staging: erofs: fix warning Comparison to bool
[linux/fpc-iii.git] / arch / sparc / mm / srmmu.c
blobaaebbc00d26236c01688ebc50dde58fb2921ef24
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * srmmu.c: SRMMU specific routines for memory management.
5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
12 #include <linux/seq_file.h>
13 #include <linux/spinlock.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/kdebug.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
26 #include <asm/mmu_context.h>
27 #include <asm/cacheflush.h>
28 #include <asm/tlbflush.h>
29 #include <asm/io-unit.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/bitext.h>
33 #include <asm/vaddrs.h>
34 #include <asm/cache.h>
35 #include <asm/traps.h>
36 #include <asm/oplib.h>
37 #include <asm/mbus.h>
38 #include <asm/page.h>
39 #include <asm/asi.h>
40 #include <asm/smp.h>
41 #include <asm/io.h>
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
48 #include <asm/leon.h>
49 #include <asm/mxcc.h>
50 #include <asm/ross.h>
52 #include "mm_32.h"
54 enum mbus_module srmmu_modtype;
55 static unsigned int hwbug_bitmask;
56 int vac_cache_size;
57 EXPORT_SYMBOL(vac_cache_size);
58 int vac_line_size;
60 extern struct resource sparc_iomap;
62 extern unsigned long last_valid_pfn;
64 static pgd_t *srmmu_swapper_pg_dir;
66 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
67 EXPORT_SYMBOL(sparc32_cachetlb_ops);
69 #ifdef CONFIG_SMP
70 const struct sparc32_cachetlb_ops *local_ops;
72 #define FLUSH_BEGIN(mm)
73 #define FLUSH_END
74 #else
75 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
76 #define FLUSH_END }
77 #endif
79 int flush_page_for_dma_global = 1;
81 char *srmmu_name;
83 ctxd_t *srmmu_ctx_table_phys;
84 static ctxd_t *srmmu_context_table;
86 int viking_mxcc_present;
87 static DEFINE_SPINLOCK(srmmu_context_spinlock);
89 static int is_hypersparc;
91 static int srmmu_cache_pagetables;
93 /* these will be initialized in srmmu_nocache_calcsize() */
94 static unsigned long srmmu_nocache_size;
95 static unsigned long srmmu_nocache_end;
97 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
98 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
100 /* The context table is a nocache user with the biggest alignment needs. */
101 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
103 void *srmmu_nocache_pool;
104 static struct bit_map srmmu_nocache_map;
106 static inline int srmmu_pmd_none(pmd_t pmd)
107 { return !(pmd_val(pmd) & 0xFFFFFFF); }
109 /* XXX should we hyper_flush_whole_icache here - Anton */
110 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
112 pte_t pte;
114 pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
115 set_pte((pte_t *)ctxp, pte);
119 * Locations of MSI Registers.
121 #define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */
124 * Useful bits in the MSI Registers.
126 #define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */
128 static void msi_set_sync(void)
130 __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
131 "andn %%g3, %2, %%g3\n\t"
132 "sta %%g3, [%0] %1\n\t" : :
133 "r" (MSI_MBUS_ARBEN),
134 "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
137 void pmd_set(pmd_t *pmdp, pte_t *ptep)
139 unsigned long ptp; /* Physical address, shifted right by 4 */
140 int i;
142 ptp = __nocache_pa(ptep) >> 4;
143 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
144 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
145 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
149 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
151 unsigned long ptp; /* Physical address, shifted right by 4 */
152 int i;
154 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
155 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
156 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
157 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
161 /* Find an entry in the third-level page table.. */
162 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
164 void *pte;
166 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
167 return (pte_t *) pte +
168 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
172 * size: bytes to allocate in the nocache area.
173 * align: bytes, number to align at.
174 * Returns the virtual address of the allocated area.
176 static void *__srmmu_get_nocache(int size, int align)
178 int offset;
179 unsigned long addr;
181 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
182 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
183 size);
184 size = SRMMU_NOCACHE_BITMAP_SHIFT;
186 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
187 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
188 size);
189 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
191 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
193 offset = bit_map_string_get(&srmmu_nocache_map,
194 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
195 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
196 if (offset == -1) {
197 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
198 size, (int) srmmu_nocache_size,
199 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
200 return NULL;
203 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
204 return (void *)addr;
207 void *srmmu_get_nocache(int size, int align)
209 void *tmp;
211 tmp = __srmmu_get_nocache(size, align);
213 if (tmp)
214 memset(tmp, 0, size);
216 return tmp;
219 void srmmu_free_nocache(void *addr, int size)
221 unsigned long vaddr;
222 int offset;
224 vaddr = (unsigned long)addr;
225 if (vaddr < SRMMU_NOCACHE_VADDR) {
226 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
227 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
228 BUG();
230 if (vaddr + size > srmmu_nocache_end) {
231 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
232 vaddr, srmmu_nocache_end);
233 BUG();
235 if (!is_power_of_2(size)) {
236 printk("Size 0x%x is not a power of 2\n", size);
237 BUG();
239 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
240 printk("Size 0x%x is too small\n", size);
241 BUG();
243 if (vaddr & (size - 1)) {
244 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
245 BUG();
248 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
249 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
251 bit_map_clear(&srmmu_nocache_map, offset, size);
254 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
255 unsigned long end);
257 /* Return how much physical memory we have. */
258 static unsigned long __init probe_memory(void)
260 unsigned long total = 0;
261 int i;
263 for (i = 0; sp_banks[i].num_bytes; i++)
264 total += sp_banks[i].num_bytes;
266 return total;
270 * Reserve nocache dynamically proportionally to the amount of
271 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
273 static void __init srmmu_nocache_calcsize(void)
275 unsigned long sysmemavail = probe_memory() / 1024;
276 int srmmu_nocache_npages;
278 srmmu_nocache_npages =
279 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
281 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
282 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
283 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
284 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
286 /* anything above 1280 blows up */
287 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
288 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
290 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
291 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
294 static void __init srmmu_nocache_init(void)
296 void *srmmu_nocache_bitmap;
297 unsigned int bitmap_bits;
298 pgd_t *pgd;
299 pmd_t *pmd;
300 pte_t *pte;
301 unsigned long paddr, vaddr;
302 unsigned long pteval;
304 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
306 srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
307 SRMMU_NOCACHE_ALIGN_MAX);
308 if (!srmmu_nocache_pool)
309 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
310 __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
311 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
313 srmmu_nocache_bitmap =
314 memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
315 SMP_CACHE_BYTES);
316 if (!srmmu_nocache_bitmap)
317 panic("%s: Failed to allocate %zu bytes\n", __func__,
318 BITS_TO_LONGS(bitmap_bits) * sizeof(long));
319 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
321 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
322 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
323 init_mm.pgd = srmmu_swapper_pg_dir;
325 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
327 paddr = __pa((unsigned long)srmmu_nocache_pool);
328 vaddr = SRMMU_NOCACHE_VADDR;
330 while (vaddr < srmmu_nocache_end) {
331 pgd = pgd_offset_k(vaddr);
332 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
333 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
335 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
337 if (srmmu_cache_pagetables)
338 pteval |= SRMMU_CACHE;
340 set_pte(__nocache_fix(pte), __pte(pteval));
342 vaddr += PAGE_SIZE;
343 paddr += PAGE_SIZE;
346 flush_cache_all();
347 flush_tlb_all();
350 pgd_t *get_pgd_fast(void)
352 pgd_t *pgd = NULL;
354 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
355 if (pgd) {
356 pgd_t *init = pgd_offset_k(0);
357 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
358 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
359 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
362 return pgd;
366 * Hardware needs alignment to 256 only, but we align to whole page size
367 * to reduce fragmentation problems due to the buddy principle.
368 * XXX Provide actual fragmentation statistics in /proc.
370 * Alignments up to the page size are the same for physical and virtual
371 * addresses of the nocache area.
373 pgtable_t pte_alloc_one(struct mm_struct *mm)
375 unsigned long pte;
376 struct page *page;
378 if ((pte = (unsigned long)pte_alloc_one_kernel(mm)) == 0)
379 return NULL;
380 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
381 if (!pgtable_page_ctor(page)) {
382 __free_page(page);
383 return NULL;
385 return page;
388 void pte_free(struct mm_struct *mm, pgtable_t pte)
390 unsigned long p;
392 pgtable_page_dtor(pte);
393 p = (unsigned long)page_address(pte); /* Cached address (for test) */
394 if (p == 0)
395 BUG();
396 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
398 /* free non cached virtual address*/
399 srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
402 /* context handling - a dynamically sized pool is used */
403 #define NO_CONTEXT -1
405 struct ctx_list {
406 struct ctx_list *next;
407 struct ctx_list *prev;
408 unsigned int ctx_number;
409 struct mm_struct *ctx_mm;
412 static struct ctx_list *ctx_list_pool;
413 static struct ctx_list ctx_free;
414 static struct ctx_list ctx_used;
416 /* At boot time we determine the number of contexts */
417 static int num_contexts;
419 static inline void remove_from_ctx_list(struct ctx_list *entry)
421 entry->next->prev = entry->prev;
422 entry->prev->next = entry->next;
425 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
427 entry->next = head;
428 (entry->prev = head->prev)->next = entry;
429 head->prev = entry;
431 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
432 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
435 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
437 struct ctx_list *ctxp;
439 ctxp = ctx_free.next;
440 if (ctxp != &ctx_free) {
441 remove_from_ctx_list(ctxp);
442 add_to_used_ctxlist(ctxp);
443 mm->context = ctxp->ctx_number;
444 ctxp->ctx_mm = mm;
445 return;
447 ctxp = ctx_used.next;
448 if (ctxp->ctx_mm == old_mm)
449 ctxp = ctxp->next;
450 if (ctxp == &ctx_used)
451 panic("out of mmu contexts");
452 flush_cache_mm(ctxp->ctx_mm);
453 flush_tlb_mm(ctxp->ctx_mm);
454 remove_from_ctx_list(ctxp);
455 add_to_used_ctxlist(ctxp);
456 ctxp->ctx_mm->context = NO_CONTEXT;
457 ctxp->ctx_mm = mm;
458 mm->context = ctxp->ctx_number;
461 static inline void free_context(int context)
463 struct ctx_list *ctx_old;
465 ctx_old = ctx_list_pool + context;
466 remove_from_ctx_list(ctx_old);
467 add_to_free_ctxlist(ctx_old);
470 static void __init sparc_context_init(int numctx)
472 int ctx;
473 unsigned long size;
475 size = numctx * sizeof(struct ctx_list);
476 ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
477 if (!ctx_list_pool)
478 panic("%s: Failed to allocate %lu bytes\n", __func__, size);
480 for (ctx = 0; ctx < numctx; ctx++) {
481 struct ctx_list *clist;
483 clist = (ctx_list_pool + ctx);
484 clist->ctx_number = ctx;
485 clist->ctx_mm = NULL;
487 ctx_free.next = ctx_free.prev = &ctx_free;
488 ctx_used.next = ctx_used.prev = &ctx_used;
489 for (ctx = 0; ctx < numctx; ctx++)
490 add_to_free_ctxlist(ctx_list_pool + ctx);
493 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
494 struct task_struct *tsk)
496 unsigned long flags;
498 if (mm->context == NO_CONTEXT) {
499 spin_lock_irqsave(&srmmu_context_spinlock, flags);
500 alloc_context(old_mm, mm);
501 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
502 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
505 if (sparc_cpu_model == sparc_leon)
506 leon_switch_mm();
508 if (is_hypersparc)
509 hyper_flush_whole_icache();
511 srmmu_set_context(mm->context);
514 /* Low level IO area allocation on the SRMMU. */
515 static inline void srmmu_mapioaddr(unsigned long physaddr,
516 unsigned long virt_addr, int bus_type)
518 pgd_t *pgdp;
519 pmd_t *pmdp;
520 pte_t *ptep;
521 unsigned long tmp;
523 physaddr &= PAGE_MASK;
524 pgdp = pgd_offset_k(virt_addr);
525 pmdp = pmd_offset(pgdp, virt_addr);
526 ptep = pte_offset_kernel(pmdp, virt_addr);
527 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
529 /* I need to test whether this is consistent over all
530 * sun4m's. The bus_type represents the upper 4 bits of
531 * 36-bit physical address on the I/O space lines...
533 tmp |= (bus_type << 28);
534 tmp |= SRMMU_PRIV;
535 __flush_page_to_ram(virt_addr);
536 set_pte(ptep, __pte(tmp));
539 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
540 unsigned long xva, unsigned int len)
542 while (len != 0) {
543 len -= PAGE_SIZE;
544 srmmu_mapioaddr(xpa, xva, bus);
545 xva += PAGE_SIZE;
546 xpa += PAGE_SIZE;
548 flush_tlb_all();
551 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
553 pgd_t *pgdp;
554 pmd_t *pmdp;
555 pte_t *ptep;
557 pgdp = pgd_offset_k(virt_addr);
558 pmdp = pmd_offset(pgdp, virt_addr);
559 ptep = pte_offset_kernel(pmdp, virt_addr);
561 /* No need to flush uncacheable page. */
562 __pte_clear(ptep);
565 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
567 while (len != 0) {
568 len -= PAGE_SIZE;
569 srmmu_unmapioaddr(virt_addr);
570 virt_addr += PAGE_SIZE;
572 flush_tlb_all();
575 /* tsunami.S */
576 extern void tsunami_flush_cache_all(void);
577 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
578 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
579 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
580 extern void tsunami_flush_page_to_ram(unsigned long page);
581 extern void tsunami_flush_page_for_dma(unsigned long page);
582 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
583 extern void tsunami_flush_tlb_all(void);
584 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
585 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
586 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
587 extern void tsunami_setup_blockops(void);
589 /* swift.S */
590 extern void swift_flush_cache_all(void);
591 extern void swift_flush_cache_mm(struct mm_struct *mm);
592 extern void swift_flush_cache_range(struct vm_area_struct *vma,
593 unsigned long start, unsigned long end);
594 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
595 extern void swift_flush_page_to_ram(unsigned long page);
596 extern void swift_flush_page_for_dma(unsigned long page);
597 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
598 extern void swift_flush_tlb_all(void);
599 extern void swift_flush_tlb_mm(struct mm_struct *mm);
600 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
601 unsigned long start, unsigned long end);
602 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
604 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
605 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
607 int cctx, ctx1;
609 page &= PAGE_MASK;
610 if ((ctx1 = vma->vm_mm->context) != -1) {
611 cctx = srmmu_get_context();
612 /* Is context # ever different from current context? P3 */
613 if (cctx != ctx1) {
614 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
615 srmmu_set_context(ctx1);
616 swift_flush_page(page);
617 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
618 "r" (page), "i" (ASI_M_FLUSH_PROBE));
619 srmmu_set_context(cctx);
620 } else {
621 /* Rm. prot. bits from virt. c. */
622 /* swift_flush_cache_all(); */
623 /* swift_flush_cache_page(vma, page); */
624 swift_flush_page(page);
626 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
627 "r" (page), "i" (ASI_M_FLUSH_PROBE));
628 /* same as above: srmmu_flush_tlb_page() */
632 #endif
635 * The following are all MBUS based SRMMU modules, and therefore could
636 * be found in a multiprocessor configuration. On the whole, these
637 * chips seems to be much more touchy about DVMA and page tables
638 * with respect to cache coherency.
641 /* viking.S */
642 extern void viking_flush_cache_all(void);
643 extern void viking_flush_cache_mm(struct mm_struct *mm);
644 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
645 unsigned long end);
646 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
647 extern void viking_flush_page_to_ram(unsigned long page);
648 extern void viking_flush_page_for_dma(unsigned long page);
649 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
650 extern void viking_flush_page(unsigned long page);
651 extern void viking_mxcc_flush_page(unsigned long page);
652 extern void viking_flush_tlb_all(void);
653 extern void viking_flush_tlb_mm(struct mm_struct *mm);
654 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
655 unsigned long end);
656 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
657 unsigned long page);
658 extern void sun4dsmp_flush_tlb_all(void);
659 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
660 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
661 unsigned long end);
662 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
663 unsigned long page);
665 /* hypersparc.S */
666 extern void hypersparc_flush_cache_all(void);
667 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
668 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
669 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
670 extern void hypersparc_flush_page_to_ram(unsigned long page);
671 extern void hypersparc_flush_page_for_dma(unsigned long page);
672 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
673 extern void hypersparc_flush_tlb_all(void);
674 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
675 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
676 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
677 extern void hypersparc_setup_blockops(void);
680 * NOTE: All of this startup code assumes the low 16mb (approx.) of
681 * kernel mappings are done with one single contiguous chunk of
682 * ram. On small ram machines (classics mainly) we only get
683 * around 8mb mapped for us.
686 static void __init early_pgtable_allocfail(char *type)
688 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
689 prom_halt();
692 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
693 unsigned long end)
695 pgd_t *pgdp;
696 pmd_t *pmdp;
697 pte_t *ptep;
699 while (start < end) {
700 pgdp = pgd_offset_k(start);
701 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
702 pmdp = __srmmu_get_nocache(
703 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
704 if (pmdp == NULL)
705 early_pgtable_allocfail("pmd");
706 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
707 pgd_set(__nocache_fix(pgdp), pmdp);
709 pmdp = pmd_offset(__nocache_fix(pgdp), start);
710 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
711 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
712 if (ptep == NULL)
713 early_pgtable_allocfail("pte");
714 memset(__nocache_fix(ptep), 0, PTE_SIZE);
715 pmd_set(__nocache_fix(pmdp), ptep);
717 if (start > (0xffffffffUL - PMD_SIZE))
718 break;
719 start = (start + PMD_SIZE) & PMD_MASK;
723 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
724 unsigned long end)
726 pgd_t *pgdp;
727 pmd_t *pmdp;
728 pte_t *ptep;
730 while (start < end) {
731 pgdp = pgd_offset_k(start);
732 if (pgd_none(*pgdp)) {
733 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
734 if (pmdp == NULL)
735 early_pgtable_allocfail("pmd");
736 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
737 pgd_set(pgdp, pmdp);
739 pmdp = pmd_offset(pgdp, start);
740 if (srmmu_pmd_none(*pmdp)) {
741 ptep = __srmmu_get_nocache(PTE_SIZE,
742 PTE_SIZE);
743 if (ptep == NULL)
744 early_pgtable_allocfail("pte");
745 memset(ptep, 0, PTE_SIZE);
746 pmd_set(pmdp, ptep);
748 if (start > (0xffffffffUL - PMD_SIZE))
749 break;
750 start = (start + PMD_SIZE) & PMD_MASK;
754 /* These flush types are not available on all chips... */
755 static inline unsigned long srmmu_probe(unsigned long vaddr)
757 unsigned long retval;
759 if (sparc_cpu_model != sparc_leon) {
761 vaddr &= PAGE_MASK;
762 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
763 "=r" (retval) :
764 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
765 } else {
766 retval = leon_swprobe(vaddr, NULL);
768 return retval;
772 * This is much cleaner than poking around physical address space
773 * looking at the prom's page table directly which is what most
774 * other OS's do. Yuck... this is much better.
776 static void __init srmmu_inherit_prom_mappings(unsigned long start,
777 unsigned long end)
779 unsigned long probed;
780 unsigned long addr;
781 pgd_t *pgdp;
782 pmd_t *pmdp;
783 pte_t *ptep;
784 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
786 while (start <= end) {
787 if (start == 0)
788 break; /* probably wrap around */
789 if (start == 0xfef00000)
790 start = KADB_DEBUGGER_BEGVM;
791 probed = srmmu_probe(start);
792 if (!probed) {
793 /* continue probing until we find an entry */
794 start += PAGE_SIZE;
795 continue;
798 /* A red snapper, see what it really is. */
799 what = 0;
800 addr = start - PAGE_SIZE;
802 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
803 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
804 what = 1;
807 if (!(start & ~(SRMMU_PGDIR_MASK))) {
808 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
809 what = 2;
812 pgdp = pgd_offset_k(start);
813 if (what == 2) {
814 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
815 start += SRMMU_PGDIR_SIZE;
816 continue;
818 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
819 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
820 SRMMU_PMD_TABLE_SIZE);
821 if (pmdp == NULL)
822 early_pgtable_allocfail("pmd");
823 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
824 pgd_set(__nocache_fix(pgdp), pmdp);
826 pmdp = pmd_offset(__nocache_fix(pgdp), start);
827 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
828 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
829 if (ptep == NULL)
830 early_pgtable_allocfail("pte");
831 memset(__nocache_fix(ptep), 0, PTE_SIZE);
832 pmd_set(__nocache_fix(pmdp), ptep);
834 if (what == 1) {
835 /* We bend the rule where all 16 PTPs in a pmd_t point
836 * inside the same PTE page, and we leak a perfectly
837 * good hardware PTE piece. Alternatives seem worse.
839 unsigned int x; /* Index of HW PMD in soft cluster */
840 unsigned long *val;
841 x = (start >> PMD_SHIFT) & 15;
842 val = &pmdp->pmdv[x];
843 *(unsigned long *)__nocache_fix(val) = probed;
844 start += SRMMU_REAL_PMD_SIZE;
845 continue;
847 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
848 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
849 start += PAGE_SIZE;
853 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
855 /* Create a third-level SRMMU 16MB page mapping. */
856 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
858 pgd_t *pgdp = pgd_offset_k(vaddr);
859 unsigned long big_pte;
861 big_pte = KERNEL_PTE(phys_base >> 4);
862 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
865 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
866 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
868 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
869 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
870 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
871 /* Map "low" memory only */
872 const unsigned long min_vaddr = PAGE_OFFSET;
873 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
875 if (vstart < min_vaddr || vstart >= max_vaddr)
876 return vstart;
878 if (vend > max_vaddr || vend < min_vaddr)
879 vend = max_vaddr;
881 while (vstart < vend) {
882 do_large_mapping(vstart, pstart);
883 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
885 return vstart;
888 static void __init map_kernel(void)
890 int i;
892 if (phys_base > 0) {
893 do_large_mapping(PAGE_OFFSET, phys_base);
896 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
897 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
901 void (*poke_srmmu)(void) = NULL;
903 void __init srmmu_paging_init(void)
905 int i;
906 phandle cpunode;
907 char node_str[128];
908 pgd_t *pgd;
909 pmd_t *pmd;
910 pte_t *pte;
911 unsigned long pages_avail;
913 init_mm.context = (unsigned long) NO_CONTEXT;
914 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
916 if (sparc_cpu_model == sun4d)
917 num_contexts = 65536; /* We know it is Viking */
918 else {
919 /* Find the number of contexts on the srmmu. */
920 cpunode = prom_getchild(prom_root_node);
921 num_contexts = 0;
922 while (cpunode != 0) {
923 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
924 if (!strcmp(node_str, "cpu")) {
925 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
926 break;
928 cpunode = prom_getsibling(cpunode);
932 if (!num_contexts) {
933 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
934 prom_halt();
937 pages_avail = 0;
938 last_valid_pfn = bootmem_init(&pages_avail);
940 srmmu_nocache_calcsize();
941 srmmu_nocache_init();
942 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
943 map_kernel();
945 /* ctx table has to be physically aligned to its size */
946 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
947 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
949 for (i = 0; i < num_contexts; i++)
950 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
952 flush_cache_all();
953 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
954 #ifdef CONFIG_SMP
955 /* Stop from hanging here... */
956 local_ops->tlb_all();
957 #else
958 flush_tlb_all();
959 #endif
960 poke_srmmu();
962 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
963 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
965 srmmu_allocate_ptable_skeleton(
966 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
967 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
969 pgd = pgd_offset_k(PKMAP_BASE);
970 pmd = pmd_offset(pgd, PKMAP_BASE);
971 pte = pte_offset_kernel(pmd, PKMAP_BASE);
972 pkmap_page_table = pte;
974 flush_cache_all();
975 flush_tlb_all();
977 sparc_context_init(num_contexts);
979 kmap_init();
982 unsigned long zones_size[MAX_NR_ZONES];
983 unsigned long zholes_size[MAX_NR_ZONES];
984 unsigned long npages;
985 int znum;
987 for (znum = 0; znum < MAX_NR_ZONES; znum++)
988 zones_size[znum] = zholes_size[znum] = 0;
990 npages = max_low_pfn - pfn_base;
992 zones_size[ZONE_DMA] = npages;
993 zholes_size[ZONE_DMA] = npages - pages_avail;
995 npages = highend_pfn - max_low_pfn;
996 zones_size[ZONE_HIGHMEM] = npages;
997 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
999 free_area_init_node(0, zones_size, pfn_base, zholes_size);
1003 void mmu_info(struct seq_file *m)
1005 seq_printf(m,
1006 "MMU type\t: %s\n"
1007 "contexts\t: %d\n"
1008 "nocache total\t: %ld\n"
1009 "nocache used\t: %d\n",
1010 srmmu_name,
1011 num_contexts,
1012 srmmu_nocache_size,
1013 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1016 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
1018 mm->context = NO_CONTEXT;
1019 return 0;
1022 void destroy_context(struct mm_struct *mm)
1024 unsigned long flags;
1026 if (mm->context != NO_CONTEXT) {
1027 flush_cache_mm(mm);
1028 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1029 flush_tlb_mm(mm);
1030 spin_lock_irqsave(&srmmu_context_spinlock, flags);
1031 free_context(mm->context);
1032 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1033 mm->context = NO_CONTEXT;
1037 /* Init various srmmu chip types. */
1038 static void __init srmmu_is_bad(void)
1040 prom_printf("Could not determine SRMMU chip type.\n");
1041 prom_halt();
1044 static void __init init_vac_layout(void)
1046 phandle nd;
1047 int cache_lines;
1048 char node_str[128];
1049 #ifdef CONFIG_SMP
1050 int cpu = 0;
1051 unsigned long max_size = 0;
1052 unsigned long min_line_size = 0x10000000;
1053 #endif
1055 nd = prom_getchild(prom_root_node);
1056 while ((nd = prom_getsibling(nd)) != 0) {
1057 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1058 if (!strcmp(node_str, "cpu")) {
1059 vac_line_size = prom_getint(nd, "cache-line-size");
1060 if (vac_line_size == -1) {
1061 prom_printf("can't determine cache-line-size, halting.\n");
1062 prom_halt();
1064 cache_lines = prom_getint(nd, "cache-nlines");
1065 if (cache_lines == -1) {
1066 prom_printf("can't determine cache-nlines, halting.\n");
1067 prom_halt();
1070 vac_cache_size = cache_lines * vac_line_size;
1071 #ifdef CONFIG_SMP
1072 if (vac_cache_size > max_size)
1073 max_size = vac_cache_size;
1074 if (vac_line_size < min_line_size)
1075 min_line_size = vac_line_size;
1076 //FIXME: cpus not contiguous!!
1077 cpu++;
1078 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1079 break;
1080 #else
1081 break;
1082 #endif
1085 if (nd == 0) {
1086 prom_printf("No CPU nodes found, halting.\n");
1087 prom_halt();
1089 #ifdef CONFIG_SMP
1090 vac_cache_size = max_size;
1091 vac_line_size = min_line_size;
1092 #endif
1093 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1094 (int)vac_cache_size, (int)vac_line_size);
1097 static void poke_hypersparc(void)
1099 volatile unsigned long clear;
1100 unsigned long mreg = srmmu_get_mmureg();
1102 hyper_flush_unconditional_combined();
1104 mreg &= ~(HYPERSPARC_CWENABLE);
1105 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1106 mreg |= (HYPERSPARC_CMODE);
1108 srmmu_set_mmureg(mreg);
1110 #if 0 /* XXX I think this is bad news... -DaveM */
1111 hyper_clear_all_tags();
1112 #endif
1114 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1115 hyper_flush_whole_icache();
1116 clear = srmmu_get_faddr();
1117 clear = srmmu_get_fstatus();
1120 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1121 .cache_all = hypersparc_flush_cache_all,
1122 .cache_mm = hypersparc_flush_cache_mm,
1123 .cache_page = hypersparc_flush_cache_page,
1124 .cache_range = hypersparc_flush_cache_range,
1125 .tlb_all = hypersparc_flush_tlb_all,
1126 .tlb_mm = hypersparc_flush_tlb_mm,
1127 .tlb_page = hypersparc_flush_tlb_page,
1128 .tlb_range = hypersparc_flush_tlb_range,
1129 .page_to_ram = hypersparc_flush_page_to_ram,
1130 .sig_insns = hypersparc_flush_sig_insns,
1131 .page_for_dma = hypersparc_flush_page_for_dma,
1134 static void __init init_hypersparc(void)
1136 srmmu_name = "ROSS HyperSparc";
1137 srmmu_modtype = HyperSparc;
1139 init_vac_layout();
1141 is_hypersparc = 1;
1142 sparc32_cachetlb_ops = &hypersparc_ops;
1144 poke_srmmu = poke_hypersparc;
1146 hypersparc_setup_blockops();
1149 static void poke_swift(void)
1151 unsigned long mreg;
1153 /* Clear any crap from the cache or else... */
1154 swift_flush_cache_all();
1156 /* Enable I & D caches */
1157 mreg = srmmu_get_mmureg();
1158 mreg |= (SWIFT_IE | SWIFT_DE);
1160 * The Swift branch folding logic is completely broken. At
1161 * trap time, if things are just right, if can mistakenly
1162 * think that a trap is coming from kernel mode when in fact
1163 * it is coming from user mode (it mis-executes the branch in
1164 * the trap code). So you see things like crashme completely
1165 * hosing your machine which is completely unacceptable. Turn
1166 * this shit off... nice job Fujitsu.
1168 mreg &= ~(SWIFT_BF);
1169 srmmu_set_mmureg(mreg);
1172 static const struct sparc32_cachetlb_ops swift_ops = {
1173 .cache_all = swift_flush_cache_all,
1174 .cache_mm = swift_flush_cache_mm,
1175 .cache_page = swift_flush_cache_page,
1176 .cache_range = swift_flush_cache_range,
1177 .tlb_all = swift_flush_tlb_all,
1178 .tlb_mm = swift_flush_tlb_mm,
1179 .tlb_page = swift_flush_tlb_page,
1180 .tlb_range = swift_flush_tlb_range,
1181 .page_to_ram = swift_flush_page_to_ram,
1182 .sig_insns = swift_flush_sig_insns,
1183 .page_for_dma = swift_flush_page_for_dma,
1186 #define SWIFT_MASKID_ADDR 0x10003018
1187 static void __init init_swift(void)
1189 unsigned long swift_rev;
1191 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1192 "srl %0, 0x18, %0\n\t" :
1193 "=r" (swift_rev) :
1194 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1195 srmmu_name = "Fujitsu Swift";
1196 switch (swift_rev) {
1197 case 0x11:
1198 case 0x20:
1199 case 0x23:
1200 case 0x30:
1201 srmmu_modtype = Swift_lots_o_bugs;
1202 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1204 * Gee george, I wonder why Sun is so hush hush about
1205 * this hardware bug... really braindamage stuff going
1206 * on here. However I think we can find a way to avoid
1207 * all of the workaround overhead under Linux. Basically,
1208 * any page fault can cause kernel pages to become user
1209 * accessible (the mmu gets confused and clears some of
1210 * the ACC bits in kernel ptes). Aha, sounds pretty
1211 * horrible eh? But wait, after extensive testing it appears
1212 * that if you use pgd_t level large kernel pte's (like the
1213 * 4MB pages on the Pentium) the bug does not get tripped
1214 * at all. This avoids almost all of the major overhead.
1215 * Welcome to a world where your vendor tells you to,
1216 * "apply this kernel patch" instead of "sorry for the
1217 * broken hardware, send it back and we'll give you
1218 * properly functioning parts"
1220 break;
1221 case 0x25:
1222 case 0x31:
1223 srmmu_modtype = Swift_bad_c;
1224 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1226 * You see Sun allude to this hardware bug but never
1227 * admit things directly, they'll say things like,
1228 * "the Swift chip cache problems" or similar.
1230 break;
1231 default:
1232 srmmu_modtype = Swift_ok;
1233 break;
1236 sparc32_cachetlb_ops = &swift_ops;
1237 flush_page_for_dma_global = 0;
1240 * Are you now convinced that the Swift is one of the
1241 * biggest VLSI abortions of all time? Bravo Fujitsu!
1242 * Fujitsu, the !#?!%$'d up processor people. I bet if
1243 * you examined the microcode of the Swift you'd find
1244 * XXX's all over the place.
1246 poke_srmmu = poke_swift;
1249 static void turbosparc_flush_cache_all(void)
1251 flush_user_windows();
1252 turbosparc_idflash_clear();
1255 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1257 FLUSH_BEGIN(mm)
1258 flush_user_windows();
1259 turbosparc_idflash_clear();
1260 FLUSH_END
1263 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1265 FLUSH_BEGIN(vma->vm_mm)
1266 flush_user_windows();
1267 turbosparc_idflash_clear();
1268 FLUSH_END
1271 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1273 FLUSH_BEGIN(vma->vm_mm)
1274 flush_user_windows();
1275 if (vma->vm_flags & VM_EXEC)
1276 turbosparc_flush_icache();
1277 turbosparc_flush_dcache();
1278 FLUSH_END
1281 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1282 static void turbosparc_flush_page_to_ram(unsigned long page)
1284 #ifdef TURBOSPARC_WRITEBACK
1285 volatile unsigned long clear;
1287 if (srmmu_probe(page))
1288 turbosparc_flush_page_cache(page);
1289 clear = srmmu_get_fstatus();
1290 #endif
1293 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1297 static void turbosparc_flush_page_for_dma(unsigned long page)
1299 turbosparc_flush_dcache();
1302 static void turbosparc_flush_tlb_all(void)
1304 srmmu_flush_whole_tlb();
1307 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1309 FLUSH_BEGIN(mm)
1310 srmmu_flush_whole_tlb();
1311 FLUSH_END
1314 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1316 FLUSH_BEGIN(vma->vm_mm)
1317 srmmu_flush_whole_tlb();
1318 FLUSH_END
1321 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1323 FLUSH_BEGIN(vma->vm_mm)
1324 srmmu_flush_whole_tlb();
1325 FLUSH_END
1329 static void poke_turbosparc(void)
1331 unsigned long mreg = srmmu_get_mmureg();
1332 unsigned long ccreg;
1334 /* Clear any crap from the cache or else... */
1335 turbosparc_flush_cache_all();
1336 /* Temporarily disable I & D caches */
1337 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1338 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1339 srmmu_set_mmureg(mreg);
1341 ccreg = turbosparc_get_ccreg();
1343 #ifdef TURBOSPARC_WRITEBACK
1344 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1345 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1346 /* Write-back D-cache, emulate VLSI
1347 * abortion number three, not number one */
1348 #else
1349 /* For now let's play safe, optimize later */
1350 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1351 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1352 ccreg &= ~(TURBOSPARC_uS2);
1353 /* Emulate VLSI abortion number three, not number one */
1354 #endif
1356 switch (ccreg & 7) {
1357 case 0: /* No SE cache */
1358 case 7: /* Test mode */
1359 break;
1360 default:
1361 ccreg |= (TURBOSPARC_SCENABLE);
1363 turbosparc_set_ccreg(ccreg);
1365 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1366 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1367 srmmu_set_mmureg(mreg);
1370 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1371 .cache_all = turbosparc_flush_cache_all,
1372 .cache_mm = turbosparc_flush_cache_mm,
1373 .cache_page = turbosparc_flush_cache_page,
1374 .cache_range = turbosparc_flush_cache_range,
1375 .tlb_all = turbosparc_flush_tlb_all,
1376 .tlb_mm = turbosparc_flush_tlb_mm,
1377 .tlb_page = turbosparc_flush_tlb_page,
1378 .tlb_range = turbosparc_flush_tlb_range,
1379 .page_to_ram = turbosparc_flush_page_to_ram,
1380 .sig_insns = turbosparc_flush_sig_insns,
1381 .page_for_dma = turbosparc_flush_page_for_dma,
1384 static void __init init_turbosparc(void)
1386 srmmu_name = "Fujitsu TurboSparc";
1387 srmmu_modtype = TurboSparc;
1388 sparc32_cachetlb_ops = &turbosparc_ops;
1389 poke_srmmu = poke_turbosparc;
1392 static void poke_tsunami(void)
1394 unsigned long mreg = srmmu_get_mmureg();
1396 tsunami_flush_icache();
1397 tsunami_flush_dcache();
1398 mreg &= ~TSUNAMI_ITD;
1399 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1400 srmmu_set_mmureg(mreg);
1403 static const struct sparc32_cachetlb_ops tsunami_ops = {
1404 .cache_all = tsunami_flush_cache_all,
1405 .cache_mm = tsunami_flush_cache_mm,
1406 .cache_page = tsunami_flush_cache_page,
1407 .cache_range = tsunami_flush_cache_range,
1408 .tlb_all = tsunami_flush_tlb_all,
1409 .tlb_mm = tsunami_flush_tlb_mm,
1410 .tlb_page = tsunami_flush_tlb_page,
1411 .tlb_range = tsunami_flush_tlb_range,
1412 .page_to_ram = tsunami_flush_page_to_ram,
1413 .sig_insns = tsunami_flush_sig_insns,
1414 .page_for_dma = tsunami_flush_page_for_dma,
1417 static void __init init_tsunami(void)
1420 * Tsunami's pretty sane, Sun and TI actually got it
1421 * somewhat right this time. Fujitsu should have
1422 * taken some lessons from them.
1425 srmmu_name = "TI Tsunami";
1426 srmmu_modtype = Tsunami;
1427 sparc32_cachetlb_ops = &tsunami_ops;
1428 poke_srmmu = poke_tsunami;
1430 tsunami_setup_blockops();
1433 static void poke_viking(void)
1435 unsigned long mreg = srmmu_get_mmureg();
1436 static int smp_catch;
1438 if (viking_mxcc_present) {
1439 unsigned long mxcc_control = mxcc_get_creg();
1441 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1442 mxcc_control &= ~(MXCC_CTL_RRC);
1443 mxcc_set_creg(mxcc_control);
1446 * We don't need memory parity checks.
1447 * XXX This is a mess, have to dig out later. ecd.
1448 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1451 /* We do cache ptables on MXCC. */
1452 mreg |= VIKING_TCENABLE;
1453 } else {
1454 unsigned long bpreg;
1456 mreg &= ~(VIKING_TCENABLE);
1457 if (smp_catch++) {
1458 /* Must disable mixed-cmd mode here for other cpu's. */
1459 bpreg = viking_get_bpreg();
1460 bpreg &= ~(VIKING_ACTION_MIX);
1461 viking_set_bpreg(bpreg);
1463 /* Just in case PROM does something funny. */
1464 msi_set_sync();
1468 mreg |= VIKING_SPENABLE;
1469 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1470 mreg |= VIKING_SBENABLE;
1471 mreg &= ~(VIKING_ACENABLE);
1472 srmmu_set_mmureg(mreg);
1475 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1476 .cache_all = viking_flush_cache_all,
1477 .cache_mm = viking_flush_cache_mm,
1478 .cache_page = viking_flush_cache_page,
1479 .cache_range = viking_flush_cache_range,
1480 .tlb_all = viking_flush_tlb_all,
1481 .tlb_mm = viking_flush_tlb_mm,
1482 .tlb_page = viking_flush_tlb_page,
1483 .tlb_range = viking_flush_tlb_range,
1484 .page_to_ram = viking_flush_page_to_ram,
1485 .sig_insns = viking_flush_sig_insns,
1486 .page_for_dma = viking_flush_page_for_dma,
1489 #ifdef CONFIG_SMP
1490 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1491 * perform the local TLB flush and all the other cpus will see it.
1492 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1493 * that requires that we add some synchronization to these flushes.
1495 * The bug is that the fifo which keeps track of all the pending TLB
1496 * broadcasts in the system is an entry or two too small, so if we
1497 * have too many going at once we'll overflow that fifo and lose a TLB
1498 * flush resulting in corruption.
1500 * Our workaround is to take a global spinlock around the TLB flushes,
1501 * which guarentees we won't ever have too many pending. It's a big
1502 * hammer, but a semaphore like system to make sure we only have N TLB
1503 * flushes going at once will require SMP locking anyways so there's
1504 * no real value in trying any harder than this.
1506 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1507 .cache_all = viking_flush_cache_all,
1508 .cache_mm = viking_flush_cache_mm,
1509 .cache_page = viking_flush_cache_page,
1510 .cache_range = viking_flush_cache_range,
1511 .tlb_all = sun4dsmp_flush_tlb_all,
1512 .tlb_mm = sun4dsmp_flush_tlb_mm,
1513 .tlb_page = sun4dsmp_flush_tlb_page,
1514 .tlb_range = sun4dsmp_flush_tlb_range,
1515 .page_to_ram = viking_flush_page_to_ram,
1516 .sig_insns = viking_flush_sig_insns,
1517 .page_for_dma = viking_flush_page_for_dma,
1519 #endif
1521 static void __init init_viking(void)
1523 unsigned long mreg = srmmu_get_mmureg();
1525 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1526 if (mreg & VIKING_MMODE) {
1527 srmmu_name = "TI Viking";
1528 viking_mxcc_present = 0;
1529 msi_set_sync();
1532 * We need this to make sure old viking takes no hits
1533 * on it's cache for dma snoops to workaround the
1534 * "load from non-cacheable memory" interrupt bug.
1535 * This is only necessary because of the new way in
1536 * which we use the IOMMU.
1538 viking_ops.page_for_dma = viking_flush_page;
1539 #ifdef CONFIG_SMP
1540 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1541 #endif
1542 flush_page_for_dma_global = 0;
1543 } else {
1544 srmmu_name = "TI Viking/MXCC";
1545 viking_mxcc_present = 1;
1546 srmmu_cache_pagetables = 1;
1549 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1550 &viking_ops;
1551 #ifdef CONFIG_SMP
1552 if (sparc_cpu_model == sun4d)
1553 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1554 &viking_sun4d_smp_ops;
1555 #endif
1557 poke_srmmu = poke_viking;
1560 /* Probe for the srmmu chip version. */
1561 static void __init get_srmmu_type(void)
1563 unsigned long mreg, psr;
1564 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1566 srmmu_modtype = SRMMU_INVAL_MOD;
1567 hwbug_bitmask = 0;
1569 mreg = srmmu_get_mmureg(); psr = get_psr();
1570 mod_typ = (mreg & 0xf0000000) >> 28;
1571 mod_rev = (mreg & 0x0f000000) >> 24;
1572 psr_typ = (psr >> 28) & 0xf;
1573 psr_vers = (psr >> 24) & 0xf;
1575 /* First, check for sparc-leon. */
1576 if (sparc_cpu_model == sparc_leon) {
1577 init_leon();
1578 return;
1581 /* Second, check for HyperSparc or Cypress. */
1582 if (mod_typ == 1) {
1583 switch (mod_rev) {
1584 case 7:
1585 /* UP or MP Hypersparc */
1586 init_hypersparc();
1587 break;
1588 case 0:
1589 case 2:
1590 case 10:
1591 case 11:
1592 case 12:
1593 case 13:
1594 case 14:
1595 case 15:
1596 default:
1597 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1598 prom_halt();
1599 break;
1601 return;
1604 /* Now Fujitsu TurboSparc. It might happen that it is
1605 * in Swift emulation mode, so we will check later...
1607 if (psr_typ == 0 && psr_vers == 5) {
1608 init_turbosparc();
1609 return;
1612 /* Next check for Fujitsu Swift. */
1613 if (psr_typ == 0 && psr_vers == 4) {
1614 phandle cpunode;
1615 char node_str[128];
1617 /* Look if it is not a TurboSparc emulating Swift... */
1618 cpunode = prom_getchild(prom_root_node);
1619 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1620 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1621 if (!strcmp(node_str, "cpu")) {
1622 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1623 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1624 init_turbosparc();
1625 return;
1627 break;
1631 init_swift();
1632 return;
1635 /* Now the Viking family of srmmu. */
1636 if (psr_typ == 4 &&
1637 ((psr_vers == 0) ||
1638 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1639 init_viking();
1640 return;
1643 /* Finally the Tsunami. */
1644 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1645 init_tsunami();
1646 return;
1649 /* Oh well */
1650 srmmu_is_bad();
1653 #ifdef CONFIG_SMP
1654 /* Local cross-calls. */
1655 static void smp_flush_page_for_dma(unsigned long page)
1657 xc1((smpfunc_t) local_ops->page_for_dma, page);
1658 local_ops->page_for_dma(page);
1661 static void smp_flush_cache_all(void)
1663 xc0((smpfunc_t) local_ops->cache_all);
1664 local_ops->cache_all();
1667 static void smp_flush_tlb_all(void)
1669 xc0((smpfunc_t) local_ops->tlb_all);
1670 local_ops->tlb_all();
1673 static void smp_flush_cache_mm(struct mm_struct *mm)
1675 if (mm->context != NO_CONTEXT) {
1676 cpumask_t cpu_mask;
1677 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1678 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1679 if (!cpumask_empty(&cpu_mask))
1680 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1681 local_ops->cache_mm(mm);
1685 static void smp_flush_tlb_mm(struct mm_struct *mm)
1687 if (mm->context != NO_CONTEXT) {
1688 cpumask_t cpu_mask;
1689 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1690 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1691 if (!cpumask_empty(&cpu_mask)) {
1692 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1693 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1694 cpumask_copy(mm_cpumask(mm),
1695 cpumask_of(smp_processor_id()));
1697 local_ops->tlb_mm(mm);
1701 static void smp_flush_cache_range(struct vm_area_struct *vma,
1702 unsigned long start,
1703 unsigned long end)
1705 struct mm_struct *mm = vma->vm_mm;
1707 if (mm->context != NO_CONTEXT) {
1708 cpumask_t cpu_mask;
1709 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1710 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1711 if (!cpumask_empty(&cpu_mask))
1712 xc3((smpfunc_t) local_ops->cache_range,
1713 (unsigned long) vma, start, end);
1714 local_ops->cache_range(vma, start, end);
1718 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1719 unsigned long start,
1720 unsigned long end)
1722 struct mm_struct *mm = vma->vm_mm;
1724 if (mm->context != NO_CONTEXT) {
1725 cpumask_t cpu_mask;
1726 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1727 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1728 if (!cpumask_empty(&cpu_mask))
1729 xc3((smpfunc_t) local_ops->tlb_range,
1730 (unsigned long) vma, start, end);
1731 local_ops->tlb_range(vma, start, end);
1735 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1737 struct mm_struct *mm = vma->vm_mm;
1739 if (mm->context != NO_CONTEXT) {
1740 cpumask_t cpu_mask;
1741 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1742 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1743 if (!cpumask_empty(&cpu_mask))
1744 xc2((smpfunc_t) local_ops->cache_page,
1745 (unsigned long) vma, page);
1746 local_ops->cache_page(vma, page);
1750 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1752 struct mm_struct *mm = vma->vm_mm;
1754 if (mm->context != NO_CONTEXT) {
1755 cpumask_t cpu_mask;
1756 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1757 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1758 if (!cpumask_empty(&cpu_mask))
1759 xc2((smpfunc_t) local_ops->tlb_page,
1760 (unsigned long) vma, page);
1761 local_ops->tlb_page(vma, page);
1765 static void smp_flush_page_to_ram(unsigned long page)
1767 /* Current theory is that those who call this are the one's
1768 * who have just dirtied their cache with the pages contents
1769 * in kernel space, therefore we only run this on local cpu.
1771 * XXX This experiment failed, research further... -DaveM
1773 #if 1
1774 xc1((smpfunc_t) local_ops->page_to_ram, page);
1775 #endif
1776 local_ops->page_to_ram(page);
1779 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1781 cpumask_t cpu_mask;
1782 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1783 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1784 if (!cpumask_empty(&cpu_mask))
1785 xc2((smpfunc_t) local_ops->sig_insns,
1786 (unsigned long) mm, insn_addr);
1787 local_ops->sig_insns(mm, insn_addr);
1790 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1791 .cache_all = smp_flush_cache_all,
1792 .cache_mm = smp_flush_cache_mm,
1793 .cache_page = smp_flush_cache_page,
1794 .cache_range = smp_flush_cache_range,
1795 .tlb_all = smp_flush_tlb_all,
1796 .tlb_mm = smp_flush_tlb_mm,
1797 .tlb_page = smp_flush_tlb_page,
1798 .tlb_range = smp_flush_tlb_range,
1799 .page_to_ram = smp_flush_page_to_ram,
1800 .sig_insns = smp_flush_sig_insns,
1801 .page_for_dma = smp_flush_page_for_dma,
1803 #endif
1805 /* Load up routines and constants for sun4m and sun4d mmu */
1806 void __init load_mmu(void)
1808 /* Functions */
1809 get_srmmu_type();
1811 #ifdef CONFIG_SMP
1812 /* El switcheroo... */
1813 local_ops = sparc32_cachetlb_ops;
1815 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1816 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1817 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1818 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1819 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1822 if (poke_srmmu == poke_viking) {
1823 /* Avoid unnecessary cross calls. */
1824 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1825 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1826 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1827 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1829 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1830 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1831 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1834 /* It really is const after this point. */
1835 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1836 &smp_cachetlb_ops;
1837 #endif
1839 if (sparc_cpu_model == sun4d)
1840 ld_mmu_iounit();
1841 else
1842 ld_mmu_iommu();
1843 #ifdef CONFIG_SMP
1844 if (sparc_cpu_model == sun4d)
1845 sun4d_init_smp();
1846 else if (sparc_cpu_model == sparc_leon)
1847 leon_init_smp();
1848 else
1849 sun4m_init_smp();
1850 #endif