staging: erofs: fix warning Comparison to bool
[linux/fpc-iii.git] / arch / arm64 / kernel / module.c
blobdd080837e6a9c18d70d7e1b74bca707f25040b45
1 /*
2 * AArch64 loadable module support.
4 * Copyright (C) 2012 ARM Limited
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 * Author: Will Deacon <will.deacon@arm.com>
21 #include <linux/bitops.h>
22 #include <linux/elf.h>
23 #include <linux/gfp.h>
24 #include <linux/kasan.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/moduleloader.h>
28 #include <linux/vmalloc.h>
29 #include <asm/alternative.h>
30 #include <asm/insn.h>
31 #include <asm/sections.h>
33 void *module_alloc(unsigned long size)
35 gfp_t gfp_mask = GFP_KERNEL;
36 void *p;
38 /* Silence the initial allocation */
39 if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
40 gfp_mask |= __GFP_NOWARN;
42 p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
43 module_alloc_base + MODULES_VSIZE,
44 gfp_mask, PAGE_KERNEL_EXEC, 0,
45 NUMA_NO_NODE, __builtin_return_address(0));
47 if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
48 !IS_ENABLED(CONFIG_KASAN))
50 * KASAN can only deal with module allocations being served
51 * from the reserved module region, since the remainder of
52 * the vmalloc region is already backed by zero shadow pages,
53 * and punching holes into it is non-trivial. Since the module
54 * region is not randomized when KASAN is enabled, it is even
55 * less likely that the module region gets exhausted, so we
56 * can simply omit this fallback in that case.
58 p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
59 module_alloc_base + SZ_2G, GFP_KERNEL,
60 PAGE_KERNEL_EXEC, 0, NUMA_NO_NODE,
61 __builtin_return_address(0));
63 if (p && (kasan_module_alloc(p, size) < 0)) {
64 vfree(p);
65 return NULL;
68 return p;
71 enum aarch64_reloc_op {
72 RELOC_OP_NONE,
73 RELOC_OP_ABS,
74 RELOC_OP_PREL,
75 RELOC_OP_PAGE,
78 static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
80 switch (reloc_op) {
81 case RELOC_OP_ABS:
82 return val;
83 case RELOC_OP_PREL:
84 return val - (u64)place;
85 case RELOC_OP_PAGE:
86 return (val & ~0xfff) - ((u64)place & ~0xfff);
87 case RELOC_OP_NONE:
88 return 0;
91 pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
92 return 0;
95 static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
97 s64 sval = do_reloc(op, place, val);
100 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
101 * relative and absolute relocations as having a range of [-2^15, 2^16)
102 * or [-2^31, 2^32), respectively. However, in order to be able to
103 * detect overflows reliably, we have to choose whether we interpret
104 * such quantities as signed or as unsigned, and stick with it.
105 * The way we organize our address space requires a signed
106 * interpretation of 32-bit relative references, so let's use that
107 * for all R_AARCH64_PRELxx relocations. This means our upper
108 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
111 switch (len) {
112 case 16:
113 *(s16 *)place = sval;
114 switch (op) {
115 case RELOC_OP_ABS:
116 if (sval < 0 || sval > U16_MAX)
117 return -ERANGE;
118 break;
119 case RELOC_OP_PREL:
120 if (sval < S16_MIN || sval > S16_MAX)
121 return -ERANGE;
122 break;
123 default:
124 pr_err("Invalid 16-bit data relocation (%d)\n", op);
125 return 0;
127 break;
128 case 32:
129 *(s32 *)place = sval;
130 switch (op) {
131 case RELOC_OP_ABS:
132 if (sval < 0 || sval > U32_MAX)
133 return -ERANGE;
134 break;
135 case RELOC_OP_PREL:
136 if (sval < S32_MIN || sval > S32_MAX)
137 return -ERANGE;
138 break;
139 default:
140 pr_err("Invalid 32-bit data relocation (%d)\n", op);
141 return 0;
143 break;
144 case 64:
145 *(s64 *)place = sval;
146 break;
147 default:
148 pr_err("Invalid length (%d) for data relocation\n", len);
149 return 0;
151 return 0;
154 enum aarch64_insn_movw_imm_type {
155 AARCH64_INSN_IMM_MOVNZ,
156 AARCH64_INSN_IMM_MOVKZ,
159 static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
160 int lsb, enum aarch64_insn_movw_imm_type imm_type)
162 u64 imm;
163 s64 sval;
164 u32 insn = le32_to_cpu(*place);
166 sval = do_reloc(op, place, val);
167 imm = sval >> lsb;
169 if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
171 * For signed MOVW relocations, we have to manipulate the
172 * instruction encoding depending on whether or not the
173 * immediate is less than zero.
175 insn &= ~(3 << 29);
176 if (sval >= 0) {
177 /* >=0: Set the instruction to MOVZ (opcode 10b). */
178 insn |= 2 << 29;
179 } else {
181 * <0: Set the instruction to MOVN (opcode 00b).
182 * Since we've masked the opcode already, we
183 * don't need to do anything other than
184 * inverting the new immediate field.
186 imm = ~imm;
190 /* Update the instruction with the new encoding. */
191 insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
192 *place = cpu_to_le32(insn);
194 if (imm > U16_MAX)
195 return -ERANGE;
197 return 0;
200 static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
201 int lsb, int len, enum aarch64_insn_imm_type imm_type)
203 u64 imm, imm_mask;
204 s64 sval;
205 u32 insn = le32_to_cpu(*place);
207 /* Calculate the relocation value. */
208 sval = do_reloc(op, place, val);
209 sval >>= lsb;
211 /* Extract the value bits and shift them to bit 0. */
212 imm_mask = (BIT(lsb + len) - 1) >> lsb;
213 imm = sval & imm_mask;
215 /* Update the instruction's immediate field. */
216 insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
217 *place = cpu_to_le32(insn);
220 * Extract the upper value bits (including the sign bit) and
221 * shift them to bit 0.
223 sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
226 * Overflow has occurred if the upper bits are not all equal to
227 * the sign bit of the value.
229 if ((u64)(sval + 1) >= 2)
230 return -ERANGE;
232 return 0;
235 static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
236 __le32 *place, u64 val)
238 u32 insn;
240 if (!is_forbidden_offset_for_adrp(place))
241 return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
242 AARCH64_INSN_IMM_ADR);
244 /* patch ADRP to ADR if it is in range */
245 if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
246 AARCH64_INSN_IMM_ADR)) {
247 insn = le32_to_cpu(*place);
248 insn &= ~BIT(31);
249 } else {
250 /* out of range for ADR -> emit a veneer */
251 val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
252 if (!val)
253 return -ENOEXEC;
254 insn = aarch64_insn_gen_branch_imm((u64)place, val,
255 AARCH64_INSN_BRANCH_NOLINK);
258 *place = cpu_to_le32(insn);
259 return 0;
262 int apply_relocate_add(Elf64_Shdr *sechdrs,
263 const char *strtab,
264 unsigned int symindex,
265 unsigned int relsec,
266 struct module *me)
268 unsigned int i;
269 int ovf;
270 bool overflow_check;
271 Elf64_Sym *sym;
272 void *loc;
273 u64 val;
274 Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
276 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
277 /* loc corresponds to P in the AArch64 ELF document. */
278 loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
279 + rel[i].r_offset;
281 /* sym is the ELF symbol we're referring to. */
282 sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
283 + ELF64_R_SYM(rel[i].r_info);
285 /* val corresponds to (S + A) in the AArch64 ELF document. */
286 val = sym->st_value + rel[i].r_addend;
288 /* Check for overflow by default. */
289 overflow_check = true;
291 /* Perform the static relocation. */
292 switch (ELF64_R_TYPE(rel[i].r_info)) {
293 /* Null relocations. */
294 case R_ARM_NONE:
295 case R_AARCH64_NONE:
296 ovf = 0;
297 break;
299 /* Data relocations. */
300 case R_AARCH64_ABS64:
301 overflow_check = false;
302 ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
303 break;
304 case R_AARCH64_ABS32:
305 ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
306 break;
307 case R_AARCH64_ABS16:
308 ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
309 break;
310 case R_AARCH64_PREL64:
311 overflow_check = false;
312 ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
313 break;
314 case R_AARCH64_PREL32:
315 ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
316 break;
317 case R_AARCH64_PREL16:
318 ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
319 break;
321 /* MOVW instruction relocations. */
322 case R_AARCH64_MOVW_UABS_G0_NC:
323 overflow_check = false;
324 case R_AARCH64_MOVW_UABS_G0:
325 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
326 AARCH64_INSN_IMM_MOVKZ);
327 break;
328 case R_AARCH64_MOVW_UABS_G1_NC:
329 overflow_check = false;
330 case R_AARCH64_MOVW_UABS_G1:
331 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
332 AARCH64_INSN_IMM_MOVKZ);
333 break;
334 case R_AARCH64_MOVW_UABS_G2_NC:
335 overflow_check = false;
336 case R_AARCH64_MOVW_UABS_G2:
337 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
338 AARCH64_INSN_IMM_MOVKZ);
339 break;
340 case R_AARCH64_MOVW_UABS_G3:
341 /* We're using the top bits so we can't overflow. */
342 overflow_check = false;
343 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
344 AARCH64_INSN_IMM_MOVKZ);
345 break;
346 case R_AARCH64_MOVW_SABS_G0:
347 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
348 AARCH64_INSN_IMM_MOVNZ);
349 break;
350 case R_AARCH64_MOVW_SABS_G1:
351 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
352 AARCH64_INSN_IMM_MOVNZ);
353 break;
354 case R_AARCH64_MOVW_SABS_G2:
355 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
356 AARCH64_INSN_IMM_MOVNZ);
357 break;
358 case R_AARCH64_MOVW_PREL_G0_NC:
359 overflow_check = false;
360 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
361 AARCH64_INSN_IMM_MOVKZ);
362 break;
363 case R_AARCH64_MOVW_PREL_G0:
364 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
365 AARCH64_INSN_IMM_MOVNZ);
366 break;
367 case R_AARCH64_MOVW_PREL_G1_NC:
368 overflow_check = false;
369 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
370 AARCH64_INSN_IMM_MOVKZ);
371 break;
372 case R_AARCH64_MOVW_PREL_G1:
373 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
374 AARCH64_INSN_IMM_MOVNZ);
375 break;
376 case R_AARCH64_MOVW_PREL_G2_NC:
377 overflow_check = false;
378 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
379 AARCH64_INSN_IMM_MOVKZ);
380 break;
381 case R_AARCH64_MOVW_PREL_G2:
382 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
383 AARCH64_INSN_IMM_MOVNZ);
384 break;
385 case R_AARCH64_MOVW_PREL_G3:
386 /* We're using the top bits so we can't overflow. */
387 overflow_check = false;
388 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
389 AARCH64_INSN_IMM_MOVNZ);
390 break;
392 /* Immediate instruction relocations. */
393 case R_AARCH64_LD_PREL_LO19:
394 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
395 AARCH64_INSN_IMM_19);
396 break;
397 case R_AARCH64_ADR_PREL_LO21:
398 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
399 AARCH64_INSN_IMM_ADR);
400 break;
401 case R_AARCH64_ADR_PREL_PG_HI21_NC:
402 overflow_check = false;
403 case R_AARCH64_ADR_PREL_PG_HI21:
404 ovf = reloc_insn_adrp(me, sechdrs, loc, val);
405 if (ovf && ovf != -ERANGE)
406 return ovf;
407 break;
408 case R_AARCH64_ADD_ABS_LO12_NC:
409 case R_AARCH64_LDST8_ABS_LO12_NC:
410 overflow_check = false;
411 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
412 AARCH64_INSN_IMM_12);
413 break;
414 case R_AARCH64_LDST16_ABS_LO12_NC:
415 overflow_check = false;
416 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
417 AARCH64_INSN_IMM_12);
418 break;
419 case R_AARCH64_LDST32_ABS_LO12_NC:
420 overflow_check = false;
421 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
422 AARCH64_INSN_IMM_12);
423 break;
424 case R_AARCH64_LDST64_ABS_LO12_NC:
425 overflow_check = false;
426 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
427 AARCH64_INSN_IMM_12);
428 break;
429 case R_AARCH64_LDST128_ABS_LO12_NC:
430 overflow_check = false;
431 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
432 AARCH64_INSN_IMM_12);
433 break;
434 case R_AARCH64_TSTBR14:
435 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
436 AARCH64_INSN_IMM_14);
437 break;
438 case R_AARCH64_CONDBR19:
439 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
440 AARCH64_INSN_IMM_19);
441 break;
442 case R_AARCH64_JUMP26:
443 case R_AARCH64_CALL26:
444 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
445 AARCH64_INSN_IMM_26);
447 if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
448 ovf == -ERANGE) {
449 val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
450 if (!val)
451 return -ENOEXEC;
452 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
453 26, AARCH64_INSN_IMM_26);
455 break;
457 default:
458 pr_err("module %s: unsupported RELA relocation: %llu\n",
459 me->name, ELF64_R_TYPE(rel[i].r_info));
460 return -ENOEXEC;
463 if (overflow_check && ovf == -ERANGE)
464 goto overflow;
468 return 0;
470 overflow:
471 pr_err("module %s: overflow in relocation type %d val %Lx\n",
472 me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
473 return -ENOEXEC;
476 int module_finalize(const Elf_Ehdr *hdr,
477 const Elf_Shdr *sechdrs,
478 struct module *me)
480 const Elf_Shdr *s, *se;
481 const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
483 for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) {
484 if (strcmp(".altinstructions", secstrs + s->sh_name) == 0)
485 apply_alternatives_module((void *)s->sh_addr, s->sh_size);
486 #ifdef CONFIG_ARM64_MODULE_PLTS
487 if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) &&
488 !strcmp(".text.ftrace_trampoline", secstrs + s->sh_name))
489 me->arch.ftrace_trampoline = (void *)s->sh_addr;
490 #endif
493 return 0;