2 * AArch64 loadable module support.
4 * Copyright (C) 2012 ARM Limited
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 * Author: Will Deacon <will.deacon@arm.com>
21 #include <linux/bitops.h>
22 #include <linux/elf.h>
23 #include <linux/gfp.h>
24 #include <linux/kasan.h>
25 #include <linux/kernel.h>
27 #include <linux/moduleloader.h>
28 #include <linux/vmalloc.h>
29 #include <asm/alternative.h>
31 #include <asm/sections.h>
33 void *module_alloc(unsigned long size
)
35 gfp_t gfp_mask
= GFP_KERNEL
;
38 /* Silence the initial allocation */
39 if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS
))
40 gfp_mask
|= __GFP_NOWARN
;
42 p
= __vmalloc_node_range(size
, MODULE_ALIGN
, module_alloc_base
,
43 module_alloc_base
+ MODULES_VSIZE
,
44 gfp_mask
, PAGE_KERNEL_EXEC
, 0,
45 NUMA_NO_NODE
, __builtin_return_address(0));
47 if (!p
&& IS_ENABLED(CONFIG_ARM64_MODULE_PLTS
) &&
48 !IS_ENABLED(CONFIG_KASAN
))
50 * KASAN can only deal with module allocations being served
51 * from the reserved module region, since the remainder of
52 * the vmalloc region is already backed by zero shadow pages,
53 * and punching holes into it is non-trivial. Since the module
54 * region is not randomized when KASAN is enabled, it is even
55 * less likely that the module region gets exhausted, so we
56 * can simply omit this fallback in that case.
58 p
= __vmalloc_node_range(size
, MODULE_ALIGN
, module_alloc_base
,
59 module_alloc_base
+ SZ_2G
, GFP_KERNEL
,
60 PAGE_KERNEL_EXEC
, 0, NUMA_NO_NODE
,
61 __builtin_return_address(0));
63 if (p
&& (kasan_module_alloc(p
, size
) < 0)) {
71 enum aarch64_reloc_op
{
78 static u64
do_reloc(enum aarch64_reloc_op reloc_op
, __le32
*place
, u64 val
)
84 return val
- (u64
)place
;
86 return (val
& ~0xfff) - ((u64
)place
& ~0xfff);
91 pr_err("do_reloc: unknown relocation operation %d\n", reloc_op
);
95 static int reloc_data(enum aarch64_reloc_op op
, void *place
, u64 val
, int len
)
97 s64 sval
= do_reloc(op
, place
, val
);
100 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
101 * relative and absolute relocations as having a range of [-2^15, 2^16)
102 * or [-2^31, 2^32), respectively. However, in order to be able to
103 * detect overflows reliably, we have to choose whether we interpret
104 * such quantities as signed or as unsigned, and stick with it.
105 * The way we organize our address space requires a signed
106 * interpretation of 32-bit relative references, so let's use that
107 * for all R_AARCH64_PRELxx relocations. This means our upper
108 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
113 *(s16
*)place
= sval
;
116 if (sval
< 0 || sval
> U16_MAX
)
120 if (sval
< S16_MIN
|| sval
> S16_MAX
)
124 pr_err("Invalid 16-bit data relocation (%d)\n", op
);
129 *(s32
*)place
= sval
;
132 if (sval
< 0 || sval
> U32_MAX
)
136 if (sval
< S32_MIN
|| sval
> S32_MAX
)
140 pr_err("Invalid 32-bit data relocation (%d)\n", op
);
145 *(s64
*)place
= sval
;
148 pr_err("Invalid length (%d) for data relocation\n", len
);
154 enum aarch64_insn_movw_imm_type
{
155 AARCH64_INSN_IMM_MOVNZ
,
156 AARCH64_INSN_IMM_MOVKZ
,
159 static int reloc_insn_movw(enum aarch64_reloc_op op
, __le32
*place
, u64 val
,
160 int lsb
, enum aarch64_insn_movw_imm_type imm_type
)
164 u32 insn
= le32_to_cpu(*place
);
166 sval
= do_reloc(op
, place
, val
);
169 if (imm_type
== AARCH64_INSN_IMM_MOVNZ
) {
171 * For signed MOVW relocations, we have to manipulate the
172 * instruction encoding depending on whether or not the
173 * immediate is less than zero.
177 /* >=0: Set the instruction to MOVZ (opcode 10b). */
181 * <0: Set the instruction to MOVN (opcode 00b).
182 * Since we've masked the opcode already, we
183 * don't need to do anything other than
184 * inverting the new immediate field.
190 /* Update the instruction with the new encoding. */
191 insn
= aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16
, insn
, imm
);
192 *place
= cpu_to_le32(insn
);
200 static int reloc_insn_imm(enum aarch64_reloc_op op
, __le32
*place
, u64 val
,
201 int lsb
, int len
, enum aarch64_insn_imm_type imm_type
)
205 u32 insn
= le32_to_cpu(*place
);
207 /* Calculate the relocation value. */
208 sval
= do_reloc(op
, place
, val
);
211 /* Extract the value bits and shift them to bit 0. */
212 imm_mask
= (BIT(lsb
+ len
) - 1) >> lsb
;
213 imm
= sval
& imm_mask
;
215 /* Update the instruction's immediate field. */
216 insn
= aarch64_insn_encode_immediate(imm_type
, insn
, imm
);
217 *place
= cpu_to_le32(insn
);
220 * Extract the upper value bits (including the sign bit) and
221 * shift them to bit 0.
223 sval
= (s64
)(sval
& ~(imm_mask
>> 1)) >> (len
- 1);
226 * Overflow has occurred if the upper bits are not all equal to
227 * the sign bit of the value.
229 if ((u64
)(sval
+ 1) >= 2)
235 static int reloc_insn_adrp(struct module
*mod
, Elf64_Shdr
*sechdrs
,
236 __le32
*place
, u64 val
)
240 if (!is_forbidden_offset_for_adrp(place
))
241 return reloc_insn_imm(RELOC_OP_PAGE
, place
, val
, 12, 21,
242 AARCH64_INSN_IMM_ADR
);
244 /* patch ADRP to ADR if it is in range */
245 if (!reloc_insn_imm(RELOC_OP_PREL
, place
, val
& ~0xfff, 0, 21,
246 AARCH64_INSN_IMM_ADR
)) {
247 insn
= le32_to_cpu(*place
);
250 /* out of range for ADR -> emit a veneer */
251 val
= module_emit_veneer_for_adrp(mod
, sechdrs
, place
, val
& ~0xfff);
254 insn
= aarch64_insn_gen_branch_imm((u64
)place
, val
,
255 AARCH64_INSN_BRANCH_NOLINK
);
258 *place
= cpu_to_le32(insn
);
262 int apply_relocate_add(Elf64_Shdr
*sechdrs
,
264 unsigned int symindex
,
274 Elf64_Rela
*rel
= (void *)sechdrs
[relsec
].sh_addr
;
276 for (i
= 0; i
< sechdrs
[relsec
].sh_size
/ sizeof(*rel
); i
++) {
277 /* loc corresponds to P in the AArch64 ELF document. */
278 loc
= (void *)sechdrs
[sechdrs
[relsec
].sh_info
].sh_addr
281 /* sym is the ELF symbol we're referring to. */
282 sym
= (Elf64_Sym
*)sechdrs
[symindex
].sh_addr
283 + ELF64_R_SYM(rel
[i
].r_info
);
285 /* val corresponds to (S + A) in the AArch64 ELF document. */
286 val
= sym
->st_value
+ rel
[i
].r_addend
;
288 /* Check for overflow by default. */
289 overflow_check
= true;
291 /* Perform the static relocation. */
292 switch (ELF64_R_TYPE(rel
[i
].r_info
)) {
293 /* Null relocations. */
299 /* Data relocations. */
300 case R_AARCH64_ABS64
:
301 overflow_check
= false;
302 ovf
= reloc_data(RELOC_OP_ABS
, loc
, val
, 64);
304 case R_AARCH64_ABS32
:
305 ovf
= reloc_data(RELOC_OP_ABS
, loc
, val
, 32);
307 case R_AARCH64_ABS16
:
308 ovf
= reloc_data(RELOC_OP_ABS
, loc
, val
, 16);
310 case R_AARCH64_PREL64
:
311 overflow_check
= false;
312 ovf
= reloc_data(RELOC_OP_PREL
, loc
, val
, 64);
314 case R_AARCH64_PREL32
:
315 ovf
= reloc_data(RELOC_OP_PREL
, loc
, val
, 32);
317 case R_AARCH64_PREL16
:
318 ovf
= reloc_data(RELOC_OP_PREL
, loc
, val
, 16);
321 /* MOVW instruction relocations. */
322 case R_AARCH64_MOVW_UABS_G0_NC
:
323 overflow_check
= false;
324 case R_AARCH64_MOVW_UABS_G0
:
325 ovf
= reloc_insn_movw(RELOC_OP_ABS
, loc
, val
, 0,
326 AARCH64_INSN_IMM_MOVKZ
);
328 case R_AARCH64_MOVW_UABS_G1_NC
:
329 overflow_check
= false;
330 case R_AARCH64_MOVW_UABS_G1
:
331 ovf
= reloc_insn_movw(RELOC_OP_ABS
, loc
, val
, 16,
332 AARCH64_INSN_IMM_MOVKZ
);
334 case R_AARCH64_MOVW_UABS_G2_NC
:
335 overflow_check
= false;
336 case R_AARCH64_MOVW_UABS_G2
:
337 ovf
= reloc_insn_movw(RELOC_OP_ABS
, loc
, val
, 32,
338 AARCH64_INSN_IMM_MOVKZ
);
340 case R_AARCH64_MOVW_UABS_G3
:
341 /* We're using the top bits so we can't overflow. */
342 overflow_check
= false;
343 ovf
= reloc_insn_movw(RELOC_OP_ABS
, loc
, val
, 48,
344 AARCH64_INSN_IMM_MOVKZ
);
346 case R_AARCH64_MOVW_SABS_G0
:
347 ovf
= reloc_insn_movw(RELOC_OP_ABS
, loc
, val
, 0,
348 AARCH64_INSN_IMM_MOVNZ
);
350 case R_AARCH64_MOVW_SABS_G1
:
351 ovf
= reloc_insn_movw(RELOC_OP_ABS
, loc
, val
, 16,
352 AARCH64_INSN_IMM_MOVNZ
);
354 case R_AARCH64_MOVW_SABS_G2
:
355 ovf
= reloc_insn_movw(RELOC_OP_ABS
, loc
, val
, 32,
356 AARCH64_INSN_IMM_MOVNZ
);
358 case R_AARCH64_MOVW_PREL_G0_NC
:
359 overflow_check
= false;
360 ovf
= reloc_insn_movw(RELOC_OP_PREL
, loc
, val
, 0,
361 AARCH64_INSN_IMM_MOVKZ
);
363 case R_AARCH64_MOVW_PREL_G0
:
364 ovf
= reloc_insn_movw(RELOC_OP_PREL
, loc
, val
, 0,
365 AARCH64_INSN_IMM_MOVNZ
);
367 case R_AARCH64_MOVW_PREL_G1_NC
:
368 overflow_check
= false;
369 ovf
= reloc_insn_movw(RELOC_OP_PREL
, loc
, val
, 16,
370 AARCH64_INSN_IMM_MOVKZ
);
372 case R_AARCH64_MOVW_PREL_G1
:
373 ovf
= reloc_insn_movw(RELOC_OP_PREL
, loc
, val
, 16,
374 AARCH64_INSN_IMM_MOVNZ
);
376 case R_AARCH64_MOVW_PREL_G2_NC
:
377 overflow_check
= false;
378 ovf
= reloc_insn_movw(RELOC_OP_PREL
, loc
, val
, 32,
379 AARCH64_INSN_IMM_MOVKZ
);
381 case R_AARCH64_MOVW_PREL_G2
:
382 ovf
= reloc_insn_movw(RELOC_OP_PREL
, loc
, val
, 32,
383 AARCH64_INSN_IMM_MOVNZ
);
385 case R_AARCH64_MOVW_PREL_G3
:
386 /* We're using the top bits so we can't overflow. */
387 overflow_check
= false;
388 ovf
= reloc_insn_movw(RELOC_OP_PREL
, loc
, val
, 48,
389 AARCH64_INSN_IMM_MOVNZ
);
392 /* Immediate instruction relocations. */
393 case R_AARCH64_LD_PREL_LO19
:
394 ovf
= reloc_insn_imm(RELOC_OP_PREL
, loc
, val
, 2, 19,
395 AARCH64_INSN_IMM_19
);
397 case R_AARCH64_ADR_PREL_LO21
:
398 ovf
= reloc_insn_imm(RELOC_OP_PREL
, loc
, val
, 0, 21,
399 AARCH64_INSN_IMM_ADR
);
401 case R_AARCH64_ADR_PREL_PG_HI21_NC
:
402 overflow_check
= false;
403 case R_AARCH64_ADR_PREL_PG_HI21
:
404 ovf
= reloc_insn_adrp(me
, sechdrs
, loc
, val
);
405 if (ovf
&& ovf
!= -ERANGE
)
408 case R_AARCH64_ADD_ABS_LO12_NC
:
409 case R_AARCH64_LDST8_ABS_LO12_NC
:
410 overflow_check
= false;
411 ovf
= reloc_insn_imm(RELOC_OP_ABS
, loc
, val
, 0, 12,
412 AARCH64_INSN_IMM_12
);
414 case R_AARCH64_LDST16_ABS_LO12_NC
:
415 overflow_check
= false;
416 ovf
= reloc_insn_imm(RELOC_OP_ABS
, loc
, val
, 1, 11,
417 AARCH64_INSN_IMM_12
);
419 case R_AARCH64_LDST32_ABS_LO12_NC
:
420 overflow_check
= false;
421 ovf
= reloc_insn_imm(RELOC_OP_ABS
, loc
, val
, 2, 10,
422 AARCH64_INSN_IMM_12
);
424 case R_AARCH64_LDST64_ABS_LO12_NC
:
425 overflow_check
= false;
426 ovf
= reloc_insn_imm(RELOC_OP_ABS
, loc
, val
, 3, 9,
427 AARCH64_INSN_IMM_12
);
429 case R_AARCH64_LDST128_ABS_LO12_NC
:
430 overflow_check
= false;
431 ovf
= reloc_insn_imm(RELOC_OP_ABS
, loc
, val
, 4, 8,
432 AARCH64_INSN_IMM_12
);
434 case R_AARCH64_TSTBR14
:
435 ovf
= reloc_insn_imm(RELOC_OP_PREL
, loc
, val
, 2, 14,
436 AARCH64_INSN_IMM_14
);
438 case R_AARCH64_CONDBR19
:
439 ovf
= reloc_insn_imm(RELOC_OP_PREL
, loc
, val
, 2, 19,
440 AARCH64_INSN_IMM_19
);
442 case R_AARCH64_JUMP26
:
443 case R_AARCH64_CALL26
:
444 ovf
= reloc_insn_imm(RELOC_OP_PREL
, loc
, val
, 2, 26,
445 AARCH64_INSN_IMM_26
);
447 if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS
) &&
449 val
= module_emit_plt_entry(me
, sechdrs
, loc
, &rel
[i
], sym
);
452 ovf
= reloc_insn_imm(RELOC_OP_PREL
, loc
, val
, 2,
453 26, AARCH64_INSN_IMM_26
);
458 pr_err("module %s: unsupported RELA relocation: %llu\n",
459 me
->name
, ELF64_R_TYPE(rel
[i
].r_info
));
463 if (overflow_check
&& ovf
== -ERANGE
)
471 pr_err("module %s: overflow in relocation type %d val %Lx\n",
472 me
->name
, (int)ELF64_R_TYPE(rel
[i
].r_info
), val
);
476 int module_finalize(const Elf_Ehdr
*hdr
,
477 const Elf_Shdr
*sechdrs
,
480 const Elf_Shdr
*s
, *se
;
481 const char *secstrs
= (void *)hdr
+ sechdrs
[hdr
->e_shstrndx
].sh_offset
;
483 for (s
= sechdrs
, se
= sechdrs
+ hdr
->e_shnum
; s
< se
; s
++) {
484 if (strcmp(".altinstructions", secstrs
+ s
->sh_name
) == 0)
485 apply_alternatives_module((void *)s
->sh_addr
, s
->sh_size
);
486 #ifdef CONFIG_ARM64_MODULE_PLTS
487 if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE
) &&
488 !strcmp(".text.ftrace_trampoline", secstrs
+ s
->sh_name
))
489 me
->arch
.ftrace_trampoline
= (void *)s
->sh_addr
;