2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_private2: identifies the last component page
28 * PG_owner_priv_1: indentifies the huge component page
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/sched.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/pagemap.h>
57 #define ZSPAGE_MAGIC 0x58
60 * This must be power of 2 and greater than of equal to sizeof(link_free).
61 * These two conditions ensure that any 'struct link_free' itself doesn't
62 * span more than 1 page which avoids complex case of mapping 2 pages simply
63 * to restore link_free pointer values.
68 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
69 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
71 #define ZS_MAX_ZSPAGE_ORDER 2
72 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
74 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77 * Object location (<PFN>, <obj_idx>) is encoded as
78 * as single (unsigned long) handle value.
80 * Note that object index <obj_idx> starts from 0.
82 * This is made more complicated by various memory models and PAE.
85 #ifndef MAX_PHYSMEM_BITS
86 #ifdef CONFIG_HIGHMEM64G
87 #define MAX_PHYSMEM_BITS 36
88 #else /* !CONFIG_HIGHMEM64G */
90 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93 #define MAX_PHYSMEM_BITS BITS_PER_LONG
96 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
99 * Memory for allocating for handle keeps object position by
100 * encoding <page, obj_idx> and the encoded value has a room
101 * in least bit(ie, look at obj_to_location).
102 * We use the bit to synchronize between object access by
103 * user and migration.
105 #define HANDLE_PIN_BIT 0
108 * Head in allocated object should have OBJ_ALLOCATED_TAG
109 * to identify the object was allocated or not.
110 * It's okay to add the status bit in the least bit because
111 * header keeps handle which is 4byte-aligned address so we
112 * have room for two bit at least.
114 #define OBJ_ALLOCATED_TAG 1
115 #define OBJ_TAG_BITS 1
116 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
117 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
119 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
120 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
121 #define ZS_MIN_ALLOC_SIZE \
122 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
123 /* each chunk includes extra space to keep handle */
124 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
127 * On systems with 4K page size, this gives 255 size classes! There is a
129 * - Large number of size classes is potentially wasteful as free page are
130 * spread across these classes
131 * - Small number of size classes causes large internal fragmentation
132 * - Probably its better to use specific size classes (empirically
133 * determined). NOTE: all those class sizes must be set as multiple of
134 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
136 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
139 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
141 enum fullness_group
{
159 struct zs_size_stat
{
160 unsigned long objs
[NR_ZS_STAT_TYPE
];
163 #ifdef CONFIG_ZSMALLOC_STAT
164 static struct dentry
*zs_stat_root
;
167 #ifdef CONFIG_COMPACTION
168 static struct vfsmount
*zsmalloc_mnt
;
172 * number of size_classes
174 static int zs_size_classes
;
177 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
179 * n = number of allocated objects
180 * N = total number of objects zspage can store
181 * f = fullness_threshold_frac
183 * Similarly, we assign zspage to:
184 * ZS_ALMOST_FULL when n > N / f
185 * ZS_EMPTY when n == 0
186 * ZS_FULL when n == N
188 * (see: fix_fullness_group())
190 static const int fullness_threshold_frac
= 4;
194 struct list_head fullness_list
[NR_ZS_FULLNESS
];
196 * Size of objects stored in this class. Must be multiple
201 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
202 int pages_per_zspage
;
205 struct zs_size_stat stats
;
208 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
209 static void SetPageHugeObject(struct page
*page
)
211 SetPageOwnerPriv1(page
);
214 static void ClearPageHugeObject(struct page
*page
)
216 ClearPageOwnerPriv1(page
);
219 static int PageHugeObject(struct page
*page
)
221 return PageOwnerPriv1(page
);
225 * Placed within free objects to form a singly linked list.
226 * For every zspage, zspage->freeobj gives head of this list.
228 * This must be power of 2 and less than or equal to ZS_ALIGN
234 * It's valid for non-allocated object
238 * Handle of allocated object.
240 unsigned long handle
;
247 struct size_class
**size_class
;
248 struct kmem_cache
*handle_cachep
;
249 struct kmem_cache
*zspage_cachep
;
251 atomic_long_t pages_allocated
;
253 struct zs_pool_stats stats
;
255 /* Compact classes */
256 struct shrinker shrinker
;
258 * To signify that register_shrinker() was successful
259 * and unregister_shrinker() will not Oops.
261 bool shrinker_enabled
;
262 #ifdef CONFIG_ZSMALLOC_STAT
263 struct dentry
*stat_dentry
;
265 #ifdef CONFIG_COMPACTION
267 struct work_struct free_work
;
272 * A zspage's class index and fullness group
273 * are encoded in its (first)page->mapping
275 #define FULLNESS_BITS 2
277 #define ISOLATED_BITS 3
278 #define MAGIC_VAL_BITS 8
282 unsigned int fullness
:FULLNESS_BITS
;
283 unsigned int class:CLASS_BITS
;
284 unsigned int isolated
:ISOLATED_BITS
;
285 unsigned int magic
:MAGIC_VAL_BITS
;
288 unsigned int freeobj
;
289 struct page
*first_page
;
290 struct list_head list
; /* fullness list */
291 #ifdef CONFIG_COMPACTION
296 struct mapping_area
{
297 #ifdef CONFIG_PGTABLE_MAPPING
298 struct vm_struct
*vm
; /* vm area for mapping object that span pages */
300 char *vm_buf
; /* copy buffer for objects that span pages */
302 char *vm_addr
; /* address of kmap_atomic()'ed pages */
303 enum zs_mapmode vm_mm
; /* mapping mode */
306 #ifdef CONFIG_COMPACTION
307 static int zs_register_migration(struct zs_pool
*pool
);
308 static void zs_unregister_migration(struct zs_pool
*pool
);
309 static void migrate_lock_init(struct zspage
*zspage
);
310 static void migrate_read_lock(struct zspage
*zspage
);
311 static void migrate_read_unlock(struct zspage
*zspage
);
312 static void kick_deferred_free(struct zs_pool
*pool
);
313 static void init_deferred_free(struct zs_pool
*pool
);
314 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
);
316 static int zsmalloc_mount(void) { return 0; }
317 static void zsmalloc_unmount(void) {}
318 static int zs_register_migration(struct zs_pool
*pool
) { return 0; }
319 static void zs_unregister_migration(struct zs_pool
*pool
) {}
320 static void migrate_lock_init(struct zspage
*zspage
) {}
321 static void migrate_read_lock(struct zspage
*zspage
) {}
322 static void migrate_read_unlock(struct zspage
*zspage
) {}
323 static void kick_deferred_free(struct zs_pool
*pool
) {}
324 static void init_deferred_free(struct zs_pool
*pool
) {}
325 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
) {}
328 static int create_cache(struct zs_pool
*pool
)
330 pool
->handle_cachep
= kmem_cache_create("zs_handle", ZS_HANDLE_SIZE
,
332 if (!pool
->handle_cachep
)
335 pool
->zspage_cachep
= kmem_cache_create("zspage", sizeof(struct zspage
),
337 if (!pool
->zspage_cachep
) {
338 kmem_cache_destroy(pool
->handle_cachep
);
339 pool
->handle_cachep
= NULL
;
346 static void destroy_cache(struct zs_pool
*pool
)
348 kmem_cache_destroy(pool
->handle_cachep
);
349 kmem_cache_destroy(pool
->zspage_cachep
);
352 static unsigned long cache_alloc_handle(struct zs_pool
*pool
, gfp_t gfp
)
354 return (unsigned long)kmem_cache_alloc(pool
->handle_cachep
,
355 gfp
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
358 static void cache_free_handle(struct zs_pool
*pool
, unsigned long handle
)
360 kmem_cache_free(pool
->handle_cachep
, (void *)handle
);
363 static struct zspage
*cache_alloc_zspage(struct zs_pool
*pool
, gfp_t flags
)
365 return kmem_cache_alloc(pool
->zspage_cachep
,
366 flags
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
369 static void cache_free_zspage(struct zs_pool
*pool
, struct zspage
*zspage
)
371 kmem_cache_free(pool
->zspage_cachep
, zspage
);
374 static void record_obj(unsigned long handle
, unsigned long obj
)
377 * lsb of @obj represents handle lock while other bits
378 * represent object value the handle is pointing so
379 * updating shouldn't do store tearing.
381 WRITE_ONCE(*(unsigned long *)handle
, obj
);
388 static void *zs_zpool_create(const char *name
, gfp_t gfp
,
389 const struct zpool_ops
*zpool_ops
,
393 * Ignore global gfp flags: zs_malloc() may be invoked from
394 * different contexts and its caller must provide a valid
397 return zs_create_pool(name
);
400 static void zs_zpool_destroy(void *pool
)
402 zs_destroy_pool(pool
);
405 static int zs_zpool_malloc(void *pool
, size_t size
, gfp_t gfp
,
406 unsigned long *handle
)
408 *handle
= zs_malloc(pool
, size
, gfp
);
409 return *handle
? 0 : -1;
411 static void zs_zpool_free(void *pool
, unsigned long handle
)
413 zs_free(pool
, handle
);
416 static int zs_zpool_shrink(void *pool
, unsigned int pages
,
417 unsigned int *reclaimed
)
422 static void *zs_zpool_map(void *pool
, unsigned long handle
,
423 enum zpool_mapmode mm
)
425 enum zs_mapmode zs_mm
;
434 case ZPOOL_MM_RW
: /* fallthru */
440 return zs_map_object(pool
, handle
, zs_mm
);
442 static void zs_zpool_unmap(void *pool
, unsigned long handle
)
444 zs_unmap_object(pool
, handle
);
447 static u64
zs_zpool_total_size(void *pool
)
449 return zs_get_total_pages(pool
) << PAGE_SHIFT
;
452 static struct zpool_driver zs_zpool_driver
= {
454 .owner
= THIS_MODULE
,
455 .create
= zs_zpool_create
,
456 .destroy
= zs_zpool_destroy
,
457 .malloc
= zs_zpool_malloc
,
458 .free
= zs_zpool_free
,
459 .shrink
= zs_zpool_shrink
,
461 .unmap
= zs_zpool_unmap
,
462 .total_size
= zs_zpool_total_size
,
465 MODULE_ALIAS("zpool-zsmalloc");
466 #endif /* CONFIG_ZPOOL */
468 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
469 static DEFINE_PER_CPU(struct mapping_area
, zs_map_area
);
471 static bool is_zspage_isolated(struct zspage
*zspage
)
473 return zspage
->isolated
;
476 static int is_first_page(struct page
*page
)
478 return PagePrivate(page
);
481 /* Protected by class->lock */
482 static inline int get_zspage_inuse(struct zspage
*zspage
)
484 return zspage
->inuse
;
487 static inline void set_zspage_inuse(struct zspage
*zspage
, int val
)
492 static inline void mod_zspage_inuse(struct zspage
*zspage
, int val
)
494 zspage
->inuse
+= val
;
497 static inline struct page
*get_first_page(struct zspage
*zspage
)
499 struct page
*first_page
= zspage
->first_page
;
501 VM_BUG_ON_PAGE(!is_first_page(first_page
), first_page
);
505 static inline int get_first_obj_offset(struct page
*page
)
510 static inline void set_first_obj_offset(struct page
*page
, int offset
)
512 page
->units
= offset
;
515 static inline unsigned int get_freeobj(struct zspage
*zspage
)
517 return zspage
->freeobj
;
520 static inline void set_freeobj(struct zspage
*zspage
, unsigned int obj
)
522 zspage
->freeobj
= obj
;
525 static void get_zspage_mapping(struct zspage
*zspage
,
526 unsigned int *class_idx
,
527 enum fullness_group
*fullness
)
529 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
531 *fullness
= zspage
->fullness
;
532 *class_idx
= zspage
->class;
535 static void set_zspage_mapping(struct zspage
*zspage
,
536 unsigned int class_idx
,
537 enum fullness_group fullness
)
539 zspage
->class = class_idx
;
540 zspage
->fullness
= fullness
;
544 * zsmalloc divides the pool into various size classes where each
545 * class maintains a list of zspages where each zspage is divided
546 * into equal sized chunks. Each allocation falls into one of these
547 * classes depending on its size. This function returns index of the
548 * size class which has chunk size big enough to hold the give size.
550 static int get_size_class_index(int size
)
554 if (likely(size
> ZS_MIN_ALLOC_SIZE
))
555 idx
= DIV_ROUND_UP(size
- ZS_MIN_ALLOC_SIZE
,
556 ZS_SIZE_CLASS_DELTA
);
558 return min(zs_size_classes
- 1, idx
);
561 static inline void zs_stat_inc(struct size_class
*class,
562 enum zs_stat_type type
, unsigned long cnt
)
564 class->stats
.objs
[type
] += cnt
;
567 static inline void zs_stat_dec(struct size_class
*class,
568 enum zs_stat_type type
, unsigned long cnt
)
570 class->stats
.objs
[type
] -= cnt
;
573 static inline unsigned long zs_stat_get(struct size_class
*class,
574 enum zs_stat_type type
)
576 return class->stats
.objs
[type
];
579 #ifdef CONFIG_ZSMALLOC_STAT
581 static void __init
zs_stat_init(void)
583 if (!debugfs_initialized()) {
584 pr_warn("debugfs not available, stat dir not created\n");
588 zs_stat_root
= debugfs_create_dir("zsmalloc", NULL
);
590 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
593 static void __exit
zs_stat_exit(void)
595 debugfs_remove_recursive(zs_stat_root
);
598 static unsigned long zs_can_compact(struct size_class
*class);
600 static int zs_stats_size_show(struct seq_file
*s
, void *v
)
603 struct zs_pool
*pool
= s
->private;
604 struct size_class
*class;
606 unsigned long class_almost_full
, class_almost_empty
;
607 unsigned long obj_allocated
, obj_used
, pages_used
, freeable
;
608 unsigned long total_class_almost_full
= 0, total_class_almost_empty
= 0;
609 unsigned long total_objs
= 0, total_used_objs
= 0, total_pages
= 0;
610 unsigned long total_freeable
= 0;
612 seq_printf(s
, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
613 "class", "size", "almost_full", "almost_empty",
614 "obj_allocated", "obj_used", "pages_used",
615 "pages_per_zspage", "freeable");
617 for (i
= 0; i
< zs_size_classes
; i
++) {
618 class = pool
->size_class
[i
];
620 if (class->index
!= i
)
623 spin_lock(&class->lock
);
624 class_almost_full
= zs_stat_get(class, CLASS_ALMOST_FULL
);
625 class_almost_empty
= zs_stat_get(class, CLASS_ALMOST_EMPTY
);
626 obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
627 obj_used
= zs_stat_get(class, OBJ_USED
);
628 freeable
= zs_can_compact(class);
629 spin_unlock(&class->lock
);
631 objs_per_zspage
= class->objs_per_zspage
;
632 pages_used
= obj_allocated
/ objs_per_zspage
*
633 class->pages_per_zspage
;
635 seq_printf(s
, " %5u %5u %11lu %12lu %13lu"
636 " %10lu %10lu %16d %8lu\n",
637 i
, class->size
, class_almost_full
, class_almost_empty
,
638 obj_allocated
, obj_used
, pages_used
,
639 class->pages_per_zspage
, freeable
);
641 total_class_almost_full
+= class_almost_full
;
642 total_class_almost_empty
+= class_almost_empty
;
643 total_objs
+= obj_allocated
;
644 total_used_objs
+= obj_used
;
645 total_pages
+= pages_used
;
646 total_freeable
+= freeable
;
650 seq_printf(s
, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
651 "Total", "", total_class_almost_full
,
652 total_class_almost_empty
, total_objs
,
653 total_used_objs
, total_pages
, "", total_freeable
);
658 static int zs_stats_size_open(struct inode
*inode
, struct file
*file
)
660 return single_open(file
, zs_stats_size_show
, inode
->i_private
);
663 static const struct file_operations zs_stat_size_ops
= {
664 .open
= zs_stats_size_open
,
667 .release
= single_release
,
670 static void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
672 struct dentry
*entry
;
675 pr_warn("no root stat dir, not creating <%s> stat dir\n", name
);
679 entry
= debugfs_create_dir(name
, zs_stat_root
);
681 pr_warn("debugfs dir <%s> creation failed\n", name
);
684 pool
->stat_dentry
= entry
;
686 entry
= debugfs_create_file("classes", S_IFREG
| S_IRUGO
,
687 pool
->stat_dentry
, pool
, &zs_stat_size_ops
);
689 pr_warn("%s: debugfs file entry <%s> creation failed\n",
691 debugfs_remove_recursive(pool
->stat_dentry
);
692 pool
->stat_dentry
= NULL
;
696 static void zs_pool_stat_destroy(struct zs_pool
*pool
)
698 debugfs_remove_recursive(pool
->stat_dentry
);
701 #else /* CONFIG_ZSMALLOC_STAT */
702 static void __init
zs_stat_init(void)
706 static void __exit
zs_stat_exit(void)
710 static inline void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
714 static inline void zs_pool_stat_destroy(struct zs_pool
*pool
)
721 * For each size class, zspages are divided into different groups
722 * depending on how "full" they are. This was done so that we could
723 * easily find empty or nearly empty zspages when we try to shrink
724 * the pool (not yet implemented). This function returns fullness
725 * status of the given page.
727 static enum fullness_group
get_fullness_group(struct size_class
*class,
728 struct zspage
*zspage
)
730 int inuse
, objs_per_zspage
;
731 enum fullness_group fg
;
733 inuse
= get_zspage_inuse(zspage
);
734 objs_per_zspage
= class->objs_per_zspage
;
738 else if (inuse
== objs_per_zspage
)
740 else if (inuse
<= 3 * objs_per_zspage
/ fullness_threshold_frac
)
741 fg
= ZS_ALMOST_EMPTY
;
749 * Each size class maintains various freelists and zspages are assigned
750 * to one of these freelists based on the number of live objects they
751 * have. This functions inserts the given zspage into the freelist
752 * identified by <class, fullness_group>.
754 static void insert_zspage(struct size_class
*class,
755 struct zspage
*zspage
,
756 enum fullness_group fullness
)
760 zs_stat_inc(class, fullness
, 1);
761 head
= list_first_entry_or_null(&class->fullness_list
[fullness
],
762 struct zspage
, list
);
764 * We want to see more ZS_FULL pages and less almost empty/full.
765 * Put pages with higher ->inuse first.
768 if (get_zspage_inuse(zspage
) < get_zspage_inuse(head
)) {
769 list_add(&zspage
->list
, &head
->list
);
773 list_add(&zspage
->list
, &class->fullness_list
[fullness
]);
777 * This function removes the given zspage from the freelist identified
778 * by <class, fullness_group>.
780 static void remove_zspage(struct size_class
*class,
781 struct zspage
*zspage
,
782 enum fullness_group fullness
)
784 VM_BUG_ON(list_empty(&class->fullness_list
[fullness
]));
785 VM_BUG_ON(is_zspage_isolated(zspage
));
787 list_del_init(&zspage
->list
);
788 zs_stat_dec(class, fullness
, 1);
792 * Each size class maintains zspages in different fullness groups depending
793 * on the number of live objects they contain. When allocating or freeing
794 * objects, the fullness status of the page can change, say, from ALMOST_FULL
795 * to ALMOST_EMPTY when freeing an object. This function checks if such
796 * a status change has occurred for the given page and accordingly moves the
797 * page from the freelist of the old fullness group to that of the new
800 static enum fullness_group
fix_fullness_group(struct size_class
*class,
801 struct zspage
*zspage
)
804 enum fullness_group currfg
, newfg
;
806 get_zspage_mapping(zspage
, &class_idx
, &currfg
);
807 newfg
= get_fullness_group(class, zspage
);
811 if (!is_zspage_isolated(zspage
)) {
812 remove_zspage(class, zspage
, currfg
);
813 insert_zspage(class, zspage
, newfg
);
816 set_zspage_mapping(zspage
, class_idx
, newfg
);
823 * We have to decide on how many pages to link together
824 * to form a zspage for each size class. This is important
825 * to reduce wastage due to unusable space left at end of
826 * each zspage which is given as:
827 * wastage = Zp % class_size
828 * usage = Zp - wastage
829 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
831 * For example, for size class of 3/8 * PAGE_SIZE, we should
832 * link together 3 PAGE_SIZE sized pages to form a zspage
833 * since then we can perfectly fit in 8 such objects.
835 static int get_pages_per_zspage(int class_size
)
837 int i
, max_usedpc
= 0;
838 /* zspage order which gives maximum used size per KB */
839 int max_usedpc_order
= 1;
841 for (i
= 1; i
<= ZS_MAX_PAGES_PER_ZSPAGE
; i
++) {
845 zspage_size
= i
* PAGE_SIZE
;
846 waste
= zspage_size
% class_size
;
847 usedpc
= (zspage_size
- waste
) * 100 / zspage_size
;
849 if (usedpc
> max_usedpc
) {
851 max_usedpc_order
= i
;
855 return max_usedpc_order
;
858 static struct zspage
*get_zspage(struct page
*page
)
860 struct zspage
*zspage
= (struct zspage
*)page
->private;
862 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
866 static struct page
*get_next_page(struct page
*page
)
868 if (unlikely(PageHugeObject(page
)))
871 return page
->freelist
;
875 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
876 * @page: page object resides in zspage
877 * @obj_idx: object index
879 static void obj_to_location(unsigned long obj
, struct page
**page
,
880 unsigned int *obj_idx
)
882 obj
>>= OBJ_TAG_BITS
;
883 *page
= pfn_to_page(obj
>> OBJ_INDEX_BITS
);
884 *obj_idx
= (obj
& OBJ_INDEX_MASK
);
888 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
889 * @page: page object resides in zspage
890 * @obj_idx: object index
892 static unsigned long location_to_obj(struct page
*page
, unsigned int obj_idx
)
896 obj
= page_to_pfn(page
) << OBJ_INDEX_BITS
;
897 obj
|= obj_idx
& OBJ_INDEX_MASK
;
898 obj
<<= OBJ_TAG_BITS
;
903 static unsigned long handle_to_obj(unsigned long handle
)
905 return *(unsigned long *)handle
;
908 static unsigned long obj_to_head(struct page
*page
, void *obj
)
910 if (unlikely(PageHugeObject(page
))) {
911 VM_BUG_ON_PAGE(!is_first_page(page
), page
);
914 return *(unsigned long *)obj
;
917 static inline int testpin_tag(unsigned long handle
)
919 return bit_spin_is_locked(HANDLE_PIN_BIT
, (unsigned long *)handle
);
922 static inline int trypin_tag(unsigned long handle
)
924 return bit_spin_trylock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
927 static void pin_tag(unsigned long handle
)
929 bit_spin_lock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
932 static void unpin_tag(unsigned long handle
)
934 bit_spin_unlock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
937 static void reset_page(struct page
*page
)
939 __ClearPageMovable(page
);
940 ClearPagePrivate(page
);
941 ClearPagePrivate2(page
);
942 set_page_private(page
, 0);
943 page_mapcount_reset(page
);
944 ClearPageHugeObject(page
);
945 page
->freelist
= NULL
;
949 * To prevent zspage destroy during migration, zspage freeing should
950 * hold locks of all pages in the zspage.
952 void lock_zspage(struct zspage
*zspage
)
954 struct page
*page
= get_first_page(zspage
);
958 } while ((page
= get_next_page(page
)) != NULL
);
961 int trylock_zspage(struct zspage
*zspage
)
963 struct page
*cursor
, *fail
;
965 for (cursor
= get_first_page(zspage
); cursor
!= NULL
; cursor
=
966 get_next_page(cursor
)) {
967 if (!trylock_page(cursor
)) {
975 for (cursor
= get_first_page(zspage
); cursor
!= fail
; cursor
=
976 get_next_page(cursor
))
982 static void __free_zspage(struct zs_pool
*pool
, struct size_class
*class,
983 struct zspage
*zspage
)
985 struct page
*page
, *next
;
986 enum fullness_group fg
;
987 unsigned int class_idx
;
989 get_zspage_mapping(zspage
, &class_idx
, &fg
);
991 assert_spin_locked(&class->lock
);
993 VM_BUG_ON(get_zspage_inuse(zspage
));
994 VM_BUG_ON(fg
!= ZS_EMPTY
);
996 next
= page
= get_first_page(zspage
);
998 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
999 next
= get_next_page(page
);
1002 dec_zone_page_state(page
, NR_ZSPAGES
);
1005 } while (page
!= NULL
);
1007 cache_free_zspage(pool
, zspage
);
1009 zs_stat_dec(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
1010 atomic_long_sub(class->pages_per_zspage
,
1011 &pool
->pages_allocated
);
1014 static void free_zspage(struct zs_pool
*pool
, struct size_class
*class,
1015 struct zspage
*zspage
)
1017 VM_BUG_ON(get_zspage_inuse(zspage
));
1018 VM_BUG_ON(list_empty(&zspage
->list
));
1020 if (!trylock_zspage(zspage
)) {
1021 kick_deferred_free(pool
);
1025 remove_zspage(class, zspage
, ZS_EMPTY
);
1026 __free_zspage(pool
, class, zspage
);
1029 /* Initialize a newly allocated zspage */
1030 static void init_zspage(struct size_class
*class, struct zspage
*zspage
)
1032 unsigned int freeobj
= 1;
1033 unsigned long off
= 0;
1034 struct page
*page
= get_first_page(zspage
);
1037 struct page
*next_page
;
1038 struct link_free
*link
;
1041 set_first_obj_offset(page
, off
);
1043 vaddr
= kmap_atomic(page
);
1044 link
= (struct link_free
*)vaddr
+ off
/ sizeof(*link
);
1046 while ((off
+= class->size
) < PAGE_SIZE
) {
1047 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1048 link
+= class->size
/ sizeof(*link
);
1052 * We now come to the last (full or partial) object on this
1053 * page, which must point to the first object on the next
1056 next_page
= get_next_page(page
);
1058 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1061 * Reset OBJ_TAG_BITS bit to last link to tell
1062 * whether it's allocated object or not.
1064 link
->next
= -1 << OBJ_TAG_BITS
;
1066 kunmap_atomic(vaddr
);
1071 set_freeobj(zspage
, 0);
1074 static void create_page_chain(struct size_class
*class, struct zspage
*zspage
,
1075 struct page
*pages
[])
1079 struct page
*prev_page
= NULL
;
1080 int nr_pages
= class->pages_per_zspage
;
1083 * Allocate individual pages and link them together as:
1084 * 1. all pages are linked together using page->freelist
1085 * 2. each sub-page point to zspage using page->private
1087 * we set PG_private to identify the first page (i.e. no other sub-page
1088 * has this flag set) and PG_private_2 to identify the last page.
1090 for (i
= 0; i
< nr_pages
; i
++) {
1092 set_page_private(page
, (unsigned long)zspage
);
1093 page
->freelist
= NULL
;
1095 zspage
->first_page
= page
;
1096 SetPagePrivate(page
);
1097 if (unlikely(class->objs_per_zspage
== 1 &&
1098 class->pages_per_zspage
== 1))
1099 SetPageHugeObject(page
);
1101 prev_page
->freelist
= page
;
1103 if (i
== nr_pages
- 1)
1104 SetPagePrivate2(page
);
1110 * Allocate a zspage for the given size class
1112 static struct zspage
*alloc_zspage(struct zs_pool
*pool
,
1113 struct size_class
*class,
1117 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
];
1118 struct zspage
*zspage
= cache_alloc_zspage(pool
, gfp
);
1123 memset(zspage
, 0, sizeof(struct zspage
));
1124 zspage
->magic
= ZSPAGE_MAGIC
;
1125 migrate_lock_init(zspage
);
1127 for (i
= 0; i
< class->pages_per_zspage
; i
++) {
1130 page
= alloc_page(gfp
);
1133 dec_zone_page_state(pages
[i
], NR_ZSPAGES
);
1134 __free_page(pages
[i
]);
1136 cache_free_zspage(pool
, zspage
);
1140 inc_zone_page_state(page
, NR_ZSPAGES
);
1144 create_page_chain(class, zspage
, pages
);
1145 init_zspage(class, zspage
);
1150 static struct zspage
*find_get_zspage(struct size_class
*class)
1153 struct zspage
*zspage
;
1155 for (i
= ZS_ALMOST_FULL
; i
>= ZS_EMPTY
; i
--) {
1156 zspage
= list_first_entry_or_null(&class->fullness_list
[i
],
1157 struct zspage
, list
);
1165 #ifdef CONFIG_PGTABLE_MAPPING
1166 static inline int __zs_cpu_up(struct mapping_area
*area
)
1169 * Make sure we don't leak memory if a cpu UP notification
1170 * and zs_init() race and both call zs_cpu_up() on the same cpu
1174 area
->vm
= alloc_vm_area(PAGE_SIZE
* 2, NULL
);
1180 static inline void __zs_cpu_down(struct mapping_area
*area
)
1183 free_vm_area(area
->vm
);
1187 static inline void *__zs_map_object(struct mapping_area
*area
,
1188 struct page
*pages
[2], int off
, int size
)
1190 BUG_ON(map_vm_area(area
->vm
, PAGE_KERNEL
, pages
));
1191 area
->vm_addr
= area
->vm
->addr
;
1192 return area
->vm_addr
+ off
;
1195 static inline void __zs_unmap_object(struct mapping_area
*area
,
1196 struct page
*pages
[2], int off
, int size
)
1198 unsigned long addr
= (unsigned long)area
->vm_addr
;
1200 unmap_kernel_range(addr
, PAGE_SIZE
* 2);
1203 #else /* CONFIG_PGTABLE_MAPPING */
1205 static inline int __zs_cpu_up(struct mapping_area
*area
)
1208 * Make sure we don't leak memory if a cpu UP notification
1209 * and zs_init() race and both call zs_cpu_up() on the same cpu
1213 area
->vm_buf
= kmalloc(ZS_MAX_ALLOC_SIZE
, GFP_KERNEL
);
1219 static inline void __zs_cpu_down(struct mapping_area
*area
)
1221 kfree(area
->vm_buf
);
1222 area
->vm_buf
= NULL
;
1225 static void *__zs_map_object(struct mapping_area
*area
,
1226 struct page
*pages
[2], int off
, int size
)
1230 char *buf
= area
->vm_buf
;
1232 /* disable page faults to match kmap_atomic() return conditions */
1233 pagefault_disable();
1235 /* no read fastpath */
1236 if (area
->vm_mm
== ZS_MM_WO
)
1239 sizes
[0] = PAGE_SIZE
- off
;
1240 sizes
[1] = size
- sizes
[0];
1242 /* copy object to per-cpu buffer */
1243 addr
= kmap_atomic(pages
[0]);
1244 memcpy(buf
, addr
+ off
, sizes
[0]);
1245 kunmap_atomic(addr
);
1246 addr
= kmap_atomic(pages
[1]);
1247 memcpy(buf
+ sizes
[0], addr
, sizes
[1]);
1248 kunmap_atomic(addr
);
1250 return area
->vm_buf
;
1253 static void __zs_unmap_object(struct mapping_area
*area
,
1254 struct page
*pages
[2], int off
, int size
)
1260 /* no write fastpath */
1261 if (area
->vm_mm
== ZS_MM_RO
)
1265 buf
= buf
+ ZS_HANDLE_SIZE
;
1266 size
-= ZS_HANDLE_SIZE
;
1267 off
+= ZS_HANDLE_SIZE
;
1269 sizes
[0] = PAGE_SIZE
- off
;
1270 sizes
[1] = size
- sizes
[0];
1272 /* copy per-cpu buffer to object */
1273 addr
= kmap_atomic(pages
[0]);
1274 memcpy(addr
+ off
, buf
, sizes
[0]);
1275 kunmap_atomic(addr
);
1276 addr
= kmap_atomic(pages
[1]);
1277 memcpy(addr
, buf
+ sizes
[0], sizes
[1]);
1278 kunmap_atomic(addr
);
1281 /* enable page faults to match kunmap_atomic() return conditions */
1285 #endif /* CONFIG_PGTABLE_MAPPING */
1287 static int zs_cpu_prepare(unsigned int cpu
)
1289 struct mapping_area
*area
;
1291 area
= &per_cpu(zs_map_area
, cpu
);
1292 return __zs_cpu_up(area
);
1295 static int zs_cpu_dead(unsigned int cpu
)
1297 struct mapping_area
*area
;
1299 area
= &per_cpu(zs_map_area
, cpu
);
1300 __zs_cpu_down(area
);
1304 static void __init
init_zs_size_classes(void)
1308 nr
= (ZS_MAX_ALLOC_SIZE
- ZS_MIN_ALLOC_SIZE
) / ZS_SIZE_CLASS_DELTA
+ 1;
1309 if ((ZS_MAX_ALLOC_SIZE
- ZS_MIN_ALLOC_SIZE
) % ZS_SIZE_CLASS_DELTA
)
1312 zs_size_classes
= nr
;
1315 static bool can_merge(struct size_class
*prev
, int pages_per_zspage
,
1316 int objs_per_zspage
)
1318 if (prev
->pages_per_zspage
== pages_per_zspage
&&
1319 prev
->objs_per_zspage
== objs_per_zspage
)
1325 static bool zspage_full(struct size_class
*class, struct zspage
*zspage
)
1327 return get_zspage_inuse(zspage
) == class->objs_per_zspage
;
1330 unsigned long zs_get_total_pages(struct zs_pool
*pool
)
1332 return atomic_long_read(&pool
->pages_allocated
);
1334 EXPORT_SYMBOL_GPL(zs_get_total_pages
);
1337 * zs_map_object - get address of allocated object from handle.
1338 * @pool: pool from which the object was allocated
1339 * @handle: handle returned from zs_malloc
1341 * Before using an object allocated from zs_malloc, it must be mapped using
1342 * this function. When done with the object, it must be unmapped using
1345 * Only one object can be mapped per cpu at a time. There is no protection
1346 * against nested mappings.
1348 * This function returns with preemption and page faults disabled.
1350 void *zs_map_object(struct zs_pool
*pool
, unsigned long handle
,
1353 struct zspage
*zspage
;
1355 unsigned long obj
, off
;
1356 unsigned int obj_idx
;
1358 unsigned int class_idx
;
1359 enum fullness_group fg
;
1360 struct size_class
*class;
1361 struct mapping_area
*area
;
1362 struct page
*pages
[2];
1366 * Because we use per-cpu mapping areas shared among the
1367 * pools/users, we can't allow mapping in interrupt context
1368 * because it can corrupt another users mappings.
1370 WARN_ON_ONCE(in_interrupt());
1372 /* From now on, migration cannot move the object */
1375 obj
= handle_to_obj(handle
);
1376 obj_to_location(obj
, &page
, &obj_idx
);
1377 zspage
= get_zspage(page
);
1379 /* migration cannot move any subpage in this zspage */
1380 migrate_read_lock(zspage
);
1382 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1383 class = pool
->size_class
[class_idx
];
1384 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1386 area
= &get_cpu_var(zs_map_area
);
1388 if (off
+ class->size
<= PAGE_SIZE
) {
1389 /* this object is contained entirely within a page */
1390 area
->vm_addr
= kmap_atomic(page
);
1391 ret
= area
->vm_addr
+ off
;
1395 /* this object spans two pages */
1397 pages
[1] = get_next_page(page
);
1400 ret
= __zs_map_object(area
, pages
, off
, class->size
);
1402 if (likely(!PageHugeObject(page
)))
1403 ret
+= ZS_HANDLE_SIZE
;
1407 EXPORT_SYMBOL_GPL(zs_map_object
);
1409 void zs_unmap_object(struct zs_pool
*pool
, unsigned long handle
)
1411 struct zspage
*zspage
;
1413 unsigned long obj
, off
;
1414 unsigned int obj_idx
;
1416 unsigned int class_idx
;
1417 enum fullness_group fg
;
1418 struct size_class
*class;
1419 struct mapping_area
*area
;
1421 obj
= handle_to_obj(handle
);
1422 obj_to_location(obj
, &page
, &obj_idx
);
1423 zspage
= get_zspage(page
);
1424 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1425 class = pool
->size_class
[class_idx
];
1426 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1428 area
= this_cpu_ptr(&zs_map_area
);
1429 if (off
+ class->size
<= PAGE_SIZE
)
1430 kunmap_atomic(area
->vm_addr
);
1432 struct page
*pages
[2];
1435 pages
[1] = get_next_page(page
);
1438 __zs_unmap_object(area
, pages
, off
, class->size
);
1440 put_cpu_var(zs_map_area
);
1442 migrate_read_unlock(zspage
);
1445 EXPORT_SYMBOL_GPL(zs_unmap_object
);
1447 static unsigned long obj_malloc(struct size_class
*class,
1448 struct zspage
*zspage
, unsigned long handle
)
1450 int i
, nr_page
, offset
;
1452 struct link_free
*link
;
1454 struct page
*m_page
;
1455 unsigned long m_offset
;
1458 handle
|= OBJ_ALLOCATED_TAG
;
1459 obj
= get_freeobj(zspage
);
1461 offset
= obj
* class->size
;
1462 nr_page
= offset
>> PAGE_SHIFT
;
1463 m_offset
= offset
& ~PAGE_MASK
;
1464 m_page
= get_first_page(zspage
);
1466 for (i
= 0; i
< nr_page
; i
++)
1467 m_page
= get_next_page(m_page
);
1469 vaddr
= kmap_atomic(m_page
);
1470 link
= (struct link_free
*)vaddr
+ m_offset
/ sizeof(*link
);
1471 set_freeobj(zspage
, link
->next
>> OBJ_TAG_BITS
);
1472 if (likely(!PageHugeObject(m_page
)))
1473 /* record handle in the header of allocated chunk */
1474 link
->handle
= handle
;
1476 /* record handle to page->index */
1477 zspage
->first_page
->index
= handle
;
1479 kunmap_atomic(vaddr
);
1480 mod_zspage_inuse(zspage
, 1);
1481 zs_stat_inc(class, OBJ_USED
, 1);
1483 obj
= location_to_obj(m_page
, obj
);
1490 * zs_malloc - Allocate block of given size from pool.
1491 * @pool: pool to allocate from
1492 * @size: size of block to allocate
1493 * @gfp: gfp flags when allocating object
1495 * On success, handle to the allocated object is returned,
1497 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1499 unsigned long zs_malloc(struct zs_pool
*pool
, size_t size
, gfp_t gfp
)
1501 unsigned long handle
, obj
;
1502 struct size_class
*class;
1503 enum fullness_group newfg
;
1504 struct zspage
*zspage
;
1506 if (unlikely(!size
|| size
> ZS_MAX_ALLOC_SIZE
))
1509 handle
= cache_alloc_handle(pool
, gfp
);
1513 /* extra space in chunk to keep the handle */
1514 size
+= ZS_HANDLE_SIZE
;
1515 class = pool
->size_class
[get_size_class_index(size
)];
1517 spin_lock(&class->lock
);
1518 zspage
= find_get_zspage(class);
1519 if (likely(zspage
)) {
1520 obj
= obj_malloc(class, zspage
, handle
);
1521 /* Now move the zspage to another fullness group, if required */
1522 fix_fullness_group(class, zspage
);
1523 record_obj(handle
, obj
);
1524 spin_unlock(&class->lock
);
1529 spin_unlock(&class->lock
);
1531 zspage
= alloc_zspage(pool
, class, gfp
);
1533 cache_free_handle(pool
, handle
);
1537 spin_lock(&class->lock
);
1538 obj
= obj_malloc(class, zspage
, handle
);
1539 newfg
= get_fullness_group(class, zspage
);
1540 insert_zspage(class, zspage
, newfg
);
1541 set_zspage_mapping(zspage
, class->index
, newfg
);
1542 record_obj(handle
, obj
);
1543 atomic_long_add(class->pages_per_zspage
,
1544 &pool
->pages_allocated
);
1545 zs_stat_inc(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
1547 /* We completely set up zspage so mark them as movable */
1548 SetZsPageMovable(pool
, zspage
);
1549 spin_unlock(&class->lock
);
1553 EXPORT_SYMBOL_GPL(zs_malloc
);
1555 static void obj_free(struct size_class
*class, unsigned long obj
)
1557 struct link_free
*link
;
1558 struct zspage
*zspage
;
1559 struct page
*f_page
;
1560 unsigned long f_offset
;
1561 unsigned int f_objidx
;
1564 obj
&= ~OBJ_ALLOCATED_TAG
;
1565 obj_to_location(obj
, &f_page
, &f_objidx
);
1566 f_offset
= (class->size
* f_objidx
) & ~PAGE_MASK
;
1567 zspage
= get_zspage(f_page
);
1569 vaddr
= kmap_atomic(f_page
);
1571 /* Insert this object in containing zspage's freelist */
1572 link
= (struct link_free
*)(vaddr
+ f_offset
);
1573 link
->next
= get_freeobj(zspage
) << OBJ_TAG_BITS
;
1574 kunmap_atomic(vaddr
);
1575 set_freeobj(zspage
, f_objidx
);
1576 mod_zspage_inuse(zspage
, -1);
1577 zs_stat_dec(class, OBJ_USED
, 1);
1580 void zs_free(struct zs_pool
*pool
, unsigned long handle
)
1582 struct zspage
*zspage
;
1583 struct page
*f_page
;
1585 unsigned int f_objidx
;
1587 struct size_class
*class;
1588 enum fullness_group fullness
;
1591 if (unlikely(!handle
))
1595 obj
= handle_to_obj(handle
);
1596 obj_to_location(obj
, &f_page
, &f_objidx
);
1597 zspage
= get_zspage(f_page
);
1599 migrate_read_lock(zspage
);
1601 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1602 class = pool
->size_class
[class_idx
];
1604 spin_lock(&class->lock
);
1605 obj_free(class, obj
);
1606 fullness
= fix_fullness_group(class, zspage
);
1607 if (fullness
!= ZS_EMPTY
) {
1608 migrate_read_unlock(zspage
);
1612 isolated
= is_zspage_isolated(zspage
);
1613 migrate_read_unlock(zspage
);
1614 /* If zspage is isolated, zs_page_putback will free the zspage */
1615 if (likely(!isolated
))
1616 free_zspage(pool
, class, zspage
);
1619 spin_unlock(&class->lock
);
1621 cache_free_handle(pool
, handle
);
1623 EXPORT_SYMBOL_GPL(zs_free
);
1625 static void zs_object_copy(struct size_class
*class, unsigned long dst
,
1628 struct page
*s_page
, *d_page
;
1629 unsigned int s_objidx
, d_objidx
;
1630 unsigned long s_off
, d_off
;
1631 void *s_addr
, *d_addr
;
1632 int s_size
, d_size
, size
;
1635 s_size
= d_size
= class->size
;
1637 obj_to_location(src
, &s_page
, &s_objidx
);
1638 obj_to_location(dst
, &d_page
, &d_objidx
);
1640 s_off
= (class->size
* s_objidx
) & ~PAGE_MASK
;
1641 d_off
= (class->size
* d_objidx
) & ~PAGE_MASK
;
1643 if (s_off
+ class->size
> PAGE_SIZE
)
1644 s_size
= PAGE_SIZE
- s_off
;
1646 if (d_off
+ class->size
> PAGE_SIZE
)
1647 d_size
= PAGE_SIZE
- d_off
;
1649 s_addr
= kmap_atomic(s_page
);
1650 d_addr
= kmap_atomic(d_page
);
1653 size
= min(s_size
, d_size
);
1654 memcpy(d_addr
+ d_off
, s_addr
+ s_off
, size
);
1657 if (written
== class->size
)
1665 if (s_off
>= PAGE_SIZE
) {
1666 kunmap_atomic(d_addr
);
1667 kunmap_atomic(s_addr
);
1668 s_page
= get_next_page(s_page
);
1669 s_addr
= kmap_atomic(s_page
);
1670 d_addr
= kmap_atomic(d_page
);
1671 s_size
= class->size
- written
;
1675 if (d_off
>= PAGE_SIZE
) {
1676 kunmap_atomic(d_addr
);
1677 d_page
= get_next_page(d_page
);
1678 d_addr
= kmap_atomic(d_page
);
1679 d_size
= class->size
- written
;
1684 kunmap_atomic(d_addr
);
1685 kunmap_atomic(s_addr
);
1689 * Find alloced object in zspage from index object and
1692 static unsigned long find_alloced_obj(struct size_class
*class,
1693 struct page
*page
, int *obj_idx
)
1697 int index
= *obj_idx
;
1698 unsigned long handle
= 0;
1699 void *addr
= kmap_atomic(page
);
1701 offset
= get_first_obj_offset(page
);
1702 offset
+= class->size
* index
;
1704 while (offset
< PAGE_SIZE
) {
1705 head
= obj_to_head(page
, addr
+ offset
);
1706 if (head
& OBJ_ALLOCATED_TAG
) {
1707 handle
= head
& ~OBJ_ALLOCATED_TAG
;
1708 if (trypin_tag(handle
))
1713 offset
+= class->size
;
1717 kunmap_atomic(addr
);
1724 struct zs_compact_control
{
1725 /* Source spage for migration which could be a subpage of zspage */
1726 struct page
*s_page
;
1727 /* Destination page for migration which should be a first page
1729 struct page
*d_page
;
1730 /* Starting object index within @s_page which used for live object
1731 * in the subpage. */
1735 static int migrate_zspage(struct zs_pool
*pool
, struct size_class
*class,
1736 struct zs_compact_control
*cc
)
1738 unsigned long used_obj
, free_obj
;
1739 unsigned long handle
;
1740 struct page
*s_page
= cc
->s_page
;
1741 struct page
*d_page
= cc
->d_page
;
1742 int obj_idx
= cc
->obj_idx
;
1746 handle
= find_alloced_obj(class, s_page
, &obj_idx
);
1748 s_page
= get_next_page(s_page
);
1755 /* Stop if there is no more space */
1756 if (zspage_full(class, get_zspage(d_page
))) {
1762 used_obj
= handle_to_obj(handle
);
1763 free_obj
= obj_malloc(class, get_zspage(d_page
), handle
);
1764 zs_object_copy(class, free_obj
, used_obj
);
1767 * record_obj updates handle's value to free_obj and it will
1768 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1769 * breaks synchronization using pin_tag(e,g, zs_free) so
1770 * let's keep the lock bit.
1772 free_obj
|= BIT(HANDLE_PIN_BIT
);
1773 record_obj(handle
, free_obj
);
1775 obj_free(class, used_obj
);
1778 /* Remember last position in this iteration */
1779 cc
->s_page
= s_page
;
1780 cc
->obj_idx
= obj_idx
;
1785 static struct zspage
*isolate_zspage(struct size_class
*class, bool source
)
1788 struct zspage
*zspage
;
1789 enum fullness_group fg
[2] = {ZS_ALMOST_EMPTY
, ZS_ALMOST_FULL
};
1792 fg
[0] = ZS_ALMOST_FULL
;
1793 fg
[1] = ZS_ALMOST_EMPTY
;
1796 for (i
= 0; i
< 2; i
++) {
1797 zspage
= list_first_entry_or_null(&class->fullness_list
[fg
[i
]],
1798 struct zspage
, list
);
1800 VM_BUG_ON(is_zspage_isolated(zspage
));
1801 remove_zspage(class, zspage
, fg
[i
]);
1810 * putback_zspage - add @zspage into right class's fullness list
1811 * @class: destination class
1812 * @zspage: target page
1814 * Return @zspage's fullness_group
1816 static enum fullness_group
putback_zspage(struct size_class
*class,
1817 struct zspage
*zspage
)
1819 enum fullness_group fullness
;
1821 VM_BUG_ON(is_zspage_isolated(zspage
));
1823 fullness
= get_fullness_group(class, zspage
);
1824 insert_zspage(class, zspage
, fullness
);
1825 set_zspage_mapping(zspage
, class->index
, fullness
);
1830 #ifdef CONFIG_COMPACTION
1831 static struct dentry
*zs_mount(struct file_system_type
*fs_type
,
1832 int flags
, const char *dev_name
, void *data
)
1834 static const struct dentry_operations ops
= {
1835 .d_dname
= simple_dname
,
1838 return mount_pseudo(fs_type
, "zsmalloc:", NULL
, &ops
, ZSMALLOC_MAGIC
);
1841 static struct file_system_type zsmalloc_fs
= {
1844 .kill_sb
= kill_anon_super
,
1847 static int zsmalloc_mount(void)
1851 zsmalloc_mnt
= kern_mount(&zsmalloc_fs
);
1852 if (IS_ERR(zsmalloc_mnt
))
1853 ret
= PTR_ERR(zsmalloc_mnt
);
1858 static void zsmalloc_unmount(void)
1860 kern_unmount(zsmalloc_mnt
);
1863 static void migrate_lock_init(struct zspage
*zspage
)
1865 rwlock_init(&zspage
->lock
);
1868 static void migrate_read_lock(struct zspage
*zspage
)
1870 read_lock(&zspage
->lock
);
1873 static void migrate_read_unlock(struct zspage
*zspage
)
1875 read_unlock(&zspage
->lock
);
1878 static void migrate_write_lock(struct zspage
*zspage
)
1880 write_lock(&zspage
->lock
);
1883 static void migrate_write_unlock(struct zspage
*zspage
)
1885 write_unlock(&zspage
->lock
);
1888 /* Number of isolated subpage for *page migration* in this zspage */
1889 static void inc_zspage_isolation(struct zspage
*zspage
)
1894 static void dec_zspage_isolation(struct zspage
*zspage
)
1899 static void replace_sub_page(struct size_class
*class, struct zspage
*zspage
,
1900 struct page
*newpage
, struct page
*oldpage
)
1903 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
] = {NULL
, };
1906 page
= get_first_page(zspage
);
1908 if (page
== oldpage
)
1909 pages
[idx
] = newpage
;
1913 } while ((page
= get_next_page(page
)) != NULL
);
1915 create_page_chain(class, zspage
, pages
);
1916 set_first_obj_offset(newpage
, get_first_obj_offset(oldpage
));
1917 if (unlikely(PageHugeObject(oldpage
)))
1918 newpage
->index
= oldpage
->index
;
1919 __SetPageMovable(newpage
, page_mapping(oldpage
));
1922 bool zs_page_isolate(struct page
*page
, isolate_mode_t mode
)
1924 struct zs_pool
*pool
;
1925 struct size_class
*class;
1927 enum fullness_group fullness
;
1928 struct zspage
*zspage
;
1929 struct address_space
*mapping
;
1932 * Page is locked so zspage couldn't be destroyed. For detail, look at
1933 * lock_zspage in free_zspage.
1935 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
1936 VM_BUG_ON_PAGE(PageIsolated(page
), page
);
1938 zspage
= get_zspage(page
);
1941 * Without class lock, fullness could be stale while class_idx is okay
1942 * because class_idx is constant unless page is freed so we should get
1943 * fullness again under class lock.
1945 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1946 mapping
= page_mapping(page
);
1947 pool
= mapping
->private_data
;
1948 class = pool
->size_class
[class_idx
];
1950 spin_lock(&class->lock
);
1951 if (get_zspage_inuse(zspage
) == 0) {
1952 spin_unlock(&class->lock
);
1956 /* zspage is isolated for object migration */
1957 if (list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1958 spin_unlock(&class->lock
);
1963 * If this is first time isolation for the zspage, isolate zspage from
1964 * size_class to prevent further object allocation from the zspage.
1966 if (!list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1967 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1968 remove_zspage(class, zspage
, fullness
);
1971 inc_zspage_isolation(zspage
);
1972 spin_unlock(&class->lock
);
1977 int zs_page_migrate(struct address_space
*mapping
, struct page
*newpage
,
1978 struct page
*page
, enum migrate_mode mode
)
1980 struct zs_pool
*pool
;
1981 struct size_class
*class;
1983 enum fullness_group fullness
;
1984 struct zspage
*zspage
;
1986 void *s_addr
, *d_addr
, *addr
;
1988 unsigned long handle
, head
;
1989 unsigned long old_obj
, new_obj
;
1990 unsigned int obj_idx
;
1993 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
1994 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
1996 zspage
= get_zspage(page
);
1998 /* Concurrent compactor cannot migrate any subpage in zspage */
1999 migrate_write_lock(zspage
);
2000 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
2001 pool
= mapping
->private_data
;
2002 class = pool
->size_class
[class_idx
];
2003 offset
= get_first_obj_offset(page
);
2005 spin_lock(&class->lock
);
2006 if (!get_zspage_inuse(zspage
)) {
2012 s_addr
= kmap_atomic(page
);
2013 while (pos
< PAGE_SIZE
) {
2014 head
= obj_to_head(page
, s_addr
+ pos
);
2015 if (head
& OBJ_ALLOCATED_TAG
) {
2016 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2017 if (!trypin_tag(handle
))
2024 * Here, any user cannot access all objects in the zspage so let's move.
2026 d_addr
= kmap_atomic(newpage
);
2027 memcpy(d_addr
, s_addr
, PAGE_SIZE
);
2028 kunmap_atomic(d_addr
);
2030 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2031 addr
+= class->size
) {
2032 head
= obj_to_head(page
, addr
);
2033 if (head
& OBJ_ALLOCATED_TAG
) {
2034 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2035 if (!testpin_tag(handle
))
2038 old_obj
= handle_to_obj(handle
);
2039 obj_to_location(old_obj
, &dummy
, &obj_idx
);
2040 new_obj
= (unsigned long)location_to_obj(newpage
,
2042 new_obj
|= BIT(HANDLE_PIN_BIT
);
2043 record_obj(handle
, new_obj
);
2047 replace_sub_page(class, zspage
, newpage
, page
);
2050 dec_zspage_isolation(zspage
);
2053 * Page migration is done so let's putback isolated zspage to
2054 * the list if @page is final isolated subpage in the zspage.
2056 if (!is_zspage_isolated(zspage
))
2057 putback_zspage(class, zspage
);
2063 ret
= MIGRATEPAGE_SUCCESS
;
2065 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2066 addr
+= class->size
) {
2067 head
= obj_to_head(page
, addr
);
2068 if (head
& OBJ_ALLOCATED_TAG
) {
2069 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2070 if (!testpin_tag(handle
))
2075 kunmap_atomic(s_addr
);
2077 spin_unlock(&class->lock
);
2078 migrate_write_unlock(zspage
);
2083 void zs_page_putback(struct page
*page
)
2085 struct zs_pool
*pool
;
2086 struct size_class
*class;
2088 enum fullness_group fg
;
2089 struct address_space
*mapping
;
2090 struct zspage
*zspage
;
2092 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
2093 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
2095 zspage
= get_zspage(page
);
2096 get_zspage_mapping(zspage
, &class_idx
, &fg
);
2097 mapping
= page_mapping(page
);
2098 pool
= mapping
->private_data
;
2099 class = pool
->size_class
[class_idx
];
2101 spin_lock(&class->lock
);
2102 dec_zspage_isolation(zspage
);
2103 if (!is_zspage_isolated(zspage
)) {
2104 fg
= putback_zspage(class, zspage
);
2106 * Due to page_lock, we cannot free zspage immediately
2110 schedule_work(&pool
->free_work
);
2112 spin_unlock(&class->lock
);
2115 const struct address_space_operations zsmalloc_aops
= {
2116 .isolate_page
= zs_page_isolate
,
2117 .migratepage
= zs_page_migrate
,
2118 .putback_page
= zs_page_putback
,
2121 static int zs_register_migration(struct zs_pool
*pool
)
2123 pool
->inode
= alloc_anon_inode(zsmalloc_mnt
->mnt_sb
);
2124 if (IS_ERR(pool
->inode
)) {
2129 pool
->inode
->i_mapping
->private_data
= pool
;
2130 pool
->inode
->i_mapping
->a_ops
= &zsmalloc_aops
;
2134 static void zs_unregister_migration(struct zs_pool
*pool
)
2136 flush_work(&pool
->free_work
);
2141 * Caller should hold page_lock of all pages in the zspage
2142 * In here, we cannot use zspage meta data.
2144 static void async_free_zspage(struct work_struct
*work
)
2147 struct size_class
*class;
2148 unsigned int class_idx
;
2149 enum fullness_group fullness
;
2150 struct zspage
*zspage
, *tmp
;
2151 LIST_HEAD(free_pages
);
2152 struct zs_pool
*pool
= container_of(work
, struct zs_pool
,
2155 for (i
= 0; i
< zs_size_classes
; i
++) {
2156 class = pool
->size_class
[i
];
2157 if (class->index
!= i
)
2160 spin_lock(&class->lock
);
2161 list_splice_init(&class->fullness_list
[ZS_EMPTY
], &free_pages
);
2162 spin_unlock(&class->lock
);
2166 list_for_each_entry_safe(zspage
, tmp
, &free_pages
, list
) {
2167 list_del(&zspage
->list
);
2168 lock_zspage(zspage
);
2170 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
2171 VM_BUG_ON(fullness
!= ZS_EMPTY
);
2172 class = pool
->size_class
[class_idx
];
2173 spin_lock(&class->lock
);
2174 __free_zspage(pool
, pool
->size_class
[class_idx
], zspage
);
2175 spin_unlock(&class->lock
);
2179 static void kick_deferred_free(struct zs_pool
*pool
)
2181 schedule_work(&pool
->free_work
);
2184 static void init_deferred_free(struct zs_pool
*pool
)
2186 INIT_WORK(&pool
->free_work
, async_free_zspage
);
2189 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
)
2191 struct page
*page
= get_first_page(zspage
);
2194 WARN_ON(!trylock_page(page
));
2195 __SetPageMovable(page
, pool
->inode
->i_mapping
);
2197 } while ((page
= get_next_page(page
)) != NULL
);
2203 * Based on the number of unused allocated objects calculate
2204 * and return the number of pages that we can free.
2206 static unsigned long zs_can_compact(struct size_class
*class)
2208 unsigned long obj_wasted
;
2209 unsigned long obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
2210 unsigned long obj_used
= zs_stat_get(class, OBJ_USED
);
2212 if (obj_allocated
<= obj_used
)
2215 obj_wasted
= obj_allocated
- obj_used
;
2216 obj_wasted
/= class->objs_per_zspage
;
2218 return obj_wasted
* class->pages_per_zspage
;
2221 static void __zs_compact(struct zs_pool
*pool
, struct size_class
*class)
2223 struct zs_compact_control cc
;
2224 struct zspage
*src_zspage
;
2225 struct zspage
*dst_zspage
= NULL
;
2227 spin_lock(&class->lock
);
2228 while ((src_zspage
= isolate_zspage(class, true))) {
2230 if (!zs_can_compact(class))
2234 cc
.s_page
= get_first_page(src_zspage
);
2236 while ((dst_zspage
= isolate_zspage(class, false))) {
2237 cc
.d_page
= get_first_page(dst_zspage
);
2239 * If there is no more space in dst_page, resched
2240 * and see if anyone had allocated another zspage.
2242 if (!migrate_zspage(pool
, class, &cc
))
2245 putback_zspage(class, dst_zspage
);
2248 /* Stop if we couldn't find slot */
2249 if (dst_zspage
== NULL
)
2252 putback_zspage(class, dst_zspage
);
2253 if (putback_zspage(class, src_zspage
) == ZS_EMPTY
) {
2254 free_zspage(pool
, class, src_zspage
);
2255 pool
->stats
.pages_compacted
+= class->pages_per_zspage
;
2257 spin_unlock(&class->lock
);
2259 spin_lock(&class->lock
);
2263 putback_zspage(class, src_zspage
);
2265 spin_unlock(&class->lock
);
2268 unsigned long zs_compact(struct zs_pool
*pool
)
2271 struct size_class
*class;
2273 for (i
= zs_size_classes
- 1; i
>= 0; i
--) {
2274 class = pool
->size_class
[i
];
2277 if (class->index
!= i
)
2279 __zs_compact(pool
, class);
2282 return pool
->stats
.pages_compacted
;
2284 EXPORT_SYMBOL_GPL(zs_compact
);
2286 void zs_pool_stats(struct zs_pool
*pool
, struct zs_pool_stats
*stats
)
2288 memcpy(stats
, &pool
->stats
, sizeof(struct zs_pool_stats
));
2290 EXPORT_SYMBOL_GPL(zs_pool_stats
);
2292 static unsigned long zs_shrinker_scan(struct shrinker
*shrinker
,
2293 struct shrink_control
*sc
)
2295 unsigned long pages_freed
;
2296 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2299 pages_freed
= pool
->stats
.pages_compacted
;
2301 * Compact classes and calculate compaction delta.
2302 * Can run concurrently with a manually triggered
2303 * (by user) compaction.
2305 pages_freed
= zs_compact(pool
) - pages_freed
;
2307 return pages_freed
? pages_freed
: SHRINK_STOP
;
2310 static unsigned long zs_shrinker_count(struct shrinker
*shrinker
,
2311 struct shrink_control
*sc
)
2314 struct size_class
*class;
2315 unsigned long pages_to_free
= 0;
2316 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2319 for (i
= zs_size_classes
- 1; i
>= 0; i
--) {
2320 class = pool
->size_class
[i
];
2323 if (class->index
!= i
)
2326 pages_to_free
+= zs_can_compact(class);
2329 return pages_to_free
;
2332 static void zs_unregister_shrinker(struct zs_pool
*pool
)
2334 if (pool
->shrinker_enabled
) {
2335 unregister_shrinker(&pool
->shrinker
);
2336 pool
->shrinker_enabled
= false;
2340 static int zs_register_shrinker(struct zs_pool
*pool
)
2342 pool
->shrinker
.scan_objects
= zs_shrinker_scan
;
2343 pool
->shrinker
.count_objects
= zs_shrinker_count
;
2344 pool
->shrinker
.batch
= 0;
2345 pool
->shrinker
.seeks
= DEFAULT_SEEKS
;
2347 return register_shrinker(&pool
->shrinker
);
2351 * zs_create_pool - Creates an allocation pool to work from.
2352 * @name: pool name to be created
2354 * This function must be called before anything when using
2355 * the zsmalloc allocator.
2357 * On success, a pointer to the newly created pool is returned,
2360 struct zs_pool
*zs_create_pool(const char *name
)
2363 struct zs_pool
*pool
;
2364 struct size_class
*prev_class
= NULL
;
2366 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
2370 init_deferred_free(pool
);
2371 pool
->size_class
= kcalloc(zs_size_classes
, sizeof(struct size_class
*),
2373 if (!pool
->size_class
) {
2378 pool
->name
= kstrdup(name
, GFP_KERNEL
);
2382 if (create_cache(pool
))
2386 * Iterate reversly, because, size of size_class that we want to use
2387 * for merging should be larger or equal to current size.
2389 for (i
= zs_size_classes
- 1; i
>= 0; i
--) {
2391 int pages_per_zspage
;
2392 int objs_per_zspage
;
2393 struct size_class
*class;
2396 size
= ZS_MIN_ALLOC_SIZE
+ i
* ZS_SIZE_CLASS_DELTA
;
2397 if (size
> ZS_MAX_ALLOC_SIZE
)
2398 size
= ZS_MAX_ALLOC_SIZE
;
2399 pages_per_zspage
= get_pages_per_zspage(size
);
2400 objs_per_zspage
= pages_per_zspage
* PAGE_SIZE
/ size
;
2403 * size_class is used for normal zsmalloc operation such
2404 * as alloc/free for that size. Although it is natural that we
2405 * have one size_class for each size, there is a chance that we
2406 * can get more memory utilization if we use one size_class for
2407 * many different sizes whose size_class have same
2408 * characteristics. So, we makes size_class point to
2409 * previous size_class if possible.
2412 if (can_merge(prev_class
, pages_per_zspage
, objs_per_zspage
)) {
2413 pool
->size_class
[i
] = prev_class
;
2418 class = kzalloc(sizeof(struct size_class
), GFP_KERNEL
);
2424 class->pages_per_zspage
= pages_per_zspage
;
2425 class->objs_per_zspage
= objs_per_zspage
;
2426 spin_lock_init(&class->lock
);
2427 pool
->size_class
[i
] = class;
2428 for (fullness
= ZS_EMPTY
; fullness
< NR_ZS_FULLNESS
;
2430 INIT_LIST_HEAD(&class->fullness_list
[fullness
]);
2435 /* debug only, don't abort if it fails */
2436 zs_pool_stat_create(pool
, name
);
2438 if (zs_register_migration(pool
))
2442 * Not critical, we still can use the pool
2443 * and user can trigger compaction manually.
2445 if (zs_register_shrinker(pool
) == 0)
2446 pool
->shrinker_enabled
= true;
2450 zs_destroy_pool(pool
);
2453 EXPORT_SYMBOL_GPL(zs_create_pool
);
2455 void zs_destroy_pool(struct zs_pool
*pool
)
2459 zs_unregister_shrinker(pool
);
2460 zs_unregister_migration(pool
);
2461 zs_pool_stat_destroy(pool
);
2463 for (i
= 0; i
< zs_size_classes
; i
++) {
2465 struct size_class
*class = pool
->size_class
[i
];
2470 if (class->index
!= i
)
2473 for (fg
= ZS_EMPTY
; fg
< NR_ZS_FULLNESS
; fg
++) {
2474 if (!list_empty(&class->fullness_list
[fg
])) {
2475 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2482 destroy_cache(pool
);
2483 kfree(pool
->size_class
);
2487 EXPORT_SYMBOL_GPL(zs_destroy_pool
);
2489 static int __init
zs_init(void)
2493 ret
= zsmalloc_mount();
2497 ret
= cpuhp_setup_state(CPUHP_MM_ZS_PREPARE
, "mm/zsmalloc:prepare",
2498 zs_cpu_prepare
, zs_cpu_dead
);
2502 init_zs_size_classes();
2505 zpool_register_driver(&zs_zpool_driver
);
2518 static void __exit
zs_exit(void)
2521 zpool_unregister_driver(&zs_zpool_driver
);
2524 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE
);
2529 module_init(zs_init
);
2530 module_exit(zs_exit
);
2532 MODULE_LICENSE("Dual BSD/GPL");
2533 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");