staging: erofs: fix warning Comparison to bool
[linux/fpc-iii.git] / arch / arm64 / kernel / hibernate.c
blob9341fcc6e809bc678872fa4574666a85ada5ec6f
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*:
3 * Hibernate support specific for ARM64
5 * Derived from work on ARM hibernation support by:
7 * Ubuntu project, hibernation support for mach-dove
8 * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu)
9 * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.)
10 * https://lkml.org/lkml/2010/6/18/4
11 * https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html
12 * https://patchwork.kernel.org/patch/96442/
14 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
16 #define pr_fmt(x) "hibernate: " x
17 #include <linux/cpu.h>
18 #include <linux/kvm_host.h>
19 #include <linux/mm.h>
20 #include <linux/pm.h>
21 #include <linux/sched.h>
22 #include <linux/suspend.h>
23 #include <linux/utsname.h>
24 #include <linux/version.h>
26 #include <asm/barrier.h>
27 #include <asm/cacheflush.h>
28 #include <asm/cputype.h>
29 #include <asm/daifflags.h>
30 #include <asm/irqflags.h>
31 #include <asm/kexec.h>
32 #include <asm/memory.h>
33 #include <asm/mmu_context.h>
34 #include <asm/pgalloc.h>
35 #include <asm/pgtable.h>
36 #include <asm/pgtable-hwdef.h>
37 #include <asm/sections.h>
38 #include <asm/smp.h>
39 #include <asm/smp_plat.h>
40 #include <asm/suspend.h>
41 #include <asm/sysreg.h>
42 #include <asm/virt.h>
45 * Hibernate core relies on this value being 0 on resume, and marks it
46 * __nosavedata assuming it will keep the resume kernel's '0' value. This
47 * doesn't happen with either KASLR.
49 * defined as "__visible int in_suspend __nosavedata" in
50 * kernel/power/hibernate.c
52 extern int in_suspend;
54 /* Do we need to reset el2? */
55 #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode())
57 /* temporary el2 vectors in the __hibernate_exit_text section. */
58 extern char hibernate_el2_vectors[];
60 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */
61 extern char __hyp_stub_vectors[];
64 * The logical cpu number we should resume on, initialised to a non-cpu
65 * number.
67 static int sleep_cpu = -EINVAL;
70 * Values that may not change over hibernate/resume. We put the build number
71 * and date in here so that we guarantee not to resume with a different
72 * kernel.
74 struct arch_hibernate_hdr_invariants {
75 char uts_version[__NEW_UTS_LEN + 1];
78 /* These values need to be know across a hibernate/restore. */
79 static struct arch_hibernate_hdr {
80 struct arch_hibernate_hdr_invariants invariants;
82 /* These are needed to find the relocated kernel if built with kaslr */
83 phys_addr_t ttbr1_el1;
84 void (*reenter_kernel)(void);
87 * We need to know where the __hyp_stub_vectors are after restore to
88 * re-configure el2.
90 phys_addr_t __hyp_stub_vectors;
92 u64 sleep_cpu_mpidr;
93 } resume_hdr;
95 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i)
97 memset(i, 0, sizeof(*i));
98 memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version));
101 int pfn_is_nosave(unsigned long pfn)
103 unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin);
104 unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1);
106 return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) ||
107 crash_is_nosave(pfn);
110 void notrace save_processor_state(void)
112 WARN_ON(num_online_cpus() != 1);
115 void notrace restore_processor_state(void)
119 int arch_hibernation_header_save(void *addr, unsigned int max_size)
121 struct arch_hibernate_hdr *hdr = addr;
123 if (max_size < sizeof(*hdr))
124 return -EOVERFLOW;
126 arch_hdr_invariants(&hdr->invariants);
127 hdr->ttbr1_el1 = __pa_symbol(swapper_pg_dir);
128 hdr->reenter_kernel = _cpu_resume;
130 /* We can't use __hyp_get_vectors() because kvm may still be loaded */
131 if (el2_reset_needed())
132 hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors);
133 else
134 hdr->__hyp_stub_vectors = 0;
136 /* Save the mpidr of the cpu we called cpu_suspend() on... */
137 if (sleep_cpu < 0) {
138 pr_err("Failing to hibernate on an unknown CPU.\n");
139 return -ENODEV;
141 hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu);
142 pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
143 hdr->sleep_cpu_mpidr);
145 return 0;
147 EXPORT_SYMBOL(arch_hibernation_header_save);
149 int arch_hibernation_header_restore(void *addr)
151 int ret;
152 struct arch_hibernate_hdr_invariants invariants;
153 struct arch_hibernate_hdr *hdr = addr;
155 arch_hdr_invariants(&invariants);
156 if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) {
157 pr_crit("Hibernate image not generated by this kernel!\n");
158 return -EINVAL;
161 sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr);
162 pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
163 hdr->sleep_cpu_mpidr);
164 if (sleep_cpu < 0) {
165 pr_crit("Hibernated on a CPU not known to this kernel!\n");
166 sleep_cpu = -EINVAL;
167 return -EINVAL;
169 if (!cpu_online(sleep_cpu)) {
170 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
171 ret = cpu_up(sleep_cpu);
172 if (ret) {
173 pr_err("Failed to bring hibernate-CPU up!\n");
174 sleep_cpu = -EINVAL;
175 return ret;
179 resume_hdr = *hdr;
181 return 0;
183 EXPORT_SYMBOL(arch_hibernation_header_restore);
186 * Copies length bytes, starting at src_start into an new page,
187 * perform cache maintentance, then maps it at the specified address low
188 * address as executable.
190 * This is used by hibernate to copy the code it needs to execute when
191 * overwriting the kernel text. This function generates a new set of page
192 * tables, which it loads into ttbr0.
194 * Length is provided as we probably only want 4K of data, even on a 64K
195 * page system.
197 static int create_safe_exec_page(void *src_start, size_t length,
198 unsigned long dst_addr,
199 phys_addr_t *phys_dst_addr,
200 void *(*allocator)(gfp_t mask),
201 gfp_t mask)
203 int rc = 0;
204 pgd_t *pgdp;
205 pud_t *pudp;
206 pmd_t *pmdp;
207 pte_t *ptep;
208 unsigned long dst = (unsigned long)allocator(mask);
210 if (!dst) {
211 rc = -ENOMEM;
212 goto out;
215 memcpy((void *)dst, src_start, length);
216 __flush_icache_range(dst, dst + length);
218 pgdp = pgd_offset_raw(allocator(mask), dst_addr);
219 if (pgd_none(READ_ONCE(*pgdp))) {
220 pudp = allocator(mask);
221 if (!pudp) {
222 rc = -ENOMEM;
223 goto out;
225 pgd_populate(&init_mm, pgdp, pudp);
228 pudp = pud_offset(pgdp, dst_addr);
229 if (pud_none(READ_ONCE(*pudp))) {
230 pmdp = allocator(mask);
231 if (!pmdp) {
232 rc = -ENOMEM;
233 goto out;
235 pud_populate(&init_mm, pudp, pmdp);
238 pmdp = pmd_offset(pudp, dst_addr);
239 if (pmd_none(READ_ONCE(*pmdp))) {
240 ptep = allocator(mask);
241 if (!ptep) {
242 rc = -ENOMEM;
243 goto out;
245 pmd_populate_kernel(&init_mm, pmdp, ptep);
248 ptep = pte_offset_kernel(pmdp, dst_addr);
249 set_pte(ptep, pfn_pte(virt_to_pfn(dst), PAGE_KERNEL_EXEC));
252 * Load our new page tables. A strict BBM approach requires that we
253 * ensure that TLBs are free of any entries that may overlap with the
254 * global mappings we are about to install.
256 * For a real hibernate/resume cycle TTBR0 currently points to a zero
257 * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI
258 * runtime services), while for a userspace-driven test_resume cycle it
259 * points to userspace page tables (and we must point it at a zero page
260 * ourselves). Elsewhere we only (un)install the idmap with preemption
261 * disabled, so T0SZ should be as required regardless.
263 cpu_set_reserved_ttbr0();
264 local_flush_tlb_all();
265 write_sysreg(phys_to_ttbr(virt_to_phys(pgdp)), ttbr0_el1);
266 isb();
268 *phys_dst_addr = virt_to_phys((void *)dst);
270 out:
271 return rc;
274 #define dcache_clean_range(start, end) __flush_dcache_area(start, (end - start))
276 int swsusp_arch_suspend(void)
278 int ret = 0;
279 unsigned long flags;
280 struct sleep_stack_data state;
282 if (cpus_are_stuck_in_kernel()) {
283 pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n");
284 return -EBUSY;
287 flags = local_daif_save();
289 if (__cpu_suspend_enter(&state)) {
290 /* make the crash dump kernel image visible/saveable */
291 crash_prepare_suspend();
293 sleep_cpu = smp_processor_id();
294 ret = swsusp_save();
295 } else {
296 /* Clean kernel core startup/idle code to PoC*/
297 dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end);
298 dcache_clean_range(__idmap_text_start, __idmap_text_end);
300 /* Clean kvm setup code to PoC? */
301 if (el2_reset_needed()) {
302 dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end);
303 dcache_clean_range(__hyp_text_start, __hyp_text_end);
306 /* make the crash dump kernel image protected again */
307 crash_post_resume();
310 * Tell the hibernation core that we've just restored
311 * the memory
313 in_suspend = 0;
315 sleep_cpu = -EINVAL;
316 __cpu_suspend_exit();
319 * Just in case the boot kernel did turn the SSBD
320 * mitigation off behind our back, let's set the state
321 * to what we expect it to be.
323 switch (arm64_get_ssbd_state()) {
324 case ARM64_SSBD_FORCE_ENABLE:
325 case ARM64_SSBD_KERNEL:
326 arm64_set_ssbd_mitigation(true);
330 local_daif_restore(flags);
332 return ret;
335 static void _copy_pte(pte_t *dst_ptep, pte_t *src_ptep, unsigned long addr)
337 pte_t pte = READ_ONCE(*src_ptep);
339 if (pte_valid(pte)) {
341 * Resume will overwrite areas that may be marked
342 * read only (code, rodata). Clear the RDONLY bit from
343 * the temporary mappings we use during restore.
345 set_pte(dst_ptep, pte_mkwrite(pte));
346 } else if (debug_pagealloc_enabled() && !pte_none(pte)) {
348 * debug_pagealloc will removed the PTE_VALID bit if
349 * the page isn't in use by the resume kernel. It may have
350 * been in use by the original kernel, in which case we need
351 * to put it back in our copy to do the restore.
353 * Before marking this entry valid, check the pfn should
354 * be mapped.
356 BUG_ON(!pfn_valid(pte_pfn(pte)));
358 set_pte(dst_ptep, pte_mkpresent(pte_mkwrite(pte)));
362 static int copy_pte(pmd_t *dst_pmdp, pmd_t *src_pmdp, unsigned long start,
363 unsigned long end)
365 pte_t *src_ptep;
366 pte_t *dst_ptep;
367 unsigned long addr = start;
369 dst_ptep = (pte_t *)get_safe_page(GFP_ATOMIC);
370 if (!dst_ptep)
371 return -ENOMEM;
372 pmd_populate_kernel(&init_mm, dst_pmdp, dst_ptep);
373 dst_ptep = pte_offset_kernel(dst_pmdp, start);
375 src_ptep = pte_offset_kernel(src_pmdp, start);
376 do {
377 _copy_pte(dst_ptep, src_ptep, addr);
378 } while (dst_ptep++, src_ptep++, addr += PAGE_SIZE, addr != end);
380 return 0;
383 static int copy_pmd(pud_t *dst_pudp, pud_t *src_pudp, unsigned long start,
384 unsigned long end)
386 pmd_t *src_pmdp;
387 pmd_t *dst_pmdp;
388 unsigned long next;
389 unsigned long addr = start;
391 if (pud_none(READ_ONCE(*dst_pudp))) {
392 dst_pmdp = (pmd_t *)get_safe_page(GFP_ATOMIC);
393 if (!dst_pmdp)
394 return -ENOMEM;
395 pud_populate(&init_mm, dst_pudp, dst_pmdp);
397 dst_pmdp = pmd_offset(dst_pudp, start);
399 src_pmdp = pmd_offset(src_pudp, start);
400 do {
401 pmd_t pmd = READ_ONCE(*src_pmdp);
403 next = pmd_addr_end(addr, end);
404 if (pmd_none(pmd))
405 continue;
406 if (pmd_table(pmd)) {
407 if (copy_pte(dst_pmdp, src_pmdp, addr, next))
408 return -ENOMEM;
409 } else {
410 set_pmd(dst_pmdp,
411 __pmd(pmd_val(pmd) & ~PMD_SECT_RDONLY));
413 } while (dst_pmdp++, src_pmdp++, addr = next, addr != end);
415 return 0;
418 static int copy_pud(pgd_t *dst_pgdp, pgd_t *src_pgdp, unsigned long start,
419 unsigned long end)
421 pud_t *dst_pudp;
422 pud_t *src_pudp;
423 unsigned long next;
424 unsigned long addr = start;
426 if (pgd_none(READ_ONCE(*dst_pgdp))) {
427 dst_pudp = (pud_t *)get_safe_page(GFP_ATOMIC);
428 if (!dst_pudp)
429 return -ENOMEM;
430 pgd_populate(&init_mm, dst_pgdp, dst_pudp);
432 dst_pudp = pud_offset(dst_pgdp, start);
434 src_pudp = pud_offset(src_pgdp, start);
435 do {
436 pud_t pud = READ_ONCE(*src_pudp);
438 next = pud_addr_end(addr, end);
439 if (pud_none(pud))
440 continue;
441 if (pud_table(pud)) {
442 if (copy_pmd(dst_pudp, src_pudp, addr, next))
443 return -ENOMEM;
444 } else {
445 set_pud(dst_pudp,
446 __pud(pud_val(pud) & ~PMD_SECT_RDONLY));
448 } while (dst_pudp++, src_pudp++, addr = next, addr != end);
450 return 0;
453 static int copy_page_tables(pgd_t *dst_pgdp, unsigned long start,
454 unsigned long end)
456 unsigned long next;
457 unsigned long addr = start;
458 pgd_t *src_pgdp = pgd_offset_k(start);
460 dst_pgdp = pgd_offset_raw(dst_pgdp, start);
461 do {
462 next = pgd_addr_end(addr, end);
463 if (pgd_none(READ_ONCE(*src_pgdp)))
464 continue;
465 if (copy_pud(dst_pgdp, src_pgdp, addr, next))
466 return -ENOMEM;
467 } while (dst_pgdp++, src_pgdp++, addr = next, addr != end);
469 return 0;
473 * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit().
475 * Memory allocated by get_safe_page() will be dealt with by the hibernate code,
476 * we don't need to free it here.
478 int swsusp_arch_resume(void)
480 int rc = 0;
481 void *zero_page;
482 size_t exit_size;
483 pgd_t *tmp_pg_dir;
484 phys_addr_t phys_hibernate_exit;
485 void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *,
486 void *, phys_addr_t, phys_addr_t);
489 * Restoring the memory image will overwrite the ttbr1 page tables.
490 * Create a second copy of just the linear map, and use this when
491 * restoring.
493 tmp_pg_dir = (pgd_t *)get_safe_page(GFP_ATOMIC);
494 if (!tmp_pg_dir) {
495 pr_err("Failed to allocate memory for temporary page tables.\n");
496 rc = -ENOMEM;
497 goto out;
499 rc = copy_page_tables(tmp_pg_dir, PAGE_OFFSET, 0);
500 if (rc)
501 goto out;
504 * We need a zero page that is zero before & after resume in order to
505 * to break before make on the ttbr1 page tables.
507 zero_page = (void *)get_safe_page(GFP_ATOMIC);
508 if (!zero_page) {
509 pr_err("Failed to allocate zero page.\n");
510 rc = -ENOMEM;
511 goto out;
515 * Locate the exit code in the bottom-but-one page, so that *NULL
516 * still has disastrous affects.
518 hibernate_exit = (void *)PAGE_SIZE;
519 exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start;
521 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate
522 * a new set of ttbr0 page tables and load them.
524 rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size,
525 (unsigned long)hibernate_exit,
526 &phys_hibernate_exit,
527 (void *)get_safe_page, GFP_ATOMIC);
528 if (rc) {
529 pr_err("Failed to create safe executable page for hibernate_exit code.\n");
530 goto out;
534 * The hibernate exit text contains a set of el2 vectors, that will
535 * be executed at el2 with the mmu off in order to reload hyp-stub.
537 __flush_dcache_area(hibernate_exit, exit_size);
540 * KASLR will cause the el2 vectors to be in a different location in
541 * the resumed kernel. Load hibernate's temporary copy into el2.
543 * We can skip this step if we booted at EL1, or are running with VHE.
545 if (el2_reset_needed()) {
546 phys_addr_t el2_vectors = phys_hibernate_exit; /* base */
547 el2_vectors += hibernate_el2_vectors -
548 __hibernate_exit_text_start; /* offset */
550 __hyp_set_vectors(el2_vectors);
553 hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1,
554 resume_hdr.reenter_kernel, restore_pblist,
555 resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page));
557 out:
558 return rc;
561 int hibernate_resume_nonboot_cpu_disable(void)
563 if (sleep_cpu < 0) {
564 pr_err("Failing to resume from hibernate on an unknown CPU.\n");
565 return -ENODEV;
568 return freeze_secondary_cpus(sleep_cpu);