2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
78 int sysctl_tcp_timestamps __read_mostly
= 1;
79 int sysctl_tcp_window_scaling __read_mostly
= 1;
80 int sysctl_tcp_sack __read_mostly
= 1;
81 int sysctl_tcp_fack __read_mostly
= 1;
82 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
83 EXPORT_SYMBOL(sysctl_tcp_reordering
);
84 int sysctl_tcp_ecn __read_mostly
= 2;
85 EXPORT_SYMBOL(sysctl_tcp_ecn
);
86 int sysctl_tcp_dsack __read_mostly
= 1;
87 int sysctl_tcp_app_win __read_mostly
= 31;
88 int sysctl_tcp_adv_win_scale __read_mostly
= 2;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
91 int sysctl_tcp_stdurg __read_mostly
;
92 int sysctl_tcp_rfc1337 __read_mostly
;
93 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
94 int sysctl_tcp_frto __read_mostly
= 2;
95 int sysctl_tcp_frto_response __read_mostly
;
96 int sysctl_tcp_nometrics_save __read_mostly
;
98 int sysctl_tcp_thin_dupack __read_mostly
;
100 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
101 int sysctl_tcp_abc __read_mostly
;
103 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
104 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
105 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
106 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
107 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
108 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
109 #define FLAG_ECE 0x40 /* ECE in this ACK */
110 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
112 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
115 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
123 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
124 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126 /* Adapt the MSS value used to make delayed ack decision to the
129 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
131 struct inet_connection_sock
*icsk
= inet_csk(sk
);
132 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
135 icsk
->icsk_ack
.last_seg_size
= 0;
137 /* skb->len may jitter because of SACKs, even if peer
138 * sends good full-sized frames.
140 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
141 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
142 icsk
->icsk_ack
.rcv_mss
= len
;
144 /* Otherwise, we make more careful check taking into account,
145 * that SACKs block is variable.
147 * "len" is invariant segment length, including TCP header.
149 len
+= skb
->data
- skb_transport_header(skb
);
150 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
151 /* If PSH is not set, packet should be
152 * full sized, provided peer TCP is not badly broken.
153 * This observation (if it is correct 8)) allows
154 * to handle super-low mtu links fairly.
156 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
157 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
158 /* Subtract also invariant (if peer is RFC compliant),
159 * tcp header plus fixed timestamp option length.
160 * Resulting "len" is MSS free of SACK jitter.
162 len
-= tcp_sk(sk
)->tcp_header_len
;
163 icsk
->icsk_ack
.last_seg_size
= len
;
165 icsk
->icsk_ack
.rcv_mss
= len
;
169 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
170 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
171 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
175 static void tcp_incr_quickack(struct sock
*sk
)
177 struct inet_connection_sock
*icsk
= inet_csk(sk
);
178 unsigned quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
182 if (quickacks
> icsk
->icsk_ack
.quick
)
183 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
186 static void tcp_enter_quickack_mode(struct sock
*sk
)
188 struct inet_connection_sock
*icsk
= inet_csk(sk
);
189 tcp_incr_quickack(sk
);
190 icsk
->icsk_ack
.pingpong
= 0;
191 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
194 /* Send ACKs quickly, if "quick" count is not exhausted
195 * and the session is not interactive.
198 static inline int tcp_in_quickack_mode(const struct sock
*sk
)
200 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
201 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
204 static inline void TCP_ECN_queue_cwr(struct tcp_sock
*tp
)
206 if (tp
->ecn_flags
& TCP_ECN_OK
)
207 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
210 static inline void TCP_ECN_accept_cwr(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
212 if (tcp_hdr(skb
)->cwr
)
213 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
216 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock
*tp
)
218 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
221 static inline void TCP_ECN_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
223 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
226 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
227 case INET_ECN_NOT_ECT
:
228 /* Funny extension: if ECT is not set on a segment,
229 * and we already seen ECT on a previous segment,
230 * it is probably a retransmit.
232 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
233 tcp_enter_quickack_mode((struct sock
*)tp
);
236 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
239 tp
->ecn_flags
|= TCP_ECN_SEEN
;
243 static inline void TCP_ECN_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
245 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
246 tp
->ecn_flags
&= ~TCP_ECN_OK
;
249 static inline void TCP_ECN_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
251 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
252 tp
->ecn_flags
&= ~TCP_ECN_OK
;
255 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
257 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
262 /* Buffer size and advertised window tuning.
264 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
267 static void tcp_fixup_sndbuf(struct sock
*sk
)
269 int sndmem
= SKB_TRUESIZE(tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
);
271 sndmem
*= TCP_INIT_CWND
;
272 if (sk
->sk_sndbuf
< sndmem
)
273 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
276 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
278 * All tcp_full_space() is split to two parts: "network" buffer, allocated
279 * forward and advertised in receiver window (tp->rcv_wnd) and
280 * "application buffer", required to isolate scheduling/application
281 * latencies from network.
282 * window_clamp is maximal advertised window. It can be less than
283 * tcp_full_space(), in this case tcp_full_space() - window_clamp
284 * is reserved for "application" buffer. The less window_clamp is
285 * the smoother our behaviour from viewpoint of network, but the lower
286 * throughput and the higher sensitivity of the connection to losses. 8)
288 * rcv_ssthresh is more strict window_clamp used at "slow start"
289 * phase to predict further behaviour of this connection.
290 * It is used for two goals:
291 * - to enforce header prediction at sender, even when application
292 * requires some significant "application buffer". It is check #1.
293 * - to prevent pruning of receive queue because of misprediction
294 * of receiver window. Check #2.
296 * The scheme does not work when sender sends good segments opening
297 * window and then starts to feed us spaghetti. But it should work
298 * in common situations. Otherwise, we have to rely on queue collapsing.
301 /* Slow part of check#2. */
302 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
304 struct tcp_sock
*tp
= tcp_sk(sk
);
306 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
307 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
309 while (tp
->rcv_ssthresh
<= window
) {
310 if (truesize
<= skb
->len
)
311 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
319 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
321 struct tcp_sock
*tp
= tcp_sk(sk
);
324 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
325 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
326 !sk_under_memory_pressure(sk
)) {
329 /* Check #2. Increase window, if skb with such overhead
330 * will fit to rcvbuf in future.
332 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
333 incr
= 2 * tp
->advmss
;
335 incr
= __tcp_grow_window(sk
, skb
);
338 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
340 inet_csk(sk
)->icsk_ack
.quick
|= 1;
345 /* 3. Tuning rcvbuf, when connection enters established state. */
347 static void tcp_fixup_rcvbuf(struct sock
*sk
)
349 u32 mss
= tcp_sk(sk
)->advmss
;
350 u32 icwnd
= TCP_DEFAULT_INIT_RCVWND
;
353 /* Limit to 10 segments if mss <= 1460,
354 * or 14600/mss segments, with a minimum of two segments.
357 icwnd
= max_t(u32
, (1460 * TCP_DEFAULT_INIT_RCVWND
) / mss
, 2);
359 rcvmem
= SKB_TRUESIZE(mss
+ MAX_TCP_HEADER
);
360 while (tcp_win_from_space(rcvmem
) < mss
)
365 if (sk
->sk_rcvbuf
< rcvmem
)
366 sk
->sk_rcvbuf
= min(rcvmem
, sysctl_tcp_rmem
[2]);
369 /* 4. Try to fixup all. It is made immediately after connection enters
372 static void tcp_init_buffer_space(struct sock
*sk
)
374 struct tcp_sock
*tp
= tcp_sk(sk
);
377 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
378 tcp_fixup_rcvbuf(sk
);
379 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
380 tcp_fixup_sndbuf(sk
);
382 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
384 maxwin
= tcp_full_space(sk
);
386 if (tp
->window_clamp
>= maxwin
) {
387 tp
->window_clamp
= maxwin
;
389 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
390 tp
->window_clamp
= max(maxwin
-
391 (maxwin
>> sysctl_tcp_app_win
),
395 /* Force reservation of one segment. */
396 if (sysctl_tcp_app_win
&&
397 tp
->window_clamp
> 2 * tp
->advmss
&&
398 tp
->window_clamp
+ tp
->advmss
> maxwin
)
399 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
401 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
402 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
405 /* 5. Recalculate window clamp after socket hit its memory bounds. */
406 static void tcp_clamp_window(struct sock
*sk
)
408 struct tcp_sock
*tp
= tcp_sk(sk
);
409 struct inet_connection_sock
*icsk
= inet_csk(sk
);
411 icsk
->icsk_ack
.quick
= 0;
413 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
414 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
415 !sk_under_memory_pressure(sk
) &&
416 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
417 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
420 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
421 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
424 /* Initialize RCV_MSS value.
425 * RCV_MSS is an our guess about MSS used by the peer.
426 * We haven't any direct information about the MSS.
427 * It's better to underestimate the RCV_MSS rather than overestimate.
428 * Overestimations make us ACKing less frequently than needed.
429 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
431 void tcp_initialize_rcv_mss(struct sock
*sk
)
433 const struct tcp_sock
*tp
= tcp_sk(sk
);
434 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
436 hint
= min(hint
, tp
->rcv_wnd
/ 2);
437 hint
= min(hint
, TCP_MSS_DEFAULT
);
438 hint
= max(hint
, TCP_MIN_MSS
);
440 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
442 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
444 /* Receiver "autotuning" code.
446 * The algorithm for RTT estimation w/o timestamps is based on
447 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
448 * <http://public.lanl.gov/radiant/pubs.html#DRS>
450 * More detail on this code can be found at
451 * <http://staff.psc.edu/jheffner/>,
452 * though this reference is out of date. A new paper
455 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
457 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
463 if (new_sample
!= 0) {
464 /* If we sample in larger samples in the non-timestamp
465 * case, we could grossly overestimate the RTT especially
466 * with chatty applications or bulk transfer apps which
467 * are stalled on filesystem I/O.
469 * Also, since we are only going for a minimum in the
470 * non-timestamp case, we do not smooth things out
471 * else with timestamps disabled convergence takes too
475 m
-= (new_sample
>> 3);
483 /* No previous measure. */
487 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
488 tp
->rcv_rtt_est
.rtt
= new_sample
;
491 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
493 if (tp
->rcv_rtt_est
.time
== 0)
495 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
497 tcp_rcv_rtt_update(tp
, jiffies
- tp
->rcv_rtt_est
.time
, 1);
500 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
501 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
504 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
505 const struct sk_buff
*skb
)
507 struct tcp_sock
*tp
= tcp_sk(sk
);
508 if (tp
->rx_opt
.rcv_tsecr
&&
509 (TCP_SKB_CB(skb
)->end_seq
-
510 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
511 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
515 * This function should be called every time data is copied to user space.
516 * It calculates the appropriate TCP receive buffer space.
518 void tcp_rcv_space_adjust(struct sock
*sk
)
520 struct tcp_sock
*tp
= tcp_sk(sk
);
524 if (tp
->rcvq_space
.time
== 0)
527 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
528 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
531 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
533 space
= max(tp
->rcvq_space
.space
, space
);
535 if (tp
->rcvq_space
.space
!= space
) {
538 tp
->rcvq_space
.space
= space
;
540 if (sysctl_tcp_moderate_rcvbuf
&&
541 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
542 int new_clamp
= space
;
544 /* Receive space grows, normalize in order to
545 * take into account packet headers and sk_buff
546 * structure overhead.
551 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
552 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
555 space
= min(space
, sysctl_tcp_rmem
[2]);
556 if (space
> sk
->sk_rcvbuf
) {
557 sk
->sk_rcvbuf
= space
;
559 /* Make the window clamp follow along. */
560 tp
->window_clamp
= new_clamp
;
566 tp
->rcvq_space
.seq
= tp
->copied_seq
;
567 tp
->rcvq_space
.time
= tcp_time_stamp
;
570 /* There is something which you must keep in mind when you analyze the
571 * behavior of the tp->ato delayed ack timeout interval. When a
572 * connection starts up, we want to ack as quickly as possible. The
573 * problem is that "good" TCP's do slow start at the beginning of data
574 * transmission. The means that until we send the first few ACK's the
575 * sender will sit on his end and only queue most of his data, because
576 * he can only send snd_cwnd unacked packets at any given time. For
577 * each ACK we send, he increments snd_cwnd and transmits more of his
580 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
582 struct tcp_sock
*tp
= tcp_sk(sk
);
583 struct inet_connection_sock
*icsk
= inet_csk(sk
);
586 inet_csk_schedule_ack(sk
);
588 tcp_measure_rcv_mss(sk
, skb
);
590 tcp_rcv_rtt_measure(tp
);
592 now
= tcp_time_stamp
;
594 if (!icsk
->icsk_ack
.ato
) {
595 /* The _first_ data packet received, initialize
596 * delayed ACK engine.
598 tcp_incr_quickack(sk
);
599 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
601 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
603 if (m
<= TCP_ATO_MIN
/ 2) {
604 /* The fastest case is the first. */
605 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
606 } else if (m
< icsk
->icsk_ack
.ato
) {
607 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
608 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
609 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
610 } else if (m
> icsk
->icsk_rto
) {
611 /* Too long gap. Apparently sender failed to
612 * restart window, so that we send ACKs quickly.
614 tcp_incr_quickack(sk
);
618 icsk
->icsk_ack
.lrcvtime
= now
;
620 TCP_ECN_check_ce(tp
, skb
);
623 tcp_grow_window(sk
, skb
);
626 /* Called to compute a smoothed rtt estimate. The data fed to this
627 * routine either comes from timestamps, or from segments that were
628 * known _not_ to have been retransmitted [see Karn/Partridge
629 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
630 * piece by Van Jacobson.
631 * NOTE: the next three routines used to be one big routine.
632 * To save cycles in the RFC 1323 implementation it was better to break
633 * it up into three procedures. -- erics
635 static void tcp_rtt_estimator(struct sock
*sk
, const __u32 mrtt
)
637 struct tcp_sock
*tp
= tcp_sk(sk
);
638 long m
= mrtt
; /* RTT */
640 /* The following amusing code comes from Jacobson's
641 * article in SIGCOMM '88. Note that rtt and mdev
642 * are scaled versions of rtt and mean deviation.
643 * This is designed to be as fast as possible
644 * m stands for "measurement".
646 * On a 1990 paper the rto value is changed to:
647 * RTO = rtt + 4 * mdev
649 * Funny. This algorithm seems to be very broken.
650 * These formulae increase RTO, when it should be decreased, increase
651 * too slowly, when it should be increased quickly, decrease too quickly
652 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
653 * does not matter how to _calculate_ it. Seems, it was trap
654 * that VJ failed to avoid. 8)
659 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
660 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
662 m
= -m
; /* m is now abs(error) */
663 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
664 /* This is similar to one of Eifel findings.
665 * Eifel blocks mdev updates when rtt decreases.
666 * This solution is a bit different: we use finer gain
667 * for mdev in this case (alpha*beta).
668 * Like Eifel it also prevents growth of rto,
669 * but also it limits too fast rto decreases,
670 * happening in pure Eifel.
675 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
677 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
678 if (tp
->mdev
> tp
->mdev_max
) {
679 tp
->mdev_max
= tp
->mdev
;
680 if (tp
->mdev_max
> tp
->rttvar
)
681 tp
->rttvar
= tp
->mdev_max
;
683 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
684 if (tp
->mdev_max
< tp
->rttvar
)
685 tp
->rttvar
-= (tp
->rttvar
- tp
->mdev_max
) >> 2;
686 tp
->rtt_seq
= tp
->snd_nxt
;
687 tp
->mdev_max
= tcp_rto_min(sk
);
690 /* no previous measure. */
691 tp
->srtt
= m
<< 3; /* take the measured time to be rtt */
692 tp
->mdev
= m
<< 1; /* make sure rto = 3*rtt */
693 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
694 tp
->rtt_seq
= tp
->snd_nxt
;
698 /* Calculate rto without backoff. This is the second half of Van Jacobson's
699 * routine referred to above.
701 static inline void tcp_set_rto(struct sock
*sk
)
703 const struct tcp_sock
*tp
= tcp_sk(sk
);
704 /* Old crap is replaced with new one. 8)
707 * 1. If rtt variance happened to be less 50msec, it is hallucination.
708 * It cannot be less due to utterly erratic ACK generation made
709 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
710 * to do with delayed acks, because at cwnd>2 true delack timeout
711 * is invisible. Actually, Linux-2.4 also generates erratic
712 * ACKs in some circumstances.
714 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
716 /* 2. Fixups made earlier cannot be right.
717 * If we do not estimate RTO correctly without them,
718 * all the algo is pure shit and should be replaced
719 * with correct one. It is exactly, which we pretend to do.
722 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
723 * guarantees that rto is higher.
728 /* Save metrics learned by this TCP session.
729 This function is called only, when TCP finishes successfully
730 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
732 void tcp_update_metrics(struct sock
*sk
)
734 struct tcp_sock
*tp
= tcp_sk(sk
);
735 struct dst_entry
*dst
= __sk_dst_get(sk
);
737 if (sysctl_tcp_nometrics_save
)
742 if (dst
&& (dst
->flags
& DST_HOST
)) {
743 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
747 if (icsk
->icsk_backoff
|| !tp
->srtt
) {
748 /* This session failed to estimate rtt. Why?
749 * Probably, no packets returned in time.
752 if (!(dst_metric_locked(dst
, RTAX_RTT
)))
753 dst_metric_set(dst
, RTAX_RTT
, 0);
757 rtt
= dst_metric_rtt(dst
, RTAX_RTT
);
760 /* If newly calculated rtt larger than stored one,
761 * store new one. Otherwise, use EWMA. Remember,
762 * rtt overestimation is always better than underestimation.
764 if (!(dst_metric_locked(dst
, RTAX_RTT
))) {
766 set_dst_metric_rtt(dst
, RTAX_RTT
, tp
->srtt
);
768 set_dst_metric_rtt(dst
, RTAX_RTT
, rtt
- (m
>> 3));
771 if (!(dst_metric_locked(dst
, RTAX_RTTVAR
))) {
776 /* Scale deviation to rttvar fixed point */
781 var
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
785 var
-= (var
- m
) >> 2;
787 set_dst_metric_rtt(dst
, RTAX_RTTVAR
, var
);
790 if (tcp_in_initial_slowstart(tp
)) {
791 /* Slow start still did not finish. */
792 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
793 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
794 (tp
->snd_cwnd
>> 1) > dst_metric(dst
, RTAX_SSTHRESH
))
795 dst_metric_set(dst
, RTAX_SSTHRESH
, tp
->snd_cwnd
>> 1);
796 if (!dst_metric_locked(dst
, RTAX_CWND
) &&
797 tp
->snd_cwnd
> dst_metric(dst
, RTAX_CWND
))
798 dst_metric_set(dst
, RTAX_CWND
, tp
->snd_cwnd
);
799 } else if (tp
->snd_cwnd
> tp
->snd_ssthresh
&&
800 icsk
->icsk_ca_state
== TCP_CA_Open
) {
801 /* Cong. avoidance phase, cwnd is reliable. */
802 if (!dst_metric_locked(dst
, RTAX_SSTHRESH
))
803 dst_metric_set(dst
, RTAX_SSTHRESH
,
804 max(tp
->snd_cwnd
>> 1, tp
->snd_ssthresh
));
805 if (!dst_metric_locked(dst
, RTAX_CWND
))
806 dst_metric_set(dst
, RTAX_CWND
,
807 (dst_metric(dst
, RTAX_CWND
) +
810 /* Else slow start did not finish, cwnd is non-sense,
811 ssthresh may be also invalid.
813 if (!dst_metric_locked(dst
, RTAX_CWND
))
814 dst_metric_set(dst
, RTAX_CWND
,
815 (dst_metric(dst
, RTAX_CWND
) +
816 tp
->snd_ssthresh
) >> 1);
817 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
818 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
819 tp
->snd_ssthresh
> dst_metric(dst
, RTAX_SSTHRESH
))
820 dst_metric_set(dst
, RTAX_SSTHRESH
, tp
->snd_ssthresh
);
823 if (!dst_metric_locked(dst
, RTAX_REORDERING
)) {
824 if (dst_metric(dst
, RTAX_REORDERING
) < tp
->reordering
&&
825 tp
->reordering
!= sysctl_tcp_reordering
)
826 dst_metric_set(dst
, RTAX_REORDERING
, tp
->reordering
);
831 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
833 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
836 cwnd
= TCP_INIT_CWND
;
837 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
840 /* Set slow start threshold and cwnd not falling to slow start */
841 void tcp_enter_cwr(struct sock
*sk
, const int set_ssthresh
)
843 struct tcp_sock
*tp
= tcp_sk(sk
);
844 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
846 tp
->prior_ssthresh
= 0;
848 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
851 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
852 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
853 tcp_packets_in_flight(tp
) + 1U);
854 tp
->snd_cwnd_cnt
= 0;
855 tp
->high_seq
= tp
->snd_nxt
;
856 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
857 TCP_ECN_queue_cwr(tp
);
859 tcp_set_ca_state(sk
, TCP_CA_CWR
);
864 * Packet counting of FACK is based on in-order assumptions, therefore TCP
865 * disables it when reordering is detected
867 static void tcp_disable_fack(struct tcp_sock
*tp
)
869 /* RFC3517 uses different metric in lost marker => reset on change */
871 tp
->lost_skb_hint
= NULL
;
872 tp
->rx_opt
.sack_ok
&= ~TCP_FACK_ENABLED
;
875 /* Take a notice that peer is sending D-SACKs */
876 static void tcp_dsack_seen(struct tcp_sock
*tp
)
878 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
881 /* Initialize metrics on socket. */
883 static void tcp_init_metrics(struct sock
*sk
)
885 struct tcp_sock
*tp
= tcp_sk(sk
);
886 struct dst_entry
*dst
= __sk_dst_get(sk
);
893 if (dst_metric_locked(dst
, RTAX_CWND
))
894 tp
->snd_cwnd_clamp
= dst_metric(dst
, RTAX_CWND
);
895 if (dst_metric(dst
, RTAX_SSTHRESH
)) {
896 tp
->snd_ssthresh
= dst_metric(dst
, RTAX_SSTHRESH
);
897 if (tp
->snd_ssthresh
> tp
->snd_cwnd_clamp
)
898 tp
->snd_ssthresh
= tp
->snd_cwnd_clamp
;
900 /* ssthresh may have been reduced unnecessarily during.
901 * 3WHS. Restore it back to its initial default.
903 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
905 if (dst_metric(dst
, RTAX_REORDERING
) &&
906 tp
->reordering
!= dst_metric(dst
, RTAX_REORDERING
)) {
907 tcp_disable_fack(tp
);
908 tp
->reordering
= dst_metric(dst
, RTAX_REORDERING
);
911 if (dst_metric(dst
, RTAX_RTT
) == 0 || tp
->srtt
== 0)
914 /* Initial rtt is determined from SYN,SYN-ACK.
915 * The segment is small and rtt may appear much
916 * less than real one. Use per-dst memory
917 * to make it more realistic.
919 * A bit of theory. RTT is time passed after "normal" sized packet
920 * is sent until it is ACKed. In normal circumstances sending small
921 * packets force peer to delay ACKs and calculation is correct too.
922 * The algorithm is adaptive and, provided we follow specs, it
923 * NEVER underestimate RTT. BUT! If peer tries to make some clever
924 * tricks sort of "quick acks" for time long enough to decrease RTT
925 * to low value, and then abruptly stops to do it and starts to delay
926 * ACKs, wait for troubles.
928 if (dst_metric_rtt(dst
, RTAX_RTT
) > tp
->srtt
) {
929 tp
->srtt
= dst_metric_rtt(dst
, RTAX_RTT
);
930 tp
->rtt_seq
= tp
->snd_nxt
;
932 if (dst_metric_rtt(dst
, RTAX_RTTVAR
) > tp
->mdev
) {
933 tp
->mdev
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
934 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
939 /* RFC2988bis: We've failed to get a valid RTT sample from
940 * 3WHS. This is most likely due to retransmission,
941 * including spurious one. Reset the RTO back to 3secs
942 * from the more aggressive 1sec to avoid more spurious
945 tp
->mdev
= tp
->mdev_max
= tp
->rttvar
= TCP_TIMEOUT_FALLBACK
;
946 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_FALLBACK
;
948 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
949 * retransmitted. In light of RFC2988bis' more aggressive 1sec
950 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
951 * retransmission has occurred.
953 if (tp
->total_retrans
> 1)
956 tp
->snd_cwnd
= tcp_init_cwnd(tp
, dst
);
957 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
960 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
963 struct tcp_sock
*tp
= tcp_sk(sk
);
964 if (metric
> tp
->reordering
) {
967 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
969 /* This exciting event is worth to be remembered. 8) */
971 mib_idx
= LINUX_MIB_TCPTSREORDER
;
972 else if (tcp_is_reno(tp
))
973 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
974 else if (tcp_is_fack(tp
))
975 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
977 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
979 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
980 #if FASTRETRANS_DEBUG > 1
981 printk(KERN_DEBUG
"Disorder%d %d %u f%u s%u rr%d\n",
982 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
986 tp
->undo_marker
? tp
->undo_retrans
: 0);
988 tcp_disable_fack(tp
);
992 /* This must be called before lost_out is incremented */
993 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
995 if ((tp
->retransmit_skb_hint
== NULL
) ||
996 before(TCP_SKB_CB(skb
)->seq
,
997 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
998 tp
->retransmit_skb_hint
= skb
;
1000 if (!tp
->lost_out
||
1001 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
1002 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
1005 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
1007 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1008 tcp_verify_retransmit_hint(tp
, skb
);
1010 tp
->lost_out
+= tcp_skb_pcount(skb
);
1011 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1015 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
,
1016 struct sk_buff
*skb
)
1018 tcp_verify_retransmit_hint(tp
, skb
);
1020 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1021 tp
->lost_out
+= tcp_skb_pcount(skb
);
1022 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1026 /* This procedure tags the retransmission queue when SACKs arrive.
1028 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1029 * Packets in queue with these bits set are counted in variables
1030 * sacked_out, retrans_out and lost_out, correspondingly.
1032 * Valid combinations are:
1033 * Tag InFlight Description
1034 * 0 1 - orig segment is in flight.
1035 * S 0 - nothing flies, orig reached receiver.
1036 * L 0 - nothing flies, orig lost by net.
1037 * R 2 - both orig and retransmit are in flight.
1038 * L|R 1 - orig is lost, retransmit is in flight.
1039 * S|R 1 - orig reached receiver, retrans is still in flight.
1040 * (L|S|R is logically valid, it could occur when L|R is sacked,
1041 * but it is equivalent to plain S and code short-curcuits it to S.
1042 * L|S is logically invalid, it would mean -1 packet in flight 8))
1044 * These 6 states form finite state machine, controlled by the following events:
1045 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1046 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1047 * 3. Loss detection event of two flavors:
1048 * A. Scoreboard estimator decided the packet is lost.
1049 * A'. Reno "three dupacks" marks head of queue lost.
1050 * A''. Its FACK modification, head until snd.fack is lost.
1051 * B. SACK arrives sacking SND.NXT at the moment, when the
1052 * segment was retransmitted.
1053 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1055 * It is pleasant to note, that state diagram turns out to be commutative,
1056 * so that we are allowed not to be bothered by order of our actions,
1057 * when multiple events arrive simultaneously. (see the function below).
1059 * Reordering detection.
1060 * --------------------
1061 * Reordering metric is maximal distance, which a packet can be displaced
1062 * in packet stream. With SACKs we can estimate it:
1064 * 1. SACK fills old hole and the corresponding segment was not
1065 * ever retransmitted -> reordering. Alas, we cannot use it
1066 * when segment was retransmitted.
1067 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1068 * for retransmitted and already SACKed segment -> reordering..
1069 * Both of these heuristics are not used in Loss state, when we cannot
1070 * account for retransmits accurately.
1072 * SACK block validation.
1073 * ----------------------
1075 * SACK block range validation checks that the received SACK block fits to
1076 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1077 * Note that SND.UNA is not included to the range though being valid because
1078 * it means that the receiver is rather inconsistent with itself reporting
1079 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1080 * perfectly valid, however, in light of RFC2018 which explicitly states
1081 * that "SACK block MUST reflect the newest segment. Even if the newest
1082 * segment is going to be discarded ...", not that it looks very clever
1083 * in case of head skb. Due to potentional receiver driven attacks, we
1084 * choose to avoid immediate execution of a walk in write queue due to
1085 * reneging and defer head skb's loss recovery to standard loss recovery
1086 * procedure that will eventually trigger (nothing forbids us doing this).
1088 * Implements also blockage to start_seq wrap-around. Problem lies in the
1089 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1090 * there's no guarantee that it will be before snd_nxt (n). The problem
1091 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1094 * <- outs wnd -> <- wrapzone ->
1095 * u e n u_w e_w s n_w
1097 * |<------------+------+----- TCP seqno space --------------+---------->|
1098 * ...-- <2^31 ->| |<--------...
1099 * ...---- >2^31 ------>| |<--------...
1101 * Current code wouldn't be vulnerable but it's better still to discard such
1102 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1103 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1104 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1105 * equal to the ideal case (infinite seqno space without wrap caused issues).
1107 * With D-SACK the lower bound is extended to cover sequence space below
1108 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1109 * again, D-SACK block must not to go across snd_una (for the same reason as
1110 * for the normal SACK blocks, explained above). But there all simplicity
1111 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1112 * fully below undo_marker they do not affect behavior in anyway and can
1113 * therefore be safely ignored. In rare cases (which are more or less
1114 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1115 * fragmentation and packet reordering past skb's retransmission. To consider
1116 * them correctly, the acceptable range must be extended even more though
1117 * the exact amount is rather hard to quantify. However, tp->max_window can
1118 * be used as an exaggerated estimate.
1120 static int tcp_is_sackblock_valid(struct tcp_sock
*tp
, int is_dsack
,
1121 u32 start_seq
, u32 end_seq
)
1123 /* Too far in future, or reversed (interpretation is ambiguous) */
1124 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1127 /* Nasty start_seq wrap-around check (see comments above) */
1128 if (!before(start_seq
, tp
->snd_nxt
))
1131 /* In outstanding window? ...This is valid exit for D-SACKs too.
1132 * start_seq == snd_una is non-sensical (see comments above)
1134 if (after(start_seq
, tp
->snd_una
))
1137 if (!is_dsack
|| !tp
->undo_marker
)
1140 /* ...Then it's D-SACK, and must reside below snd_una completely */
1141 if (after(end_seq
, tp
->snd_una
))
1144 if (!before(start_seq
, tp
->undo_marker
))
1148 if (!after(end_seq
, tp
->undo_marker
))
1151 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1152 * start_seq < undo_marker and end_seq >= undo_marker.
1154 return !before(start_seq
, end_seq
- tp
->max_window
);
1157 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1158 * Event "B". Later note: FACK people cheated me again 8), we have to account
1159 * for reordering! Ugly, but should help.
1161 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1162 * less than what is now known to be received by the other end (derived from
1163 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1164 * retransmitted skbs to avoid some costly processing per ACKs.
1166 static void tcp_mark_lost_retrans(struct sock
*sk
)
1168 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1169 struct tcp_sock
*tp
= tcp_sk(sk
);
1170 struct sk_buff
*skb
;
1172 u32 new_low_seq
= tp
->snd_nxt
;
1173 u32 received_upto
= tcp_highest_sack_seq(tp
);
1175 if (!tcp_is_fack(tp
) || !tp
->retrans_out
||
1176 !after(received_upto
, tp
->lost_retrans_low
) ||
1177 icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
1180 tcp_for_write_queue(skb
, sk
) {
1181 u32 ack_seq
= TCP_SKB_CB(skb
)->ack_seq
;
1183 if (skb
== tcp_send_head(sk
))
1185 if (cnt
== tp
->retrans_out
)
1187 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1190 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
))
1193 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1194 * constraint here (see above) but figuring out that at
1195 * least tp->reordering SACK blocks reside between ack_seq
1196 * and received_upto is not easy task to do cheaply with
1197 * the available datastructures.
1199 * Whether FACK should check here for tp->reordering segs
1200 * in-between one could argue for either way (it would be
1201 * rather simple to implement as we could count fack_count
1202 * during the walk and do tp->fackets_out - fack_count).
1204 if (after(received_upto
, ack_seq
)) {
1205 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1206 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1208 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
1209 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSTRETRANSMIT
);
1211 if (before(ack_seq
, new_low_seq
))
1212 new_low_seq
= ack_seq
;
1213 cnt
+= tcp_skb_pcount(skb
);
1217 if (tp
->retrans_out
)
1218 tp
->lost_retrans_low
= new_low_seq
;
1221 static int tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1222 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1225 struct tcp_sock
*tp
= tcp_sk(sk
);
1226 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1227 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1230 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1233 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1234 } else if (num_sacks
> 1) {
1235 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1236 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1238 if (!after(end_seq_0
, end_seq_1
) &&
1239 !before(start_seq_0
, start_seq_1
)) {
1242 NET_INC_STATS_BH(sock_net(sk
),
1243 LINUX_MIB_TCPDSACKOFORECV
);
1247 /* D-SACK for already forgotten data... Do dumb counting. */
1248 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
&&
1249 !after(end_seq_0
, prior_snd_una
) &&
1250 after(end_seq_0
, tp
->undo_marker
))
1256 struct tcp_sacktag_state
{
1262 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1263 * the incoming SACK may not exactly match but we can find smaller MSS
1264 * aligned portion of it that matches. Therefore we might need to fragment
1265 * which may fail and creates some hassle (caller must handle error case
1268 * FIXME: this could be merged to shift decision code
1270 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1271 u32 start_seq
, u32 end_seq
)
1274 unsigned int pkt_len
;
1277 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1278 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1280 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1281 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1282 mss
= tcp_skb_mss(skb
);
1283 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1286 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1290 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1295 /* Round if necessary so that SACKs cover only full MSSes
1296 * and/or the remaining small portion (if present)
1298 if (pkt_len
> mss
) {
1299 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1300 if (!in_sack
&& new_len
< pkt_len
) {
1302 if (new_len
> skb
->len
)
1307 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
);
1315 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1316 static u8
tcp_sacktag_one(struct sock
*sk
,
1317 struct tcp_sacktag_state
*state
, u8 sacked
,
1318 u32 start_seq
, u32 end_seq
,
1319 int dup_sack
, int pcount
)
1321 struct tcp_sock
*tp
= tcp_sk(sk
);
1322 int fack_count
= state
->fack_count
;
1324 /* Account D-SACK for retransmitted packet. */
1325 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1326 if (tp
->undo_marker
&& tp
->undo_retrans
&&
1327 after(end_seq
, tp
->undo_marker
))
1329 if (sacked
& TCPCB_SACKED_ACKED
)
1330 state
->reord
= min(fack_count
, state
->reord
);
1333 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1334 if (!after(end_seq
, tp
->snd_una
))
1337 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1338 if (sacked
& TCPCB_SACKED_RETRANS
) {
1339 /* If the segment is not tagged as lost,
1340 * we do not clear RETRANS, believing
1341 * that retransmission is still in flight.
1343 if (sacked
& TCPCB_LOST
) {
1344 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1345 tp
->lost_out
-= pcount
;
1346 tp
->retrans_out
-= pcount
;
1349 if (!(sacked
& TCPCB_RETRANS
)) {
1350 /* New sack for not retransmitted frame,
1351 * which was in hole. It is reordering.
1353 if (before(start_seq
,
1354 tcp_highest_sack_seq(tp
)))
1355 state
->reord
= min(fack_count
,
1358 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1359 if (!after(end_seq
, tp
->frto_highmark
))
1360 state
->flag
|= FLAG_ONLY_ORIG_SACKED
;
1363 if (sacked
& TCPCB_LOST
) {
1364 sacked
&= ~TCPCB_LOST
;
1365 tp
->lost_out
-= pcount
;
1369 sacked
|= TCPCB_SACKED_ACKED
;
1370 state
->flag
|= FLAG_DATA_SACKED
;
1371 tp
->sacked_out
+= pcount
;
1373 fack_count
+= pcount
;
1375 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1376 if (!tcp_is_fack(tp
) && (tp
->lost_skb_hint
!= NULL
) &&
1377 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1378 tp
->lost_cnt_hint
+= pcount
;
1380 if (fack_count
> tp
->fackets_out
)
1381 tp
->fackets_out
= fack_count
;
1384 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1385 * frames and clear it. undo_retrans is decreased above, L|R frames
1386 * are accounted above as well.
1388 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1389 sacked
&= ~TCPCB_SACKED_RETRANS
;
1390 tp
->retrans_out
-= pcount
;
1396 /* Shift newly-SACKed bytes from this skb to the immediately previous
1397 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1399 static int tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1400 struct tcp_sacktag_state
*state
,
1401 unsigned int pcount
, int shifted
, int mss
,
1404 struct tcp_sock
*tp
= tcp_sk(sk
);
1405 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1406 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1407 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1411 /* Adjust counters and hints for the newly sacked sequence
1412 * range but discard the return value since prev is already
1413 * marked. We must tag the range first because the seq
1414 * advancement below implicitly advances
1415 * tcp_highest_sack_seq() when skb is highest_sack.
1417 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1418 start_seq
, end_seq
, dup_sack
, pcount
);
1420 if (skb
== tp
->lost_skb_hint
)
1421 tp
->lost_cnt_hint
+= pcount
;
1423 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1424 TCP_SKB_CB(skb
)->seq
+= shifted
;
1426 skb_shinfo(prev
)->gso_segs
+= pcount
;
1427 BUG_ON(skb_shinfo(skb
)->gso_segs
< pcount
);
1428 skb_shinfo(skb
)->gso_segs
-= pcount
;
1430 /* When we're adding to gso_segs == 1, gso_size will be zero,
1431 * in theory this shouldn't be necessary but as long as DSACK
1432 * code can come after this skb later on it's better to keep
1433 * setting gso_size to something.
1435 if (!skb_shinfo(prev
)->gso_size
) {
1436 skb_shinfo(prev
)->gso_size
= mss
;
1437 skb_shinfo(prev
)->gso_type
= sk
->sk_gso_type
;
1440 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1441 if (skb_shinfo(skb
)->gso_segs
<= 1) {
1442 skb_shinfo(skb
)->gso_size
= 0;
1443 skb_shinfo(skb
)->gso_type
= 0;
1446 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1447 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1450 BUG_ON(!tcp_skb_pcount(skb
));
1451 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1455 /* Whole SKB was eaten :-) */
1457 if (skb
== tp
->retransmit_skb_hint
)
1458 tp
->retransmit_skb_hint
= prev
;
1459 if (skb
== tp
->scoreboard_skb_hint
)
1460 tp
->scoreboard_skb_hint
= prev
;
1461 if (skb
== tp
->lost_skb_hint
) {
1462 tp
->lost_skb_hint
= prev
;
1463 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1466 TCP_SKB_CB(skb
)->tcp_flags
|= TCP_SKB_CB(prev
)->tcp_flags
;
1467 if (skb
== tcp_highest_sack(sk
))
1468 tcp_advance_highest_sack(sk
, skb
);
1470 tcp_unlink_write_queue(skb
, sk
);
1471 sk_wmem_free_skb(sk
, skb
);
1473 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1478 /* I wish gso_size would have a bit more sane initialization than
1479 * something-or-zero which complicates things
1481 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1483 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1486 /* Shifting pages past head area doesn't work */
1487 static int skb_can_shift(const struct sk_buff
*skb
)
1489 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1492 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1495 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1496 struct tcp_sacktag_state
*state
,
1497 u32 start_seq
, u32 end_seq
,
1500 struct tcp_sock
*tp
= tcp_sk(sk
);
1501 struct sk_buff
*prev
;
1507 if (!sk_can_gso(sk
))
1510 /* Normally R but no L won't result in plain S */
1512 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1514 if (!skb_can_shift(skb
))
1516 /* This frame is about to be dropped (was ACKed). */
1517 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1520 /* Can only happen with delayed DSACK + discard craziness */
1521 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1523 prev
= tcp_write_queue_prev(sk
, skb
);
1525 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1528 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1529 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1533 pcount
= tcp_skb_pcount(skb
);
1534 mss
= tcp_skb_seglen(skb
);
1536 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1537 * drop this restriction as unnecessary
1539 if (mss
!= tcp_skb_seglen(prev
))
1542 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1544 /* CHECKME: This is non-MSS split case only?, this will
1545 * cause skipped skbs due to advancing loop btw, original
1546 * has that feature too
1548 if (tcp_skb_pcount(skb
) <= 1)
1551 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1553 /* TODO: head merge to next could be attempted here
1554 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1555 * though it might not be worth of the additional hassle
1557 * ...we can probably just fallback to what was done
1558 * previously. We could try merging non-SACKed ones
1559 * as well but it probably isn't going to buy off
1560 * because later SACKs might again split them, and
1561 * it would make skb timestamp tracking considerably
1567 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1569 BUG_ON(len
> skb
->len
);
1571 /* MSS boundaries should be honoured or else pcount will
1572 * severely break even though it makes things bit trickier.
1573 * Optimize common case to avoid most of the divides
1575 mss
= tcp_skb_mss(skb
);
1577 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1578 * drop this restriction as unnecessary
1580 if (mss
!= tcp_skb_seglen(prev
))
1585 } else if (len
< mss
) {
1593 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1594 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1597 if (!skb_shift(prev
, skb
, len
))
1599 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1602 /* Hole filled allows collapsing with the next as well, this is very
1603 * useful when hole on every nth skb pattern happens
1605 if (prev
== tcp_write_queue_tail(sk
))
1607 skb
= tcp_write_queue_next(sk
, prev
);
1609 if (!skb_can_shift(skb
) ||
1610 (skb
== tcp_send_head(sk
)) ||
1611 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1612 (mss
!= tcp_skb_seglen(skb
)))
1616 if (skb_shift(prev
, skb
, len
)) {
1617 pcount
+= tcp_skb_pcount(skb
);
1618 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1622 state
->fack_count
+= pcount
;
1629 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1633 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1634 struct tcp_sack_block
*next_dup
,
1635 struct tcp_sacktag_state
*state
,
1636 u32 start_seq
, u32 end_seq
,
1639 struct tcp_sock
*tp
= tcp_sk(sk
);
1640 struct sk_buff
*tmp
;
1642 tcp_for_write_queue_from(skb
, sk
) {
1644 int dup_sack
= dup_sack_in
;
1646 if (skb
== tcp_send_head(sk
))
1649 /* queue is in-order => we can short-circuit the walk early */
1650 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1653 if ((next_dup
!= NULL
) &&
1654 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1655 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1656 next_dup
->start_seq
,
1662 /* skb reference here is a bit tricky to get right, since
1663 * shifting can eat and free both this skb and the next,
1664 * so not even _safe variant of the loop is enough.
1667 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1668 start_seq
, end_seq
, dup_sack
);
1677 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1683 if (unlikely(in_sack
< 0))
1687 TCP_SKB_CB(skb
)->sacked
=
1690 TCP_SKB_CB(skb
)->sacked
,
1691 TCP_SKB_CB(skb
)->seq
,
1692 TCP_SKB_CB(skb
)->end_seq
,
1694 tcp_skb_pcount(skb
));
1696 if (!before(TCP_SKB_CB(skb
)->seq
,
1697 tcp_highest_sack_seq(tp
)))
1698 tcp_advance_highest_sack(sk
, skb
);
1701 state
->fack_count
+= tcp_skb_pcount(skb
);
1706 /* Avoid all extra work that is being done by sacktag while walking in
1709 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1710 struct tcp_sacktag_state
*state
,
1713 tcp_for_write_queue_from(skb
, sk
) {
1714 if (skb
== tcp_send_head(sk
))
1717 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1720 state
->fack_count
+= tcp_skb_pcount(skb
);
1725 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1727 struct tcp_sack_block
*next_dup
,
1728 struct tcp_sacktag_state
*state
,
1731 if (next_dup
== NULL
)
1734 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1735 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1736 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1737 next_dup
->start_seq
, next_dup
->end_seq
,
1744 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1746 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1750 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1753 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1754 struct tcp_sock
*tp
= tcp_sk(sk
);
1755 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1756 TCP_SKB_CB(ack_skb
)->sacked
);
1757 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1758 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1759 struct tcp_sack_block
*cache
;
1760 struct tcp_sacktag_state state
;
1761 struct sk_buff
*skb
;
1762 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1764 int found_dup_sack
= 0;
1766 int first_sack_index
;
1769 state
.reord
= tp
->packets_out
;
1771 if (!tp
->sacked_out
) {
1772 if (WARN_ON(tp
->fackets_out
))
1773 tp
->fackets_out
= 0;
1774 tcp_highest_sack_reset(sk
);
1777 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1778 num_sacks
, prior_snd_una
);
1780 state
.flag
|= FLAG_DSACKING_ACK
;
1782 /* Eliminate too old ACKs, but take into
1783 * account more or less fresh ones, they can
1784 * contain valid SACK info.
1786 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1789 if (!tp
->packets_out
)
1793 first_sack_index
= 0;
1794 for (i
= 0; i
< num_sacks
; i
++) {
1795 int dup_sack
= !i
&& found_dup_sack
;
1797 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1798 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1800 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1801 sp
[used_sacks
].start_seq
,
1802 sp
[used_sacks
].end_seq
)) {
1806 if (!tp
->undo_marker
)
1807 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1809 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1811 /* Don't count olds caused by ACK reordering */
1812 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1813 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1815 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1818 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
1820 first_sack_index
= -1;
1824 /* Ignore very old stuff early */
1825 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1831 /* order SACK blocks to allow in order walk of the retrans queue */
1832 for (i
= used_sacks
- 1; i
> 0; i
--) {
1833 for (j
= 0; j
< i
; j
++) {
1834 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1835 swap(sp
[j
], sp
[j
+ 1]);
1837 /* Track where the first SACK block goes to */
1838 if (j
== first_sack_index
)
1839 first_sack_index
= j
+ 1;
1844 skb
= tcp_write_queue_head(sk
);
1845 state
.fack_count
= 0;
1848 if (!tp
->sacked_out
) {
1849 /* It's already past, so skip checking against it */
1850 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1852 cache
= tp
->recv_sack_cache
;
1853 /* Skip empty blocks in at head of the cache */
1854 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1859 while (i
< used_sacks
) {
1860 u32 start_seq
= sp
[i
].start_seq
;
1861 u32 end_seq
= sp
[i
].end_seq
;
1862 int dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1863 struct tcp_sack_block
*next_dup
= NULL
;
1865 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1866 next_dup
= &sp
[i
+ 1];
1868 /* Skip too early cached blocks */
1869 while (tcp_sack_cache_ok(tp
, cache
) &&
1870 !before(start_seq
, cache
->end_seq
))
1873 /* Can skip some work by looking recv_sack_cache? */
1874 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1875 after(end_seq
, cache
->start_seq
)) {
1878 if (before(start_seq
, cache
->start_seq
)) {
1879 skb
= tcp_sacktag_skip(skb
, sk
, &state
,
1881 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1888 /* Rest of the block already fully processed? */
1889 if (!after(end_seq
, cache
->end_seq
))
1892 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1896 /* ...tail remains todo... */
1897 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1898 /* ...but better entrypoint exists! */
1899 skb
= tcp_highest_sack(sk
);
1902 state
.fack_count
= tp
->fackets_out
;
1907 skb
= tcp_sacktag_skip(skb
, sk
, &state
, cache
->end_seq
);
1908 /* Check overlap against next cached too (past this one already) */
1913 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1914 skb
= tcp_highest_sack(sk
);
1917 state
.fack_count
= tp
->fackets_out
;
1919 skb
= tcp_sacktag_skip(skb
, sk
, &state
, start_seq
);
1922 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, &state
,
1923 start_seq
, end_seq
, dup_sack
);
1926 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1927 * due to in-order walk
1929 if (after(end_seq
, tp
->frto_highmark
))
1930 state
.flag
&= ~FLAG_ONLY_ORIG_SACKED
;
1935 /* Clear the head of the cache sack blocks so we can skip it next time */
1936 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1937 tp
->recv_sack_cache
[i
].start_seq
= 0;
1938 tp
->recv_sack_cache
[i
].end_seq
= 0;
1940 for (j
= 0; j
< used_sacks
; j
++)
1941 tp
->recv_sack_cache
[i
++] = sp
[j
];
1943 tcp_mark_lost_retrans(sk
);
1945 tcp_verify_left_out(tp
);
1947 if ((state
.reord
< tp
->fackets_out
) &&
1948 ((icsk
->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
) &&
1949 (!tp
->frto_highmark
|| after(tp
->snd_una
, tp
->frto_highmark
)))
1950 tcp_update_reordering(sk
, tp
->fackets_out
- state
.reord
, 0);
1954 #if FASTRETRANS_DEBUG > 0
1955 WARN_ON((int)tp
->sacked_out
< 0);
1956 WARN_ON((int)tp
->lost_out
< 0);
1957 WARN_ON((int)tp
->retrans_out
< 0);
1958 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1963 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1964 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1966 static int tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1970 holes
= max(tp
->lost_out
, 1U);
1971 holes
= min(holes
, tp
->packets_out
);
1973 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1974 tp
->sacked_out
= tp
->packets_out
- holes
;
1980 /* If we receive more dupacks than we expected counting segments
1981 * in assumption of absent reordering, interpret this as reordering.
1982 * The only another reason could be bug in receiver TCP.
1984 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1986 struct tcp_sock
*tp
= tcp_sk(sk
);
1987 if (tcp_limit_reno_sacked(tp
))
1988 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1991 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1993 static void tcp_add_reno_sack(struct sock
*sk
)
1995 struct tcp_sock
*tp
= tcp_sk(sk
);
1997 tcp_check_reno_reordering(sk
, 0);
1998 tcp_verify_left_out(tp
);
2001 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2003 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
2005 struct tcp_sock
*tp
= tcp_sk(sk
);
2008 /* One ACK acked hole. The rest eat duplicate ACKs. */
2009 if (acked
- 1 >= tp
->sacked_out
)
2012 tp
->sacked_out
-= acked
- 1;
2014 tcp_check_reno_reordering(sk
, acked
);
2015 tcp_verify_left_out(tp
);
2018 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
2023 static int tcp_is_sackfrto(const struct tcp_sock
*tp
)
2025 return (sysctl_tcp_frto
== 0x2) && !tcp_is_reno(tp
);
2028 /* F-RTO can only be used if TCP has never retransmitted anything other than
2029 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2031 int tcp_use_frto(struct sock
*sk
)
2033 const struct tcp_sock
*tp
= tcp_sk(sk
);
2034 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2035 struct sk_buff
*skb
;
2037 if (!sysctl_tcp_frto
)
2040 /* MTU probe and F-RTO won't really play nicely along currently */
2041 if (icsk
->icsk_mtup
.probe_size
)
2044 if (tcp_is_sackfrto(tp
))
2047 /* Avoid expensive walking of rexmit queue if possible */
2048 if (tp
->retrans_out
> 1)
2051 skb
= tcp_write_queue_head(sk
);
2052 if (tcp_skb_is_last(sk
, skb
))
2054 skb
= tcp_write_queue_next(sk
, skb
); /* Skips head */
2055 tcp_for_write_queue_from(skb
, sk
) {
2056 if (skb
== tcp_send_head(sk
))
2058 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2060 /* Short-circuit when first non-SACKed skb has been checked */
2061 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2067 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2068 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2069 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2070 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2071 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2072 * bits are handled if the Loss state is really to be entered (in
2073 * tcp_enter_frto_loss).
2075 * Do like tcp_enter_loss() would; when RTO expires the second time it
2077 * "Reduce ssthresh if it has not yet been made inside this window."
2079 void tcp_enter_frto(struct sock
*sk
)
2081 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2082 struct tcp_sock
*tp
= tcp_sk(sk
);
2083 struct sk_buff
*skb
;
2085 if ((!tp
->frto_counter
&& icsk
->icsk_ca_state
<= TCP_CA_Disorder
) ||
2086 tp
->snd_una
== tp
->high_seq
||
2087 ((icsk
->icsk_ca_state
== TCP_CA_Loss
|| tp
->frto_counter
) &&
2088 !icsk
->icsk_retransmits
)) {
2089 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2090 /* Our state is too optimistic in ssthresh() call because cwnd
2091 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2092 * recovery has not yet completed. Pattern would be this: RTO,
2093 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2095 * RFC4138 should be more specific on what to do, even though
2096 * RTO is quite unlikely to occur after the first Cumulative ACK
2097 * due to back-off and complexity of triggering events ...
2099 if (tp
->frto_counter
) {
2101 stored_cwnd
= tp
->snd_cwnd
;
2103 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2104 tp
->snd_cwnd
= stored_cwnd
;
2106 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2108 /* ... in theory, cong.control module could do "any tricks" in
2109 * ssthresh(), which means that ca_state, lost bits and lost_out
2110 * counter would have to be faked before the call occurs. We
2111 * consider that too expensive, unlikely and hacky, so modules
2112 * using these in ssthresh() must deal these incompatibility
2113 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2115 tcp_ca_event(sk
, CA_EVENT_FRTO
);
2118 tp
->undo_marker
= tp
->snd_una
;
2119 tp
->undo_retrans
= 0;
2121 skb
= tcp_write_queue_head(sk
);
2122 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2123 tp
->undo_marker
= 0;
2124 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2125 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2126 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2128 tcp_verify_left_out(tp
);
2130 /* Too bad if TCP was application limited */
2131 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2133 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2134 * The last condition is necessary at least in tp->frto_counter case.
2136 if (tcp_is_sackfrto(tp
) && (tp
->frto_counter
||
2137 ((1 << icsk
->icsk_ca_state
) & (TCPF_CA_Recovery
|TCPF_CA_Loss
))) &&
2138 after(tp
->high_seq
, tp
->snd_una
)) {
2139 tp
->frto_highmark
= tp
->high_seq
;
2141 tp
->frto_highmark
= tp
->snd_nxt
;
2143 tcp_set_ca_state(sk
, TCP_CA_Disorder
);
2144 tp
->high_seq
= tp
->snd_nxt
;
2145 tp
->frto_counter
= 1;
2148 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2149 * which indicates that we should follow the traditional RTO recovery,
2150 * i.e. mark everything lost and do go-back-N retransmission.
2152 static void tcp_enter_frto_loss(struct sock
*sk
, int allowed_segments
, int flag
)
2154 struct tcp_sock
*tp
= tcp_sk(sk
);
2155 struct sk_buff
*skb
;
2158 tp
->retrans_out
= 0;
2159 if (tcp_is_reno(tp
))
2160 tcp_reset_reno_sack(tp
);
2162 tcp_for_write_queue(skb
, sk
) {
2163 if (skb
== tcp_send_head(sk
))
2166 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2168 * Count the retransmission made on RTO correctly (only when
2169 * waiting for the first ACK and did not get it)...
2171 if ((tp
->frto_counter
== 1) && !(flag
& FLAG_DATA_ACKED
)) {
2172 /* For some reason this R-bit might get cleared? */
2173 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
2174 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2175 /* ...enter this if branch just for the first segment */
2176 flag
|= FLAG_DATA_ACKED
;
2178 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2179 tp
->undo_marker
= 0;
2180 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2183 /* Marking forward transmissions that were made after RTO lost
2184 * can cause unnecessary retransmissions in some scenarios,
2185 * SACK blocks will mitigate that in some but not in all cases.
2186 * We used to not mark them but it was causing break-ups with
2187 * receivers that do only in-order receival.
2189 * TODO: we could detect presence of such receiver and select
2190 * different behavior per flow.
2192 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2193 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2194 tp
->lost_out
+= tcp_skb_pcount(skb
);
2195 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2198 tcp_verify_left_out(tp
);
2200 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + allowed_segments
;
2201 tp
->snd_cwnd_cnt
= 0;
2202 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2203 tp
->frto_counter
= 0;
2204 tp
->bytes_acked
= 0;
2206 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2207 sysctl_tcp_reordering
);
2208 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2209 tp
->high_seq
= tp
->snd_nxt
;
2210 TCP_ECN_queue_cwr(tp
);
2212 tcp_clear_all_retrans_hints(tp
);
2215 static void tcp_clear_retrans_partial(struct tcp_sock
*tp
)
2217 tp
->retrans_out
= 0;
2220 tp
->undo_marker
= 0;
2221 tp
->undo_retrans
= 0;
2224 void tcp_clear_retrans(struct tcp_sock
*tp
)
2226 tcp_clear_retrans_partial(tp
);
2228 tp
->fackets_out
= 0;
2232 /* Enter Loss state. If "how" is not zero, forget all SACK information
2233 * and reset tags completely, otherwise preserve SACKs. If receiver
2234 * dropped its ofo queue, we will know this due to reneging detection.
2236 void tcp_enter_loss(struct sock
*sk
, int how
)
2238 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2239 struct tcp_sock
*tp
= tcp_sk(sk
);
2240 struct sk_buff
*skb
;
2242 /* Reduce ssthresh if it has not yet been made inside this window. */
2243 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
2244 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
2245 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2246 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2247 tcp_ca_event(sk
, CA_EVENT_LOSS
);
2250 tp
->snd_cwnd_cnt
= 0;
2251 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2253 tp
->bytes_acked
= 0;
2254 tcp_clear_retrans_partial(tp
);
2256 if (tcp_is_reno(tp
))
2257 tcp_reset_reno_sack(tp
);
2260 /* Push undo marker, if it was plain RTO and nothing
2261 * was retransmitted. */
2262 tp
->undo_marker
= tp
->snd_una
;
2265 tp
->fackets_out
= 0;
2267 tcp_clear_all_retrans_hints(tp
);
2269 tcp_for_write_queue(skb
, sk
) {
2270 if (skb
== tcp_send_head(sk
))
2273 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2274 tp
->undo_marker
= 0;
2275 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
2276 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
2277 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
2278 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2279 tp
->lost_out
+= tcp_skb_pcount(skb
);
2280 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2283 tcp_verify_left_out(tp
);
2285 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2286 sysctl_tcp_reordering
);
2287 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2288 tp
->high_seq
= tp
->snd_nxt
;
2289 TCP_ECN_queue_cwr(tp
);
2290 /* Abort F-RTO algorithm if one is in progress */
2291 tp
->frto_counter
= 0;
2294 /* If ACK arrived pointing to a remembered SACK, it means that our
2295 * remembered SACKs do not reflect real state of receiver i.e.
2296 * receiver _host_ is heavily congested (or buggy).
2298 * Do processing similar to RTO timeout.
2300 static int tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2302 if (flag
& FLAG_SACK_RENEGING
) {
2303 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2304 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
2306 tcp_enter_loss(sk
, 1);
2307 icsk
->icsk_retransmits
++;
2308 tcp_retransmit_skb(sk
, tcp_write_queue_head(sk
));
2309 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2310 icsk
->icsk_rto
, TCP_RTO_MAX
);
2316 static inline int tcp_fackets_out(const struct tcp_sock
*tp
)
2318 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2321 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2322 * counter when SACK is enabled (without SACK, sacked_out is used for
2325 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2326 * segments up to the highest received SACK block so far and holes in
2329 * With reordering, holes may still be in flight, so RFC3517 recovery
2330 * uses pure sacked_out (total number of SACKed segments) even though
2331 * it violates the RFC that uses duplicate ACKs, often these are equal
2332 * but when e.g. out-of-window ACKs or packet duplication occurs,
2333 * they differ. Since neither occurs due to loss, TCP should really
2336 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
2338 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2341 static inline int tcp_skb_timedout(const struct sock
*sk
,
2342 const struct sk_buff
*skb
)
2344 return tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> inet_csk(sk
)->icsk_rto
;
2347 static inline int tcp_head_timedout(const struct sock
*sk
)
2349 const struct tcp_sock
*tp
= tcp_sk(sk
);
2351 return tp
->packets_out
&&
2352 tcp_skb_timedout(sk
, tcp_write_queue_head(sk
));
2355 /* Linux NewReno/SACK/FACK/ECN state machine.
2356 * --------------------------------------
2358 * "Open" Normal state, no dubious events, fast path.
2359 * "Disorder" In all the respects it is "Open",
2360 * but requires a bit more attention. It is entered when
2361 * we see some SACKs or dupacks. It is split of "Open"
2362 * mainly to move some processing from fast path to slow one.
2363 * "CWR" CWND was reduced due to some Congestion Notification event.
2364 * It can be ECN, ICMP source quench, local device congestion.
2365 * "Recovery" CWND was reduced, we are fast-retransmitting.
2366 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2368 * tcp_fastretrans_alert() is entered:
2369 * - each incoming ACK, if state is not "Open"
2370 * - when arrived ACK is unusual, namely:
2375 * Counting packets in flight is pretty simple.
2377 * in_flight = packets_out - left_out + retrans_out
2379 * packets_out is SND.NXT-SND.UNA counted in packets.
2381 * retrans_out is number of retransmitted segments.
2383 * left_out is number of segments left network, but not ACKed yet.
2385 * left_out = sacked_out + lost_out
2387 * sacked_out: Packets, which arrived to receiver out of order
2388 * and hence not ACKed. With SACKs this number is simply
2389 * amount of SACKed data. Even without SACKs
2390 * it is easy to give pretty reliable estimate of this number,
2391 * counting duplicate ACKs.
2393 * lost_out: Packets lost by network. TCP has no explicit
2394 * "loss notification" feedback from network (for now).
2395 * It means that this number can be only _guessed_.
2396 * Actually, it is the heuristics to predict lossage that
2397 * distinguishes different algorithms.
2399 * F.e. after RTO, when all the queue is considered as lost,
2400 * lost_out = packets_out and in_flight = retrans_out.
2402 * Essentially, we have now two algorithms counting
2405 * FACK: It is the simplest heuristics. As soon as we decided
2406 * that something is lost, we decide that _all_ not SACKed
2407 * packets until the most forward SACK are lost. I.e.
2408 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2409 * It is absolutely correct estimate, if network does not reorder
2410 * packets. And it loses any connection to reality when reordering
2411 * takes place. We use FACK by default until reordering
2412 * is suspected on the path to this destination.
2414 * NewReno: when Recovery is entered, we assume that one segment
2415 * is lost (classic Reno). While we are in Recovery and
2416 * a partial ACK arrives, we assume that one more packet
2417 * is lost (NewReno). This heuristics are the same in NewReno
2420 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2421 * deflation etc. CWND is real congestion window, never inflated, changes
2422 * only according to classic VJ rules.
2424 * Really tricky (and requiring careful tuning) part of algorithm
2425 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2426 * The first determines the moment _when_ we should reduce CWND and,
2427 * hence, slow down forward transmission. In fact, it determines the moment
2428 * when we decide that hole is caused by loss, rather than by a reorder.
2430 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2431 * holes, caused by lost packets.
2433 * And the most logically complicated part of algorithm is undo
2434 * heuristics. We detect false retransmits due to both too early
2435 * fast retransmit (reordering) and underestimated RTO, analyzing
2436 * timestamps and D-SACKs. When we detect that some segments were
2437 * retransmitted by mistake and CWND reduction was wrong, we undo
2438 * window reduction and abort recovery phase. This logic is hidden
2439 * inside several functions named tcp_try_undo_<something>.
2442 /* This function decides, when we should leave Disordered state
2443 * and enter Recovery phase, reducing congestion window.
2445 * Main question: may we further continue forward transmission
2446 * with the same cwnd?
2448 static int tcp_time_to_recover(struct sock
*sk
)
2450 struct tcp_sock
*tp
= tcp_sk(sk
);
2453 /* Do not perform any recovery during F-RTO algorithm */
2454 if (tp
->frto_counter
)
2457 /* Trick#1: The loss is proven. */
2461 /* Not-A-Trick#2 : Classic rule... */
2462 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2465 /* Trick#3 : when we use RFC2988 timer restart, fast
2466 * retransmit can be triggered by timeout of queue head.
2468 if (tcp_is_fack(tp
) && tcp_head_timedout(sk
))
2471 /* Trick#4: It is still not OK... But will it be useful to delay
2474 packets_out
= tp
->packets_out
;
2475 if (packets_out
<= tp
->reordering
&&
2476 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2477 !tcp_may_send_now(sk
)) {
2478 /* We have nothing to send. This connection is limited
2479 * either by receiver window or by application.
2484 /* If a thin stream is detected, retransmit after first
2485 * received dupack. Employ only if SACK is supported in order
2486 * to avoid possible corner-case series of spurious retransmissions
2487 * Use only if there are no unsent data.
2489 if ((tp
->thin_dupack
|| sysctl_tcp_thin_dupack
) &&
2490 tcp_stream_is_thin(tp
) && tcp_dupack_heuristics(tp
) > 1 &&
2491 tcp_is_sack(tp
) && !tcp_send_head(sk
))
2497 /* New heuristics: it is possible only after we switched to restart timer
2498 * each time when something is ACKed. Hence, we can detect timed out packets
2499 * during fast retransmit without falling to slow start.
2501 * Usefulness of this as is very questionable, since we should know which of
2502 * the segments is the next to timeout which is relatively expensive to find
2503 * in general case unless we add some data structure just for that. The
2504 * current approach certainly won't find the right one too often and when it
2505 * finally does find _something_ it usually marks large part of the window
2506 * right away (because a retransmission with a larger timestamp blocks the
2507 * loop from advancing). -ij
2509 static void tcp_timeout_skbs(struct sock
*sk
)
2511 struct tcp_sock
*tp
= tcp_sk(sk
);
2512 struct sk_buff
*skb
;
2514 if (!tcp_is_fack(tp
) || !tcp_head_timedout(sk
))
2517 skb
= tp
->scoreboard_skb_hint
;
2518 if (tp
->scoreboard_skb_hint
== NULL
)
2519 skb
= tcp_write_queue_head(sk
);
2521 tcp_for_write_queue_from(skb
, sk
) {
2522 if (skb
== tcp_send_head(sk
))
2524 if (!tcp_skb_timedout(sk
, skb
))
2527 tcp_skb_mark_lost(tp
, skb
);
2530 tp
->scoreboard_skb_hint
= skb
;
2532 tcp_verify_left_out(tp
);
2535 /* Detect loss in event "A" above by marking head of queue up as lost.
2536 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2537 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2538 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2539 * the maximum SACKed segments to pass before reaching this limit.
2541 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2543 struct tcp_sock
*tp
= tcp_sk(sk
);
2544 struct sk_buff
*skb
;
2548 /* Use SACK to deduce losses of new sequences sent during recovery */
2549 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2551 WARN_ON(packets
> tp
->packets_out
);
2552 if (tp
->lost_skb_hint
) {
2553 skb
= tp
->lost_skb_hint
;
2554 cnt
= tp
->lost_cnt_hint
;
2555 /* Head already handled? */
2556 if (mark_head
&& skb
!= tcp_write_queue_head(sk
))
2559 skb
= tcp_write_queue_head(sk
);
2563 tcp_for_write_queue_from(skb
, sk
) {
2564 if (skb
== tcp_send_head(sk
))
2566 /* TODO: do this better */
2567 /* this is not the most efficient way to do this... */
2568 tp
->lost_skb_hint
= skb
;
2569 tp
->lost_cnt_hint
= cnt
;
2571 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2575 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2576 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2577 cnt
+= tcp_skb_pcount(skb
);
2579 if (cnt
> packets
) {
2580 if ((tcp_is_sack(tp
) && !tcp_is_fack(tp
)) ||
2581 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2582 (oldcnt
>= packets
))
2585 mss
= skb_shinfo(skb
)->gso_size
;
2586 err
= tcp_fragment(sk
, skb
, (packets
- oldcnt
) * mss
, mss
);
2592 tcp_skb_mark_lost(tp
, skb
);
2597 tcp_verify_left_out(tp
);
2600 /* Account newly detected lost packet(s) */
2602 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2604 struct tcp_sock
*tp
= tcp_sk(sk
);
2606 if (tcp_is_reno(tp
)) {
2607 tcp_mark_head_lost(sk
, 1, 1);
2608 } else if (tcp_is_fack(tp
)) {
2609 int lost
= tp
->fackets_out
- tp
->reordering
;
2612 tcp_mark_head_lost(sk
, lost
, 0);
2614 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2615 if (sacked_upto
>= 0)
2616 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2617 else if (fast_rexmit
)
2618 tcp_mark_head_lost(sk
, 1, 1);
2621 tcp_timeout_skbs(sk
);
2624 /* CWND moderation, preventing bursts due to too big ACKs
2625 * in dubious situations.
2627 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2629 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2630 tcp_packets_in_flight(tp
) + tcp_max_burst(tp
));
2631 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2634 /* Lower bound on congestion window is slow start threshold
2635 * unless congestion avoidance choice decides to overide it.
2637 static inline u32
tcp_cwnd_min(const struct sock
*sk
)
2639 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
2641 return ca_ops
->min_cwnd
? ca_ops
->min_cwnd(sk
) : tcp_sk(sk
)->snd_ssthresh
;
2644 /* Decrease cwnd each second ack. */
2645 static void tcp_cwnd_down(struct sock
*sk
, int flag
)
2647 struct tcp_sock
*tp
= tcp_sk(sk
);
2648 int decr
= tp
->snd_cwnd_cnt
+ 1;
2650 if ((flag
& (FLAG_ANY_PROGRESS
| FLAG_DSACKING_ACK
)) ||
2651 (tcp_is_reno(tp
) && !(flag
& FLAG_NOT_DUP
))) {
2652 tp
->snd_cwnd_cnt
= decr
& 1;
2655 if (decr
&& tp
->snd_cwnd
> tcp_cwnd_min(sk
))
2656 tp
->snd_cwnd
-= decr
;
2658 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2659 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2663 /* Nothing was retransmitted or returned timestamp is less
2664 * than timestamp of the first retransmission.
2666 static inline int tcp_packet_delayed(const struct tcp_sock
*tp
)
2668 return !tp
->retrans_stamp
||
2669 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2670 before(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
));
2673 /* Undo procedures. */
2675 #if FASTRETRANS_DEBUG > 1
2676 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2678 struct tcp_sock
*tp
= tcp_sk(sk
);
2679 struct inet_sock
*inet
= inet_sk(sk
);
2681 if (sk
->sk_family
== AF_INET
) {
2682 printk(KERN_DEBUG
"Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2684 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2685 tp
->snd_cwnd
, tcp_left_out(tp
),
2686 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2689 #if IS_ENABLED(CONFIG_IPV6)
2690 else if (sk
->sk_family
== AF_INET6
) {
2691 struct ipv6_pinfo
*np
= inet6_sk(sk
);
2692 printk(KERN_DEBUG
"Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2694 &np
->daddr
, ntohs(inet
->inet_dport
),
2695 tp
->snd_cwnd
, tcp_left_out(tp
),
2696 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2702 #define DBGUNDO(x...) do { } while (0)
2705 static void tcp_undo_cwr(struct sock
*sk
, const bool undo_ssthresh
)
2707 struct tcp_sock
*tp
= tcp_sk(sk
);
2709 if (tp
->prior_ssthresh
) {
2710 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2712 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2713 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2715 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2717 if (undo_ssthresh
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2718 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2719 TCP_ECN_withdraw_cwr(tp
);
2722 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2724 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2727 static inline int tcp_may_undo(const struct tcp_sock
*tp
)
2729 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2732 /* People celebrate: "We love our President!" */
2733 static int tcp_try_undo_recovery(struct sock
*sk
)
2735 struct tcp_sock
*tp
= tcp_sk(sk
);
2737 if (tcp_may_undo(tp
)) {
2740 /* Happy end! We did not retransmit anything
2741 * or our original transmission succeeded.
2743 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2744 tcp_undo_cwr(sk
, true);
2745 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2746 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2748 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2750 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2751 tp
->undo_marker
= 0;
2753 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2754 /* Hold old state until something *above* high_seq
2755 * is ACKed. For Reno it is MUST to prevent false
2756 * fast retransmits (RFC2582). SACK TCP is safe. */
2757 tcp_moderate_cwnd(tp
);
2760 tcp_set_ca_state(sk
, TCP_CA_Open
);
2764 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2765 static void tcp_try_undo_dsack(struct sock
*sk
)
2767 struct tcp_sock
*tp
= tcp_sk(sk
);
2769 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2770 DBGUNDO(sk
, "D-SACK");
2771 tcp_undo_cwr(sk
, true);
2772 tp
->undo_marker
= 0;
2773 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2777 /* We can clear retrans_stamp when there are no retransmissions in the
2778 * window. It would seem that it is trivially available for us in
2779 * tp->retrans_out, however, that kind of assumptions doesn't consider
2780 * what will happen if errors occur when sending retransmission for the
2781 * second time. ...It could the that such segment has only
2782 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2783 * the head skb is enough except for some reneging corner cases that
2784 * are not worth the effort.
2786 * Main reason for all this complexity is the fact that connection dying
2787 * time now depends on the validity of the retrans_stamp, in particular,
2788 * that successive retransmissions of a segment must not advance
2789 * retrans_stamp under any conditions.
2791 static int tcp_any_retrans_done(const struct sock
*sk
)
2793 const struct tcp_sock
*tp
= tcp_sk(sk
);
2794 struct sk_buff
*skb
;
2796 if (tp
->retrans_out
)
2799 skb
= tcp_write_queue_head(sk
);
2800 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2806 /* Undo during fast recovery after partial ACK. */
2808 static int tcp_try_undo_partial(struct sock
*sk
, int acked
)
2810 struct tcp_sock
*tp
= tcp_sk(sk
);
2811 /* Partial ACK arrived. Force Hoe's retransmit. */
2812 int failed
= tcp_is_reno(tp
) || (tcp_fackets_out(tp
) > tp
->reordering
);
2814 if (tcp_may_undo(tp
)) {
2815 /* Plain luck! Hole if filled with delayed
2816 * packet, rather than with a retransmit.
2818 if (!tcp_any_retrans_done(sk
))
2819 tp
->retrans_stamp
= 0;
2821 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2824 tcp_undo_cwr(sk
, false);
2825 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2827 /* So... Do not make Hoe's retransmit yet.
2828 * If the first packet was delayed, the rest
2829 * ones are most probably delayed as well.
2836 /* Undo during loss recovery after partial ACK. */
2837 static int tcp_try_undo_loss(struct sock
*sk
)
2839 struct tcp_sock
*tp
= tcp_sk(sk
);
2841 if (tcp_may_undo(tp
)) {
2842 struct sk_buff
*skb
;
2843 tcp_for_write_queue(skb
, sk
) {
2844 if (skb
== tcp_send_head(sk
))
2846 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2849 tcp_clear_all_retrans_hints(tp
);
2851 DBGUNDO(sk
, "partial loss");
2853 tcp_undo_cwr(sk
, true);
2854 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2855 inet_csk(sk
)->icsk_retransmits
= 0;
2856 tp
->undo_marker
= 0;
2857 if (tcp_is_sack(tp
))
2858 tcp_set_ca_state(sk
, TCP_CA_Open
);
2864 static inline void tcp_complete_cwr(struct sock
*sk
)
2866 struct tcp_sock
*tp
= tcp_sk(sk
);
2868 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2869 if (tp
->undo_marker
) {
2870 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
)
2871 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2873 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2874 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2876 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2879 static void tcp_try_keep_open(struct sock
*sk
)
2881 struct tcp_sock
*tp
= tcp_sk(sk
);
2882 int state
= TCP_CA_Open
;
2884 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2885 state
= TCP_CA_Disorder
;
2887 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2888 tcp_set_ca_state(sk
, state
);
2889 tp
->high_seq
= tp
->snd_nxt
;
2893 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2895 struct tcp_sock
*tp
= tcp_sk(sk
);
2897 tcp_verify_left_out(tp
);
2899 if (!tp
->frto_counter
&& !tcp_any_retrans_done(sk
))
2900 tp
->retrans_stamp
= 0;
2902 if (flag
& FLAG_ECE
)
2903 tcp_enter_cwr(sk
, 1);
2905 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2906 tcp_try_keep_open(sk
);
2907 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
)
2908 tcp_moderate_cwnd(tp
);
2910 tcp_cwnd_down(sk
, flag
);
2914 static void tcp_mtup_probe_failed(struct sock
*sk
)
2916 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2918 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2919 icsk
->icsk_mtup
.probe_size
= 0;
2922 static void tcp_mtup_probe_success(struct sock
*sk
)
2924 struct tcp_sock
*tp
= tcp_sk(sk
);
2925 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2927 /* FIXME: breaks with very large cwnd */
2928 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2929 tp
->snd_cwnd
= tp
->snd_cwnd
*
2930 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2931 icsk
->icsk_mtup
.probe_size
;
2932 tp
->snd_cwnd_cnt
= 0;
2933 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2934 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2936 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2937 icsk
->icsk_mtup
.probe_size
= 0;
2938 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2941 /* Do a simple retransmit without using the backoff mechanisms in
2942 * tcp_timer. This is used for path mtu discovery.
2943 * The socket is already locked here.
2945 void tcp_simple_retransmit(struct sock
*sk
)
2947 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2948 struct tcp_sock
*tp
= tcp_sk(sk
);
2949 struct sk_buff
*skb
;
2950 unsigned int mss
= tcp_current_mss(sk
);
2951 u32 prior_lost
= tp
->lost_out
;
2953 tcp_for_write_queue(skb
, sk
) {
2954 if (skb
== tcp_send_head(sk
))
2956 if (tcp_skb_seglen(skb
) > mss
&&
2957 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2958 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2959 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2960 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2962 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2966 tcp_clear_retrans_hints_partial(tp
);
2968 if (prior_lost
== tp
->lost_out
)
2971 if (tcp_is_reno(tp
))
2972 tcp_limit_reno_sacked(tp
);
2974 tcp_verify_left_out(tp
);
2976 /* Don't muck with the congestion window here.
2977 * Reason is that we do not increase amount of _data_
2978 * in network, but units changed and effective
2979 * cwnd/ssthresh really reduced now.
2981 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2982 tp
->high_seq
= tp
->snd_nxt
;
2983 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2984 tp
->prior_ssthresh
= 0;
2985 tp
->undo_marker
= 0;
2986 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2988 tcp_xmit_retransmit_queue(sk
);
2990 EXPORT_SYMBOL(tcp_simple_retransmit
);
2992 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2993 * (proportional rate reduction with slow start reduction bound) as described in
2994 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2995 * It computes the number of packets to send (sndcnt) based on packets newly
2997 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2998 * cwnd reductions across a full RTT.
2999 * 2) If packets in flight is lower than ssthresh (such as due to excess
3000 * losses and/or application stalls), do not perform any further cwnd
3001 * reductions, but instead slow start up to ssthresh.
3003 static void tcp_update_cwnd_in_recovery(struct sock
*sk
, int newly_acked_sacked
,
3004 int fast_rexmit
, int flag
)
3006 struct tcp_sock
*tp
= tcp_sk(sk
);
3008 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
3010 if (tcp_packets_in_flight(tp
) > tp
->snd_ssthresh
) {
3011 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
3013 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
3015 sndcnt
= min_t(int, delta
,
3016 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
3017 newly_acked_sacked
) + 1);
3020 sndcnt
= max(sndcnt
, (fast_rexmit
? 1 : 0));
3021 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
3024 /* Process an event, which can update packets-in-flight not trivially.
3025 * Main goal of this function is to calculate new estimate for left_out,
3026 * taking into account both packets sitting in receiver's buffer and
3027 * packets lost by network.
3029 * Besides that it does CWND reduction, when packet loss is detected
3030 * and changes state of machine.
3032 * It does _not_ decide what to send, it is made in function
3033 * tcp_xmit_retransmit_queue().
3035 static void tcp_fastretrans_alert(struct sock
*sk
, int pkts_acked
,
3036 int newly_acked_sacked
, bool is_dupack
,
3039 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3040 struct tcp_sock
*tp
= tcp_sk(sk
);
3041 int do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
3042 (tcp_fackets_out(tp
) > tp
->reordering
));
3043 int fast_rexmit
= 0, mib_idx
;
3045 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
3047 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
3048 tp
->fackets_out
= 0;
3050 /* Now state machine starts.
3051 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3052 if (flag
& FLAG_ECE
)
3053 tp
->prior_ssthresh
= 0;
3055 /* B. In all the states check for reneging SACKs. */
3056 if (tcp_check_sack_reneging(sk
, flag
))
3059 /* C. Check consistency of the current state. */
3060 tcp_verify_left_out(tp
);
3062 /* D. Check state exit conditions. State can be terminated
3063 * when high_seq is ACKed. */
3064 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
3065 WARN_ON(tp
->retrans_out
!= 0);
3066 tp
->retrans_stamp
= 0;
3067 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
3068 switch (icsk
->icsk_ca_state
) {
3070 icsk
->icsk_retransmits
= 0;
3071 if (tcp_try_undo_recovery(sk
))
3076 /* CWR is to be held something *above* high_seq
3077 * is ACKed for CWR bit to reach receiver. */
3078 if (tp
->snd_una
!= tp
->high_seq
) {
3079 tcp_complete_cwr(sk
);
3080 tcp_set_ca_state(sk
, TCP_CA_Open
);
3084 case TCP_CA_Recovery
:
3085 if (tcp_is_reno(tp
))
3086 tcp_reset_reno_sack(tp
);
3087 if (tcp_try_undo_recovery(sk
))
3089 tcp_complete_cwr(sk
);
3094 /* E. Process state. */
3095 switch (icsk
->icsk_ca_state
) {
3096 case TCP_CA_Recovery
:
3097 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
3098 if (tcp_is_reno(tp
) && is_dupack
)
3099 tcp_add_reno_sack(sk
);
3101 do_lost
= tcp_try_undo_partial(sk
, pkts_acked
);
3104 if (flag
& FLAG_DATA_ACKED
)
3105 icsk
->icsk_retransmits
= 0;
3106 if (tcp_is_reno(tp
) && flag
& FLAG_SND_UNA_ADVANCED
)
3107 tcp_reset_reno_sack(tp
);
3108 if (!tcp_try_undo_loss(sk
)) {
3109 tcp_moderate_cwnd(tp
);
3110 tcp_xmit_retransmit_queue(sk
);
3113 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
3115 /* Loss is undone; fall through to processing in Open state. */
3117 if (tcp_is_reno(tp
)) {
3118 if (flag
& FLAG_SND_UNA_ADVANCED
)
3119 tcp_reset_reno_sack(tp
);
3121 tcp_add_reno_sack(sk
);
3124 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
3125 tcp_try_undo_dsack(sk
);
3127 if (!tcp_time_to_recover(sk
)) {
3128 tcp_try_to_open(sk
, flag
);
3132 /* MTU probe failure: don't reduce cwnd */
3133 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
3134 icsk
->icsk_mtup
.probe_size
&&
3135 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
3136 tcp_mtup_probe_failed(sk
);
3137 /* Restores the reduction we did in tcp_mtup_probe() */
3139 tcp_simple_retransmit(sk
);
3143 /* Otherwise enter Recovery state */
3145 if (tcp_is_reno(tp
))
3146 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
3148 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
3150 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
3152 tp
->high_seq
= tp
->snd_nxt
;
3153 tp
->prior_ssthresh
= 0;
3154 tp
->undo_marker
= tp
->snd_una
;
3155 tp
->undo_retrans
= tp
->retrans_out
;
3157 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
3158 if (!(flag
& FLAG_ECE
))
3159 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
3160 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
3161 TCP_ECN_queue_cwr(tp
);
3164 tp
->bytes_acked
= 0;
3165 tp
->snd_cwnd_cnt
= 0;
3166 tp
->prior_cwnd
= tp
->snd_cwnd
;
3167 tp
->prr_delivered
= 0;
3169 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
3173 if (do_lost
|| (tcp_is_fack(tp
) && tcp_head_timedout(sk
)))
3174 tcp_update_scoreboard(sk
, fast_rexmit
);
3175 tp
->prr_delivered
+= newly_acked_sacked
;
3176 tcp_update_cwnd_in_recovery(sk
, newly_acked_sacked
, fast_rexmit
, flag
);
3177 tcp_xmit_retransmit_queue(sk
);
3180 void tcp_valid_rtt_meas(struct sock
*sk
, u32 seq_rtt
)
3182 tcp_rtt_estimator(sk
, seq_rtt
);
3184 inet_csk(sk
)->icsk_backoff
= 0;
3186 EXPORT_SYMBOL(tcp_valid_rtt_meas
);
3188 /* Read draft-ietf-tcplw-high-performance before mucking
3189 * with this code. (Supersedes RFC1323)
3191 static void tcp_ack_saw_tstamp(struct sock
*sk
, int flag
)
3193 /* RTTM Rule: A TSecr value received in a segment is used to
3194 * update the averaged RTT measurement only if the segment
3195 * acknowledges some new data, i.e., only if it advances the
3196 * left edge of the send window.
3198 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3199 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3201 * Changed: reset backoff as soon as we see the first valid sample.
3202 * If we do not, we get strongly overestimated rto. With timestamps
3203 * samples are accepted even from very old segments: f.e., when rtt=1
3204 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3205 * answer arrives rto becomes 120 seconds! If at least one of segments
3206 * in window is lost... Voila. --ANK (010210)
3208 struct tcp_sock
*tp
= tcp_sk(sk
);
3210 tcp_valid_rtt_meas(sk
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
);
3213 static void tcp_ack_no_tstamp(struct sock
*sk
, u32 seq_rtt
, int flag
)
3215 /* We don't have a timestamp. Can only use
3216 * packets that are not retransmitted to determine
3217 * rtt estimates. Also, we must not reset the
3218 * backoff for rto until we get a non-retransmitted
3219 * packet. This allows us to deal with a situation
3220 * where the network delay has increased suddenly.
3221 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3224 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3227 tcp_valid_rtt_meas(sk
, seq_rtt
);
3230 static inline void tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
3233 const struct tcp_sock
*tp
= tcp_sk(sk
);
3234 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3235 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3236 tcp_ack_saw_tstamp(sk
, flag
);
3237 else if (seq_rtt
>= 0)
3238 tcp_ack_no_tstamp(sk
, seq_rtt
, flag
);
3241 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 in_flight
)
3243 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3244 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, in_flight
);
3245 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
3248 /* Restart timer after forward progress on connection.
3249 * RFC2988 recommends to restart timer to now+rto.
3251 static void tcp_rearm_rto(struct sock
*sk
)
3253 const struct tcp_sock
*tp
= tcp_sk(sk
);
3255 if (!tp
->packets_out
) {
3256 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3258 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3259 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3263 /* If we get here, the whole TSO packet has not been acked. */
3264 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3266 struct tcp_sock
*tp
= tcp_sk(sk
);
3269 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3271 packets_acked
= tcp_skb_pcount(skb
);
3272 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3274 packets_acked
-= tcp_skb_pcount(skb
);
3276 if (packets_acked
) {
3277 BUG_ON(tcp_skb_pcount(skb
) == 0);
3278 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3281 return packets_acked
;
3284 /* Remove acknowledged frames from the retransmission queue. If our packet
3285 * is before the ack sequence we can discard it as it's confirmed to have
3286 * arrived at the other end.
3288 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3291 struct tcp_sock
*tp
= tcp_sk(sk
);
3292 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3293 struct sk_buff
*skb
;
3294 u32 now
= tcp_time_stamp
;
3295 int fully_acked
= 1;
3298 u32 reord
= tp
->packets_out
;
3299 u32 prior_sacked
= tp
->sacked_out
;
3301 s32 ca_seq_rtt
= -1;
3302 ktime_t last_ackt
= net_invalid_timestamp();
3304 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3305 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3307 u8 sacked
= scb
->sacked
;
3309 /* Determine how many packets and what bytes were acked, tso and else */
3310 if (after(scb
->end_seq
, tp
->snd_una
)) {
3311 if (tcp_skb_pcount(skb
) == 1 ||
3312 !after(tp
->snd_una
, scb
->seq
))
3315 acked_pcount
= tcp_tso_acked(sk
, skb
);
3321 acked_pcount
= tcp_skb_pcount(skb
);
3324 if (sacked
& TCPCB_RETRANS
) {
3325 if (sacked
& TCPCB_SACKED_RETRANS
)
3326 tp
->retrans_out
-= acked_pcount
;
3327 flag
|= FLAG_RETRANS_DATA_ACKED
;
3330 if ((flag
& FLAG_DATA_ACKED
) || (acked_pcount
> 1))
3331 flag
|= FLAG_NONHEAD_RETRANS_ACKED
;
3333 ca_seq_rtt
= now
- scb
->when
;
3334 last_ackt
= skb
->tstamp
;
3336 seq_rtt
= ca_seq_rtt
;
3338 if (!(sacked
& TCPCB_SACKED_ACKED
))
3339 reord
= min(pkts_acked
, reord
);
3342 if (sacked
& TCPCB_SACKED_ACKED
)
3343 tp
->sacked_out
-= acked_pcount
;
3344 if (sacked
& TCPCB_LOST
)
3345 tp
->lost_out
-= acked_pcount
;
3347 tp
->packets_out
-= acked_pcount
;
3348 pkts_acked
+= acked_pcount
;
3350 /* Initial outgoing SYN's get put onto the write_queue
3351 * just like anything else we transmit. It is not
3352 * true data, and if we misinform our callers that
3353 * this ACK acks real data, we will erroneously exit
3354 * connection startup slow start one packet too
3355 * quickly. This is severely frowned upon behavior.
3357 if (!(scb
->tcp_flags
& TCPHDR_SYN
)) {
3358 flag
|= FLAG_DATA_ACKED
;
3360 flag
|= FLAG_SYN_ACKED
;
3361 tp
->retrans_stamp
= 0;
3367 tcp_unlink_write_queue(skb
, sk
);
3368 sk_wmem_free_skb(sk
, skb
);
3369 tp
->scoreboard_skb_hint
= NULL
;
3370 if (skb
== tp
->retransmit_skb_hint
)
3371 tp
->retransmit_skb_hint
= NULL
;
3372 if (skb
== tp
->lost_skb_hint
)
3373 tp
->lost_skb_hint
= NULL
;
3376 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3377 tp
->snd_up
= tp
->snd_una
;
3379 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3380 flag
|= FLAG_SACK_RENEGING
;
3382 if (flag
& FLAG_ACKED
) {
3383 const struct tcp_congestion_ops
*ca_ops
3384 = inet_csk(sk
)->icsk_ca_ops
;
3386 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3387 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3388 tcp_mtup_probe_success(sk
);
3391 tcp_ack_update_rtt(sk
, flag
, seq_rtt
);
3394 if (tcp_is_reno(tp
)) {
3395 tcp_remove_reno_sacks(sk
, pkts_acked
);
3399 /* Non-retransmitted hole got filled? That's reordering */
3400 if (reord
< prior_fackets
)
3401 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3403 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3404 prior_sacked
- tp
->sacked_out
;
3405 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3408 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3410 if (ca_ops
->pkts_acked
) {
3413 /* Is the ACK triggering packet unambiguous? */
3414 if (!(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3415 /* High resolution needed and available? */
3416 if (ca_ops
->flags
& TCP_CONG_RTT_STAMP
&&
3417 !ktime_equal(last_ackt
,
3418 net_invalid_timestamp()))
3419 rtt_us
= ktime_us_delta(ktime_get_real(),
3421 else if (ca_seq_rtt
>= 0)
3422 rtt_us
= jiffies_to_usecs(ca_seq_rtt
);
3425 ca_ops
->pkts_acked(sk
, pkts_acked
, rtt_us
);
3429 #if FASTRETRANS_DEBUG > 0
3430 WARN_ON((int)tp
->sacked_out
< 0);
3431 WARN_ON((int)tp
->lost_out
< 0);
3432 WARN_ON((int)tp
->retrans_out
< 0);
3433 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3434 icsk
= inet_csk(sk
);
3436 printk(KERN_DEBUG
"Leak l=%u %d\n",
3437 tp
->lost_out
, icsk
->icsk_ca_state
);
3440 if (tp
->sacked_out
) {
3441 printk(KERN_DEBUG
"Leak s=%u %d\n",
3442 tp
->sacked_out
, icsk
->icsk_ca_state
);
3445 if (tp
->retrans_out
) {
3446 printk(KERN_DEBUG
"Leak r=%u %d\n",
3447 tp
->retrans_out
, icsk
->icsk_ca_state
);
3448 tp
->retrans_out
= 0;
3455 static void tcp_ack_probe(struct sock
*sk
)
3457 const struct tcp_sock
*tp
= tcp_sk(sk
);
3458 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3460 /* Was it a usable window open? */
3462 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3463 icsk
->icsk_backoff
= 0;
3464 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3465 /* Socket must be waked up by subsequent tcp_data_snd_check().
3466 * This function is not for random using!
3469 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3470 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
3475 static inline int tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3477 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3478 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3481 static inline int tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3483 const struct tcp_sock
*tp
= tcp_sk(sk
);
3484 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
3485 !((1 << inet_csk(sk
)->icsk_ca_state
) & (TCPF_CA_Recovery
| TCPF_CA_CWR
));
3488 /* Check that window update is acceptable.
3489 * The function assumes that snd_una<=ack<=snd_next.
3491 static inline int tcp_may_update_window(const struct tcp_sock
*tp
,
3492 const u32 ack
, const u32 ack_seq
,
3495 return after(ack
, tp
->snd_una
) ||
3496 after(ack_seq
, tp
->snd_wl1
) ||
3497 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3500 /* Update our send window.
3502 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3503 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3505 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3508 struct tcp_sock
*tp
= tcp_sk(sk
);
3510 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3512 if (likely(!tcp_hdr(skb
)->syn
))
3513 nwin
<<= tp
->rx_opt
.snd_wscale
;
3515 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3516 flag
|= FLAG_WIN_UPDATE
;
3517 tcp_update_wl(tp
, ack_seq
);
3519 if (tp
->snd_wnd
!= nwin
) {
3522 /* Note, it is the only place, where
3523 * fast path is recovered for sending TCP.
3526 tcp_fast_path_check(sk
);
3528 if (nwin
> tp
->max_window
) {
3529 tp
->max_window
= nwin
;
3530 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3540 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3541 * continue in congestion avoidance.
3543 static void tcp_conservative_spur_to_response(struct tcp_sock
*tp
)
3545 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
3546 tp
->snd_cwnd_cnt
= 0;
3547 tp
->bytes_acked
= 0;
3548 TCP_ECN_queue_cwr(tp
);
3549 tcp_moderate_cwnd(tp
);
3552 /* A conservative spurious RTO response algorithm: reduce cwnd using
3553 * rate halving and continue in congestion avoidance.
3555 static void tcp_ratehalving_spur_to_response(struct sock
*sk
)
3557 tcp_enter_cwr(sk
, 0);
3560 static void tcp_undo_spur_to_response(struct sock
*sk
, int flag
)
3562 if (flag
& FLAG_ECE
)
3563 tcp_ratehalving_spur_to_response(sk
);
3565 tcp_undo_cwr(sk
, true);
3568 /* F-RTO spurious RTO detection algorithm (RFC4138)
3570 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3571 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3572 * window (but not to or beyond highest sequence sent before RTO):
3573 * On First ACK, send two new segments out.
3574 * On Second ACK, RTO was likely spurious. Do spurious response (response
3575 * algorithm is not part of the F-RTO detection algorithm
3576 * given in RFC4138 but can be selected separately).
3577 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3578 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3579 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3580 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3582 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3583 * original window even after we transmit two new data segments.
3586 * on first step, wait until first cumulative ACK arrives, then move to
3587 * the second step. In second step, the next ACK decides.
3589 * F-RTO is implemented (mainly) in four functions:
3590 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3591 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3592 * called when tcp_use_frto() showed green light
3593 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3594 * - tcp_enter_frto_loss() is called if there is not enough evidence
3595 * to prove that the RTO is indeed spurious. It transfers the control
3596 * from F-RTO to the conventional RTO recovery
3598 static int tcp_process_frto(struct sock
*sk
, int flag
)
3600 struct tcp_sock
*tp
= tcp_sk(sk
);
3602 tcp_verify_left_out(tp
);
3604 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3605 if (flag
& FLAG_DATA_ACKED
)
3606 inet_csk(sk
)->icsk_retransmits
= 0;
3608 if ((flag
& FLAG_NONHEAD_RETRANS_ACKED
) ||
3609 ((tp
->frto_counter
>= 2) && (flag
& FLAG_RETRANS_DATA_ACKED
)))
3610 tp
->undo_marker
= 0;
3612 if (!before(tp
->snd_una
, tp
->frto_highmark
)) {
3613 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 2 : 3), flag
);
3617 if (!tcp_is_sackfrto(tp
)) {
3618 /* RFC4138 shortcoming in step 2; should also have case c):
3619 * ACK isn't duplicate nor advances window, e.g., opposite dir
3622 if (!(flag
& FLAG_ANY_PROGRESS
) && (flag
& FLAG_NOT_DUP
))
3625 if (!(flag
& FLAG_DATA_ACKED
)) {
3626 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 0 : 3),
3631 if (!(flag
& FLAG_DATA_ACKED
) && (tp
->frto_counter
== 1)) {
3632 /* Prevent sending of new data. */
3633 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
3634 tcp_packets_in_flight(tp
));
3638 if ((tp
->frto_counter
>= 2) &&
3639 (!(flag
& FLAG_FORWARD_PROGRESS
) ||
3640 ((flag
& FLAG_DATA_SACKED
) &&
3641 !(flag
& FLAG_ONLY_ORIG_SACKED
)))) {
3642 /* RFC4138 shortcoming (see comment above) */
3643 if (!(flag
& FLAG_FORWARD_PROGRESS
) &&
3644 (flag
& FLAG_NOT_DUP
))
3647 tcp_enter_frto_loss(sk
, 3, flag
);
3652 if (tp
->frto_counter
== 1) {
3653 /* tcp_may_send_now needs to see updated state */
3654 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
3655 tp
->frto_counter
= 2;
3657 if (!tcp_may_send_now(sk
))
3658 tcp_enter_frto_loss(sk
, 2, flag
);
3662 switch (sysctl_tcp_frto_response
) {
3664 tcp_undo_spur_to_response(sk
, flag
);
3667 tcp_conservative_spur_to_response(tp
);
3670 tcp_ratehalving_spur_to_response(sk
);
3673 tp
->frto_counter
= 0;
3674 tp
->undo_marker
= 0;
3675 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSPURIOUSRTOS
);
3680 /* This routine deals with incoming acks, but not outgoing ones. */
3681 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3683 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3684 struct tcp_sock
*tp
= tcp_sk(sk
);
3685 u32 prior_snd_una
= tp
->snd_una
;
3686 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3687 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3688 bool is_dupack
= false;
3689 u32 prior_in_flight
;
3692 int prior_sacked
= tp
->sacked_out
;
3694 int newly_acked_sacked
= 0;
3697 /* If the ack is older than previous acks
3698 * then we can probably ignore it.
3700 if (before(ack
, prior_snd_una
))
3703 /* If the ack includes data we haven't sent yet, discard
3704 * this segment (RFC793 Section 3.9).
3706 if (after(ack
, tp
->snd_nxt
))
3709 if (after(ack
, prior_snd_una
))
3710 flag
|= FLAG_SND_UNA_ADVANCED
;
3712 if (sysctl_tcp_abc
) {
3713 if (icsk
->icsk_ca_state
< TCP_CA_CWR
)
3714 tp
->bytes_acked
+= ack
- prior_snd_una
;
3715 else if (icsk
->icsk_ca_state
== TCP_CA_Loss
)
3716 /* we assume just one segment left network */
3717 tp
->bytes_acked
+= min(ack
- prior_snd_una
,
3721 prior_fackets
= tp
->fackets_out
;
3722 prior_in_flight
= tcp_packets_in_flight(tp
);
3724 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3725 /* Window is constant, pure forward advance.
3726 * No more checks are required.
3727 * Note, we use the fact that SND.UNA>=SND.WL2.
3729 tcp_update_wl(tp
, ack_seq
);
3731 flag
|= FLAG_WIN_UPDATE
;
3733 tcp_ca_event(sk
, CA_EVENT_FAST_ACK
);
3735 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3737 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3740 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3742 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3744 if (TCP_SKB_CB(skb
)->sacked
)
3745 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3747 if (TCP_ECN_rcv_ecn_echo(tp
, tcp_hdr(skb
)))
3750 tcp_ca_event(sk
, CA_EVENT_SLOW_ACK
);
3753 /* We passed data and got it acked, remove any soft error
3754 * log. Something worked...
3756 sk
->sk_err_soft
= 0;
3757 icsk
->icsk_probes_out
= 0;
3758 tp
->rcv_tstamp
= tcp_time_stamp
;
3759 prior_packets
= tp
->packets_out
;
3763 /* See if we can take anything off of the retransmit queue. */
3764 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
);
3766 pkts_acked
= prior_packets
- tp
->packets_out
;
3767 newly_acked_sacked
= (prior_packets
- prior_sacked
) -
3768 (tp
->packets_out
- tp
->sacked_out
);
3770 if (tp
->frto_counter
)
3771 frto_cwnd
= tcp_process_frto(sk
, flag
);
3772 /* Guarantee sacktag reordering detection against wrap-arounds */
3773 if (before(tp
->frto_highmark
, tp
->snd_una
))
3774 tp
->frto_highmark
= 0;
3776 if (tcp_ack_is_dubious(sk
, flag
)) {
3777 /* Advance CWND, if state allows this. */
3778 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
&&
3779 tcp_may_raise_cwnd(sk
, flag
))
3780 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3781 is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3782 tcp_fastretrans_alert(sk
, pkts_acked
, newly_acked_sacked
,
3785 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
)
3786 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3789 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3790 dst_confirm(__sk_dst_get(sk
));
3795 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3796 if (flag
& FLAG_DSACKING_ACK
)
3797 tcp_fastretrans_alert(sk
, pkts_acked
, newly_acked_sacked
,
3799 /* If this ack opens up a zero window, clear backoff. It was
3800 * being used to time the probes, and is probably far higher than
3801 * it needs to be for normal retransmission.
3803 if (tcp_send_head(sk
))
3808 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3812 /* If data was SACKed, tag it and see if we should send more data.
3813 * If data was DSACKed, see if we can undo a cwnd reduction.
3815 if (TCP_SKB_CB(skb
)->sacked
) {
3816 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3817 newly_acked_sacked
= tp
->sacked_out
- prior_sacked
;
3818 tcp_fastretrans_alert(sk
, pkts_acked
, newly_acked_sacked
,
3822 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3826 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3827 * But, this can also be called on packets in the established flow when
3828 * the fast version below fails.
3830 void tcp_parse_options(const struct sk_buff
*skb
, struct tcp_options_received
*opt_rx
,
3831 const u8
**hvpp
, int estab
)
3833 const unsigned char *ptr
;
3834 const struct tcphdr
*th
= tcp_hdr(skb
);
3835 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3837 ptr
= (const unsigned char *)(th
+ 1);
3838 opt_rx
->saw_tstamp
= 0;
3840 while (length
> 0) {
3841 int opcode
= *ptr
++;
3847 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3852 if (opsize
< 2) /* "silly options" */
3854 if (opsize
> length
)
3855 return; /* don't parse partial options */
3858 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3859 u16 in_mss
= get_unaligned_be16(ptr
);
3861 if (opt_rx
->user_mss
&&
3862 opt_rx
->user_mss
< in_mss
)
3863 in_mss
= opt_rx
->user_mss
;
3864 opt_rx
->mss_clamp
= in_mss
;
3869 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3870 !estab
&& sysctl_tcp_window_scaling
) {
3871 __u8 snd_wscale
= *(__u8
*)ptr
;
3872 opt_rx
->wscale_ok
= 1;
3873 if (snd_wscale
> 14) {
3874 if (net_ratelimit())
3875 pr_info("%s: Illegal window scaling value %d >14 received\n",
3880 opt_rx
->snd_wscale
= snd_wscale
;
3883 case TCPOPT_TIMESTAMP
:
3884 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3885 ((estab
&& opt_rx
->tstamp_ok
) ||
3886 (!estab
&& sysctl_tcp_timestamps
))) {
3887 opt_rx
->saw_tstamp
= 1;
3888 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3889 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3892 case TCPOPT_SACK_PERM
:
3893 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3894 !estab
&& sysctl_tcp_sack
) {
3895 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3896 tcp_sack_reset(opt_rx
);
3901 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3902 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3904 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3907 #ifdef CONFIG_TCP_MD5SIG
3910 * The MD5 Hash has already been
3911 * checked (see tcp_v{4,6}_do_rcv()).
3916 /* This option is variable length.
3919 case TCPOLEN_COOKIE_BASE
:
3920 /* not yet implemented */
3922 case TCPOLEN_COOKIE_PAIR
:
3923 /* not yet implemented */
3925 case TCPOLEN_COOKIE_MIN
+0:
3926 case TCPOLEN_COOKIE_MIN
+2:
3927 case TCPOLEN_COOKIE_MIN
+4:
3928 case TCPOLEN_COOKIE_MIN
+6:
3929 case TCPOLEN_COOKIE_MAX
:
3930 /* 16-bit multiple */
3931 opt_rx
->cookie_plus
= opsize
;
3946 EXPORT_SYMBOL(tcp_parse_options
);
3948 static int tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3950 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3952 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3953 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3954 tp
->rx_opt
.saw_tstamp
= 1;
3956 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3958 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
3964 /* Fast parse options. This hopes to only see timestamps.
3965 * If it is wrong it falls back on tcp_parse_options().
3967 static int tcp_fast_parse_options(const struct sk_buff
*skb
,
3968 const struct tcphdr
*th
,
3969 struct tcp_sock
*tp
, const u8
**hvpp
)
3971 /* In the spirit of fast parsing, compare doff directly to constant
3972 * values. Because equality is used, short doff can be ignored here.
3974 if (th
->doff
== (sizeof(*th
) / 4)) {
3975 tp
->rx_opt
.saw_tstamp
= 0;
3977 } else if (tp
->rx_opt
.tstamp_ok
&&
3978 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3979 if (tcp_parse_aligned_timestamp(tp
, th
))
3982 tcp_parse_options(skb
, &tp
->rx_opt
, hvpp
, 1);
3986 #ifdef CONFIG_TCP_MD5SIG
3988 * Parse MD5 Signature option
3990 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3992 int length
= (th
->doff
<< 2) - sizeof(*th
);
3993 const u8
*ptr
= (const u8
*)(th
+ 1);
3995 /* If the TCP option is too short, we can short cut */
3996 if (length
< TCPOLEN_MD5SIG
)
3999 while (length
> 0) {
4000 int opcode
= *ptr
++;
4011 if (opsize
< 2 || opsize
> length
)
4013 if (opcode
== TCPOPT_MD5SIG
)
4014 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
4021 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
4024 static inline void tcp_store_ts_recent(struct tcp_sock
*tp
)
4026 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
4027 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
4030 static inline void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
4032 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
4033 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4034 * extra check below makes sure this can only happen
4035 * for pure ACK frames. -DaveM
4037 * Not only, also it occurs for expired timestamps.
4040 if (tcp_paws_check(&tp
->rx_opt
, 0))
4041 tcp_store_ts_recent(tp
);
4045 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4047 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4048 * it can pass through stack. So, the following predicate verifies that
4049 * this segment is not used for anything but congestion avoidance or
4050 * fast retransmit. Moreover, we even are able to eliminate most of such
4051 * second order effects, if we apply some small "replay" window (~RTO)
4052 * to timestamp space.
4054 * All these measures still do not guarantee that we reject wrapped ACKs
4055 * on networks with high bandwidth, when sequence space is recycled fastly,
4056 * but it guarantees that such events will be very rare and do not affect
4057 * connection seriously. This doesn't look nice, but alas, PAWS is really
4060 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4061 * states that events when retransmit arrives after original data are rare.
4062 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4063 * the biggest problem on large power networks even with minor reordering.
4064 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4065 * up to bandwidth of 18Gigabit/sec. 8) ]
4068 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
4070 const struct tcp_sock
*tp
= tcp_sk(sk
);
4071 const struct tcphdr
*th
= tcp_hdr(skb
);
4072 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4073 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
4075 return (/* 1. Pure ACK with correct sequence number. */
4076 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
4078 /* 2. ... and duplicate ACK. */
4079 ack
== tp
->snd_una
&&
4081 /* 3. ... and does not update window. */
4082 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
4084 /* 4. ... and sits in replay window. */
4085 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
4088 static inline int tcp_paws_discard(const struct sock
*sk
,
4089 const struct sk_buff
*skb
)
4091 const struct tcp_sock
*tp
= tcp_sk(sk
);
4093 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
4094 !tcp_disordered_ack(sk
, skb
);
4097 /* Check segment sequence number for validity.
4099 * Segment controls are considered valid, if the segment
4100 * fits to the window after truncation to the window. Acceptability
4101 * of data (and SYN, FIN, of course) is checked separately.
4102 * See tcp_data_queue(), for example.
4104 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4105 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4106 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4107 * (borrowed from freebsd)
4110 static inline int tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
4112 return !before(end_seq
, tp
->rcv_wup
) &&
4113 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
4116 /* When we get a reset we do this. */
4117 static void tcp_reset(struct sock
*sk
)
4119 /* We want the right error as BSD sees it (and indeed as we do). */
4120 switch (sk
->sk_state
) {
4122 sk
->sk_err
= ECONNREFUSED
;
4124 case TCP_CLOSE_WAIT
:
4130 sk
->sk_err
= ECONNRESET
;
4132 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4135 if (!sock_flag(sk
, SOCK_DEAD
))
4136 sk
->sk_error_report(sk
);
4142 * Process the FIN bit. This now behaves as it is supposed to work
4143 * and the FIN takes effect when it is validly part of sequence
4144 * space. Not before when we get holes.
4146 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4147 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4150 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4151 * close and we go into CLOSING (and later onto TIME-WAIT)
4153 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4155 static void tcp_fin(struct sock
*sk
)
4157 struct tcp_sock
*tp
= tcp_sk(sk
);
4159 inet_csk_schedule_ack(sk
);
4161 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4162 sock_set_flag(sk
, SOCK_DONE
);
4164 switch (sk
->sk_state
) {
4166 case TCP_ESTABLISHED
:
4167 /* Move to CLOSE_WAIT */
4168 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4169 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4172 case TCP_CLOSE_WAIT
:
4174 /* Received a retransmission of the FIN, do
4179 /* RFC793: Remain in the LAST-ACK state. */
4183 /* This case occurs when a simultaneous close
4184 * happens, we must ack the received FIN and
4185 * enter the CLOSING state.
4188 tcp_set_state(sk
, TCP_CLOSING
);
4191 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4193 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4196 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4197 * cases we should never reach this piece of code.
4199 pr_err("%s: Impossible, sk->sk_state=%d\n",
4200 __func__
, sk
->sk_state
);
4204 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4205 * Probably, we should reset in this case. For now drop them.
4207 __skb_queue_purge(&tp
->out_of_order_queue
);
4208 if (tcp_is_sack(tp
))
4209 tcp_sack_reset(&tp
->rx_opt
);
4212 if (!sock_flag(sk
, SOCK_DEAD
)) {
4213 sk
->sk_state_change(sk
);
4215 /* Do not send POLL_HUP for half duplex close. */
4216 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4217 sk
->sk_state
== TCP_CLOSE
)
4218 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4220 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4224 static inline int tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4227 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4228 if (before(seq
, sp
->start_seq
))
4229 sp
->start_seq
= seq
;
4230 if (after(end_seq
, sp
->end_seq
))
4231 sp
->end_seq
= end_seq
;
4237 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4239 struct tcp_sock
*tp
= tcp_sk(sk
);
4241 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4244 if (before(seq
, tp
->rcv_nxt
))
4245 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4247 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4249 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
4251 tp
->rx_opt
.dsack
= 1;
4252 tp
->duplicate_sack
[0].start_seq
= seq
;
4253 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4257 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4259 struct tcp_sock
*tp
= tcp_sk(sk
);
4261 if (!tp
->rx_opt
.dsack
)
4262 tcp_dsack_set(sk
, seq
, end_seq
);
4264 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4267 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4269 struct tcp_sock
*tp
= tcp_sk(sk
);
4271 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4272 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4273 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4274 tcp_enter_quickack_mode(sk
);
4276 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4277 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4279 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4280 end_seq
= tp
->rcv_nxt
;
4281 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4288 /* These routines update the SACK block as out-of-order packets arrive or
4289 * in-order packets close up the sequence space.
4291 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4294 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4295 struct tcp_sack_block
*swalk
= sp
+ 1;
4297 /* See if the recent change to the first SACK eats into
4298 * or hits the sequence space of other SACK blocks, if so coalesce.
4300 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4301 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4304 /* Zap SWALK, by moving every further SACK up by one slot.
4305 * Decrease num_sacks.
4307 tp
->rx_opt
.num_sacks
--;
4308 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4312 this_sack
++, swalk
++;
4316 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4318 struct tcp_sock
*tp
= tcp_sk(sk
);
4319 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4320 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4326 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4327 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4328 /* Rotate this_sack to the first one. */
4329 for (; this_sack
> 0; this_sack
--, sp
--)
4330 swap(*sp
, *(sp
- 1));
4332 tcp_sack_maybe_coalesce(tp
);
4337 /* Could not find an adjacent existing SACK, build a new one,
4338 * put it at the front, and shift everyone else down. We
4339 * always know there is at least one SACK present already here.
4341 * If the sack array is full, forget about the last one.
4343 if (this_sack
>= TCP_NUM_SACKS
) {
4345 tp
->rx_opt
.num_sacks
--;
4348 for (; this_sack
> 0; this_sack
--, sp
--)
4352 /* Build the new head SACK, and we're done. */
4353 sp
->start_seq
= seq
;
4354 sp
->end_seq
= end_seq
;
4355 tp
->rx_opt
.num_sacks
++;
4358 /* RCV.NXT advances, some SACKs should be eaten. */
4360 static void tcp_sack_remove(struct tcp_sock
*tp
)
4362 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4363 int num_sacks
= tp
->rx_opt
.num_sacks
;
4366 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4367 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
4368 tp
->rx_opt
.num_sacks
= 0;
4372 for (this_sack
= 0; this_sack
< num_sacks
;) {
4373 /* Check if the start of the sack is covered by RCV.NXT. */
4374 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4377 /* RCV.NXT must cover all the block! */
4378 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4380 /* Zap this SACK, by moving forward any other SACKS. */
4381 for (i
=this_sack
+1; i
< num_sacks
; i
++)
4382 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4389 tp
->rx_opt
.num_sacks
= num_sacks
;
4392 /* This one checks to see if we can put data from the
4393 * out_of_order queue into the receive_queue.
4395 static void tcp_ofo_queue(struct sock
*sk
)
4397 struct tcp_sock
*tp
= tcp_sk(sk
);
4398 __u32 dsack_high
= tp
->rcv_nxt
;
4399 struct sk_buff
*skb
;
4401 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
4402 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4405 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4406 __u32 dsack
= dsack_high
;
4407 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4408 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4409 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4412 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4413 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4414 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4418 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4419 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4420 TCP_SKB_CB(skb
)->end_seq
);
4422 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4423 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4424 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4425 if (tcp_hdr(skb
)->fin
)
4430 static int tcp_prune_ofo_queue(struct sock
*sk
);
4431 static int tcp_prune_queue(struct sock
*sk
);
4433 static inline int tcp_try_rmem_schedule(struct sock
*sk
, unsigned int size
)
4435 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4436 !sk_rmem_schedule(sk
, size
)) {
4438 if (tcp_prune_queue(sk
) < 0)
4441 if (!sk_rmem_schedule(sk
, size
)) {
4442 if (!tcp_prune_ofo_queue(sk
))
4445 if (!sk_rmem_schedule(sk
, size
))
4452 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
4454 struct tcp_sock
*tp
= tcp_sk(sk
);
4455 struct sk_buff
*skb1
;
4458 TCP_ECN_check_ce(tp
, skb
);
4460 if (tcp_try_rmem_schedule(sk
, skb
->truesize
)) {
4461 /* TODO: should increment a counter */
4466 /* Disable header prediction. */
4468 inet_csk_schedule_ack(sk
);
4470 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4471 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4473 skb1
= skb_peek_tail(&tp
->out_of_order_queue
);
4475 /* Initial out of order segment, build 1 SACK. */
4476 if (tcp_is_sack(tp
)) {
4477 tp
->rx_opt
.num_sacks
= 1;
4478 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4479 tp
->selective_acks
[0].end_seq
=
4480 TCP_SKB_CB(skb
)->end_seq
;
4482 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4486 seq
= TCP_SKB_CB(skb
)->seq
;
4487 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4489 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4490 /* Packets in ofo can stay in queue a long time.
4491 * Better try to coalesce them right now
4492 * to avoid future tcp_collapse_ofo_queue(),
4493 * probably the most expensive function in tcp stack.
4495 if (skb
->len
<= skb_tailroom(skb1
) && !tcp_hdr(skb
)->fin
) {
4496 NET_INC_STATS_BH(sock_net(sk
),
4497 LINUX_MIB_TCPRCVCOALESCE
);
4498 BUG_ON(skb_copy_bits(skb
, 0,
4499 skb_put(skb1
, skb
->len
),
4501 TCP_SKB_CB(skb1
)->end_seq
= end_seq
;
4502 TCP_SKB_CB(skb1
)->ack_seq
= TCP_SKB_CB(skb
)->ack_seq
;
4506 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4509 if (!tp
->rx_opt
.num_sacks
||
4510 tp
->selective_acks
[0].end_seq
!= seq
)
4513 /* Common case: data arrive in order after hole. */
4514 tp
->selective_acks
[0].end_seq
= end_seq
;
4518 /* Find place to insert this segment. */
4520 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4522 if (skb_queue_is_first(&tp
->out_of_order_queue
, skb1
)) {
4526 skb1
= skb_queue_prev(&tp
->out_of_order_queue
, skb1
);
4529 /* Do skb overlap to previous one? */
4530 if (skb1
&& before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4531 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4532 /* All the bits are present. Drop. */
4535 tcp_dsack_set(sk
, seq
, end_seq
);
4538 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4539 /* Partial overlap. */
4540 tcp_dsack_set(sk
, seq
,
4541 TCP_SKB_CB(skb1
)->end_seq
);
4543 if (skb_queue_is_first(&tp
->out_of_order_queue
,
4547 skb1
= skb_queue_prev(
4548 &tp
->out_of_order_queue
,
4553 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4555 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4557 /* And clean segments covered by new one as whole. */
4558 while (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
)) {
4559 skb1
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4561 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4563 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4564 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4568 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4569 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4570 TCP_SKB_CB(skb1
)->end_seq
);
4575 if (tcp_is_sack(tp
))
4576 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4579 skb_set_owner_r(skb
, sk
);
4583 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4585 const struct tcphdr
*th
= tcp_hdr(skb
);
4586 struct tcp_sock
*tp
= tcp_sk(sk
);
4589 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
4593 __skb_pull(skb
, th
->doff
* 4);
4595 TCP_ECN_accept_cwr(tp
, skb
);
4597 tp
->rx_opt
.dsack
= 0;
4599 /* Queue data for delivery to the user.
4600 * Packets in sequence go to the receive queue.
4601 * Out of sequence packets to the out_of_order_queue.
4603 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4604 if (tcp_receive_window(tp
) == 0)
4607 /* Ok. In sequence. In window. */
4608 if (tp
->ucopy
.task
== current
&&
4609 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4610 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4611 int chunk
= min_t(unsigned int, skb
->len
,
4614 __set_current_state(TASK_RUNNING
);
4617 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
4618 tp
->ucopy
.len
-= chunk
;
4619 tp
->copied_seq
+= chunk
;
4620 eaten
= (chunk
== skb
->len
);
4621 tcp_rcv_space_adjust(sk
);
4629 tcp_try_rmem_schedule(sk
, skb
->truesize
))
4632 skb_set_owner_r(skb
, sk
);
4633 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4635 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4637 tcp_event_data_recv(sk
, skb
);
4641 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4644 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4645 * gap in queue is filled.
4647 if (skb_queue_empty(&tp
->out_of_order_queue
))
4648 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4651 if (tp
->rx_opt
.num_sacks
)
4652 tcp_sack_remove(tp
);
4654 tcp_fast_path_check(sk
);
4658 else if (!sock_flag(sk
, SOCK_DEAD
))
4659 sk
->sk_data_ready(sk
, 0);
4663 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4664 /* A retransmit, 2nd most common case. Force an immediate ack. */
4665 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4666 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4669 tcp_enter_quickack_mode(sk
);
4670 inet_csk_schedule_ack(sk
);
4676 /* Out of window. F.e. zero window probe. */
4677 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4680 tcp_enter_quickack_mode(sk
);
4682 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4683 /* Partial packet, seq < rcv_next < end_seq */
4684 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4685 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4686 TCP_SKB_CB(skb
)->end_seq
);
4688 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4690 /* If window is closed, drop tail of packet. But after
4691 * remembering D-SACK for its head made in previous line.
4693 if (!tcp_receive_window(tp
))
4698 tcp_data_queue_ofo(sk
, skb
);
4701 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4702 struct sk_buff_head
*list
)
4704 struct sk_buff
*next
= NULL
;
4706 if (!skb_queue_is_last(list
, skb
))
4707 next
= skb_queue_next(list
, skb
);
4709 __skb_unlink(skb
, list
);
4711 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4716 /* Collapse contiguous sequence of skbs head..tail with
4717 * sequence numbers start..end.
4719 * If tail is NULL, this means until the end of the list.
4721 * Segments with FIN/SYN are not collapsed (only because this
4725 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4726 struct sk_buff
*head
, struct sk_buff
*tail
,
4729 struct sk_buff
*skb
, *n
;
4732 /* First, check that queue is collapsible and find
4733 * the point where collapsing can be useful. */
4737 skb_queue_walk_from_safe(list
, skb
, n
) {
4740 /* No new bits? It is possible on ofo queue. */
4741 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4742 skb
= tcp_collapse_one(sk
, skb
, list
);
4748 /* The first skb to collapse is:
4750 * - bloated or contains data before "start" or
4751 * overlaps to the next one.
4753 if (!tcp_hdr(skb
)->syn
&& !tcp_hdr(skb
)->fin
&&
4754 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4755 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4756 end_of_skbs
= false;
4760 if (!skb_queue_is_last(list
, skb
)) {
4761 struct sk_buff
*next
= skb_queue_next(list
, skb
);
4763 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(next
)->seq
) {
4764 end_of_skbs
= false;
4769 /* Decided to skip this, advance start seq. */
4770 start
= TCP_SKB_CB(skb
)->end_seq
;
4772 if (end_of_skbs
|| tcp_hdr(skb
)->syn
|| tcp_hdr(skb
)->fin
)
4775 while (before(start
, end
)) {
4776 struct sk_buff
*nskb
;
4777 unsigned int header
= skb_headroom(skb
);
4778 int copy
= SKB_MAX_ORDER(header
, 0);
4780 /* Too big header? This can happen with IPv6. */
4783 if (end
- start
< copy
)
4785 nskb
= alloc_skb(copy
+ header
, GFP_ATOMIC
);
4789 skb_set_mac_header(nskb
, skb_mac_header(skb
) - skb
->head
);
4790 skb_set_network_header(nskb
, (skb_network_header(skb
) -
4792 skb_set_transport_header(nskb
, (skb_transport_header(skb
) -
4794 skb_reserve(nskb
, header
);
4795 memcpy(nskb
->head
, skb
->head
, header
);
4796 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4797 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4798 __skb_queue_before(list
, skb
, nskb
);
4799 skb_set_owner_r(nskb
, sk
);
4801 /* Copy data, releasing collapsed skbs. */
4803 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4804 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4808 size
= min(copy
, size
);
4809 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4811 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4815 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4816 skb
= tcp_collapse_one(sk
, skb
, list
);
4819 tcp_hdr(skb
)->syn
||
4827 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4828 * and tcp_collapse() them until all the queue is collapsed.
4830 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4832 struct tcp_sock
*tp
= tcp_sk(sk
);
4833 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4834 struct sk_buff
*head
;
4840 start
= TCP_SKB_CB(skb
)->seq
;
4841 end
= TCP_SKB_CB(skb
)->end_seq
;
4845 struct sk_buff
*next
= NULL
;
4847 if (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
))
4848 next
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4851 /* Segment is terminated when we see gap or when
4852 * we are at the end of all the queue. */
4854 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4855 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4856 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4857 head
, skb
, start
, end
);
4861 /* Start new segment */
4862 start
= TCP_SKB_CB(skb
)->seq
;
4863 end
= TCP_SKB_CB(skb
)->end_seq
;
4865 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4866 start
= TCP_SKB_CB(skb
)->seq
;
4867 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4868 end
= TCP_SKB_CB(skb
)->end_seq
;
4874 * Purge the out-of-order queue.
4875 * Return true if queue was pruned.
4877 static int tcp_prune_ofo_queue(struct sock
*sk
)
4879 struct tcp_sock
*tp
= tcp_sk(sk
);
4882 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4883 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4884 __skb_queue_purge(&tp
->out_of_order_queue
);
4886 /* Reset SACK state. A conforming SACK implementation will
4887 * do the same at a timeout based retransmit. When a connection
4888 * is in a sad state like this, we care only about integrity
4889 * of the connection not performance.
4891 if (tp
->rx_opt
.sack_ok
)
4892 tcp_sack_reset(&tp
->rx_opt
);
4899 /* Reduce allocated memory if we can, trying to get
4900 * the socket within its memory limits again.
4902 * Return less than zero if we should start dropping frames
4903 * until the socket owning process reads some of the data
4904 * to stabilize the situation.
4906 static int tcp_prune_queue(struct sock
*sk
)
4908 struct tcp_sock
*tp
= tcp_sk(sk
);
4910 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4912 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4914 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4915 tcp_clamp_window(sk
);
4916 else if (sk_under_memory_pressure(sk
))
4917 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4919 tcp_collapse_ofo_queue(sk
);
4920 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4921 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4922 skb_peek(&sk
->sk_receive_queue
),
4924 tp
->copied_seq
, tp
->rcv_nxt
);
4927 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4930 /* Collapsing did not help, destructive actions follow.
4931 * This must not ever occur. */
4933 tcp_prune_ofo_queue(sk
);
4935 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4938 /* If we are really being abused, tell the caller to silently
4939 * drop receive data on the floor. It will get retransmitted
4940 * and hopefully then we'll have sufficient space.
4942 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4944 /* Massive buffer overcommit. */
4949 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4950 * As additional protections, we do not touch cwnd in retransmission phases,
4951 * and if application hit its sndbuf limit recently.
4953 void tcp_cwnd_application_limited(struct sock
*sk
)
4955 struct tcp_sock
*tp
= tcp_sk(sk
);
4957 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
4958 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
4959 /* Limited by application or receiver window. */
4960 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
4961 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
4962 if (win_used
< tp
->snd_cwnd
) {
4963 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
4964 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
4966 tp
->snd_cwnd_used
= 0;
4968 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4971 static int tcp_should_expand_sndbuf(const struct sock
*sk
)
4973 const struct tcp_sock
*tp
= tcp_sk(sk
);
4975 /* If the user specified a specific send buffer setting, do
4978 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4981 /* If we are under global TCP memory pressure, do not expand. */
4982 if (sk_under_memory_pressure(sk
))
4985 /* If we are under soft global TCP memory pressure, do not expand. */
4986 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
4989 /* If we filled the congestion window, do not expand. */
4990 if (tp
->packets_out
>= tp
->snd_cwnd
)
4996 /* When incoming ACK allowed to free some skb from write_queue,
4997 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4998 * on the exit from tcp input handler.
5000 * PROBLEM: sndbuf expansion does not work well with largesend.
5002 static void tcp_new_space(struct sock
*sk
)
5004 struct tcp_sock
*tp
= tcp_sk(sk
);
5006 if (tcp_should_expand_sndbuf(sk
)) {
5007 int sndmem
= SKB_TRUESIZE(max_t(u32
,
5008 tp
->rx_opt
.mss_clamp
,
5011 int demanded
= max_t(unsigned int, tp
->snd_cwnd
,
5012 tp
->reordering
+ 1);
5013 sndmem
*= 2 * demanded
;
5014 if (sndmem
> sk
->sk_sndbuf
)
5015 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
5016 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
5019 sk
->sk_write_space(sk
);
5022 static void tcp_check_space(struct sock
*sk
)
5024 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
5025 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
5026 if (sk
->sk_socket
&&
5027 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
5032 static inline void tcp_data_snd_check(struct sock
*sk
)
5034 tcp_push_pending_frames(sk
);
5035 tcp_check_space(sk
);
5039 * Check if sending an ack is needed.
5041 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
5043 struct tcp_sock
*tp
= tcp_sk(sk
);
5045 /* More than one full frame received... */
5046 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
5047 /* ... and right edge of window advances far enough.
5048 * (tcp_recvmsg() will send ACK otherwise). Or...
5050 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
5051 /* We ACK each frame or... */
5052 tcp_in_quickack_mode(sk
) ||
5053 /* We have out of order data. */
5054 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
5055 /* Then ack it now */
5058 /* Else, send delayed ack. */
5059 tcp_send_delayed_ack(sk
);
5063 static inline void tcp_ack_snd_check(struct sock
*sk
)
5065 if (!inet_csk_ack_scheduled(sk
)) {
5066 /* We sent a data segment already. */
5069 __tcp_ack_snd_check(sk
, 1);
5073 * This routine is only called when we have urgent data
5074 * signaled. Its the 'slow' part of tcp_urg. It could be
5075 * moved inline now as tcp_urg is only called from one
5076 * place. We handle URGent data wrong. We have to - as
5077 * BSD still doesn't use the correction from RFC961.
5078 * For 1003.1g we should support a new option TCP_STDURG to permit
5079 * either form (or just set the sysctl tcp_stdurg).
5082 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5084 struct tcp_sock
*tp
= tcp_sk(sk
);
5085 u32 ptr
= ntohs(th
->urg_ptr
);
5087 if (ptr
&& !sysctl_tcp_stdurg
)
5089 ptr
+= ntohl(th
->seq
);
5091 /* Ignore urgent data that we've already seen and read. */
5092 if (after(tp
->copied_seq
, ptr
))
5095 /* Do not replay urg ptr.
5097 * NOTE: interesting situation not covered by specs.
5098 * Misbehaving sender may send urg ptr, pointing to segment,
5099 * which we already have in ofo queue. We are not able to fetch
5100 * such data and will stay in TCP_URG_NOTYET until will be eaten
5101 * by recvmsg(). Seems, we are not obliged to handle such wicked
5102 * situations. But it is worth to think about possibility of some
5103 * DoSes using some hypothetical application level deadlock.
5105 if (before(ptr
, tp
->rcv_nxt
))
5108 /* Do we already have a newer (or duplicate) urgent pointer? */
5109 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5112 /* Tell the world about our new urgent pointer. */
5115 /* We may be adding urgent data when the last byte read was
5116 * urgent. To do this requires some care. We cannot just ignore
5117 * tp->copied_seq since we would read the last urgent byte again
5118 * as data, nor can we alter copied_seq until this data arrives
5119 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5121 * NOTE. Double Dutch. Rendering to plain English: author of comment
5122 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5123 * and expect that both A and B disappear from stream. This is _wrong_.
5124 * Though this happens in BSD with high probability, this is occasional.
5125 * Any application relying on this is buggy. Note also, that fix "works"
5126 * only in this artificial test. Insert some normal data between A and B and we will
5127 * decline of BSD again. Verdict: it is better to remove to trap
5130 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5131 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5132 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5134 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5135 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5140 tp
->urg_data
= TCP_URG_NOTYET
;
5143 /* Disable header prediction. */
5147 /* This is the 'fast' part of urgent handling. */
5148 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5150 struct tcp_sock
*tp
= tcp_sk(sk
);
5152 /* Check if we get a new urgent pointer - normally not. */
5154 tcp_check_urg(sk
, th
);
5156 /* Do we wait for any urgent data? - normally not... */
5157 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5158 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5161 /* Is the urgent pointer pointing into this packet? */
5162 if (ptr
< skb
->len
) {
5164 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5166 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5167 if (!sock_flag(sk
, SOCK_DEAD
))
5168 sk
->sk_data_ready(sk
, 0);
5173 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
5175 struct tcp_sock
*tp
= tcp_sk(sk
);
5176 int chunk
= skb
->len
- hlen
;
5180 if (skb_csum_unnecessary(skb
))
5181 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
5183 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
5187 tp
->ucopy
.len
-= chunk
;
5188 tp
->copied_seq
+= chunk
;
5189 tcp_rcv_space_adjust(sk
);
5196 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
,
5197 struct sk_buff
*skb
)
5201 if (sock_owned_by_user(sk
)) {
5203 result
= __tcp_checksum_complete(skb
);
5206 result
= __tcp_checksum_complete(skb
);
5211 static inline int tcp_checksum_complete_user(struct sock
*sk
,
5212 struct sk_buff
*skb
)
5214 return !skb_csum_unnecessary(skb
) &&
5215 __tcp_checksum_complete_user(sk
, skb
);
5218 #ifdef CONFIG_NET_DMA
5219 static int tcp_dma_try_early_copy(struct sock
*sk
, struct sk_buff
*skb
,
5222 struct tcp_sock
*tp
= tcp_sk(sk
);
5223 int chunk
= skb
->len
- hlen
;
5225 int copied_early
= 0;
5227 if (tp
->ucopy
.wakeup
)
5230 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
5231 tp
->ucopy
.dma_chan
= net_dma_find_channel();
5233 if (tp
->ucopy
.dma_chan
&& skb_csum_unnecessary(skb
)) {
5235 dma_cookie
= dma_skb_copy_datagram_iovec(tp
->ucopy
.dma_chan
,
5237 tp
->ucopy
.iov
, chunk
,
5238 tp
->ucopy
.pinned_list
);
5243 tp
->ucopy
.dma_cookie
= dma_cookie
;
5246 tp
->ucopy
.len
-= chunk
;
5247 tp
->copied_seq
+= chunk
;
5248 tcp_rcv_space_adjust(sk
);
5250 if ((tp
->ucopy
.len
== 0) ||
5251 (tcp_flag_word(tcp_hdr(skb
)) & TCP_FLAG_PSH
) ||
5252 (atomic_read(&sk
->sk_rmem_alloc
) > (sk
->sk_rcvbuf
>> 1))) {
5253 tp
->ucopy
.wakeup
= 1;
5254 sk
->sk_data_ready(sk
, 0);
5256 } else if (chunk
> 0) {
5257 tp
->ucopy
.wakeup
= 1;
5258 sk
->sk_data_ready(sk
, 0);
5261 return copied_early
;
5263 #endif /* CONFIG_NET_DMA */
5265 /* Does PAWS and seqno based validation of an incoming segment, flags will
5266 * play significant role here.
5268 static int tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5269 const struct tcphdr
*th
, int syn_inerr
)
5271 const u8
*hash_location
;
5272 struct tcp_sock
*tp
= tcp_sk(sk
);
5274 /* RFC1323: H1. Apply PAWS check first. */
5275 if (tcp_fast_parse_options(skb
, th
, tp
, &hash_location
) &&
5276 tp
->rx_opt
.saw_tstamp
&&
5277 tcp_paws_discard(sk
, skb
)) {
5279 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5280 tcp_send_dupack(sk
, skb
);
5283 /* Reset is accepted even if it did not pass PAWS. */
5286 /* Step 1: check sequence number */
5287 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5288 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5289 * (RST) segments are validated by checking their SEQ-fields."
5290 * And page 69: "If an incoming segment is not acceptable,
5291 * an acknowledgment should be sent in reply (unless the RST
5292 * bit is set, if so drop the segment and return)".
5295 tcp_send_dupack(sk
, skb
);
5299 /* Step 2: check RST bit */
5305 /* ts_recent update must be made after we are sure that the packet
5308 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
5310 /* step 3: check security and precedence [ignored] */
5312 /* step 4: Check for a SYN in window. */
5313 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
5315 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5316 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONSYN
);
5329 * TCP receive function for the ESTABLISHED state.
5331 * It is split into a fast path and a slow path. The fast path is
5333 * - A zero window was announced from us - zero window probing
5334 * is only handled properly in the slow path.
5335 * - Out of order segments arrived.
5336 * - Urgent data is expected.
5337 * - There is no buffer space left
5338 * - Unexpected TCP flags/window values/header lengths are received
5339 * (detected by checking the TCP header against pred_flags)
5340 * - Data is sent in both directions. Fast path only supports pure senders
5341 * or pure receivers (this means either the sequence number or the ack
5342 * value must stay constant)
5343 * - Unexpected TCP option.
5345 * When these conditions are not satisfied it drops into a standard
5346 * receive procedure patterned after RFC793 to handle all cases.
5347 * The first three cases are guaranteed by proper pred_flags setting,
5348 * the rest is checked inline. Fast processing is turned on in
5349 * tcp_data_queue when everything is OK.
5351 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5352 const struct tcphdr
*th
, unsigned int len
)
5354 struct tcp_sock
*tp
= tcp_sk(sk
);
5358 * Header prediction.
5359 * The code loosely follows the one in the famous
5360 * "30 instruction TCP receive" Van Jacobson mail.
5362 * Van's trick is to deposit buffers into socket queue
5363 * on a device interrupt, to call tcp_recv function
5364 * on the receive process context and checksum and copy
5365 * the buffer to user space. smart...
5367 * Our current scheme is not silly either but we take the
5368 * extra cost of the net_bh soft interrupt processing...
5369 * We do checksum and copy also but from device to kernel.
5372 tp
->rx_opt
.saw_tstamp
= 0;
5374 /* pred_flags is 0xS?10 << 16 + snd_wnd
5375 * if header_prediction is to be made
5376 * 'S' will always be tp->tcp_header_len >> 2
5377 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5378 * turn it off (when there are holes in the receive
5379 * space for instance)
5380 * PSH flag is ignored.
5383 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5384 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5385 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5386 int tcp_header_len
= tp
->tcp_header_len
;
5388 /* Timestamp header prediction: tcp_header_len
5389 * is automatically equal to th->doff*4 due to pred_flags
5393 /* Check timestamp */
5394 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5395 /* No? Slow path! */
5396 if (!tcp_parse_aligned_timestamp(tp
, th
))
5399 /* If PAWS failed, check it more carefully in slow path */
5400 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5403 /* DO NOT update ts_recent here, if checksum fails
5404 * and timestamp was corrupted part, it will result
5405 * in a hung connection since we will drop all
5406 * future packets due to the PAWS test.
5410 if (len
<= tcp_header_len
) {
5411 /* Bulk data transfer: sender */
5412 if (len
== tcp_header_len
) {
5413 /* Predicted packet is in window by definition.
5414 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5415 * Hence, check seq<=rcv_wup reduces to:
5417 if (tcp_header_len
==
5418 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5419 tp
->rcv_nxt
== tp
->rcv_wup
)
5420 tcp_store_ts_recent(tp
);
5422 /* We know that such packets are checksummed
5425 tcp_ack(sk
, skb
, 0);
5427 tcp_data_snd_check(sk
);
5429 } else { /* Header too small */
5430 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5435 int copied_early
= 0;
5437 if (tp
->copied_seq
== tp
->rcv_nxt
&&
5438 len
- tcp_header_len
<= tp
->ucopy
.len
) {
5439 #ifdef CONFIG_NET_DMA
5440 if (tcp_dma_try_early_copy(sk
, skb
, tcp_header_len
)) {
5445 if (tp
->ucopy
.task
== current
&&
5446 sock_owned_by_user(sk
) && !copied_early
) {
5447 __set_current_state(TASK_RUNNING
);
5449 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
))
5453 /* Predicted packet is in window by definition.
5454 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5455 * Hence, check seq<=rcv_wup reduces to:
5457 if (tcp_header_len
==
5458 (sizeof(struct tcphdr
) +
5459 TCPOLEN_TSTAMP_ALIGNED
) &&
5460 tp
->rcv_nxt
== tp
->rcv_wup
)
5461 tcp_store_ts_recent(tp
);
5463 tcp_rcv_rtt_measure_ts(sk
, skb
);
5465 __skb_pull(skb
, tcp_header_len
);
5466 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5467 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITSTOUSER
);
5470 tcp_cleanup_rbuf(sk
, skb
->len
);
5473 if (tcp_checksum_complete_user(sk
, skb
))
5476 /* Predicted packet is in window by definition.
5477 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5478 * Hence, check seq<=rcv_wup reduces to:
5480 if (tcp_header_len
==
5481 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5482 tp
->rcv_nxt
== tp
->rcv_wup
)
5483 tcp_store_ts_recent(tp
);
5485 tcp_rcv_rtt_measure_ts(sk
, skb
);
5487 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5490 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5492 /* Bulk data transfer: receiver */
5493 __skb_pull(skb
, tcp_header_len
);
5494 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
5495 skb_set_owner_r(skb
, sk
);
5496 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5499 tcp_event_data_recv(sk
, skb
);
5501 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5502 /* Well, only one small jumplet in fast path... */
5503 tcp_ack(sk
, skb
, FLAG_DATA
);
5504 tcp_data_snd_check(sk
);
5505 if (!inet_csk_ack_scheduled(sk
))
5509 if (!copied_early
|| tp
->rcv_nxt
!= tp
->rcv_wup
)
5510 __tcp_ack_snd_check(sk
, 0);
5512 #ifdef CONFIG_NET_DMA
5514 __skb_queue_tail(&sk
->sk_async_wait_queue
, skb
);
5520 sk
->sk_data_ready(sk
, 0);
5526 if (len
< (th
->doff
<< 2) || tcp_checksum_complete_user(sk
, skb
))
5530 * Standard slow path.
5533 res
= tcp_validate_incoming(sk
, skb
, th
, 1);
5538 if (th
->ack
&& tcp_ack(sk
, skb
, FLAG_SLOWPATH
) < 0)
5541 tcp_rcv_rtt_measure_ts(sk
, skb
);
5543 /* Process urgent data. */
5544 tcp_urg(sk
, skb
, th
);
5546 /* step 7: process the segment text */
5547 tcp_data_queue(sk
, skb
);
5549 tcp_data_snd_check(sk
);
5550 tcp_ack_snd_check(sk
);
5554 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5560 EXPORT_SYMBOL(tcp_rcv_established
);
5562 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5563 const struct tcphdr
*th
, unsigned int len
)
5565 const u8
*hash_location
;
5566 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5567 struct tcp_sock
*tp
= tcp_sk(sk
);
5568 struct tcp_cookie_values
*cvp
= tp
->cookie_values
;
5569 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5571 tcp_parse_options(skb
, &tp
->rx_opt
, &hash_location
, 0);
5575 * "If the state is SYN-SENT then
5576 * first check the ACK bit
5577 * If the ACK bit is set
5578 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5579 * a reset (unless the RST bit is set, if so drop
5580 * the segment and return)"
5582 * We do not send data with SYN, so that RFC-correct
5585 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_nxt
)
5586 goto reset_and_undo
;
5588 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5589 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5591 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSACTIVEREJECTED
);
5592 goto reset_and_undo
;
5595 /* Now ACK is acceptable.
5597 * "If the RST bit is set
5598 * If the ACK was acceptable then signal the user "error:
5599 * connection reset", drop the segment, enter CLOSED state,
5600 * delete TCB, and return."
5609 * "fifth, if neither of the SYN or RST bits is set then
5610 * drop the segment and return."
5616 goto discard_and_undo
;
5619 * "If the SYN bit is on ...
5620 * are acceptable then ...
5621 * (our SYN has been ACKed), change the connection
5622 * state to ESTABLISHED..."
5625 TCP_ECN_rcv_synack(tp
, th
);
5627 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5628 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5630 /* Ok.. it's good. Set up sequence numbers and
5631 * move to established.
5633 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5634 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5636 /* RFC1323: The window in SYN & SYN/ACK segments is
5639 tp
->snd_wnd
= ntohs(th
->window
);
5640 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5642 if (!tp
->rx_opt
.wscale_ok
) {
5643 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5644 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5647 if (tp
->rx_opt
.saw_tstamp
) {
5648 tp
->rx_opt
.tstamp_ok
= 1;
5649 tp
->tcp_header_len
=
5650 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5651 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5652 tcp_store_ts_recent(tp
);
5654 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5657 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5658 tcp_enable_fack(tp
);
5661 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5662 tcp_initialize_rcv_mss(sk
);
5664 /* Remember, tcp_poll() does not lock socket!
5665 * Change state from SYN-SENT only after copied_seq
5666 * is initialized. */
5667 tp
->copied_seq
= tp
->rcv_nxt
;
5670 cvp
->cookie_pair_size
> 0 &&
5671 tp
->rx_opt
.cookie_plus
> 0) {
5672 int cookie_size
= tp
->rx_opt
.cookie_plus
5673 - TCPOLEN_COOKIE_BASE
;
5674 int cookie_pair_size
= cookie_size
5675 + cvp
->cookie_desired
;
5677 /* A cookie extension option was sent and returned.
5678 * Note that each incoming SYNACK replaces the
5679 * Responder cookie. The initial exchange is most
5680 * fragile, as protection against spoofing relies
5681 * entirely upon the sequence and timestamp (above).
5682 * This replacement strategy allows the correct pair to
5683 * pass through, while any others will be filtered via
5684 * Responder verification later.
5686 if (sizeof(cvp
->cookie_pair
) >= cookie_pair_size
) {
5687 memcpy(&cvp
->cookie_pair
[cvp
->cookie_desired
],
5688 hash_location
, cookie_size
);
5689 cvp
->cookie_pair_size
= cookie_pair_size
;
5694 tcp_set_state(sk
, TCP_ESTABLISHED
);
5696 security_inet_conn_established(sk
, skb
);
5698 /* Make sure socket is routed, for correct metrics. */
5699 icsk
->icsk_af_ops
->rebuild_header(sk
);
5701 tcp_init_metrics(sk
);
5703 tcp_init_congestion_control(sk
);
5705 /* Prevent spurious tcp_cwnd_restart() on first data
5708 tp
->lsndtime
= tcp_time_stamp
;
5710 tcp_init_buffer_space(sk
);
5712 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5713 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5715 if (!tp
->rx_opt
.snd_wscale
)
5716 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5720 if (!sock_flag(sk
, SOCK_DEAD
)) {
5721 sk
->sk_state_change(sk
);
5722 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5725 if (sk
->sk_write_pending
||
5726 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5727 icsk
->icsk_ack
.pingpong
) {
5728 /* Save one ACK. Data will be ready after
5729 * several ticks, if write_pending is set.
5731 * It may be deleted, but with this feature tcpdumps
5732 * look so _wonderfully_ clever, that I was not able
5733 * to stand against the temptation 8) --ANK
5735 inet_csk_schedule_ack(sk
);
5736 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5737 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
5738 tcp_incr_quickack(sk
);
5739 tcp_enter_quickack_mode(sk
);
5740 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5741 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5752 /* No ACK in the segment */
5756 * "If the RST bit is set
5758 * Otherwise (no ACK) drop the segment and return."
5761 goto discard_and_undo
;
5765 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5766 tcp_paws_reject(&tp
->rx_opt
, 0))
5767 goto discard_and_undo
;
5770 /* We see SYN without ACK. It is attempt of
5771 * simultaneous connect with crossed SYNs.
5772 * Particularly, it can be connect to self.
5774 tcp_set_state(sk
, TCP_SYN_RECV
);
5776 if (tp
->rx_opt
.saw_tstamp
) {
5777 tp
->rx_opt
.tstamp_ok
= 1;
5778 tcp_store_ts_recent(tp
);
5779 tp
->tcp_header_len
=
5780 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5782 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5785 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5786 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5788 /* RFC1323: The window in SYN & SYN/ACK segments is
5791 tp
->snd_wnd
= ntohs(th
->window
);
5792 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5793 tp
->max_window
= tp
->snd_wnd
;
5795 TCP_ECN_rcv_syn(tp
, th
);
5798 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5799 tcp_initialize_rcv_mss(sk
);
5801 tcp_send_synack(sk
);
5803 /* Note, we could accept data and URG from this segment.
5804 * There are no obstacles to make this.
5806 * However, if we ignore data in ACKless segments sometimes,
5807 * we have no reasons to accept it sometimes.
5808 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5809 * is not flawless. So, discard packet for sanity.
5810 * Uncomment this return to process the data.
5817 /* "fifth, if neither of the SYN or RST bits is set then
5818 * drop the segment and return."
5822 tcp_clear_options(&tp
->rx_opt
);
5823 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5827 tcp_clear_options(&tp
->rx_opt
);
5828 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5833 * This function implements the receiving procedure of RFC 793 for
5834 * all states except ESTABLISHED and TIME_WAIT.
5835 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5836 * address independent.
5839 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5840 const struct tcphdr
*th
, unsigned int len
)
5842 struct tcp_sock
*tp
= tcp_sk(sk
);
5843 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5847 tp
->rx_opt
.saw_tstamp
= 0;
5849 switch (sk
->sk_state
) {
5863 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5866 /* Now we have several options: In theory there is
5867 * nothing else in the frame. KA9Q has an option to
5868 * send data with the syn, BSD accepts data with the
5869 * syn up to the [to be] advertised window and
5870 * Solaris 2.1 gives you a protocol error. For now
5871 * we just ignore it, that fits the spec precisely
5872 * and avoids incompatibilities. It would be nice in
5873 * future to drop through and process the data.
5875 * Now that TTCP is starting to be used we ought to
5877 * But, this leaves one open to an easy denial of
5878 * service attack, and SYN cookies can't defend
5879 * against this problem. So, we drop the data
5880 * in the interest of security over speed unless
5881 * it's still in use.
5889 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
5893 /* Do step6 onward by hand. */
5894 tcp_urg(sk
, skb
, th
);
5896 tcp_data_snd_check(sk
);
5900 res
= tcp_validate_incoming(sk
, skb
, th
, 0);
5904 /* step 5: check the ACK field */
5906 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
) > 0;
5908 switch (sk
->sk_state
) {
5911 tp
->copied_seq
= tp
->rcv_nxt
;
5913 tcp_set_state(sk
, TCP_ESTABLISHED
);
5914 sk
->sk_state_change(sk
);
5916 /* Note, that this wakeup is only for marginal
5917 * crossed SYN case. Passively open sockets
5918 * are not waked up, because sk->sk_sleep ==
5919 * NULL and sk->sk_socket == NULL.
5923 SOCK_WAKE_IO
, POLL_OUT
);
5925 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5926 tp
->snd_wnd
= ntohs(th
->window
) <<
5927 tp
->rx_opt
.snd_wscale
;
5928 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5930 if (tp
->rx_opt
.tstamp_ok
)
5931 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5933 /* Make sure socket is routed, for
5936 icsk
->icsk_af_ops
->rebuild_header(sk
);
5938 tcp_init_metrics(sk
);
5940 tcp_init_congestion_control(sk
);
5942 /* Prevent spurious tcp_cwnd_restart() on
5943 * first data packet.
5945 tp
->lsndtime
= tcp_time_stamp
;
5948 tcp_initialize_rcv_mss(sk
);
5949 tcp_init_buffer_space(sk
);
5950 tcp_fast_path_on(tp
);
5957 if (tp
->snd_una
== tp
->write_seq
) {
5958 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5959 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5960 dst_confirm(__sk_dst_get(sk
));
5962 if (!sock_flag(sk
, SOCK_DEAD
))
5963 /* Wake up lingering close() */
5964 sk
->sk_state_change(sk
);
5968 if (tp
->linger2
< 0 ||
5969 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5970 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
5972 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5976 tmo
= tcp_fin_time(sk
);
5977 if (tmo
> TCP_TIMEWAIT_LEN
) {
5978 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5979 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5980 /* Bad case. We could lose such FIN otherwise.
5981 * It is not a big problem, but it looks confusing
5982 * and not so rare event. We still can lose it now,
5983 * if it spins in bh_lock_sock(), but it is really
5986 inet_csk_reset_keepalive_timer(sk
, tmo
);
5988 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
5996 if (tp
->snd_una
== tp
->write_seq
) {
5997 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
6003 if (tp
->snd_una
== tp
->write_seq
) {
6004 tcp_update_metrics(sk
);
6013 /* step 6: check the URG bit */
6014 tcp_urg(sk
, skb
, th
);
6016 /* step 7: process the segment text */
6017 switch (sk
->sk_state
) {
6018 case TCP_CLOSE_WAIT
:
6021 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
6025 /* RFC 793 says to queue data in these states,
6026 * RFC 1122 says we MUST send a reset.
6027 * BSD 4.4 also does reset.
6029 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
6030 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6031 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6032 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6038 case TCP_ESTABLISHED
:
6039 tcp_data_queue(sk
, skb
);
6044 /* tcp_data could move socket to TIME-WAIT */
6045 if (sk
->sk_state
!= TCP_CLOSE
) {
6046 tcp_data_snd_check(sk
);
6047 tcp_ack_snd_check(sk
);
6056 EXPORT_SYMBOL(tcp_rcv_state_process
);