static void set_balance_control(struct btrfs_balance_control
*bctl
)
3174 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3176 BUG_ON(fs_info
->balance_ctl
);
3178 spin_lock(&fs_info
->balance_lock
);
3179 fs_info
->balance_ctl
= bctl
;
3180 spin_unlock(&fs_info
->balance_lock
);
3183 static void unset_balance_control(struct btrfs_fs_info
*fs_info
)
3185 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3187 BUG_ON(!fs_info
->balance_ctl
);
3189 spin_lock(&fs_info
->balance_lock
);
3190 fs_info
->balance_ctl
= NULL
;
3191 spin_unlock(&fs_info
->balance_lock
);
3197 * Balance filters. Return 1 if chunk should be filtered out
3198 * (should not be balanced).
3200 static int chunk_profiles_filter(u64 chunk_type
,
3201 struct btrfs_balance_args
*bargs
)
3203 chunk_type
= chunk_to_extended(chunk_type
) &
3204 BTRFS_EXTENDED_PROFILE_MASK
;
3206 if (bargs
->profiles
& chunk_type
)
3212 static int chunk_usage_range_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
3213 struct btrfs_balance_args
*bargs
)
3215 struct btrfs_block_group_cache
*cache
;
3217 u64 user_thresh_min
;
3218 u64 user_thresh_max
;
3221 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3222 chunk_used
= btrfs_block_group_used(&cache
->item
);
3224 if (bargs
->usage_min
== 0)
3225 user_thresh_min
= 0;
3227 user_thresh_min
= div_factor_fine(cache
->key
.offset
,
3230 if (bargs
->usage_max
== 0)
3231 user_thresh_max
= 1;
3232 else if (bargs
->usage_max
> 100)
3233 user_thresh_max
= cache
->key
.offset
;
3235 user_thresh_max
= div_factor_fine(cache
->key
.offset
,
3238 if (user_thresh_min
<= chunk_used
&& chunk_used
< user_thresh_max
)
3241 btrfs_put_block_group(cache
);
3245 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
,
3246 u64 chunk_offset
, struct btrfs_balance_args
*bargs
)
3248 struct btrfs_block_group_cache
*cache
;
3249 u64 chunk_used
, user_thresh
;
3252 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3253 chunk_used
= btrfs_block_group_used(&cache
->item
);
3255 if (bargs
->usage_min
== 0)
3257 else if (bargs
->usage
> 100)
3258 user_thresh
= cache
->key
.offset
;
3260 user_thresh
= div_factor_fine(cache
->key
.offset
,
3263 if (chunk_used
< user_thresh
)
3266 btrfs_put_block_group(cache
);
3270 static int chunk_devid_filter(struct extent_buffer
*leaf
,
3271 struct btrfs_chunk
*chunk
,
3272 struct btrfs_balance_args
*bargs
)
3274 struct btrfs_stripe
*stripe
;
3275 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3278 for (i
= 0; i
< num_stripes
; i
++) {
3279 stripe
= btrfs_stripe_nr(chunk
, i
);
3280 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
3287 /* [pstart, pend) */
3288 static int chunk_drange_filter(struct extent_buffer
*leaf
,
3289 struct btrfs_chunk
*chunk
,
3291 struct btrfs_balance_args
*bargs
)
3293 struct btrfs_stripe
*stripe
;
3294 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3300 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
3303 if (btrfs_chunk_type(leaf
, chunk
) & (BTRFS_BLOCK_GROUP_DUP
|
3304 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)) {
3305 factor
= num_stripes
/ 2;
3306 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID5
) {
3307 factor
= num_stripes
- 1;
3308 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID6
) {
3309 factor
= num_stripes
- 2;
3311 factor
= num_stripes
;
3314 for (i
= 0; i
< num_stripes
; i
++) {
3315 stripe
= btrfs_stripe_nr(chunk
, i
);
3316 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
3319 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
3320 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
3321 stripe_length
= div_u64(stripe_length
, factor
);
3323 if (stripe_offset
< bargs
->pend
&&
3324 stripe_offset
+ stripe_length
> bargs
->pstart
)
3331 /* [vstart, vend) */
3332 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
3333 struct btrfs_chunk
*chunk
,
3335 struct btrfs_balance_args
*bargs
)
3337 if (chunk_offset
< bargs
->vend
&&
3338 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
3339 /* at least part of the chunk is inside this vrange */
3345 static int chunk_stripes_range_filter(struct extent_buffer
*leaf
,
3346 struct btrfs_chunk
*chunk
,
3347 struct btrfs_balance_args
*bargs
)
3349 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3351 if (bargs
->stripes_min
<= num_stripes
3352 && num_stripes
<= bargs
->stripes_max
)
3358 static int chunk_soft_convert_filter(u64 chunk_type
,
3359 struct btrfs_balance_args
*bargs
)
3361 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3364 chunk_type
= chunk_to_extended(chunk_type
) &
3365 BTRFS_EXTENDED_PROFILE_MASK
;
3367 if (bargs
->target
== chunk_type
)
3373 static int should_balance_chunk(struct btrfs_root
*root
,
3374 struct extent_buffer
*leaf
,
3375 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
3377 struct btrfs_balance_control
*bctl
= root
->fs_info
->balance_ctl
;
3378 struct btrfs_balance_args
*bargs
= NULL
;
3379 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3382 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
3383 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
3387 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3388 bargs
= &bctl
->data
;
3389 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3391 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3392 bargs
= &bctl
->meta
;
3394 /* profiles filter */
3395 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
3396 chunk_profiles_filter(chunk_type
, bargs
)) {
3401 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3402 chunk_usage_filter(bctl
->fs_info
, chunk_offset
, bargs
)) {
3404 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3405 chunk_usage_range_filter(bctl
->fs_info
, chunk_offset
, bargs
)) {
3410 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
3411 chunk_devid_filter(leaf
, chunk
, bargs
)) {
3415 /* drange filter, makes sense only with devid filter */
3416 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
3417 chunk_drange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3422 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
3423 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3427 /* stripes filter */
3428 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
) &&
3429 chunk_stripes_range_filter(leaf
, chunk
, bargs
)) {
3433 /* soft profile changing mode */
3434 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
3435 chunk_soft_convert_filter(chunk_type
, bargs
)) {
3440 * limited by count, must be the last filter
3442 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
3443 if (bargs
->limit
== 0)
3447 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)) {
3449 * Same logic as the 'limit' filter; the minimum cannot be
3450 * determined here because we do not have the global information
3451 * about the count of all chunks that satisfy the filters.
3453 if (bargs
->limit_max
== 0)
3462 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3464 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3465 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3466 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
3467 struct list_head
*devices
;
3468 struct btrfs_device
*device
;
3472 struct btrfs_chunk
*chunk
;
3473 struct btrfs_path
*path
= NULL
;
3474 struct btrfs_key key
;
3475 struct btrfs_key found_key
;
3476 struct btrfs_trans_handle
*trans
;
3477 struct extent_buffer
*leaf
;
3480 int enospc_errors
= 0;
3481 bool counting
= true;
3482 /* The single value limit and min/max limits use the same bytes in the */
3483 u64 limit_data
= bctl
->data
.limit
;
3484 u64 limit_meta
= bctl
->meta
.limit
;
3485 u64 limit_sys
= bctl
->sys
.limit
;
3489 int chunk_reserved
= 0;
3492 /* step one make some room on all the devices */
3493 devices
= &fs_info
->fs_devices
->devices
;
3494 list_for_each_entry(device
, devices
, dev_list
) {
3495 old_size
= btrfs_device_get_total_bytes(device
);
3496 size_to_free
= div_factor(old_size
, 1);
3497 size_to_free
= min_t(u64
, size_to_free
, SZ_1M
);
3498 if (!device
->writeable
||
3499 btrfs_device_get_total_bytes(device
) -
3500 btrfs_device_get_bytes_used(device
) > size_to_free
||
3501 device
->is_tgtdev_for_dev_replace
)
3504 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
3508 /* btrfs_shrink_device never returns ret > 0 */
3513 trans
= btrfs_start_transaction(dev_root
, 0);
3514 if (IS_ERR(trans
)) {
3515 ret
= PTR_ERR(trans
);
3516 btrfs_info_in_rcu(fs_info
,
3517 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3518 rcu_str_deref(device
->name
), ret
,
3519 old_size
, old_size
- size_to_free
);
3523 ret
= btrfs_grow_device(trans
, device
, old_size
);
3525 btrfs_end_transaction(trans
, dev_root
);
3526 /* btrfs_grow_device never returns ret > 0 */
3528 btrfs_info_in_rcu(fs_info
,
3529 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3530 rcu_str_deref(device
->name
), ret
,
3531 old_size
, old_size
- size_to_free
);
3535 btrfs_end_transaction(trans
, dev_root
);
3538 /* step two, relocate all the chunks */
3539 path
= btrfs_alloc_path();
3545 /* zero out stat counters */
3546 spin_lock(&fs_info
->balance_lock
);
3547 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3548 spin_unlock(&fs_info
->balance_lock
);
3552 * The single value limit and min/max limits use the same bytes
3555 bctl
->data
.limit
= limit_data
;
3556 bctl
->meta
.limit
= limit_meta
;
3557 bctl
->sys
.limit
= limit_sys
;
3559 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3560 key
.offset
= (u64
)-1;
3561 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3564 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3565 atomic_read(&fs_info
->balance_cancel_req
)) {
3570 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3571 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3573 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3578 * this shouldn't happen, it means the last relocate
3582 BUG(); /* FIXME break ? */
3584 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3585 BTRFS_CHUNK_ITEM_KEY
);
3587 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3592 leaf
= path
->nodes
[0];
3593 slot
= path
->slots
[0];
3594 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3596 if (found_key
.objectid
!= key
.objectid
) {
3597 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3601 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3602 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3605 spin_lock(&fs_info
->balance_lock
);
3606 bctl
->stat
.considered
++;
3607 spin_unlock(&fs_info
->balance_lock
);
3610 ret
= should_balance_chunk(chunk_root
, leaf
, chunk
,
3613 btrfs_release_path(path
);
3615 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3620 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3621 spin_lock(&fs_info
->balance_lock
);
3622 bctl
->stat
.expected
++;
3623 spin_unlock(&fs_info
->balance_lock
);
3625 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3627 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3629 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3636 * Apply limit_min filter, no need to check if the LIMITS
3637 * filter is used, limit_min is 0 by default
3639 if (((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3640 count_data
< bctl
->data
.limit_min
)
3641 || ((chunk_type
& BTRFS_BLOCK_GROUP_METADATA
) &&
3642 count_meta
< bctl
->meta
.limit_min
)
3643 || ((chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) &&
3644 count_sys
< bctl
->sys
.limit_min
)) {
3645 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3649 ASSERT(fs_info
->data_sinfo
);
3650 spin_lock(&fs_info
->data_sinfo
->lock
);
3651 bytes_used
= fs_info
->data_sinfo
->bytes_used
;
3652 spin_unlock(&fs_info
->data_sinfo
->lock
);
3654 if ((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3655 !chunk_reserved
&& !bytes_used
) {
3656 trans
= btrfs_start_transaction(chunk_root
, 0);
3657 if (IS_ERR(trans
)) {
3658 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3659 ret
= PTR_ERR(trans
);
3663 ret
= btrfs_force_chunk_alloc(trans
, chunk_root
,
3664 BTRFS_BLOCK_GROUP_DATA
);
3665 btrfs_end_transaction(trans
, chunk_root
);
3667 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3673 ret
= btrfs_relocate_chunk(chunk_root
,
3675 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3676 if (ret
&& ret
!= -ENOSPC
)
3678 if (ret
== -ENOSPC
) {
3681 spin_lock(&fs_info
->balance_lock
);
3682 bctl
->stat
.completed
++;
3683 spin_unlock(&fs_info
->balance_lock
);
3686 if (found_key
.offset
== 0)
3688 key
.offset
= found_key
.offset
- 1;
3692 btrfs_release_path(path
);
3697 btrfs_free_path(path
);
3698 if (enospc_errors
) {
3699 btrfs_info(fs_info
, "%d enospc errors during balance",
3709 * alloc_profile_is_valid - see if a given profile is valid and reduced
3710 * @flags: profile to validate
3711 * @extended: if true @flags is treated as an extended profile
3713 static int alloc_profile_is_valid(u64 flags
, int extended
)
3715 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3716 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3718 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3720 /* 1) check that all other bits are zeroed */
3724 /* 2) see if profile is reduced */
3726 return !extended
; /* "0" is valid for usual profiles */
3728 /* true if exactly one bit set */
3729 return (flags
& (flags
- 1)) == 0;
3732 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3734 /* cancel requested || normal exit path */
3735 return atomic_read(&fs_info
->balance_cancel_req
) ||
3736 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3737 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3740 static void __cancel_balance(struct btrfs_fs_info
*fs_info
)
3744 unset_balance_control(fs_info
);
3745 ret
= del_balance_item(fs_info
->tree_root
);
3747 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
3749 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3752 /* Non-zero return value signifies invalidity */
3753 static inline int validate_convert_profile(struct btrfs_balance_args
*bctl_arg
,
3756 return ((bctl_arg
->flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3757 (!alloc_profile_is_valid(bctl_arg
->target
, 1) ||
3758 (bctl_arg
->target
& ~allowed
)));
3762 * Should be called with both balance and volume mutexes held
3764 int btrfs_balance(struct btrfs_balance_control
*bctl
,
3765 struct btrfs_ioctl_balance_args
*bargs
)
3767 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3768 u64 meta_target
, data_target
;
3775 if (btrfs_fs_closing(fs_info
) ||
3776 atomic_read(&fs_info
->balance_pause_req
) ||
3777 atomic_read(&fs_info
->balance_cancel_req
)) {
3782 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
3783 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
3787 * In case of mixed groups both data and meta should be picked,
3788 * and identical options should be given for both of them.
3790 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
3791 if (mixed
&& (bctl
->flags
& allowed
)) {
3792 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
3793 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
3794 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
3796 "with mixed groups data and metadata balance options must be the same");
3802 num_devices
= fs_info
->fs_devices
->num_devices
;
3803 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
3804 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
3805 BUG_ON(num_devices
< 1);
3808 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
3809 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
| BTRFS_BLOCK_GROUP_DUP
;
3810 if (num_devices
> 1)
3811 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
);
3812 if (num_devices
> 2)
3813 allowed
|= BTRFS_BLOCK_GROUP_RAID5
;
3814 if (num_devices
> 3)
3815 allowed
|= (BTRFS_BLOCK_GROUP_RAID10
|
3816 BTRFS_BLOCK_GROUP_RAID6
);
3817 if (validate_convert_profile(&bctl
->data
, allowed
)) {
3819 "unable to start balance with target data profile %llu",
3824 if (validate_convert_profile(&bctl
->meta
, allowed
)) {
3826 "unable to start balance with target metadata profile %llu",
3831 if (validate_convert_profile(&bctl
->sys
, allowed
)) {
3833 "unable to start balance with target system profile %llu",
3839 /* allow to reduce meta or sys integrity only if force set */
3840 allowed
= BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3841 BTRFS_BLOCK_GROUP_RAID10
|
3842 BTRFS_BLOCK_GROUP_RAID5
|
3843 BTRFS_BLOCK_GROUP_RAID6
;
3845 seq
= read_seqbegin(&fs_info
->profiles_lock
);
3847 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3848 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3849 !(bctl
->sys
.target
& allowed
)) ||
3850 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3851 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3852 !(bctl
->meta
.target
& allowed
))) {
3853 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
3855 "force reducing metadata integrity");
3858 "balance will reduce metadata integrity, use force if you want this");
3863 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
3865 /* if we're not converting, the target field is uninitialized */
3866 meta_target
= (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
3867 bctl
->meta
.target
: fs_info
->avail_metadata_alloc_bits
;
3868 data_target
= (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
3869 bctl
->data
.target
: fs_info
->avail_data_alloc_bits
;
3870 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target
) <
3871 btrfs_get_num_tolerated_disk_barrier_failures(data_target
)) {
3873 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3874 meta_target
, data_target
);
3877 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3878 fs_info
->num_tolerated_disk_barrier_failures
= min(
3879 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
),
3880 btrfs_get_num_tolerated_disk_barrier_failures(
3884 ret
= insert_balance_item(fs_info
->tree_root
, bctl
);
3885 if (ret
&& ret
!= -EEXIST
)
3888 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
3889 BUG_ON(ret
== -EEXIST
);
3890 set_balance_control(bctl
);
3892 BUG_ON(ret
!= -EEXIST
);
3893 spin_lock(&fs_info
->balance_lock
);
3894 update_balance_args(bctl
);
3895 spin_unlock(&fs_info
->balance_lock
);
3898 atomic_inc(&fs_info
->balance_running
);
3899 mutex_unlock(&fs_info
->balance_mutex
);
3901 ret
= __btrfs_balance(fs_info
);
3903 mutex_lock(&fs_info
->balance_mutex
);
3904 atomic_dec(&fs_info
->balance_running
);
3906 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3907 fs_info
->num_tolerated_disk_barrier_failures
=
3908 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3912 memset(bargs
, 0, sizeof(*bargs
));
3913 update_ioctl_balance_args(fs_info
, 0, bargs
);
3916 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
3917 balance_need_close(fs_info
)) {
3918 __cancel_balance(fs_info
);
3921 wake_up(&fs_info
->balance_wait_q
);
3925 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
3926 __cancel_balance(fs_info
);
3929 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3934 static int balance_kthread(void *data
)
3936 struct btrfs_fs_info
*fs_info
= data
;
3939 mutex_lock(&fs_info
->volume_mutex
);
3940 mutex_lock(&fs_info
->balance_mutex
);
3942 if (fs_info
->balance_ctl
) {
3943 btrfs_info(fs_info
, "continuing balance");
3944 ret
= btrfs_balance(fs_info
->balance_ctl
, NULL
);
3947 mutex_unlock(&fs_info
->balance_mutex
);
3948 mutex_unlock(&fs_info
->volume_mutex
);
3953 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
3955 struct task_struct
*tsk
;
3957 spin_lock(&fs_info
->balance_lock
);
3958 if (!fs_info
->balance_ctl
) {
3959 spin_unlock(&fs_info
->balance_lock
);
3962 spin_unlock(&fs_info
->balance_lock
);
3964 if (btrfs_test_opt(fs_info
, SKIP_BALANCE
)) {
3965 btrfs_info(fs_info
, "force skipping balance");
3970 * A ro->rw remount sequence should continue with the paused balance
3971 * regardless of who pauses it, system or the user as of now, so set
3974 spin_lock(&fs_info
->balance_lock
);
3975 fs_info
->balance_ctl
->flags
|= BTRFS_BALANCE_RESUME
;
3976 spin_unlock(&fs_info
->balance_lock
);
3978 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
3979 return PTR_ERR_OR_ZERO(tsk
);
3982 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
3984 struct btrfs_balance_control
*bctl
;
3985 struct btrfs_balance_item
*item
;
3986 struct btrfs_disk_balance_args disk_bargs
;
3987 struct btrfs_path
*path
;
3988 struct extent_buffer
*leaf
;
3989 struct btrfs_key key
;
3992 path
= btrfs_alloc_path();
3996 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3997 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
4000 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
4003 if (ret
> 0) { /* ret = -ENOENT; */
4008 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
4014 leaf
= path
->nodes
[0];
4015 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
4017 bctl
->fs_info
= fs_info
;
4018 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
4019 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
4021 btrfs_balance_data(leaf
, item
, &disk_bargs
);
4022 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
4023 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
4024 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
4025 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
4026 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
4028 WARN_ON(atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1));
4030 mutex_lock(&fs_info
->volume_mutex
);
4031 mutex_lock(&fs_info
->balance_mutex
);
4033 set_balance_control(bctl
);
4035 mutex_unlock(&fs_info
->balance_mutex
);
4036 mutex_unlock(&fs_info
->volume_mutex
);
4038 btrfs_free_path(path
);
4042 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
4046 mutex_lock(&fs_info
->balance_mutex
);
4047 if (!fs_info
->balance_ctl
) {
4048 mutex_unlock(&fs_info
->balance_mutex
);
4052 if (atomic_read(&fs_info
->balance_running
)) {
4053 atomic_inc(&fs_info
->balance_pause_req
);
4054 mutex_unlock(&fs_info
->balance_mutex
);
4056 wait_event(fs_info
->balance_wait_q
,
4057 atomic_read(&fs_info
->balance_running
) == 0);
4059 mutex_lock(&fs_info
->balance_mutex
);
4060 /* we are good with balance_ctl ripped off from under us */
4061 BUG_ON(atomic_read(&fs_info
->balance_running
));
4062 atomic_dec(&fs_info
->balance_pause_req
);
4067 mutex_unlock(&fs_info
->balance_mutex
);
4071 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
4073 if (fs_info
->sb
->s_flags
& MS_RDONLY
)
4076 mutex_lock(&fs_info
->balance_mutex
);
4077 if (!fs_info
->balance_ctl
) {
4078 mutex_unlock(&fs_info
->balance_mutex
);
4082 atomic_inc(&fs_info
->balance_cancel_req
);
4084 * if we are running just wait and return, balance item is
4085 * deleted in btrfs_balance in this case
4087 if (atomic_read(&fs_info
->balance_running
)) {
4088 mutex_unlock(&fs_info
->balance_mutex
);
4089 wait_event(fs_info
->balance_wait_q
,
4090 atomic_read(&fs_info
->balance_running
) == 0);
4091 mutex_lock(&fs_info
->balance_mutex
);
4093 /* __cancel_balance needs volume_mutex */
4094 mutex_unlock(&fs_info
->balance_mutex
);
4095 mutex_lock(&fs_info
->volume_mutex
);
4096 mutex_lock(&fs_info
->balance_mutex
);
4098 if (fs_info
->balance_ctl
)
4099 __cancel_balance(fs_info
);
4101 mutex_unlock(&fs_info
->volume_mutex
);
4104 BUG_ON(fs_info
->balance_ctl
|| atomic_read(&fs_info
->balance_running
));
4105 atomic_dec(&fs_info
->balance_cancel_req
);
4106 mutex_unlock(&fs_info
->balance_mutex
);
4110 static int btrfs_uuid_scan_kthread(void *data
)
4112 struct btrfs_fs_info
*fs_info
= data
;
4113 struct btrfs_root
*root
= fs_info
->tree_root
;
4114 struct btrfs_key key
;
4115 struct btrfs_key max_key
;
4116 struct btrfs_path
*path
= NULL
;
4118 struct extent_buffer
*eb
;
4120 struct btrfs_root_item root_item
;
4122 struct btrfs_trans_handle
*trans
= NULL
;
4124 path
= btrfs_alloc_path();
4131 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4134 max_key
.objectid
= (u64
)-1;
4135 max_key
.type
= BTRFS_ROOT_ITEM_KEY
;
4136 max_key
.offset
= (u64
)-1;
4139 ret
= btrfs_search_forward(root
, &key
, path
, 0);
4146 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
4147 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
4148 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
4149 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
4152 eb
= path
->nodes
[0];
4153 slot
= path
->slots
[0];
4154 item_size
= btrfs_item_size_nr(eb
, slot
);
4155 if (item_size
< sizeof(root_item
))
4158 read_extent_buffer(eb
, &root_item
,
4159 btrfs_item_ptr_offset(eb
, slot
),
4160 (int)sizeof(root_item
));
4161 if (btrfs_root_refs(&root_item
) == 0)
4164 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
4165 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4169 btrfs_release_path(path
);
4171 * 1 - subvol uuid item
4172 * 1 - received_subvol uuid item
4174 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
4175 if (IS_ERR(trans
)) {
4176 ret
= PTR_ERR(trans
);
4184 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
4185 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
4187 BTRFS_UUID_KEY_SUBVOL
,
4190 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4196 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4197 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
4198 root_item
.received_uuid
,
4199 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4202 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4210 ret
= btrfs_end_transaction(trans
, fs_info
->uuid_root
);
4216 btrfs_release_path(path
);
4217 if (key
.offset
< (u64
)-1) {
4219 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
4221 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4222 } else if (key
.objectid
< (u64
)-1) {
4224 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4233 btrfs_free_path(path
);
4234 if (trans
&& !IS_ERR(trans
))
4235 btrfs_end_transaction(trans
, fs_info
->uuid_root
);
4237 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
4239 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
4240 up(&fs_info
->uuid_tree_rescan_sem
);
4245 * Callback for btrfs_uuid_tree_iterate().
4247 * 0 check succeeded, the entry is not outdated.
4248 * < 0 if an error occurred.
4249 * > 0 if the check failed, which means the caller shall remove the entry.
4251 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
4252 u8
*uuid
, u8 type
, u64 subid
)
4254 struct btrfs_key key
;
4256 struct btrfs_root
*subvol_root
;
4258 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
4259 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
4262 key
.objectid
= subid
;
4263 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4264 key
.offset
= (u64
)-1;
4265 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4266 if (IS_ERR(subvol_root
)) {
4267 ret
= PTR_ERR(subvol_root
);
4274 case BTRFS_UUID_KEY_SUBVOL
:
4275 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
4278 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
4279 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
4289 static int btrfs_uuid_rescan_kthread(void *data
)
4291 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
4295 * 1st step is to iterate through the existing UUID tree and
4296 * to delete all entries that contain outdated data.
4297 * 2nd step is to add all missing entries to the UUID tree.
4299 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
4301 btrfs_warn(fs_info
, "iterating uuid_tree failed %d", ret
);
4302 up(&fs_info
->uuid_tree_rescan_sem
);
4305 return btrfs_uuid_scan_kthread(data
);
4308 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
4310 struct btrfs_trans_handle
*trans
;
4311 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
4312 struct btrfs_root
*uuid_root
;
4313 struct task_struct
*task
;
4320 trans
= btrfs_start_transaction(tree_root
, 2);
4322 return PTR_ERR(trans
);
4324 uuid_root
= btrfs_create_tree(trans
, fs_info
,
4325 BTRFS_UUID_TREE_OBJECTID
);
4326 if (IS_ERR(uuid_root
)) {
4327 ret
= PTR_ERR(uuid_root
);
4328 btrfs_abort_transaction(trans
, ret
);
4329 btrfs_end_transaction(trans
, tree_root
);
4333 fs_info
->uuid_root
= uuid_root
;
4335 ret
= btrfs_commit_transaction(trans
, tree_root
);
4339 down(&fs_info
->uuid_tree_rescan_sem
);
4340 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
4342 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4343 btrfs_warn(fs_info
, "failed to start uuid_scan task");
4344 up(&fs_info
->uuid_tree_rescan_sem
);
4345 return PTR_ERR(task
);
4351 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
4353 struct task_struct
*task
;
4355 down(&fs_info
->uuid_tree_rescan_sem
);
4356 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
4358 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4359 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
4360 up(&fs_info
->uuid_tree_rescan_sem
);
4361 return PTR_ERR(task
);
4368 * shrinking a device means finding all of the device extents past
4369 * the new size, and then following the back refs to the chunks.
4370 * The chunk relocation code actually frees the device extent
4372 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
4374 struct btrfs_trans_handle
*trans
;
4375 struct btrfs_root
*root
= device
->dev_root
;
4376 struct btrfs_dev_extent
*dev_extent
= NULL
;
4377 struct btrfs_path
*path
;
4383 bool retried
= false;
4384 bool checked_pending_chunks
= false;
4385 struct extent_buffer
*l
;
4386 struct btrfs_key key
;
4387 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
4388 u64 old_total
= btrfs_super_total_bytes(super_copy
);
4389 u64 old_size
= btrfs_device_get_total_bytes(device
);
4390 u64 diff
= old_size
- new_size
;
4392 if (device
->is_tgtdev_for_dev_replace
)
4395 path
= btrfs_alloc_path();
4399 path
->reada
= READA_FORWARD
;
4403 btrfs_device_set_total_bytes(device
, new_size
);
4404 if (device
->writeable
) {
4405 device
->fs_devices
->total_rw_bytes
-= diff
;
4406 spin_lock(&root
->fs_info
->free_chunk_lock
);
4407 root
->fs_info
->free_chunk_space
-= diff
;
4408 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4410 unlock_chunks(root
);
4413 key
.objectid
= device
->devid
;
4414 key
.offset
= (u64
)-1;
4415 key
.type
= BTRFS_DEV_EXTENT_KEY
;
4418 mutex_lock(&root
->fs_info
->delete_unused_bgs_mutex
);
4419 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4421 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4425 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
4427 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4432 btrfs_release_path(path
);
4437 slot
= path
->slots
[0];
4438 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
4440 if (key
.objectid
!= device
->devid
) {
4441 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4442 btrfs_release_path(path
);
4446 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
4447 length
= btrfs_dev_extent_length(l
, dev_extent
);
4449 if (key
.offset
+ length
<= new_size
) {
4450 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4451 btrfs_release_path(path
);
4455 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
4456 btrfs_release_path(path
);
4458 ret
= btrfs_relocate_chunk(root
, chunk_offset
);
4459 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4460 if (ret
&& ret
!= -ENOSPC
)
4464 } while (key
.offset
-- > 0);
4466 if (failed
&& !retried
) {
4470 } else if (failed
&& retried
) {
4475 /* Shrinking succeeded, else we would be at "done". */
4476 trans
= btrfs_start_transaction(root
, 0);
4477 if (IS_ERR(trans
)) {
4478 ret
= PTR_ERR(trans
);
4485 * We checked in the above loop all device extents that were already in
4486 * the device tree. However before we have updated the device's
4487 * total_bytes to the new size, we might have had chunk allocations that
4488 * have not complete yet (new block groups attached to transaction
4489 * handles), and therefore their device extents were not yet in the
4490 * device tree and we missed them in the loop above. So if we have any
4491 * pending chunk using a device extent that overlaps the device range
4492 * that we can not use anymore, commit the current transaction and
4493 * repeat the search on the device tree - this way we guarantee we will
4494 * not have chunks using device extents that end beyond 'new_size'.
4496 if (!checked_pending_chunks
) {
4497 u64 start
= new_size
;
4498 u64 len
= old_size
- new_size
;
4500 if (contains_pending_extent(trans
->transaction
, device
,
4502 unlock_chunks(root
);
4503 checked_pending_chunks
= true;
4506 ret
= btrfs_commit_transaction(trans
, root
);
4513 btrfs_device_set_disk_total_bytes(device
, new_size
);
4514 if (list_empty(&device
->resized_list
))
4515 list_add_tail(&device
->resized_list
,
4516 &root
->fs_info
->fs_devices
->resized_devices
);
4518 WARN_ON(diff
> old_total
);
4519 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
4520 unlock_chunks(root
);
4522 /* Now btrfs_update_device() will change the on-disk size. */
4523 ret
= btrfs_update_device(trans
, device
);
4524 btrfs_end_transaction(trans
, root
);
4526 btrfs_free_path(path
);
4529 btrfs_device_set_total_bytes(device
, old_size
);
4530 if (device
->writeable
)
4531 device
->fs_devices
->total_rw_bytes
+= diff
;
4532 spin_lock(&root
->fs_info
->free_chunk_lock
);
4533 root
->fs_info
->free_chunk_space
+= diff
;
4534 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4535 unlock_chunks(root
);
4540 static int btrfs_add_system_chunk(struct btrfs_root
*root
,
4541 struct btrfs_key
*key
,
4542 struct btrfs_chunk
*chunk
, int item_size
)
4544 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
4545 struct btrfs_disk_key disk_key
;
4550 array_size
= btrfs_super_sys_array_size(super_copy
);
4551 if (array_size
+ item_size
+ sizeof(disk_key
)
4552 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4553 unlock_chunks(root
);
4557 ptr
= super_copy
->sys_chunk_array
+ array_size
;
4558 btrfs_cpu_key_to_disk(&disk_key
, key
);
4559 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
4560 ptr
+= sizeof(disk_key
);
4561 memcpy(ptr
, chunk
, item_size
);
4562 item_size
+= sizeof(disk_key
);
4563 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
4564 unlock_chunks(root
);
4570 * sort the devices in descending order by max_avail, total_avail
4572 static int btrfs_cmp_device_info(const void *a
, const void *b
)
4574 const struct btrfs_device_info
*di_a
= a
;
4575 const struct btrfs_device_info
*di_b
= b
;
4577 if (di_a
->max_avail
> di_b
->max_avail
)
4579 if (di_a
->max_avail
< di_b
->max_avail
)
4581 if (di_a
->total_avail
> di_b
->total_avail
)
4583 if (di_a
->total_avail
< di_b
->total_avail
)
4588 static u32
find_raid56_stripe_len(u32 data_devices
, u32 dev_stripe_target
)
4590 /* TODO allow them to set a preferred stripe size */
4594 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4596 if (!(type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
4599 btrfs_set_fs_incompat(info
, RAID56
);
4602 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r) \
4603 - sizeof(struct btrfs_chunk)) \
4604 / sizeof(struct btrfs_stripe) + 1)
4606 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4607 - 2 * sizeof(struct btrfs_disk_key) \
4608 - 2 * sizeof(struct btrfs_chunk)) \
4609 / sizeof(struct btrfs_stripe) + 1)
4611 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4612 struct btrfs_root
*extent_root
, u64 start
,
4615 struct btrfs_fs_info
*info
= extent_root
->fs_info
;
4616 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
4617 struct list_head
*cur
;
4618 struct map_lookup
*map
= NULL
;
4619 struct extent_map_tree
*em_tree
;
4620 struct extent_map
*em
;
4621 struct btrfs_device_info
*devices_info
= NULL
;
4623 int num_stripes
; /* total number of stripes to allocate */
4624 int data_stripes
; /* number of stripes that count for
4626 int sub_stripes
; /* sub_stripes info for map */
4627 int dev_stripes
; /* stripes per dev */
4628 int devs_max
; /* max devs to use */
4629 int devs_min
; /* min devs needed */
4630 int devs_increment
; /* ndevs has to be a multiple of this */
4631 int ncopies
; /* how many copies to data has */
4633 u64 max_stripe_size
;
4637 u64 raid_stripe_len
= BTRFS_STRIPE_LEN
;
4643 BUG_ON(!alloc_profile_is_valid(type
, 0));
4645 if (list_empty(&fs_devices
->alloc_list
))
4648 index
= __get_raid_index(type
);
4650 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4651 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4652 devs_max
= btrfs_raid_array
[index
].devs_max
;
4653 devs_min
= btrfs_raid_array
[index
].devs_min
;
4654 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4655 ncopies
= btrfs_raid_array
[index
].ncopies
;
4657 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4658 max_stripe_size
= SZ_1G
;
4659 max_chunk_size
= BTRFS_MAX_DATA_CHUNK_SIZE
;
4661 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4662 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4663 /* for larger filesystems, use larger metadata chunks */
4664 if (fs_devices
->total_rw_bytes
> 50ULL * SZ_1G
)
4665 max_stripe_size
= SZ_1G
;
4667 max_stripe_size
= SZ_256M
;
4668 max_chunk_size
= max_stripe_size
;
4670 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4671 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4672 max_stripe_size
= SZ_32M
;
4673 max_chunk_size
= 2 * max_stripe_size
;
4675 devs_max
= BTRFS_MAX_DEVS_SYS_CHUNK
;
4677 btrfs_err(info
, "invalid chunk type 0x%llx requested",
4682 /* we don't want a chunk larger than 10% of writeable space */
4683 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4686 devices_info
= kcalloc(fs_devices
->rw_devices
, sizeof(*devices_info
),
4691 cur
= fs_devices
->alloc_list
.next
;
4694 * in the first pass through the devices list, we gather information
4695 * about the available holes on each device.
4698 while (cur
!= &fs_devices
->alloc_list
) {
4699 struct btrfs_device
*device
;
4703 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
4707 if (!device
->writeable
) {
4709 "BTRFS: read-only device in alloc_list\n");
4713 if (!device
->in_fs_metadata
||
4714 device
->is_tgtdev_for_dev_replace
)
4717 if (device
->total_bytes
> device
->bytes_used
)
4718 total_avail
= device
->total_bytes
- device
->bytes_used
;
4722 /* If there is no space on this device, skip it. */
4723 if (total_avail
== 0)
4726 ret
= find_free_dev_extent(trans
, device
,
4727 max_stripe_size
* dev_stripes
,
4728 &dev_offset
, &max_avail
);
4729 if (ret
&& ret
!= -ENOSPC
)
4733 max_avail
= max_stripe_size
* dev_stripes
;
4735 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
)
4738 if (ndevs
== fs_devices
->rw_devices
) {
4739 WARN(1, "%s: found more than %llu devices\n",
4740 __func__
, fs_devices
->rw_devices
);
4743 devices_info
[ndevs
].dev_offset
= dev_offset
;
4744 devices_info
[ndevs
].max_avail
= max_avail
;
4745 devices_info
[ndevs
].total_avail
= total_avail
;
4746 devices_info
[ndevs
].dev
= device
;
4751 * now sort the devices by hole size / available space
4753 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4754 btrfs_cmp_device_info
, NULL
);
4756 /* round down to number of usable stripes */
4757 ndevs
-= ndevs
% devs_increment
;
4759 if (ndevs
< devs_increment
* sub_stripes
|| ndevs
< devs_min
) {
4764 if (devs_max
&& ndevs
> devs_max
)
4767 * The primary goal is to maximize the number of stripes, so use as
4768 * many devices as possible, even if the stripes are not maximum sized.
4770 * The DUP profile stores more than one stripe per device, the
4771 * max_avail is the total size so we have to adjust.
4773 stripe_size
= div_u64(devices_info
[ndevs
- 1].max_avail
, dev_stripes
);
4774 num_stripes
= ndevs
* dev_stripes
;
4777 * this will have to be fixed for RAID1 and RAID10 over
4780 data_stripes
= num_stripes
/ ncopies
;
4782 if (type
& BTRFS_BLOCK_GROUP_RAID5
) {
4783 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 1,
4784 extent_root
->stripesize
);
4785 data_stripes
= num_stripes
- 1;
4787 if (type
& BTRFS_BLOCK_GROUP_RAID6
) {
4788 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 2,
4789 extent_root
->stripesize
);
4790 data_stripes
= num_stripes
- 2;
4794 * Use the number of data stripes to figure out how big this chunk
4795 * is really going to be in terms of logical address space,
4796 * and compare that answer with the max chunk size
4798 if (stripe_size
* data_stripes
> max_chunk_size
) {
4799 u64 mask
= (1ULL << 24) - 1;
4801 stripe_size
= div_u64(max_chunk_size
, data_stripes
);
4803 /* bump the answer up to a 16MB boundary */
4804 stripe_size
= (stripe_size
+ mask
) & ~mask
;
4806 /* but don't go higher than the limits we found
4807 * while searching for free extents
4809 if (stripe_size
> devices_info
[ndevs
-1].max_avail
)
4810 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4813 /* align to BTRFS_STRIPE_LEN */
4814 stripe_size
= div_u64(stripe_size
, raid_stripe_len
);
4815 stripe_size
*= raid_stripe_len
;
4817 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4822 map
->num_stripes
= num_stripes
;
4824 for (i
= 0; i
< ndevs
; ++i
) {
4825 for (j
= 0; j
< dev_stripes
; ++j
) {
4826 int s
= i
* dev_stripes
+ j
;
4827 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
4828 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
4832 map
->sector_size
= extent_root
->sectorsize
;
4833 map
->stripe_len
= raid_stripe_len
;
4834 map
->io_align
= raid_stripe_len
;
4835 map
->io_width
= raid_stripe_len
;
4837 map
->sub_stripes
= sub_stripes
;
4839 num_bytes
= stripe_size
* data_stripes
;
4841 trace_btrfs_chunk_alloc(info
->chunk_root
, map
, start
, num_bytes
);
4843 em
= alloc_extent_map();
4849 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
4850 em
->map_lookup
= map
;
4852 em
->len
= num_bytes
;
4853 em
->block_start
= 0;
4854 em
->block_len
= em
->len
;
4855 em
->orig_block_len
= stripe_size
;
4857 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4858 write_lock(&em_tree
->lock
);
4859 ret
= add_extent_mapping(em_tree
, em
, 0);
4861 list_add_tail(&em
->list
, &trans
->transaction
->pending_chunks
);
4862 atomic_inc(&em
->refs
);
4864 write_unlock(&em_tree
->lock
);
4866 free_extent_map(em
);
4870 ret
= btrfs_make_block_group(trans
, extent_root
, 0, type
,
4871 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4874 goto error_del_extent
;
4876 for (i
= 0; i
< map
->num_stripes
; i
++) {
4877 num_bytes
= map
->stripes
[i
].dev
->bytes_used
+ stripe_size
;
4878 btrfs_device_set_bytes_used(map
->stripes
[i
].dev
, num_bytes
);
4881 spin_lock(&extent_root
->fs_info
->free_chunk_lock
);
4882 extent_root
->fs_info
->free_chunk_space
-= (stripe_size
*
4884 spin_unlock(&extent_root
->fs_info
->free_chunk_lock
);
4886 free_extent_map(em
);
4887 check_raid56_incompat_flag(extent_root
->fs_info
, type
);
4889 kfree(devices_info
);
4893 write_lock(&em_tree
->lock
);
4894 remove_extent_mapping(em_tree
, em
);
4895 write_unlock(&em_tree
->lock
);
4897 /* One for our allocation */
4898 free_extent_map(em
);
4899 /* One for the tree reference */
4900 free_extent_map(em
);
4901 /* One for the pending_chunks list reference */
4902 free_extent_map(em
);
4904 kfree(devices_info
);
4908 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
4909 struct btrfs_root
*extent_root
,
4910 u64 chunk_offset
, u64 chunk_size
)
4912 struct btrfs_key key
;
4913 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
4914 struct btrfs_device
*device
;
4915 struct btrfs_chunk
*chunk
;
4916 struct btrfs_stripe
*stripe
;
4917 struct extent_map_tree
*em_tree
;
4918 struct extent_map
*em
;
4919 struct map_lookup
*map
;
4926 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4927 read_lock(&em_tree
->lock
);
4928 em
= lookup_extent_mapping(em_tree
, chunk_offset
, chunk_size
);
4929 read_unlock(&em_tree
->lock
);
4932 btrfs_crit(extent_root
->fs_info
,
4933 "unable to find logical %Lu len %Lu",
4934 chunk_offset
, chunk_size
);
4938 if (em
->start
!= chunk_offset
|| em
->len
!= chunk_size
) {
4939 btrfs_crit(extent_root
->fs_info
,
4940 "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4941 chunk_offset
, chunk_size
, em
->start
, em
->len
);
4942 free_extent_map(em
);
4946 map
= em
->map_lookup
;
4947 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
4948 stripe_size
= em
->orig_block_len
;
4950 chunk
= kzalloc(item_size
, GFP_NOFS
);
4957 * Take the device list mutex to prevent races with the final phase of
4958 * a device replace operation that replaces the device object associated
4959 * with the map's stripes, because the device object's id can change
4960 * at any time during that final phase of the device replace operation
4961 * (dev-replace.c:btrfs_dev_replace_finishing()).
4963 mutex_lock(&chunk_root
->fs_info
->fs_devices
->device_list_mutex
);
4964 for (i
= 0; i
< map
->num_stripes
; i
++) {
4965 device
= map
->stripes
[i
].dev
;
4966 dev_offset
= map
->stripes
[i
].physical
;
4968 ret
= btrfs_update_device(trans
, device
);
4971 ret
= btrfs_alloc_dev_extent(trans
, device
,
4972 chunk_root
->root_key
.objectid
,
4973 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4974 chunk_offset
, dev_offset
,
4980 mutex_unlock(&chunk_root
->fs_info
->fs_devices
->device_list_mutex
);
4984 stripe
= &chunk
->stripe
;
4985 for (i
= 0; i
< map
->num_stripes
; i
++) {
4986 device
= map
->stripes
[i
].dev
;
4987 dev_offset
= map
->stripes
[i
].physical
;
4989 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
4990 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
4991 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
4994 mutex_unlock(&chunk_root
->fs_info
->fs_devices
->device_list_mutex
);
4996 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
4997 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
4998 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
4999 btrfs_set_stack_chunk_type(chunk
, map
->type
);
5000 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
5001 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
5002 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
5003 btrfs_set_stack_chunk_sector_size(chunk
, extent_root
->sectorsize
);
5004 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
5006 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
5007 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
5008 key
.offset
= chunk_offset
;
5010 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
5011 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
5013 * TODO: Cleanup of inserted chunk root in case of
5016 ret
= btrfs_add_system_chunk(chunk_root
, &key
, chunk
,
5022 free_extent_map(em
);
5027 * Chunk allocation falls into two parts. The first part does works
5028 * that make the new allocated chunk useable, but not do any operation
5029 * that modifies the chunk tree. The second part does the works that
5030 * require modifying the chunk tree. This division is important for the
5031 * bootstrap process of adding storage to a seed btrfs.
5033 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
5034 struct btrfs_root
*extent_root
, u64 type
)
5038 ASSERT(mutex_is_locked(&extent_root
->fs_info
->chunk_mutex
));
5039 chunk_offset
= find_next_chunk(extent_root
->fs_info
);
5040 return __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
, type
);
5043 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
5044 struct btrfs_root
*root
,
5045 struct btrfs_device
*device
)
5048 u64 sys_chunk_offset
;
5050 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5051 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
5054 chunk_offset
= find_next_chunk(fs_info
);
5055 alloc_profile
= btrfs_get_alloc_profile(extent_root
, 0);
5056 ret
= __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
,
5061 sys_chunk_offset
= find_next_chunk(root
->fs_info
);
5062 alloc_profile
= btrfs_get_alloc_profile(fs_info
->chunk_root
, 0);
5063 ret
= __btrfs_alloc_chunk(trans
, extent_root
, sys_chunk_offset
,
5068 static inline int btrfs_chunk_max_errors(struct map_lookup
*map
)
5072 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5073 BTRFS_BLOCK_GROUP_RAID10
|
5074 BTRFS_BLOCK_GROUP_RAID5
|
5075 BTRFS_BLOCK_GROUP_DUP
)) {
5077 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
) {
5086 int btrfs_chunk_readonly(struct btrfs_root
*root
, u64 chunk_offset
)
5088 struct extent_map
*em
;
5089 struct map_lookup
*map
;
5090 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
5095 read_lock(&map_tree
->map_tree
.lock
);
5096 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
5097 read_unlock(&map_tree
->map_tree
.lock
);
5101 map
= em
->map_lookup
;
5102 for (i
= 0; i
< map
->num_stripes
; i
++) {
5103 if (map
->stripes
[i
].dev
->missing
) {
5108 if (!map
->stripes
[i
].dev
->writeable
) {
5115 * If the number of missing devices is larger than max errors,
5116 * we can not write the data into that chunk successfully, so
5119 if (miss_ndevs
> btrfs_chunk_max_errors(map
))
5122 free_extent_map(em
);
5126 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
5128 extent_map_tree_init(&tree
->map_tree
);
5131 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
5133 struct extent_map
*em
;
5136 write_lock(&tree
->map_tree
.lock
);
5137 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
5139 remove_extent_mapping(&tree
->map_tree
, em
);
5140 write_unlock(&tree
->map_tree
.lock
);
5144 free_extent_map(em
);
5145 /* once for the tree */
5146 free_extent_map(em
);
5150 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5152 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
5153 struct extent_map
*em
;
5154 struct map_lookup
*map
;
5155 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5158 read_lock(&em_tree
->lock
);
5159 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5160 read_unlock(&em_tree
->lock
);
5163 * We could return errors for these cases, but that could get ugly and
5164 * we'd probably do the same thing which is just not do anything else
5165 * and exit, so return 1 so the callers don't try to use other copies.
5168 btrfs_crit(fs_info
, "No mapping for %Lu-%Lu", logical
,
5173 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
5174 btrfs_crit(fs_info
, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5175 logical
, logical
+len
, em
->start
,
5176 em
->start
+ em
->len
);
5177 free_extent_map(em
);
5181 map
= em
->map_lookup
;
5182 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
5183 ret
= map
->num_stripes
;
5184 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5185 ret
= map
->sub_stripes
;
5186 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
5188 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5190 * There could be two corrupted data stripes, we need
5191 * to loop retry in order to rebuild the correct data.
5193 * Fail a stripe at a time on every retry except the
5194 * stripe under reconstruction.
5196 ret
= map
->num_stripes
;
5199 free_extent_map(em
);
5201 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
5202 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))
5204 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
5209 unsigned long btrfs_full_stripe_len(struct btrfs_root
*root
,
5210 struct btrfs_mapping_tree
*map_tree
,
5213 struct extent_map
*em
;
5214 struct map_lookup
*map
;
5215 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5216 unsigned long len
= root
->sectorsize
;
5218 read_lock(&em_tree
->lock
);
5219 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5220 read_unlock(&em_tree
->lock
);
5223 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
5224 map
= em
->map_lookup
;
5225 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5226 len
= map
->stripe_len
* nr_data_stripes(map
);
5227 free_extent_map(em
);
5231 int btrfs_is_parity_mirror(struct btrfs_mapping_tree
*map_tree
,
5232 u64 logical
, u64 len
, int mirror_num
)
5234 struct extent_map
*em
;
5235 struct map_lookup
*map
;
5236 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5239 read_lock(&em_tree
->lock
);
5240 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5241 read_unlock(&em_tree
->lock
);
5244 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
5245 map
= em
->map_lookup
;
5246 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5248 free_extent_map(em
);
5252 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
5253 struct map_lookup
*map
, int first
, int num
,
5254 int optimal
, int dev_replace_is_ongoing
)
5258 struct btrfs_device
*srcdev
;
5260 if (dev_replace_is_ongoing
&&
5261 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
5262 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
5263 srcdev
= fs_info
->dev_replace
.srcdev
;
5268 * try to avoid the drive that is the source drive for a
5269 * dev-replace procedure, only choose it if no other non-missing
5270 * mirror is available
5272 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
5273 if (map
->stripes
[optimal
].dev
->bdev
&&
5274 (tolerance
|| map
->stripes
[optimal
].dev
!= srcdev
))
5276 for (i
= first
; i
< first
+ num
; i
++) {
5277 if (map
->stripes
[i
].dev
->bdev
&&
5278 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
5283 /* we couldn't find one that doesn't fail. Just return something
5284 * and the io error handling code will clean up eventually
5289 static inline int parity_smaller(u64 a
, u64 b
)
5294 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5295 static void sort_parity_stripes(struct btrfs_bio
*bbio
, int num_stripes
)
5297 struct btrfs_bio_stripe s
;
5304 for (i
= 0; i
< num_stripes
- 1; i
++) {
5305 if (parity_smaller(bbio
->raid_map
[i
],
5306 bbio
->raid_map
[i
+1])) {
5307 s
= bbio
->stripes
[i
];
5308 l
= bbio
->raid_map
[i
];
5309 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
5310 bbio
->raid_map
[i
] = bbio
->raid_map
[i
+1];
5311 bbio
->stripes
[i
+1] = s
;
5312 bbio
->raid_map
[i
+1] = l
;
5320 static struct btrfs_bio
*alloc_btrfs_bio(int total_stripes
, int real_stripes
)
5322 struct btrfs_bio
*bbio
= kzalloc(
5323 /* the size of the btrfs_bio */
5324 sizeof(struct btrfs_bio
) +
5325 /* plus the variable array for the stripes */
5326 sizeof(struct btrfs_bio_stripe
) * (total_stripes
) +
5327 /* plus the variable array for the tgt dev */
5328 sizeof(int) * (real_stripes
) +
5330 * plus the raid_map, which includes both the tgt dev
5333 sizeof(u64
) * (total_stripes
),
5334 GFP_NOFS
|__GFP_NOFAIL
);
5336 atomic_set(&bbio
->error
, 0);
5337 atomic_set(&bbio
->refs
, 1);
5342 void btrfs_get_bbio(struct btrfs_bio
*bbio
)
5344 WARN_ON(!atomic_read(&bbio
->refs
));
5345 atomic_inc(&bbio
->refs
);
5348 void btrfs_put_bbio(struct btrfs_bio
*bbio
)
5352 if (atomic_dec_and_test(&bbio
->refs
))
5356 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
, int op
,
5357 u64 logical
, u64
*length
,
5358 struct btrfs_bio
**bbio_ret
,
5359 int mirror_num
, int need_raid_map
)
5361 struct extent_map
*em
;
5362 struct map_lookup
*map
;
5363 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
5364 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5367 u64 stripe_end_offset
;
5377 int tgtdev_indexes
= 0;
5378 struct btrfs_bio
*bbio
= NULL
;
5379 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
5380 int dev_replace_is_ongoing
= 0;
5381 int num_alloc_stripes
;
5382 int patch_the_first_stripe_for_dev_replace
= 0;
5383 u64 physical_to_patch_in_first_stripe
= 0;
5384 u64 raid56_full_stripe_start
= (u64
)-1;
5386 read_lock(&em_tree
->lock
);
5387 em
= lookup_extent_mapping(em_tree
, logical
, *length
);
5388 read_unlock(&em_tree
->lock
);
5391 btrfs_crit(fs_info
, "unable to find logical %llu len %llu",
5396 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
5398 "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5399 logical
, em
->start
, em
->start
+ em
->len
);
5400 free_extent_map(em
);
5404 map
= em
->map_lookup
;
5405 offset
= logical
- em
->start
;
5407 stripe_len
= map
->stripe_len
;
5410 * stripe_nr counts the total number of stripes we have to stride
5411 * to get to this block
5413 stripe_nr
= div64_u64(stripe_nr
, stripe_len
);
5415 stripe_offset
= stripe_nr
* stripe_len
;
5416 if (offset
< stripe_offset
) {
5418 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5419 stripe_offset
, offset
, em
->start
, logical
,
5421 free_extent_map(em
);
5425 /* stripe_offset is the offset of this block in its stripe*/
5426 stripe_offset
= offset
- stripe_offset
;
5428 /* if we're here for raid56, we need to know the stripe aligned start */
5429 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5430 unsigned long full_stripe_len
= stripe_len
* nr_data_stripes(map
);
5431 raid56_full_stripe_start
= offset
;
5433 /* allow a write of a full stripe, but make sure we don't
5434 * allow straddling of stripes
5436 raid56_full_stripe_start
= div64_u64(raid56_full_stripe_start
,
5438 raid56_full_stripe_start
*= full_stripe_len
;
5441 if (op
== REQ_OP_DISCARD
) {
5442 /* we don't discard raid56 yet */
5443 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5447 *length
= min_t(u64
, em
->len
- offset
, *length
);
5448 } else if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
5450 /* For writes to RAID[56], allow a full stripeset across all disks.
5451 For other RAID types and for RAID[56] reads, just allow a single
5452 stripe (on a single disk). */
5453 if ((map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
5454 (op
== REQ_OP_WRITE
)) {
5455 max_len
= stripe_len
* nr_data_stripes(map
) -
5456 (offset
- raid56_full_stripe_start
);
5458 /* we limit the length of each bio to what fits in a stripe */
5459 max_len
= stripe_len
- stripe_offset
;
5461 *length
= min_t(u64
, em
->len
- offset
, max_len
);
5463 *length
= em
->len
- offset
;
5466 /* This is for when we're called from btrfs_merge_bio_hook() and all
5467 it cares about is the length */
5471 btrfs_dev_replace_lock(dev_replace
, 0);
5472 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
5473 if (!dev_replace_is_ongoing
)
5474 btrfs_dev_replace_unlock(dev_replace
, 0);
5476 btrfs_dev_replace_set_lock_blocking(dev_replace
);
5478 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
5479 op
!= REQ_OP_WRITE
&& op
!= REQ_OP_DISCARD
&&
5480 op
!= REQ_GET_READ_MIRRORS
&& dev_replace
->tgtdev
!= NULL
) {
5482 * in dev-replace case, for repair case (that's the only
5483 * case where the mirror is selected explicitly when
5484 * calling btrfs_map_block), blocks left of the left cursor
5485 * can also be read from the target drive.
5486 * For REQ_GET_READ_MIRRORS, the target drive is added as
5487 * the last one to the array of stripes. For READ, it also
5488 * needs to be supported using the same mirror number.
5489 * If the requested block is not left of the left cursor,
5490 * EIO is returned. This can happen because btrfs_num_copies()
5491 * returns one more in the dev-replace case.
5493 u64 tmp_length
= *length
;
5494 struct btrfs_bio
*tmp_bbio
= NULL
;
5495 int tmp_num_stripes
;
5496 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5497 int index_srcdev
= 0;
5499 u64 physical_of_found
= 0;
5501 ret
= __btrfs_map_block(fs_info
, REQ_GET_READ_MIRRORS
,
5502 logical
, &tmp_length
, &tmp_bbio
, 0, 0);
5504 WARN_ON(tmp_bbio
!= NULL
);
5508 tmp_num_stripes
= tmp_bbio
->num_stripes
;
5509 if (mirror_num
> tmp_num_stripes
) {
5511 * REQ_GET_READ_MIRRORS does not contain this
5512 * mirror, that means that the requested area
5513 * is not left of the left cursor
5516 btrfs_put_bbio(tmp_bbio
);
5521 * process the rest of the function using the mirror_num
5522 * of the source drive. Therefore look it up first.
5523 * At the end, patch the device pointer to the one of the
5526 for (i
= 0; i
< tmp_num_stripes
; i
++) {
5527 if (tmp_bbio
->stripes
[i
].dev
->devid
!= srcdev_devid
)
5531 * In case of DUP, in order to keep it simple, only add
5532 * the mirror with the lowest physical address
5535 physical_of_found
<= tmp_bbio
->stripes
[i
].physical
)
5540 physical_of_found
= tmp_bbio
->stripes
[i
].physical
;
5543 btrfs_put_bbio(tmp_bbio
);
5551 mirror_num
= index_srcdev
+ 1;
5552 patch_the_first_stripe_for_dev_replace
= 1;
5553 physical_to_patch_in_first_stripe
= physical_of_found
;
5554 } else if (mirror_num
> map
->num_stripes
) {
5560 stripe_nr_orig
= stripe_nr
;
5561 stripe_nr_end
= ALIGN(offset
+ *length
, map
->stripe_len
);
5562 stripe_nr_end
= div_u64(stripe_nr_end
, map
->stripe_len
);
5563 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
5566 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5567 if (op
== REQ_OP_DISCARD
)
5568 num_stripes
= min_t(u64
, map
->num_stripes
,
5569 stripe_nr_end
- stripe_nr_orig
);
5570 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5572 if (op
!= REQ_OP_WRITE
&& op
!= REQ_OP_DISCARD
&&
5573 op
!= REQ_GET_READ_MIRRORS
)
5575 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
5576 if (op
== REQ_OP_WRITE
|| op
== REQ_OP_DISCARD
||
5577 op
== REQ_GET_READ_MIRRORS
)
5578 num_stripes
= map
->num_stripes
;
5579 else if (mirror_num
)
5580 stripe_index
= mirror_num
- 1;
5582 stripe_index
= find_live_mirror(fs_info
, map
, 0,
5584 current
->pid
% map
->num_stripes
,
5585 dev_replace_is_ongoing
);
5586 mirror_num
= stripe_index
+ 1;
5589 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
5590 if (op
== REQ_OP_WRITE
|| op
== REQ_OP_DISCARD
||
5591 op
== REQ_GET_READ_MIRRORS
) {
5592 num_stripes
= map
->num_stripes
;
5593 } else if (mirror_num
) {
5594 stripe_index
= mirror_num
- 1;
5599 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5600 u32 factor
= map
->num_stripes
/ map
->sub_stripes
;
5602 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5603 stripe_index
*= map
->sub_stripes
;
5605 if (op
== REQ_OP_WRITE
|| op
== REQ_GET_READ_MIRRORS
)
5606 num_stripes
= map
->sub_stripes
;
5607 else if (op
== REQ_OP_DISCARD
)
5608 num_stripes
= min_t(u64
, map
->sub_stripes
*
5609 (stripe_nr_end
- stripe_nr_orig
),
5611 else if (mirror_num
)
5612 stripe_index
+= mirror_num
- 1;
5614 int old_stripe_index
= stripe_index
;
5615 stripe_index
= find_live_mirror(fs_info
, map
,
5617 map
->sub_stripes
, stripe_index
+
5618 current
->pid
% map
->sub_stripes
,
5619 dev_replace_is_ongoing
);
5620 mirror_num
= stripe_index
- old_stripe_index
+ 1;
5623 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5624 if (need_raid_map
&&
5625 (op
== REQ_OP_WRITE
|| op
== REQ_GET_READ_MIRRORS
||
5627 /* push stripe_nr back to the start of the full stripe */
5628 stripe_nr
= div_u64(raid56_full_stripe_start
,
5629 stripe_len
* nr_data_stripes(map
));
5631 /* RAID[56] write or recovery. Return all stripes */
5632 num_stripes
= map
->num_stripes
;
5633 max_errors
= nr_parity_stripes(map
);
5635 *length
= map
->stripe_len
;
5640 * Mirror #0 or #1 means the original data block.
5641 * Mirror #2 is RAID5 parity block.
5642 * Mirror #3 is RAID6 Q block.
5644 stripe_nr
= div_u64_rem(stripe_nr
,
5645 nr_data_stripes(map
), &stripe_index
);
5647 stripe_index
= nr_data_stripes(map
) +
5650 /* We distribute the parity blocks across stripes */
5651 div_u64_rem(stripe_nr
+ stripe_index
, map
->num_stripes
,
5653 if ((op
!= REQ_OP_WRITE
&& op
!= REQ_OP_DISCARD
&&
5654 op
!= REQ_GET_READ_MIRRORS
) && mirror_num
<= 1)
5659 * after this, stripe_nr is the number of stripes on this
5660 * device we have to walk to find the data, and stripe_index is
5661 * the number of our device in the stripe array
5663 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5665 mirror_num
= stripe_index
+ 1;
5667 if (stripe_index
>= map
->num_stripes
) {
5669 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5670 stripe_index
, map
->num_stripes
);
5675 num_alloc_stripes
= num_stripes
;
5676 if (dev_replace_is_ongoing
) {
5677 if (op
== REQ_OP_WRITE
|| op
== REQ_OP_DISCARD
)
5678 num_alloc_stripes
<<= 1;
5679 if (op
== REQ_GET_READ_MIRRORS
)
5680 num_alloc_stripes
++;
5681 tgtdev_indexes
= num_stripes
;
5684 bbio
= alloc_btrfs_bio(num_alloc_stripes
, tgtdev_indexes
);
5689 if (dev_replace_is_ongoing
)
5690 bbio
->tgtdev_map
= (int *)(bbio
->stripes
+ num_alloc_stripes
);
5692 /* build raid_map */
5693 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
&&
5695 ((op
== REQ_OP_WRITE
|| op
== REQ_GET_READ_MIRRORS
) ||
5700 bbio
->raid_map
= (u64
*)((void *)bbio
->stripes
+
5701 sizeof(struct btrfs_bio_stripe
) *
5703 sizeof(int) * tgtdev_indexes
);
5705 /* Work out the disk rotation on this stripe-set */
5706 div_u64_rem(stripe_nr
, num_stripes
, &rot
);
5708 /* Fill in the logical address of each stripe */
5709 tmp
= stripe_nr
* nr_data_stripes(map
);
5710 for (i
= 0; i
< nr_data_stripes(map
); i
++)
5711 bbio
->raid_map
[(i
+rot
) % num_stripes
] =
5712 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
5714 bbio
->raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
5715 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5716 bbio
->raid_map
[(i
+rot
+1) % num_stripes
] =
5720 if (op
== REQ_OP_DISCARD
) {
5722 u32 sub_stripes
= 0;
5723 u64 stripes_per_dev
= 0;
5724 u32 remaining_stripes
= 0;
5725 u32 last_stripe
= 0;
5728 (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID10
)) {
5729 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5732 sub_stripes
= map
->sub_stripes
;
5734 factor
= map
->num_stripes
/ sub_stripes
;
5735 stripes_per_dev
= div_u64_rem(stripe_nr_end
-
5738 &remaining_stripes
);
5739 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5740 last_stripe
*= sub_stripes
;
5743 for (i
= 0; i
< num_stripes
; i
++) {
5744 bbio
->stripes
[i
].physical
=
5745 map
->stripes
[stripe_index
].physical
+
5746 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5747 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5749 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5750 BTRFS_BLOCK_GROUP_RAID10
)) {
5751 bbio
->stripes
[i
].length
= stripes_per_dev
*
5754 if (i
/ sub_stripes
< remaining_stripes
)
5755 bbio
->stripes
[i
].length
+=
5759 * Special for the first stripe and
5762 * |-------|...|-------|
5766 if (i
< sub_stripes
)
5767 bbio
->stripes
[i
].length
-=
5770 if (stripe_index
>= last_stripe
&&
5771 stripe_index
<= (last_stripe
+
5773 bbio
->stripes
[i
].length
-=
5776 if (i
== sub_stripes
- 1)
5779 bbio
->stripes
[i
].length
= *length
;
5782 if (stripe_index
== map
->num_stripes
) {
5783 /* This could only happen for RAID0/10 */
5789 for (i
= 0; i
< num_stripes
; i
++) {
5790 bbio
->stripes
[i
].physical
=
5791 map
->stripes
[stripe_index
].physical
+
5793 stripe_nr
* map
->stripe_len
;
5794 bbio
->stripes
[i
].dev
=
5795 map
->stripes
[stripe_index
].dev
;
5800 if (op
== REQ_OP_WRITE
|| op
== REQ_GET_READ_MIRRORS
)
5801 max_errors
= btrfs_chunk_max_errors(map
);
5804 sort_parity_stripes(bbio
, num_stripes
);
5807 if (dev_replace_is_ongoing
&&
5808 (op
== REQ_OP_WRITE
|| op
== REQ_OP_DISCARD
) &&
5809 dev_replace
->tgtdev
!= NULL
) {
5810 int index_where_to_add
;
5811 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5814 * duplicate the write operations while the dev replace
5815 * procedure is running. Since the copying of the old disk
5816 * to the new disk takes place at run time while the
5817 * filesystem is mounted writable, the regular write
5818 * operations to the old disk have to be duplicated to go
5819 * to the new disk as well.
5820 * Note that device->missing is handled by the caller, and
5821 * that the write to the old disk is already set up in the
5824 index_where_to_add
= num_stripes
;
5825 for (i
= 0; i
< num_stripes
; i
++) {
5826 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5827 /* write to new disk, too */
5828 struct btrfs_bio_stripe
*new =
5829 bbio
->stripes
+ index_where_to_add
;
5830 struct btrfs_bio_stripe
*old
=
5833 new->physical
= old
->physical
;
5834 new->length
= old
->length
;
5835 new->dev
= dev_replace
->tgtdev
;
5836 bbio
->tgtdev_map
[i
] = index_where_to_add
;
5837 index_where_to_add
++;
5842 num_stripes
= index_where_to_add
;
5843 } else if (dev_replace_is_ongoing
&& (op
== REQ_GET_READ_MIRRORS
) &&
5844 dev_replace
->tgtdev
!= NULL
) {
5845 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5846 int index_srcdev
= 0;
5848 u64 physical_of_found
= 0;
5851 * During the dev-replace procedure, the target drive can
5852 * also be used to read data in case it is needed to repair
5853 * a corrupt block elsewhere. This is possible if the
5854 * requested area is left of the left cursor. In this area,
5855 * the target drive is a full copy of the source drive.
5857 for (i
= 0; i
< num_stripes
; i
++) {
5858 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5860 * In case of DUP, in order to keep it
5861 * simple, only add the mirror with the
5862 * lowest physical address
5865 physical_of_found
<=
5866 bbio
->stripes
[i
].physical
)
5870 physical_of_found
= bbio
->stripes
[i
].physical
;
5874 struct btrfs_bio_stripe
*tgtdev_stripe
=
5875 bbio
->stripes
+ num_stripes
;
5877 tgtdev_stripe
->physical
= physical_of_found
;
5878 tgtdev_stripe
->length
=
5879 bbio
->stripes
[index_srcdev
].length
;
5880 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5881 bbio
->tgtdev_map
[index_srcdev
] = num_stripes
;
5889 bbio
->map_type
= map
->type
;
5890 bbio
->num_stripes
= num_stripes
;
5891 bbio
->max_errors
= max_errors
;
5892 bbio
->mirror_num
= mirror_num
;
5893 bbio
->num_tgtdevs
= tgtdev_indexes
;
5896 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5897 * mirror_num == num_stripes + 1 && dev_replace target drive is
5898 * available as a mirror
5900 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
5901 WARN_ON(num_stripes
> 1);
5902 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
5903 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
5904 bbio
->mirror_num
= map
->num_stripes
+ 1;
5907 if (dev_replace_is_ongoing
) {
5908 btrfs_dev_replace_clear_lock_blocking(dev_replace
);
5909 btrfs_dev_replace_unlock(dev_replace
, 0);
5911 free_extent_map(em
);
5915 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, int op
,
5916 u64 logical
, u64
*length
,
5917 struct btrfs_bio
**bbio_ret
, int mirror_num
)
5919 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
,
5923 /* For Scrub/replace */
5924 int btrfs_map_sblock(struct btrfs_fs_info
*fs_info
, int op
,
5925 u64 logical
, u64
*length
,
5926 struct btrfs_bio
**bbio_ret
, int mirror_num
,
5929 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
,
5930 mirror_num
, need_raid_map
);
5933 int btrfs_rmap_block(struct btrfs_fs_info
*fs_info
,
5934 u64 chunk_start
, u64 physical
, u64 devid
,
5935 u64
**logical
, int *naddrs
, int *stripe_len
)
5937 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
5938 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5939 struct extent_map
*em
;
5940 struct map_lookup
*map
;
5948 read_lock(&em_tree
->lock
);
5949 em
= lookup_extent_mapping(em_tree
, chunk_start
, 1);
5950 read_unlock(&em_tree
->lock
);
5953 btrfs_err(fs_info
, "couldn't find em for chunk %Lu",
5958 if (em
->start
!= chunk_start
) {
5959 btrfs_err(fs_info
, "bad chunk start, em=%Lu, wanted=%Lu",
5960 em
->start
, chunk_start
);
5961 free_extent_map(em
);
5964 map
= em
->map_lookup
;
5967 rmap_len
= map
->stripe_len
;
5969 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5970 length
= div_u64(length
, map
->num_stripes
/ map
->sub_stripes
);
5971 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5972 length
= div_u64(length
, map
->num_stripes
);
5973 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5974 length
= div_u64(length
, nr_data_stripes(map
));
5975 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
5978 buf
= kcalloc(map
->num_stripes
, sizeof(u64
), GFP_NOFS
);
5979 BUG_ON(!buf
); /* -ENOMEM */
5981 for (i
= 0; i
< map
->num_stripes
; i
++) {
5982 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
5984 if (map
->stripes
[i
].physical
> physical
||
5985 map
->stripes
[i
].physical
+ length
<= physical
)
5988 stripe_nr
= physical
- map
->stripes
[i
].physical
;
5989 stripe_nr
= div_u64(stripe_nr
, map
->stripe_len
);
5991 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5992 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5993 stripe_nr
= div_u64(stripe_nr
, map
->sub_stripes
);
5994 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5995 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5996 } /* else if RAID[56], multiply by nr_data_stripes().
5997 * Alternatively, just use rmap_len below instead of
5998 * map->stripe_len */
6000 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
6001 WARN_ON(nr
>= map
->num_stripes
);
6002 for (j
= 0; j
< nr
; j
++) {
6003 if (buf
[j
] == bytenr
)
6007 WARN_ON(nr
>= map
->num_stripes
);
6014 *stripe_len
= rmap_len
;
6016 free_extent_map(em
);
6020 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
)
6022 bio
->bi_private
= bbio
->private;
6023 bio
->bi_end_io
= bbio
->end_io
;
6026 btrfs_put_bbio(bbio
);
6029 static void btrfs_end_bio(struct bio
*bio
)
6031 struct btrfs_bio
*bbio
= bio
->bi_private
;
6032 int is_orig_bio
= 0;
6034 if (bio
->bi_error
) {
6035 atomic_inc(&bbio
->error
);
6036 if (bio
->bi_error
== -EIO
|| bio
->bi_error
== -EREMOTEIO
) {
6037 unsigned int stripe_index
=
6038 btrfs_io_bio(bio
)->stripe_index
;
6039 struct btrfs_device
*dev
;
6041 BUG_ON(stripe_index
>= bbio
->num_stripes
);
6042 dev
= bbio
->stripes
[stripe_index
].dev
;
6044 if (bio_op(bio
) == REQ_OP_WRITE
)
6045 btrfs_dev_stat_inc(dev
,
6046 BTRFS_DEV_STAT_WRITE_ERRS
);
6048 btrfs_dev_stat_inc(dev
,
6049 BTRFS_DEV_STAT_READ_ERRS
);
6050 if ((bio
->bi_opf
& WRITE_FLUSH
) == WRITE_FLUSH
)
6051 btrfs_dev_stat_inc(dev
,
6052 BTRFS_DEV_STAT_FLUSH_ERRS
);
6053 btrfs_dev_stat_print_on_error(dev
);
6058 if (bio
== bbio
->orig_bio
)
6061 btrfs_bio_counter_dec(bbio
->fs_info
);
6063 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6066 bio
= bbio
->orig_bio
;
6069 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6070 /* only send an error to the higher layers if it is
6071 * beyond the tolerance of the btrfs bio
6073 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
6074 bio
->bi_error
= -EIO
;
6077 * this bio is actually up to date, we didn't
6078 * go over the max number of errors
6083 btrfs_end_bbio(bbio
, bio
);
6084 } else if (!is_orig_bio
) {
6090 * see run_scheduled_bios for a description of why bios are collected for
6093 * This will add one bio to the pending list for a device and make sure
6094 * the work struct is scheduled.
6096 static noinline
void btrfs_schedule_bio(struct btrfs_root
*root
,
6097 struct btrfs_device
*device
,
6100 int should_queue
= 1;
6101 struct btrfs_pending_bios
*pending_bios
;
6103 if (device
->missing
|| !device
->bdev
) {
6108 /* don't bother with additional async steps for reads, right now */
6109 if (bio_op(bio
) == REQ_OP_READ
) {
6111 btrfsic_submit_bio(bio
);
6117 * nr_async_bios allows us to reliably return congestion to the
6118 * higher layers. Otherwise, the async bio makes it appear we have
6119 * made progress against dirty pages when we've really just put it
6120 * on a queue for later
6122 atomic_inc(&root
->fs_info
->nr_async_bios
);
6123 WARN_ON(bio
->bi_next
);
6124 bio
->bi_next
= NULL
;
6126 spin_lock(&device
->io_lock
);
6127 if (bio
->bi_opf
& REQ_SYNC
)
6128 pending_bios
= &device
->pending_sync_bios
;
6130 pending_bios
= &device
->pending_bios
;
6132 if (pending_bios
->tail
)
6133 pending_bios
->tail
->bi_next
= bio
;
6135 pending_bios
->tail
= bio
;
6136 if (!pending_bios
->head
)
6137 pending_bios
->head
= bio
;
6138 if (device
->running_pending
)
6141 spin_unlock(&device
->io_lock
);
6144 btrfs_queue_work(root
->fs_info
->submit_workers
,
6148 static void submit_stripe_bio(struct btrfs_root
*root
, struct btrfs_bio
*bbio
,
6149 struct bio
*bio
, u64 physical
, int dev_nr
,
6152 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
6154 bio
->bi_private
= bbio
;
6155 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
6156 bio
->bi_end_io
= btrfs_end_bio
;
6157 bio
->bi_iter
.bi_sector
= physical
>> 9;
6160 struct rcu_string
*name
;
6163 name
= rcu_dereference(dev
->name
);
6164 btrfs_debug(fs_info
,
6165 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6166 bio_op(bio
), bio
->bi_opf
,
6167 (u64
)bio
->bi_iter
.bi_sector
,
6168 (u_long
)dev
->bdev
->bd_dev
, name
->str
, dev
->devid
,
6169 bio
->bi_iter
.bi_size
);
6173 bio
->bi_bdev
= dev
->bdev
;
6175 btrfs_bio_counter_inc_noblocked(root
->fs_info
);
6178 btrfs_schedule_bio(root
, dev
, bio
);
6180 btrfsic_submit_bio(bio
);
6183 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
6185 atomic_inc(&bbio
->error
);
6186 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6187 /* Should be the original bio. */
6188 WARN_ON(bio
!= bbio
->orig_bio
);
6190 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6191 bio
->bi_iter
.bi_sector
= logical
>> 9;
6192 bio
->bi_error
= -EIO
;
6193 btrfs_end_bbio(bbio
, bio
);
6197 int btrfs_map_bio(struct btrfs_root
*root
, struct bio
*bio
,
6198 int mirror_num
, int async_submit
)
6200 struct btrfs_device
*dev
;
6201 struct bio
*first_bio
= bio
;
6202 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
6208 struct btrfs_bio
*bbio
= NULL
;
6210 length
= bio
->bi_iter
.bi_size
;
6211 map_length
= length
;
6213 btrfs_bio_counter_inc_blocked(root
->fs_info
);
6214 ret
= __btrfs_map_block(root
->fs_info
, bio_op(bio
), logical
,
6215 &map_length
, &bbio
, mirror_num
, 1);
6217 btrfs_bio_counter_dec(root
->fs_info
);
6221 total_devs
= bbio
->num_stripes
;
6222 bbio
->orig_bio
= first_bio
;
6223 bbio
->private = first_bio
->bi_private
;
6224 bbio
->end_io
= first_bio
->bi_end_io
;
6225 bbio
->fs_info
= root
->fs_info
;
6226 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
6228 if ((bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
6229 ((bio_op(bio
) == REQ_OP_WRITE
) || (mirror_num
> 1))) {
6230 /* In this case, map_length has been set to the length of
6231 a single stripe; not the whole write */
6232 if (bio_op(bio
) == REQ_OP_WRITE
) {
6233 ret
= raid56_parity_write(root
, bio
, bbio
, map_length
);
6235 ret
= raid56_parity_recover(root
, bio
, bbio
, map_length
,
6239 btrfs_bio_counter_dec(root
->fs_info
);
6243 if (map_length
< length
) {
6244 btrfs_crit(root
->fs_info
,
6245 "mapping failed logical %llu bio len %llu len %llu",
6246 logical
, length
, map_length
);
6250 for (dev_nr
= 0; dev_nr
< total_devs
; dev_nr
++) {
6251 dev
= bbio
->stripes
[dev_nr
].dev
;
6252 if (!dev
|| !dev
->bdev
||
6253 (bio_op(first_bio
) == REQ_OP_WRITE
&& !dev
->writeable
)) {
6254 bbio_error(bbio
, first_bio
, logical
);
6258 if (dev_nr
< total_devs
- 1) {
6259 bio
= btrfs_bio_clone(first_bio
, GFP_NOFS
);
6260 BUG_ON(!bio
); /* -ENOMEM */
6264 submit_stripe_bio(root
, bbio
, bio
,
6265 bbio
->stripes
[dev_nr
].physical
, dev_nr
,
6268 btrfs_bio_counter_dec(root
->fs_info
);
6272 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
6275 struct btrfs_device
*device
;
6276 struct btrfs_fs_devices
*cur_devices
;
6278 cur_devices
= fs_info
->fs_devices
;
6279 while (cur_devices
) {
6281 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
6282 device
= __find_device(&cur_devices
->devices
,
6287 cur_devices
= cur_devices
->seed
;
6292 static struct btrfs_device
*add_missing_dev(struct btrfs_root
*root
,
6293 struct btrfs_fs_devices
*fs_devices
,
6294 u64 devid
, u8
*dev_uuid
)
6296 struct btrfs_device
*device
;
6298 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
6302 list_add(&device
->dev_list
, &fs_devices
->devices
);
6303 device
->fs_devices
= fs_devices
;
6304 fs_devices
->num_devices
++;
6306 device
->missing
= 1;
6307 fs_devices
->missing_devices
++;
6313 * btrfs_alloc_device - allocate struct btrfs_device
6314 * @fs_info: used only for generating a new devid, can be NULL if
6315 * devid is provided (i.e. @devid != NULL).
6316 * @devid: a pointer to devid for this device. If NULL a new devid
6318 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6321 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6322 * on error. Returned struct is not linked onto any lists and can be
6323 * destroyed with kfree() right away.
6325 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
6329 struct btrfs_device
*dev
;
6332 if (WARN_ON(!devid
&& !fs_info
))
6333 return ERR_PTR(-EINVAL
);
6335 dev
= __alloc_device();
6344 ret
= find_next_devid(fs_info
, &tmp
);
6347 return ERR_PTR(ret
);
6353 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
6355 generate_random_uuid(dev
->uuid
);
6357 btrfs_init_work(&dev
->work
, btrfs_submit_helper
,
6358 pending_bios_fn
, NULL
, NULL
);
6363 /* Return -EIO if any error, otherwise return 0. */
6364 static int btrfs_check_chunk_valid(struct btrfs_root
*root
,
6365 struct extent_buffer
*leaf
,
6366 struct btrfs_chunk
*chunk
, u64 logical
)
6376 length
= btrfs_chunk_length(leaf
, chunk
);
6377 stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6378 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6379 sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6380 type
= btrfs_chunk_type(leaf
, chunk
);
6383 btrfs_err(root
->fs_info
, "invalid chunk num_stripes: %u",
6387 if (!IS_ALIGNED(logical
, root
->sectorsize
)) {
6388 btrfs_err(root
->fs_info
,
6389 "invalid chunk logical %llu", logical
);
6392 if (btrfs_chunk_sector_size(leaf
, chunk
) != root
->sectorsize
) {
6393 btrfs_err(root
->fs_info
, "invalid chunk sectorsize %u",
6394 btrfs_chunk_sector_size(leaf
, chunk
));
6397 if (!length
|| !IS_ALIGNED(length
, root
->sectorsize
)) {
6398 btrfs_err(root
->fs_info
,
6399 "invalid chunk length %llu", length
);
6402 if (!is_power_of_2(stripe_len
) || stripe_len
!= BTRFS_STRIPE_LEN
) {
6403 btrfs_err(root
->fs_info
, "invalid chunk stripe length: %llu",
6407 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK
| BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6409 btrfs_err(root
->fs_info
, "unrecognized chunk type: %llu",
6410 ~(BTRFS_BLOCK_GROUP_TYPE_MASK
|
6411 BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6412 btrfs_chunk_type(leaf
, chunk
));
6416 if ((type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) == 0) {
6417 btrfs_err(root
->fs_info
, "missing chunk type flag: 0x%llx", type
);
6421 if ((type
& BTRFS_BLOCK_GROUP_SYSTEM
) &&
6422 (type
& (BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
))) {
6423 btrfs_err(root
->fs_info
,
6424 "system chunk with data or metadata type: 0x%llx", type
);
6428 features
= btrfs_super_incompat_flags(root
->fs_info
->super_copy
);
6429 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
6433 if ((type
& BTRFS_BLOCK_GROUP_METADATA
) &&
6434 (type
& BTRFS_BLOCK_GROUP_DATA
)) {
6435 btrfs_err(root
->fs_info
,
6436 "mixed chunk type in non-mixed mode: 0x%llx", type
);
6441 if ((type
& BTRFS_BLOCK_GROUP_RAID10
&& sub_stripes
!= 2) ||
6442 (type
& BTRFS_BLOCK_GROUP_RAID1
&& num_stripes
!= 2) ||
6443 (type
& BTRFS_BLOCK_GROUP_RAID5
&& num_stripes
< 2) ||
6444 (type
& BTRFS_BLOCK_GROUP_RAID6
&& num_stripes
< 3) ||
6445 (type
& BTRFS_BLOCK_GROUP_DUP
&& num_stripes
!= 2) ||
6446 ((type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 &&
6447 num_stripes
!= 1)) {
6448 btrfs_err(root
->fs_info
,
6449 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6450 num_stripes
, sub_stripes
,
6451 type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
);
6458 static int read_one_chunk(struct btrfs_root
*root
, struct btrfs_key
*key
,
6459 struct extent_buffer
*leaf
,
6460 struct btrfs_chunk
*chunk
)
6462 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
6463 struct map_lookup
*map
;
6464 struct extent_map
*em
;
6469 u8 uuid
[BTRFS_UUID_SIZE
];
6474 logical
= key
->offset
;
6475 length
= btrfs_chunk_length(leaf
, chunk
);
6476 stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6477 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6479 ret
= btrfs_check_chunk_valid(root
, leaf
, chunk
, logical
);
6483 read_lock(&map_tree
->map_tree
.lock
);
6484 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
6485 read_unlock(&map_tree
->map_tree
.lock
);
6487 /* already mapped? */
6488 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
6489 free_extent_map(em
);
6492 free_extent_map(em
);
6495 em
= alloc_extent_map();
6498 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
6500 free_extent_map(em
);
6504 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
6505 em
->map_lookup
= map
;
6506 em
->start
= logical
;
6509 em
->block_start
= 0;
6510 em
->block_len
= em
->len
;
6512 map
->num_stripes
= num_stripes
;
6513 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
6514 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
6515 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
6516 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6517 map
->type
= btrfs_chunk_type(leaf
, chunk
);
6518 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6519 for (i
= 0; i
< num_stripes
; i
++) {
6520 map
->stripes
[i
].physical
=
6521 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
6522 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
6523 read_extent_buffer(leaf
, uuid
, (unsigned long)
6524 btrfs_stripe_dev_uuid_nr(chunk
, i
),
6526 map
->stripes
[i
].dev
= btrfs_find_device(root
->fs_info
, devid
,
6528 if (!map
->stripes
[i
].dev
&&
6529 !btrfs_test_opt(root
->fs_info
, DEGRADED
)) {
6530 free_extent_map(em
);
6533 if (!map
->stripes
[i
].dev
) {
6534 map
->stripes
[i
].dev
=
6535 add_missing_dev(root
, root
->fs_info
->fs_devices
,
6537 if (!map
->stripes
[i
].dev
) {
6538 free_extent_map(em
);
6541 btrfs_warn(root
->fs_info
,
6542 "devid %llu uuid %pU is missing",
6545 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
6548 write_lock(&map_tree
->map_tree
.lock
);
6549 ret
= add_extent_mapping(&map_tree
->map_tree
, em
, 0);
6550 write_unlock(&map_tree
->map_tree
.lock
);
6551 BUG_ON(ret
); /* Tree corruption */
6552 free_extent_map(em
);
6557 static void fill_device_from_item(struct extent_buffer
*leaf
,
6558 struct btrfs_dev_item
*dev_item
,
6559 struct btrfs_device
*device
)
6563 device
->devid
= btrfs_device_id(leaf
, dev_item
);
6564 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
6565 device
->total_bytes
= device
->disk_total_bytes
;
6566 device
->commit_total_bytes
= device
->disk_total_bytes
;
6567 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
6568 device
->commit_bytes_used
= device
->bytes_used
;
6569 device
->type
= btrfs_device_type(leaf
, dev_item
);
6570 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
6571 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
6572 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
6573 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
6574 device
->is_tgtdev_for_dev_replace
= 0;
6576 ptr
= btrfs_device_uuid(dev_item
);
6577 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
6580 static struct btrfs_fs_devices
*open_seed_devices(struct btrfs_root
*root
,
6583 struct btrfs_fs_devices
*fs_devices
;
6586 BUG_ON(!mutex_is_locked(&uuid_mutex
));
6588 fs_devices
= root
->fs_info
->fs_devices
->seed
;
6589 while (fs_devices
) {
6590 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
))
6593 fs_devices
= fs_devices
->seed
;
6596 fs_devices
= find_fsid(fsid
);
6598 if (!btrfs_test_opt(root
->fs_info
, DEGRADED
))
6599 return ERR_PTR(-ENOENT
);
6601 fs_devices
= alloc_fs_devices(fsid
);
6602 if (IS_ERR(fs_devices
))
6605 fs_devices
->seeding
= 1;
6606 fs_devices
->opened
= 1;
6610 fs_devices
= clone_fs_devices(fs_devices
);
6611 if (IS_ERR(fs_devices
))
6614 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
6615 root
->fs_info
->bdev_holder
);
6617 free_fs_devices(fs_devices
);
6618 fs_devices
= ERR_PTR(ret
);
6622 if (!fs_devices
->seeding
) {
6623 __btrfs_close_devices(fs_devices
);
6624 free_fs_devices(fs_devices
);
6625 fs_devices
= ERR_PTR(-EINVAL
);
6629 fs_devices
->seed
= root
->fs_info
->fs_devices
->seed
;
6630 root
->fs_info
->fs_devices
->seed
= fs_devices
;
6635 static int read_one_dev(struct btrfs_root
*root
,
6636 struct extent_buffer
*leaf
,
6637 struct btrfs_dev_item
*dev_item
)
6639 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
6640 struct btrfs_device
*device
;
6643 u8 fs_uuid
[BTRFS_UUID_SIZE
];
6644 u8 dev_uuid
[BTRFS_UUID_SIZE
];
6646 devid
= btrfs_device_id(leaf
, dev_item
);
6647 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
6649 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
6652 if (memcmp(fs_uuid
, root
->fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
6653 fs_devices
= open_seed_devices(root
, fs_uuid
);
6654 if (IS_ERR(fs_devices
))
6655 return PTR_ERR(fs_devices
);
6658 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
, fs_uuid
);
6660 if (!btrfs_test_opt(root
->fs_info
, DEGRADED
))
6663 device
= add_missing_dev(root
, fs_devices
, devid
, dev_uuid
);
6666 btrfs_warn(root
->fs_info
, "devid %llu uuid %pU missing",
6669 if (!device
->bdev
&& !btrfs_test_opt(root
->fs_info
, DEGRADED
))
6672 if(!device
->bdev
&& !device
->missing
) {
6674 * this happens when a device that was properly setup
6675 * in the device info lists suddenly goes bad.
6676 * device->bdev is NULL, and so we have to set
6677 * device->missing to one here
6679 device
->fs_devices
->missing_devices
++;
6680 device
->missing
= 1;
6683 /* Move the device to its own fs_devices */
6684 if (device
->fs_devices
!= fs_devices
) {
6685 ASSERT(device
->missing
);
6687 list_move(&device
->dev_list
, &fs_devices
->devices
);
6688 device
->fs_devices
->num_devices
--;
6689 fs_devices
->num_devices
++;
6691 device
->fs_devices
->missing_devices
--;
6692 fs_devices
->missing_devices
++;
6694 device
->fs_devices
= fs_devices
;
6698 if (device
->fs_devices
!= root
->fs_info
->fs_devices
) {
6699 BUG_ON(device
->writeable
);
6700 if (device
->generation
!=
6701 btrfs_device_generation(leaf
, dev_item
))
6705 fill_device_from_item(leaf
, dev_item
, device
);
6706 device
->in_fs_metadata
= 1;
6707 if (device
->writeable
&& !device
->is_tgtdev_for_dev_replace
) {
6708 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6709 spin_lock(&root
->fs_info
->free_chunk_lock
);
6710 root
->fs_info
->free_chunk_space
+= device
->total_bytes
-
6712 spin_unlock(&root
->fs_info
->free_chunk_lock
);
6718 int btrfs_read_sys_array(struct btrfs_root
*root
)
6720 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6721 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
6722 struct extent_buffer
*sb
;
6723 struct btrfs_disk_key
*disk_key
;
6724 struct btrfs_chunk
*chunk
;
6726 unsigned long sb_array_offset
;
6733 struct btrfs_key key
;
6735 ASSERT(BTRFS_SUPER_INFO_SIZE
<= root
->nodesize
);
6737 * This will create extent buffer of nodesize, superblock size is
6738 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6739 * overallocate but we can keep it as-is, only the first page is used.
6741 sb
= btrfs_find_create_tree_block(root
, BTRFS_SUPER_INFO_OFFSET
);
6744 set_extent_buffer_uptodate(sb
);
6745 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
6747 * The sb extent buffer is artificial and just used to read the system array.
6748 * set_extent_buffer_uptodate() call does not properly mark all it's
6749 * pages up-to-date when the page is larger: extent does not cover the
6750 * whole page and consequently check_page_uptodate does not find all
6751 * the page's extents up-to-date (the hole beyond sb),
6752 * write_extent_buffer then triggers a WARN_ON.
6754 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6755 * but sb spans only this function. Add an explicit SetPageUptodate call
6756 * to silence the warning eg. on PowerPC 64.
6758 if (PAGE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6759 SetPageUptodate(sb
->pages
[0]);
6761 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6762 array_size
= btrfs_super_sys_array_size(super_copy
);
6764 array_ptr
= super_copy
->sys_chunk_array
;
6765 sb_array_offset
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
6768 while (cur_offset
< array_size
) {
6769 disk_key
= (struct btrfs_disk_key
*)array_ptr
;
6770 len
= sizeof(*disk_key
);
6771 if (cur_offset
+ len
> array_size
)
6772 goto out_short_read
;
6774 btrfs_disk_key_to_cpu(&key
, disk_key
);
6777 sb_array_offset
+= len
;
6780 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6781 chunk
= (struct btrfs_chunk
*)sb_array_offset
;
6783 * At least one btrfs_chunk with one stripe must be
6784 * present, exact stripe count check comes afterwards
6786 len
= btrfs_chunk_item_size(1);
6787 if (cur_offset
+ len
> array_size
)
6788 goto out_short_read
;
6790 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
6793 "invalid number of stripes %u in sys_array at offset %u",
6794 num_stripes
, cur_offset
);
6799 type
= btrfs_chunk_type(sb
, chunk
);
6800 if ((type
& BTRFS_BLOCK_GROUP_SYSTEM
) == 0) {
6802 "invalid chunk type %llu in sys_array at offset %u",
6808 len
= btrfs_chunk_item_size(num_stripes
);
6809 if (cur_offset
+ len
> array_size
)
6810 goto out_short_read
;
6812 ret
= read_one_chunk(root
, &key
, sb
, chunk
);
6817 "unexpected item type %u in sys_array at offset %u",
6818 (u32
)key
.type
, cur_offset
);
6823 sb_array_offset
+= len
;
6826 clear_extent_buffer_uptodate(sb
);
6827 free_extent_buffer_stale(sb
);
6831 btrfs_err(fs_info
, "sys_array too short to read %u bytes at offset %u",
6833 clear_extent_buffer_uptodate(sb
);
6834 free_extent_buffer_stale(sb
);
6838 int btrfs_read_chunk_tree(struct btrfs_root
*root
)
6840 struct btrfs_path
*path
;
6841 struct extent_buffer
*leaf
;
6842 struct btrfs_key key
;
6843 struct btrfs_key found_key
;
6848 root
= root
->fs_info
->chunk_root
;
6850 path
= btrfs_alloc_path();
6854 mutex_lock(&uuid_mutex
);
6858 * Read all device items, and then all the chunk items. All
6859 * device items are found before any chunk item (their object id
6860 * is smaller than the lowest possible object id for a chunk
6861 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6863 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
6866 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6870 leaf
= path
->nodes
[0];
6871 slot
= path
->slots
[0];
6872 if (slot
>= btrfs_header_nritems(leaf
)) {
6873 ret
= btrfs_next_leaf(root
, path
);
6880 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6881 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
6882 struct btrfs_dev_item
*dev_item
;
6883 dev_item
= btrfs_item_ptr(leaf
, slot
,
6884 struct btrfs_dev_item
);
6885 ret
= read_one_dev(root
, leaf
, dev_item
);
6889 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6890 struct btrfs_chunk
*chunk
;
6891 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
6892 ret
= read_one_chunk(root
, &found_key
, leaf
, chunk
);
6900 * After loading chunk tree, we've got all device information,
6901 * do another round of validation checks.
6903 if (total_dev
!= root
->fs_info
->fs_devices
->total_devices
) {
6904 btrfs_err(root
->fs_info
,
6905 "super_num_devices %llu mismatch with num_devices %llu found here",
6906 btrfs_super_num_devices(root
->fs_info
->super_copy
),
6911 if (btrfs_super_total_bytes(root
->fs_info
->super_copy
) <
6912 root
->fs_info
->fs_devices
->total_rw_bytes
) {
6913 btrfs_err(root
->fs_info
,
6914 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6915 btrfs_super_total_bytes(root
->fs_info
->super_copy
),
6916 root
->fs_info
->fs_devices
->total_rw_bytes
);
6922 unlock_chunks(root
);
6923 mutex_unlock(&uuid_mutex
);
6925 btrfs_free_path(path
);
6929 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
6931 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6932 struct btrfs_device
*device
;
6934 while (fs_devices
) {
6935 mutex_lock(&fs_devices
->device_list_mutex
);
6936 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
6937 device
->dev_root
= fs_info
->dev_root
;
6938 mutex_unlock(&fs_devices
->device_list_mutex
);
6940 fs_devices
= fs_devices
->seed
;
6944 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
6948 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6949 btrfs_dev_stat_reset(dev
, i
);
6952 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
6954 struct btrfs_key key
;
6955 struct btrfs_key found_key
;
6956 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6957 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6958 struct extent_buffer
*eb
;
6961 struct btrfs_device
*device
;
6962 struct btrfs_path
*path
= NULL
;
6965 path
= btrfs_alloc_path();
6971 mutex_lock(&fs_devices
->device_list_mutex
);
6972 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6974 struct btrfs_dev_stats_item
*ptr
;
6976 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
6977 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
6978 key
.offset
= device
->devid
;
6979 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
6981 __btrfs_reset_dev_stats(device
);
6982 device
->dev_stats_valid
= 1;
6983 btrfs_release_path(path
);
6986 slot
= path
->slots
[0];
6987 eb
= path
->nodes
[0];
6988 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
6989 item_size
= btrfs_item_size_nr(eb
, slot
);
6991 ptr
= btrfs_item_ptr(eb
, slot
,
6992 struct btrfs_dev_stats_item
);
6994 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6995 if (item_size
>= (1 + i
) * sizeof(__le64
))
6996 btrfs_dev_stat_set(device
, i
,
6997 btrfs_dev_stats_value(eb
, ptr
, i
));
6999 btrfs_dev_stat_reset(device
, i
);
7002 device
->dev_stats_valid
= 1;
7003 btrfs_dev_stat_print_on_load(device
);
7004 btrfs_release_path(path
);
7006 mutex_unlock(&fs_devices
->device_list_mutex
);
7009 btrfs_free_path(path
);
7010 return ret
< 0 ? ret
: 0;
7013 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
7014 struct btrfs_root
*dev_root
,
7015 struct btrfs_device
*device
)
7017 struct btrfs_path
*path
;
7018 struct btrfs_key key
;
7019 struct extent_buffer
*eb
;
7020 struct btrfs_dev_stats_item
*ptr
;
7024 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
7025 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
7026 key
.offset
= device
->devid
;
7028 path
= btrfs_alloc_path();
7030 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
7032 btrfs_warn_in_rcu(dev_root
->fs_info
,
7033 "error %d while searching for dev_stats item for device %s",
7034 ret
, rcu_str_deref(device
->name
));
7039 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
7040 /* need to delete old one and insert a new one */
7041 ret
= btrfs_del_item(trans
, dev_root
, path
);
7043 btrfs_warn_in_rcu(dev_root
->fs_info
,
7044 "delete too small dev_stats item for device %s failed %d",
7045 rcu_str_deref(device
->name
), ret
);
7052 /* need to insert a new item */
7053 btrfs_release_path(path
);
7054 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
7055 &key
, sizeof(*ptr
));
7057 btrfs_warn_in_rcu(dev_root
->fs_info
,
7058 "insert dev_stats item for device %s failed %d",
7059 rcu_str_deref(device
->name
), ret
);
7064 eb
= path
->nodes
[0];
7065 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
7066 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7067 btrfs_set_dev_stats_value(eb
, ptr
, i
,
7068 btrfs_dev_stat_read(device
, i
));
7069 btrfs_mark_buffer_dirty(eb
);
7072 btrfs_free_path(path
);
7077 * called from commit_transaction. Writes all changed device stats to disk.
7079 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
,
7080 struct btrfs_fs_info
*fs_info
)
7082 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
7083 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7084 struct btrfs_device
*device
;
7088 mutex_lock(&fs_devices
->device_list_mutex
);
7089 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7090 if (!device
->dev_stats_valid
|| !btrfs_dev_stats_dirty(device
))
7093 stats_cnt
= atomic_read(&device
->dev_stats_ccnt
);
7094 ret
= update_dev_stat_item(trans
, dev_root
, device
);
7096 atomic_sub(stats_cnt
, &device
->dev_stats_ccnt
);
7098 mutex_unlock(&fs_devices
->device_list_mutex
);
7103 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
7105 btrfs_dev_stat_inc(dev
, index
);
7106 btrfs_dev_stat_print_on_error(dev
);
7109 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
7111 if (!dev
->dev_stats_valid
)
7113 btrfs_err_rl_in_rcu(dev
->dev_root
->fs_info
,
7114 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7115 rcu_str_deref(dev
->name
),
7116 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7117 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7118 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7119 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7120 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7123 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
7127 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7128 if (btrfs_dev_stat_read(dev
, i
) != 0)
7130 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
7131 return; /* all values == 0, suppress message */
7133 btrfs_info_in_rcu(dev
->dev_root
->fs_info
,
7134 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7135 rcu_str_deref(dev
->name
),
7136 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7137 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7138 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7139 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7140 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7143 int btrfs_get_dev_stats(struct btrfs_root
*root
,
7144 struct btrfs_ioctl_get_dev_stats
*stats
)
7146 struct btrfs_device
*dev
;
7147 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
7150 mutex_lock(&fs_devices
->device_list_mutex
);
7151 dev
= btrfs_find_device(root
->fs_info
, stats
->devid
, NULL
, NULL
);
7152 mutex_unlock(&fs_devices
->device_list_mutex
);
7155 btrfs_warn(root
->fs_info
,
7156 "get dev_stats failed, device not found");
7158 } else if (!dev
->dev_stats_valid
) {
7159 btrfs_warn(root
->fs_info
,
7160 "get dev_stats failed, not yet valid");
7162 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
7163 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7164 if (stats
->nr_items
> i
)
7166 btrfs_dev_stat_read_and_reset(dev
, i
);
7168 btrfs_dev_stat_reset(dev
, i
);
7171 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7172 if (stats
->nr_items
> i
)
7173 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
7175 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
7176 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
7180 void btrfs_scratch_superblocks(struct block_device
*bdev
, char *device_path
)
7182 struct buffer_head
*bh
;
7183 struct btrfs_super_block
*disk_super
;
7189 for (copy_num
= 0; copy_num
< BTRFS_SUPER_MIRROR_MAX
;
7192 if (btrfs_read_dev_one_super(bdev
, copy_num
, &bh
))
7195 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
7197 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
7198 set_buffer_dirty(bh
);
7199 sync_dirty_buffer(bh
);
7203 /* Notify udev that device has changed */
7204 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
7206 /* Update ctime/mtime for device path for libblkid */
7207 update_dev_time(device_path
);
7211 * Update the size of all devices, which is used for writing out the
7214 void btrfs_update_commit_device_size(struct btrfs_fs_info
*fs_info
)
7216 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7217 struct btrfs_device
*curr
, *next
;
7219 if (list_empty(&fs_devices
->resized_devices
))
7222 mutex_lock(&fs_devices
->device_list_mutex
);
7223 lock_chunks(fs_info
->dev_root
);
7224 list_for_each_entry_safe(curr
, next
, &fs_devices
->resized_devices
,
7226 list_del_init(&curr
->resized_list
);
7227 curr
->commit_total_bytes
= curr
->disk_total_bytes
;
7229 unlock_chunks(fs_info
->dev_root
);
7230 mutex_unlock(&fs_devices
->device_list_mutex
);
7233 /* Must be invoked during the transaction commit */
7234 void btrfs_update_commit_device_bytes_used(struct btrfs_root
*root
,
7235 struct btrfs_transaction
*transaction
)
7237 struct extent_map
*em
;
7238 struct map_lookup
*map
;
7239 struct btrfs_device
*dev
;
7242 if (list_empty(&transaction
->pending_chunks
))
7245 /* In order to kick the device replace finish process */
7247 list_for_each_entry(em
, &transaction
->pending_chunks
, list
) {
7248 map
= em
->map_lookup
;
7250 for (i
= 0; i
< map
->num_stripes
; i
++) {
7251 dev
= map
->stripes
[i
].dev
;
7252 dev
->commit_bytes_used
= dev
->bytes_used
;
7255 unlock_chunks(root
);
7258 void btrfs_set_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7260 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7261 while (fs_devices
) {
7262 fs_devices
->fs_info
= fs_info
;
7263 fs_devices
= fs_devices
->seed
;
7267 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7269 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7270 while (fs_devices
) {
7271 fs_devices
->fs_info
= NULL
;
7272 fs_devices
= fs_devices
->seed
;